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Abstract

Recently, we presented a new image pyramid, called the
Riesz pyramid, that uses the Riesz transform to manipulate
the phase in non-oriented sub-bands of an image sequence
to produce real-time motion-magnified videos. In this report
we give a quaternionic formulation of the Riesz pyramid,
and show how several seemingly heuristic choices in how
to use the Riesz transform for phase-based video magnifica-
tion fall out of this formulation in a natural and principled
way. We intend this report to accompany the original paper
on the Riesz pyramid for video magnification.

1. Introduction
Numerous phenomena exhibit small motions that are in-

visible to the naked eye. These motions require computa-
tional amplification to be revealed [3, 4, 6, 8]. Manipulat-
ing the local phase in coefficients of a complex steerable
pyramid decomposition of an image sequence is an effective
way to amplify small motions. However, complex steerable
pyramids are very overcomplete (21 times) and costly to
construct, making them unsuitable for real-time processing.

Recently, we presented a new image pyramid represen-
tation, the Riesz pyramid, that is suitable for real-time Eule-
rian phase-based video processing [7]. This representation
consists of first decomposing an image into non-oriented
sub-bands and then applying an approximate Riesz trans-
form, the natural two dimensional generalization of the
Hilbert transform, to each sub-band. The Riesz transform
is a two channel filter bank, so the coefficients of the Riesz
pyramid are triples consisting of the sub-band value and two
Riesz transform values [1, 5]. We showed that the Riesz
pyramid can be used for phase-based motion magnification
because the Riesz transform is a steerable Hilbert trans-
former that allows us to compute a quadrature pair that is 90
degrees out of phase with the original sub-band with respect
to the dominant orientation at every pixel. This means we
only phase-shift and translate image features in the direc-
tion of the dominant orientation rather than in a sampling of

orientations as done in the complex steerable pyramid. This
vastly reduces the overcompleteness of the representation
and makes the computation a lot more efficient.

However, this formulation has an ambiguity as the lo-
cal phase at a point can be positive or negative depending
on whether the orientation is expressed by an angle θ or its
antipode θ + π. This ambiguity is not present in the com-
plex steerable pyramid as the orientation of each sub-band
is fixed. This causes problems when performing spatiotem-
poral filtering on the phases, especially in regions where the
orientation angle wraps around regardless of what specific
angle is specified as the wraparound point (Fig. 1(c)).

We resolve this problem by turning to the quaternionic
formulation of the Riesz pyramid triples [1]. Instead of us-
ing the local phase as specified before, we spatiotemporally
filter the quaternionic phase, which is invariant to the afore-
mentioned ambiguity. This quaternionic phase is related to
a quaternion by the quaternion logarithm in the same way
the phase of a complex number is related to it by the com-
plex logarithm.

This work is meant to supplement Wadhwa et al. 2014
[7], where we used the quaternionic phase we derive in this
report without mathematical justification. This report con-
centrates on the technical details and definitions of how to
use quaternions to perform phase analysis and video magni-
fication. Further details about the Riesz pyramid and motion
magnification results on natural and synthetic sequences
can be found in [7].

2. Background

A Riesz pyramid coefficient consists of an input sub-
band I and two Riesz transform values (R1, R2). This triple
can be used to determine the local amplitude A, local phase
φ and local orientation θ [5]. In Eq. 3 in Wadhwa et al.
2014 [7], reproduced here, we related the Riesz pyramid
coefficient with these three quantities via the equation

I = A cos(φ), R1 = A sin(φ) cos(θ), R2 = A sin(φ) sin(θ)
(1)
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(a) Input (b) Phase difference (c) Amplified with (b)

(d) φ cos(θ) difference (e) φ sin(θ) difference (f) Amplified with (d,e)

Figure 1. The motion between the input (a) and a copy shifted
to the left by one half pixel is magnified in two ways. First, the
phase difference of φ (b) is spatially denoised and then used to
magnify the second frame (c). In the bottom row, the difference
in the quantities φ cos(θ) and φ sin(θ) (d-e) are spatially denoised
and then used to amplify the second frame (f). In (b,d,e), low
amplitude regions are masked in yellow, middle gray corresponds
to a difference of zero and only a single sub-band is shown.

That is, the local phase φ and orientation θ are angles in a
spherical representation of the value (I,R1, R2). While we
can solve for these angles, there is not a unique solution. If
(A, φ, θ) is a solution to Eq. 1, so is (A,−φ, θ + π). Our
solution to this problem was to instead consider

φ cos(θ), φ sin(θ) (2)

which are invariant to this sign ambiguity. If the Riesz pyra-
mid coefficient is viewed as a quaternion, then Eq. 2 is the
quaternion logarithm of the normalized coefficient. This is
completely analogous to the complex steerable pyramid, in
which the phase is the complex logarithm of a complex co-
efficient. This justifies our use of Eq. 2 as a proxy for the
motion. We review complex exponentiation and logarithms
and quaternions in the remainder of this section.

Complex Exponential and Logarithm The exponential
function of a complex number z = a + ib can be defined
through the power series

ez =
∞∑
n=0

zn

n!
= ea(cos(b) + i sin(b)). (3)

The inverse (logarithm) of the map is not well-defined as
multiple complex inputs map to the same output. For exam-
ple, ei2π = ei4π = 1, which means that log(1) could equal

i2π or i4π in addition to its usual value of 0. This problem
can be solved by restricting the imaginary part of the loga-
rithm to lie in the range [−π, π). That is, the imaginary part
takes its principal value. Then the logarithm of a complex
number z = a+ ib is

log(z) = log(
√
a2 + b2) + iatan2(b, a). (4)

In the case of a unit complex number, the first term is zero
and we are left with

log(z) = iatan2(b, a), (5)

which is just the principle value of the phase of the complex
number. Therefore, complex logarithm and exponentiation
give a useful way to go from a complex number to its phase
and back again.

Quaternions Quaternions are a generalization of the
complex numbers, in which there are three imaginary units,
denoted i, j and k, so that each quaternion is characterized
by four numbers, one real and three imaginary. Quaternion
multiplication is associative and distributive with addition
and can therefore be fully defined by the following property
of the imaginary units:

− 1 = i2 = j2 = k2 = ijk. (6)

Specifically, multiplication is given by

(q1 + iq2 + jq3 + kq4)(r1 + ir2 + jr3 + k4r) =
(q1r1 − q2r2 − q3r3 − q4r4) +
i(q1r2 + q2r1 + q3r4 − q4r3) +
j(q1r3 − q2r4 + q3r1 + q4r2) +
k(q1r4 + q2r3 − q3r2 + q4r1).

(7)
Note that multiplication is noncommutative.

For a quaternion q = q1 + iq2 + jq3 + kq4, its conjugate
q∗, norm ‖q‖ and inverse q−1 are defined as

q∗ =q1 − iq2 − jq3 − kq4, (8)

‖q‖ =
√
q21 + q22 + q23 + q24 , (9)

q−1 =q∗/‖q‖2, (10)

where the third definition follows from the first two. The
exponential of a quaternion q = q1 + v (where v = iq2 +
jq3+kq4) is defined by its power series as with the complex
number (Eq. 3),

eq =
∞∑
n=0

qn

n!
= eq1

(
cos(‖v‖) +

v
‖v‖ sin(‖v‖)

)
. (11)

The inverse of this function is

log(q) = log(‖q‖) +
v
‖v‖acos

(
q1
‖q‖

)
. (12)



In the case of a unit quaternion, where ‖q‖ = 1, this sim-
plifies to

v
‖v‖acos(q1). (13)

This is an imaginary quantity that is analogous to Eq. 5. We
refer to it as the quaternionic phase to distinguish it from
the local phase in the non-quaternionic formulation of the
Riesz pyramid in [7].

3. Quaternion Representation of Riesz Pyra-
mid

Now that we have defined quaternions, we can represent
the Riesz pyramid coefficient triple (I,R1, R2) as a quater-
nion r with the original subband I being the real part and the
two Riesz transform components (R1, R2) being the imag-
inary i and j components of the quaternion

r = I + iR1 + jR2 (14)

or if we use Eq. 1, we can write this as

r = A cos(φ)+ iA sin(φ) cos(θ)+jA sin(φ) sin(θ). (15)

Rather then solving for the local amplitude A, phase φ and
orientation θ, we instead use the quaternionic phase we de-
fined earlier. That is, we can express the amplitude and
quaternionic phase (Fig. 2(c)) as

A = ‖r‖
iφ cos(θ) + jφ sin(θ) = log(r/‖r‖) (16)

The second quantity is computed by applying Eq. 13 to the
specific case of normalized Riesz pyramid coefficients and
is invariant to whether the local phase and orientation are φ
and θ or the antipode −φ and θ + π.

4. Video Magnification with Quaternions
We perform video magnification in a similar way as

Wadhwa et al. 2013 (Fig. 2). However, rather than comput-
ing the local phase, which has an ambiguous sign, we in-
stead compute the quaternionic phase of the Riesz pyramid
coefficients and filter them first in time and then in space.
This resolves the sign issue and is completely analogous to
Wadhwa et al. 2013, except instead of filtering the com-
plex logarithm of the normalized coefficients in a complex
steerable pyramid, we filter the quaternionic logarithm of
the normalized coefficients in a Riesz pyramid.

4.1. Filtering of Quaternionic Phase

While the quaternionic phase resolves the sign ambiguity
in filtering φ(x, y, t) directly, it is still a wrapped quantity.
That is, iφ cos(θ)+ jφ sin(θ) and i(φ+2π) cos(θ)+ j(φ+
2π) sin(θ) correspond to the same value. Therefore, instead

of filtering the quaternionic phase directly, we instead use
a technique by Lee and Shin [2] to filter a sequence of unit
quaternions. This technique is tantamount to phase unwrap-
ping the quaternionic phases in time and then performing
LTI filtering. We use it to LTI filter the Riesz pyramid co-
efficients at each pixel in each scale in time and then in a
subsequent step we spatially smooth the pixel values with
an amplitude weighted blur to improve SNR. We will also
make the assumption that the local orientation at any pixel
is roughly constant in time and approximately locally con-
stant in space.

Suppose at a single location (x, y) in a single scale ωr,
the normalized Riesz pyramid coefficients are

r1, r2, . . . , rn (17)

where rm = cos(φm) + i sin(φm) cos(θm) +
j sin(φm) sin(θm), the most general form of a unit
quaternion with no k component.

In ordinary complex phase unwrapping, we would take
the principle value of the difference between successive
terms and then do a cumulative sum to give an unwrapped
sequence in which the difference between two successive
terms was always in the interval (−π, π]. We do the same
thing here. We compute the principle value of the phase
difference between successive coefficients by dividing them
and then taking the logarithm.

log(r1), log(r2r−1
1 ), . . . , log(rnr−1

n−1) (18)

The terms rmr−1
m−1 will in general have nonzero k com-

ponent (Eq. 7). However, if we make the assumption that
θm = θ+ ε, that is that the local orientation is roughly con-
stant over time at every pixel, the k term will be close to
zero. More explicitly,

rmr−1
m−1 = cos(φm − φm−1)

+ i sin(φm − φm−1) cos(θ)
+ j sin(φm − φm−1) sin(θ) +O(ε)

(19)

which, ignoring the O(ε) term, has logarithm

i([φm − φm−1]) cos(θ) + j([φm − φm−1]) sin(θ) (20)

where the bracketed terms are taken modulo 2π.
The second step is perform a cumulative sum of Eq. 18

φ1u, (φ1 + [φ2 − φ1])u, . . . ,

(
φ1 +

n∑
l=2

[φl − φl−1]

)
u

(21)
where u = i cos(θ) + j sin(θ). If we let φ′m = φ1 +∑m
l=2[φl − φl−1], we can more compactly write this series

as
iφ′m cos(θ) + jφ′m sin(θ) (22)

At every pixel, we perform temporal filtering on this quan-
tity to isolate motions of interest.
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Figure 2. A processing pipeline for motion magnification with the Riesz pyramid. A region of interest (highlighted in green) of an input
(a) is decomposed using a Laplacian-like pyramid (only one level shown). The Riesz transform of this level is taken to produce the Riesz
pyramid (b). The quaternion norm is used to compute the amplitude (c, top row) and the quaternion logarithm is used to produce the
quaternionic phase (c, bottom rows). The quaternionic phase is spatio-temporally filtered (d) to isolate motions of interest and then this
quantity is used to phase-shift the input Riesz pyramid level to produce a motion magnified subband (e). These subbands can then be
collapsed to produce a motion magnified video (not shown).

Spatial Smoothing We can perform a spatial amplitude
weighted blur with Gaussian kernel Kρ with standard devi-
ation ρ on the i and j components of the temporally filtered
signal to further increase SNR

i
Aφ′ cos(θ) ∗Kρ

A ∗Kρ
+ j

Aφ′ sin(θ) ∗Kρ

A ∗Kρ
(23)

where A is the amplitude of the Riesz pyramid coeffi-
cients. If we use our assumption that the orientation does
not change substantially in the support of Kρ, then we can
move cos(θ) and sin(θ) outside of the convolution in Eq. 23
to get.

i cos(θ)φ′′ + j sin(θ)φ′′ (24)

where φ′′ = Aφ′∗Kρ

A∗Kρ
.

4.2. Amplification

We motion amplify a Riesz pyramid coefficient in the
same way we would phase-shift a complex number. First,
we perform a quaternion exponentiation on the filtered and
amplified (by α) quaternionic phase (Eq. 24) to produce a
unit quaternion

cos(αφ′′) + i sin(αφ′′) cos(θ) + j sin(αφ′′) sin(θ) (25)

We then multiply this unit quaternion by the original coef-
ficient I + iR1 + jR2 in the Riesz pyramid. We only need
the real part of the result, which by Eq. 7 is equal to

I cos(αφ′′)−R1 sin(αφ′′) cos(θ)−R2 sin(αφ′′) sin(θ)
(26)

This gives the coefficients of a real Laplacian-like pyramid
for every frame, in which the motions have been magnified,
which can then be collapsed to produce a motion magnified
video (Fig. 2(e)).

In Wadhwa et al. 2014 [7], we provided an alternate for-
mulation of the magnification in terms of phase shifting the
input subband when it is regarded as the real part of a com-
plex number, whose imaginary part is a quadrature pair that
is 90 degrees phase shifted along the dominant orientation
θ. We now show that what we did in that paper produces
the same results as what we present here.

As our first step in that work, we take Eq. 23 and com-
bine the two components by multiplying by cos(θ) and
sin(θ) and then summing to get

cos(θ)
Aφ′ cos(θ) ∗Kρ

A ∗Kρ
+ sin(θ)

Aφ′ sin(θ) ∗Kρ

A ∗Kρ
= φ′′

(27)
which is Eq. 15 in Wadhwa et al. 2014 [7]. We then amplify
this quantity by α and then use complex exponentiation to
get

cos(αφ′′) + i sin(αφ′′). (28)

This is then multiplied by I + iQ where Q = R1 cos(θ) +
R2 sin(θ) is a Hilbert transform of I along the dominant
orientation θ. The multiplication yields

I cos(αφ′′)−R1 sin(αφ′′) cos(θ)−R2 sin(αφ′′) sin(θ)
(29)

which is identical to Eq. 26 showing that the quaternion for-
mulation yields the same results as that specified in Wadhwa
et al. 2014 [7].



5. Conclusion
We presented a quaternionic formulation of the Riesz

pyramid. In this formulation, we use the quaternionic phase
as a proxy for the motion signal. Because this representa-
tion is invariant to the sign ambiguity in the local phase of
the signal, we can spatially and temporally filter it to isolate
motions of interest. This can then be amplified and used to
phase shift the original Riesz pyramid coefficients to pro-
duce a motion magnified signal.
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