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Abstract

Predicting the dynamic behavior of a large network from that of the composing modules is a central problem in systems
and synthetic biology. Yet, this predictive ability is still largely missing because modules display context-dependent
behavior. One cause of context-dependence is retroactivity, a phenomenon similar to loading that influences in non-trivial
ways the dynamic performance of a module upon connection to other modules. Here, we establish an analysis framework
for gene transcription networks that explicitly accounts for retroactivity. Specifically, a module’s key properties are encoded
by three retroactivity matrices: internal, scaling, and mixing retroactivity. All of them have a physical interpretation and can
be computed from macroscopic parameters (dissociation constants and promoter concentrations) and from the modules’
topology. The internal retroactivity quantifies the effect of intramodular connections on an isolated module’s dynamics. The
scaling and mixing retroactivity establish how intermodular connections change the dynamics of connected modules. Based
on these matrices and on the dynamics of modules in isolation, we can accurately predict how loading will affect the
behavior of an arbitrary interconnection of modules. We illustrate implications of internal, scaling, and mixing retroactivity
on the performance of recurrent network motifs, including negative autoregulation, combinatorial regulation, two-gene
clocks, the toggle switch, and the single-input motif. We further provide a quantitative metric that determines how robust
the dynamic behavior of a module is to interconnection with other modules. This metric can be employed both to evaluate
the extent of modularity of natural networks and to establish concrete design guidelines to minimize retroactivity between
modules in synthetic systems.
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Introduction

The ability to accurately predict the behavior of a complex

system from that of the composing modules has been instrumental

to the development of engineering systems. It has been proposed

that biological networks may have a modular organization similar

to that of engineered systems and that core processes, or motifs,

have been conserved through the course of evolution and across

different contexts [1], [2], [3], [4], [5]. In addition to having

profound consequences from an evolutionary perspective, this

view implies that biology can be understood, just like engineering,

in a modular fashion [6]. To predict the behavior of a network

from that of its composing modules, it is certainly desirable that

the salient properties of modules do not change upon connection

with other modules. This modularity property is especially

important in a bottom-up approach to engineer biological systems,

in which small systems are combined to create larger ones [7], [8].

Unfortunately, despite the fact that biological networks are rich

of frequently repeated motifs, suggesting a modular organization, a

module’s behavior is often affected by its context [9]. Context-

dependence is due to a number of different factors. These include

unknown regulatory interactions between the module and its

surrounding systems; various effects that the module has on the

cell network, such as metabolic burden [10], effects on cell growth

[11], and competition for shared resources [12]; and loading

effects associated with known regulatory linkages between the

module and the surrounding systems, a phenomenon known as

retroactivity [13], [14]. As a result, our current ability of predicting

the emergent behavior of a network from that of the composing

modules remains limited. This inability is a central problem in

systems biology and especially daunting for synthetic biology, in

which circuits need to be re-designed through a lengthy and ad hoc

process every time they are inserted in a different context [15].

In the phenomenon known as retroactivity, a downstream

module perturbs the dynamic state of its upstream module in the

process of receiving information from the latter [13], [14]. These

effects are due to the fact that, upon interconnection, a species of

the upstream module becomes temporarily unavailable for the

reactions that make up the upstream module, changing the

upstream module’s dynamics. The resulting perturbations can

have dramatic effects on the upstream module’s behavior. For

example, in experiments in gene circuits in Escherichia coli, a few

fold ratio in gene copy number between the upstream module and

the downstream target results in more than 40% change in the

upstream module’s response time [16]. More intriguing effects take

place when the upstream module is a complex dynamical system

such as an oscillator. In particular, experiments in transcriptional

circuits in vitro showed that the frequency and amplitude of a

clock’s oscillations can be largely affected by a load [17] and

computational studies on the genetic activator-repressor clock of

[18] further revealed that just a few additional targets for the

activator impose enough load to quench oscillations. Surprisingly,
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adding a few targets for the repressor can restore the stable limit

cycle [19]. Retroactivity has also been experimentally demon-

strated in signaling networks in vitro [20] and in the MAPK cascade

in vivo [21]. In particular, it was shown in [19] that a few fold ratio

between the amounts of the upstream and downstream system’s

proteins can lead to more than triple the response time of the

upstream system.

In this paper, we provide a quantitative framework to accurately

predict how and the extent to which retroactivity will change a

module’s temporal dynamics for general gene transcription

networks and illustrate the implications on a number of recurrent

network motifs. We demonstrate that the dynamic effects of

loading due to interconnections can be fully captured by three

retroactivity matrices. The first is the internal retroactivity, which

accounts for loading due to intramodular connections. We

illustrate that due to internal retroactivity, negative autoregulation

can surprisingly slow down the temporal response of a gene as

opposed to speeding it up, as previously reported [22]; perturba-

tions applied at one node can lead to a response at another node

even in the absence of a regulatory path from the first node to the

second, having consequences relevant for network identification

techniques (e.g., reviewed in [23]); and an oscillator design can fail

even in the presence of small retroactivity. The other two matrices,

which we call scaling and mixing retroactivity, account for loading

due to intermodular connections. We illustrate that because of the

scaling retroactivity, the switching characteristics of a genetic

toggle switch can be substantially affected when the toggle switch is

inserted in a multi-module system such as that proposed for

artificial tissue homeostasis in [24]. The interplay between scaling

and internal retroactivity plays a role in performance/robustness

trade-offs, which we illustrate considering the single-input motif

[5]. Using these retroactivities, we further provide a metric

establishing the robustness of a module’s behavior to interconnec-

tion. This metric can be explicitly calculated as a function of

measurable biochemical parameters, and it can be used both for

evaluating the extent of modularity of natural networks and for

designing synthetic circuits modularly.

Our work is complementary to but different from studies

focusing on partitioning large transcription networks into modules

using graph-theoretic approaches [13], [25], [26]. Instead, our

main objective is to develop a general framework to accurately

predict both the quantitative and the qualitative behavior of

interconnected modules from their behavior in isolation and from

key physical properties (internal, scaling, and mixing retroactivity).

In this sense, our approach is closer to that of disciplines in

biochemical systems analysis, such as metabolic control analysis

(MCA) [27], [28]. However, while MCA is primarily focused on

steady state and near-equilibrium behavior, our approach

considers global nonlinear dynamics evolving possibly far from

equilibrium situations.

This paper is organized as follows. We first introduce a general

mechanistic model for gene transcription networks to explain the

physical origin of retroactivity and to formulate the main question

of the paper (System Model and Problem Formulation). We then

provide the two main results of the paper (Results). These are

obtained by reducing the mechanistic model through the use of

time scale separation (leading to models of the same dimension as

those based on Hill functions), in which only macroscopic

parameters and protein concentrations appear. In these reduced

models, the retroactivity matrices naturally arise, whose practical

implications are illustrated on five different application examples.

System Model and Problem Formulation
We begin by introducing a standard mechanistic model for gene

transcription networks, which includes protein production, decay,

and reversible binding reactions between transcription factors

(TFs) and promoter sites, required for transcriptional regulation.

Specifically, transcription networks are usually viewed as the

input/output interconnection of fundamental building blocks

called transcriptional components. A transcriptional component

takes a number of TFs as inputs, and produces a single TF as an

output. The input TFs form complexes with promoter sites in the

transcriptional component through reversible binding reactions to

regulate the production of the output TF, through the process of

gene expression (for details, see Methods). To simplify the

notation, we treat gene expression as a one-step process, neglecting

mRNA dynamics. This assumption is based on the fact that

mRNA dynamics occur on a time scale much faster than protein

production/decay [1]. In addition to this, including mRNA

dynamics is not relevant for the study of retroactivity, and would

yield only minor changes in our results (see Methods).

Within a transcription network, we identify a transcriptional

component with a node. Consequently, a transcription network is a

set of interconnected nodes in which node xi represents the

transcriptional component producing TF xi. There is a directed

edge from node xj to xi if xj is a TF regulating the activity of the

promoter controlling the expression of xi [29], in which case we

call xj a parent of xi. Activation and repression are denoted by ?
and a, respectively. Modules are a set of connected nodes. Modules

communicate with each other by having TFs produced in one

module regulate the expression of TFs produced in a different

module. When a node xi is inside the module, we call the

corresponding TF xi an internal TF, while when node xi is outside

the module we call the corresponding TF xi an external TF.

Further, we identify external TFs that are parents to internal TFs

as inputs to the module. Let x, u and c denote the concentration

vector of internal TFs, inputs and TF-promoter complexes,

respectively. According to [30], we can write the dynamics of

the module as

Author Summary

Biological modules are inherently context-dependent as
the input/output behavior of a module often changes
upon connection with other modules. One source of
context-dependence is retroactivity, a loading phenome-
non by which a downstream system affects the behavior of
an upstream system upon interconnection. This fact
renders it difficult to predict how modules will behave
once connected to each other. In this paper, we propose a
general modeling framework for gene transcription net-
works to accurately predict how retroactivity affects the
dynamic behavior of interconnected modules, based on
salient physical properties of the same modules in
isolation. We illustrate how our framework predicts
surprising and counter-intuitive dynamic properties of
naturally occurring network structures, which cannot be
captured by existing models of the same dimension. We
describe implications of our findings on the bottom-up
approach to designing synthetic circuits, and on the top-
down approach to identifying functional modules in
natural networks, revealing trade-offs between robustness
to interconnection and dynamic performance. Our frame-
work carries substantial conceptual analogies with electri-
cal network theory based on equivalent representations.
We believe that the framework we have proposed, also
based on equivalent network representations, can be
similarly useful for the analysis and design of biological
networks.
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_cc

_xx

� �
~Nstv(x,c,u), ð1Þ

where Nst is the stoichiometry matrix and v is the reaction flux

vector. The reactions are either protein production/decay or

binding/unbinding reactions. Therefore, we partition v into r� and

r, representing the reaction flux vectors corresponding to

production/decay and binding/unbinding reactions, respectively

(see Methods). We assume that the DNA copy number is

conserved, therefore, we can rewrite (1) as

_cc

_xx

� �
~

0 A

B� B

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Nst

r� x,cð Þ
r x,c,uð Þ

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

v x,c,uð Þ

where the upper left block matrix in Nst is the zero matrix as DNA

is not produced/degraded. As a result, with g x,cð Þ~B�r� x,cð Þ we

obtain

_cc~ Ar x,c,uð Þ,
_xx~ g x,cð ÞzBr x,c,uð Þ,

ð2Þ

which we call the isolated dynamics of a module.

Next, consider the case when the module is inserted into a

network, which we call the context of the module. We represent all

the quantities related to the context with an overbar. Let �xx and �cc
denote the concentration vector of TFs and promoter complexes

of the context, respectively. Furthermore, denote by �rr� and �rr the

reaction flux vectors corresponding to production/decay and

binding/unbinding reactions between TFs and promoters in the

context of the module, respectively. Then, the dynamics of the

species in the module (c and x) and in the context (�cc and �xx) can be

written as

_cc

_�cc�cc

_xx

_�xx�xx

0
BBB@

1
CCCA~

0 0 A 0

0 0 0 �AA

B� 0 B �EE

0 �BB� E �BB

2
6664

3
7775

r�

�rr�

r

�rr

0
BBB@

1
CCCA, ð3Þ

where the upper left block matrix is zero as DNA is assumed to be

a conserved species. Furthermore, since r and �rr encapsulate the

binding/unbinding reactions in the module and in its context,

respectively, the off-diagonal block matrices in the upper right

block matrix are zero. Similarly, as r� and �rr� encapsulate the

production/decay reactions in the module and its context,

respectively, the off-diagonal block matrices in the lower left block

matrix are zero. Finally, the stoichiometry matrix �EE represents

how internal TFs of the module participate in binding/unbinding

reactions in the context of the module (E can be interpreted

similarly).

With s~�EE�rr describing the effective rate of change of x due to

intermodular binding reactions, we obtain

_cc~ Ar x,c,uð Þ,
_xx~ g x,cð ÞzBr(x,c,u)zs(�xx,�cc,�uu),

ð4Þ

which we call the connected dynamics of a module. We refer to s as

the retroactivity to the output of the module, encompassing retroac-

tivity applied to the module due to the context of the module.

Similarly, we call r the retroactivity to the input of a module,

representing retroactivity originating inside the module. The

general interconnection of a group of modules can be treated

similarly (Figure 1).

As an example of the implications of retroactivity s on the

module’s dynamic behavior, consider Figure 2. For the purpose of

illustration, assume that f1 tð Þ and �ff1 tð Þ, external inputs to x1 and

�xx1 (see Methods), are periodic (in general, they can be arbitrary

Figure 1. The dynamics of a module depend on the module’s context. Downstream modules change the dynamics of an upstream module
by applying a load. The effect of this load is captured by the retroactivity to the output s of the upstream module, which is the weighted sum of the
retroactivity to the input r(i) of the downstream modules.
doi:10.1371/journal.pcbi.1003486.g001

Modular Composition of Gene Transcription Networks
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time-varying signals). When the module is not connected to its

context (Figure 2A), its output is periodic (Figure 2B). Upon

interconnection with its context (Figure 2C), due to the

retroactivity to the output s applied by the context, the output

of the module changes significantly (Figure 2D). Hence, connec-

tion with the context leads to a dramatic departure of the

dynamics of the module from its behavior in isolation. This

example illustrates that retroactivity s significantly alters the

dynamic behavior of modules after interconnection, therefore, it

cannot be neglected if accurate prediction of temporal dynamics is

required. Unfortunately, model (4) provides little analytical insight

into how measurable parameters and interconnection topology

affect retroactivity.

The aim of this paper is to provide a model that captures the

effects of retroactivity, unlike standard regulatory network models

of the same dimension based on Hill functions [1]. Specifically, we

seek a model that explicitly describes the change in the dynamics

of a module once it is arbitrarily connected to other modules in the

network. This model is only a function of measurable biochemical

parameters, TF concentrations, and interconnection topology.

Results

We first characterize the effect of intramodular connections on

an isolated module’s dynamics. We then analytically quantify the

effects of intermodular connections on a module’s behavior.

Finally, we determine a metric of robustness to interconnection

quantifying the extent by which the dynamics of a module are

affected by its context. We demonstrate the use of our framework

and its implications on network motifs taken from the literature.

The main technical assumptions in what follows are that (a)

there is a separation of time scale between production/degrada-

tion of proteins and the reversible binding reactions between TFs

and DNA, and that (b) the corresponding quasi-steady state is

locally exponentially stable. Assumption (a) is justified by the fact

that gene expression is on the time scale of minutes to hours while

binding reactions are on the second to subsecond time scale [3].

Assumption (b) is implicitly made any time Hill function-based

models are used in gene regulatory networks. In addition to these

technical assumptions, to simplify notation, we model gene

expression as a one-step process, however, a more detailed

description of transcription/translation would not yield any

changes to the main results (see Methods).

Effect of Intramodular Connections
Here, we focus on a single module without inputs and describe

how retroactivity among nodes, modeled by Br in (2), affects the

module’s dynamics. To this end, we provide a model that well

approximates the isolated module dynamics, in which only

measurable macroscopic parameters appear, such as dissociation

constants and TF concentrations. We then present implications of

this model for negative autoregulation, combinatorial regulation

and the activator-repressor clock of [18].

Employing assumptions (a)–(b), we obtain the first main result of

the paper as follows. Let x~(x1,x2, . . . ,xN )T denote the vector of

concentrations of internal TFs, then the dynamics

_xx~ IzR(x)½ �{1
h xð Þ ð5Þ

well approximate the dynamics of x in (2) in the isolated module

with

h(x)~

f1zH1(p1){d1x1

f2zH2(p2){d2x2

..

.

fNzHN (pN ){dNxN

0
BBBBBB@

1
CCCCCCA and

R(x)~

P
i Dxi[Wf g

VT
i Ri(pi)Vi if W=1,

0N|N if W~1,

8><
>:

ð6Þ

Figure 2. The context (downstream system) affects the behavior of the module (upstream system). (A) The module in isolation. (B) The
module in isolation displays sustained oscillations. (C) The module connected to its context. (D) Upon interconnection with its context, the dynamics
of the module change due to the retroactivity s from its context, since some of the molecules of x1 are involved in binding reactions at node �xx2 . As a
result, those molecules are not available for reactions in the module, and the output of the module is severely changed. For details on the system and
parameters, see Supporting Text S1.
doi:10.1371/journal.pcbi.1003486.g002
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where fi represents external perturbations to xi (inducer, noise, or

disturbance, fi(t):0 unless specified otherwise), di is the decay

rate of xi, and Hi(pi) is the Hill function modeling the production

rate of xi, regulated by the parents pi of xi. We call Ri(pi) the

retroactivity of node xi. For the most common binding types, Figure 3

shows the expressions of Hi(pi) and Ri(pi) (for their definition, see

Methods). The binary matrix Vi has as many columns as the

number of nodes in the module, and as many rows as the number

of parents of xi, such that its (j,k) element is 1 if the jth parent of xi

is xk, otherwise the entry is zero. That is, an entry in the following

matrix

x1 x2 . . .

Vi~

2
664

3
775

pi,1

pi,2

..

.

Figure 3. Hill function and retroactivity of node xi for the most common binding types. If node xi has no parents, its node retroactivity is
not defined. In the single parent case, node xi has one parent, y binding as an n-multimer with dissociation constant ky. In the case of independent,
competitive and cooperative binding, node xi has two parents, y and z, binding as multimers with multimerization factors n and m, respectively,
together with dissociation constants ky and kz , respectively. The total concentration of the promoter of xi is denoted by gi . The production rates pi,0 ,
pi,1 , pi,2 and pi,3 correspond to the promoter complexes without parents, with y only, with z only, and with both y and z, respectively. For details, see
Supporting Text S3.
doi:10.1371/journal.pcbi.1003486.g003
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is 1 if the species indexing the corresponding row and column are

the same, otherwise the entry is zero, yielding pi~Vix. Finally, W
is the set of nodes having parents from inside the module. For the

derivation of this result, see Theorem 1 in Supporting Text S2.

We call R the internal retroactivity of the module as it describes how

retroactivity among the nodes internal to the module affects the

isolated module dynamics. When R~0, we have _xx~h(x), the

commonly used Hill function-based model for gene transcription

networks [3]. It is possible to show that h(x) represents the rate of

change of total (free and bound) TFs (see Supporting Text S2).

Hence, (6) describes how changes in the total concentration of TFs

h(x) relate to changes _xx in the concentration of free TFs. Specifically,

to change the concentration of free TFs by one unit, the module has

to change the total concentration of TFs by (IzR) units, as R units

are ‘‘spent on’’ changing the concentration of bound TFs. Having

R~0 implies that the module’s effort on affecting the total

concentration of TFs is entirely spent on changing the concentration

of free TFs. By contrast, Rk k?? implies that no matter how much

the total concentration of TFs changes, it is not possible to achieve

any changes in the free concentration of some of the TFs. Therefore,

the internal retroactivity R describes how ‘‘stiff’’ the module is

against changes in x due to loading applied by internal connections.

The entries of Ri(pi) have the following physical interpretation.

Consider first a module with the autoregulated node x1, that is, x1

has a single parent: itself. The retroactivity of node x1 is R1(x1)~a,

where a is given in Figure 3. In this case, we obtain R(x1)~a by (6),

so that (5) yields _xx1~
1

1za
h(x1). Hence, the greater a, the harder to

change the concentration of free x1 by changing its total

concentration (the ‘‘stiffer’’ the node), and the temporal dynamics

of x1 become slower. The retroactivity R1 of node x1 can be

increased by increasing its DNA copy number g1 or by decreasing

the dissociation constant k1 of x1. For a node with two parents, we

provide the explicit formula for Ri in Figure 3 in the case of the most

frequent binding types, so that here we simply write

Ri~
b c

d e

� �
: ð7Þ

The diagonal entries b and e in (7) can be interpreted similarly to a,

while the off-diagonal entries can be interpreted as follows. Having

cw0 means that the second parent facilitates the binding of the first,

whereas cv0 represents blockage (d can be interpreted similarly

with the parents having reverse roles). Therefore, we have c~d~0
in the case of independent binding (Figure 3), as the parents bind to

different sites. By contrast, we have c,dƒ0 in the case of competitive

binding (Figure 3), since the parents are competing for the same

binding sites, forcing each other to unbind. Following a similar

reasoning, we obtain c,d§0 in the case of cooperative binding

(Figure 3). Notice that Ri is scaled by the total concentration of

promoter gi, which can be changed, for example, in synthetic

circuits by changing the plasmid copy number.

Practical Implications of Intramodular Connections
In order to illustrate the effects of intramodular connections, we

consider three recurrent network motifs in gene transcription

networks: (i) negative autoregulation of a gene, (ii) combinatorial

regulation of a gene by two TFs, and (iii) the activator-repressor

clock of [18].

Negative autoregulation. One of the most frequent network

motifs in gene transcription networks is negative autoregulation, as

over 40% of known Escherichia coli TFs are autorepressed [29].

Earlier studies concluded that negative autoregulation makes the

response of a gene faster [22]. Here, we demonstrate that in the

case of significant retroactivity, negative autoregulation can

actually slow down the response of a gene. To this end, consider

a module consisting of the single node x1, and analyze first the case

when its production is constitutive with promoter concentration

g1, production rate constant p1,0 and decay rate d1. Then, the

dynamics of x1 are given by _xx1~g1p1,0{d1x1.

In the case of negative autoregulation, x1 has itself as the only

parent. Let k1 denote the dissociation constant of x1 and assume it

binds as a monomer repressing its own production (so that n~1
and p1,1~0 in Figure 3). According to Figure 3, we have

H1(x1)~g1
p1,0

1zx1=k1
and R1(x1)~g1

1=k1

(1zx1=k1)2 together with V1~1

and W~fx1g, yielding from (6) R(x1)~R1(x1) and h(x1)~H1(x1)
{d1x1, so that (5) results in

_xx1~
1

1zR(x1)
g1

p1,0

1zx1=k1
{d1x1

� �
: ð8Þ

This expression indicates that negative autoregulation yields two

changes in the dynamics. First, protein production changes from

g1p1,0 to the Hill function H1(x1). Second, the dynamics are

Figure 4. Negative autoregulation can make the temporal
response slower. Time response at a steady state fixed at x1~50nM.
The red and blue plots denote the cases with and without negative
autoregulation, respectively, whereas the green plot represents the
case of negative autoregulation neglecting retroactivity (R~0 in (8)).
Simulation parameters are d1~1hr{1 , k1~10nM, together with
p1,0~20hr{1 , p1,0~10hr{1 , p1,0~1hr{1 for A, B and C, respectively.
To carry out a meaningful comparison between the unregulated and
regulated systems, we compare the response time of systems with the
same steady state. To do so, we pick the same value of g1 in the case of
the regulated systems (g1~15nM, g1~30nM, g1~300nM for A, B and
C, respectively), but a different one for for the unregulated system
(g1~2:5nM, g1~5nM, g1~50nM for A, B and C, respectively), such
that the steady states match (see Methods for parameter ranges).
Decreasing p1,0 (lower production rate constant) while increasing g1

(higher DNA copy number) results in slower response, as internal
retroactivity increases.
doi:10.1371/journal.pcbi.1003486.g004
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premultiplied by 1zRð Þ{1
, which is the effect of internal

retroactivity.

As it was shown in [22], the response time of the regulated

system without retroactivity is smaller than that of the unregulated

system. When considering internal retroactivity, however, the

response time increases, as the absolute value of _xx1 decreases with

increased R according to (8). Specifically, the response time with R

is greater than without R since Rw0. That is, while the Hill

function makes the response faster, internal retroactivity has an

antagonistic effect, so that negative autoregulation can render the

response slower than that of the unregulated system, as illustrated

in Figure 4. Furthermore, if p1,0g1 is kept constant, the response

time of both the unregulated (blue) and the regulated system

without retroactivity (green) remain the same, together with the

steady states. By contrast, increasing g1 (and decreasing p1,0)

makes the internal retroactivity R greater (since R is proportional

to g1), while the contribution of the Hill function remains

unchanged. As a result, the response of the regulated system with

retroactivity (red) becomes slower as we increase g1 (and decrease

p1,0). This is illustrated in Figure 4 with different (g1,p1,0) pairs.

Note that p1,0 can be decreased, for example, by decreasing the

ribosome binding site (RBS) strength, whereas g1 can be increased

by increasing the gene copy number.

Combinatorial regulation. As a second example, we

consider a single gene co-regulated by two TFs (Figure 5A). This

topology appears in recurrent network motifs, such as the

feedforward-loop, the bi-fan and the dense overlapping regulon

[5]. Here, we show that a perturbation introduced in one of the

parents (blue in Figure 5A) can affect the concentration of the

other parent (red node in Figure 5A), even in the absence of a

regulatory path between the two.

Referring to (5)–(6), note that x3 is the only node with parents

(W~fx3g), so that R(x)~VT
3 R3V3. Using (6) with

V3~
1 0 0

0 1 0

� �
and R3(x1,x2)~

b c

d e

� �
,

where the entries of R3 are given in Figure 3 (depending on the

binding type at x3) together with H3(x1,x2), the dynamics in (5)

take the form

_xx1

_xx2

_xx3

0
BB@

1
CCA~

1ze
(1zb)(1ze){cd

{ c
(1zb)(1ze){cd

0

{ d
(1zb)(1ze){cd

1zb
(1zb)(1ze){cd

0

0 0 1

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
½IzR(x)�{1

f1zp1,0g1{d1x1

p2,0g2{d2x2

H3(x1,x2){d3x3

0
BB@

1
CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
h(x)

:

This expression implies that unless d~0, a perturbation f1

(Figure 5B) in x1 yields a subsequent perturbation in x2. In the

case of independent binding, we have d~0, and as a result, no

perturbation is observed in x2. In the case of competitive binding,

instead, we have dv0, so that perturbations f1 in x1 yield

perturbations of the same sign in x2, that is, x1 acts as if it were an

activator of x2 (Figure 5C). In the case of cooperative binding,

instead, we have dw0. As a result, perturbations in x1 yield

perturbations in x2 of opposite sign (Figure 5D), which implies that

x1 behaves as if it were a repressor of x2. As d is proportional to g3

(Figure 3), higher DNA copy number for x3 yields greater pulses in

x2 subsequent to an equal perturbation in x1. Interestingly, if we

view x2 as the output of the module, the module has the

adaptation property with respect to its input x1 (or f1). That is,

retroactivity enables to respond to sudden changes in input stimuli,

while adapting to constant stimulus values.
Activator-repressor clock. One common clock design is

based on two TFs, one of which is an activator and the other is a

repressor [18], [31], [32]. Here, we illustrate the effect of internal

retroactivity on the functioning of the clock design of [18] depicted

in Figure 6A. In particular, x1 activates the production of both

TFs, whereas x2 represses the production of x1 through

competitive binding. Consequently, the network topology is

captured by the binary matrices V1~I and V2~ 1 0½ �, whereas

h(x) and R(x) can be constructed by considering (H1(x1,x2),
H2(x1)) and (R1(x1,x2), R2(x1)), respectively, in Figure 3. Here,

we write R2~a, while the entries of R1 are denoted by b, c, d and

e, as in (7). Then, we obtain that (5) takes the form

Figure 5. Nodes can become coupled via common downstream
targets. (A) Node x3 has two parents: x1 and x2 , without a regulatory
path between them. (B) Perturbation f1 applied to x1 . (C) In the case of
competitive binding, increasing the concentration of free x1 yields more
of x1 bound to the promoter of x3, forcing some of the molecules of x2

to unbind, thus increasing the free concentration x2 . Consequently, x1

acts as if it were an activator of x2 . (D) By contrast, in the case of
cooperative binding, when the binding of x1 must precede that of x2 ,
pulses in x1 yield pulses of the opposite sign in x2 . Consequently, x1

acts as if it were a repressor of x2 . Simulation parameters are:
g1~g2~10nM, g3~20nM, d1~d2~1hr{1 , p1,0~0, p2,0~10hr{1 ,

k1~k2~1nM4, and both x1 and x2 bind as tetramers.
doi:10.1371/journal.pcbi.1003486.g005
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_xx1

_xx2

 !
~

1ze
(1zazb)(1ze){cd

{ c
(1zazb)(1ze){cd

{ d
(1zazb)(1ze){cd

1zazb
(1zazb)(1ze){cd

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
½IzR(x)�{1

H1(x1,x2){d1x1

H2(x1){d2x2

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

h(x)

:

ð9Þ

It was previously shown [33] that the principle for the clock to

oscillate is that the activator dynamics are sufficiently faster than

the repressor dynamics (so that the unique equilibrium point is

unstable). Equation (9) shows that the activator and repressor

dynamics are slowed down asymmetrically (diagonal terms in

½IzR(x)�{1
), and that they become coupled (off-diagonal terms in

½IzR(x)�{1
, c,d=0), because of internal retroactivity. In

particular, in the case when c,d%1ze%1zazb, the activator

would slow down compared to the repressor. Based on the

principle of functioning of the clock, we should expect that this

could stabilize the equilibrium point, quenching the oscillations as

a consequence. In fact, oscillations disappear even if the circuit is

assembled on DNA with a single copy (g1~g2~2nM), as it can be

observed in Figure 6D. Therefore, accounting for internal

retroactivity is particularly important in synthetic biology during

the design process when circuit parameters and parts are chosen

for obtaining the desired behavior. An effective way to restore the

limit cycle in the clock, yielding sustained oscillations, is to render

the repressor dynamics slower with respect to the activator

dynamics. This can be obtained by adding extra DNA binding

sites for the repressor [19], as shown in Figure 6B. In fact, in this

case, we have R3(x2)w0 given in Figure 3, which, due to (5), will

yield the following change in (9): instead of e, we will have

ezR3we, rendering the dynamics of the repressor slower with

respect to the activator dynamics. As a result, the equilibrium

point becomes unstable, restoring the limit cycle, verified by

simulation in Figure 6E. Further studies on specific systems have

investigated the effects of TF/promoter binding on the dynamics

of loop oscillators, such as the repressilator [34].

Effect of Intermodular Connections
After investigating how retroactivity due to intramodular

connections affect a single module’s dynamics, we next determine

how the dynamics of a module change when the module is inserted

into its context. To this end, we first extend the model in (5) to the

case in which the module has external TFs as inputs. Hence, let

u~(u1,u2, . . . ,uW )T denote the concentration vector of TFs

external to the module. With this, we obtain that the dynamics

_xx~ IzR(x,u)½ �{1
h x,uð Þ{Q(x,u) _uu½ �~f (x,u, _uu) ð10Þ

well approximate the dynamics of x in (2) with

Q(x,u)~

P
i Dxi[(W\V)f g

VT
i Ri(pi)Di if V=1,

0N|W if V~1,

8<
: ð11Þ

where V is the set of nodes having parents from outside the

module (external TFs), and the binary matrix Di has as many

columns as the number of inputs of the module, and as many rows

as the number of parents of xi, such that its (j,k) element is 1 if the

jth parent of xi is uk, otherwise the entry is zero. That is, an entry

in the following matrix

u1 u2 . . .

Di~

2
664

3
775

pi,1

pi,2

..

.

is 1 if the species indexing the corresponding row and column are

the same, otherwise the entry is zero, yielding pi~½Vi Di �
( xT uT )T . Furthermore, note that in the presence of input u,

both h(:) and R(:) given in (6) depend on x and u, as some of the

parents of internal TFs are external TFs. For the derivation of this

result, see Theorem 2 in Supporting Text S2.

Before stating the main result of this section, we first provide the

interpretation of Q. Recall that h(x,u)~0 implies that the total

concentrations of internal TFs are constant. In this case, (10)

reduces to _xx~{ IzRð Þ{1
Q _uu, where x is the concentration

vector of free internal TFs. This means that the concentrations of

free internal TFs can still be changed subsequent to changes in the

external TFs (input), despite the fact that the total concentration

(free and bound) of internal TFs remains unaffected. Therefore, Q

Figure 6. Neglecting internal retroactivity could falsely predict
that the activator-repressor clock will display sustained
oscillations. (A) The module consists of the activator protein x1

(dimer) and the repressor protein x2 (tetramer), with dissociation
constants k1 and k2 , respectively. (B) An extra node x3 is introduced as
a target for the repressor. (C) Without accounting for internal
retroactivity, the module in A exhibits sustained oscillations. (D) When
internal retroactivity is included for the module in A, however, the
equilibrium point is stabilized and the limit cycle disappears. (E)
Oscillations can be restored by applying a load on the repressor (module
in B) with concentration g, so that the repressor dynamics are slowed
down. Simulation parameters: p1,0~0:04hr{1 , p1,1~2500hr{1,

p1,2~0hr{1 , p2,0~0:004hr{1 , p2,1~100hr{1, d1~1hr{1 , d2~0:6hr{1 ,

g1~g2~2nM, k1~1nM2 , k2~1nM4 and g~40nM.
doi:10.1371/journal.pcbi.1003486.g006
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captures the phenomenon by which external TFs force internal

TFs to bind/unbind, for instance, by competing for the same

binding sites. Having Q~0 means that external TFs do not affect

the binding/unbinding of internal TFs, which is the case, for

example, when all bindings are independent. Thus, we call Q the

external retroactivity of the module.

The main result of this section describes how the context of a

module affects the module’s dynamics due to retroactivity.

Specifically, we consider the module of interest and we represent

the rest of the network, the module’s context, as a different

module. As previously, we use the overbar to denote that a

quantity belongs to the context. With this, we obtain that the

dynamics

_xx

_�xx�xx

 !
~

Iz(IzR){1 �SS (IzR){1 �MM

(Iz�RR){1M Iz(Iz�RR){1S

" #{1

f (x,U�xx,U _�xx�xx)

�ff (�xx, �UUx, �UU _xx)

 !
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

isolated dynamics
of the module and

of its context

ð12Þ

well approximate the dynamics of x and �xx in (4) in the module

connected to the context with

S(x,�xx)~

P
i Dxi[Vf g

DiU½ �T Ri(pi)DiU if V=1,

0 �NN| �NN if V~1,

8<
:

M(x,�xx)~

P
i Dxi[ W\Vð Þf g

DiU½ �T Ri(pi)Vi, if W\V=1,

0 �NN|N if W\V~1,

8<
:

ð13Þ

where N and �NN denote the number of nodes in the module and in

the context, respectively. Furthermore, the binary matrix U has as

many rows as the number of inputs of the module, and as many

columns as the number of nodes in the context, such that its (j,k)

element is 1 if the jth input of the module is the kth internal TF of

the context (uj~�xxk), otherwise the entry is zero. That is, an entry

in the following matrix

�xx1 �xx2 . . .

U~

2
664

3
775

u1

u2

..

.

is 1 if the species indexing the corresponding row and column are

the same, otherwise the entry is zero, yielding u~U�xx. The

quantities corresponding to the context, that is, �SS, �MM and �UU are

defined similarly with the only difference that variables with and

without overbar have to be swapped (for instance, N and �NN have

to be swapped in (13)). For the derivation of this result, see

Theorem 3 in Supporting Text S2.

We next provide the interpretation of the scaling and mixing

retroactivity. The reduced order model (12) describes how

retroactivity between the module and the context affects each

other’s dynamics. Note that zero matrices S, M, �SS and �MM lead to

no alteration in the dynamics upon interconnection. To further

deepen the implications of these matrices and their physical

meaning, note that when �MM~0, the dynamics of the module after

interconnection become

_xx~ Iz IzRð Þ{1 �SS
h i{1

f x,U�xx,U _�xx�xx
� �|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

isolated dynamics
of the module

, ð14Þ

that is, �SS determines how the isolated dynamics of the module get

‘‘scaled’’ upon interconnection. Therefore, we call �SS the scaling

retroactivity of the context, accounting for the loading that the

context applies on the module as some of the TFs of the module

are taken up by promoter complexes in its context (we obtain �SS~0
if nodes in the context do not have parents in the module, that is, if
�VV~1). Since the dynamics of the context enter into the module’s

dynamics through �MM, we call �MM the mixing retroactivity of the

context, referring to the ‘‘mixing’’ of the dynamics of the module

and that of its context. The mixing retroactivity �MM establishes how

internal TFs force external TFs to bind/unbind, so that �MM~0 can

be ensured if the binding of parents from the module is

independent from that of the parents from the context. This

holds if nodes in the context are not allowed to have parents in

both the module and in the context (�VV\�WW~1). When �MM=0, a

perturbation applied in the context can result in a response in the

upstream module, even without TFs in the context regulating TFs

in the module, leading to a counter-intuitive transmission of signals

from downstream (context) to upstream (module).

With this, we can explain the simulation results in Figure 2D by

analyzing �SS and �MM for the system in Figure 2C. Let R1~a and let
�RR2 be defined as in (7), where a, b, c, d and e are given in Figure 3.

Then, we have R~a by (13) and �SS~b and �MM~( c 0 ) by (6).

Hence, expression (12) yields

_xx1~
1za

1zazb|fflfflfflfflffl{zfflfflfflfflffl}
effect of �SS

f (x){
c

1zazb|fflfflfflfflffl{zfflfflfflfflffl}
effect of �MM

�ff1(�xx,x, _xx), ð15Þ

describing the dynamics of x1 upon interconnection with its

context, where _xx1~f (x) and _�xx�xx1~�ff1(�xx,x, _xx) describe the dynamics

of x1 and �xx1, respectively, when the module and the context are

not connected to each other. If �MM~0, then (15) reduces to

_xx1~
1za

1zazb
f (x),

that is, the context rescales the dynamics of the module. The

smaller (1za)=(1zazb), that is, the greater the scaling

retroactivity b~�SS, the greater the effect of this scaling. Note that

since the scaling factor is smaller than 1 (unless the scaling

retroactivity is zero, i.e., b~0), the effect of the scaling

retroactivity of the context in this case is to make the temporal

dynamics of the module slower.

Once �MM=0, in addition to this sclaing effect, the dynamics of

the context appear in the dynamics of the module (Figure 2D).

Referring to (15), we can quantify the effect of the context on the

module, considering the ratio c=(1za). The greater c=(1za),

that is, the greater �MM, the stronger the contribution of the context

compared to that of the module to the dynamics of the module

upon interconnection. Here, both b and c increase, for instance,

with the copy number of �xx2 (Figure 3).

Connecting the module to its context such that x1 and �xx1 are

competing for the same binding sites is less desirable than

employing independent binding, as the dynamics of the context

(downstream system) can suppress the dynamics of the module
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(upstream system). Dismantling the dynamics of the module will

‘‘misinform’’ other downstream systems in the network that are

regulated by x1. From a design perspective, multi-module systems

should be designed and analyzed such that the modules have zero

mixing retroactivity. This can be achieved, for instance, by

avoiding non-independent binding at the interface nodes (at �xx2 in

Figure 2B). However, since completely independent binding can

be hard to realize in the case of combinatorial regulation, nodes

integrating signals from different modules should not be placed

into the input layer (nodes having parents from other modules),

yielding �VV\�WW~1. This can be achieved by introducing an extra

input node in the downstream module (see Supporting Figure S1).

Next, we quantify the difference between the isolated and

connected module behavior. In particular, we provide a metric of

the change in the dynamics of a module upon interconnection

with its context, dependent on R and �SS and under the assumption

that �MM~0 (obtained, for instance, by avoiding mixing parents

from the module and the context). The isolated dynamics of the

module can be well approximated by the reduced order model

_xx~f (x,u, _uu) in (10), and let x(t) denote its solution. Once we

connect the module to its context, its dynamics change according

to (14), which we write as _xx~~ff (x,u, _uu) and let ~xx(t) denote the

corresponding solution. Using the sub-multiplicative property of

the induced 2-norm, we have that the percentage change of the

dynamics upon interconnection can be bounded from above as

follows:

Ef (x,u, _uu){~ff (x,u, _uu)E2

Ef (x,u, _uu)E2

ƒm(x,u)~E½Iz(IzR){1 �SS�{1
{IE2: ð16Þ

Furthermore, with m̂m§0 independent of x and u, such that

m(x,u)ƒm̂m, we obtain that

Ex(t){~xx(t)E2~O(m̂m),

that is, m̂m provides an upper bound on the percentage change in

the dynamics of the module, and on the difference in the

trajectories of the module upon interconnection with its context.

Furthermore, by using the properties of the induced 2-norm, we

obtain that we can pick

m̂m~ max
x,�xx

smax(�SS)

smin(IzR){smax(�SS)

provided that smax(�SS)vsmin(IzR) for all x and �xx, where

smin(IzR) and smax(�SS) denote the smallest singular value of

(IzR) and largest singular value of �SS, respectively. For the

mathematical derivations, see Supporting Text S2. This suggests

that the module becomes more robust to interconnection by

increasing minx,�xx smin(IzR) or by decreasing maxx,�xx smax(�SS).

Such a metric can be used both in the analysis and in the design

of complex gene transcription networks as follows. Given any

network and a desired module size N (number of nodes within the

module), we can identify the module that has the least value of m̂m,

that is, the module with the greatest guaranteed robustness to

interconnection. Furthermore, we can also evaluate existing

partitionings based on other measures (e.g., edge betweenness

[35], its extension to directed graphs with nonuniform weights

[36], round trip distance [25] or retroactivity [37]) with respect to

robustness to interconnection. From a design point of view, one

can design multi-module systems such that internal, scaling and

mixing retroactivities allow for low values of m̂m, leading to modules

that behave almost the same when connected or isolated.

Practical Implications of Intermodular Connections
We next illustrate the effect of intermodular connections on the

dynamics of interconnected modules, considering both a synthetic

genetic module that is being employed in a number of applications

and a natural recurring network motif.

Toggle switch. Here, we consider the toggle switch of [38], a

bistable system that can be permanently switched between two

steady states upon presentation of a transient input perturbation.

This module has been proposed for synthetic biology applications

in biosensing (see, for example, [34], [39]). In this paper, we

consider the toggle switch inserted into the context of the synthetic

circuit for controlling tissue homeostasis as proposed in [24], and

investigate how the context of the toggle affects its switching

characteristics. Figure 7A illustrates the toggle switch in isolation,

whereas Figure 7B shows the configuration when connected to the

context [24]. Note that all nodes, both in the toggle switch and in

its context, have a single parent. Therefore, H1(x2), H2(x1),
�HH1(x1), �HH2(x1), �HH3(x2), and similarly, R1(x2), R2(x1), �RR1(x1),
�RR2(x1), �RR3(x2) are given in Figure 3.

We first consider the model of the toggle switch when not

connected to its context (Figure 7A). Since the toggle switch has no

input, its isolated dynamics are described by (5), where

W~fx1,x2g, V1~½ 0 1 � and V2~½ 1 0 � yield

_xx1

_xx2

 !
~

1
1zR2(x1)

0

0 1
1zR1(x2)

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
½IzR(x)�{1

f1zH1(x2){d1x1

H2(x1){d2x2

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

h(x)

~f xð Þ:

Next, we consider the toggle switch connected to its context

(Figure 7B). As nodes in the toggle switch have no parents from

outside it, we have S~0 and M~0 by (13). Nodes in the context

have no parents in the context, leading to �RR~0 from (6), and to
�QQ~0, referring to (11). With this, the isolated dynamics of the

context are given by

_�xx�xx1

_�xx�xx2

_�xx�xx3

0
B@

1
CA~

�HH1(x1){�dd1�xx1

�HH2(x1){�dd2�xx2

�HH3(x2){�dd3�xx3

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�hh(�xx,�uu)

~�ff (�xx,�uu),

according to (10). The fact that nodes in the context do not have

mixed parents from the toggle switch and from the context results

in �MM~0 from (13). With �VV~f�xx1,�xx2,�xx3g, �DD1~�DD2~ 1 0½ �,
�DD3~ 0 1½ �, and �UU~I we obtain

�SS~
�RR1z�RR2 0

0 �RR3

� �
:
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As a result, with a(x1)~(�RR1z�RR2)=(1zR2)§0 and b(x2)~�RR3=
(1zR1)§0, the dynamics of the toggle switch once connected to

the context (Figure 7B) are given by

_xx1

_xx2

� �
~

1
1za 0

0 1
1zb

" #
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
½Iz(IzR){1 �SS�{1

f1zH1(x2){d1x1
1zR2

H2(x1){d2x2
1zR1

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f (x)

according to (12), so that the dynamics of x1 and x2 are unaffected

if a~0 and b~0, respectively. When a,bw0, both the x1 and x2

dynamics become slower upon interconnection, so that the

response to an input stimulation will also be slower. As a

consequence, upon removal of the stimulation, the displacement in

the toggle state may not be sufficient to trigger a switch. This is

illustrated in Figure 7C–D. In order to recover the switch, a wider

pulse is required (Figure 7E) to compensate for the slow-down due

to the context (also, note that the switching dynamics are slower

than in the isolated case). As a result, even if the toggle had been

characterized in isolation, it would fail to function as expected

when inserted into its context. Note that we have m̂m~ maxx1,x2

(
a(x1)

1za(x1)
,

b(x2)

1zb(x2)
), where a represents the amount of load on

x1 imposed by the context compared to that by the module, and b
can be interpreted similarly. The greater a (or b), the slower the

dynamics of x1 (of x2) become upon interconnection with the

context. Greater a and b yield greater m̂m, suggesting decreased

robustness to interconnection, verified by the simulation results.

Single-input motif. As a second example, we focus on a

recurrent motif in gene transcription networks, called the single-

input motif [5]. The single-input motif is defined by a set of

operons (context) controlled by a single TF (module), which is

usually autoregulated (Figure 8A). It is found in a number of

instances, including the temporal program controlling protein

assembly in the flagella biosynthesis [40]. Here, we show that the

dynamic performance (speed) of the module and its robustness to

interconnection with its context are not independent, and that this

trade-off can be analyzed by focusing on the interplay between the

internal retroactivity R of the module and the scaling retroactivity
�SS of the context.

The isolated dynamics of the module are given in (8), which we

write here as _xx1~f (x1). Furthermore, we have �DDi~1 for

i~1,2, . . . ,l and �UU~1, so that �SS(x1)~
Pl

i~1
�RRi(x1) by (13),

where l is the number of nodes in the context and �RRi(x1) is given

in Figure 3 (single parent). Consequently, upon interconnection,

the dynamics of the module change according to (14) as

_xx1~
1zR(x1)

1zR(x1)z�SS(x1)|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
effect of the context

f (x1)~ ½1{m(x1)�|fflfflfflfflfflffl{zfflfflfflfflfflffl}
effect of

the context

f (x1),

where m(x1)~�SS(x1)=½1zR(x1)z�SS(x1)� and equals the expres-

sion in (16). The smaller m(x1), the more robust the module to

interconnection. Note that R(x1) is proportional to g1, therefore,

while increasing R(x1) makes the module slower (Figure 8B), it

also makes it more robust to interconnection (Figure 8C). It was

previously shown that negative autoregulation increases robustness

to perturbations [41]. Here, we have further shown that increasing

the internal retroactivity R of the module provides an additional

mechanism to increase robustness to interconnection, at the price

of slower response. For a fixed steady state (the product of p1,0 and

g1 is held constant), smaller p1,0 yields greater g1, that is, increased

R and, in turn, smaller m. From a design perspective, if speed is a

priority, one should choose a strong RBS with a low copy number

plasmid, or alternatively, a promoter with high dissociation

constant k1. By contrast, if robustness to interconnection is

central, a weak RBS with a high copy number plasmid (or with

low k1) is a better choice. If both speed and robustness to

interconnection are desired, other design approaches may be

required, such as the incorporation of insulator devices, as

proposed in other works [42].

Figure 7. Effects of the context on the switching characteristics of the toggle switch. (A) The toggle switch in isolation. (B) The toggle
switch connected to its context [40]. (C) A narrow pulse in f1 (input perturbation in x1 , depicted in green) causes the isolated toggle to switch
between the two stable equilibria. (D) When connected to the context, the same pulse is insufficient to yield a switch. (E) With a wider pulse, the
switching is restored (however, dynamics are slower compared to the isolated case). Simulation parameters: both x1 and x2 bind as dimers,

g1~g2~10nM, k1~k2~1nM2 , d1~d2~1hr{1, p1,0~p2,0~10hr{1 , �gg1~�gg2~�gg3~5nM, and the height of the input perturbation pulse is
f1~10nMhr{1.
doi:10.1371/journal.pcbi.1003486.g007
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Remark. The above presented trade-off between robustness

to interconnection and dynamic performance can be observed also

in electrical systems. To illustrate this, consider the electrical

circuit in Figure 9A consisting of the series interconnection of a

voltage source f , a resistor R and a capacitor C, in which the

output voltage is w. The speed of the circuit can be characterized

by its time constant t~RC: the greater t, the slower the response.

Upon interconnection with its context, represented by the

capacitor �CC, the time constant of the system changes to

t~R(Cz�CC), while the steady state remains the same. Note that

the percentage change in t decreases with C, making the module

more robust to interconnection, at the expense of slower response

when isolated.

To further generalize the analogy between electrical systems

and gene transcription networks [43], consider the electrical

circuits in Figure 9B. When the module is not connected to its

context, we have w~f and �ww~�ff , which changes to

w

�ww

� �
~

1

1zZ=�ZZ

1

1z�ZZ=Z

1

1zZ=�ZZ

1

1z�ZZ=Z

2
664

3
775 f

�ff

� �

upon interconnection. This relationship is conceptually analogous

to (12). That is, the module is robust to interconnection with its

context if Z is small compared to �ZZ, whereas the genetic module is

robust to interconnection with its context if �SS and �MM are ‘‘small’’

compared to R. Therefore, R is conceptually analogous to 1=Z

(output admittance), whereas �SS and �MM play a role similar to 1=�ZZ
(input admittance).

Discussion

In this paper, we have focused on retroactivity, one source of

context-dependence, and demonstrated that the internal, scaling,

and mixing retroactivity provide missing knowledge that captures

loading effects due to intramodular and intermodular connections.

The internal retroactivity quantifies the effect of intramodular load,

applied by nodes within a module onto each other because of

binding to promoter sites within the module. Given a module of

interest, the effects of intramodular loading on the module’s

dynamics are captured by equations (5)–(6), in which one needs to

Figure 8. Internal retroactivity makes a module more robust to
interconnection at the expense of speed. (A) The module consists
of a single negatively autoregulated node, whereas the context
comprises l nodes repressed by the TF in the module. (B) The internal
retroactivity R of the module increases with the DNA copy number g1

of x1 . As a result, the module becomes slower as R increases. (C) The
percentage increase in the response time of the module decreases with
g1 , that is, internal retroactivity R increases the robustness to
interconnection. Simulation parameters: d1~1hr{1 , k1~10nM and
p1,0 is changed such that x1~50nM at the steady state. The context
contains l nodes each with DNA concentration �ggi~1nM for i~1,2, . . . ,l
(low load: l~10; medium load: l~20; high load: l~50). The response
time is calculated as the time required to reach 50% of the steady state
value.
doi:10.1371/journal.pcbi.1003486.g008

Figure 9. Analogy with electrical systems. (A) The module consists
of the series interconnection of a voltage source f , a resistor R and a
capacitor C. The speed of the module can be characterized by the time
constant t~RC, which increases upon interconnection with the
context. The greater C, the slower the module in isolation, but the
smaller the percentage change in its speed upon interconnection. (B)
According to the fundamental theorem by Thevenin [48], any linear
electrical network can be equivalently represented by a series
interconnection of a voltage source and an impedance. As a result, a
generic module consists of the series interconnection of a voltage
source f and an impedance Z, and similarly, any context can be
represented with the series interconnection of �ff and �ZZ.
doi:10.1371/journal.pcbi.1003486.g009
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replace the specific expressions of the Hill functions Hi(pi) and node

retroactivities Ri(pi) provided in Figure 3, and the binary matrices

Vi encoding the network topology. The scaling retroactivity

accounts for the intermodular loading that the context applies on

a module, due to having some TFs of the module bound to

promoter sites belonging to the context. The mixing retroactivity

couples the dynamics of the module and that of the context upon

interconnection, and it is non-zero when TFs from different

modules bind non-independently at promoter sites. The effects of

intermodular loading are captured by equations (10)–(13). To

obtain this description, it is sufficient to consider the Hill functions

Hi(pi) and node retroactivities Ri(pi) provided in Figure 3, together

with the binary matrices Vi, Di and U representing the network

topology. In general, the effects of the retroactivity matrices tend to

increase with increased DNA copy number and/or decreased

dissociation constants.

We have illustrated that accounting for retroactivity reveals

surprising dynamical properties of modules and, at the same time,

can aid design. For example, negative autoregulation, depending

on the gene copy number and production rates, can slow down the

response of a system instead of speeding it up. A gene can respond

to a perturbation applied to a different gene even in the absence of

a regulatory path between the two genes. We have shown that this

can occur when a group of TFs co-regulate common targets and

these common targets are found in abundance. This type of motif,

referred to as the dense overlapping regulon, is highly frequent in

natural regulatory networks [1]. As a result, system identification

techniques based on perturbation analysis [23] could erroneously

identify non-existent regulatory linkages if retroactivity is not

accounted for in the corresponding models. An activator-repressor

clock on low copy DNA plasmid displays sustained oscillations

when internal retroactivity is neglected, while oscillations are

quenched once internal retroactivity is accounted for. However, by

carefully adjusting the module’s internal retroactivity through the

addition of DNA load for the repressor, we can restore oscillations.

A genetic toggle switch that can be flipped by a transient external

stimulation requires a substantially longer stimulation to be flipped

once it is connected to just few downstream targets. These facts are

relevant, in particular, when designing synthetic biology circuits

and multi-module systems.

Similar to synthetic systems, natural systems are subject to

retroactivity. For example, clocks responsible for circadian

rhythms have a large number of downstream targets [44], [45],

which, in turn, may apply substantial load. This load can affect the

amplitude and frequency of oscillations of the clock as well as the

stability of the corresponding limit cycle. This suggests that natural

systems may have evolved to use retroactivity in advantageous

ways such as using it to properly tune the dynamic behavior of a

module without changing the module’s components. This

hypothesis is further supported by the fact that there are a large

number of TF binding sites on the chromosome that do not have a

regulatory function [46], [47]. These sites have an impact on the

temporal response of TFs, and could therefore be exploited by

nature to further control the dynamics of gene regulation. More

generally, retroactivity provides means for information to travel

from downstream targets to upstream regulators, therefore

establishing indirect connections. In highly interconnected topol-

ogies, this information transfer can result in previously unknown

ways of realizing sophisticated functions. One such example that

we have provided is the adaptation function that topologies such as

the dense overlapping regulon can realize by virtue of having

nodes co-regulate multiple downstream targets.

Based on the three retroactivity matrices, we provided a metric

of robustness to interconnection, quantifying the percent change

between the dynamics of a module in isolation and once connected

to other modules. This metric is an explicit function of measurable

parameters and becomes smaller when a module’s internal

retroactivity is large compared to the scaling retroactivity of the

modules it connects to. This interplay may help uncover trade-offs

in natural systems, providing a new angle for understanding

natural principles of network organization. From an engineering

perspective, we have provided quantitative design tools that can be

employed in synthetic biology to appropriately match the internal

and scaling retroactivity of connected circuits to preserve the

circuits’ behavior upon interconnection with different contexts.

Our metric of robustness to interconnection further allows to

evaluate the extent of modularity of a dynamical module, possibly

enabling the discovery of previously unknown core processes. Our

metric could be employed by currently available methods for

partitioning networks into modules. Specifically, to evaluate

connectivity, these methods rely on several metrics, for instance,

edge betweenness [35], its extension to directed graphs with

nonuniform weights [36], round trip distance [25] or retroactivity

[37]. The metric of robustness to interconnection that we have

introduced can enhance these methods by providing a way to

evaluate modules on the basis of their functional robustness to

interconnection in addition to distinguishing them at the

connectivity level.

The framework that we have proposed carries substantial

conceptual analogies with the electrical circuit theory established

by Thevenin [48], which has been used for more than a hundred

years to analyze and to design electrical networks. Within this

theory, each circuit has an equivalent input and output impedance

(conceptually analogous to the scaling/mixing and internal

retroactivity, respectively), and an equivalent energy source

(playing a role similar to the isolated module dynamics). This

theory has been instrumental for answering key questions in the

analysis and design of electrical networks including, for example,

how the output of a circuit changes after it is interconnected in a

network; how to design circuits to maximize the power transfer

upon connection (impedance matching); and how to design

circuits whose input/output response is unaffected by loads. We

believe that the framework proposed in this paper can be used in a

similar way for the analysis and design of gene regulatory

networks.

Although our framework can be applied to a general gene

transcription network, there are a number of aspects that it does

not currently capture. These include post-translational protein

modifications, such as phosphorylation, which are present in many

regulatory networks and may potentially affect retroactivity.

Including these will require to extend our framework to mixed

gene transcription and signaling network models, leading to

systems with multiple time scales. Furthermore, the transcription

and translation processes use shared resources such as RNA

polymerase and ribosomes, which may create couplings among

unconnected circuits [17]. The dynamics of shared resources has

not been included in our modeling framework and will be the

focus of our future work.

Methods

Detailed Description of the System Model
The production of TF xi is regulated by its parents pi,1,pi,2, . . .:

they bind to the promoter of xi, and form complexes ci,1, ci,2, . . .
with the promoter. Each of these complexes, in turn, produce xi

with a different rate, where we use a one-step production process

encapsulating both transcription and translation [3]. As a result,

the reactions we consider for node xi are
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1
fi tð Þ

di

xi , ci,jzmi,lpi,l

ai,j,k

bi,k,j

ci,k, ci,j ?
pi,j

ci,jzxi, ð17Þ

modeling the following physical phenomena. We denote by di

protein decay, whereas fi tð Þ represents the production rate that

may be due to external inputs or perturbations (inducer, noise or

disturbance). The second reversible reaction in (17) describes the

binding of parent pi,l with multimerization factor mi,l to promoter

complex ci,j forming complex ci,k, where ai,j,k and bi,k,j are the

association and dissociation rate constants, respectively. Further-

more, each promoter complex ci,j will contribute to the production

of xi through the production rate constant pi,j , modeled by the

third reaction in (17). This production rate constant is a lumped

parameter that incorporates features such as the RBS strength and

the promoter strength. Finally, we assume that the total

concentration of the promoter, denoted by gi, for each transcrip-

tion component is conserved, so that gi~
PCi

j~0 ci,j , where Ci is

the number of possible complexes formed with the promoter of xi.

This concentration is proportional to the concentration of copies

of the promoter, which can be controlled, for example, by

changing plasmid copy numbers in synthetic systems.

The reaction flux vector v contains all the reactions in the

system, that is, binding/unbinding and protein production/decay.

Given that binding/unbinding reactions occur on a much faster

time-scale than protein production/decay [1], we partition v into

r� and r, where r� contains the slow processes, whereas r is

composed of the fast reactions, that is,

r�~

..

.

fi

dixi

pi, jci, j

..

.

0
BBBBBBBB@

1
CCCCCCCCA

and r~

..

.

ai, j, kci, jp
mi,l
i,l

bi, k, jci,k

..

.

0
BBBBBB@

1
CCCCCCA: ð18Þ

Biochemical Parameters
Since the production of a typical protein takes approximately

5 minutes [1], and a few dozen mRNAs can be transcribed from

the same gene simultaneously by [49], and similarly, a few dozen

proteins can be translated from the same mRNA at the same time

by [50], the effective production rate of protein from a gene can be

as high as p&10000hr{1. This value can be arbitrarily decreased,

for instance, by decreasing the RBS strength in synthetic circuits.

The cell volume of Escherichia coli is typically between

0:34{1:32mm3 by [51], so that 1 molecule/cell corresponds to

approximately 1{5nM concentration. By [52], a typical value of

the dissociation constant of bacterial promoters is k~1nM,

whereas [22] suggests k~10nM, and experimentally obtained

values are provided in [53]. One of the most widely used high copy

number vectors is the pUC plasmid [54], which can have

hundreds of copies per cell [55]. A frequently used medium copy

number plasmid is p15A with a few dozen copies per cell [56],

whereas pSC101 is regarded as a low copy number plasmid with

only a few copies per cell [56]. Finally, since the lifetime of a

protein is on the order of a cell-cycle [1], we have

d~0:3{1:2hr{1 [50]. The typical range of macroscopic param-

eters in Escherichia coli is summarized in Table 1.

If we had not neglected mRNA dynamics, there would be three

different time scales in the system. Binding and unbinding

reactions occur on the time scale of seconds (or even subseconds)

[1], representing the fastest time scale. The intermediate time scale

is that of mRNA dynamics, as the average lifetime of mRNA is on

the time scale of minutes [57], [58], [59]. Finally, the dynamics of

proteins evolve on the slowest time scale (hours). As we are

interested in describing the dynamics of the system on the time

scale of gene expression, the concentration of promoter complexes

and mRNA transcripts can be both approximated with their quasi-

steady state values, leading to the models we have proposed in the

paper. However, we would like to point out that including mRNA

dynamics would not change anything substantial in the results and

it would simply add N more ODEs to the ODE model of an

N-node module without any effects on the retroactivity matrices

(shown in [8] considering a specific example).

Definition of Hi(pi) and Ri(pi)
First, note that A in (2) has a block diagonal structure, yielding

_cc1

_cc2

..

.

_ccN

0
BBBB@

1
CCCCA

|fflfflfflffl{zfflfflfflffl}
_cc

~

A1 0 . . . 0

0 A2 . . . 0

..

. ..
.

P
..
.

0 0 . . . AN

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

r1 p1,c1ð Þ
r2 p2,c2ð Þ

..

.

rN pN ,cNð Þ

0
BBBB@

1
CCCCA

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
r

, ð19Þ

where ri(pi,ci) denotes the reaction flux vector corresponding to

reversible binding reactions with the promoter of xi. Let ci~ci(pi)
denote the vector of concentrations of complexes with the

promoter of xi at the quasi-steady state, obtained by setting

0~Airi(pi,ci).

We first define Hi(pi) as follows:

Hi(pi)~
XCi

j~0

pi,jci,j(pi), ð20Þ

Table 1. Typical range of macroscopic parameters in Escherichia coli.

Parameter Symbol Range Unit Reference

Production rate constant p 0{10000 hr{1 [1], [49], [50]

Dissociation constant k 1{10 nM [22], [52], [53]

DNA concentration g 1{500 nM [51], [54], [56], [56]

Protein decay rate d 0:3{1:2 hr{1 [1], [50]

doi:10.1371/journal.pcbi.1003486.t001
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where ci,j(pi) is the jth entry in ci(pi) and Ci is the number of

complexes with the promoter of xi.

Next, define the matrix Yi as follows: it has as many columns as

the number of complexes formed with the promoter of xi, and as

many rows as the number of parents of xi:

ci,1 ci,2 . . .

Yi~

2
664

3
775

pi,1

pi,2

..

.

such that its (j,k) element is m if the jth parent of xi is bound as an

m-multimer in ci,k (m~0 if the jth parent is not bound). Finally, for

nodes having parents, define the retroactivity Ri(pi) of node xi as

Ri pið Þ~Yi
dci(pi)

dpi

: ð21Þ

For the most common binding types, Hi(pi) and Ri(pi) are given

in Figure 3. For details on their derivation, see Supporting Text

S3.

Supporting Information

Figure S1 Mixing retroactivity can be avoided by
introducing an extra node. Rectangles represent promoter

regions, arrows denote coding regions. Promoters are regulated by

TFs expressed from coding regions of the same color. (A) The

production of �xxk is regulated by two TFs: xi from the module, and

�xxj from the context. If the binding of xi is not completely

independent from that of �xxj , the mixing retroactivity �MM of the

context is non-zero. As a result, the dynamics of the context can

suppress that of the module by (12). (B) One possible solution to

obtain zero mixing retroactivity �MM is to introduce an extra input

node �xx� in the context, so that parents from the module and from

the context are not mixed. In particular, replace the promoter of
�xxk with one that is regulated by �xx�. As a result, parents from the

module and from the context are not mixed anymore, yielding
�MM~0, in the meantime, �xxk still integrates the signal coming from

xi (through �xx�) and from �xxj .

(EPS)

Text S1 ODE model of the system in Figure 2 together
with the parameter values used for simulation.

(PDF)

Text S2 Appendix containing the Theorems and Prop-
ositions together with the corresponding proofs. Subsec-

tions include the following: (1) Isolated module without input; (2)

Isolated module with input; (3) Interconnection of modules; and (4)

Bounding the difference between the trajectories of an isolated and

a connected module.

(PDF)

Text S3 Derivation of Hi(pi) and Ri(pi) for the most
common binding types presented in Figure 3.

(PDF)
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