
Optimizing the UPC Communication
Run-Time Library

by

Igor F. Cherpak

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 30, 2000

@ MM Igor F. Cherpak. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author ...... .... . . . . . . . . . . . . . . . . . . . . . . . . .
Departmen t Electrical Engineering and Computer Science

ry May 30, 2000

Certified by... . .....................
Larry Rudolph

Principal Research Scientist
Thesis Supervisor

Accepted by ............ Artur.Sm..h
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 2 7 2000

LIBRARIES



Optimizing the UPC Communication Run-Time Library
by

Igor F. Cherpak

Submitted to the

Department of Electrical Engineering and Computer Science

May 30, 2000

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

This paper describes the design of a basic communication run-time library for the UPC
parallel language and DEC's Memory Channel hardware. Also described is an implemen-

tation of Cachet, an adaptive cache coherence protocol for distributed systems, which was

added to the basic communication layer to even further boost performance. The implemen-

tation of two Cachet micro-protocols: Cachet-Base and Cachet-WriterPush are described.

The Cachet cache coherence scheme was implemented entirely in software on Alpha work-

stations. The results of benchmarks running on the basic communication layer with and

without Cachet are presented. These experiments show that the communication optimiza-

tion can provide a performance improvement of up to an order of magnitude over the

unoptimized benchmarks.

Thesis Supervisor: Larry Rudolph
Title: Principal Research Scientist



Contents

1 Introduction
1.1 Motivation.... . ... ...................... 6
1.2 Contributions of this Thesis. . . . . . . . . . . . . . . . . . . . . . 6
1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 UPC Compiler and Underlying Hardware
2.1 UPC Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Basic Communication Run-Time Library
3.1 High Level Overview . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Main Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Shared Pointer . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 Processor Queue .. . . . . . . . . . . . . . . . . . . . . . . 13
3.2.4 Global Region . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.5 Tag Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3 Main Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 Get Module . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1.1 GetBytes Routine . . . . . . . . . . . . . . . . . . . 16
3.3.1.2 GetBlock Routine . . . . . . . . . . . . . . . . . . . 17
3.3.1.3 GetSync Routine . . . . . . . . . . . . . . . . . . 17
3.3.1.4 GetBlockSync Routine . . . . . . . . . . . . . . . . 18
3.3.1.5 GetAllSync Routine . . . . . . . . . . . . . . . . . . 18

3.3.2 Put Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2.1Put Routines . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2.2PutBlock Routine . . . . . . . . . . . . . . . . . . . . 20
3.3.2.3PutBlockSync . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2.4PutAllSync . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Deadlock and how to avoid it .. . . . . . . . . . . . . . . . . . . . 22
3.5 Service Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5.1 Service Routine . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5.2 ProcessElement . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.2.lProcessElementnord Routine . . . . . . . . . . . . . . 24
3.5.2.1 ProcessElementrd Routine . . . . . . . . . . . . . . . 25

3.6 Barrier Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Signals and Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.8.1 Get Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.8.1.1 Get 2 bytes . . . . . . . . . . . . . . . . . . . . . . . 28
3.8.1.2Get 4 bytes . . . . . . . . . . . . . . . . . . . . . . . 29
3.8.1.3Get 8 bytes . . . . . . . . . . . . . . . . . . . . . . . 29

3.8.2 GetBlock Operation . . . . . . . . . . . . . . . . . . . . . . . 29

3



3.8.2.1Get Block size=4 bytes . . . . . . . . . . . . . . . . . 29
3.8.2.2GetBlock size=40 bytes . . . . . . . . . . . . . . . . . 30
3.8.2.3GetBlock size=400 bytes. . . . . . . . . . . . . . . . . 30
3.8.2.4GetBlock size=4000 bytes . . . . . . . . . . . . . . . . 30

3.8.3 Put Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.8.3.1Put 2 bytes . . . . . . . . . . . . . . . . . . . . . . . . 31
3.8.3.2Put 4 bytes . . . . . . . . . . . . . . . . . . . . . . . . 31
3.8.3.3Put 8 bytes . . . . . . . . . . . . . . . . . . . . . . . . 31

3.8.4 PutBlock Operation . . . . . . . . . . . . . . . . . . . . . . . 32
3.8.4.1PutBlock size=4 bytes . . . . . . . . . . . . . . . . . . 32
3.8.4.2PutBlock size=40 bytes . . . . . . . . . . . . . . . . . 32
3.8.4.3PutBlock size=400 bytes. . . . . . . . . . . . . . . . . 32
3.8.4.4PutBlock size=4000 bytes . . . . . . . . . . . . . . . . 33

4 Adaptive Cache Coherence Protocol
4.1 Motivation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Cachet Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 CRF Memory Model . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 New Get and Put Operations . . . . . . . . . . . . . . . . . . . . . 36
4.5 Cachet-Base Overview . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6 Cachet-WriterPush Overview . . . . . . . . . . . . . . . . . . . . . 37
4.7 Software Caches .. . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.8 Memory Directory. . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.9 Reconcile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.10 Loadl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.11 Storel . . . . . . . .. .. . .... . .. . . . . . . . . . .. . . . . 41
4.12 Commit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.13 Modifications to processElementrd . . . . . . . . . . . . . . . . . 43
4.14 Modifications to processElementnord . . . . . . . . . . . . . . . . 44
4.15 determineProtocol Routine . . . . . . . . . . . . . . . . . . . . . . 44
4.16 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.16.1 Heat-transfer Program. . . . . . . . . . . . . . . . . . . . . 45
4.16.2 BaseSimul Program . . . . . . . . . . . . . . . . . . . . . . 46
4.16.3 BaseWriterSimul Program. . . . . . . . . . . . . . . . . . . 46

5 Conclusions and Future Research
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 Cachet-Migratory . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.2 Communication Movement . . . . . . . . . . . . . . . . . . 48
5.2.3 Communication Combination. . . . . . . . . . . . . . . . . 48
5.2.3 Calculation Movement . . . . . . . . . . . . . . . . . . . . 49

A Code Listing
A.1 Get Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.2 Put Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4



A.3 Barrier Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.4 Service Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.5 ProcessElement Module . . . . . . . . . . . . . . . . . . . . . . . 69
A.6 UPC Header File . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5



6



Chapter 1

Introduction

1.1 Motivation

Application performance depends on the compiler, on the communication run-time

system and on the efficiency of their interaction. By fine-tuning these three components, a

higher performance can be achieved. This thesis will concentrate on the UPC run-time

library and describe one way of optimizing it with an adaptive distributive cache coher-

ence protocol, Cachet.

In the first part of the paper, an implementation of the basic communication library

will be presented. The second part, will describe the integration of Cachet with the com-

munication layer.

The performance of the basic communication library and the library enhanced with

Cachet will be evaluated on a benchmark suite. This paper also presents the relative per-

formance results of UPC optimized with Base, WriterPush, and with the integrated Cachet

protocol, which includes both Base and WriterPush micro-protocols.

1.2 Contributions of this Thesis

The purpose of the project is to build a real-world implementation of an efficient com-

munication run-time library for the UPC language.

This thesis also functions as a case study of implementing Cachet software cache

coherency protocol for the purpose of optimizing the communication library.

6



1.3 Overview

Chapter 2 describes the platform for which the communication system is written.

Namely, the UPC compiler and the underlying communication hardware.

Chapter 3 describes the implementation of the basic communication run-time library

for the UPC language.

Chapter 4 presents the implementation of Cachet.

Finally, Chapter 5 summarizes the results of the project and makes suggestions for

future research.

7



Chapter 2

UPC Compiler and Underlying Hardware

2.1 UPC Compiler

UPC, a language currently being developed by Compaq, extends the C language and

supports a simple model of shared memory for parallel programming. In this model the

data can be either shared or distributed among the communicating processors. UPC is

designed to be much simpler than MPI or any other existing parallel language. Therefore,

it facilitates programming and maintains high performance execution at the same time.

2.2 Hardware

The target platform for UPC and the run-time library are standalone single-processor

Alpha machines running STEEL version 4.0 of the Tru64 UNIX Operating System. These

machines are connected by the Memory Channel interconnect.

Digital Equipment's Memory Channel (MC) is a low-latency remote-write network

that provides applications with access to memory on a remote cluster using memory-

mapped regions. Only writes to remote memory are possible -- reads are not supported on

the current hardware. The smallest granularity for a write is 32 bits (32 bits is the smallest

grain at which the current-generation Alpha can read or write atomically). The adapter for

the MC network is connected to the PCI bus. A memory-mapped region can be mapped

into a process' address space for transmit, receive, or both (a particular virtual address

mapping can only be for transmit or receive). Virtual addresses for transmit regions map

into physical addresses located in 1/0 space, and, in particular, on the MC's PCI adapter.

Virtual addresses for receive regions map into physical RAM. Writes into transmit regions

bypass all caches (although they are buffered in the Alpha's write buffer), and are collected

by the source MC adapter, forwarded to destination MC adapters through a hub, and trans-

8



ferred via DMA to receive regions (physical memory) with the same global identifier.

Regions within a node can be shared across processors and processes. Writes to transmit

regions originating on a given node will be sent to receive regions on that same node only

if loop-back through the hub has been enabled for the region. Loop-back is used only for

synchronization primitives.

MC has page-level connection granularity, which is 8 Kbytes for Alpha cluster. The

current hardware supports 64K connections for a total of a 128 Mbyte MC address space.

Memory Channel guarantees write ordering and local cache coherence. Two writes issued

to the same transmit region (even on different nodes) will appear in the same order in

every receive region.

9



Chapter 3

Basic Communication Run-Time Library

3.1 High Level Overview

The main operations of the communication library are remote Get and Put operations.

There are many different schemes for implementing these remote communication rou-

tines. The most typical approach is to use the message-passing mechanisms provided by

the UNIX operating systems. However, many research papers have shown that such a

communication mechanism performs poorly because of multiple message coping. Numer-

ous alternative schemes have been suggested to improve the communication [1,2].

Another alternative to the UNIX message-passing mechanism is presented below. This

message-passing mechanism fully utilizes the underlying hardware, Memory Channel,

and as a result achieves more efficient communication.

Memory Channel provides shared global memory. For each processor, a request buffer

is maintained in the global memory. Each node runs a service thread in addition to the

main program thread. The purpose of the service thread is to periodically extract and pro-

cess the messages from the request buffer. Therefore, communication among the partici-

pating nodes is accomplished by putting and extracting messages to and from the global

memory buffer.

3.2 Main Data Structures

3.2.1 Shared Pointer

The shared pointer is represented by the following structure:

typedef struct {

10



unsigned long va:43;

unsigned int phase:10;

unsigned int thread:11;

} _UPCRTSshared-pointer;

As can be seen, each shared pointer has three fields:

" va represents the virtual address (or local address) on a node

- phase represents the number of elements in block-cyclic block and speeds up the

pointer arithmetic operations.

- thread represents the number of the processor containing the shared storage

3.2.2 Element

typedef struct

int type;

ProtocolType ptype;

unsigned long datum;

tag tagg;

unsigned char* addressto;

unsigned char* address-from;

long blocksize;

unsigned char block[BLOCKSIZE];

}element;

This structure represents a message in the described message-passing scheme.

The description for each of the fields of the element data structure is given below:

- type stands for message type. Depending on operation, type can be one

one of the following:

/* Put Requests */

PUTFLOATREQUEST

PUTDOUBLEREQUEST

PUTTEMPBLOCKREQUEST

PUTBLOCKREQUEST

11



/* Get Requests */

GETONEBYTE_REQUEST

GETTWOBYTE_REQUEST

GETFOURBYTE_REQUEST

GETEIGHTBYTEREQUEST

GETBLOCK-REQUEST

/* Put Responds */

PUTONEBYTERESPOND

PUTTWOBYTERESPOND

PUTFOURBYTERESPOND

PUTEIGHTBYTERESPOND

PUTFLOATRESPOND

PUTDOUBLERESPOND

PUTBLOCKRESPOND

/* Get Responds */

GETONEBYTERESPOND

GETTWOBYTERESPOND

GETFOURBYTERESPOND

GETEIGHTBYTE RESPOND

GETTEMPBLOCKRESPOND

GETBLOCKRESPOND

/* Purge */

PURGE_REQUEST

PURGERESPOND

PURGEMEMGET_REQUEST

PURGEMEMGETRESPOND

UPDATEREQUEST

UPDATERESPOND

- ptype: cache protocol type. The meaning of this type will be explained in Chapter 4.

- datum: a data to be transferred.

12



Note, that all the data is represented by an unsigned long. Unsigned long is represented

on Alphas (the underlying nodes) as 8 bytes, which is the longest size for elementary data

types. This way any type of data can fit in unsigned long.

* tag - when the message is injected into the network, a unique number sequence is

assigned to it. This sequence number is represented by the field tag

- addressto: represents the data address local to the remote node at which data is

stored (Put operation)

- addressfrom: represents the data address local to the remote node remote node from

which the data is received (Get operations)

block size: this field represents the size (in bytes) of data to be transferred

- block: is a block buffer for GetBlock and PutBlock operations

3.2.3 Processor Queue

Each node has request queues associated with it in a shared global space. These

queues are accessible by all communicating nodes. When one processor needs to send a

message to another processor, it just deposits this message into the other processor's

queue.

Each queue is represented by the following data structure:

typedef struct {

que nord;

que rd;

boolean serviceFlag;

} procQue;

Note, that the procQue data structure has, actually, not one but two queues: "nord" and

"rd". The "nord" queue is for messages that do not require a reply. At the same time "rd"

is the queue for the messages that do require a reply.

13



3.2.4 Global Region

The global-space data structure represents the shared global space that is accessible by

all participating nodes.

typedef struct {

procQue queues[NUMBEROFPROCS] [NUMBEROFPROCS];

volatile int syncCount; /* a flag for syncronization start */

barrStruct barArray[MAXNUMBEROFBARRIERS];

} globalspace;

Making this structure accessible by all nodes is a tricky task. In order to allocate this

structure in the shared global space (which is a region of Memory Channel address space),

each processor maps this region into its own process virtual address space using the

imc_asattacho system call (see API for MC [3]). Once a node is mapped, the region to

receive and transmit data, an area of virtual address space of the same size as the Memory

Channel region is added to each processor virtual address space.

The global-space structure fields are:

- queues - this is a two dimensional array of processor queues.

- syncCount- a flag for initial syncronization.

- barrArray: used to implement barrier operation.

As can be seen from above, each node is associated with the NUMBEROFPROCS

request queues. When the remote node deposits its request, this node puts it into one of the

request queues that corresponds to the target node's id. For example, if a node with id

equal to 1 sends the message to node with id equal to 2, then node 1 deposits the message

into queues[2][1].

This design requires more storage compared to the usual one request queue design.

However, it is more efficient timewise. The explanation of this is very simple. If there was

only one queue to deposit the requests for all nodes, then the following situation might be

possible: there are several nodes that want to deposit their requests into the request queue.

However, in order to deposit a request the node needs first to lock the queue. Thus, while

one node deposits the request all other nodes must wait for to the lock to be released and,

thus, there is a waste of processing time. Also if the service thread on the node to which

14



the queue belongs wants to process the requests it needs to wait, potentially as long as the

time required for all remote nodes to deposit their messages.

However, with multiple queues each thread has to wait at most for one thread in order

to do operations on a queue.Each node does not need to wait until the other nodes deposit

their messages. Also the service thread, does not waste time anymore either because it

cycles through the queues and processes only the queues that are not locked and have mes-

sages in them. Since the situation in which all remote nodes lock their queues simulta-

neously is very rare, the service thread almost never has to wait. Thus, this design is more

time efficient, even though it consumes more space than the typical design.

3.2.5 Tag Buffer

The TagBuffer data structure is located on each node. The purpose of this data struc-

ture is to provide Get and Put requests with unique tags as well as to keep track which

requests and thus which tags are outstanding (i.e. not completed). A tag can be in one of

the three states: NotUsed, InProcess or Completed. NotUsed means that the tag does

not belong to any request message and can be reused. InProcess signifies that this tag has

been issued (i.e. belongs) to some request message, and this request has not yet been com-

pleted. Completed for the tag indicates that the request associated with the tag has been

completed.

Each tag has storage associated with it. The responses to the Get requests store the

results in these preallocated data structures. When GetSync (described later) command is

executed, it first checks whether the state of the tag is Complete. If it is, the GetSync rou-

tine extracts the data from the storage associated with the tag, sets the tag's state to

NotUsed, and returns the value.

To support the described behavior, the tagBuffer Module (see Appendix A) imple-

ments the following operations on the tagBuffer data structure:

For Get type requests:

tag acquireGetTag()

boolean isGetTagOutstanding(tag tg)

boolean areGetTagsOutstanding()

15



void setGetDatum(tag tg,unsigned long vl)

unsigned long retrieveGetDatum(tag tg)

void setStatusArrived(tagBuffer* tgBuff, tag tg)

void deleteGetTag(tag tg)

void deleteArrivedTags(tagBuffer*)

For Put type requests:

tag acquire_PutTag()

boolean isPutTagOutstanding(tag tg)

boolean arePutTagsOutstanding()

void setStatusArrived(tagBuffer* tgBuff, tag tg)

void deleteArrivedTags(tagBuffer*)

int deletePutTag(tag tg)

3.3 Main Modules

3.3.1 Get Module

The compiler translates the statement of the type: x=y; where y is a shared variable

into the following sequence of statements Put ( GetSync(GetByte(....))). If y is a structure,

then the compiler translates the x=y; statement into GetBlockSync(GetBlock(...)) sequence

of statements.

GetBytes, GetBlock, GetSync, GetBlockSync and GetAllSync routines are described

below.

3.3.1.1 GetBytes Routine

GetBytes command has the following interface:

_UPCRTScontexttag _UPCRTSGetBytes(_UPCRTSSHAREDPOINTERTYPE

adr,sizet size)

16



The purpose of atomic GetBytes is to start a load operation from remote or local mem-

ory. In other words, GetBytes injects a request message into the network to get the data.

This routine immediately returns (before the remote or local fetch operation is completed).

GetBytes takes as an input two parameters: a shared address pointer to the location

being fetched and size of the data. The variables of type int or float correspond to size=4,

variables of type double or unsigned long correspond to size = 8 and variables of type

short correspond to size = 2. The return value is an anonymous data structure called Tag,

which is used by the syncronization routines to describe which Get operation is being

completed.

Here is a high-level pseudocode for GetBytes routine:

1.Parse the shared pointer adr to determine the remote processor's id and the local

pointer (va) on the remote processor at which to get the data.

2. If the processor's id = MYTHREAD (i.e local request)

get the value from local memory deposit it in a location that corresponds to

GETSHORTCUTTAG tag and return the GETSHORTCUTTAG tag.

3.If the request is for remote data, then

Get the tag from TagModule and set up the request data message.

Call the Service Thread routine.

Lock the global space and deposit a request for data in the "rd" queue that

corresponds to the id's remote processor.

Unlock the global space.

Return the tag.

The reason for calling a serviceThread routine before depositing a message is to pro-

cess the messages that are located in the "nord" queue of the local processor before depos-

iting the message into "rd" que of the remote processor. By doing so, a potential deadlock

situation is avoided. The deadlock problem will be discussed in Section 3.4 in more detail.

17



3.3.1.2 GetBlock Routine

This command has the following signature:

_UPCRTScontext_tagUPCRTSGetBlock(_UPCRTSSHAREDPOINTERTYPE

addrfrom, void *address tosizet block_size)

The GetBlock operation fetches data from a remote or local address, specified by the

shared pointer adrjrom to the local address, specified by a regular (local) pointer called

addressto. The number of bytes to be transfered is specified by size. As with GetBytes,

GetBlock operation starts this transfer and returns a Tag for syncronization purposes.

The high-level pseudocode for GetBlock routine is almost identical to GetBytes rou-

tine. The only difference is that the message type is GETBLOCKREQUEST. Also, if

the data is local, then the MC's imcbcopy() command is used to copy the data instead of

conventional C language bcopy() command. It has been shown that imcbcopy() com-

mand is more efficient [3] and that is why this implementation employs it.

3.3.1.3 GetSync Routine

Depending on the type of data, this routine has the following interface:

unsigned long _UPCRTSGetSyncInteger(_UPCRTScontexttag t)

float _UPCRTSGetSyncFloat(_UPCRTScontext-tag t)

double _UPCRTSGetSyncDouble(_UPCRTScontexttag t)

The appropriate GetSync Routine is called when data is needed for the computation. A

Get Routine for the correct size of data must be called before the GetSync routine is

called. The GetSync routine waits until the data transfer is completed and returns the value

to the executing program. The GetSync routine also frees the tag structure.

GetSync routine works as follows. First, a check is performed on the state of the tag. If

the tag's state is not Complete, then the GetSync routine is blocked until the state of the

tag becomes Complete. After that, the data is extracted from the tag storage, and the tag is

18



freed (this is done by setting its state to NotUsed). The GetSync routine casts the data to

the appropriate type and returns the data.

3.3.1.4 GetBlockSync Routine

This routine has the following interface:

void _UPCRTSGetBlockSync(_UPCRTScontext-tag t)

The GetBlockSync operation is performed just before the data is accessed locally. The

Tag(_UPCRTScontexttag) is used to specify which Get operation is being synchro-

nized. This tag must be generated by a GetBlock operation apriori. The GetBlockSync

operation waits for the completion of the data transfer and then returns. The tag reference

is then deallocated.

The implementation details are almost the same as for the previous GetSync routine.

However, in this case, the data is not returned.

3.3.1.5 GetAllSync Routine

The routine has the following interface:

void _UPCRTSGetAllSync()

The GetAllSync routine waits for all outstanding Get operations to complete. Note,

however, that the occurrence of this operations does not prevent the need for each Get

operation to have a matching GetSync operation. The GetAllSync routine simply waits for

all Get operations that are outstanding to complete and then returns.

In the implementation, GetAllSync routine waits till areGetTagsOutstanding() rou-

tine returns false and frees all the tags. areGetTagsOutstanding() routine, implemented

in the TagBuffer module, accesses the TagBuffer structure on the local node and returns

true if the counter of outstanding requests in the TagBuffer structure is not equal to zero.

19



3.3.2 Put Module

The UPC compiler translates the assignment statements of type x=const, where x is a

shared variable, into the following statements: _UPCR TSPut[IntegerFloat,Dou-

ble}(x,const,...).

The statements of the type x=k, where x is a shared variable and k is a structure are

translated into _UPCRTS_PUTBLOCK(xk,...)

Described below are PutInteger, PutFloat, PutDouble, PutBlock, PutBlockSync and

PutAllSync routines.

3.3.2.1 Put Routines

This module implements the following interface:

void _UPCRTSPutInteger(_UPCRTSsharedpointer p,unsigned long datum,

sizet size)

void _UPCRTSPutFloat(_UPCRTSshared-pointer p,float datum)

void _UPCRTSPutDouble(_UPCRTSsharedpointer p, double datum)

The put routines start a store operation into a remote or local memory location. This

location is specified by the shared pointer, which is the first argument. The second argu-

ment is the data to be stored. The PutInteger routine has size as the third argument, that

specifies the actual size of the data. PutFloat and PutDouble routines are for storing float

or double types of data correspondingly. Once the Put operation has started, the routine

returns. No tag value is returned since no syncronization is needed.

Below is a high-level pseudocode for Put routine:

1.Parse the shared pointer adr to determine the remote processor id and the local

pointer on the remote processor at which to store the data.

2.If the processor's id = MYTHREAD (i.e local request)

store the data to the local memory and return;

3. If the request is to store remote data, then:

20



* Get the tag from TagModule and set up the request data message.

(set the type to one of put requests, set the tag, set the addressto, set the datum)

" Call the Service Thread routine.

- Lock the global space and deposit a request to store data into the "rd" queue that

corresponds to the id's remote processor.

- Unlock the global space and return.

During the message setup, the type of a request is set to one of the following depend-

ing on the type of the data to be put:

PUTONEBYTEREQUEST

PUTTWOBYTEREQUEST

PUTFOURBYTEREQUEST

PUTEIGHTBYTEREQUEST

PUTFLOATREQUEST

PUTDOUBLEREQUEST

Notice that the tag for put request is acquired and sent along with the message (see the

message format), even though the put operation does not return the data. By acquiring the

tag, the TagBuffer data structure gets updated to reflect the fact that the put message is out-

standing. PutAllSync relies on that because it needs to know whether there are any out-

standing put operations.

3.3.2.2 PutBlock Routine

Interface:

UPCRTScontexttag _UPCRTSPutBlock ( _UPCRTSshared-pointer pointer,

void *localbuf, size-t size)

The PutBlock operation starts the transfer of data from the local memory specified by

the local pointer localbuff to the remote memory location specified by the shared pointer

21



pointer. size specifies the number of bytes to be transfered. After the transfer is started the

operation returns a tag, which is used for synchronization purposes.

If the request to store the data is local, then:

1. imc_bcopy() command is used (instead of the usual bcopyo) for efficiency reasons.

2. SHORTCUTTAG tag is returned. This tag is of special type. It would signal the

PutBlockSync operation that would follow to simply return without doing any

actions.

If the request to store the data is remote, then:

PutBlock routine determines the size of the block of data to be send. If needed, the

routine fragments the data into several messages because a message data structure has a

limited capacity buffer to hold the block data. In fact, the element buffer can hold

BLOCKSIZE bytes of data (see Section 3.2.2). All but the last message are deposited

into the "nord" queue of the remote processor. The last message is deposited in the "rd"

queue. This way only one acknowledgement (for the last message) is required. The mes-

sages that are deposited in the "nord" queue do not require a reply. Also, according to the

implementation, these messages will be processed before the message that has been put

into the "rd" queue. Thus, the moment the last message is processed and the reply is sent

and acknowledged, the state of the tag on the processor that originated the block data

request is changed from the InProcess to NotUsed state. If PutBlock needs to deposit a

message into a remote processor's queue, but the queue is full, PutBlock routine is

blocked until the queue can accept more messages.

3.3.2.3 PutBlockSync

Interface: void _UPCRTS_PutBlockSync (_UPCRTS_context-tag t)

The PutBlockSync operation waits for the completion of the PutBlock operation spec-

ified by the tag. The compiler must perform a PutBlockSync operation after a PutBlock

22



operation and before the next store into the local memory area being transfered. After the

PutBlockSync operation, the tag's state is set to NotUsed.

If the tag passed to PutBlockSync operation is SHORTCUTTAG - the transfer is local,

and has already occurred and, in this case, the routine simply returns.

In all other cases, the PutBlockSync routine waits for the state of the tag to be Com-

pleted, and then returns.

3.3.2.4 PutAllSync

Interface: void _UPCRTSPutAllSync (void)

The occurrence of this operation does not obviate the need for matching PutSync oper-

ations for each block Put operation. The PutAllSync routine simply waits for all outstand-

ing Put operations (atomic or block) to finish and then returns.

The PutAllSync operation implementation merely waits un till the counter of outstand-

ing (tags with the state equal to InProcess state) Put operations becomes zero. Once the

counter is zero the PutAllSync returns.

3.4 Deadlock and how to avoid it.

In this section it will be shown how using the "nord" and "rd" message buffers avoids

the potential deadlock situation.

If instead of "nord" and "rd" buffers for each node there would be only one message

queue, then the following situation might be possible. Let the system consist of two nodes

P1 and P2 to simplify the analysis. If P1 and P2 both send many Get type messages to

each other at the same time, the message queues for both P1 and P2 nodes might become

full. Then, when the service thread on any node tries to process a Get request and send a

Get reply to the other node, it can get deadlocked since there is no space in the message

queue of the other node. At the same time the other node can not process any message in

its message queue either for the same reason - the other node's queue is full and no more

messages can be put in this queue.

23



In order to avoid such a scenario, two different message queues were implemented for

each node: the "nord" queue for messages that do not require a reply (a reply does not

need a reply) and "rd" queue for messages that do require a reply. Also, there is a service

routine that periodically process messages in both queues.

In the current implementation, let "rd" queues for P1 and P2 be full. Now node P1 can

process "rd" queue and deposit replies in "nord" queue of the other node. If at some

moment the nord queue would become full the service routine would empty it - nothing

can stop the service routine since the messages in this queue do not require a reply. The

same scenario happens to the other processor and the deadlock is successfully avoided.

3.5 Service Module

3.5.1 Service Routine

The service routine is a utility that extracts messages from the message queues and

processes them. This utility function is either called by the service thread or directly

invoked before each get/put operation from the main program thread.The service thread is

run on each node. For efficiency reasons, the service routine runs periodically.

The service routine is invoked from the main thread before each get or put operation is

initiated. If the service thread is not running at the time of invocation, the call to the ser-

vice utility goes through, otherwise the call returns.

The reason for such a complex operation is efficiency, since running the service thread

all the time consumes CPU time. The most preferred solution is to run the service routine

before each get or put operation and not to have an additional thread at all. However, such

a scenario under certain conditions might result in a deadlock. That is why there is a need

for a separate thread that would run service routine periodically.

The routine first tries to get a special service lock. If it fails to acquire such a lock, it

means that other thread is already running the service routine, and there is no need to

invoke it. In this case, the routine returns. However, if it acquired the lock, then the routine

tries to process "nord" queues for this node. Recall that the "nord" queue corresponds to

24



reply messages of remote processor to the current processor requests. Thus, if there are N

remote processors, then there are N "nord" queues on each node. The routine tries to lock

one "nord" queue at a time and processes it by calling the ProcessElementnord routine. If

it fails to obtain a lock for a particular "nord" queue it does not wait and proceeds to the

next "nord" queue. After that, the service routine tries to process "rd" queues in a similar

fashion by calling ProcessElementrd routine. In addition to locking an "rd" queue, the

service routine must lock the corresponding "nord" queue of the remote node (when pro-

cessing the "rd" queue, the replies are generated and must be deposited in the "nord"

queue of the remote node).

3.5.2 ProcessElement Routines

Now, let us look at the ProcessElement nord and ProcessElement rd routines.

3.5.2.1 ProcessElementnord Routine

This auxiliary routine extracts messages from the "nord" message queue and processes

them. The routine processes messages of the following types:

PUTONEBYTERESPOND

PUTTWOBYTERESPOND

PUTFOURBYTERESPOND

PUTEIGHTBYTERESPOND

PUTBLOCKRESPOND

GETONEBYTERESPOND

GETTWOBYTERESPOND

GETFOURBYTERESPOND

GETEIGHTBYTERESPOND

GETTEMPBLOCKRESPOND

GETBLOCKRESPOND

25



Upon receipt of the respond message, the processElementnord routine sets the state

of the tag corresponding to the message (that is the same tag as for originating operation

request message tag) to COMPLETE state, so that the subsequent Sync operation will

know that the tagged operation has completed.

3.5.2.2 ProcessElementrd Routine

This routine extracts messages from the "rd" message queue that corresponds to the

local node and processes these messages. As mentioned above, the "rd" queue contains

messages that require replies. Thus, the implementation of this routine is more difficult

than the processElementnord routine.

This routine processes the messages of the following types:

PUTONEBYTEREQUEST

PUTTWOBYTEREQUEST

PUTFOURBYTEREQUEST

PUTEIGHTBYTEREQUEST

PUTTEMPBLOCKREQUEST

PUTBLOCKREQUEST

GETONEBYTEREQUEST

GETTWOBYTEREQUEST

GETFOURBYTEREQUEST

GETEIGHTBYTEREQUEST

GETBLOCKREQUEST

If the the request is a Put type request, then the procedure extracts the data from the

message and stores it in the local node address space. Once this is done, a reply message is

generated and deposited in the "nord" queue of the processor that has sent the original

request. In the case of PUTTEMPBLOCKREQUEST the reply is not generated, but it

26



is generated in the case of PUTBLOCKREQUEST that corresponds to the last message

of the series of messages to get the block data.

If the request is a Get type request, then the procedure gets the requested data from the

local memory, sets up a reply message with the data and the tag and deposits the newly

created message into the "nord" queue of the processor that has sent the original request.

However, if the request is for block data, then the size of the message buffer designed to

hold the block data might be smaller than the requested block data size. In this case, sev-

eral messages with different parts of block data are created and injected into the network.

The "nord" buffer into which the messages are deposited might become full. In that case,

the GetBlockRequest message is modified: the "from" and "to" addresses are modified

in order to account for messages with partial block data already sent. The modified mes-

sage is then put back into the "rd" queue of the current node, so that the next time the ser-

vice routine runs, it will start with the modified message and process it further.

3.6 Barrier Routine

Interface: void UPCRTSBarrier (int value)

The barrier operation completes all the previous communications involving data trans-

fer and then waits for all other processors to reach the same barrier. The routine takes an

optional integer parameter. If all of the processors do not provide the same value at the

barrier then the program stops and the error is reported.

The implementation of barrier module is described next.

An array of barStruct is allocated in the global space. The purpose of this array is to

provide syncronization for the barrier routine.

typedef struct {

volatile int barCount; /* a flag for barrier syncronization */

int barValue; /* a flag for barrier syncronization */

volatile int barError; /* a flag for barrier error */

}barrStruct

27



When a barrier statement is encountered, the first thing each node does is it executes

GetAllSynco and PutAllSynco series of statements. Once the program counter passes

those statements, it means that all the previous communications involving data transfer are

complete. Now, the node needs to wait until all other nodes reach the same barrier state-

ment. The barrier statement serves, in a sense, as a rendezvous point for all the nodes. The

mechanism for accomplishing this follows.

Once the GetAllSync and PutAllSync statements are executed, the barrier routine

checks whether an error has occurred. This is accomplished by checking the barError flag.

If this flag is set, it means that the error has occurred at some other node and the program

must exit. The program outputs the error message and exits.

If the barError flag is not set, then the barrier routine compares its parameter to bar-

Value. The barValue represents the value of the parameter passed to the barrier on all

nodes. It is set by the first node that enters the barrier statement. If the barValue and the

parameter passed to the barrier routine are not equal, and the barValue is not equal to the

default value (a check whether it is the first node to enter the barrier statement), then it

means that at least two different nodes have reached the barriers with different values. In

this case barError flag is set and the program exits. The barError flag serves as a way to

tell other nodes that the error has occurred, and that they should exit.

On the other hand if the barError flag is not set, the program increases the barCount

by one and checks whether the barCount value is equal to the number of processors that

participate in the communication process (NUMBEROFPROCS). If barCount has

reached this number, all the nodes have reached the same point, and the barrier routine

returns. The same will happen at all other nodes. If the barCount has not yet reached the

NUMBEROFPROCS, the barrier routine waits for this to happen and loops checking

periodically the values of barError and barCount. In order to allow the barCount and bar-

Error variable to be changed dynamically by other processors, they are declared volatile.

The update of any bar variables is atomic and requires obtaining a lock.

28



3.7 Signals and Errors

The following four signal might be raised during the execution of the program:

ILLEGALSHAREDPOINTER - this signal occurs if the shared pointer passed to

one of the routines was not of valid form.

ILLEGALREMOTEADDRESS - this signal occurs if the shared pointer referenced

non - existent memory in the remote thread. A pointer that is all zeros is a shared NULL

pointer. A dereference of a shared NULL pointer will raise this exception.

PROGRAMTERMINATION - this signal occurs if one of the threads have termi-

nated abnormally. This signal will be raised in all other threads to cause the termination of

the UPC program.

3.8 Results

Ping-pong.c program was used as a benchmark to calculate the bandwidth and the time

passed for Get and Put operations. Described below are the results.

3.8.1 Get Operation

3.8.1.1 Get 2 bytes

Number of messages Bandwidth Mbytes/sec Time passed

1 0.960 0 secs 4167 microsecs

10 1.263 0 secs 31666 microsecs

100 1.404 0 secs 285000 microsecs

1000 1.464 2 secs 731667 microsecs

29



3.8.1.2 Get 4 bytes

Number of messages Bandwidth Mbytes/sec Time passed

1 1.9203 0 secs 4166 microsecs

10 2.5263 0 secs 31667 microsecs

100 2.8070 0 secs 285000 microsecs

1000 3.0255 0 secs 644166 microsecs

3.8.1.3 Get 8 bytes

Number of messages Bandwidth Mbytes/sec Time passed

1 4.800 0 secs 3333 microsecs

10 4.923 0 secs 32500 microsecs

100 5.664 0 secs 282500 microsecs

1000 5.779 2 secs 759167microsecs

3.8.2 GetBlock Operation

3.8.2.1 Get Block size=4 bytes

30

Number of messages Bandwidth Mbytes/sec Time passed

1 1.920 0 secs 4166 microsecs

10 2.342 0 secs 34166 microsecs

100 3.117 0 secs 256667 microsecs

1000 3.409 0 secs 346666 microsecs



3.8.2.2 Get Block size=40 bytes

Number of messages Bandwidth Mbytes/sec Time passed

1 19.198 0 secs 4167 microsecs

10 23.415 0 secs 34166 microsecs

100 30.094 0 secs 26834 microsecs

1000 33.910 2 secs 359167 microsecs

3.8.2.3 Get Block size=400 bytes

Number of messages Bandwidth Mbytes/sec Time passed

1 96.004 0 secs 8333 microsecs

10 145.455 0 secs 55000 microsecs

100 179.105 0 secs 446666 microsecs

1000 197.531 4 secs 50000 microsecs

3.8.2.4 Get Block size=4000 bytes

Number of messages Bandwidth Mbytes/sec Time passed

1 177.778 0 secs 45000 microsecs

10 303.798 0 secs 263333 microsecs

100 335.664 2 secs 383333 microsecs

31



3.8.3 Put Operation

3.8.3.1 Put 2 bytes

Number of messages Bandwidth Mbytes/sec Time passed

1 1.200 0 secs 3333 microsecs

10 1.455 0 secs 27500 microsecs

100 1.708 0 secs 234167 microsecs

1000 1.853 2 secs 158334 microsecs

3.8.3.2 Put 4 bytes

Number of messages Bandwidth Mbytes/sec Time passed

1 2.400 0 secs 3334 microsecs

10 2.823 0 secs 28334 microsecs

100 3.529 0 secs 226667 microsecs

1000 3.656 2 secs 188333 microsecs

3.8.3.3 Put 8 bytes

Number of messages Bandwidth Mbytes/sec Time passed

1 4.800 0 secs 3333 microsecs

10 5.189 0 secs 30834 microsecs

100 6.784 0 secs 235837 microsecs

1000 7.436 2 secs 151666 microsecs

32



3.8.4 PutBlock Operation

3.8.4.1 Put Block size=4 bytes

Number of messages Bandwidth Mbytes/sec Time passed

1 1.920 0 secs 4167 microsecs

10 2.462 0 secs 32500 microsecs

100 3.028 0 secs 264166 microsecs

1000 3.238 2 secs 470833 microsecs

3.8.4.2 Put Block size=40 bytes

Number of messages Bandwidth Mbytes/sec Time passed

1 19.203 0 secs 4166 microsecs

10 25.263 0 secs 31667 microsecs

100 30.968 0 secs 258334 microsecs

1000 31.209 2 secs 563334 microsecs

3.8.4.3 Put Block size=400 bytes

Number of messages Bandwidth Mbytes/sec Time passed

1 106.667 0 secs 7500 microsecs

10 117.074 0 secs 68333 microsecs

100 149.068 0 secs 53667 microsecs

1000 149.091 5 secs 365833 microsecs

33



3.8.4.4 Put Block size=4000 bytes

34

Number of messages Bandwidth Mbytes/sec Time passed

1 1177.778 0 sec 45000 microsecs

10 271.955 0 sec 294166 microsec

100 284.276 2 sec 814167 microsecs



35



Chapter 4

Adaptive Cache Coherence Protocol

Presented below is an implementation of Cachet - an adaptive cache coherence proto-

col for distributed systems. Cachet was designed by Xiaowei Shen, Arvind and Larry

Rudolph [4]. This paper presents the first actual implementation of the protocol on top of

the basic communication layer described in Section 3 above.

4.1 Motivation

Many programs have various access patterns, and empirical data suggest that no fixed

cache coherence protocol would work well for all the access patterns [6,7,8]. Thus, there

is an evident need for an adaptive cache-coherence protocol that would automatically

switch from one protocol to another to adapt to changing memory access patterns.

4.2 Cachet overview

The implementation Cachet is a seamless integration of two micro-protocols, each of

which has been optimized for a particular memory access pattern. The protocol changes its

actions to address the changing behavior of the program. Limited directory resources is no

problem for Cachet - it simply switches to an appropriate micro-protocol when it runs out

of directory space. Cachet embodies both intra and inter protocol adaptivity and achieves

higher performance under changing memory access patterns.

4.3 CRF Memory Model[5]

In order for Cachet to work correctly it implements the CRF (Commit-Recon-

cile&Fences) memory model. CRF is a mechanism-oriented memory model that exposes

the data replication and instruction reordering at the programming level. CRF decomposes

36



load and store instructions into finer-grain operation that operate on local (semantic)

caches. There are five memory-related instructions: Loadl (load-local), Storel (store-

local), Commit, Reconcile and Fence.

The purpose of Loadl instruction is to read the data from the cache (in this case a soft-

ware cache). If the data is in the cache, the operation returns the data, otherwise it stalls

and waits for the data to be fetched into the cache.

The Storel instruction simply writes the data into the cache if the address is cached

and sets the cache cell's state to Dirty. CRF allows store operations to be performed with-

out coordinating with other caches. As a result, different caches can contains cells with

different values for the same address.

The Commit and Reconcile instructions are used to insure that the data produced by

one node can be observed by another node. A Commit instruction on dirty cells will stall

until the data is written back to the memory. A Reconcile instruction stalls on a clean cell

until the data is purged from the memory. The memory behaves, in a sense, as a rendez-

vous point, for the writer and the reader.

The next sections will describe these operations and implementations of Cachet-Base

and Cachet-WriterPush with these operations.

4.4 New Get and Put Operations

The Get or Put operations in view of CRF Model can be thought of as follows:

Get(a) = Reconcile(a); Loadl(a);

Put(a) = Store(a,v); Commit(a);

Both Loads and Stores are performed directly on local caches. The Commit instruction

ensures that a modified value in the cache is written back to the memory, while the Recon-

cile instruction ensures a stale value is purged from the cache.

37



There is still a need for sync operations because they are required by the UPC com-

piler. The implementation of sync routines has not changed from the implementation

described in Section 3.

There is another twist in implementation of Get and Put routines: since the Cachet pro-

tocol switches from one micro-protocol to another depending on memory access behavior,

there is a need to account for each load or store request. Thus, the first thing the get or put

routine does is to call determineProtocolType routine. This routine updates the data struc-

ture which accounts for the number and the relative order of store/load requests on a par-

ticular address. It also determines which protocol: Base or WriterPush protocol should be

associated with the address and returns this protocol type as a result. The Get or Put rou-

tine passes this protocol type along with the address to Reconcile, Loadl, Store, or Com-

mit routine. The implementation of determineProtocolType routine is described in Section

4.15

4.5 Cachet-Base Overview

Cachet-Base protocol is ideal when a memory location is randomly accessed by multi-

ple processors, and only necessary commit and reconcile operations are invoked. Its

implementation is the most straightforward, since it uses the memory as the rendezvous

point. When a Commit instruction is executed for an address, whose state is Dirty, the data

must be written back to the memory before the operation completes. A Reconcile instruc-

tion for an address whose state is Clean requires the data to be purged from the cache

before the instruction completes. No state is required to be maintained for Base protocol at

the memory side.

4.6 Cachet-WriterPush Overview

Cachet-WriterPush micro-protocol is ideal when processors are likely to read an

address many times before another processor writes the address. A reconcile operation

performed on a clean copy causes no purge operation. Thus, subsequent get(load) opera-

tion to the address can continually use the cached data without causing any cache miss.

38



However, when a Commit instruction is performed on a dirty cell, the Commit instruction

cannot complete before the clean copies of the address are updated in all other caches.

Therefore, it can be a lengthy process to commit an address that is stored in the Dirty state.

4.7 Software Caches

In order to implement a cache-coherence protocol, a software cache was implemented

on each node. For efficiency reasons the cache was implemented as a hashtable. Each

cache's cell has an associated state. The state can be one of the following: CleanB,

CleanW, CachePending,WbPending or Dirty.

The CleanB state indicates that the data have not been modified since data have been-

cached or last written back, and the associated protocol for the data address is the Base

protocol. Same is with CleanW. However, in this case the protocol associated with the

address is Cachet-WriterPush. The Dirty state indicates that the data has been modified

and have not been written back to the memory since then. The CachePending indicates

that the value for the memory cell is in the process to be determined. WbPending indicates

that write-back operation is in progress.

The cache hashtable stores the entries of type Cache Record. The data structure for a

cache record is presented below.

typedef struct{

Address adr;

ValueType type;

Value value;

CacheState state;

int accessCount;

}CacheRecord;

4.8 Memory Directory

There is a separate memory directory on each node. The purpose of the memory direc-

tory is to keep information in which caches the local address is stored.

39



Writer-Push micro-protocol is the principal user of this information. In order to per-

form a Commit operation for a local address with Dirty state, the Writer-Push protocol

finds the nodes in which this local address is cached and sends requests to update the

remote cache addresses to the new values. Also, when a Load operation is performed for

an address under Writer-Push protocol, the id of the cache where the address is going to be

stored gets added to the memory directory on the home node of the address.

For simplicity and efficiency, the memory directory is implemented as a hashtable.

The hashTable stores entries of Memory Record type. Presented below is Memory Record

data structure.

typedef struct{

Address adr;

short ids[NUMBEROFPROCS];

}MemRecord;

For each address, an array of ids is kept. Each id represents a cache. If, for example,

the address is cached in remote cache on node 2, then ids[2] is set to 1 to indicate that fact.

Loadl, Reconcile, Storel and Commit operations of integrated Cache protocol are pre-

sented below.

4.9 Reconcile

Interface: void Reconcile ()

According to the specifications, of CRF model if the protocol under which the address

is cached is Writer-Push, then the Reconcile command should simply return. However, in

the case of the Base protocol the purpose of the Reconcile command is to purge the data

out of cache.

In order to make the implementation simpler the reconcile command simply returns

for all cases. Since a Reconcile instruction is always followed by a Loadl instruction, in

order to Get the data the purging capabilities have been directly incorporated into Loadl

routine for the Base protocol. By doing so, the correctness of the CRF model has been pre-

served and the implementation has become simpler.

40



4.10 Loadl

Interface: Tag Loadl (Address adr, size_t size, ProtocolType ptype)

Depending on the protocol type, which is determined for an address by determinePro-

tocolType procedure and passed to Loadl as a parameter ptype, Loadl performs the follow-

ing actions:

1. If ptype is Base

First, Loadl routine checks whether the address is cached. If it is not cached, the rou-

tine makes a new entry for the address in the cache table, sets the state of the address to

CachePending state, and sets the address's protocol type to Base. The Loadl instruction

then injects a request to get the data into the network. In order to inject the message, the

underlying basic communication mechanism is used. The Loadl instruction returns the tag

that corresponds to the id of the injected request.

If Loadl found that the address is cached and current status of the address is CleanB,

then the value for the address in the cache might be stale, and the most current value must

be fetched from the memory. For this purpose, Loadl sets the state of the address to Cache

Pending and injects a request for the data into the network. The tag associated with the

request is returned.

However, if Loadl found that the address is cached and the current state of the address

is CleanW (meaning that the current entry is clean and the associated protocol with the

address was WriterPush), then the following actions happen next:

If the address resides on the local processor, then the local cache's id is deleted from

memory directory for the memory directory entry corresponding to the address. This is

done because the address is now associated with a new protocol. The value that was asso-

ciated with the address is left unchanged, however. The state for the address is CleanW

and meaning that both cache and memory have the most current values for the address,

and there is no need to retrieve the value from the memory. Now, the state for the address

is simply updated from CleanW to CleanB.

41



If the address is remote, then updating the memory directory is more complicated. The

memory directory for the remote address is located on the remote processor on which the

address resides in memory. To delete the local cache id from that remote memory direc-

tory, the Loadl routine injects a special Memory Purge Request message into the network.

Once this is done, the Loadl routine sets the address's state to CachePending and returns

the tag associated with the injected message.

2. If plype is equal to WriterPush

Loadl checks whether the address is cached. If not the steps identical to described for

case 1 are taken. The only difference is that the protocol type for the address is set to Writ-

erPush instead of Base. The same actions also happen in case the address is cached and the

state associated with the address is CleanB.

However, if the address is cached and the associated state with the address is ClearW,

then nothing happens, and routine merely returns.

4.11 Storel

Interface: void Storel (Address adr, unsigned long datum, sizet size)

Storel routine checks whether the address is already cached. If the address is not

cached, then the routine adds a new entry into the cache and initializes it by storing the

value and its address into the entry data structure. Storel changes the cell's state to Dirty

and exits.

If the address is already cached, then the value gets updated, and the state for the cell is

changed to Dirty.

4.12 Commit

Interface: void Commitl(Address adr,unsigned long datum,sizet size,

ProtocolType ptype)

42



Commit always operates on addresses with associated states equal to Dirty. Depending

on the protocol type, which is determined for an address by determineProtocolType proce-

dure and passed to Storel as a parameter ptype, Storel performs the following actions:

1. If ptype is equal to Base the following actions happen:

If address is local, then the routine deletes the address from the local memory direc-

tory (if there is an entry for the address there). If the address is not cached in other remote

caches (this can be determined by checking the ids array values that correspond to address

entry in memory directory), the routine operation writes data to local memory, sets the

state of the address to CleanB and exits. However, if the address is, in fact, cached in other

remote caches then the routine needs to delete those values from other caches. To do this,

the routine injects a special Purge Message request into the network. Then, the routine sets

the state for the address to WbPending, writes the data to the local memory and exits.

If address is remote, then the routine sets the state to WbPending and calls an auxiliary

routine called addMsgWb, which will send the message to the remote node and will take

care of all the structures' updates.

2. If plype is equal to WriterPush, then the following sequence of actions takes place:

If the address is local, then the routine updates the local memory directory. By looking

into the local memory directory, the routine also determines whether the address is cached

in remote caches, and, if it is then the routine calls the addMsgUpdateRequest routine.

The purpose of that routine is to send update messages to the nodes in which the address is

cached. Please note that the memory directory will list only the caches in which the

address is cached under the WriterPush protocol. If the same address is cached somewhere

under Base protocol, this cache address is not reflected in the memory directory for the

address. In case the addMsgUpdateRequest is invoked, the Commit routine sets the state

for the address to WbPending, writes the data to local memory and returns.

If the address is not cached in remote caches then, the routine writes the data to mem-

ory, sets the state to CleanW and exits.

43



In case the address is remote, the routine sets the state to WbPending and calls an aux-

iliary routine addMsgWb, which will send the message to the remote node and will take

care of the updates to all structures.

Described next are the modifications that were made to routines that process mes-

sages: processElementnord and processElementrd routines.

4.13 Modifications to processElementrd

The routine was appended to process the messages of the following types:

PURGEREQUEST, UPDATEREQUEST, PURGEMEMGETREQUEST.

The purpose of these messages is to update the structures on remote nodes, since the

local node can not directly operate on other nodes structures and memories. These type of

messages are sent to remote nodes, where they are retrieved by the service routine and

given to proccessElementrd routine to be processed and executed. The

processElementrd routine processes these messages and updates the local memory, mem-

ory directory and cache as needed. Once that is done the routine generates a corresponding

response and sends it to the node from where the request has arrived.

For UPDATEREQUEST the routine updates the cache entry for address with a new

value and sends a response message back. Such type of requests are sent by Commit rou-

tines for addresses that operate under WriterPush protocol.

For PURGEREQUEST type of messages the routine deletes the entry for the address

from cache and sends a PURGERESPOND message back.

The PURGEMEMGETREQUEST type of messages are sent by node that wants to

delete its local cache id for the address(which is remote) from remote memory directory.

44



The processElementrd routine deletes the indicated cache id for an address from memory

directory and sends back the PURGE_MEMGETRESPOND message.

4.14 Modifications to processElementnord

Analogical modifications have been made to processElementnord routine. The rou-

tine was appended to process messages(responses) of the following types:

PURGERESPOND, UPDATERESPOND, PURGEMEMGETRESPOND. Once the

responses have arrived the processElementnord routine sets the state for address in local

cache to be either ClearB or ClearW depending on the protocol type.

Described next is determineProtocolType procedure - a procedure that determines

which protocol to use for a particular address.

4.15 determineProtocol Routine

Cachet implements the dynamical switching from one protocol to another for an

address. The determineProtocol routine represents the routine that determines whether to

switch to a different protocol or not. Each time the Get or Put routine is executed the

determinerProtocol routine is called. The routine calculates the number of Get opera-

tions that are uninterrupted by PUTs and the number of Put operations that are uninter-

rupted by GETs for the address. For the address under the Base protocol the moment the

number of uninterrupted Gets exceeds NUMBEROFLOADSTOSWITCH value the

protocol is changed to WriterPush. Similarly for the address that is operated on under

WriterPush Protocol: the moment the determine protocol calculates the number of uninter-

rupted Puts exceeds the NUMBEROFSTORESTOSWITCH value the WriterPush

protocol is substituted by Base. The explanation for this is that if there are plenty of loads,

then the address better off to be operated under WriterPush protocol and if there are lots of

Puts the program better off to switch to Base protocol. By employing the described amor-

tized scheme the determineProtocol routine dynamically determines which protocol to

pick.

45



The two parameters of the routine: NUMBEROFLOADSTOSWITCH and

NUMBEROFSTORESTOSWITCH can be changed. By doing this the performance

may be fine-tuned for a particular range of applications.

4.16 Results

The benchmark suite consists of three programs: Heat-Transfer Program, BaseSimul

and BaseWriterSimul programs. The code of those programs is given in Apendix A.

In order to see the advantage of the run-time library enhanced with Cachet the perfor-

mance of the benchmark suite was measured on a system with the communication library

enhanced with only Base coherency protocol, on a system with the communication library

enhanced with only Writer coherency protocol, and finally on a system with the communi-

cation library enhanced with Cachet (the integrated protocol).

4.16.1 Heat-transfer Program

The first test was performed on Heat-transfer program.

numOfIters with Base with Writer with Base and Writer

10 3 secs 121667 usecs 0 secs 508333 usecs 0 secs 910833 usecs

100 27 secs 937500 usecs 3 secs 58335 usecs 3secs 464833 usecs

200 56 secs 151666 usecs 5 secs 850000 usecs 6 secs 188334 usecs

300 85 secs 325833 usecs 8 secs 678333 usecs 9 secs 65834 usecs

500 142secs 606667usecs 14 secs 514166 usecs 14 secs 633334 usecs

800 226secs 455833usecs 22 secs 690833 usecs 22 secs 989167 usecs

The Heat-transfer program does a lot of loads and relatively few writes. The Writer-

Push protocol exploits this. The most perfect protocol for this program as can be seen from

the data is WriterPush. The Base protocol loses a lot on each iteration. The integrated

Cachet is very close in performance to WriterPush and as the number of iterations increase

the performance gets closer to WriterPush performance.

46



4.16.2 BaseSimul Program(Simulates Typical Base

Behaviour)

The BaseSimul program does a lot of store and few loads. As can be seen from the

results below Base is a perfect protocol for it. The integrated Cachet protocol exhibits very

good results as well and very close to performance of Base protocol.

numOfIters with Base with Writer with Base and Writer

10 0 secs 540000 usecs 0 secs 562500 usecs 0 secs 540033 usecs

20 1 secs 65123 usecs 1 secs 81667 usecs 1 secs 65756 usecs

30 1 secs 556667 usecs 1 secs 605833 usecs 1 secs 557241 usecs

40 2 secs 119167 usecs 2 secs 334167 usecs 2 secs 120345 usecs

4.16.3 BaseWriterSimul Program

The BaseWriteSimul program changes the behaiviour in a cyclic fashion. It first does a

lot of reads, then does a lot of writes, then repeats. The memory access pattern of this pro-

gram periodically changes. As we can see from the results the integrated Cachet (with

Base and Writer) cache-coherency protocol produces best results due to its ability to

switch from one protocol to another as the memory access changes.

numOfIters with Base with Writer with Base and Writer

10 0 secs 446667 usecs 0 secs 415000 usecs 0 secs 420000 usecs

20 0 secs 826667 usecs 0 secs 815833 usecs 0 secs 800523 usecs

30 1 secs 260000 usecs 1 secs 224167 usecs 1 secs 210084 usecs

40 1 secs 659167 usecs 1 secs 662500 usecs 1 secs 570000 usecs

50 2 secs 24166 usecs 1 secs 930000 usecs 2 secs 19166 usecs

47



Chapter 5

Conclusions and Future research

5.1 Conclusions

The paper presented the design of the basic communication run-time library for the UPC

language. In particular the implementations of Get, Put and Barrier operations were

shown. The design was implemented on top of Memory Channel hardware. This hardware

provides the participating nodes with a shared global space via which the communication

was accomplished.

The implementation of Cachet, an adaptive cache coherence protocol, using the basic

communication layer was also described. This is the first actual implementation of Cachet

and this paper served as a case study for it. The two of three micro-protocols for integrated

Cachet protocol: Cachet-Base and Cachet-WriterPush were implemented. Using Cachet to

optimize the performance of the basic communication layer resulted in improvements of

performance up to an order of magnitude. Cachet proved to be a highly efficient adaptive

cache coherence protocol and could be used as an optimization to other communication

libraries.

Also the results showed that Memory Channel is a reasonable alternative to other exit-

ing interconnect hardware. Now the UPC language is implemented with Cachet coherency

scheme and supports the Memory Channel interconnect that provides high bandwidth

transfer.

5.2 Directions for Future Work

This section gives directions for future work on optimizing the communication run-

time library. The following optimizations are suggested to be implemented: Cachet-

48



Migratory, Communication Movement, Communication Combination and Calculation

Combination. The ideas behind these optimizations are briefly discussed next.

5.2.1 Cachet-Migratory

Due to lack of time only two out of three micro-protocols have been implemented for

Cachet. The next step to improve the performance is to implement the third micro-proto-

col for Cachet: Cachet-Migratory. This micro-protocol gives a further gain in performance

when an address is exclusively accessed by one processor for a reasonable period of time.

It is reasonable to give the cache the exclusive ownership so that all instructions on the

address become local operations.

5.2.2 Communication Movement

The goal of Communication movement is to move the reads earlier in the program.

Moving remote reads earlier has several advantages. Because the remote operations are

split-phase, by issuing the remote reads as early as possible would allow communication

to overlap with the computation that follows the read. By moving the remote reads we can

expose some possibilities for discovering redundant communication or opportunities for

blocked communication i.e. moving several remote reads together.

Another goal of this optimization is to move remote writes. However, in this case, we

have two conflicting goals. If we move remote writes earlier we can overlap communica-

tion and computation more, however moving remote writes later may expose the possibil-

ities for pipelining or blocking. There is a very fine balance whether to move remote

writes earlier or later.

5.2.3 Communication Combination

Several messages that are bound to the same processor may be combined into a single,

larger message. This way we can reduce the number of messages sent, and thus reduce the

overall start-up overhead. UPC currently provides a blocked communication mechanism.

49



However, it has a limited use due to the fact that the block should be continuous. The API

for blocked communication for UPC is the following: Tag GetBlock(pointer, long

numer-of-bytes)

The block of the length number-of-bytes is fetched from a remote location specified

by pointer. This mechanism is useful for continuous blocks of data. However, the facility

to combine several requests to fetch a data from a remote processor into one blocked

request would be of great use. Such mechanism currently exists for many parallel lan-

guages including the standard of parallel communication MPI (gather, scatter). By intro-

ducing such mechanism we can further optimize the UPC programs due to the fact that we

save a lot on the overheads of injecting and receiving several messages versus only one.

5.2.4 Calculation Movement

If the processor P1 does some calculation N = A + B + C, where A, B and C are

remote values and are stored at processor P2, N is stored at local processor P1. The naive

implementation would require three remote fetches from processor P2. However, the

whole calculation can be moved to processor P1 and then only one remote write is

required instead of three remote reads. Thus, an analysis can be performed and moving

certain calculations to other processors can optimize a program.

50



Appendix A

A.1 Get Module

#include "upc.h"
#include "lock api.h"
#include "pointerapi.h"
#include "buffapi .h"
#include "cache.h"

/* function prototypes*/
void service(int tyoe, int procId);
Tag get(pointer pntr,int type);
unsigned long Loadl(Address,size-t,ProtocolType);
void Reconcile);
unsigned long addMsgCacheReq(_UPCRTSSHAREDPOINTER_ TYPE,sizet,ProtocolType);
unsigned long addMsgPurgeMemGetRequest(Address pointer,unsigned long datum);

_UPCRTScontexttag _UPCRTSGetBytes(_UPCRTSSHAREDPOINTERTYPE adr,sizet size)

unsigned long tg;
ProtocolType ptype;

/*Determine the type of Protocol to use and update Adr.access Record*/
ptype=determineProtocolType(adr,Load);

Reconcile();
tg=Loadl(adr,size,ptype);
return tg;

unsigned long Loadl(Address adr,sizet size,ProtocolType ptype)

int index;
CacheState state;
ValueType type;
unsigned long tg;
CacheRecord *rec;

rec=cachefindRecord(adr);

/* 1. Case 1 */
if(ptype==Base)

/* 1.a is not in a cache */
if (rec==NULL)

shaddressloadl=adr;
sh-ptype=Base;
type=sizeToValueType(size);
cache addRecord(adr,type,1,CachePending);
tg=addMsgCacheReq(adr,size,Base);
return tg;

else

/* 2. state== Clean or Dirty*/
state=rec->state;
if((state==CleanW)|I(state==Dirty))

51



if(adr.thread==MYTHREAD)

/* Case 1: adr is local */
cachesetState(adr,CleanB);
memdeleteId(adr,MYTHREAD);
shvalueloadl=rec->value;
return SHTAGLOADL;

else

{
/* Case 2: adr is remote */
cachesetState(adr,CachePending);
/* now we need to delete id from remote memory */
tg=addMsgPurgeMemGetRequest(adr,rec->value);
return tg;

I}

if(state==CleanB)

{
shaddressloadl=adr;
sh-ptype=Base;
cache-setRecord(adr,CachePending);
tg=addMsgCacheReq(adr,size,Base);
return tg;

}

/* 2. Case 2 */
if (ptype==Writer)

{
/* 1.a is not in a cache */
if (rec==NULL)

shaddressloadl=adr;
sh-ptype=Writer;
type=sizeToValueType(size);
cacheaddRecord(adr,type,l,CachePending);
tg=addMsgCacheReq(adr,size,ptype);
return tg;

else

/* 2. state== Clean or Dirty*/
state=rec->state;
if((state==CleanW)||(state==Dirty))

shvalueloadl=rec->value;
return SHTAGLOADL;

}
if(state==CleanB)

shaddressloadl=adr;
sh-ptype=Writer;
cachesetState(adr,CachePending);
tg=addMsgCacheReq(adr,size,ptype);
return tg;

I}

52



void Reconcile()

{return;}

unsigned long addMsgCacheReq(_UPCRTSSHAREDPOINTERTYPE pointer,size t size,

ProtocolType ptype)

int procId;

localpointer lp;
Tag tagg;

int type;

procId = pointer.thread;
lp = (unsigned char *)pointer.va;

/* shortcut case MYTHREAD==procId ***********************************/

if (MYTHREAD==procId)

switch((int)size)

{
case 1:
shortcutvalue= *lp;
break;

case 2:

shortcutvalue= *((unsigned short *)lp);

break;
case 4:

shortcutvalue= *((unsigned int *)lp);

break;
case 8:

shortcut-value= *((unsigned long *)lp);

break;
default

printf("get.c:l: size is incorrect\n");

break;

if(ptype==Writer)

mem-addId (pointer, MYTHREAD);

return SHORTCUTTAG;

}
/ *** ******* *** ****************************************************/

switch((int)size)

case 1:
type=GETONEBYTE_REQUEST;

break;

case 2:

type=GETTWOBYTE_REQUEST;

break;

case 4:

type=GET_FOURBYTEREQUEST;

break;
case 8:
type=GETEIGHTBYTEREQUEST;

break;

default:

printf("error::get.c::size is

exit(-1);

/* first call serviceFunc */

service (FUNC, procId);

unknown\n");

53



getLockFullTestrd(procId,MYTHREAD,5);

tagg = acquireGetTag);
assert(tagg!=O);
assert(addElement-rd(procId, MYTHREAD)== 1);

setType-rd(procId,MYTHREAD,type);

setTagrd(procId,MYTHREAD,tagg);

setAddressFrom-rd(procId,MYTHREAD,lp);

setPtype-rd(procId,MYTHREAD,ptype);

releaseLock_rd(procId,MYTHREAD);

return (unsigned long) tagg;

unsigned long addMsgPurgeMemGetRequest(Address pointer,unsigned long datum)

/* Effects: should purge id=MYTHREAD for pointer from remote Memory */

localpointer lp;

Tag tagg;

lp = (unsigned char *)pointer.va;
service(FUNC,procId);

getLockFullTest-rd(procId,MYTHREAD,5);

tagg = acquireGetTag();
assert(tagg!=O);

assert(addElement-rd(procId, MYTHREAD)== 1);

setType-rd (procId, MYTHREAD, PURGEMEMGETREQUEST);
setDatum-rd(procId,MYTHREAD,datum);

setTagrd(procId,MYTHREAD,tagg);

setAddressFromrd (procId, MYTHREAD, lp);
releaseLockrd(procId,MYTHREAD);

return (unsigned long) tagg;

}

unsigned long gethlp(_UPCRTScontext-tag t)

Tag tagg;

Address adr;

unsigned long datum;

CacheState state;

tagg=(int*)t;

/*1.Case 1*/
if (t==SHORTCUTTAG)

{
datum=shortcutvalue;

adr = shaddressloadl;
cachesetValue(adr,datum,l);

state= (sh-ptype==Writer) ?CleanW:CleanB;

cache setState(adr,state);

return datum;

/*2.Case 2*/

if (t==SHTAGLOADL)

return shvalueloadl;

/*3.Case 3*/

while(isGetTagoutstanding(tagg))

/* wait */;
datum = retrieveGetDatum(tagg);
deleteGetTag(tagg);

/* sanity check */
state=cache_getState(shaddressloadl);

54



assert((state==CleanB)II(state==CleanW));

return datum;

/ ************************************************************************** ***

unsigned long _UPCRTS_GetSyncInteger(_UPCRTScontext_tag t)
{ return gethlp(t);}

float _UPCRTSGetSyncFloat(_UPCRTS context tag t)

unsigned long datum=gethlp(t);

return *((float*)&datum);}

double _UPCRTSGetSyncDouble(_UPCRTScontext-tag t)
{unsigned long datum=gethlp(t);

return *((double*)&datum);}

void _UPCRTSGetBlockSync(_UPCRTScontexttag t)

Tag tagg= (int*) t;

if (t==SHORTCUTTAG)

return;

while(isGetTagOutstanding(tagg))

/* wait */;
deleteGetTag(tagg);

return;

void _UPCRTSGetAllSync()

{
while(areGetTagsOutstanding()

/* wait */;
deleteArrivedTags(getTagBuffer);

/ ************************************************************************* * *

_UPCRTS-contexttag _UPCRTSGetBlock(_UPCRTSSHAREDPOINTERTYPE addr from,

void *address to,sizet block-size)

int procId;
localpointer address_from;

Tag tagg;

int status;

procId = addrfrom.thread;
addressfrom = (unsigned char *)addr_from.va;

/* this is a shortcut in case procId==MYTHREAD */
if (procId==MYTHREAD)

{
int preverr;
do {

preverr = imc-rderrcnt-mr(0);

imc-bcopy(addressfrom,addressto,block size,1,0);
} while ((status = imc-ckerrcnt-mr(&prev-err,0)) != IMCSUCCESS);
return SHORTCUTTAG;

/ *** ***************************/

/* first call service Func */

service(FUNC,procId);

55



getLockFullTest-rd(procId,MYTHREAD, 6);

tagg = acquireGetTag);
assert(tagg!=O);

assert(addElement-rd(procId,MYTHREAD)== 1);

setType-rd(procId,MYTHREAD, GETBLOCKREQUEST);

setTagrd(procId,MYTHREAD,tagg);

setAddressTord(procId,MYTHREAD,addressto);

setAddressFrom-rd(procId,MYTHREAD,address from);

setBlockSizerd(procId,MYTHREAD,block size)

releaseLock-rd(procId,MYTHREAD);

return (unsigned long)tagg;

/ ******************************************************************/

ValueType sizeToValueType(size-t size)

switch((int)size)

case 1:
return OneByte;

case 2:
return TwoByte;

case 4:
return FourByte;

case 8:
return EightByte;

default:
printf ("\nerror: :get.c: :sizeToValueType:
exit(-1);

:no such size=%d\n",size);

ProtocolType determineProtocolType(Address Adr,AccessType accessType)

/* Effects: l.determines protocol to use i.e returns
* either Writer or Base
* 2.updates count of load for adr
*/

/* Idea if there is "k" Loads in a row and protocol Base
* then swithc to Writer

* If there are "k" Stores and protocol is Writer then

* switch to Base
*/

ProtocolType ptype;

ptype = getPtype(adr);

if (ptype==UNASSIGNED)

/* adr is not in the database=> set it up */
setUpDefault(adr);

/* If Writer Protocol ***/

if(ptype==Writer)

if(accessType==Load)

setNumberStoresToZero(adr);
return Writer;

56

}



else

/* i.e accessType=Store */
increaseNumberStores(adr);
if(getNumberStores(adr)==NUMSTORESTOSWITCH)

setNumberLoadsToZero(adr);
return Base;

}

/* If Base Protocol ***/

if(ptype==Base)

if(accessType==Store)

{
setNumberLoadsToZero(adr);
return Base;

else

/* i.e accessType=Load */
increaseNumberLoads(adr);
if (getNumberLoads (adr)==NUMLOADSTOSWITCH)

setNumberStoresToZero(adr);
return Writer;

}

57



A.2 Put Module
/*

* put.c:: implements the user interface for upc put* procedures
*/

#include "upc.h"
#include "buff-api.h"
#include "pointer-api.h"
#include "lock-api.h"
#include "cache.h"

#define boolean int
#define true 1
#define false 0

/* functions prototypes*/
void service(int type, int procId);
TimesDiff * getTimesDiff(long block-size);
ValueType sizeToValueType(sizet size);
int getOtherThreadId(int mythread);
void Storel(Address adr, unsigned long datum, size-t size);
void Commitl(Address adr,unsigned long datum,sizet size);
int getOtherThreadId(int mythread);
void mem-addId(Address adr,int id);
int memrisIdIn(Address adr,int id);
void mem-deleteId(Address adr,int id);
void addMsgWb(_UPCRTSSHAREDPOINTERTYPE,unsigned long, sizet, ProtocolType);
void put(_UPCRTSSHAREDPOINTERTYPE ,unsigned long,int,ProtocolType);
void addMsgPurgeRequest(Address adr,ProtocolType);
void addMsgUpdateRequest(Address,unsigned long,ProtocolType);
void writeDataLocalMemory(Address,unsigned long,size-t);
int getOtherThreadId(int);
ProtocolType determineProtocolType(Address,AcessType);

void Storel(Address adr, unsigned long datum, sizet size)

CacheRecord *rec;
CacheState state;
ValueType type;

rec = (CacheRecord *) cachefindRecord(adr);

if (rec==NULL)
{/*2. a is not in a cache */
type = sizeToValueType(size);
cacheaddRecord(adr,type,datum,Dirty);

else
/*1. a is in cache */
state=cache-getState(adr);
if((state==CleanB)II(state==CleanW)II(state==Dirty))

cache setState(adr,Dirty);
type = sizeToValueType(size);
cache setValue(adr,datum,type);

else
exit(-1);

return;

}

58



void Commitl(Address adr,unsigned long datum,sizet size,ProtocolType ptype)

CacheState state;
int otherThreadId;

state=cachegetState(adr);

if(ptype==Base)

if(state==Dirty)

/*** if address is local */
if (adr.thread==MYTHREAD)

mem-deleteId(adr,MYTHREAD);
otherThreadId=getotherThreadId(MYTHREAD);
if(memisIdIn(adr,otherThreadId))

{
memdeleteId(adr,otherThreadId);
/* to kick it out of other cache */
cachesetState(adr,WbPending);
/* now we need to write data to physical memory */
writeDataLocalMemory(adr,datum,size);
addMsgPurgeRequest(adr,ptype);
return;

else

/* now we need to write data to physical memory */
writeDataLocalMemory(adr,datum,size);
cachesetState(adr,CleanB);
return;

else

{
/*** if address is remote */

cache-setState(adr,WbPending);
addMsgWb(adr,datum,size,ptype);
return;

else

/* other cases: for now ignore them */
exit(-1);

I}

if(ptype==Writer)

{
if(state==Dirty)

/*** if address is local */
if (adr.thread==MYTHREAD)

mem-addId (adr, MYTHREAD);
otherThreadId=getOtherThreadId(MYTHREAD);

if(memisIdIn(adr,otherThreadId))

/* now we need to write data to physical memory */
writeDataLocalMemory(adr,datum,size);

59



else

/* update the other cache */
cachesetState(adr,WbPending);
addMsgUpdateRequest (adr, datum, ptype);
return;

/* now we need to write data to physical memory */
writeDataLocalMemory(adr,datum,size);
cachesetState(adr,CleanW);
return;

I}

else

/*** if address is remote */
cache setState(adr,WbPending);
addMsgWb(adr,datum,size,ptype);
return;

else

/* other cases: for now ignore them */
exit(-1);

/ *****************************************************************************/

void addMsgUpdateRequest (Address adr,unsigned long datum, ProtocolType ptype)

/* we mask this message as Put msg.This way PutallSync will detect it */
put(adr,datum,UPDATEREQUEST,ptype);

}

void addMsgPurgeRequest(Address adr,ProtocolType ptype)

/* we mask this message as Put msg.This way PutallSync will detect it */
put(adr,0,PURGEREQUEST,ptype);

void addMsgWb(_UPCRTS_SHAREDPOINTERTYPE pntr,unsigned long datum,
size-t size,ProtocolType ptype)

int type;

switch((int)size)

f
case 1:
type=PUTONEBYTEREQUEST;
break;

case 2:
type=PUTTWOBYTEREQUEST;
break;

case 4:
type=PUTFOURBYTEREQUEST;
break;

case 8:
type=PUTEIGHTBYTEREQUEST;
break;

default:
printf("error: :put.c: :size is unknown\n");
exit(-1);

put(pntr,datum,type,ptype);

60

}

{

}



/ *****************************************************************************/

void _UPCRTSPutInteger(_UPCRTSSHAREDPOINTERTYPE pntr,

unsigned long datum,size-t size)

ProtocolType ptype;

/*Determine the type of Protocol to use and update Adr.access Record*/
ptype=determineProtocolType(pntr,Store);

Storel(pntr,datum,size);

Commitl(pntr,datum,size,ptype);

}

void _UPCRTSPutFloat (_UPCRTSSHAREDPOINTERTYPE pntr, float datum)

unsigned long dt;

ProtocolType ptype;

/*Determine the type of Protocol to use and update Adr.access Record*/
ptype=determineProtocolType(pntr,Store);

dt=*((unsigned long *)&datum);

Storel(pntr,dt,4);

Commitl(pntr,dt,4,ptype);

}

void _UPCRTSPutDouble(_UPCRTS_SHAREDPOINTERTYPE pntr,double datum)
{
unsigned long dt;

ProtocolType ptype;

/*Determine the type of Protocol to use and update Adr.access Record*/
ptype=determineProtocolType(pntr,Store);

dt=*((unsigned long *)&datum);

Storel(pntr,dt,8);

Commitl(pntr,dt,8,ptype);

/ ******************* ****************************************

void put(_UPCRTSSHAREDPOINTERTYPE pntr,unsigned long datum,

int request-type,ProtocolType ptype)
{

int procId;

local-pointer lp;

Tag tagg;

procId = pntr.thread;
if ( (request-type==PURGEREQUEST) |(UPDATE-REQUEST))
procId=getOtherThreadId(MYTHREAD);

lp = (unsigned char *)pntr.va;

/* first call service function */
service(FUNC,procId);

getLockFullTest-rd(procId,MYTHREAD,7);

tagg = acquirePutTag);

assert(tagg!=O); /*special case */

assert(addElement-rd(procId,MYTHREAD)==l);

61



setTyperd(procId, MYTHREAD,requesttype);
setPtype-rd(procId, MYTHREAD,ptype);

setTagrd(procId,MYTHREAD, tagg);

setAddressTord(procId,MYTHREAD,lp);

setDatumrd(procId,MYTHREAD,datum);

releaseLock-rd(procId,MYTHREAD);

/ *****************************************************************************/

void _UPCRTSPutAllSync(void)

while(arePutTagsOutstanding()

/* wait */;
deleteArrivedTags(putTagBuffer);

/ *****************************************************************************/

_UPCRTS-contexttag _UPCRTSPutBlock(_UPCRTSSHAREDPOINTERTYPE addressto,

void *addressfrom,

sizet blocksize)

local-pointer address-from = (local-pointer) addressfrom;
localpointer address-to,address-to-pntr,addressfrom-pntr;
int status = 0;

Tag tagg;

TimesDiff *temp;

int procId, i, offset, times, times-rd, times rd-unch;
int counter,count,countrd;
long diff;
boolean flagrd;

int statusl;

procId = addressto.thread;
addressto = (unsigned char *)addressto.va;

/*** this is a shortcut in case procId==MYTHREAD ****/
if (procId==MYTHREAD)

int preverr;

do {
preverr = imc-rderrcntmr(0);
imc-bcopy(addressfrom,addressto,block size,1,0);

while ((statusl = imc-ckerrcnt-mr(&prev-err,0)) IMCSUCCESS);
return SHORTCUTTAG;

/ *****************************************************/

tagg = acquirePutTag(;
assert(tagg!=0);

temp = getTimesDiff(block size);

times = temp->times;

diff = temp->diff;

timesrdunch = timesrd= (diff==0)?(times-l):times;

/* first call service Func */

service(FUNC,procId);

flag-rd = true;

counter = 0;

62



if (times-rd!=O)

while(flag-rd)

{
getLockFullTestrd(procId,MYTHREAD,8);

countrd= BUFFERSIZE - getCountrd(procId,MYTHREAD);

count = (times rd>count rd)?countrd:timesrd;

for (i=O;i<count;i++)

assert (addElement-rd(procId,MYTHREAD)!=-l);

setTyperd(procId,MYTHREAD, PUTTEMPBLOCKREQUEST);

offset=(i+counter)*BLOCKSIZE; /* zdes' bilo /4 I have no idea why so
I deleted it */

address topntr=addressto+offset;
addressfrom-pntr=addressfrom+offset;
setAddressTo_rd(procId,MYTHREAD,addressto-pntr);

setBlockSize_rd(procId,MYTHREAD,BLOCKSIZE);

setBlock-rd(procId,MYTHREAD,address frompntr,BLOCKSIZE);

timesrd= timesrd-count;

counter = counter+count;
assert(times_rd>-l);

if (times-rd==O)

flagrd= false;

releaseLock-rd(procId,MYTHREAD);

}/* end of while:flag-rd*/

getLockFullTestrd(procId,MYTHREAD,9);

assert(addElement-rd(procId,MYTHREAD)==l);

address topntr =addressto+timesrdunch*BLOCKSIZE;

address-frompntr=address from+times rd unch*BLOCK_SIZE;

setAddressTo-rd(procId,MYTHREAD,addresstopntr);

if (diff>O)

{
setBlockSizerd(procId,MYTHREAD,diff);

setBlock-rd(procId,MYTHREAD,addressfrom-pntr,diff);

else

{
setBlockSize-rd(procId,MYTHREAD,BLOCKSIZE);

setBlock-rd(procId,MYTHREAD,addressfrompntr,BLOCKSIZE);

setType-rd(procId,MYTHREAD, PUTBLOCKREQUEST);
setTag-rd(procId,MYTHREAD,tagg);

releaseLockrd(procId,MYTHREAD);

return (unsigned long)tagg;

/ ********* ** ** **********************************************

void _UPCRTSPutBlockSync(_UPCRTS context_tag t)

{
Tag tagg = (int*)t;

if (t==SHORTCUTTAG)

return;

while(isPutTagOutstanding(tagg))

63



/* wait */;
deletePutTag(tagg);
return;

/ ********************************************************************* ****/

TimesDiff* getTimesDiff(long block-size)

TimesDiff* temp;
long diff = blocksize%BLOCKSIZE;
int times = (block-size - diff)/BLOCK SIZE;
temp = (TimesDiff*)malloc(sizeof(TimesDiff));
temp->times=times;
temp->diff=diff;

return temp;
}
/ **************************************************************************

int getOtherThreadId(int mythread)

if (mythread==O)
return 1;

else return 0;

void writeDataLocalMemory(Address adr,unsigned long datum,sizet size)

int procId;
local-pointer lp;
Tag tagg;

procId = adr.thread;
lp = (unsigned char *)adr.va;

/* to account for local put *******************************************/

if(MYTHREAD==procId)

{
switch((int)size)

case 1:
*((unsigned char *)lp) = *((unsigned char *)&datum);
break;

case 2:
*((unsigned short *)lp) = *((unsigned short *)&datum);
break;

case 4:
*((unsigned int *)lp) = *((unsigned int *)&datum);
break;

case 8:
*((unsigned long *)lp) *((unsigned long *)&datum);
break;

case PUT-FLOATREQUEST:
*((float *)lp) = *((float *)&datum);
break;
case PUTDOUBLEREQUEST:
*((double *)lp) = *((double *)&datum);
break;
*/

default:
printf("errorl::put.c::size is unknown\n");
exit(-1);

return;
}}

64



A.3 Barrier Module

#include "upc.h"

void _UPCRTSBarrier(int value)

static int barrIndex = -1;/* static barrIndex for barArray */

int status;

int barCount, barValue, barError;

barrIndex++;

/* before I acquire a lock let's finish all the communications */

_UPCRTSGetAllSync();

_UPCRTSPutAllSync();

/* acquire lock */

status = imc-lkacquire(lock id-barrier,0,0,IMCLOCKWAIT);

if(status!=IMCSUCCESS)

imc-perror ( "imclkacquire5: ",status);

exit(status);

barCount = global-spacerx->barArray[barrIndex].barCount;
barValue = global-spacerx->barArray[barrIndex].barValue;
barError = global-space-rx->barArray[barrIndex].barError;

if(barError==true)

{
printf("\n barrier.c::exiting ... due to barrier error\n");

exit(-1);

if ((barCount==0)&&(barValue==BARVALUE))

/* set barValue */
do

(globalspacetx->barArray[barrIndex].barValue = value;}

while(global-spacerx->barArray[barrIndex.barValue!= value);

/* set barCount */

do
(global-space-tx->barArray[barrIndex].barCount = 1;}

while(global-space rx->barArray[barrIndex].barCount!= 1);

if( ((barCount!=0)&&(barValue==BARVALUE))II

((barCount==0)&&(barValue!=BARVALUE)))

printf("\n errorl:barrier.c\n");

/* set barError */

do
{global-space-tx->barArray[barrIndex].barError = true;}

while(global-space rx->barArray[barrIndex.barError!=true);

exit(-1);

65



if ((barCount!=O)&&(barValue!=BARVALUE))

/* make sure that barValue corresponds to value */
if (barValue!=value)

printf("\n barrier.c::exiting ...barValue!=value\n");

/* set barError */

do
{global-space-tx->barArray[barrIndex].barError = true;}

while(globalspace_rx->barArray[barrIndex].barError!=true);

exit(-1);

else

barCount++;

do
{global-space-tx->barArray[barrIndex].barCount = barCount;}

while(global-space-rx->barArray[barrIndex].barCount!=barCount);

imclkrelease(lock-id-barrier,O);

/* now let's wait till everything is syncronized */
while (global-space-rx->barArray[barrIndex].barCount!=NUMBEROFPROCS)

/* check for barError */
if (global-space-rx->barArray[barrIndex].barError==true)

{
printf("\n:l: barrier.c::exiting....due to the error flag\n");

exit(-1);

66



A.4 Service Module

#include "upc.h"
#include "lock-api.h"
#include "buff-api .h"

/ ******* ************************************************ *** ************

void service(int flag, int procId-tosend)

/* Effects: should be called before making any get/put request
* procId-tosend is the proc to deposit a new message
*/

int status,count,test;
int slotsemptied;
int nexttofill, next to take;
int queNum, index,countrd,count nord;

/* 1.check whether servicethread is running */

status = getServiceLockNoWait);
if (status == -1)

return;

/* 2.process nord queues */

for (queNum = O;queNum<NUMBEROFPROCS;queNum++)

if (getCount-nord(MYTHREAD, queNum)==O)
continue;

if ((queNum==procId-tosend)&&(flag==FUNC))
getLock-nord(MYTHREAD,queNum, 1);

else
if(getLockNoWaitnord(MYTHREAD,queNum,2)==-l)

continue;
/* otherwise we got the lock */
count = getCount-nord(MYTHREAD,queNum);

for (index=O;index<count;index++)
processElementnord(queNum,index);

resetBuffer nord (queNum);
releaseLock-nord (MYTHREAD, queNum);

/* 3.process rd queues */
f or (queNum = O;queNum<NUMBER OF-PROCS;queNum++)

i f (queNum==MYTHREAD)
continue;

if (getCountrd(MYTHREAD, queNum)==O)
continue;

if (getLockNoWaitnord(queNum,MYTHREAD, 3) ==-l)
continue;

/* otherwise we got the lock */
getLock-rd (MYTHREAD, queNum, 4);

67



countrd = getCountrd(MYTHREAD,queNum);
countnord = BUFFERSIZE - getCount-nord(queNum,MYTHREAD);

count = (countnord>count_rd)?countrd:countnord;
if (count == 0)

releaseLock-rd (MYTHREAD, queNum);

releaseLock-nord (queNum, MYTHREAD);

releaseServiceLock();

return;

}

slotsemptied = 0;
nexttofill = getNextToFillrd(queNum);

nexttotake = getNextToTakerd(queNum);

if(next to take<=(nexttofill-1))

/* 1. [from nexttotake to (next to fill-1)] */

for (index=next_totake;index<next to fill;index++)

if(processElementrd(queNum,index)!=-l)

slotsemptied++;

if(next to take>(next-to-fill-1))

/* 1. [next-to take to (BUFFERSIZE-1)] */
for (index=next_totake;index<BUFFERSIZE;index++)

if(processElementrd(queNum,index)!=-l)

slotsemptied++;

/* 2. [0 to (nexttofill-1) */

for (index=0;index<nexttofill;index++)

if(processElementrd(queNum,index)!=-l)

slotsemptied++;

deleteSlotsBuffer-rd(queNum,slots-emptied);

releaseLock-rd(MYTHREAD,queNum);

releaseLock-nord (queNum, MYTHREAD);

releaseServiceLock();}

68



A.5 ProcessElement Module

#include "upc.h"
#include "buff-api.h"

/* function prototypes */
void setData(tag tg,unsigned long datum,ValueType type,int idfrom);

void memaddId(Address adr,int idfrom);
cachesetState(Address adr,CacheState Clean);

/ ****************************************************************************/

int processElement-nord(int queNum, int index)

ValueType vltype;

Address adr;

ProtocolType ptype;

CacheState state;

element* el=&(global-space-rx->queues[MYTHREAD][queNum].nord.elements[index]);

switch (el->type) {

case PURGERESPOND:

getPthreadLock();
setStatusArrivednopthreadlock(putTagBuffer,el->tagg);

deletePutTag-nopthreadlock(el->tagg);

adr.va=el->addressto;
ptype=el->ptype;

releasePthreadLock();
adr.thread=MYTHREAD;

state=((ptype==CleanB)? CleanB : CleanW);

cachesetState(adr,state);
break;

case UPDATERESPOND:

getPthreadLock();

setStatusArrived-nopthreadlock(putTagBuffer,el->tagg);

deletePutTagnopthreadlock(el->tagg);

adr.va=el->addressto;
ptype=el->ptype;

releasePthreadLock();

adr.thread=MYTHREAD;

state=((ptype==CleanB)? CleanB : CleanW);

cachesetState(adr,state);

break;

case PURGEMEMGETRESPOND:

otherthread=getOtherThreadId(MYTHREAD);

adr.thread=otherthread;

adr.va=(unsigned long)el->addressjfrom;

cachesetState(adr,CacheB);
setGetDatum(el->tagg,el->datum);

setStatusArrived(getTagBuffer,el->tagg);

break;

case PUTONEBYTERESPOND:

case PUTTWOBYTERESPOND:

case PUTFOURBYTERESPOND:

case PUTEIGHTBYTERESPOND:

case PUTFLOATRESPOND:

case PUTDOUBLERESPOND:

69



getPthreadLock();

setStatusArrived-nopthreadlock(putTagBuffer,el->tagg);

deletePutTagnopthreadlock(el->tagg);

/* Wb acknoweldement - need to update cache*/
adr.va=(char *) el->address_to;
ptype=el->ptype;

releasePthreadLock();
adr.thread =queNum;

state=((ptype==CleanB) ? CleanB : CleanW);

cachesetState(adr,state);
break;

case PUTBLOCKRESPOND:

setStatusArrived(putTagBuffer,el->tagg);

break;

case GETONEBYTERESPOND:

setData(el->tagg, el->datum,OneByte,queNum);

break;

case GETTWOBYTERESPOND:

setData(el->tagg,el->datum,TwoByte,queNum);

break;

case GETFOURBYTERESPOND:

setData (el->tagg, el->datum, FourByte, queNum);

break;

case GETEIGHTBYTERESPOND:

setData(el->tagg,el->datum,EightByte,queNum);

break;

case GETTEMPBLOCKRESPOND:

getBlock-nord(queNum, index);

break;

case GETBLOCKRESPOND:

getBlock-nord(queNum, index);

setStatusArrived(getTagBuffer,el->tagg);

break;

/ *****************************************************************************/

void setData(tag tg,unsigned long datum,ValueType type,int idfrom)

{
Address adr;

int status;

CacheState state;

/* update cache */
adr = shaddress-loadl;
cachesetValue(adr,datum,type);

state=((sh-ptype==Base) ? CleanB:CleanW);

cache setState(adr,state);

/* the regular operation */
setGetDatum(tg,datum);

setStatusArrived(getTagBuffer,tg);

#include "upc.h"

#include "buff-api.h"
#include "cache.h"

70



/* function prototypes*/
TimesDiff *getTimesDiff(long size);
void updateMemAndCache(localpointer, ProtocolType, unsigned long);
void updateMem-get(local-pointer addressfrom)

/ *****************************************************************************/

int processElement-rd(int queNum, int index)

/* Effects: returns -1 in case there were not enough slots in nord to fit
* the block message

*/

/* NOTE: All locks needed should already be received by that point */

int times;
unsigned long datum;
TimesDiff *temp;
local-pointer address-from,addressto,address-fromptr,address-to-ptr;
Tag tagg;
int slotsNum, i, offset;
long size,diff;
unsigned long temp_datum;
CacheRecord *rec;
Address adr;
int otherthread;
ProtocolType ptype;

element* el=&(global-space-rx->queues[MYTHREAD)[queNum].rd.elements[index]);

que* rx =&(global-space-rx->queues[queNum][MYTHREAD).rd);
que* tx =&(global-space-tx->queues[queNum][MYTHREAD.rd);

slotsNum = BUFFERSIZE - getCount-nord(queNum,MYTHREAD);
if (slotsNum==O)

return -1;

switch (el->type)

case PURGEREQUEST:
otherthread=getOtherThreadId(MYTHREAD);
adr.thread=otherthread;
adr.va=(unsigned long)el->address-to;
if(el->ptype==Base)
cachedeleteRecord(adr);

assert (addElementnord(queNum,MYTHREAD)!=-1);
setType-nord(queNum, MYTHREAD,PURGERESPOND);
setPtype-nord(queNum, MYTHREAD,el->ptype);
setAddressTo-nord(queNum, MYTHREAD,el->address-to);
setTagnord(queNum, MYTHREAD,el->tagg);
return 0;

case UPDATE_REQUEST:
other-thread=getOtherThreadId(MYTHREAD);
adr.thread=otherthread;
adr.va=(unsigned long)el->address-to;
cachesetValue(adr,datum,FourByte);/* ValueType does not matter */
assert (addElement_nord(queNum,MYTHREAD) !=-l);
setType-nord(queNum, MYTHREAD,UPDATERESPOND);
setPtype-nord(queNum, MYTHREAD,el->ptype);
setAddressTo-nord(queNum, MYTHREAD,el->addressto);
setTag-nord(queNum, MYTHREAD,el->tagg);
return 0;

case PURGEMEMGET_ REQUEST:
otherthread=getOtherThreadId(MYTHREAD);

71



adr.thread=MYTHREAD;
adr.va= (unsigned long)el->addressjfrom;
memdeleteId(adr,otherthread);
assert(addElementnord(queNum,MYTHREAD) !=-1);
setType-nord (queNum, MYTHREAD, PURGEMEMGETRESPOND);
setAddressFromnord(queNum, MYTHREAD,el->addressfrom);
setDatumnord(queNum, MYTHREAD,el->datum);
setTag-nord(queNum, MYTHREAD,el->tagg);
return 0;

case GETONEBYTEREQUEST:
/* update memory structure */
if(el->ptype==Writer)
updateMemget(el->addressfrom);

address-from = el->address from;
datum = *((unsigned char *)address_from);
assert (addElement-nord(queNum,MYTHREAD)!=-l);
setType-nord(queNum, MYTHREAD, GETONEBYTERESPOND);
setTag-nord(queNum, MYTHREAD,el->tagg);
setDatum_nord(queNum,MYTHREAD, datum);
return 0;

case GETTWOBYTEREQUEST:
/* update memory structure */
if(el->ptype==Writer)
updateMem-get(el->addressfrom);

addressfrom = el->address from;
datum = *((unsigned short *)address_from);
assert (addElement-nord(queNum,MYTHREAD) !=-1);
setType-nord (queNum, MYTHREAD, GET-TWO BYTERESPOND);
setTag-nord(queNum, MYTHREAD,el->tagg);
setDatum_nord(queNum,MYTHREAD,datum);
return 0;

case GETFOUR_BYTEREQUEST:
/* update memory structure */
if(el->ptype==Writer)
updateMemget(el->addressfrom);

address-from = el->address from;
datum = *((unsigned int *)address from);
assert(addElementnord(queNum,MYTHREAD)!=-l);
setType-nord (queNum, MYTHREAD, GETFOURBYTERESPOND);
setTagnord(queNum, MYTHREAD,el->tagg);
setDatum_nord(queNum,MYTHREAD,datum);
return 0;

case GETEIGHTBYTEREQUEST:
/* update memory structure */
if(el->ptype==Writer)
updateMem-get(el->addressfrom);

addressfrom = el->addressfrom;
datum = *((unsigned long *)address_from);
assert(addElementnord(queNum,MYTHREAD)!=-l);
setType-nord(queNum, MYTHREAD, GETEIGHTBYTERESPOND);
setTagnord(queNum, MYTHREAD,el->tagg);
setDatumnord (queNum, MYTHREAD, datum);
return 0;

case GETBLOCKREQUEST:
size = el->blocksize;
temp = getTimesDiff(size);

72



addressto = el->address to;
addressfrom= el->address from;
diff = temp->diff;
times = temp->times;
tagg = el->tagg;

if ( (slotsNum>times) I
((slotsNum==times)&&(diff=O)))

{
for (i=0;i<times;i++)

assert(addElement nord(queNum,MYTHREAD)!=-1);
setType-nord (queNum, MYTHREAD, GETTEMPBLOCKRESPOND);
offset = i*BLOCKSIZE;
address-toptr = addressto + offset;
address from-ptr = addressfrom + offset;
setAddressTo_nord(queNum,MYTHREAD, address_to-ptr);
setBlockSizenord(queNum,MYTHREAD,BLOCKSIZE);
setBlock-nord(queNum,MYTHREAD, addressfrom-ptr, BLOCKSIZE);

}
if (diff>O)

assert(addElement nord(queNum,MYTHREAD)!=-l);
offset = times*BLOCKSIZE;
address-to-ptr = addressto + offset;
address from-ptr = address-from + offset;
setAddressTo-nord (queNum, MYTHREAD, address_toptr);
setBlockSize_nord(queNum,MYTHREAD,diff);
setBlock-nord(queNum,MYTHREAD, address fromptr, diff);

setType-nord (queNum, MYTHREAD, GETBLOCKRESPOND);
setTag-nord(queNum,MYTHREAD, tagg);
return 0;

}

/* i.e slots =times and diff>0 */
if (slotsNum==times)

{
for (i=0;i<times;i++)

assert(addElement nord(queNum,MYTHREAD)!=-l);
setType-nord (queNum, MYTHREAD, GET TEMPBLOCKRESPOND);
offset = i*BLOCKSIZE;
address-to-ptr = addressto + offset;
address from-ptr = addressfrom + offset;
setAddressTo-nord(queNum,MYTHREAD,addressto-ptr);
setBlockSizenord(queNum,MYTHREAD,BLOCKSIZE);
setBlock-nord(queNum,MYTHREAD, address from-ptr, BLOCKSIZE);

/* update the "index" element in rd */
offset=times*BLOCKSIZE;
addressfrom-ptr = addressfrom + offset;
addressto-ptr = address-to + offset;
setAddressFromIndexrd(MYTHREAD,queNum,index,addressfrom_ptr);
setAddressToIndexrd(MYTHREAD,queNum,index,addresstoptr);
setBlockSizeIndex_rd(MYTHREAD,queNum,index,diff);
return -1;

}

if (slotsNum<times)
{

for (i=0;i<slotsNum;i++)
{
assert(addElement nord(queNum,MYTHREAD)!=-l);
setType-nord (queNum, MYTHREAD, GETTEMPBLOCKRESPOND);

73



offset = i*BLOCKSIZE;

address-to-ptr = address-to + offset;
address from-ptr = addressfrom + offset;
setAddressTo-nord(queNum,MYTHREAD,address-to-ptr);

setBlockSize_nord(queNum,MYTHREAD,BLOCKSIZE);

setBlock-nord(queNum,MYTHREAD, address fromptr, BLOCKSIZE);

/* update the "index" element in rd */
offset=slotsNum*BLOCKSIZE;
address from-ptr = addressfrom + offset;
addressto-ptr = addressto + offset;
setAddressFromIndex-rd(MYTHREAD,queNum,index,address_fromptr);

setAddressToIndex_rd(MYTHREAD,queNum,index,addresstoptr);

size = size - offset;
setBlockSizeIndexrd(MYTHREAD,queNum,index,size);

return -1;

case PUTONEBYTEREQUEST:

/* update memory and cache structures */

ptype=el->ptype;

updateMemAndCache(el->address_to,ptype,el->datum);

addressto = el->address to;
temp-datum = el->datum;

*((unsigned char *)address-to) = *((unsigned char *)&temp-datum);

assert(addElement_nord(queNum,MYTHREAD)!=-1);

setType-nord(queNum, MYTHREAD, PUTONEBYTERESPOND);

setPtype-nord(queNum, MYTHREAD,ptype);

setAddressTo-nord(queNum, MYTHREAD,address to);

setTag-nord(queNum, MYTHREAD,el->tagg);

return 0;

case PUTTWOBYTEREQUEST:

/* update memory and cache structures */

ptype=el->ptype;

updateMemAndCache(el->addressto,ptype,el->datum);

addressto = el->address to;
temp-datum = el->datum;

*((unsigned short *)addressto) = *((unsigned short *)&temp-datum);

assert (addElementnord(queNum,MYTHREAD) !=-l);
setType-nord(queNum, MYTHREAD, PUTTWOBYTERESPOND);

setPtype-nord(queNum, MYTHREAD,ptype);

setAddressTo-nord(queNum, MYTHREAD,address-to);

setTag-nord(queNum, MYTHREAD,el->tagg);

return 0;

case PUTFOURBYTEREQUEST:

/* update memory and cache structures */

ptype=el->ptype;

updateMemAndCache(el->addressto,ptype,el->datum);

address-to = el->address to;
temp-datum = el->datum;

*((unsigned int *)addressto) = *((unsigned int *)&temp-datum);

assert(addElementnord(queNum,MYTHREAD) !=-l);

setTypenord(queNum, MYTHREAD, PUTFOURBYTERESPOND);

setPtype-nord(queNum, MYTHREAD,ptype);

setAddressTo-nord(queNum, MYTHREAD,address-to);

setTag-nord(queNum, MYTHREAD,el->tagg);

return 0;

74



case PUTEIGHTBYTEREQUEST:

/* update memory and cache structures */

ptype=el->ptype;

updateMemAndCache (el->addressto,ptype, el->datum);

address-to el->address to;
temp-datum = el->datum;

*((unsigned long *)address-to) = *((unsigned long *)&temp-datum);

assert (addElement_nord(queNum,MYTHREAD)!=-1);

setType-nord(queNum, MYTHREAD, PUT_ EIGH T_BYTERESPOND);

setPtype-nord (queNum, MYTHREAD, ptype);

setAddressTo-nord (queNum, MYTHREAD, address-to);

setTag-nord(queNum, MYTHREAD,el->tagg);

return 0;

case PUTFLOATREQUEST:

/* update memory and cache structures */
ptype=el->ptype;

updateMemAndCache (el->addressto,ptype, el->datum);

addressto = el->address to;
temp-datum= el->datum;

*( (float *)address-to) = *( (float *)&temp-datum);

assert (addElementnord(queNum,MYTHREAD)!=-1);

setType-nord(queNum, MYTHREAD, PUT FLOAT RESPOND);

setPtype-nord(queNum, MYTHREAD,ptype);

setAddressTo-nord (queNum, MYTHREAD, address to);

setTagnord(queNum, MYTHREAD,el->tagg);

return 0;

case PUTDOUBLE_REQUEST:

/* update memory and cache structures */
ptype=el->ptype;

updateMemAndCache (el->addressto,ptype, el->datum);

addressto = el->address to;
temp-datum = el->datum;

* ((double *)address-to) = * ((double *)&temp-datum);
assert (addElementnord(queNum,MYTHREAD) !=-1);
setType-nord(queNum, MYTHREAD, PUTDOUBLERESPOND);

setPtype-nord(queNum, MYTHREAD,ptype);

setAddressTo-nord (queNum, MYTHREAD, address-to);

setTagnord(queNum, MYTHREAD,el->tagg);

return 0;

case PUT_TEMPBLOCKREQUEST:

getBlock-rd(queNum, index);

return 0;

case PUTBLOCK REQUEST:

getBlock-rd(queNum, index);

tagg=el->tagg;

assert (addElement-nord(queNum,MYTHREAD)!=-1);

setType-nord(queNum,MYTHREAD, PUT_BLOCKRESPOND);

setTag-nord (queNum, MYTHREAD, tagg);

return 0;

/ *****************************************************************************/

void updateMemAndCache (local-pointer addressto, ProtocolType ptype,

unsigned long datum)

CacheRecord* rec;
Address adr;

75



int otherThread;

adr.thread=MYTHREAD;

adr.va=(unsigned long)addressto;
otherThread=getOtherThreadId(MYTHREAD);

if(ptype==Writer)

memaddId(adr,otherThread);
if(mem-isIdIn(adr,MYTHREAD))

{
/* update cache */

cachesetValue(adr,datum,FourByte);/* ValueType does not matter */

return;

return;

/* 1.update memory */

mem-deleteId(adr,MYTHREAD);

mem-deleteld(adr,otherThread);

/* 2.update cache */
rec=cachefindRecord(adr);
if(rec!=NULL)
cachedeleteRecord(adr);

void updateMemget(localpointer address-from)

Address adr;
int otherthread;

adr.thread=MYTHREAD;

adr.va=(unsigned long)addressfrom;

otherthread=getOtherThreadId(MYTHREAD);

mem-addId(adr,otherthread);

76



A.6 UPC Header File
/*

* upc.h
*/

/ *****************************************************************************/

/*** include, define *********************************************************/

#include "stddef.h"
#include <sys/imc.h>
#include <sys/types.h>
#include <c-asm.h>
#include <assert.h>
#include <stdlib.h>
#include <pthread.h>
#include <stdio.h>
#include "/home/cs/morganb/work/tagBuffer/tagBuff-api.h"
#define GLOBALSPACESIZE 200000
#define NUMBEROFPROCS 2 /* number of nodes
#define BUFFERSIZE 30 /* 30 length of circular buffer of each node */
#define EMPTY 0 /* indicates that circular buffer is empty */
#define BLOCKSIZE 100 /* bytes - size of block to use in splitting th

* transfer block */

#define BARVALUE -999 /* default value of barValue flag */
#define MAXNUMBEROFBARRIERS 100 /* max number of barriers in the program */

enum ProtocolType {Writer,Base};
typedef enum ProtocolType ProtocolType;

/** element que*****************************
typedef struct (

int type;
ProtocolType p type;
unsigned long datum;
tag tagg;
unsigned char* addressto; /* address to where put the transfered data */
unsigned char* address-from;/* adrress from which get the data to transfer */
long block-size;
unsigned char block[BLOCKSIZE];

}element;

struct que{
element elements[BUFFERSIZE];
int next to fill;
int next to take; /* is used only for rd que (as circl buff) */
volatile int count;

} ;
typedef struct que que;
/ *****************************************************************************/

/*** procQue ****************************************************************/

typedef struct {
que nord; /* each element does not require respond */
que rd; /* each element of it requires respond */
boolean serviceFlag; /* TRUE if service proc is on, and FALSE if off */

} procQue;
/ *****************************************************************************/

/*** barrStruct ************************************************************/
typedef struct {

int barCount; /* a flag for barrier syncronization */
int barValue; /* a flag for barrier syncronization */
int barError; /* a flag for barrier error */

77



}barrStruct;
/ *****************************************************************************/

/*** global space ************************************************************/

typedef struct {
procQue queues [NUMBEROFPROCS] [NUMBEROFPROCS];
volatile int syncCount; /* a flag for syncronization start */
barrStruct barArray[MAXNUMBEROFBARRIERS];

} globalspace;

global-space* global-space-tx;
globalspace* globalspace-rx;

/ ******** ***************************************** ************************

/ *****************************************************************************/

/*
* init Lock required for syncroniztion and initialization procedure
*/

int initLock;
imclkidt initLock-id;
/ *************************************************************************** *

/*

* lock global variables
*/

imclkidt lock-id-rd;
int locks-rd;

imclkidt lock id-nord;
int locksnord;

imc-lkid-t lock id barrier;
int lockbarrier;

pthreadmutext lockservice_mutex;
pthread-mutex-t lockcachejmutex;
pthreadmutext lock_mem-mutex;
/ ************* **** ************************* ******************************* *** */

/* pointer */

typedef unsigned char* local-pointer;

typedef struct {
local-pointer 1_ptr;
int procId;
pointer;

/ *****************************************************************************/

/ *****************************************************************************/

/* putGet */

typedef struct
int times;
long diff;
TimesDiff;

/ *****************************************************************************/

int MYTHREAD;

78



#define FUNC 300
#define THREAD 301

/ ************************************************ *************************** /

/* MISL definitions */
#define TEST printf("\n test \n");

#define HOME /home/cs/morganb/work

/ **************************************************************************** **

/* Put Requests */
#define PUTONEBYTEREQUEST 10

#define PUTTWO BYTEREQUEST 15

#define PUTFOURBYTEREQUEST 20

#define PUTEIGHTBYTE_REQUEST 25

#define PUTFLOATREQUEST 30

#define PUTDOUBLEREQUEST 35

#define PUTTEMPBLOCKREQUEST 40

#define PUTBLOCKREQUEST 45

/* Get Requests */
#define GETONEBYTEREQUEST 50

#define GETTWOBYTEREQUEST 55

#define GETFOURBYTEREQUEST 60

#define GETEIGHTBYTEREQUEST 65

#define GETBLOCKREQUEST 70

/* Put Responds */
#define PUTONEBYTERESPOND 75

#define PUTTWOBYTERESPOND 80

#define PUTFOURBYTERESPOND 85

#define PUTEIGHTBYTERESPOND 90

#define PUTFLOATRESPOND 95

#define PUTDOUBLERESPOND 100

#define PUTBLOCKRESPOND 105

/* Get Responds */
#define GETONEBYTERESPOND 110

#define GETTWOBYTERESPOND 115

#define GETFOURBYTERESPOND 120

#define GETEIGHTBYTERESPOND 125

#define GETTEMPBLOCKRESPOND 130

#define GETBLOCKRESPOND 135

/* Purge */
#define PURGEREQUEST 140

#define PURGERESPOND 150

#define PURGEMEMGETREQUEST 160

#define PURGEMEMGETRESPOND 170

#define UPDATEREQUEST 180

#define UPDATERESPOND 190

struct _UPCRTS-shared-pointer

unsigned long va: 43;

unsigned int phase: 10;
unsigned int thread: 11;

typedef struct _UPCRTS_sharedpointer _UPCRTSSHAREDPOINTERTYPE;

typedef unsigned long _UPCRTS-context-tag;

const int _UPCRTS-gl-curyvpid;

const int _UPCRTS-gl-cur-nvp;

int _UPCRTS-gl_foralldepth;

/* added later */
unsigned long shortcut-value; /* global variable to transfer the value of

79



datum in shortcut case when

MYTHREAD==procId */
/**Tags ****************************************************************/

#define SHORTCUTTAG -1000

/* shortcuts */
typedef _UPCRTScontext_tag UPCTag;

typedef _UPCRTSSHAREDPOINTERTYPE Address;

/** Tags: shortcuts for loadl *******************************************/

#define SHTAGLOADL -2000 /* supposed to mean shortcut tag for loadl */
unsigned long shvaluejloadl;
Address shaddress-loadl;
ProtocolType sh_ptype;

/ ************************************************************************/

/* Cache and Mem declarations */

enum ValueType {OneByte,TwoByte,FourByte,EightByte};
typedef enum ValueType ValueType;

typedef unsigned long Value;
enum CacheState {CleanW,CleanB,Dirty,WbPending,CachePending,Free}; /* Free state means

* that cache record i

* not filled

*/
typedef enum CacheState CacheState;

enum AccessType (Load,Store}
typedef enum AccessType AccessType;

80



Bibliography

[1] Active Messages: a Mechanism for Integrated Communication and Computation. von

Eicken, T., D. E. Culler, S. C. Goldstein, and K. E. Schauser. In Proceedings of the 19th

Int'l Symp. on Computer Architecture, May 1992, Gold Coast, Australia.

[2] Parallel Programming in Split-C, D. Culler, A.Dusseau, S. C. C. Goldstein, A. Krish-

namurthy, S. Lumetta, T. von Eicken, K. Yelick. In Proceedings of Supercomputing'93,

November 1993.

[3] MEMORY CHANNEL Application Programming Interfaces. http://www.unix.digi-

tal.com/faqs/publications/clusterdoc/cluster_15/PSMCAPI/TITLE.HTM

[4] X.Shen, Arvind, and L.Rudolph CACHET:An Adaptive Cache Coherence Protocol for

Distributed Shared-Memory Systems.

[5] X.Shen, Arvind, and L.Rudolph. Commit-Reconcile & Fences (CRF): A New Model

for Architects and Compiler Writers. In Proceedings of the 26th International Symposium

on Computer Architecture, Atlanta, May 1999.

[6] J.K Bennett, J.B. Carter, and W. Zwaenepoel. Adaptive Software Cache Management

for Distributed Shared Memory Architectures. In Proceedings of the 17th Annual Interna-

tional Symposium on Computer Architecture, May 1990.

[7] S.Eggers and R.H. Katz. Evaluating the Performance for Four Snooping Cache Coher-

ency Protocols. In Proceedings of the 16th Annual International Symposium on Computer

Architecture, May 1989.

[8] B.Falsani, A.R. Lebeck, S.K.Reinhardt, I.Schoinas, M.D. Hill Application-specific

protocols for user-level shared memory. In Supercomputing, Nov 1994.

81


