Real-Time Shadows
Last Time?

- The graphics pipeline
- Clipping & rasterization of polygons
- Visibility — the depth buffer (z-buffer)
Schedule

• Quiz 2: Thursday November 20th, in class (two weeks from Thursday)

• Project Presentations (to staff): December 1st - 5th (~ 4 weeks)

• Project Report due: Tuesday December 9th (5 weeks from today)
Questions?
Today

• Why are Shadows Important?
• Shadows & Soft Shadows in Ray Tracing
• Planar Shadows
• Shadow Maps
• Shadow Volumes
Why are Shadows Important?

- Depth cue
- Scene
- Lighting
- Realism
- Contact points

Image removed due to copyright considerations.
Shadows as a Depth Cue

Image adapted from:

MIT EECS 6.837, Durand and Cutler
For Intuition about Scene Lighting

- Position of the light (e.g. sundial)
- Hard shadows vs. soft shadows
- Colored lights
- Directional light vs. point light
Today

- Why are Shadows Important?
- Shadows & Soft Shadows in Ray Tracing
- Planar Shadows
- Shadow Maps
- Shadow Volumes
Shadows

- One shadow ray per intersection per point light source
Soft Shadows

- Caused by extended light sources
- Umbra
 - source completely occluded
- Penumbra
 - Source partially occluded
- Fully lit

Image removed due to copyright considerations.
Soft Shadows

- Multiple shadow rays to sample area light source

MIT EECS 6.837, Durand and Cutler
Shadows in Ray Tracing

- Shoot ray from visible point to light source
- If blocked, discard light contribution
- Optimization?
 - Stop after first intersection (don’t worry about t_{min})
 - Coherence: remember the previous occluder, and test that object first
Traditional Ray Tracing
Ray Tracing + Soft Shadows
Today

• Why are Shadows Important?
• Shadows & Soft Shadows in Ray Tracing
• Planar Shadows
• Shadow Maps
• Shadow Volumes
Cast Shadows on Planar Surfaces

- Draw the object primitives a second time, projected to the ground plane
Limitations of Planar Shadows

- Does not produce self-shadows, shadows cast on other objects, shadows on curved surfaces, etc.
Today

- Why are Shadows Important?
- Shadows & Soft Shadows in Ray Tracing
- Planar Shadows
- Shadow Maps
 - Texture Mapping
 - Shadow View Duality
- Shadow Volumes
Texture Mapping

• Don't have to represent everything with geometry
Texture Mapping

- Like wallpapering or gift-wrapping with stretchy paper
- Curved surfaces require extra stretching or cutting
- More on this in a couple weeks...
Shadow/View Duality

- A point is lit if it is visible from the light source
- Shadow computation similar to view computation
Fake Shadows using Projective Textures

- Separate obstacle and receiver
- Compute b/w image of obstacle from light
- Use image as projective texture for each receiver

(Images removed due to copyright considerations.)

Figure from Moller & Haines “Real Time Rendering”

MIT EECS 6.837, Durand and Cutler
Shadow Mapping

- Texture mapping with depth information
- ≥ 2 passes through the pipeline
 - Compute shadow map (depth from light source)
 - Render final image (check shadow map to see if points are in shadow)

Figure from Foley et al. “Computer Graphics Principles and Practice”
MIT EECS 6.837, Durand and Cutler
Shadow Map Look Up

- We have a 3D point \((x,y,z)_{WS}\)
- How do we look up the depth from the shadow map?
- Use the 4x4 perspective projection matrix from the light source to get \((x',y',z')_{LS}\)
- \(\text{ShadowMap}(x',y') < z'\)

Shadow Maps

• Can be done in hardware
• Using hardware texture mapping
 – Texture coordinates u,v,w generated using 4x4 matrix
 – Modern hardware permits tests on texture values
Limitations of Shadow Maps

1. Field of View
2. Bias (Epsilon)
3. Aliasing
1. Field of View Problem

- What if point to shadow is outside field of view of shadow map?
 - Use cubical shadow map
 - Use only spot lights!
2. The Bias (Epsilon) Nightmare

- For a point visible from the light source
 \[\text{ShadowMap}(x',y') \approx z' \]

- How can we avoid erroneous self-shadowing?
 - Add bias (epsilon)
2. Bias (Epsilon) for Shadow Maps

ShadowMap\((x', y') + \text{bias} < z' \)

Choosing a good bias value can be very tricky

Correct image Not enough bias Way too much bias
3. Shadow Map Aliasing

- Under-sampling of the shadow map
- Reprojection aliasing – especially bad when the camera & light are pointing towards each other
Shadow Map Filtering

- Should we filter the depth? (weighted average of neighboring depth values)
- No... filtering depth is not meaningful
Percentage Closer Filtering

- Instead filter the result of the test (weighted average of comparison results)
- But makes the bias issue more tricky

MIT EECS 6.837, Durand and Cutler
Percentage Closer Filtering

- 5x5 samples
- Nice antialiased shadow
- Using a bigger filter produces fake soft shadows
- Setting bias is tricky
Projective Texturing + Shadow Map

Images from Cass Everitt et al., “Hardware Shadow Mapping” NVIDIA SDK White Paper

Courtesy of Cass Everitt. Used with permission.

MIT EECS 6.837, Durand and Cutler
Shadows in Production

• Often use shadow maps
• Ray casting as fallback in case of robustness issues

Images removed due to copyright considerations.
Today

• Why are Shadows Important?
• Shadows & Soft Shadows in Ray Tracing
• Planar Shadows
• Shadow Maps
• Shadow Volumes
 – The Stencil Buffer
Shadow Volumes

- Explicitly represent the volume of space in shadow
- For each polygon
 - Pyramid with point light as apex
 - Include polygon to cap
- Shadow test similar to clipping

MIT EECS 6.837, Durand and Cutler
Shadow Volumes

• If a point is inside a shadow volume cast by a particular light, the point does not receive any illumination from that light

• Naive implementation:
 \#polygons * \#lights
Shadow Volumes

• Shoot a ray from the eye to the visible point

• Increment/decrement a counter each time we intersect a shadow volume polygon (check z buffer)

• If the counter \(\neq 0 \), the point is in shadow
Stencil Buffer

• Tag pixels in one rendering pass to control their update in subsequent rendering passes
• "For all pixels in the frame buffer" → "For all *tagged* pixels in the frame buffer"
• Used for real-time mirrors (& other reflective surfaces), shadows & more!
Stencil Buffer

• Can specify different rendering operations for each of the following stencil tests:
 – stencil test fails
 – stencil test passes & depth test fails
 – stencil test passes & depth test passes
Shadow Volumes w/ the Stencil Buffer

- Initialize stencil buffer to 0
- Draw scene with ambient light only
- Turn off frame buffer & z-buffer updates
- Draw front-facing shadow polygons
 - If z-pass → increment counter
- Draw back-facing shadow polygons
 - If z-pass → decrement counter
- Turn on frame buffer updates
- Turn on lighting and redraw pixels with counter = 0
If the Eye is in Shadow...

• ... then a counter of 0 does not necessarily mean lit

• 3 Possible Solutions:
 1. Explicitly test eye point with respect to all shadow volumes
 2. Clip the shadow volumes to the view frustum
 3. "Z-Fail" shadow volumes
1. Test Eye with Respect to Volumes

- Adjust initial counter value

Expensive
2. Clip the Shadow Volumes

- Clip the shadow volumes to the view frustum and include these new polygons
- *Messy CSG*
3. "Z-Fail" Shadow Volumes

Start at infinity

...+

Draw front-facing shadow polygons
If z-fail, decrement counter

Draw back-facing shadow polygons
If z-fail, increment counter

MIT EECS 6.837, Durand and Cutler
3. "Z-Fail" Shadow Volumes

- Introduces problems with far clipping plane
- Solved by clamping the depth during clipping
Optimizing Shadow Volumes

• Use silhouette edges only (edge where a back-facing & front-facing polygon meet)
Limitations of Shadow Volumes

- Introduces a lot of new geometry
- Expensive to rasterize long skinny triangles
- Limited precision of stencil buffer (counters)
 - for a really complex scene/object, the counter can overflow
- Objects must be watertight to use silhouette trick
- Rasterization of polygons sharing an edge must not overlap & must not have gap
Next Time:

Global Illumination: Radiosity