
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s  i n s t i t u t e  o f  t e c h n o l o g y,  c a m b r i d g e ,  m a  0 213 9  u s a  —  w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2014-010 April 27, 2014

One Clock to Rule Them All: A Primitive 
for Distributed Wireless Protocols at the 
Physical Layer
Omid Abari, Hariharan Rahul, and Dina Katabi



One Clock to Rule Them All: A Primitive for Distributed Wireless

Protocols at the Physical Layer

Omid Abari Hariharan Rahul Dina Katabi

Massachusetts Institute of Technology

{abari, rahul, dina}@csail.mit.edu

ABSTRACT

Implementing distributed wireless protocols at the physi-

cal layer today is challenging because different nodes have

different clocks, each of which has slightly different frequen-

cies. This causes the nodes to have frequency offset relative

to each other, as a result of which transmitted signals from

these nodes do not combine in a predictable manner over

time. Past work tackles this challenge and builds distributed

PHY layer systems by attempting to address the effects of the

frequency offset and compensating for it in the transmitted

signals. In this paper, we address this challenge by address-

ing the root cause - the different clocks with different fre-

quencies on the different nodes. We present AirClock, a new

wireless coordination primitive that enables multiple nodes

to act as if they are driven by a single clock that they receive

wirelessly over the air. AirClock presents a synchronized ab-

straction to the physical layer, and hence enables direct im-

plementation of diverse kinds of distributed PHY protocols.

We illustrate AirClock’s versatility by using it to build three

different systems: distributed MIMO, distributed rate adap-

tation for wireless sensors, and pilotless OFDM, and show

that they can provide significant performance benefits over

today’s systems.

1. INTRODUCTION

Distributed processing is common at higher layers of the

network stack. Yet, at the physical layer, each node typically

performs its signal processing independently of other nodes

in the network. This architecture is not due to lack of ben-

efits from distributed computation. In fact, the ability to co-

ordinate nodes at the physical layer can bring dramatic ben-

efits. Consider for example distributed MIMO, where mul-

tiple wireless nodes coordinate their transmissions to em-

ulate one MIMO transmitter with the sum of antennas on

all nodes. Such a design scales wireless throughput with the

number of transmitters [28, 7]. In fact, the information theory

literature presents many examples of theoretical distributed

physical layer designs that could bring significant gains if

transformed into practical systems, such as distributed lattice

coding [23], noisy network coding [19], transmitter cooper-

ation for cognitive networks [20], etc.

The difficulty in building practical distributed PHY sys-

tems is fundamental. Theoretical schemes typically require

that the different wireless nodes operate in lockstep with

each other, so that the combined output of the wireless sys-

tem generated from the computations and actions of individ-

ual wireless nodes follows a predictable pattern. However,

independent wireless nodes have different clocks with dif-

ferent oscillator frequencies. As a result, different nodes will

always have an offset in their carrier frequencies (CFO); the

CFO causes two signals to rotate with respect to each other.

The output signals formed by the distributed wireless sys-

tem, therefore, no longer follows the desired pattern; for ex-

ample, signals that are coordinated to be in-phase and com-

bine constructively could become completely out-of-phase

over time, and cancel each other. While having a consistent

notion of time is important for distributed protocols both at

higher and lower layers, the problem becomes significantly

harder at the physical layer, where tiny timing errors of few

nanoseconds or even less can cause large errors in the dis-

tributed protocol [28].

So, why do different nodes have different clock and oscil-

lator frequencies? Today, each node has a local crystal that

generates a low frequency sine wave, which is used as a ref-

erence clock. This reference clock is fed to a special circuit

called a Phase Locked Loop (PLL), which uses it to generate

the desired carrier frequency. For example, if the node is a

Wi-Fi radio, the crystal might generate a 10 MHz sine wave,

which the PLL then upconverts to a center frequency in the

2.4 GHz or 5 GHz bands. The key problem is that reference

clocks on different nodes have slight differences in their fre-

quencies, because different crystals naturally have different

properties. Since the PLLs on different nodes lock to refer-

ence clocks with different frequencies, their output signals

have different frequencies, and this leads to frequency off-

sets between nodes.

Past work on wireless systems deals with the effects of dif-

ferent reference clocks on different nodes by estimating the

deviations resulting from the frequency offsets, and compen-

sating for them. For example, practical distributed MIMO

systems [28, 7] present accurate techniques for estimating

relative signal rotations caused by the CFO and compensat-

ing for them before transmission. These systems are however

complex, incur overhead, and their details are dependent on

the specific protocols and applications.

In contrast, this paper explores a solution that addresses

the root cause of the problem, i.e., the different reference

clocks, by replacing these different clocks with a single ref-

1



2f2f2-f1DC 2f1 f1+f2f1 f2 f1 f2

Figure 1—Illustration of AirClock’s Design. Wireless nodes
multiply the received signal by itself and extract the desired clock
signal by applying a band pass filter centered at fref .

erence clock that is shared across all the nodes. If wireless

nodes were driven by the same reference clock, they would

have the same oscillator frequencies, and it would eliminate

much of the complexity in building distributed protocols at

the physical layer.

One could of course share the reference among multiple

wireless nodes by using wires from a single external clock.

However, such a system defeats the notion of a wireless net-

work since all nodes are now wired to a central device!

We therefore focus on a design that feeds the shared refer-

ence clock to multiple nodes across the wireless medium. At

first blush, it might seem that we can simply wirelessly trans-

mit the low frequency wave previously generated by the local

crystal on each node, and use it as a shared reference. Each

node then feeds this received reference to its PLL. However,

such a system is not feasible for two reasons. First, trans-

mitting at such low frequencies (typical crystal generated

frequencies are in the range of 10-40 MHz) does not com-

ply with FCC regulations [15]. Second, efficient antennas to

capture low frequency signals can be large [8] and, therefore,

impractical for many wireless nodes.

We introduce AirClock, a practical system that enables

distributed wireless nodes to share a reference clock using

the wireless medium. The key idea behind AirClock is to

transmit a signal with a specific format such that it can be

used to extract a reference clock without any other addi-

tional information. AirClock leverages the recently opened

white spaces to transmit two single tones separated by the

desired clock frequency (e.g., for a clock of 10 MHz, Air-

Clock can send tones at 175 MHz and 185 MHz). To obtain

the shared clock, each wireless node multiplies the received

signal by itself and applies a band pass filter to extract the de-

sired clock frequency. To see why this system works, recall

that the multiplication of two sine waves at different frequen-

cies produces sine waves whose frequencies are the sum and

difference of the original frequencies. Specifically, if the two

transmitted tones are at frequencies f1 and f2, and the desired

clock has a frequency of fref = f1 − f2, we have:

(cos(2πf1t) + cos(2πf2t)) · (cos(2πf1t) + cos(2πf2t)) =
1 + cos (2πf ref t) + cos(2π(f1 + f2)t)

+
1

2
cos(2π(f1 + f1)t) +

1

2
cos(2π(f2 + f2)t)

Then, by applying a band pass filter centered at fref , a node

can extract the desired clock signal (the term highlighted in

bold) and eliminate the undesired frequencies in the signal. 1

1Note that one cannot share the reference clock by simply upcon-

Fig. 1 illustrates this concept.

Since all nodes extract the reference clock only from the

received signal without using any other external signals, they

all extract the same reference frequency, thereby eliminating

frequency offsets between nodes.

AirClock has several key features. (a) It is versatile.

Since AirClock transparently provides a synchronized clock

abstraction across multiple independent nodes, it enables

straightforward implementation of very different kinds of

distributed PHY schemes without application or protocol

specific mechanisms. (b) Its design is simple. Since Air-

Clock only needs to generate a sine wave as a reference

clock, it only needs an amplifier, mixer, and filter, and

avoids most of the complexity of a typical receiver, such as

ADCs, baseband processing such as demodulation, equaliza-

tion, decoding etc. (c) It easily integrates with standard

transceiver architectures. Specifically, it can be deployed

as a standalone module whose output can be plugged in as

an input to the PLL, replacing the output of the local crystal.

We demonstrate AirClock’s versatility by showing that its

synchronization allows easy implementation of three differ-

ent kinds of distributed PHY systems.

• Distributed MIMO without a phase coordination pro-

tocol: Distributed MIMO is a powerful concept that al-

lows multiple distributed wireless transmitters to behave

like one huge MIMO transmitter with the number of an-

tennas equal to the sum of antennas on all the cooperat-

ing nodes. We show that distributed MIMO systems can

use AirClock as a primitive to synchronize the oscillators

on the wireless nodes and ensure coherent phase trans-

mission. Such a system eliminates the need for a coherent

phase transmission protocol in baseband [28, 7].

• Distributed Rate Adaptation for Sensors: Traditional

sensor systems such as Zigbee [9] are typically capable of

using only a single low transmission rate, and hence can-

not exploit good channel conditions to improve wireless

throughput. Distributed rate adaptation schemes that allow

multiple nodes to transmit simultaneously and thereby ex-

ploit good channel conditions, have been designed and im-

plemented for backscatter based networks, such as RFIDs,

which face a similar issue [33]. However, such schemes do

not work for wireless sensors since, unlike RFIDs, sensors

have independent local oscillators, and hence suffer from

frequency offsets. By using AirClock, sensor networks

can eliminate frequency offsets between nodes, enabling

them to leverage backscatter distributed rate adaptation

algorithms. We design and implement the first practical

distributed rate adaptation system for sensor networks.

• OFDM without pilots: OFDM systems like Wi-Fi ded-

icate some subcarriers for pilots in order to correct for

phase drift between the transmitter and the receiver. Since

verting the 10 MHz to a higher frequency at the transmitter and
downconverting at the receiver to retrieve the reference clock. This
is because downconversion would require the receiver to have a lo-
cal oscillator to generate the carrier frequency, which would lead to
a frequency offset in the retrieved clock signal.

2



AirClock can synchronize the clocks of transmitters and

receivers, we show that it enables us to build an OFDM

system that does not need pilots. In addition to the

throughput gain from using the pilot frequencies for data,

such an architecture also significantly reduces receiver

complexity by eliminating the need for phase tracking and

compensation algorithms.

We built a prototype of AirClock using off the shelf com-

ponents and integrated it with USRPs to demonstrate the dis-

tributed PHY applications. We evaluated AirClock and its

applications in an indoor testbed with line-of-sight and non

line-of-sight scenarios. Our results reveal the following find-

ings.

• AirClock can provide tight synchronization across mul-

tiple nodes. In particular, in our testbed, the median and

95th percentile CFO between two AirClock nodes operat-

ing at 2.45 GHz are 0.38Hz and 1.24Hz respectively.

• Pilotless OFDM using AirClock achieves the same SNR

as a traditional pilot based system across the range of oper-

ational SNRs for Wi-Fi, thereby providing 8% throughput

gain over traditional Wi-Fi.

• AirClock delivers a distributed MIMO system whose

throughput scales linearly with the number of transmitters.

Specifically, with 5 transmitters, AirClock’s distributed

MIMO delivers a median throughput gain of 4.4× over

traditional 802.11 style unicast, across the operational

range of Wi-Fi SNRs.

• An AirClock based Zigbee system achieves throughput

gains over traditional Zigbee by using distributed rate

adaptation. Specifically, with 6 Zigbee nodes transmitting

jointly to a central node, AirClock provides throughput

gains of 1.64− 3× across a range of SNRs.

Contributions: This work presents the first system that en-

ables multiple wireless nodes to share a clock over the wire-

less medium, providing a primitive to implement a wide va-

riety of distributed PHY systems. This is in contrast to past

work that either shares a clock over the wire, or uses data

encoded in a reference signal (e.g., GPS) to extract synchro-

nization information and correct deviations in the local clock

signal. In addition to distributedMIMO and pilotless OFDM,

we design and implement the first practical distributed rate

adaptation scheme for wireless sensors, and realize through-

put and reliability gains.

2. RELATED WORK

Related work falls into two categories.

(a) Shared clocks: The most straightforward approach for

sharing the clock is to connect the clock input on the nodes

to one external clock via wires. In fact, this is how our re-

search community builds MIMO software radios by connect-

ing multiple USRPs to the same clock output. While this ap-

proach eliminates any frequency offset or phase noise be-

tween the nodes, it effectively transforms the nodes to one

device with multiple components connected via wires.

Another traditional solution to synchronize clocks in a

wireless network is to use global positioning system (GPS)-

disciplined oscillator (GPSDO) to generate the reference sig-

nal [17, 11]. A GPSDO is equipped with a high-performance

GPS receiver and antenna, a microprocessor and an oven-

controlled crystal oscillator (OCXO). Since GPS signals are

accurate to the nanoseconds, they provide a good reference

to compare the frequency of the crystal oscillator and esti-

mate its offset from its nominal value. Since the frequency

of the crystal oscillator is a function of the temperature, this

offset can be corrected by precise adjustment of the oven

temperature. Due to their complexity, these clock generators

cost thousands of dollars which makes them unfeasible to

be used in each wireless node. In addition, line of sight to

the GPS satellite is required, which make these clocks gen-

erator applicable only to outdoor applications. In contrast,

AirClock does not require expensive hardware and can also

work in indoor applications.

There are also terrestrial time signals such as WWV and

WWVB [25, 24], transmitted by the National Institute of

Standards and Technology, which can synchronize receivers

on the order of seconds. Similarly, traditional clock syn-

chronization schemes like NTP can synchronize nodes to

within 10s of milliseconds. However, unlike AirClock, these

schemes are too coarse grained for PHY systems, which re-

quire synchronization on the order of nanoseconds.

Many communication systems, such as PCI Express and

FireWire [10, 4], transmit a shared clock with the data to

allow the receiver to synchronize its clock with the transmit-

ter. However, unlike in AirClock, these schemes connect the

transmitter to the receiver over a wired link and do not apply

to wireless systems, or to multiple transmitters.

(b) Phase tracking and compensation: The typical ap-

proach for dealing with frequency offset in wireless nodes

is to estimate the resulting phase rotation and compensate

for it. In particular, traditional OFDM transmitters send pi-

lots in some subcarriers in the data stream, which OFDM

receivers then use to track the phase drift of the transmitted

signal and compensate for it. For distributed MIMO, practi-

cal schemes that can achieve only diversity [26] or can per-

form both diversity and multiplexing (e.g. MegaMIMO and

AirSync [7, 28]) incorporate sophisticated schemes to track

transmitter phase drift and correct signals prior to transmis-

sion. These schemes are necessary to to ensure that the sig-

nals from different transmitters combine coherently at each

receiver. In contrast, with AirClock, wireless nodes synchro-

nizes their clocks over the air eliminating the need for phase

tracking and compensation either at the receiver or other

transmitters and can achieve both diversity and multiplexing

gain. Further, AirClock’s system is independent of the proto-

col,and modulation schemes, and applies to various wireless

technology (WiFi, Bluetooth, Zigbee, etc.).

3. BACKGROUND

Wireless signals are transmitted at a particular carrier fre-

3



Phase 

Comparator 
VCO

Reference 
Oscillator

N

Output
Signal

Figure 2—Block diagram of a typical Phase Locked-
Loop(PLL). The frequency of the output signal produced by the
PLL is N times that of the reference signal.

quency. The signal is up-converted from baseband to the

carrier RF frequencies at the transmitter and then down-

converted back to the baseband at the receiver. Both up-

conversion and down-conversion are performed by a process

called mixing, where the signal is multiplied by the carrier

frequency. At the transmitter, the mixed signal is transmit-

ted over the air. At the receiver, the received signal is first

mixed with the carrier then passed through a low pass filter to

obtain the downconverted baseband signal. Both transmitter

and receiver therefore need to generate the RF carrier with a

precise and stable frequency.

In most communication systems, a phase locked-loop

(PLL) synthesizer generates this carrier signal. The PLL

takes a low-frequency reference clock signal as input, and

produces as output a signal at the desired frequency. The ref-

erence signal is typically generated by a crystal resonator.

For example, in Wi-Fi systems, the PLL typically uses either

a 10 MHz or 40 MHz crystal, and outputs the desired carrier

frequency in the 2.4 GHz or 5 GHz bands.

Figure 2 shows the block diagram of a PLL. At a high

level, a PLL consist of a voltage-controlled oscillator (VCO),

a phase comparator, and a configurable divider. The PLL

works as a feedback loop. The VCO generates the desired

carrier. The carrier frequency is typically an integer multiple,

N, of the reference clock frequency. Thus the output of the

VCO is divided N and compared with the reference signal.

If there is any phase difference, the PLL adjusts the VCO to

keep it around the desired frequency.

In a perfect wireless network, all nodes should use exactly

the same carrier frequency. However, today’s wireless net-

works such asWi-Fi networks typically have offsets between

the carrier frequencies of nodes. For example in today’s Wi-

Fi cards, this offset can be tens to hundreds of KHz [1]. This

offset is mainly due to the fact that crystals used in different

nodes are slightly different. In addition, due to temperature

changes, the reference frequencies of different crystal oscil-

lators vary, which results in differences in the PLL output.

4. AIRCLOCK

AirClock synchronizes distributed wireless nodes by driv-

ing their oscillators with a single reference signal that they

receive over the wireless medium. Each wireless node ex-

tracts its reference clock from the reference signal and uses

this clock to generate its carrier wave. Since all nodes ex-

tract their reference clock from the same signal, their gener-

ated carrier waves do not have any frequency offset relative

to each other. These synchronized nodes can then act as one

virtual node with many antennas, and can be leveraged to

build different kinds of distributed PHY systems.

In the rest of this section, we explain how AirClock works

in greater detail. We start with a formal description of the

structure of the reference signal and how AirClock can ro-

bustly extract a reference clock from it. We then present the

actual details of AirClock’s architecture, and describe exten-

sions to it.

4.1 How Does AirClock Work?

AirClock ensures that clocks on different wireless nodes

are synchronized by using the same reference signal for the

PLLs on the different wireless nodes, and feeding this refer-

ence signal over the air. However, one cannot directly feed

a reference signal, on the order of 10s of MHz over the air,

given the current spectrum allocation. FCC regulations for-

bid the use of these low frequencies for unlicensed trans-

mission [15]. Besides, transmitting and receiving a signal at

this low frequency requires antennas that are many meters

long [8], which is impractical for many wireless scenarios.

On the other hand, one cannot transmit the signal simply

by upconverting to an unlicensed band at the clock transmit-

ter and downconverting to the reference signal at the clock

receiver, as this introduces a chicken-and-egg problem. Up-

conversion and downconversion to a band will require in-

dependent carrier generation at the transmitter and receiver.

Since the reference signals for these independent carriers are

generated by different crystals, they will have frequency off-

set relative to each other, leading to a frequency offset in the

downconverted reference signal at different nodes.

AirClock overcomes these challenges by transmitting two

single-tones (i.e. sine waves) at frequencies f1 and f2, which

are separated by the desired reference clock frequency, fref ,

(e.g., 10 MHz), to act as the synchronizing clock signal. Air-

Clock leverages the recently opened white spaces for the fre-

quencies f1 and f2. For instance, for an fref of 10 MHz, Air-

Clock can use tones at frequencies of, say, 175 MHz and

185 MHz. The transmitted signal can then be written as:

Stx(t) = A1cos(2π · f1 · t) + A2cos(2π · f2 · t). (1)

This signal passes over the wireless channel before recep-

tion, and the received wireless signal can be written as:

Srx(t) = B1 ·cos(2π · f1 · t+φ1)+B2 ·cos(2π · f2 · t+φ2), (2)

where B1, B2, φ1 and φ2 capture the channel impact on the

signal.

The signal can then be mixed, i.e., multiplied, with itself.

This is done by splitting the signal and feeding it to the two

inputs of a mixer. This results in:

Sm(t) = [B1 · cos(2π · f1 · t + φ1) + B2 · cos(2π · f2 · t + φ2)]2

= [B1 · cos(2π · f1 · t + φ1)]2 + [B2 · cos(2π · f2 · t + φ2)]2

+ 2B1 · B2 · cos(2π · f1 · t + φ1) · cos(2π · f2 · t + φ2)
(3)

4



AirClock 

Emitter 

AirClock 

Recipient 
Wireless 

Node

Figure 3—AirClock’s Network Topology. An AirClock emit-
ter transmits the reference signal. Nearby wireless nodes that are
equipped with AirClock recipient components (indicated in orange)
receive the AirClock signal, extract the reference clock and use it
to generate their carrier waves.

Simplifying this equation results in:

Sm(t) = B1B2cos(2π · (f 2 − f 1) · t + (φ2 − φ1))

+ B1B2cos(2π · (f2 + f1) · t + (φ2 + φ1))

+
B2
1

2
+

B2
1

2
· cos(2π · 2f1 · t + 2φ1)

+
B2
2

2
+

B2
2

2
· cos(2π · 2f2 · t + 2φ2)

(4)

This signal includes a DC component, some high fre-

quency components at 2f1, 2f2 and f1 + f2, and a component

at f2 − f1 (highlighted in bold in the formula above) which

is equal to fref . Hence, a simple band-pass filter centered at

the reference clock frequency fref (e.g., 10 MHz) is used to

extract the single-tone reference signal. The signal after the

filter will be:

Sref (t) = B1B2cos(2π · (f2 − f1) · t + (φ2 − φ1))
= B1B2cos(2π · fref · t + δφ).

(5)

This signal is then used as an external reference clock for

a wireless node. Since all nodes have access to the same sig-

nals, their reference clocks have exactly the same frequency

fref = f2− f1 and they will have no CFO with respect to each

other. Further, even if the transmitted signal slightly varies,

the nodes will still be synchronized since all nodes generate

their reference clock using the same signal.

4.2 AirClock’s System Architecture

In this section, we describe how the mathematical idea

from the previous section is transformed to a system that can

be incorporated into wireless transmitters and receivers.

AirClock has two components: an emitter and a recipient.

Fig. 3 demonstrates how AirClock works in a wireless net-

work, at a high level. There is a single emitter in the network

which wirelessly transmits a signal, called the AirClock sig-

nal. This signal may be used by wireless nodes to generate a

shared reference clock. Each wireless node in the network is

equipped with an AirClock recipient which receives the Air-

Clock signal from the air, extracts the clock reference and

feeds it to the wireless node. Of course, we would like the

Reference
Combiner

PA

f1 f2

PLL
f1

PLL
f2

(a) AirClock Emitter

(b) AirClock Recipient

Figure 4— AirClock’s System Architecture. The AirClock emit-
ter includes two PLLs to generate two single tones separated by
the desired frequency. The AirClock recipient mixes the received
AirClock signal with itself and extracts the reference clock using a
band pass filter.

AirClock recipient to be simple and cheap so that it may be

used to augment virtually any wireless node including small

cheap sensors.

We now describe the architecture of the emitter and recip-

ient components in more detail:

Emitter: Fig. 4(a) presents the system architecture of the

AirClock emitter. To transmit the AirClock signal, we start

with a local oscillator (i.e., a crystal) that generates a refer-

ence signal, and feed its output to two PLLs to generate two

tones, f1 and f2, that are separated by the desired clock fre-

quency fref . The two tones are then amplified using a power

amplifier and transmitted on the wireless medium. Note that

our signal does not occupy the entire band between f1 and f2,

it simply consists of two single-tones which are separated by

the desired clock frequency.

Recipient: Fig. 4(b) presents the system architecture of

the AirClock recipient. The AirClock recipient receives the

emitted signal. As is usual in RF radios, the received signal

is passed to a low-noise amplifier (LNA) and the band of in-

terest (from f1 to f2) is filtered out using a band pass filter.

After filtering, the signal is mixed with itself and the desired

reference clock is extracted using a band pass filter centered

at the reference frequency (e.g., 10 MHz), and input to a PLL

whose output is fed to the wireless node.

The design is simple and cheap. In particular, the receiver

circuit does not need any analog to digital converters (ADC)

or baseband processing. It is composed of cheap and off-

the-shelf components such as amplifiers, band pass filters, a

splitter, and a mixer, and can be built in a straightforward

manner. Further, the splitter, mixer and filters are all passive

components and do not consume any power.

4.3 Scalability

So far, we have explained a situation where all nodes are in

the range of a single AirClock emitter. We now discuss how

we can scale AirClock to large deployments. Specifically,

5



 Master 

Emitter 

31

2

4

Slave 

Emitter

Figure 5— AirClock’s is scalable to large networks. In a sce-
nario where nodes are far from the master AirClock emitter, Air-
Clock uses a slave emitter to regenerate the clock signal. Nodes can
synchronize to either the master or slave emitter, and still achieve
tight synchronization with each other.

what if not all nodes are within the radio range of a single

emitter? Of course, in many applications such as distributed

MIMO deployed in a conference room or a big classroom,

where all nodes are in the range of an emitter, a single emit-

ter is sufficient to synchronize all wireless nodes. However,

in some other applications or scenarios where nodes are far

from each other, a single emitter might not be sufficient to

cover the whole network and hence we cannot directly syn-

chronize all nodes with a single reference signal.

Here, we explain how we scale AirClock in a larger net-

work. Naively, one might think that we can use multiple

emitters in different locations to guarantee that each wire-

less node receives the AirClock signal. However this solution

does not work because each AirClock emitter has a different

reference oscillator (i.e., crystal) that it uses to generate its

AirClock signal. As a result, signals from different AirClock

emitters will not have exactly the same frequency. Conse-

quently, nodes which use AirClock signals transmitted from

two different emitters will have CFO with respect to each

other, which defeats the purpose of AirClock.

We therefore employ a different design that addresses this

issue. Specifically, we guarantee that emitters used in a net-

work are synchronized. We do this by making sure that emit-

ters use the same reference to generate their transmitted Air-

Clock signal. We also ensure that different emitters do not

interfere with each other by using different frequencies for

their transmitted signals.

To understand how our proposed solution works, consider

the scenario shown in Fig. 5. Here, we want to synchronize

four wireless nodes, where nodes 3 and 4 are far from nodes

1 and 2. The master emitter generates the AirClock signal

from a local oscillator (i.e, a crystal). Nodes 1 and 2 are in the

range of this emitter and can use the signal transmitted from

the master emitter to generate their reference clocks. How-

ever, since nodes 3 and 4 are far, they are not in the range of

the master emitter and cannot directly receive the AirClock

signal. Hence, we use another emitter called a slave emitter

to transmit the AirClock signal to them. The architecture of

a slave emitter is similar to that of the master emitter. How-

ever, there is one key difference. A slave emitter does not use

a local crystal as its reference. Instead, it uses an AirClock

recipient which listens to the master’s signal to generate its

reference. The slave then produces its two tones using this

recipient generated reference. In order to avoid interference

between the master and the slave, the frequencies of the Air-

Clock signal generated by the slave emitter need to be dif-

ferent from the frequencies generated by the master emitter.

For instance, the slave emitter can use tones at 620 MHz and

630 MHz, while the master emitter uses tones at 175 MHz

and 185 MHz.

Note that tones generated by the slave transmitter are sep-

arated by the same amount as the tones generated by the

master transmitter. This is due to the fact that the reference

for the slave emitter signal is generated by using the mas-

ter emitter signal. Hence the reference clock extracted from

the master emitter signal by wireless node 1 will be synchro-

nized with the reference clock extracted from the slave emit-

ter signal by wireless node 3. In general, Cooperating wire-

less nodes can pick either the master or the slave signal to

extract the shared clock, depending on which of the two are

in their radio range. In §7.1, we demonstrate that AirClock

provides tight synchronization for nodes that use different

emitters, and can thus scale to large deployments.

4.4 Discussion

Channel Impact: Similar to any other wireless system, we

need to investigate the impact of the wireless channel on Air-

Clock. First, each AirClock recipient experiences a different

wireless channel from its AirClock emitter, i.e., the attenu-

ation and phase experienced by the emitter signal to differ-

ent recipients is different. However, AirClock is robust to

these differing channels as can be seen from Eq. 5, which

shows that the frequency of the extracted reference clock is

fref independent of the channel attenuation and phase. Hence,

wireless nodes which have different channels to the AirClock

emitter will be synchronized. We show this to be the case

empirically in §7.1.

Non line-of-sight: AirClock works in non-line-of-sight sce-

narios as well as line-of-sight scenarios. In a non-line-of-

sight scenario, an AirClock recipient receives multiple de-

layed versions of the signal, each of which encounters a dif-

ferent channel. Note that adding multiple copies of signals

at f1 and f2, each with a different attenuation and phase, does

not change the output frequency of AirClock. Specifically,

similar to Eq. 5, the AirClock recipient will still produce an

output reference clock with frequency fref . We demonstrate

empirically in §7.1 that AirClock performs tight synchro-

nization in non-line-of-sight scenarios.

Event Synchronization: In addition to frequency synchro-

nization, distributed PHY systems also need event synchro-

nization, for instance, to ensure that multiple nodes be-

gin their transmissions at the same time. Similar to other

protocols, distributed PHY systems using AirClock can

achieve event synchronization through standard techniques

6



such as using a trigger packet, calibrating for propagation

delays [27] etc.

Power Consumption: As already mentioned components

used in the AirClock recipient are simple. The splitter, mixer

and filters are passive components and they do not require

any power. The only active components are the LNA and the

PLL, both of which consume significantly lower power than

wireless nodes. For example, a typical Wi-Fi access point

consumes tens of watts [12] and Zigbee chips consume about

60-110 mW [32, 30]. In contrast, an LNA that operates in the

white space frequency range consumes only 7-10 mW [21],

and PLLs consume around 3 mW [16, 6]. Thus, adding an

AirClock recipient adds around 10-13 mW to the total power

consumption of the node, which is less than 0.1% of the total

power consumption of a Wi-Fi access point, and only around

10% of the power consumption of a Zigbee node.

Plug-and-play Integration: AirClock’s recipient module is

a plug-and-play component, and can be easily integrated into

today’s wireless nodes. Specifically, the node can be de-

signed so that it can use either the reference clock generated

by its local crystal or the reference clock supplied by the Air-

Clock recipient as the input to its onboard PLL. This allows

nodes to leverage AirClock to achieve the performance ben-

efits from highly accurate frequency synchronization, while

still having the option to use the local crystal during normal

operation or in fallback mode.

5. APPLICATIONS OF AIRCLOCK

Now that we have described the architecture of AirClock,

we demonstrate its versatility by explaining how it enables

distributed PHY schemes for different wireless systems. The

wireless systems discussed in this section have significant

differences from each other in their associated protocols, ap-

plications, modulation schemes, transceiver hardware com-

plexity etc.. Despite these differences, however, AirClock

enables implementation of distributed PHY schemes in a

simple manner because it presents a synchronized clock ab-

straction across separate wireless nodes.

5.1 Distributed MIMO with AirClock: Coherent

Transmission for Free

We explore distributed MIMO transmission in dense wire-

less LAN deployments, popular in enterprises, stadia, con-

vention centers etc. These deployments typically consist of

multiple access points connected to a high bandwidth back-

haul (say, Gigabit Ethernet). In a distributed MIMO architec-

ture, the multiple different access points act as if they are a

single combined access point with a total number of antennas

equal to the sum of the number of antennas on all the indi-

vidual access points. This virtual combined access point can

then transmit different packets simultaneously to different

receivers, by using multi-user beamforming to eliminate in-

terference between the different transmissions, as illustrated

in 6.

The key difficulty in implementing distributed MIMO in

practice is that joint multi user beamforming across multi-

ple access points requires that the phases of the transmis-

sions from different access points are precisely aligned. This

alignment is necessary to ensure that, at every receiver, the

signals destined for other receivers cancel out and only the

signal intended for that receiver survives the collision. The

receiver can then decode its desired signal without suffering

from interference from the other signals. When all the an-

tennas belong to a single transmitter, they are driven by the

same oscillator, and hence the phases of the different signals

are naturally synchronized with each other. However, when

different access points driven by different oscillators trans-

mit simultaneously, the phases of the transmissions from the

different access points rotate relative to each other due to

the frequency offsets between the transmitters. Hence, the

phase alignment between the different transmitters changes

over time, leading to interference between the different sig-

nals and failure of receivers to decode their desired packets.

Existing practical distributed MIMO techniques such as

MegaMIMO and AirSync [28, 7] address the problem of

changing phase alignment by using training sequences to es-

timate the changes in phase alignment at each transmitter,

and compensating for the changes prior to transmission.

In contrast, AirClock synchronizes the clocks across all

the different transmitters, and hence antennas belonging to

different transmitters equipped with AirClock recipients can

simply act as if they were different antennas driven by the

same oscillator on a large MIMO transmitter. They can then

simply perform joint multi-user beamforming similar to ex-

isting single transmitter schemes, without performing ongo-

ing phase tracking or compensation.

Similar to existing multi-user beamforming systems [5,

28, 7], Distributed MIMO with AirClock operates in two

phases: a channel measurement phase, and a joint data trans-

mission phase which uses the measured channels to per-

form multi-user beamforming. We implement this system

and evaluate its performance for data transmission on the

downlink in §7.4.

Additional Benefits

Apart from downlink multiplexing gains, distributed

MIMO with AirClock can provide additional benefits.

First, it can enable coherent joint transmission on the up-

link from multiple clients. We can do this in a system where

all nodes, both access points and clients, are equipped with

AirClock recipients. Then, the oscillators on the different

clients are synchronized and their transmissions appear at

the different access points as if they occurred from multiple

antennas on the same device. The access points can then ex-

change the received samples at the different antennas using

their shared backhaul, and jointly decode the received pack-

ets, similar to the way a single MIMO receiver can decode

multiple different streams from a single MIMO transmitter.

Second, it can enable multiple off-the-shelf access points

to exploit MIMO diversity. Specifically, it is typically possi-

7



(a) Today’s Wi-Fi Networks. (b) Distributed MIMO with AirClock.

Figure 6—Traditional deployments vs. DistributedMIMO.A blue colored node indicates an active transmitter or receiver. With traditional
Wi-Fi, only one access point can transmit at any time in a given frequency. In contrast, with AirClock, the oscillators of all APs equipped
with an AirClock recipient are synchronized to the AirClock emitter. Hence, multiple APs can transmit to multiple clients at the same time
in the same frequency, thereby scaling network throughput with the number of access points.

ble to feed an external clock to off-the-shelf wireless nodes

(e.g., a WiFi access point or a ZigBee sensor). Some devices

are designed to have the option of operating with an external

clock (e.g., a GPS clock). Even when the device does not di-

rectly have a connector for an external clock, it is typically

possible to remove the internal crystal and plug in the Air-

Clock circuit. This means that AirClock can synchronize the

clocks across multiple off-the-shelf devices. These clocks

can then achieve diversity gains by simultaneously transmit-

ting the same data packets. This will enable today’s wireless

networks to achieve a higher coverage radius and address

dead spots.

5.2 Distributed Rate Adaptation for Wireless Sensors

AirClock enables the first distributed rate adaptation

scheme for wireless sensor networks. At a high level, Air-

Clock’s synchronization of multiple sensor nodes eliminates

frequency offsets between them, and enables them to lever-

age distributed rateless codes designed for backscatter net-

works, which do not have frequency offsets. We describe this

idea in greater detail below.

Wireless sensor networks are typically deployed for moni-

toring environmental and physical conditions [2]. These low

power devices periodically collect measurements of some

physical quantities (such as temperature, pressure, air quality

etc.), and transmit them to a sink node.

Today’s sensors typically support only a single modula-

tion scheme, such as on-off keying, BPSK, and OQPSK [13].

The modulations supported are low rate so as to ensure

that the sensors can communicate even when channel con-

ditions are adverse. Further, sensors avoid supporting high

rate (dense) modulations such as 16-QAM, 64-QAM etc.,

because these modulations require linear transmitter power

amplifiers that consume significant power.

As a result, wireless sensors do not utilize the wireless

channel efficiently. In particular, wireless sensors cannot

take advantage of a good channel to send at a high rate, i.e.,

pack many bits into each transmitted symbol.

One can imagine exploiting channel conditions through

distributed rate adaptation across the network to overcome

the absence of the ability of any single node to adapt its

rate. Prior work [33] has proposed such distributed rate adap-

tation in the context of backscatter networks like RFIDs.

Specifically, multiple RFID nodes in the network can trans-

mit simultaneously and the RFID receiver receives a collided

transmission. Consider, for instance, a case where 2 nodes,

each using BPSK (i.e. +1 or -1), transmit simultaneously. Let

the channel between the nodes and the sink be h1 and h2 re-

spectively. In such a case, the RFID receiver will receive one

of 4 points, h1+h2, h1−h2,−h1+h2, or−h1−h2. This can be

visualized as a scaled and rotated QPSK constellation, which

the RFID receiver can decode if the channel conditions are

sufficiently good. If not, it can simply continue to receive

additional transmissions and combine these multiple recep-

tions till it can decode the transmitted signals. Such a system

will effectively achieve a distributed rateless code across the

nodes in the RFID network.

Ideally, one would like to achieve similar distributed rate

adaptation for wireless sensor networks. However, there is

a key difference between sensor networks and backscatter

networks. The nodes in a backscatter network do not have

any frequency offset relative to each other. This is because

they do not have independent oscillators; instead, they sim-

ply reflect, i.e., backscatter, a carrier wave transmitted by the

RFID receiver, and communicate data by modifying the way

in which they reflect the wave depending on the bit they in-

tend to transmit. In contrast, wireless sensor nodes each have

independent oscillators, which drive their RF transmissions.

As a result, the transmissions from different sensors rotate

in phase relative to each other, and collide in different ways

across time. Consequently, the joint constellation formed by

the collisions experiences different rotation and scaling over

time, preventing the receiver from decoding the transmitted

bits from multiple collision receptions.

8



Sensors

Sink

2 3

S
e

n
s
o

r

ID
s

1 N

1 3 N

Time Slots

2

 AirClock 

Emitter 

1 2 N3

1

4

5

3

7

Time Slots

1

2

NS
e

n
s
o

r

ID
s

(a) Traditional Wireless Sensor Networks. (b) Distributed Rate Adaptation with AirClock.

Figure 7—Traditional vs. Distributed Rate Adaptation. Blue indicates active sensors. With traditional sensor networks, only one sensor
can transmit at a time, requiring the network to consume N slots to communicate data for N sensors even when channel conditions are good.
In contrast, sensors equipped with AirClock can perform distributed rate adaptation allowing multiple sensors to transmit simultaneously
(e.g., sensors 1, 2, and N can transmit jointly in the highlighted time slot above). This allows the network to exploit good channel conditions
by decoding data from multiple sensors in a single joint transmission, and thereby consuming significantly fewer than N slots to transmit data
from all N sensors.

AirClock eliminates the problem of differing frequency

offsets across sensors. In particular, when each sensor is

equipped with an AirClock recipient, their oscillators are

driven by the shared wireless clock and hence they do not

have any offset relative to each other. The sensors can there-

fore perform joint transmission and enable the sink to de-

code, similar to the case of RFIDs, as shown in Fig. 7.

Note that addition of an AirClock recipient to a sensor has

negligible impact on its power consumption. As described

in §4.2, the AirClock recipient consumes around 10 mW of

power, which is only 10% of the total power consumed by a

sensor node during transmission (100 mW).

The full details of the joint transmission algorithm by the

nodes, and the receiver’s decoding algorithm are described

in [33]. We present an overview here, describing how the

transmitters each communicate 1 data bit to the receiver.

The joint transmission algorithm works in multiple

phases. The sink initiates joint transmission by sending a

data request to all participating sensor nodes. Each sensor

receives this command, and in response, generates a random

bit (0 or 1) based on its own identifier, and the current phase.

If the generated bit is 1, the node participates in the current

phase by transmitting its message; if the bit is 0, the node

stays silent during the current phase. The sensor nodes re-

peat this process and continue until they receive an acknowl-

edgment from the sink indicating that it has decoded all the

sensor messages.

The receiver receives the collisions, and at each phase,

uses all the received collisions so far to jointly decode the

transmitted bits. The receiver can determine the participating

sensor nodes in each collision, since it knows the identifiers

of all the sensors and the shared seed used for the random

bit generation. It then uses belief propagation to decode the

received collisions. At a high level, the decoder works by

starting with an initial guess for the transmitted bits. It then

calculates the expected collided signal for each of the trans-

missions based on this initial guess, and computes the total

error between the expected and the actual received signal. If

the initial guess is correct, then the error will be small. If the

guess is incorrect, however, the error will be large. If the er-

ror is large, the decoder toggles the bits in its initial guess

one by one so as to reduce the error. The decoder keeps ac-

cumulating collisions till it has decoded all bits.

[33] formally describes this algorithm and provides the

pseudocode for the decoder.

5.3 OFDM without Pilots

So far, we have described two applications of AirClock to

synchronize multiple distributed transmitters. But AirClock

can offer benefits even in the case of a single transmitter,

as we describe below. We describe how using AirClock can

significantly simplify the design of OFDM based systems

while providing performance benefits.

OFDM is the modulation scheme of choice for high data

rate communication in modern wireless systems, including

WiFi and LTE. The key benefit of OFDM is that it allows

wireless nodes to exploit wideband channels and combat fre-

quency selective fading with simple channel equalization al-

gorithms. However, the major challenge that OFDM faces

is that it is vulnerable to clock offsets. Today’s OFDM sys-

tems address this issue by allocating some subcarriers, called

pilots for synchronization. An OFDM receiver uses these pi-

lots to estimate the phase offsets between transmitter and re-

ceiver, and correct for them.

Equipping the OFDM transmitter and receiver with Air-

Clock recipients will eliminate the need for an OFDM trans-

mitter to use pilot signals, and for a receiver to implement

phase tracking and correction algorithms. Such a system will

allow the reuse of pilot subcarriers for data transmission,

thereby increasing link throughput. It will also reduce com-

9



plexity since phase compensation and tracking are among

the most complex components in today’s OFDM baseband

design.

AirClock can also provide benefits for OFDMA (Orthog-

onal Frequency Division Multiple Access) schemes, when

multiple nodes transmit to a single node. Today’s OFDMA

systems require the division of pilots among the multiple

transmitters across both frequency and time. In contrast,

since AirClock synchronizes clocks of all the participating

nodes, it can eliminate the use of these pilots, and the com-

plexity of pilot allocation and scheduling schemes.

6. IMPLEMENTATION

We implement AirClock’s emitter and recipients, and in-

tegrate the recipient subsystem with USRPs. We also im-

plement pilotless OFDM, distributed MIMO, and distributed

rate adaptation using AirClockwith USRPs.

(a) AirClock Emitter and Recipient, and USRP integra-

tion:We have built a prototype of the AirClock emitters and

recipients as described in 4.2 using the off-the-shelf com-

ponents. For the emitter, we used the following components:

Fury Jackson GPSDO [17] as a local oscillator, two Ana-

log Devices ADF4350 [3] as PLLs, Mini-Circuits TVA-R5-

13 [22] as a power amplifier, Laird Technologies EXB-164-

BN [18] as an antenna.

For the recipient, we used the following components:

Laird Technologies EXB-164-BN [18] as an antenna, Maxim

MAX2665 [22] as an amplifier, Mini-Circuits ZLW-1 [22]

as a mixer, Mini-Circuits SBP-10.7+ [22] as bandpass fil-

ter around 10MHz, Mini Circuits SHP-175+ as a highpass

filter and Mini-Circuits SLP-200+ as a lowpass filter to cre-

ate a bandpass filter around 175-185 MHz, and Silicon Labs

Si5328 [29] as a PLL.2

The output of the recipient is connected to the 10 MHz

external clock input of the USRP N210 device.

(b) Modulation schemes: For pilotless OFDM and dis-

tributed MIMO, we implemented OFDM with the vari-

ous Wi-Fi modulations (BPSK, 4-QAM, 16-QAM, and 64-

QAM) and parameters similar to Wi-Fi (64 total subcarriers

with 52 occupied subcarriers) over a bandwidth of 10 MHz.

For distributed rate adaptation, we implemented BPSK with

a pseudonoise sequence of length 15, similar to Zigbee in

the 915 MHz frequency band. We implemented all these

schemes using the UHD library supplied for the USRPs.

(c) Distributed MIMO: We implemented Distributed

MIMO using software radios. Each AP node is equipped

with an RFX 2400 daughterboard, and a USRP N210 [14]

integrated with a AirClock recipient as described above.

Client nodes consist of USRPs using their internal clocks.

(d) Distributed Rate Adaptation forWireless Sensors:We

2Note that our prototype uses discrete components for ease of im-
plementation. A production implementation of AirClock would use
components and individual chips, and therefore have significantly
lower cost and form factor than our prototype.

Figure 8—Synchronization Accuracy for 2.4 GHz and 900MHz
carriers. AirClock ensures tight synchronization of oscillators
across different nodes. The median CFO is 0.38Hz and the 95thx
percentile is 1.24Hz for a carrier of 2.4 GHz. For a 900 MHz car-
rier, the median CFO is 0.11 Hz and the 95th percentile is 0.34 Hz.

used USRP N210s with RFX900 daughterboards to work as

wireless sensors and a wireless sink. The sensors transmit

over a 2 MHz band, a la Zigbee at 915 MHz. Each wireless

sensor node is integrated with an AirClock recipient.

7. RESULTS

We evaluate AirClock in an indoor testbed with various

line-of-sight and non-line-of-sight scenarios, using both mi-

crobenchmarks of its clock synchronization, as well as the

performance of applications using AirClock.

7.1 Synchronization

We empirically evaluate the synchronization performance

of AirClock in multiple scenarios.

(a) Accuracy of AirClock’s synchronization: The key

promise of AirClock is that it can tightly synchronize os-

cillators on different wireless nodes. We verify if AirClock

delivers on this promise.

Method. Our goal in this experiment is to verify the effec-

tiveness of AirClock’s synchronization architecture. To do

this, we perform an experiment with all devices in a single

room. Specifically, we place an AirClock emitter in one lo-

cation in the testbed. We place two USRP nodes equipped

with AirClock recipients at two node locations in the testbed,

with one acting as a transmitter and the other as a receiver.

The transmitter transmits packets consisting of a single re-

peated OFDM symbol. The receiver receives these repeated

packets, and computes its CFO with respect to the transmit-

ter using the traditional correlation-based OFDM CFO es-

timation algorithm [31]. We repeat the experiment for two

carrier frequencies: 2.4 GHz and 900 MHz, and for a variety

of transmitter receiver locations.

Results. Fig. 8 plots the CDF of the observed CFO for both

2.4 GHz and 900 MHz carriers. It shows that AirClock pro-

vides tight synchronization of the oscillators on the trans-

mitter and receiver nodes. Specifically, the median and 95th

percentile CFO at 2.4 GHz are 0.4 Hz (0.16 parts per billion)

and 1.24 Hz (0.5 parts per billion) respectively. In compari-

son, the 802.11 standard requires oscillators to have a maxi-

10



0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

CFO(Hz)

C
D

F
2.4 GHz (non-line-of-sight)

2.4 GHz (line-of-sight)

Figure 9—AirClock’s robustness in non-line-of-sight scenarios.
CDF of AirClock’s CFO with non-line-of-sight channels. The fig-
ure shows that AirClock can achieve tight oscillator synchroniza-
tion in this scenario, comparable to line-of-sight scenarios.

mum CFO of 40 parts per million with respect to each other.

AirClock can thus achieve 5 orders of magnitude tighter syn-

chronization than the traditional situation of free running os-

cillators on independent nodes.

Additionally, the CFO at 900 MHz is less than at 2.4 GHz.

In particular, the median and 95th percentile CFOs are

0.11 Hz and 0.34 Hz respectively. This is because the oscil-

lator frequency (2.4 GHz or 900 MHz) is obtained by mul-

tiplying the 10 MHz output of the AirClock recipient by an

appropriate factor (240 and 90, respectively). Any CFO be-

tween the oscillators arises from deviations in the 10 MHz

frequency generated by the different AirClock recipients.

Therefore, the CFO is higher when the carrier frequency is

higher because the errors are scaled up by a larger multiplier.

(b) Robustness of AirClock’s synchronization: We evalu-

ate how robust AirClock’s synchronization in the presence

of non-line-of-sight channels.

Method. We place the AirClock emitter such that it has no

line of sight to the other nodes in the testbed. We repeat

the previous experiment and compute the CFO between the

transmitter and receiver at 2.4 GHz.

Results. Fig. 9 shows the CDF of the measured CFO in the

presence of non-line-of-sight channels. The median and 95th

percentile CFO in this case are 0.39 Hz and 1.3 Hz respec-

tively, showing that AirClock achieves the same tight syn-

chronization performance as line-of-sight channels.

(c) Impact of scaling on AirClock’s synchronization per-

formance: In §4.3, we described how AirClock can scale to

large deployments by using slave emitters that generate the

10 MHz clock and repeat it in a different frequency band.

In this section, we evaluate the impact of repeating on Air-

Clock’s synchronization performance.

Method. We place an AirClock master emitter and an Air-

Clock slave emitter within radio range of each other. As be-

fore, we configure two USRP nodes equipped with AirClock

recipients as a transmitter and receiver, respectively. The Air-

Clock recipient on the transmitter receives its synchroniza-

tion signal from the master emitter, and the AirClock recip-

ient on the receiver receives its synchronization signal from

the slave emitter. As before, we compute the CFO between

Figure 10—AirClock’s synchronization accuracy with re-
peaters. CDF of AirClock’s CFO when using slave repeaters. The
figure shows that AirClock’s synchronization performance is close
to that of a single emitter network, demonstrating that AirClock can
scale to deployments larger than the range of a single emitter.

the transmitter and the receiver.

Results. Fig. 10 plots the CDF of the observed CFO. The

median and 95th percentile CFO are 0.48 Hz and 1.37 Hz

respectively. The 95th percentile is within 10% of the same

statistic for a single emitter scenario, demonstrating that Air-

Clock’s architecture can offer tight synchronization even for

deployments larger than can be covered by a single emitter.

7.2 Accuracy of Received Signals with AirClock

Having understood AirClock’s oscillator synchronization

performance, we now investigate the impact of its synchro-

nization on the accuracy of the received signal.

Method. As before, we place a AirClock emitter and two

USRP nodes at random locations in our testbed. One of the

USRPs acts as a transmitter and the other as a receiver. We

choose a modulation scheme, and transmit OFDM packets

carrying random data using that modulation scheme. We

then estimate the received signal after channel equalization

on the receiver. We perform the experiment with both high

and low-density modulation schemes, specifically BPSK and

64-QAM. We repeat the experiment with three different syn-

chronization modes: (a) transmitter and receiver using inde-

pendent oscillators driven by their local crystals, (b) trans-

mitter and receiver using a single external clock shared over

a wire, and (c) transmitter and receiver using AirClock.

Results. Fig. 11 plots the received constellation diagram for

BPSK and 64-QAM in the different synchronization scenar-

ios. As can be seen, the transmit and receive oscillators have

significant CFO with each other when using their local crys-

tals. As a result, the observed constellation rotates over time.

In contrast, the observed constellation points with AirClock

are tightly clustered around the expected points, similar to

the case when they are both connected to a single external

clock over the wire. This provides visual evidence that the

receiver can accurately decode the received signal without

any frequency offset estimation or compensation, even for

dense constellations.

7.3 Pilotless OFDM

11



-1 1

-1

1

I

Q

-1 1

-1

1

I

Q

-1 1

-1

1

I

Q

(a) Independent clocks (b) Over-the-wire synchronization (c) AirClock

-1 1

-1

1

I

Q

-1 1

-1

1

I

Q

-1 1

-1

1

I

Q

(a) Independent clocks (b) Over-the-wire synchronization (c) AirClock

Figure 11—Received constellation points for 4-QAM and 64-QAM in different synchronization scenarios. With different crystals,
the transmitter and receiver are not synchronized with each other leading to rotation of the constellation points. Decoding the received
points without error would therefore require phase tracking and compensation. In contrast, while using over-the-wire synchronization, the
received constellation points after equalization do not rotate relative to each other, showing that the transmitter and receiver oscillators are
synchronized. AirClock can provide performance similar to over-the-wire synchronization by using a wireless reference signal.

0 5 10 15 20 25
0

5

10

15

20

25

SNR (Traditional OFDM with pilots)

S
N

R
  
(P

il
o

tl
e

s
s

 A
ir

C
lo

c
k

 O
F

D
M

)

Figure 12—Efficiency of AirClock based pilotless OFDM. For
each location, the figure plots the SNR obtained by traditional
OFDM performing frequency compensation with pilots, and Air-
Clock based OFDM that does not use pilots. AirClock based
OFDM does not require frequency offset estimation and correc-
tion unlike traditional OFDM, yet it can achieve the same SNR
as traditional OFDM across the entire operational range of Wi-Fi.
This allows AirClock to eliminate OFDM complexity, and obtain
throughput gain by using the pilots for data transmission.

We investigate the previous result quantitatively in the

context of pilotless OFDM.

Method. As before, we place a AirClock emitter and two

USRP nodes equipped with AirClock recipients acting as

transmitter and receiver in random locations in our testbed.

For each location, we transmit OFDM packets with known

random data. Further, at each location, we perform the exper-

iment with the transmitter and receiver in two synchroniza-

tion scenarios: (a) transmitter and receiver using independent

oscillators driven by their local crystals, and (b) transmit-

ter and receiver using AirClock. We repeat the experiment

across different locations to achieve the entire range of oper-

ational SNRs of Wi-Fi (5–25 dB).

For synchronization scenario (a), we treat subcarriers -21,

-7, 7, and 21 as pilots, similar to Wi-Fi, and use them for

frequency offset tracking and compensation as in traditional

OFDM.

For scenario (b), we treat all subcarriers as data subcarriers

and do not perform any frequency offset tracking or compen-

sation during the packet. We simply compute the channel us-

ing header estimation symbols as in traditional OFDM, and

use this estimated channel for decoding the entire packet.

We compute the decoded data in each case, and calculate the

SNR achieved in the two scenarios.

Results. Fig. 12 plots the received SNR using pilotless

OFDM in synchronization scenario (b) as a function of the

received SNR using traditional OFDM with synchronization

scenario (a) at each location. As can be seen, AirClock with-

out pilots can achieve the same performance as traditional

OFDM with frequency offset tracking and compensation.

This enables significant reduction in OFDM system com-

plexity, and provides throughput gains (≈ 8% for 802.11n)

12



2 3 4 5
1

2

3

4

5

Number of Receivers

T
h

ro
u

g
h

p
u

t 
G

a
in

High SNR
Medium SNR

Low SNR

Figure 13—Scaling of network throughput with the number of
APs. AirClock’s throughput gain increases linearly with the num-
ber of transmitter-receiver pairs in the network. This is because
the total network throughput of traditional 802.11 remains constant
even as the number of transmitters increases, whereas distributed
MIMO allows all transmitters to deliver their packets simultane-
ously to all receivers.

because AirClock can reuse the pilot subcarriers for data.

7.4 Distributed MIMO with AirClock

In this section, we investigate if AirClock can enable dis-

tributed MIMO “for free”, i.e., if it can enable practical dis-

tributed MIMO systems without the need for phase tracking

and compensation algorithms to synchronize transmitters.

Method. As in all cases, we place a AirClock emitter in

our testbed. We then place USRP nodes equipped with Air-

Clock recipients to act as APs and clients in our testbed.

Similar to the evaluation scenario in [28], we evaluate dis-

tributed MIMO in three different SNR regimes: low (5-

10 dB), medium (10-16 dB), and high (> 16 dB). Since US-

RPs cannot perform carrier sense due to high software la-

tency, we evaluate the performance of traditional 802.11 by

scheduling each transmitter so that it gets its fair share of the

medium. We repeat the experiment for different node place-

ments and different number of transmitter-receiver pairs.

Results. Fig. 13 plots the throughput gain obtained by dis-

tributed MIMO using AirClock as a function of the num-

ber of APs, for different SNR ranges. As can be seen,

AirClock enables the wireless network throughput to scale

with the number of transmitter-receiver pairs, for a gain of

3.95 − 4.61× across the range of SNRs. This is because,

with traditional 802.11, only one transmitter-receiver pair is

active at any time irrespective of the number of transmit-

ters. In contrast, distributed MIMO enables all transmitters

to transmit jointly to their desired receivers without interfer-

ing with each other, thus achieving throughput proportional

to the number of active transmitters. This shows that, by us-

ing AirClock, distributed MIMO systems can achieve results

similar to prior work [28] without the need for phase tracking

and compensation algorithms.

7.5 Distributed Rate Adaptation for Wireless Sensors

In §5.2, we describe how AirClock’s synchronization

primitive enables the implementation of distributed rate

adaptation for sensor networks, similar to distributed rate

20-25 16-24 12-18 5-12 5-20
0

40

80

SNR (dB)

T
h

ro
u

g
h

p
u

t 
(K

b
p

s
)

AirClock TDMA

120

Figure 14—Channel Quality versus Throughput for Dis-
tributed Rate Adaptation.AirClock enables distributed rate adap-
tation for wireless sensors. it delivers a throughput gain between
1.64-3x for a network of 6 wireless sensors

adaptation for backscatter networks. We investigate the per-

formance of such distributed rate adaptation.

Method. As in other experiments, we deploy an AirClock

emitter in the testbed. We deploy 6 USRP nodes equipped

with AirClock implementing the Zigbee protocol and acting

as sensors, and one USRP node with AirClock acting as a

sink. We compare distributed rate adaptation with AirClock

with a TDMA scheme, where only one sensor transmits at a

time, and the different sensors transmit one after the other.

We evaluate both schemes in various SNR ranges.

Results. Fig. 14 plots the throughput of distributed rate adap-

tation using AirClock, and of traditional TDMA, for dif-

ferent SNR ranges. Distributed rate adaptation can achieve

1.64 − 3× the throughput of traditional TDMA. Since tra-

ditional TDMA cannot take advantage of good channel con-

ditions to increase its transmission rate, the throughput of

traditional TDMA is constant independent of the SNR. In

contrast, distributed rate adaptation can exploit good chan-

nel conditions by allowing the receiver to decode multiple

simultaneous transmitters from a single collision. Since the

receiver can decode more simultaneous transmitters as the

SNR increases, the throughput gain of distributed rate adap-

tation increases with the average SNR of the network, similar

to how the throughput of traditional rate adaptation increases

with increasing link SNR.

8. CONCLUSION

This paper presents AirClock, a system that can synchro-

nize multiple nodes using a reference signal that they receive

over the wireless medium. AirClock has a simple, low-cost,

low-power architecture that easily integrates with today’s

wireless transceivers. AirClock provides an abstraction that

multiple different wireless nodes are driven by the same ref-

erence clock, and hence enables straightforward implemen-

tation of a variety of distributed PHY algorithms, including

distributed MIMO and distributed rate adaptation for sensor

networks. We believe that AirClock’s synchronization prim-

itive can serve as a building block that brings a large body of

distributed information theoretic schemes closer to practice.

13



REFERENCES

[1] IEEE standard for information technology–specific re-

quirements part 11: Wireless LAN medium access con-

trol (MAC) and physical layer (PHY) specifications

amendment 5: Enhancements for higher throughput.

IEEE, pages c1 –502, 29 2009.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and

E. Cayirci. Wireless sensor networks: a survey. Com-

puter networks, 38(4):393–422, 2002.

[3] Analog Devices, “Analog Devices PLL”. http://

www.analog.com/.

[4] D. Anderson, T. Shanley, and R. Budruk. PCI ex-

press system architecture. Addison-Wesley Profes-

sional, 2004.

[5] E. Aryafar, N. Anand, T. Salonidis, and E. Knightly.

Design and experimental evaluation of multi-user

beamforming in wireless LANs. InMobicom 2010.

[6] N. August, H.-J. Lee, M. Vandepas, and R. Parker. A

TDC-less ADPLL with 200-to-3200 MHz range and

3 mw power dissipation for mobile SOC clocking in

22nm CMOS. In Solid-State Circuits Conference Di-

gest of Technical Papers (ISSCC), 2012 IEEE Interna-

tional, pages 246–248. IEEE, 2012.

[7] H. V. Balan, R. Rogalin, A. Michaloliakos, K. Psounis,

and G. Caire. Airsync: Enabling distributed multiuser

mimo with full spatial multiplexing. 2012.

[8] C. A. Balanis. Antenna theory: analysis and design.

John Wiley & Sons, 2012.

[9] P. Baronti, P. Pillai, V. W. Chook, S. Chessa, A. Gotta,

and Y. F. Hu. Wireless sensor networks: A survey on

the state of the art and the 802.15. 4 and ZigBee stan-

dards. Computer communications, 30(7):1655–1695,

2007.

[10] R. H. Bloks. The IEEE-1394 high speed serial bus.

Philips Journal of Research, 50(1):209–216, 1996.

[11] C.-L. Cheng, F.-R. Chang, and K.-Y. Tu. Highly accu-

rate real-time GPS carrier phase-disciplined oscillator.

Instrumentation and Measurement, IEEE Transactions

on, 54(2):819–824, 2005.

[12] Cisco, “Cisco Aironet 2600 Access Point”. http://

www.cisco.com/en/US/prod/collateral/

wireless/ps5678/ps12534/data_sheet_

c78-709514.pdf.

[13] S. C. Ergen. ZigBee/IEEE 802.15.4 summary.

http://pages.cs.wisc.edu/~suman/

courses/838/papers/zigbee.pdf, 2004.

[14] Ettus, Universal Software Radio Peripheral. http://

www.ettus.com.

[15] FCC, “FCC online table of frequency allocation, April

16, 2013”.

[16] Y. Hiraku, I. Hayashi, H. Chung, T. Kuroda, and

H. Ishikuro. A 0.5 V 10MHz-to-100MHz 0.47

µW/MHz Power Scalable AD-PLL in 40nm CMOS.

[17] Jackson Labs, Fury GPSDO. http://

jackson-labs.com/.

[18] Laird Technologies, “Laird VHF antenna antenna”.

https://www.tessco.com/products/

displayProductInfo.do?sku=59459.

[19] S. H. Lim, Y.-H. Kim, A. El Gamal, and S.-Y. Chung.

Noisy network coding. IEEE Transactions on Informa-

tion Theory, 57(5):3132–3152, 2011.

[20] I. Maric, N. Liu, and A. Goldsmith. Encoding against

an interferer’s codebook. In 46th Annual Allerton Con-

ference on Communication, Control, and Computing,

2008, pages 523–530. IEEE, 2008.

[21] Maxim Integrated, “VHF/UHF Low-Noise

Amplifiers.”. http://datasheets.

maximintegrated.com/en/ds/

MAX2664-MAX2665.pdf.

[22] MiniCircuits. http://www.minicircuits.

com.

[23] B. Nazer and M. Gastpar. The case for structured ran-

dom codes in network capacity theorems. European

Transactions on Telecommunications, 19(4):455–474,

2008.

[24] NIST. NIST Radio Station WWVB. http://www.

nist.gov/pml/div688/grp40/wwvb.cfm.

[25] NIST. Radio Station WWV. http://www.nist.

gov/pml/div688/grp40/wwv.cfm/.

[26] F. Quitin, M. M. U. Rahman, R. Mudumbai, and

U. Madhow. A scalable architecture for distributed

transmit beamforming with commodity radios: Design

and proof of concept. Wireless Communications, IEEE

Transactions on, 12(3):1418–1428, March 2013.

[27] H. Rahul, H. Hassanieh, and D. Katabi. SourceSync:

A Distributed Wireless Architecture for Exploiting

Sender Diversity. In ACM SIGCOMM 2010, New

Delhi, India, August 2010.

[28] H. Rahul, S. S. Kumar, and D. Katabi. Megamimo:

Scaling wireless capacity with user demand. In SIG-

COMM, 2012.

[29] Silicon Labs, “ Jitter Attenuater’. http://

www.silabs.com/Support%20Documents/

TechnicalDocs/Si5328.pdf.

[30] Silicon Labs, “High-Performance, Integrated Zig-

Bee/802.15.4 System-on-Chip.”. http://

www.silabs.com/SupportDocuments/

TechnicalDocs/EM35x.pdf.

[31] M. Speth et al. Optimum receiver design for wire-

less broad-band systems using OFDM- I. Comm, IEEE

Trans. on, 47(11):1668 –1677, Nov. 1999.

[32] Texas Instruments, “True System-on-Chip Solution for

2.4-GHz IEEE 802.15.4 and ZigBee Applications.”.

http://www.ti.com/lit/ds/symlink/

cc2530.pdf.

[33] J. Wang, H. Hassanieh, D. Katabi, and P. Indyk. Ef-

ficient and reliable low-power backscatter networks.

ACM SIGCOMM Computer Communication Review,

42(4):61–72, 2012.

14




