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Reactive control in environments with hard and soft hazards

Sisir Karumanchi, Karl Iagnemma

Abstract— In this paper we present a generalization of reac-
tive obstacle avoidance algorithms for mobile robots operating
among soft hazards such as off-road slopes and deformable
terrain. A new hazard avoidance scheme generalizes constraint
based reactive algorithms [1], [2] from hard to soft hazards. Re-
active controllers operate by directly parameterizing the closed-
loop dynamics of the system with respect to the environment
the robot is operating in. Traditionally, reactive controllers are
parameterized by weighting virtual attraction and repulsion
forces from goals and obstacles [3], [4]. One pitfall of such
parameterizations is sensitivity of the tuning parameters to
the operating environment. A reactive controller tuned in one
set of conditions is not applicable in another (e.g. a different
density of obstacles). The algorithm presented in this paper has
two key properties which are significant i) Parameterization
is environment independent. ii) It can deal with non-binary
environments that contain soft hazards.

I. INTRODUCTION

Despite many advances in deliberative planning algo-
rithms, reactive controllers have the ability to quickly gen-
erate paths that reach a goal and satisfy kinodynamic con-
straints. The resulting paths are sub-optimal and there is no
guarantee of finding a solution as the controller can get
stuck in local minima. However, reactive controllers can
still play an critical role in mobile robot decision making.
A hierarchy of a reactive layer within a deliberative layer
can ensure robustness by allowing the system to respond to
changes in the environment that were not taken into account
in the deliberative layer. This view can be supported by
multiple architectures in the Urban challenge that used a
local reactive layer that reasoned from a pre-defined selection
of trajectories (tentacles) [5], [6]. In complex off-road ter-
rain with soft hazards (beyond binary obstacle/non-obstacle
classification; e.g. terrain slopes, deformable terrain), such
pre-defined set of trajectories can benefit from adapting to
the terrain conditions in real-time [7]. Optimization based
trajectory adaptation can be time consuming [7], and hence
forward simulations from a reactive controller can serve as
an alternative. A formal definition of soft hazards is given
below:

Definition 1: Soft hazards are environment conditions
that impose additional differential constraints to the vehicle
beyond those arising from its dynamics.

Soft hazards require the vehicle to adapt its behaviour to
successfully negotiate them. For example, a mobile robot
needs to slow down and change operating gear while going
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down hill to prevent the risk of excessive slippage and loss
of control.

The following list mentions some scenarios where reactive
controllers can be of value in generalizing decision making
algorithms to non-binary environments with soft hazards:

∙ Fast hazard avoidance that guarantees motion safety in
hard and soft hazards.

∙ Fast forward predictions of closed loop behavior to
create terrain–adaptive tentacles [5].

∙ Fast visibility check for non-binary environments in
multi-query planners such as Probabilistic Road Maps
(PRMs).

∙ Fast trajectory generation to be used as edges for
planning in a terrain adaptive state lattice.

Traditional reactive controllers operate by directly parame-
terizing the closed-loop dynamics of the system with respect
to the environment the robot is operating in. Trajectories to
a fixed goal are generated from forward simulation of the
closed-loop dynamics. Traditional parameterization occurs
by weighting virtual attraction and repulsion forces from
the goal and obstacles [3], [4]. One major pitfall of such
parameterizations is sensitivity of tuning parameters to the
operating environment. A reactive controller tuned in one set
of conditions is not applicable in conditions with a different
topological arrangement of hazards (e.g. a different density
of obstacles) (see Figure 1).

There exist a different class of reactive algorithms (Vector
Field Histogram (VFH) [1], Dynamic Window Approach
(DWA) [2]) that avoid topology sensitive parameters by
representing the world in terms of constraints. Instead of
parameterizing summation of attraction and repulsion forces,
these algorithms use desired control set-points as parameters.
The problem is posed as search for an optimal set-point
instead of a search for optimal attraction and repulsion
weights.

Optimal set-points are chosen from strictly feasible tra-
jectory/control space based on a given objective (minimum
cost/distance/time). Given constraints imposed by the envi-
ronment onto the vehicle, the feasible space is determined
by filtering out infeasible trajectories or control values. By
propagating the set-points through vehicle motion equations,
kinodynamic constraints are taken into account by construc-
tion. Such methods have no environment-specific tuning and
are well-posed as a constrained optimization problem. This
paper presents a generalized reactive controller that retains
all the properties of VFH and DWA while seamlessly dealing
with hard and soft hazards. This algorithm is referred to as
Generalized Hazard Negotiation (GHN).



(a) Original scale (b) Half scale (c) Quarter scale

Fig. 1. Reactive controllers operating in the same test environment at three different scales. Solid red trajectory is the result of an attraction-repulsion
reactive controller and the broken green trajectory is from the constraint-based reactive controller presented in this paper (∘ indicates start location and
∗ is goal). When tuned at the original scale the former algorithm fails to successfully operate at other scales (1(b) and 1(c)). On the other hand, the
constraint-based controller successfully avoids obstacles in all three scales as the tuning parameters are environment invariant.

Unlike VFH and DWA algorithms that were aimed at hard
hazards, the GHN algorithm presented in this paper can
reason about soft hazards. This is achieved by relying on
a mobility space representation of the environment. Similar
to velocity space reasoning in DWA, the GHN algorithm rea-
sons in the space of velocity limits. Hard and soft hazards are
represented seamlessly as different degrees of velocity con-
straints (speed limits). A recently developed morphological
operation known as mobility erosion [8] forms an essential
ingredient in determining topologically consistent velocity
constraints. Erosion ensures motion safety for hard and soft
hazards by taking into account vehicle size, reachability due
to momentum, actuator limits, system latency and position
uncertainty.

This paper is organized as follows. Section II discusses
the different components of the GHN methodology and
outlines it properties and limitations. In Section III, the
utility of the proposed algorithm is analyzed in terms of
path improvement in environments with soft hazards. Finally,
concluding remarks are presented in Section IV.

II. METHODOLOGY

The methodology presented in this paper has two stages;
First, state space constraints imposed by the environment are
determined via sensor data analysis. Second, the constraints
are used to choose desired control set-points, which are then
propagated through low level controllers. The commands
from the controller can be sent directly to the vehicle or
to a vehicle motion model to generate closed loop simula-
tions. The state space constraints are first determined from
a mobility function and then processed with the mobility
erosion operator. Given the eroded constraints, the chosen
set-points are guaranteed to be kinodynamically feasible and
safe. However the resulting trajectories are not guaranteed to
be optimal and there is no guarantee of finding a solution.

A brief description of mobility erosion is given in the next
subsection followed by discussion of the reactive controller.

A. Mobility Erosion

Planning algorithms and reactive controllers often consider
the vehicle to be a point mass in the configuration space.
In order to account for the shape and size of the vehicle

in the physical space, traditional path planning uses the
Minkowski sum operator [9] to grow binary obstacles. These
enlarged obstacles enable the decision making algorithms to
ignore vehicle size and treat it as a point mass. However,
the Minkowski sum is only applicable for hard hazards. The
mobility erosion operation generalizes obstacle growing to
soft hazards by taking into account both vehicle size as well
as momentum.

Motion safety for hard hazards implies that position
constraints need to be enforced during state transitions.
Similarly, motion safety for soft hazards requires that pro-
prioceptive constraints are adhered to (bounds on maximum
slip, skid, minimum traction coefficients etc.). In order to
adjudge soft hazard safety in state space, the fixed constraints
in proprioception space are transformed into state space
(position, heading, speed and acceleration) using an inverse
model which is learned offline [8], [10]. The transformed
proprioceptive constraints are captured in an instantaneous
mobility function which forms an input into the erosion op-
eration. The mobility function thus associates exteroceptive
terrain features with speed limits.

In this paper, we assume that an instantaneous mobility
function is given a priori. In the case of hard hazards,
the function would be a discrete 0-1 loss function (0 for
a zero speed limit and 1 for maximum speed limit). More
complex functions can be learned from experimental data
either given expert demonstrations or from proprioceptive
feedback as demonstrated in [10]. The complexity of the
mobility function seamlessly generalizes motion safety from
hard to soft hazards.

Mobility erosion is a maxmin formulation as shown in
Equation (1). It searches for the mobility value (m) that
maximizes the minimum mobility in the neighborhood with-
out exceeding the value given by the instantaneous mobility
function. Erosion is a local operation and fits in with the
computational requirements for a reactive controller.

Equation (1) is a ‘convolution like’ operation performed
on two sets i) a set of states arranged in a topology (S) that
represents the environment (task space) and ii) a set of offsets
in the topology called the structuring element (SE) that
specifies the neighborhood to be consider when processing
the environment (S) in a state by state manner. Initially, each



(a) Instantaneous mobility with hard and soft hazards (b) Erosion on 2(a) using a circular structuring element

(c) Instantaneous Mobility (units: m/s) (d) Erosion in {x, y, �} : � = 0∘

Fig. 2. (b) shows isotropic mobility erosion on an topology with hard and soft hazards (shown in (a) ) using a circular structuring element. (d) shows
the result of anisotropic mobility erosion in {x, y, tℎeta} using a rectangular structuring element for a sample orientation (the assumed vehicle heading
is indicated by an arrow). (Units: x/y-m; Color scale: white = 5m/s and black = 0m/s)

state s in the topology (S) is associated with a speed limit
using the given mobility function based on its exteroceptive
properties (e) (e.g. terrain color) {I(s) = f(e(s))}. Equation
(1) is then used to shrink (erode away) high speed areas due
to their proximity to low speed areas. The extent of erosion
is specified by the size and shape of the structuring element
(SE) and the mobility values in the neighborhood.

E(s) = max
m∈[0,I(s)]

{
min

s′∈{SE(m)}
{m, I(s+ s′)}

}
(1)

The size and shape of the structuring element is variable
and is given by the vehicle size plus worst-case stopping
distance. More formally the structuring element represents
the minimal reachability space of the vehicle for a look-
ahead time given by the worst case stopping distance. The
worst-case stopping distance changes according to different
environmental conditions. Given an initial estimate of max-
imum speed limit defined for that environmental condition
(instantaneous mobility value) the worst-case stopping dis-
tance can be determined. This makes the structuring element
a function of the maximum speed limit defined for a given
environmental condition, e.g. for a point vehicle with initial
speed limit v, assuming second-order dynamics the worst-
case stopping distance is given as v2

2amax
, where amax is the

maximum possible deceleration that can be achieved in the
given terrain. Reachability is also affected by system latency
(�) which adds an increment to the stopping distance (v×�).
In addition to reachability, localization uncertainty can be
taken into account in the structuring element by dilating it
with the 2-sigma uncertainty ellipse .

Figures 2(b) shows a sample application of isotropic
mobility erosion with a circular structuring element in a
topology with discrete obstacles and varying mobility con-
ditions. Isotropic erosion ignores vehicle heading. Further
resolution in orientation can be obtained with anisotropic
erosion using a rectangular structuring element. If the struc-

turing element is orientation sensitive, one can generate a set
of mobility maps for different values of orientation. Figure
2(d) shows sample result of anisotropic erosion on a topology
with hard hazards shown in Figure 2(c) using a rectangular
structuring element. Figure 2(d) is one slice from a set
of eight orientations from the 3D space of position (x,y)
and heading. Orientation sensitivity is a key requirement
for choosing a valid orientation set-point for the reactive
controller presented in this work .

Fig. 3. Choosing a desired orientation: A mobility envelope is created (red)
by fitting the discrete mobility values (speed limits) for different orientations
with a spline. The black vectors indicate magnitude and orientation of
the velocity limits determined from erosion. The direction with maximum
mobility projection to goal is choosen.

B. Generalized Hazard Negotiation (GHN)

As presented in the previous section, constraints imposed
by the environment in position and orientation can be rep-
resented as a set of orientation specific speed limits derived
from the erosion operator. The erosion operation is local and
can be applied to the neighborhood within the sensor range
in real-time. Given the speed limits, the GHN algorithm then
determines heading and speed set-points via Equation 2.



�∗ = arg max
�
{M(�) cos(Δ�goal)} (2)

v∗ = M(�c)

Where M(.) is the mobility envelope, Δ�goal is the
heading change to goal and �c is the current vehicle heading.

The set-point selection process given in Equation 2 is as
follows:

1) At any given position the current set of mobility values
for all orientations are used to create an mobility
envelope (M(.); see Figure 3).

2) An orientation with the maximum mobility projection
to the goal is chosen as the desired orientation set-
point (�∗). This is a greedy decision that chooses the
direction with the best possible distance gain to goal.

3) The mobility value (speed limit) for the current vehicle
orientation is chosen as the desired speed set-point
(v∗). The eroded speed limit represents the maximum
possible velocity which is considered safe.

The mobility envelope and the projection metric used to
choose the orientation set-point are environment independent
and can seamlessly generalize between hard and soft hazards.

Equation 2 is a one-step greedy decision and does not take
the full sensor range into account (as the mobility envelope
from erosion only considers the minimal reachable space
which is usually less than the sensing range). The complexity
growth of using Equation 2 to simulate trajectories is linear in
the distance to the goal (O(dgoal)). Significant improvement
can be achieved with look ahead by performing multiple
forward simulations with Equation 2 towards a discrete set
of sub-goals (SG) and choosing the time-optimal sub-goal
to reach the goal. The increased look ahead provides better
anticipation to avoid local minima and hazards, however the
controller can still get stuck in local minima.

The look ahead process effectively generates local tra-
jectories (tentacles) for the vehicle to choose at every time
step. The sub-goal trajectory with the least time estimate to
goal is chosen and only the first control input is sent to the
vehicle (akin to receding horizon control). This requirement
for multiple forward simulations increases computational
complexity. The complexity now grows at a rate of O(k×L×
dgoal) where L is the look ahead and k is the number of sub-
goals. The dependence of complexity growth on look ahead
can be controlled by sampling sub-goals at a fixed ratio of
the look ahead distance (w×L) instead of sampling at every
time step. This reduces the complexity down to O(

k×dgoal

w ).
The sub-goal and set-point selection process is represented

by Equation 3.

s∗ = arg max
s∈SG

{
tc to s(c, s) + t̂s to g(s, g)

}
(3)

�∗ = arg max
�
{M(�) cos(Δ�s)}

v∗ = M(�c)

Where s∗ is the desired sub-goal set-point, c is the cur-
rent position, g is goal, SG is a discrete set of sub-goals

({s1, s2, ⋅ ⋅ ⋅ , sn}), and Δ�s is the heading change to sub-
goal. The expected time to sub-goal (tc to s) for a given
trajectory from the current location (c) can be estimated by
dividing the distance traveled with their respective mobility
values. Similarly, the time estimate (t̂s to g) from the sub-
goal (s) to the main goal (g) can be determined with forward
simulation by assuming the region outside the sensing range
has maximum mobility (maximum speed limit). The latter is
akin to the usage of optimistic heuristics in A*/D* planners.

The sub-goals are sampled at the edge of the sensing
range or at the distance to goal (which ever is smaller).
Any sub-goal sampling pattern can be used as long as i)
they are within the sensing range ii) moving to the sub-goal
makes a positive distance gain to the main goal. The second
requirement ensures that the distance to goal decreases over
time and ensures stability by preventing oscillations. If no
viable sub-goal exists the controller terminates. Note that the
positive distance gain ensures stability in the Lyapunov sense
but not asymptotic stability [9]. In the event where the goal
is within the sensing range, the sub-goals are sampled with
the goal distance as the radius. The controller can only reach
the goal approximately; the forward simulation is terminated
when a the simulation is within a small neighborhood of the
desired goal.

The controller will fail to find a trajectory when all the
sub-goals choices lead to a local minima or are infeasible. In
general, this happens when the profile/size of the obstacles
is greater than its sensing horizon. Such a scenario can occur
when the vehicle is stuck in non-convex obstacles (mazes,
bug trap problem) where no sub-goals exist that make a
steady positive distance gain to the goal. The latter is a
non-minimum phase problem1 which cannot be solved with
reactive controllers as they have no sense of history. As a
result, reactive controllers are most appropriate as a low-
level subsystem inside a higher level planner and not as an
isolated system.

In summary, the GHN algorithm aims to reactively reduce
the distance to the goal while conforming to the environment
imposed constraints. Instability is avoided by restricting the
movement to ensure a net decrease in distance to goal over
time. This is done with two rules i) only sub-goals with a
positive distance gain to goal are considered ii) The mobility
projection metric in turn ensures that orientations with a
positive distance gain to a sub-goal are chosen as set-points.
Finally, the derived set-points from Equation 3 are propa-
gated through low level steering and speed PID controllers
and a vehicle motion model to ensure kinodynamic feasibility
of the generated trajectory by construction. The only tuning
parameters in the reactive controller are in the low level PID
controllers and they are independent of the environment.

III. RESULTS

In this section, simulation results are presented that com-
pare the performance (average velocity and time-to-goal) of

1In a non-minimum phase problem, the distance to goal has to increase
before decreasing.



(a) A∗ paths (b) GHN trajectories (c) Constant curvature trajectories

Fig. 4. Experimental Context 1: Trajectory generation for a fixed set of goals in a sample terrain surface (50m × 50m). The different trajectories to a fixed
set of goals were used to compare the performance of GHN algorithm against optimal path planning using A∗ and fixed constant curvature trajectories
that were determined geometrically. The white object represents the vehicle bounding box (3m × 2m × 1.5m) and it shows the scale of the environment.
The color axis denotes elevation and is in meters.

(a) (b) (c)

Fig. 5. Experimental Context 2: GHN trajectories for a subset of randomly sampled terrain surfaces (elevation maps). The terrain surfaces were sampled
from a Gaussian process with a squared exponential covariance function [11]. Note that, no trajectories were generated to some goals in (c) where GHN
trajectory generation failed (the direct positive distance gain path to these goals involved steep slopes with zero mobility). The color axis denotes elevation
and is in meters.

terrain adaptive local trajectories using the GHN algorithm
against optimal path planning using A∗2 and sub-optimal
constant curvature trajectories. The results demonstrate the
utility of reactive controllers in generating terrain adaptive
trajectories that on average are an improvement over constant
curvature trajectories in terms of time to goal and average
velocity. Since velocity is varied according to the environ-
ment specific speed limits (from mobility maps), a higher
average velocity indicates that a route with higher mobility
was chosen on average. Trajectories were generated for a
fixed set of goals (11 goals that are 40m away from a fixed
starting position) in a environment with varying slopes as
a means to represent soft hazards. A look-ahead of 30m
was used in the GHN algorithm as it represents the nominal
sensing range for elevation assessment from scanning LIDAR
sensors. This experimental context for a sample environment
is shown in Figure 4. The trajectory generation using the
three different techniques was repeated for 500 randomly
generated 50m×50m terrain surfaces. A sample set of these
terrain surfaces and their corresponding GHN trajectories are
shown in Figure 5.

The terrain surfaces (elevation maps) were sampled from
a Gaussian process with a squared exponential covariance
function [11]. The hyperparameters (signal variance, length
scale) of the covariance function were in turn sampled from
one dimensional Gaussian distributions. The parameters of
the Gaussian distributions3 were chosen empirically so that

2The A∗ planner uses the mobility maps as a negative cost representation
to perform a grid search in x, y, �. The paths are optimal in time-to-goal
and average velocity since cumulative mobility is maximized. However, the
grid search does not produce kinodynamically feasible paths. The A∗ results
serve as a benchmark to assess the sub-optimality of the reactive controllers.

3Signal variance was sampled with mean = 2 and standard deviation=1;
and the length scale was sampled with mean=25 and standard deviation=2.

the slopes of the sampled environment sufficiently covers
the full mobility spectrum of typical ground vehicles (±20
degrees in pitch and ±15 degrees in roll).

Mobility maps were determined from the randomly gen-
erated elevation maps in three stages. First, pitch and roll
slopes for eight different vehicle headings were determined
using image processing based gradient filters. Second, a
priori chosen mobility function was used to associate pitch
and roll with an instantaneous speed limit. Third, the mobility
erosion operation is performed on the set of instantaneous
speed limits which form the input to the GHN algorithm,
and the A∗ planner (as an negative cost map). It was
shown in [10] that the mobility characteristics of unmanned
ground vehicles in two dimensional slopes closely resembles
a band pass filter in pitch and roll space. Therefore, a two
dimensional butterworth function4 in the space of pitch and
roll was used as the mobility function5.

TABLE I
COMPARISON OF A∗ , GHN AND THE FIXED CONSTANT CURVATURE

TRAJECTORIES IN 500 RANDOMLY SAMPLED ENVIRONMENTS.

A∗ GHN Fixed
avg. time to goal 16.24s 22.62s 31.19s

avg. velocity 3.41m/s 2.69m/s 2.08m/s
trajectory generation failure 0 8.55% 0

Forward simulations as part of the GHN algorithm were
performed through a closed loop system of low-level con-
trollers (steering and speed) and a vehicle motion model. An

4G(!) =
√

1
1+!2n ;! =

√(
pitcℎ

p cutoff

)2
+
(

roll
r cutoff

)2
5The following parameters were used: p cutoff = 8; r cutoff =

4;n = 2;. The peak value of the mobility function was set to 5 m/s.



(a) Average time to goal performance of A∗, GHN and constant curvature
trajectories for 50 environments

(b) Average velocity performance of A∗, GHN and constant curvature trajec-
tories for 50 environments

Fig. 6. Average time to goal and velocity plots for a subset (50) of the
500 randomly sampled environments. x-axis is environment ID and y-axis
indicates the performance metric. It can be seen that the blue trends (GHN)
mostly lies between the red (constant curvature trajectories) and green trends
(A∗ trajectories).

empirically tuned steering dynamics model presented in [4]
for a four wheeled Ackermann steered all-terrain vehicle is
used for simulations. The model parameterizes the steering
dynamics as a second order system6 with an actuator time
delay of 0.2s. Similarly, a proportional speed controller (gain
= 10) and second-order dynamics were used to simulate
velocity regulation. Finally, a kinematic motion model for a
steered vehicle was used to couple the velocity and steering
dynamics [12].

Table I shows the comparison between optimal A∗ path
planning, adaptive trajectories using GHN and fixed constant
curvature trajectories. The table shows average of time to
goal and velocity taken over all 500 environments. In each
environment, 11 trajectories were generated to a set of goals.
Figure 6 plots the average time to goal and average velocity
trends for the first 50 of these environments.

It can be seen that the blue trend (GHN) in Figure 6 mostly
lies between the red (const. curvature) and green trends (A∗).
This is evident for both average time to goal and average
velocity. Optimal path planning using A∗ (green trend) pro-
vides the best performance both in terms of achieving a low
time to goal and high average velocity. The adaptive GHN
based trajectories (blue trend) demonstrate an improvement
over fixed constant curvature trajectories (red trend), however
they are not as good as the optimal paths. On average over
all 500 environments GHN results in Table I demonstrate
a 20% improvement in time to goal and 18% improvement
in average velocity with respect to A∗ performance7 over

6Transfer function -
(
1
/
258.7s2 + 6.5789s+ 1

)
7Improvement is assessed as percentage gain in the ratio of GHN and

fixed trajectories performance metric’s against A∗’s performance metric.

the fixed trajectories. However, GHN had a 8% trajectory
generation failure (out of 11×500 attempts) due to local
minima8. This can also be seen in Figure 5(c), where no
trajectories were generated to some goals.

IV. CONCLUSIONS AND FUTURE WORK

In conclusion, the GHN algorithm presented in this paper
has three key properties which makes it novel: i) Envi-
ronment assessment is decoupled from the parameterized
closed-loop dynamics which results in environment-invariant
parameters ii) Constraint based parameterization ensures
motion safety for hard and soft hazards and generates kin-
odynamically feasible paths by construction iii) Finally, it
is a local operation and has low computational complexity.
However, the algorithm is sub-optimal and is best used in
short term decision making.

The algorithm presented in this paper was a basic version
and it assumed that the goal was specified in position space
alone. No orientation constraint was specified at the goal.
However, it is possible to extend the definition of goals to
position and orientation by introducing inverse reachability
constraints as ghost obstacles into the erosion framework.
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