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Abstract

Carrier gas based thermodynamic cycles are common in water desalination applications.

These cycles often require condensation of water vapor out of the carrier gas stream. Since

the carrier gas is most likely a non-condensable gas present in very high concentrations

(60-95%), a large additional resistance to heat transfer is present. We propose to reduce

the aforementioned thermal resistance by condensing the vapor-gas mixture in a column

of cold liquid rather than on a cold surface by using a bubble column heat exchanger. A

theoretical predictive model for estimating the heat transfer rates and new experimental data

to validate this model are described. The model is purely physics based without the need for

any adjustable parameters, and it is shown to predict heat rates within 0% to -20% of the

experimental values. The experiments demonstrate that heat transfer rates in the proposed

device are up to an order magnitude higher than those achieved in existing state-of-the-art

dehumidifiers.
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Nomenclature

Notation

as specific interfacial area of the bubble column (m2/m3)

c flexible constant used by Deckwer1 (-)

cp specific heat capacity at constant pressure (J/kg·K)

cp,g average specific heat capacity at constant pressure of the vapor-air mixture (J/kg·K)

DAB diffusion coefficient (m2/s)

Db bubble diameter (m)

do sparger hole diameter (m)

g gravitational accelaration (m/s2)

H liquid height in the column (m)

h heat transfer coefficient (W/m2·K)

hair specific enthalpy of air-vapor mixture (J/kg dry air)

hfg specific enthalpy of vaporization (J/kg)

ht heat transfer coefficient for the sensible heat exchanged between bubble and liquid

column (W/m2·K)

j mass flux (kg/m2·s)
k thermal conductivity (W/m·K)

kl mass transfer coefficient (m/s)

l characteristic length (m)

lint integral length for turbulence (m)

ṁ mass flow rate (kg/s)

n exponent (-)

q heat flux (W/m2)

qlt heat flux due to condensation of vapor from the bubble in the liquid column

(W/m2)

qlt,impact heat flux due to direct condensation of vapor from the bubble on the coil surface

(W/m2)

qsensible heat flux due to the sensible heat exchange between bubble and liquid column

(W/m2)

R Thermal resistance (K·m2/W)

Rbc Thermal resistance between the liquid column and the coil surface (K·m2/W)

Rcoil Thermal resistance due to coolant flow inside the coil (K·m2/W)

Rbc Thermal resistance between the liquid column and the coil surface (K·m2/W)

Rm Mass transfer resistance (s·m2/kg)
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Rsensible Thermal resistance for the sensible heat exchange between bubble and liquid col-

umn (K·m2/W)

t surface renewal time (s)

tf average residence time of the bubble in the liquid (s)

T temperature (◦C)

Tair local energy-averaged temperature of the air-vapor bubble (◦C)

Tcoil local temperature of the coil surface (◦C)

Tcolumn local energy-averaged temperature of the liquid in the column (◦C)

Tcoolant local energy-averaged temperature of the coolant in the coil (◦C)

u velocity in the x direction (m/s)

V velocity (m/s)

Vb bubble velocity (m/s)

Vc circulation velocity (m/s)

Vg superficial velocity (m/s)

Vr radial velocity in the liquid column (m/s)

vol volume of the bubble column (m3)

Greek letters

α thermal diffusivity (m2/s)

∂ operator for partial derivative (-)

ε volumetric gas holdup (-)

ε turbulent energy dissipation rate per unit mass (m2/s3)

θ log mean temperature difference (◦C)

ν kinematic viscosity (m2/s)

ρ density (kg/m3)

σ surface tension (N/m)

ω absolute humidity (kg water vapor per kg dry carrier gas)

χ mole fraction (mol/mol)

Subscripts

da dry air

l liquid

g gas

in entering

out leaving

sat saturated state

3
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Non-dimensional Numbers

Fr Froude Number, V 2
g /(g ·Db)

Le Lewis Number, α/DAB

Lef Lewis Factor, ht/(ρcp,gkl)

Pr Prandl Number, ν/α

Re Reynolds Number, (Vg ·Db)/ν

St Stanton Number, h/(ρcpVg)

4
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Introduction

When a non-condensable gas is present, the thermal resistance to condensation of vapor

on a cold surface is much higher than in a pure vapor environment. This is, primarily, because

of the diffusion resistance to transport of vapor through the mixture of non-condensable gas

and vapor. Several researchers have previously studied and reported this effect2–10. There is

a general consensus that, when even a few mole percent of non-condensable gas is present in

the condensing fluid, the deterioration in the heat transfer rates could be up to an order of

magnitude11–16. From experimental reports in literature it can be observed that the amount

of deterioration in heat transfer is a very strong (almost quadratic) function of the mole

fraction of non-condensable gas present in the condensing vapor. For this reason, a deaerator

is usually used in power plants to prevent the accumulation of non-condensable gas in the

steam condenser. However in other applications, including water desalination, the presence

of air in steam condensation is not always avoidable.

In desalination systems using air as a carrier gas, a large percentage of air (60-95% by

mass) is present by default in the condensing stream. As a consequence it has been found

that, in these systems, the heat exchanger used for condensation of water out of an air-vapor

mixture (otherwise known as dehumidifier) has very low heat transfer coefficients (as low as

1 W/m2·K in some cases17,18). In this paper, we propose to improve the heat transfer rate

by condensing the vapor-gas mixture in a column of cold liquid rather than on a cold surface

by using a bubble column heat (and mass) exchanger.

Bubble columns are extensively used as multiphase reactors in process, biochemical and

metallurgical applications19. They are used especially in chemical processes involving reac-

tions which have a very high heat release rate associated with them (such as the Fischer-

Tropsch process used in the manufacture of synthetic fuels)20,21. We propose to apply this

device for condensation of the air-vapor mixture with a large percentage of air present in it.

Figure 1 illustrates the proposed device schematically. In this device, moist air is sparged

through a porous plate (or any other type of sparger22) to form bubbles in a pool of cold

5
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liquid. The upward motion of the air bubbles causes a wake to be formed underneath the

bubble which entrains liquid from the pool, setting up a strong circulation current in the

liquid pool23. Heat and mass are transferred from the air bubble to the liquid in the pool

in a direct contact transport process. At steady state, the liquid, in turn, loses the energy

it has gained to the coolant circulating through a coil placed in the pool for the purpose of

holding the liquid pool at a steady temperature.

[Figure 1 about here.]

Predictive model for combined heat and mass transfer

In this section, we develop a thermal resistance model for the condensation of water from

an air-vapor mixture in a bubble column heat exchanger. Figure 2 illustrates a local thermal

resistance network describing the heat and mass transfer processes in the bubble column

condenser. To draw this network, we define local energy-averaged ‘bulk’ temperatures for

the condensing mixture, the liquid in the pool, and the coolant and also approximate the

heat transfer to be locally one-dimensional.

[Figure 2 about here.]

The four temperature nodes in the network are: (1) the average local temperature of

the air-vapor mixture in the bubbles (Tair), (2) the average temperature of the liquid in the

pool (Tcolumn), (3) the local temperature of the coil surface (Tcoil), and (4) the average local

temperature of the coolant inside the coil (Tcoolant). Between Tair and Tcolumn there is direct

contact heat and mass transfer. The heat transfer is via a thermal resistance represented by

Rsensible and the mass transfer is represented as a (latent) heat source (qlt = j · hfg). The

thermal resistance due to the coil wall itself will be very small and has been neglected. This

is especially true in the cases considered in this paper since copper tubing is used. In cases

where stainless steel or a lower thermal conductivity metal is used, this resistance might

not be negligible. Between the coil surface and the bubble there could be direct contact

6
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heat exchange and associated condensation of vapor on the coil surface. The heat transfer

is via a heat transfer resistance Rimpact and the mass transfer are represented by the heat

source qlt,impact. Several researchers1,20,21,24,25 have previously studied the thermal resistance

between the pool of liquid and the immersed surface in a bubble column reactor. In the

current paper, this resistance is represented as Rbc between Tcoil and Tcolumn. Finally, there

is a convective resistance inside the coil for the coolant flow represented by Rcoil.

In order to simplify the circuit, the direct impact of the bubble on the coil surface is

approximated to have negligible effect on the heat and mass transfer (i.e. Rimpact and qlt,impact

are neglected). The experiments were designed and carried out such that this approximation

was satisfied (see section c) and the effect of direct impact was dealt with in a separate set

of experiments (see section c). Each of the remaining resistances depicted above will be

modeled using reasonable simplifying assumptions in the following paragraphs.

Thermal resistance between the liquid in the column and the coil surface

In bubble column reactors used in the chemical industry, proper design of the heat transfer

surfaces is vital to maintain catalytic activity, reaction integrity and product quality since

the reactions typically involve very high heat release rates because of their highly exothermic

or endothermic nature. In these scenarios, the temperature of the liquid in the column is of

utmost importance. Hence, several studies have been conducted over the last five decades

on modeling and measuring the heat transfer coefficients between the liquid and the heat

transfer surface.

In a pioneering effort, Konsetov24 proposed a semi-analytical model based on the as-

sumption that heat rates are determined by isotropic turbulent fluctuations in the liquid.

He approximated the characteristic dimension for heat transfer from the liquid to the coil

to be the coil diameter and used the Kutateladze model26 for determining the gas holdup.

Konsetov used a flexible constant to fit the data from the model to experimental data in

literature. This correlation, however, has not been widely used for bubble column reactor

design.

7
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Kast25 developed a model by considering that a fluid element in front of the rising bubble

receives radial momentum and moves toward the wall. This was postulated to break up the

boundary layer at the wall. The author proposed that below the bubble, liquid is sucked in

at a radial velocity Vr and that this results in a capacitive heat transport given by Vr · ρ · cp.

He further observed that Vr is propotional to the superficial gas velocity Vg and defined

Stanton number as St = h
ρl·cp,l·Vg

. Based on intuitive reasoning Kast proposed the following

correlation.

St = f(ReFrPr)n (1)

Deckwer1 used the Kolmogorov theory of isotropic turbulence27 and Higbie’s theory of

surface renewal28 to explain the form of the equation (Eq. 1) proposed by Kast. By observing

that there is no experimental evidence of a physical length scale for the heat transfer, Deckwer

postulated that the micro eddy scale of energy dissipation (see Eq. 2) proposed by Kolmogrov

is an ideal characteristic length scale for the problem at hand. The author also proposed use

of the Kolmogorov velocity (see Eq. 3) as the characteristic velocity.

l =

(
ν3

ε

)1/4

(2)

V = (νε)1/4 (3)

The heat transfer correlation (Eq. 4) thus derived by Deckwer had the same form as

Kast’s model and used a flexible constant.

St = c(ReFrPr)−0.25 (4)

In a separate publication29, the present authors have described an improved model for

predicting the heat transfer rate between the liquid in the column and the coil surface. In this

model we (like Deckwer1) used Higbie’s theory of surface renewal however, with a different

8
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length scale. In fluid elements adjacent to the surface, unsteady heat diffusion takes place

and is described by the following equation:

∂T

∂t
= α

∂2T

∂x2
(5)

The appropriate boundary conditions to describe this problem are ones that describe the

temperature T as the wall temperature Tcoil at x = 0 and all times, the bubble temperature

as the initial temperature at all x, and T as the bubble temperature at x =∞ at all times.

The final boundary condition is possible only when we approximate the fluid element to have

infinite depth and the contact times to be short.

T = Tcoil x = 0 t ≥ 0 (6)

T = Tbubble x > 0 t = 0 (7)

T = Tbubble x =∞ t > 0 (8)

Solving the above equations, we can obtain the following expression for the heat flux and

the thermal resistance.

q =
2√
π

√
kρcp
t
· (Tbubble − Tcoil) (9)

1

Rbc

=
2√
π

√
kρcp
t

(10)

From Eq. (10), it is clear that the resistance can be modeled by modeling the surface

renewal time (t). For modeling t, we need to model the characteristic length scale and

velocity scale accurately. As stated earlier, Deckwer modeled the length and velocity using

the Kolmogrov theory (Eqs. 2 & 3). These scales are indicative of the smallest eddies present

in the flow and are the scales at which energy is dissipated. These are the scales that form

the viscous sub-layer and are very small physically. Hence, this scale is unlikely to regulate

9
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the surface renewal mechanism and the physical mixing. We propose to use a more intuitive

length scale which is the integral scale of turbulence.

The integral scale is the representative size of the largest energy bearing eddy. In some

cases this scale can be defined by the physical constraints of the flow domain. For example,

in pipe flow the diameter of the pipe is of the order of the largest eddies in the flow, and

the ratio of the pipe diameter to mean velocity along the pipe is a good estimate of the time

period required to describe the flow. In other cases where the integral scale is not obvious

from the flow geometry, it can be defined using the autocorrelation of the velocity (i.e., the

correlation of a velocity component with itself) as follows:

lint =

∫ ∞
0

u(x, t) · u(x+ r, t)

u2
dr (11)

where u is the root-mean-square velocity in the x-direction and r is the distance between

two points in the flow. The determination of the integral scale using Eq. (11) is not straight-

forward30–32. Direct numerical simulations or large scale visualization experiments using

particle image velocimetery or other such techniques are normally used to obtain the auto-

correlation of velocity in a 3D flow like in bubble columns33. Instead of going into these

elaborate techniques, we propose to approximate the integral scale by the bubble diameter.

Magaud et al.34 have presented experimented data that supports this approximation. Similar

results concluding that the integral length is of the order of the bubble diameter have been

reported by other authors as well35,36.

We have presented various expressions to calculate the bubble diameter (depending on

flow regime) in a previous publication29. We use the following expression for the cases

involved in this paper37.

Db =

{
6σdo

(ρl − ρg) · g

}1/3

(12)

We also propose to use the liquid circulation velocity as the characteristic velocity. This is

10
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logical because the liquid that ‘renews’ the boundary layer formed on the heat transfer surface

is at this velocity and when we aim to calculate the time between two ‘renewals’ we need

to take this into account. Field and Rahimi38 have proposed that the following expression,

which is commonly used in literature21, is appropriate to calculate liquid circulation velocity

in bubble columns.

Vc = 1.36 {gH(Vg − ε · Vb)}1/3 (13)

According to this expression, the circulation velocity is a function of the bubble velocity and

we have previously presented various expressions for calculating the same29. An appropriate

correlation from the wide selection needs to be picked based on the conditions in the bubble

column. For the cases reported in this paper we find it appropriate to use the following

equation for evaluating bubble velocity developed based on Mendelson’s wave equation39.

Our own experimental observations showed that this correlation works well for the cases

reported in this publication.

Vb =

√
2σ

ρlDb

+
gDb

2
(14)

To calculate circulation velocity based on Eq. (13) we also need to evaluate the volumetric

gas holdup (ε), for which we propose to use the following expression provided by Joshi and

Sharma23. Several other correlations which have been reported by various researchers, but for

the conditions under which we conducted the experiments in (described in Sec. c) we find the

following correlation to be the most appropriate. Also, we find that this correlation (Eq. 15) is

the most widely used by researchers in the field. Our own experimental observations showed

that this correlation works well for the cases reported in this publication.

ε =
Vg

0.3 + 2 · Vg
(15)

Based on these expressions, we can evaluate the time between two ‘renewals’ as t = Db

Vc
. By

11
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applying this contact time to Eq. (10), we evaluate the thermal resistance between the liquid

in the column and the coil surface. We have previously presented a comparison of the model

presented here to the experimental values in literature and there is excellent agreement29.

This resistance is, however, a minor one in the network and the prediction of the same has

little effect on the overall result for the cases reported in this publication.

Thermal resistance between the liquid in the column and the bubbles

The high resistance to diffusion of vapor through a vapor-gas mixture is the reason that

regular dehumidifiers have low heat transfer coefficients. In this section, we model the equiv-

alent of the aforementioned diffusion resistance for the case of bubble column dehumidifiers.

In Fig. 2, the total heat flux between the bubbles and the liquid was modeled as the sum

of the heat flux due to condensation (qlt) and the heat flux due to heat transfer through the

resistance Rsensible. We will evaluate the latent heat using a mass transfer resistance model

and the sensible heat using a heat and mass transfer analogy. The mass transfer resistances

associated with condensation are shown in Fig. 3. In drawing these resistances it is approxi-

mated that the condensation occurs at an interface just outside the bubble surface and mass

averaged ‘bulk’ humidity ratios are defined for the vapor-gas mixture inside the bubble and

at the bubble interior surface.

[Figure 3 about here.]

The mass transfer resistances depicted in Fig. 3 are: (1) the resistance to diffusion of vapor

through the vapor-gas mixture (Rm,1) in the bulk (ωbulk) to the bubble surface (ωbubble) and

(2) the mass transfer resistance caused by bubble motion through the liquid (Rm,2). The first

resistance is not easy to model without knowing the mechanism of convective transport inside

the bubble which could be augmented by a fluid circulation caused by rapid and asymmetric

vertical motion of the bubble in the liquid pool. Since there are several complexities involved

in evaluating the mechanism of transport inside the bubble, we assume a boundary layer is

formed for diffusive transport and approximate the thickness of the boundary layer by the

12
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radius of the bubble itself. This is an upper limit for the size of the boundary layer and the

associated thermal resistance and hence, in the succeeding sections (Sec. c) it is shown that

the heat transfer and condensation rates predicted by the model consistently underestimates

those measured experimentally. The model equation is:

kl,1 =
DAB

Db/2
(16)

We model the resistance outside the bubble surface using surface renewal mechanism

(similar to that presented in Eqs. (5-10)):

kl,2 =
2√
π

√
DAB

t
(17)

The surface renewal time (t) in this case is modeled as the ratio of the bubble diameter

and the bubble slip velocity. The bubble slip velocity is the relative velocity of the bubble

with respect to the circulating liquid. The liquid circulation velocity and the bubble velocity

are calculated using the expression presented in Eq. (13) & (14) respectively. The model

equation is:

t =
Db

Vb − Vc
(18)

The heat transfer resistance Rsensible can be modeled by defining Lewis factor (Lef ) for

the vapor-gas system. The Lewis factor appears in the governing equations of simultaneous

heat and mass transfer processes (for example, in wet-cooling towers40 and in cooling coils41).

Lef is defined by Eq. (19) and is directly related to Lewis number which is a fluid property:

Lef =
ht

kl ρ cpg
(19)

Lef ∼= Le2/3 41 (20)

≈ 0.89− 0.92 for air-water systems42 (21)

Le =
α

DAB

(22)
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where ht is the heat transfer coefficient associated with Rsensible, kl is the mass transfer

coefficient associated with the latent heat, and cpg is the specific heat at constant pressure

of the vapor-gas mixture:

1

ht A
= Rsensible (23)

1

kl
=

(
1

kl,1
+

1

kl,2

)−1
(24)

Here, the heat and mass transfer coefficients are defined based on the heat transfer area of

the coil surface (A) instead of the bubble surface area. This is because from an engineering

perspective, we need to evaluate the coil area required for a certain total heat duty in the

bubble column dehumidifier.

Finally, the correlations for heat transfer coefficient for flow inside circular tubes are well

known and documented in heat transfer text books43. Based on the flow regime inside the

coil, we selected appropriate correlations to evaluate Rcoil.

Evaluation of total heat flux from the resistance model

In the preceeding sections we presented discussed the models for the various thermal

resistances in the bubble column dehumidifier (Fig. 2). In this section, we present the equa-

tions needed to solve for the total heat flux and all the temperatures in the bubble column

dehumidifier.

The heat flux through the network associated with the sum of the bubble column resis-

tance (Rbc) and the convection resistance in the coil (Rcoil) is defined as follows:

q =
Q̇

A
(25)

=
θ1

Rbc +Rcoil

(26)

The associated log mean temperature difference (θ1) is defined between the liquid column

temperature (Tcolumn) and the coolant inlet/exit temperatures. It is very important to note

14
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that experimental data in the literature and our own experimental data reported later in this

paper (See Sec. c) have shown the liquid in the column is at a constant temperature because

of rapid mixing induced by the bubbles. The LMTD is given as follows:

θ1 =
(Tcolumn − Tcoolant,in)− (Tcolumn − Tcoolant,out)

ln
(
Tcolumn−Tcoolant,in

Tcolumn−Tcoolant,out

) (27)

The heat flux can also be expressed as sum of the latent heat of condensation of the vapor

from the vapor-air bubbles into the liquid column and the associated sensible heat transfer.

q = qlatent + qsensible (28)

The sensible heat flux is the one associated with the resistance Rsensible. The heat transfer

coefficient associated with this resistance is evaluated using Eq. (19). It is important to note

that the area is normalized using the specific interfacial area of the bubbles. We have

qsensible =
θ2

Rsensible

(29)

1

ht A
= Rsensible (30)

ht = Lef · (ρcp,gkl) ·
asvol

A
(31)

The specific interfacial area is evaluated using the following widely used expression37.

as =
6ε

Db

(32)

The associated log mean temperature difference is defined between the column temperature

and the air inlet/exit temperature:

θ2 =
(Tair,in − Tcolumn)− (Tair,out − Tcolumn)

ln
(
Tair,in−Tcolumn

Tair,out−Tcolumn

) (33)

15
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The latent heat transfer rate is calculated using the following expression based on mass flux:

qlatent = j · hfg (34)

The mass flux is evaluated by using the mass conversation equation across the bubble column

condenser:

j =
ṁda

A
(ωin − ωout) (35)

The energy balance between the coolant and the air is written as follows

q =
ṁcoolantcp,coolant

A
(Tcoolant,out − Tcoolant,in) (36)

=
ṁda

A
(hair,in − hair,out) (37)

By applying a mass balance on the vapor over a incremental time dt and integrating the same

over a the residence time for the bubble in the liquid tf we obtain the following expression.

kl · as =
1

tf
ln

[
ωin − ωsat
ωout − ωsat

]
(38)

Where the bubble residence time tf is evaluated as the ratio of the liquid height and the

bubble velocity:

tf =
H

Vb
(39)

By solving Eqs. (25-39) we can obtain the heat flux and the associated temperatures from

the estimated thermal resistance [Eqs. (5-24)].

Solution technique

The equations presented in this section are solved simultaneously using Engineering

Equation Solver (EES)44. Water is used as the coolant in the coils and EES evaluates

water properties using the IAPWS (International Association for Properties of Water and

Steam) 1995 Formulation45. The vapor-gas mixture considered in this paper is moist air and
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its properties are evaluated assuming an ideal mixture of air and steam using the formulations

presented by46. Moist air properties from EES are in close agreement with the data presented

in ASHRAE Fundamentals47 and pure water properties are equivalent to those found in

NIST’s property package, REFPROP48. Dry air properties are evaluated using the ideal gas

formulations presented by Lemmon et al.49.

Experimental details

A laboratory scale test rig was designed and built to study the condensation process from

a vapor-air mixture in a bubble column condenser. Figure 4 shows a schematic diagram of

the test apparatus used in the study. The apparatus consists of two bubble columns (4) and

(9) with dimensions of 12′′ (304.8 mm) width × 12′′ (304.8 mm) length × 18′′ (457.2 mm)

height made from transparent PVC sheets of 3/8′′ (9.52 mm) thickness. The first column

(4) is used to produce moist air for the experiment by passing air through a sparger (3)

into hot water. The water in this column is heated by a 1.5 kW submerged electric heater

(5). The air is supplied from a compressor and the flow rate is controlled by valve (1) and

measured by rotameter (2). The humidified air from the first bubble column flows to the test

column (9) where the dehumidification measurements are carried out. Before entering the

second column, the flow rate is measured by a rotameter (6), the pressure is measured by a

pressure gauge (7), and the dry and wet bulb temperatures are measured with thermocouples

T1 and T2 respectively. Air flows into the sparger of the test column (8) where it is cooled

and dehumidified using the cold copper coil (10). The copper coil has a pipe diameter of

1/4′′ (6.35 mm), a coil height of 6′′ (152.4 mm) and a turn diameter of 9′′ (228.6 mm). Cold

water acting as the coolant flows inside the coil and is pumped from the cooling tank (15)

where chilled water coil (16) keeps the temperature inside this tank almost constant. The

dry bulb temperature and wet bulb temperature of the outlet air from the second column

are measured by thermocouples T3 and T4 respectively. The two columns are provided with

a charging and empting valve at the back side (not shown in figure). Cold water from the

17
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cooling water tank (15) is pumped into the copper coil (10). The flow rate of the water

is adjusted by the inline valve (11) and the bypass valve (12). The flow rate of water is

measured by rotameter (13) and the fine temperature of the water can be adjusted by the

inline electric water heater (14). The inlet and outlet water temperature from the copper

coil are measured by thermocouples T5 and T6 respectively. The water temperature in the

condenser bubble column is measured at two levels using thermocouples T7 and T8.

[Figure 4 about here.]

The sparger (3) of the humidifier bubble column (4) is a cartridge type sparger of 10′′ (254

mm) length. The sparger is from Mott corporation made of stainless steel (316LSS) porous

pipe of 2′′ (50.8 mm) outside diameter and 1/16′′ (1.59 mm) thickness. This sparger generates

uniform and fine bubble sizes and has a pressure drop less than 13.7 kPa (2 psi). The sparger

(8) in the dehumidifier column is made of aluminium box 10′′ (254 mm) × 10′′ (254 mm) ×

1′′ (25.4 mm). The top cover of this box is made of an acrylic sheet with a number of holes

drilled in it to generate the air bubbles. There are 5 acrylic sheets; each one has different

number of holes, hole diameter, and hole pitch as shown in Table 1. The thermocouples used

in the apparatus are of K-type are connected to a data logger and a PC. The thermocouples

and the data logging system have an uncertainty of ± 0.1◦C. The rotameters used for air

flow measurements have a range of 0.8 - 8.2 ft3/min (378 - 3870 cm3/s) with a least count of

± 0.2 ft3/min (± 94.4 cm3/s). The rotameter used for water flow measurement has a range

of 0.01 - 0.85 L/min with a least count of 0.01 L/min.

[Table 1 about here.]

In order to study the impact of bubble-on-coil, we designed a set of circular coils to avoid

impact and a set of serpentine coils which will facilitate impact. The photographs of the two

set of coils are shown in Fig. 5. It may be observed that the circular coil has a turn diameter

of 9′′ (228.6 mm) and the sparger face area is 8′′ (203.2 mm) x 8′′ (203.2 mm) which brings

the point of inception of the bubble to be vertically away from the coil. This helps minimize
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impact. In the serpentine coil, each pass of the coil is deliberately made to cross over the

sparger holes maximizing impact. The results are markedly different for the two coils and

are reported later on in this paper (see Sec c).

[Figure 5 about here.]

Results and discussion

In this section, we explain the importance of parameters such as superficial velocity, inlet

mole fraction of vapor, bubble diameter, liquid height and effect of bubble-on-coil impact on

the performance of a bubble column dehumidifier by varying these parameters independently.

The performance parameter of interest is the total heat flux exchanged between the

coolant and the air-vapor mixture. Other alternative performance parameters, such as an

‘equivalent’ heat transfer coefficient, are not strictly correct, in contrast to the situation for a

heat exchanger. This is because defining a global value for heat transfer coefficient will involve

defining a log mean temperature difference (or another such global parameters for the device

in its entirety) between the air and water temperatures at the inlet and outlets. This would

amount to associating the mass transfer (and the associated latent heat release, which is the

major portion of the total heat exchanged between the fluid streams) with a temperature

difference: and this is ofcourse inappropriate because the mass transfer is associated with

a concentration difference and not a temperature difference50–52. It is, hence, logical to use

heat flux as the performance parameter since it captures all the important characteristics of

the bubble column dehumidifier (including the condensation rate) but does not involve all of

the aforementioned issues.

Effect of superficial velocity

Several researchers have studied the effect of superficial velocity on mass transfer in bubble

columns20,53–56. These studies, however, did not involve condensation from the bubble into

the liquid column. A typical example of the mass transfer studies in literature would be
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absorption of isobutylene in aqueous solutions of H2SO4
57,58. Researchers have also separately

studied the effect of superficial velocity on heat transfer to immersed surfaces in bubble

column reactors1,24,25,59–64. However, we should note that the effect of superficial velocity on

simultaenous heat and mass exchange with condensation has not been studied before (to the

best knowledge of the authors), and it will be the focus of this section.

The general consensus in literature is that the heat and mass transfer coefficients are

higher at higher superficial velocity65. Studies have also shown that the rate of increase of

heat transfer coefficients with gas velocity is more pronounced at lower gas velocity, and

more gradual at higher gas velocities. This is because of the change in flow regime from

homogenous bubbly flow to the churn-turbulent regime. The effect of increase in superficial

velocity is reported to be lower in the churn-turbulent regime.

A flow regime map reported by Shah et al.20 predicts that the transition velocity for the

experimental bubble column reported in the current publication lies somewhere between 4.5

and 7 cm/s (based on an effective column diameter of 30.5 cm). During experimentation it

was observed that between superficial velocities of 3 to 8 cm/s the bubble flow was either

perfect or imperfect bubbly flow (churn turbulence and slug flow was not observed).

Figure 6 illustrates experimental and calculated values of heat flux at various values of

superficial velocity. These results are at fixed values for bubble diameter, inlet mole fraction

and water column height. The trend and the slope of the curve presented in Fig. 6 is

representative of the trend obtained at other values of the aforementioned fixed parameters.

From Fig. 6, it may be observed that as the superficial velocity was increased so was the

heat flux which is a conclusion consistent with other such studies in literature. In addition,

it can be observed that the predictive model estimates the effect of the superficial velocity

accurately.

[Figure 6 about here.]

The uncertainity of measurement on the superficial velocity is ± 0.11 cm/s and that on the

heat flux is ± 5%.
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Effect of bubble diameter

In the literature, no consensus is evident on the effect of bubble diameter on transport

coefficients in bubble columns. While on the one hand some researchers have reported that

bubble properties (including bubble diameter) affect the mass transfer coefficient greatly66–68,

on the other hand Deckwer1 has suggested that there is no evidence of the effect of bubble

diameter on heat transfer to immersed surfaces. Also, the effect of bubble diameter on

simulatenous heat and mass transfer has not been investigated yet.

Our experiments and modeling show (see Fig. 7) that there is a relatively minor but

discernible effect of bubble diameter on the total heat flux exchanged in a bubble column

dehumidifier. The heat flux is found to decrease with an increase in bubble diameter. This

result is found to be consistent at other values of the fixed parameters (superficial velocity,

inlet mole fraction and liquid height) as well. It is to be noted that the predictive model

proposed in Sec. c predicts the trend in Fig. 7 to a good degree of accuracy.

[Figure 7 about here.]

Effect of inlet mole fraction

In steam condensers with a small amount of non-condensable gas present (< 10% by mole)

the inlet mole fraction of vapor has been reported to have a very sharp effect on the heat

transfer coefficient11,15. As mentioned earlier (in Sec. c), experimental data in the literature

suggests that the effect is almost quadratic in nature. In this section, we investigate the

effect of the same parameter in a bubble column dehumidifier.

The inlet mole fraction of vapor is varied from 10% to 25% (3.6 to 9 times lower than

regular condensers) at fixed values of superficial velocity, bubble diameter and liquid height.

Fig. 8 illustrates the experimental and modeling results for the same. A strong effect of

the mole fraction is seen, as is also the case in steam condensers. From our experiments,

we observe that the effect is more linear than quadratic (in the studied range). Hence,

the presence of non-condensable gas is affecting the heat transfer to a much lesser degree
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than in the film condensation situations of a standard dehumidifier. This demonstrates the

superiority of the bubble column dehumidifier69. This observation is further discussed in

Sec. c. Figure 8 also illustrates that the predictive model predicts the effect of inlet mole

fraction very accurately.

[Figure 8 about here.]

The uncertainity of measurement on the mole fraction is ± 1%.

Effect of liquid column height

Regular dehumidifiers and steam condensers can be designed to have minimal pressure

drop (as low as a few hundred Pa). In bubble columns, a large percentage of the pressure

drop that occurs on the vapor side is due to the hydrostatic head of the liquid in the column

that the air-vapor mixture has to overcome. Thus, it is desirable to keep the liquid height

to a minimum value. The cooling coils must remain fully immersed in the liquid pool, and

hence, the minimum liquid height should be that which just immerses the coils.

[Figure 9 about here.]

Figure 9 illustrates that there is no effect of reducing the liquid height from 10′′ (254

mm) to 6′′ (152.4 mm - the minimum height at which the coil was fully immersed). This

can be understood by considering the length scale of the liquid circulation, which we have

postulated as the intergral length of turbulence. As explained earlier in Sec. c, the integral

length is very close to the bubble diameter. Hence, the scale at which the circulation happens

in the liquid is of the order of a millimeter which is two orders of magnitude lower than the

liquid height. Therefore, unless the liquid height is reduced to a few millimeters, it will not

have an effect on the bubble column performance. This is a very significant consideration

when designing bubble column dehumidifiers for systems which cannot take large gas side

pressure drops, such as the humidification dehumidification desalination (HDH) system70,71.

The intricacies of integrating the bubble column dehumidifier with low liquid height in an

HDH system are explained in a separate publication72.
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Comparison of model and experiments

We have seen that the predictive model estimates the effect of bubble diameter, super-

ficial velocity and inlet mole fraction of vapor on heat flux exchanged in a bubble column

dehumidifier accurately. In Fig. 10 we present a comparison of the experimental data and

the model for various boundary conditions in a parity plot. There is excellent agreement

(within -20%), and as per our expectation, the model consistently underpredicts the heat

flux. This is because we approximated the boundary layer inside the bubble to be of the

order of the bubble radius itself (Sec. c), which is clearly an overestimation of the associated

thermal resistance.

[Figure 10 about here.]

Effect of bubble-on-coil impact

In consideration of the effect of all of the different parameters (described in the previous

paragraphs), bubble-on-coil impact was avoided during experimentation (see Sec. c) and

neglected in the predictive model. In this section, we study the effect of impact using the

serpentine coils shown in Fig. 5. Figure 11 illustrates this effect. It may be observed that

impact raises the heat transfer rates to significantly higher values. Thus, in case of the

serpentine coils, a major portion of the heat communicated between the air-vapor bubbles

and the coils is through direct impact between the two. Hence, to obtain higher heat transfer

rates it is desirable to design coils to have maximum impact.

[Figure 11 about here.]

Comparison with existing devices

A state-of-the-art dehumidifier (which works operates in the film condensation regime)

procured from George Fischer LLC was found to yield a maximum heat flux of 1.8 kW/m2

(as per the design specification) compared to a maximum of 8 kW/m2 obtained in the bubble

column dehumidifier (with high bubble-on-coil impact and a superficial velocity of 7 cm/s)
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demonstrating the superior performance of the novel device. This comparison has been

carried out at the same inlet conditions for the vapor-air mixture and the coolant streams.

Also, the streamwise temperature differences were similar in both the cases.

Concluding remarks

This paper has proposed a novel bubble column vapor-gas condenser (or dehumidifier)

for condensation of vapor in the presence of a large percentage of non-condensable gas. The

main conclusions are follows.

1. Bubble column dehumidifiers have an order of magnitude higher heat rates than existing

state-of-the-art dehumidifiers operating in the film condensation regime.

2. The bubble column should be designed for high superficial velocity, low bubble diameter

and maximum bubble-on-coil impact. In order to minimize pressure drop, the liquid

height can be kept to a minimum such that the coil is entirely submerged in the liquid.

This is possible because the height has no effect on the performance of the device if it

is greater than the bubble diameter (≈4-6 mm).

3. The inlet mole fraction of the vapor is found to have a weaker effect on the performance

of the device than in a regular dehumidifier (in which the performance deteriorates

quadratically with the vapor mole fraction).

4. A physics based predictive heat transfer model based on a thermal resistance circuit to

estimate heat flux and temperature profiles in the bubble column condenser has been

developed. The experimental data is predicted within -20%. The model accurately

predicts the effects of the various parameters on heat flux without incorporating any

adjustable parameters.
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Figure 1: Schematic diagram of the bubble column dehumidifier.
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Figure 2: A thermal resistance model for the bubble column dehumidifier.
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Figure 3: A mass transfer resistance model between the liquid in the column and the bubbles
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Figure 4: Schematic diagram of test apparatus; (1, 11, 12) valves, (2, 6, 13) rotameter,
(3, 8) sparger, (4) humidifier column, (5) submerged electric heater, (7) pressure gauge, (9)
dehumidifier column, (10) water coil, (14) inline water heater, (15) cooling water tank, (16)
chilled water coil, (T1 – T8) thermocouples
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(a) Without impact

(b) With impact

Figure 5: Photographs showing design of sparger and coil for (a) non-impact and (b) impact
cases

36

Page 36 of 55

AIChE Journal

AIChE Journal



Figure 6: Effect of superficial velocity on the total heat flux in the bubble column measured
and evaluated at Db = 4 mm;χin = 21%; H = 254 mm.
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Figure 7: Effect of bubble diameter on the total heat flux in the bubble column measured
and evaluated at Vg = 3.8 cm/s; χin = 21%; H = 254 mm.
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Figure 8: Effect of inlet mole fraction of the vapor on the total heat flux in the bubble column
measured and evaluated at Vg = 3.8 cm/s;Db = 4 mm; H = 254 mm.
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Figure 9: Effect of liquid height on the total heat flux in the bubble column measured and
evaluated at Vg = 6.52 cm/s;Db = 4 mm; χin = 21%.
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Figure 10: Parity plot of heat flux values evaluated by the model and that measured by
experiments for various boundary conditions.
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Figure 11: Effect of bubble-on-coil impact.
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Table 1: Sparger design

Design No. Hole size (mm) Pitch (mm) Number of holes

1 1.59 16 121
2 2.38 23 64
3 3.18 26 36
4 3.96 32 25
5 4.76 40 16
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Effect of liquid height on the total heat flux in the bubble column measured and evaluated at $V_{g}=6.52 
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A mass transfer resistance model between the liquid in the column and the bubbles.  
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Effect of inlet mole fraction of the vapor on the total heat flux in the bubble column measured and evaluated 
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Parity plot of heat flux values evaluated by the model and that measured by experiments for various 

boundary conditions.  
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A thermal resistance model for the bubble column dehumidifier.  
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Schematic diagram of the bubble column dehumidifier.  
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Photographs showing design of sparger and coil for (a) non-impact and (b) impact cases  
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Schematic diagram of test apparatus; (1, 11, 12) valves, (2, 6, 13) rotameter, (3, 8) sparger,  (4) 
humidifier column, (5) submerged electric heater, (7) pressure gauge, (9) dehumidifier column, (10) water 
coil, (14) inline water heater, (15) cooling water tank, (16) chilled water coil, (T1 -- T8) thermocouples  
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Effect of bubble diameter on the total heat flux in the bubble column measured and evaluated at 
$V_{g}=3.8 \hspace{2pt}\rm{cm/s};\hspace{2pt}\it{\chi_{in}} = \rm{21}\%;\hspace{2pt} 

\it{H}=\rm{254}\hspace{2pt}\rm{mm}$.  
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Photographs showing design of sparger and coil for (a) non-impact and (b) impact cases  
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