
Demonstration System for a Low-Power

Classification Processor

by

David J. Rowe

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2000

@ David J. Rowe, MM. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

A uthor
Department of Electrical Engineering and Computer Science

February 4, 2000

C ertified by /...... I...................
Anantha Chandrakasan

Associate Professor
Thesis Supervisor

Accepted by
USETTS INSTITUTE - Arthur C. S h
ECHNOLOGY

Chairman, Department Committee on Graduate Stud en s

MASSACH
OFT

MAR 0 4 2000

LIBRARIES

2

Demonstration System for a Low-Power Classification

Processor

by

David J. Rowe

Submitted to the Department of Electrical Engineering and Computer Science
on February 4, 2000, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering

Abstract

The purpose of this thesis was to develop a self-contained digital system using an ultra
low power classification processor for biomedical sensing applications. The initial
application for the system was heartbeat detection.

The system consists of an analog input from an amplified microphone, a digital
test data input, a programming interface to the processor, and a data output interface.
The completed system demonstrates that a useful digital signal processing algorithm
can be implemented at the desired low power constraints. Further work will show
that these power levels can be achieved using an ambient vibrational source.

Thesis Supervisor: Anantha Chandrakasan
Title: Associate Professor

3

4

Acknowledgments

First and foremost, I would like to thank Professor Anantha Chandrakasan for allow-

ing me to work on this project. His enduring patience and encouragement have been

greatly appreciated during the course of this project. I am inspired by the example

of his success, but more-so by his dedication to his students. I cannot thank him

enough for his support.

This thesis is merely a continuation of the innovation by Raj Amirtharajah. All

aspects of the technical ingenuity within this thesis can be entirely attributed to Raj.

I very much appreciated the extra time he spent answering questions and helping out

in tough situations. I would like to thank him for putting up with my incessant phone

calls and emails. I feel privileged to have had to opportunity to work on his project.

The technical and philosophical advice of Manish Bhardwaj and Jim Goodman has

been a live-saver during the course of this project. Their modesty would not permit

them to recognize their contribution, but their help has been unmeasurable. I would

also like to thank the other members of Anantha's group for making the lab a friendly

and welcoming place to work, Alice Wang, Rex Min, Eugene Shih, Seong-Hwan Cho,

Amit Sinha, Travis Furrer, Charatpong (Boo) Chotigavanich, Wendi Heinzelman, and

Vadim Gutnik. A great many thanks to Margaret Flaherty for her assistance during

my time in the group.

My most meaningful experience during my tenure at MIT has been being a TA

for 6.111. I have learned more through a year of teaching than in four years of

undergraduate studies. Thanks to Professor Donald Troxel and Professor James

Kirtley for giving me the opportunity to work with them in 6.111. I would also like

to thank my fellow TA's, Everest Huang, Rob Jagnow, Alex Ihler, Theresa Huang,

5

Josef Brandriss, Jessica Forbess, and Ali Tariq. Thank you also to Danny Seth and

Syed Alam for being good friends and classmates.

The individuals who have inspired me the most during my academic career are Pro-

fessor Hamid Nawab and Professor Thomas Kincaid from Boston University. Their

devotion to teaching is unsurpassed. They are very much responsible for the success

I have obtained.

Despite my absence from the usual circle of friends during my thesis work, I very

much appreciate the support and friendship of my close friends, Jack Livingston, John

Arrigo, Jen Saleem, Man Leung, Vishal Goklani, Mike Chipolone, and Vince Leslie.

Without the love and support of my family, my achievements at MIT and BU could

never have been accomplished. My parents, Jack and Linda Rowe, my grandmother,

Mary Ruth Ross, my brother, Stephen Rowe, and my cousin, Tim Gumto, have be

an ever present source of love, support, and encouragement. I can never thank them

enough for all they have done for me. I promise to continue to do my best to make

them proud. I love you all very much.

Finally, I would like to thank my love, Kelly Dugan, for her warmth, compassion,

and love. She has been there at every moment when I needed her. I can only hope

that I will someday be able to repay her for all she has done for me. I love you, Kelly.

6

Contents

1 Introduction 15

1.1 Background . 16

1.1.1 Matched Filtering . 16

1.1.2 Distributed Arithmetic . 18

1.2 Overview . 20

2 SensorDSP Chip Architecture 23

2.1 Distributed Arithmetic Matched Filter 24

2.2 Non-Linear/Short Linear Filter . 27

2.3 Micro-controller Unit . 27

3 System Design Description 31

3.1 Programming Interface . 32

3.1.1 JTAG Interface . 32

3.1.2 Programming Interface Description 34

3.2 Analog Sensor Interface . 40

3.3 Heartbeat Indicator. 42

3.4 Clock Generation . 43

3.5 Power Measurement . 46

3.6 Battery Vs. External Supply . 48

3.7 Test Ports . 48

4 System Details 51

7

4.1 Compiling Program Data .5

4.2 Running the System . 56

4.2.1 Initial Settings . 56

4.2.2 Operating the System . 57

4.3 Analog Signal Requirements . 57

4.3.1 Using the ARL Sensor . 58

4.4 Test Data Input . 58

4.5 Extracting Data . 59

4.5.1 Heartbeat Detection Indicator 59

4.5.2 Hexadecimal Display . 60

4.5.3 Using the Test Ports . 60

4.6 Additional Features . 60

4.6.1 Multiple Programs . 60

4.6.2 Changing Clock Speeds. 61

4.7 Troubleshooting . 61

5 Conclusions 63

A SensorDSP Chip Pinouts 65

B Sensor DSP Microcontroller Assembly Language [1] 67

B.1 Instruction Set Overview . 67

B.2 Registers and Other State . 69

B.3 Instruction Descriptions . 70

B.3.1 RTL Description . 71

B.3.2 Miscellaneous Instructions . 72

B.3.3 Arithmetic Instructions . 72

B.3.4 Arithmetic Macros . 74

B.3.5 Relational Macros . 75

B.3.6 Logical and Shift Instructions 76

B.3.7 Control Flow Instructions . 79

8

52

B.3.8 Memory Instructions

B.3.9 Filter Interface Instructions . .

B.3.10 Unused Opcodes

B.3.11 Miscellaneous Reserved Words .

B.4 Example Program: Fibonacci Numbers

C Sensor DSP Nonlinear/Short Linear Fi

C.1 Registers

C.2 Instruction Descriptions

C.2.1 SAC Instructions

C.2.2 MAC Instructions

C.2.3 LSU Instructions

.

.

.

.

.

Ilter Assembly Language [1]

.

.

.

.

.

D SensorDSP Sample Microcode

D.1 Micro-controller Heart Detection Code

D.2 NLSL SAC Heart Detection Code . . .

D.3 NLSL MAC Heart Detection Code . .

D.4 NLSL LSU Heart Detection Code . . .

9

80

81

82

82

83

85

85

86

86

88

89

91

91

98

98

98

10

List of Figures

1-1 Matched Filter Template . 16

1-2 Typical Matched Filter Result . 17

1-3 Heartbeat Waveform and Matched Filter Result 17

1-4 Distributed Arithmetic ROM and Accumulator Structure [1, p. 119] . 19

2-1 Classification and Signal Processing Block Diagram [1, p. 128] 24

2-2 Signal Processing Chip Architecture [1, p. 128] 24

2-3 Linear Filter Implementation Architecture [1, p. 130] 25

2-4 DA Unit Shift Register Implementation [1, p. 131] 26

2-5 NLSL Filter Implementation Architecture [1, p. 131] 28

2-6 Micro-controller Architecture [1, p. 132] 28

3-1 System Block Diagram . 31

3-2 JTAG TAP State Diagram . 33

3-3 JTAG Controller State Diagram . 35

3-4 Programming Controller FSM State Diagram 36

3-5 Programming Instruction Formats . 39

3-6 Programming Interface Block Diagram 40

3-7 A/D Converter Timing . 41

3-8 Analog Sensor Interface Block Diagram 42

3-9 Heartbeat Indicator Block Diagram 44

3-10 Read Trigger Timing . 45

3-11 Clock Generation Circuitry . 46

3-12 Power Measurement Schematic . 47

11

3-13 Power Regulation Schematic4

3-14 Test Point Pin Diagram .

4-1 SensorDSP System Board Floor-plan

5-1 SensorDSP Demonstration System Board

A-1 SensorDSP Chip Footprint (Top View) [1]

A-2 SensorDSP Chip Footprint (Bottom View) [1]

B-i Sensor DSP microcontroller architecture.

C-1 Short linear and nonlinear filter implementation architecture. .

12

. . . . 49

53

64

65

65

68

86

48

List of Tables

3.1

3.2

3.3

3.4

3.5

TAP Instruction Words

Program Instruction Bit-sizes

Truncation and Bit-width Configuration Settings

SensorDSP Output Bus Selection

Test Port Signals

35

37

38

43

49

54

58

66

67

69

70

4.1 Component Reference Designations

4.2 ARL Sensor Gain Settings

A.1 SensorDSP Chip Pinout .

B.1 Microcontroller instruction types.

B.2 Microcontroller registers. .

B.3 Condition code register field specifiers for conditional jumps.

B.4 Configuration state bit specifiers for configuration instructions. 70

B.5 Microcontroller instruction syntax and RTL level description 71

B.6 Arithmetic instructions and opcodes. 72

B.7 Arithmetic instructions and opcodes. 72

B.8 Arithmetic macros and implementations. 74

B.9 Relational macros and implementations. 75

B.10 Logical and shift instructions and opcodes. 77

B.11 Control flow instructions and opcodes. 79

B.12 Memory instructions and opcodes. 80

B.13 Filter interface instructions and opcodes. 81

13

B.14 Configuration state specifiers and codes. 82

B.15 Unused opcodes. 82

B.16 Microcontroller instruction types. 83

C.1 NLSL Unit registers. 86

C.2 SAC Unit instructions and opcodes. 87

C.3 MAC Unit instructions and opcodes. 88

C.4 LSU Unit instructions and opcodes. 89

14

Chapter 1

Introduction

In recent years, there has been an ever expanding demand for portable devices for

such applications as wireless communication and hand-held computers. These sys-

tems rely heavily on batteries as their source of energy. Investigation of alternative

sources for power generation and storage is a growing endeavor as the limits of device

physics are reached with increasing clock rates and lower supply voltages. A potential

alternative power generating technique is to convert ambient vibrational energy into

useful electrical energy as proposed by Amirtharajah [1][2][3].

One application of such a system is biomedical sensing, for example, heartbeat

monitoring. The feasibility of such a system imposes certain constraints on the type of

application. In order to attain the low power consumption required by the limitations

of the ambient energy converter, the digital system must employ a variety of low power

VLSI (Very Large Scale Integration) design techniques. Many of these techniques

present a trade-off between speed and power dissipation. A human heartbeat can

be measured with a microphone, and be converted into a digital signal that can

be analyzed and classified with a digital signal processor (DSP). The classification

processor developed by Amirtharajah takes advantage of a multitude of low-power

design techniques to implement a heartbeat detection algorithm, while consuming

approximately 500nW at 1.5V with a 1 kHz clock frequency.

15

1.1 Background

1.1.1 Matched Filtering

200

2100 .. mp. . N. .b. .

-200 L -

0 10 20 30 40 60 0
Sample Nuffer

Figure 1-1: Matched Filter Template

Matched filtering is a signal processing technique used to detect a specific pattern

in the input signal. A system is designed to have an impulse response, h[k], that is a

replica of the desired input signal [4]. A typical matched filter template for a human

heartbeat is shown in Figure 1-1. The result of the matched filtering process is a

signal, y[k], as shown in Figure 1-2. The signal, y[k], has several characteristics that

can be measured, ranked, and classified. [1, pp. 105-125]

These signal features are summarized below:

1. peak correlation output value

2. first valley after peak correlation

3. first valley before peak correlation

4. first peak after peak correlation

5. first peak before peak correlation

6. matched filter output energy

7. peak correlation output width

16

3

2.5

2

1.5

0.5

0

-0.5

-1

-1.5
20 40 60

Sample Number
80 100 120

Figure 1-2: Typical Matched Filter Result

Digitized Heartbeat Data

---------. ----- .-- ..------------ ---------- .. .-.- .-------- ---- --- - .---- ---

- - --- ----- -- - - - -- -- ---- ..-. -- -- --- -- - .-.-- - ..--- - -- .-- -- ---

0 500 1000 1500 2000 2500 3000
Sample Number (fs = 112.5 Hz)

4~- C - n ti R l

3500 4000 45

x 10 W orm andsR8
6 ---------- ------- - ---------- --------- ---------. --- -.- -...-- --- --- --- - ..--- ---

4 aw.....

0 -- - - - . ---...--- -

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Sample Number

Figure 1-3: Heartbeat Waveform and Matched Filter Result

Figure 1-3 shows a heartbeat signal recorded via an analog acoustic sensor as well

as the resultant signal when the heartbeat is passed through the matched filter.

17

-..- ..- ...- ..- ..- ..-..-. .- .-. -. . -. . -.. -. . -. . -. . -. -. -. . -. . --. . --.. .-. -. . -. ..

.---.-..-.- -. .-.-.-. .- - ..- ..- .

------------ .. -------- ------ .- .-- .----.-.-.----..----.------- -- ..-.--

--- --- -- -- ----. .--- -.-.-- - -.-.-..-. ...-. ...- .

-..---.-. -.-. .-- -- -.-- ---. .-.-- -.- - .- - .-- .-. ---.

--------------- .----- -- -- - -----.. ------ - -- ---- -- ---.. --. -. ---------- ----- -------

-- --- -. ..--. .-. ..-- ----- -. .. -. -- - -.-- -- - -.-.- -- - - -- - - -- --.

50

0

-50I
luu

x 10'' Typical Matched Filter Result

-

C

1.1.2 Distributed Arithmetic

Distributed Arithmetic (DA) is a bit-serial operation that computes the inner prod-

uct of two vectors (one of which is a constant) in parallel without the use of a mul-

tiplier [5][6]. The constant vector, with regards to linear filtering, is the impulse

response of the filter. The distributed arithmetic calculation is implemented using a

read-only memory (ROM) lookup table, an input shift register, and an output accu-

mulator. An advantage of the distributed arithmetic approach, is that an approximate

result can be obtained using a lower quantization of the input signal. Using a smaller

bit-width yields a trade-off between power reduction and detection accuracy.

Figure 1-4 show a detailed example of a distributed arithmetic computation. The

structure shown computes the dot product of a 4-element vector X and a constant

vector A. All 16 possible linear combinations of the constant vector elements (Ai) are

stored in the ROM. The variable vector X is repackaged to form the ROM address

most significant bit first. We have assumed that the Xi elements are 4-bits 2's comple-

ment (bit 3 is the sign bit) binary numbers. Every clock cycle, the RESULT register

adds 2x its previous value (reset to zero) to the current ROM contents. Moreover,

after each cycle the 4 registers that hold the four elements of the X vector are shifted

to the right. The sign timing pulse, T, is activated when the ROM is addressed

by bit 3 of the vector elements (sign). In this case, the adder subtracts the current

ROM contents from the accumulator state. After 4 cycles, (4 is the bit-width of the

Xi elements) the dot product has been produced within the RESULT register [1, p.

119].

18

X0 I X01 X0 2 X03

lo xli Ixi xiX1 X11 12 X1/

X20 X21 X22 X23

X30 X31 X32 X33

0

x
we

0
AO
Al

A1+AO
A2

A2+AO
A2+A

A2+A1+AO
A3

A3+AO
A3+Al

A3+A1+AO

A3+A2
A3+A2+AO

A3+A2+A1
A3+A2+A+A

Ts

x2

RESULT

Figure 1-4: Distributed Arithmetic ROM and Accumulator Structure [1, p. 119]

19

IX30IX31IX32IX331)

1.2 Overview

The goal of this project was to design and develop a complete, self-enclosed system

that uses an ultra low power digital signal processor (DSP) to implement a heartbeat

detection algorithm. The heart of the system is a DSP designed by Amirtharajah [1],

herein referred to as the SensorDSP chip. A subsequent goal of the project is to prove

that a useful digital signal processing system can be implemented at power levels low

enough to use ambient vibrational energy as the source of power. The following is a

list of requirements for the system:

1. Programming Interface - The SensorDSP chip is programmed using a serial

boundary-scan register. Matched filter coefficients, micro-controller instruc-

tions, and other control words are generated using a computer program and

then stored on a programmable read-only memory (PROM). The programming

interface transmits data from the PROM into the SensorDSP chip.

2. Analog Sensor Interface - Provided with the SensorDSP system is a an

analog sensor that the patient would wear on the neck or chest. The analog

sensor was provided by the Army Research Laboratory. The analog sensor

interface samples data from the analog sensor and sends the data serially into

the SensorDSP chip.

3. Test Data Input - In addition to an analog data input, the system allows

for test data to be stored into a PROM. This data can be serially input into

the SensorDSP instead of data from the analog sensor. Although this feature

is primarily meant for debugging purposes, it is also useful when devising al-

gorithms for other applications since the algorithms can be tested with known

input data.

4. Detection Logic - Due to a limited number of pins the chip has a limited data

output capability. The SensorDSP has an 8 to 1 multiplexed 12-bit output

bus. The detection logic controls the select inputs to the multiplexer and reads

the data from the bus. This data can be output to a hexadecimal LED (light

20

emitting diode) display, or in the case of heartbeat detection, a single LED is

flashed when a detection occurs.

5. Power Measurement/Monitoring - The system provides two methods of

measuring the power consumption of the SensorDSP chip. First, a connection

on the circuit board is allocated for an external ammeter to be connected for

an accurate power measurement. Second, a power measurement circuit on the

board provides a bar-graph display of the power consumption.

6. Clock Generation - Although the heartbeat detection system operates at

a fixed optimal system clock frequency, the SensorDSP system provides the

capability to operate at a wide range of speeds. The clock generation subsystem

enables the user to easily change clock speeds.

7. Battery - The system runs on a single 9V battery supply. Voltage regulation

circuits provide the specific voltages for the components on the board.

This thesis is written such that the reader can gain an understanding of the

detection algorithm, the processor architecture, and the system level design, as well

as be able to easily setup and use the system. Chapter 2 is a description of the

SensorDSP chip architecture. The concentration in this chapter is on the flow of data

through the processor. The context of the chapter is within the heartbeat detection

algorithm. Chapter 3 is a detailed description of the board level design. A significant

amount of detail is provided to enable a user the ability to take advantage of the

system's versatility. Detailed information regarding the nuances of the SensorDSP

interface is essential in case the user desires to make changes to the board to meet

the requirements of a specific application. Chapter 4 contains a step by step set of

instructions for the operation of the SensorDSP system. The chapter covers topics

ranging from programming the system, to extracting data, to troubleshooting.

21

22

Chapter 2

SensorDSP Chip Architecture

The architecture of the SensorDSP chip is tailored to detection and classification

algorithms that are applicable to a range of digital signal processing problems [1,

p. 129]. The approach is to employ a matched filter implemented with a dedicated

linear filter unit. This unit takes advantage of the distributed arithmetic technique

discussed in Section 1.1.2. The input signal x[k] is a discrete time waveform that is fed

serially into the chip. The linear filter continually computes the filter output y[k]. A

segmentation procedure is executed by the chip's micro-controller unit. Each segment

is long enough to contain an entire heartbeat, but short enough to not contain two

heartbeats. Each segment is overlapped to ensure that an error is not made if the

crucial portion of the waveform occurred at the edge of a segment. After a segment

is filtered through the linear filter, the useful features of the result y[k] are extracted

and stored by the micro-controller unit. These features are subsequently ranked and

compared against set thresholds to yield a "yes or no" classification of the presence

of a heartbeat in the given segment. Figure 2-1 is a detailed block diagram of the

typical signal processing that must occur for classification.

The architecture of the chip consists of three major components: a linear fil-

ter, a non-linear/short-linear filter, and a feature extraction and classification micro-

controller. These subsystems will be discussed in detail in the following sections.

Figure 2-2 is a block diagram of the architecture of the SensorDSP chip.

23

Preprocessing

x[k] Linear y[k] Time Series s Feature f z
Filtering Segmentation Extraction Classification

H(z) S(y) A(s)

Figure 2-1: Classification and Signal Processing Block Diagram [1, p. 128]

enable

x[k] Distributed y[k] Nonlinear / wE--- Classification z
------- Arithrmetic * Shor teLinear __-- Microcontroller

Buffer

clk
(DI

Figure 2-2: Signal Processing Chip Architecture [1, p. 128]

2.1 Distributed Arithmetic Matched Filter

The linear filter is implemented based on a Distributed Arithmetic (DA) technique

as discussed in section 1.1.2. Figure 2-3 is a block diagram of the linear filter. By

allowing variable input bit-widths of 8, 4, 2, and 1, an approximate filter result can

be obtained with less power consumption. For bit-widths that are less than the filter

length, using a distributed arithmetic approach is faster than a multiply/accumulate

approach. Using distributed arithmetic to compute a matched filter output of an

N-bit sample of data, a valid result is obtained every N clock cycles.

The Distributed Arithmetic Unit (DA) consists of 16 distributed arithmetic tables

that are addressed via a shift register. This shift register stores up to four samples

24

x[k] x[k-4]
x[k-1] DA x[k-5] DA
x[k-2] Unit x[k-6] Unit
x[k-3] x[k-7]

ACC

y[k]

Figure 2-3: Linear Filter Implementation Architecture [1, p. 130]

of the input data. To allow for a variable bit-width, the length of the register is

controlled by configuration word provided during device programming. The clock

signals to unused portions of the register are gated to reduce power consumption.

Figure 2-4 is a diagram of the shift register implementation. The output of the DA

tables is delivered to an accumulator. After N clock cycles, where N is the number

of bits of the input sample, the accumulator will contain a valid result of the linear

filter. The maximum bit-width of the filter coefficients themselves is 9 bits. Since the

table is addressed by at most four samples, the DA table will consist of pre-calculated

values that are any possible linear combination of four 9-bit numbers. Therefore, each

table entry is at most 11 bits.

The accumulator is 24 bits wide to accommodate the partial products of the result.

The post-processing data-path of the micro-controller is only 12-bits, therefore the

result of the linear filter must be truncated to 12-bits. It is not necessarily true that

25

the high order bits of the filter result are the most crucial. The SensorDSP chip has

the capability to select the truncation window during device programming. Since

the linear filter is constantly outputting data at a fixed rate, this data needs to be

buffered in memory before post-processing. The filter buffer is a reserved portion of

the micro-controller unit's data memory.

L LL

DO DQ D Q D Q D Q DQ D Q DQ Y3

03 2- > _F<ID__r

(Dt (i LD~j

D Q D Q D DQ D Q D D Q D Q Y2

D3 2-$1<D

DO DO D DO D D D D Q Y1

<D3 _- J_ 2- _1 CDw- DO.-

X -D Q-D Q-D Q-DO D Q-D DO - D Q-YO

F -3->-- -[Dn2- ift R Ii ,

Figure 2-4: DA Unit Shift Register Implementation [1, p. 131]

26

2.2 Non-Linear/Short Linear Filter

For filters where the bit-width is larger than the filter length, a multiply/accumulate

approach is more advantageous. The non-linear/short-linear (NLSL) filter is imple-

mented with a multiply/accumulate architecture. In order to maintain the same

clock rate as the DA linear filter, a very long instruction word (VLIW) [7] approach

is used within the NLSL unit in order to execute multiple instructions in parallel.[1,

p. 130] The maximum number of instructions per sample performed by the NLSL

unit is 8 to ensure that it remains synchronized with the output of the matched filter.

For smaller bit-widths, the NLSL unit must operate with fewer instructions. Fortu-

nately, the parallel architecture of this unit allows for useful processing in as little as

2 instructions.

The NLSL unit consists of a Square and Accumulate Unit (SAC), a Multiply

and Accumulate Unit (MAC), and a Load/Store Unit (LSU). Each unit operates in

parallel, with a single instruction execution per clock cycle. Figure 2-5 shows a block

diagram of the NLSL unit. The NLSL unit is useful for computing the energy of the

matched filter result and for performing additional filtering with a filter that has a

short impulse response.

Both the SAC and MAC accumulators are 24 bits wide. Again, since the post-

processing data-path is only 12-bits, the results of the NLSL filter must be truncated.

The truncation window is selected during device programming. The 12-bit results of

the SAC and MAC units are stored in the filter buffer. The micro-controller can then

access these values during the feature extraction process.

2.3 Micro-controller Unit

The feature extraction and classification micro-controller is implemented with a stan-

dard load/store type of computer architecture [7]. Figure 2-6 is a block diagram of

the micro-controller architecture.

27

Instruction Instruction Instruction
Memory 0 Memory 1 Memory 3

Multtport Register File

Square and Multiply Load/Store
Accumulate Accumulate Un/t

2+x +ax

Figure 2-5: NLSL Filter Implementation Architecture [1, p. 131]

Data
Memory

Register
File

Instruction
Memory ALU

z

Figure 2-6: Micro-controller Architecture [1, p. 132]

28

The micro-controller unit consists of a 24-bit accumulator, an 8-bit program

counter, a register file, and a data memory block. The 8-bit program counter al-

lows for only 256 possible instructions. This is more than sufficient to perform the

desired signal processing application. The register file has eight special purpose reg-

isters and 8 general purpose registers. The register file has a dual read port and a

single write port.

Unlike the accumulators for the filters, there is no truncation involved with the

micro-controller accumulator. Instead, the micro-controller interfaces the accumula-

tor as two 12-bit accumulators. It is up to the user to round or truncate the data as

part of the assembly code.

The data memory is accessed via a 12-bit address bus, however only 256 address

locations are available for reading and writing. There is an additional 256 locations

allocated to the filter buffer.

The purpose of the filter buffer is to store the results of the filter units until

the micro-controller can execute the feature extraction and classification algorithm.

The filter buffer can only be read by the micro-controller. Writes to the filter buffer

are executed automatically with each result from the filters. A dedicated register,

BUFPTR, indexes the filter buffer.

It is the micro-controller's responsibility to wait for an entire segment of data from

the linear filter to be filled into the filter buffer. When a segment of valid data is

available, the micro-controller disables both filter units and switches to a higher clock

rate. The reason for the increased clock rate is two-fold. First, the micro-controller

must be able to perform the feature extraction and classification algorithm before the

next sample of data is received to ensure that samples are not ignored. In actuality,

some samples may be lost during the classification process since the duration of the

process is data dependent. This does not pose a significant problem since the data

segments are over-lapped. Second, since the majority of the processing occurs in the

linear and NLSL filters, maintaining a slow clock for the micro-controller reduces the

power consumption.

29

30

Chapter 3

System Design Description

The system was designed to provide a simple user-friendly interface to the SensorDSP

chip. There are three main components to the design: the programming interface, the

analog input interface, and the heartbeat indicator. Other supporting components

are the clock generation and power measurement circuits. The digital logic for the

system is implemented in complex programmable logic devices (CPLD) [8]. A block

diagram of the system is shown in Figure 3-1.

Acoustic Data Bus
Sensor c:

0.

Programming
Interface SensorDSP Input Control

CPLD)

oClock
+IN G n , Output Indicator

D. CPLDControl

CPLD

Figure 3-1: System Block Diagram

31

3.1 Programming Interface

The programming interface provides the distributed arithmetic tables for the linear

filter, the instruction memory for the NLSL filter, the instruction memory for the

micro-controller, and configuration/control codes. The programming interface con-

sists of a 64Kx8 programmable read-only memory (PROM) [9], a parallel to serial

shift register, and a finite state machine (FSM) controller.

3.1.1 JTAG Interface

Formally known as IEEE/ANSI standard 1149.1-1990, JTAG is a set of rules for-

mulated by the Joint Test Action Group (JTAG). When applied at the chip level

the standard helps reduce the cost of designing, testing and producing integrated

circuits [10]. The JTAG standard makes use of a serial Test Access Port (TAP) to

supply and extract information from an integrated circuit (IC). This information is

used to program, test, and verify the operation of a given IC. In the application of

the SensorDSP chip, the TAP is used to supply the chip with distributed arithmetic

table entries for the linear filter, instructions for the non-linear/short-linear filter, in-

structions for the micro-controller, and miscellaneous configuration words. Due to the

variety of the information that needs to be provided to the chip, the JTAG standard

allows for a simple interface that requires a minimal number of external pins.

The TAP consists of a boundary/scan register and a finite state machine (FSM)

controller. The state transition diagram of the FSM is shown in Figure 3-2. A test

mode select (TMS) signal causes the TAP FSM to transition from state to state. The

boundary/scan register is a shift register that receives its serial input from the "test

data input" (TDI) signal. The output of the boundary/scan register is the "test data

output" (TDO) signal. The clock signal to the FSM and register is called "test clock"

(TCK). A TAP controller has an optional "test reset" (TRST) signal that restores

the FSM to the "RUN-TEST/IDLE" state. The FSM changes state on the rising

edge of TCK. The control signals TMS and TDI are required to be stable during the

rising edge of TCK. To avoid violating setup and hold times of the state machine

32

0
0 Run Test Idle

1 1

Select-DR-Scan

0

Capture-DR

0

Shift-DR 0

10

Exit1-DR

0

Pause-DR 0

0 Exit2-DR

Update-DR

______________1

1

Test Logic Reset

Select-IR-Scan

Capture-IR

0

Shift-IR

Exit1-IR

10

Pause-IR 0

01

Exit2-IR

1

Update-IR

0

Figure 3-2: JTAG TAP State Diagram

33

t0

circuitry, it is mandated by the JTAG standard that TMS and TDI only change on

the falling edge of TCK.

The operation of the TAP controller is separated into two major functions for the

purposes of this project: "Instruction Register Scan" (IR-Scan) and "Data Register

Scan" (DR-Scan). While TMS is low, the TAP controller remains in the "Run-

Test/Idle" state. When in the "Run-Test/Idle" state, the TAP controller will enter

the "IR-Scan" state when TMS is held high for two rising edges of TCK followed by

TMS being held low for two rising edges of TCK. An instruction can then be serially

input to the chip. At the time when the last bit is clocked into the scan-register, TMS

is brought high for two rising edges of TCK. This updates the instruction into the

instruction register and returns the controller to the "Run-Test/Idle" state. In order

to enter data into the data register, TMS is held high for one rising edge of TCK and

then brought low. When the last bit is being input to the chip, TMS is brought high

for two rising edges of TCK.

The TAP controller embedded in the SensorDSP chip meets the standards set by

the IEEE 1149.1-1990 document [10]. In order to properly program the SensorDSP

chip, a similar FSM controller was needed to generate the proper timing for the TMS

signal. Figure 3-3 shows the state transition diagram of this FSM.

When the "IRJDR" signal is high, the FSM programs the instruction register.

When "IRJDR" is low, the data register is programmed. The FSM outputs a "shift"

signal when data is being shifted into the chip. It also outputs a "done" signal when

it has finished shifting. These signals are passed to the program control FSM, which

will be described in the next section.

3.1.2 Programming Interface Description

The FSM described in the previous section provides the necessary timing of the TMS

signal. Since the bit-width of the serial input varies from 1 bit to 37 bits, the program

control FSM is needed to keep track of which type of data is being programmed at

any given time. A state transition diagram of the FSM is shown in Figure 3-4.

There are 7 different instructions that are programmed into the SensorDSP. They

34

IDLE
TMS =0

GO = 1

SELECT-DR UPDATE
TMS=1 TMS=1

IRDR= 1

SELECT-IR EXIT
TMS = I TMS = 1

COMPARE = I

CA PTURE SHIFT
TMS =0 TMS=0

COMPARE=0

Figure 3-3: JTAG Controller State Diagram

are summarized in Table 3.1. Each instruction is a 7-bit word. Each type of TAP

instruction specified in Table 3.1 has an associated bit-width. A list of these bit-

widths is found in Table 3.2.

When loading distributed arithmetic table values, the first step is to supply the

DAINSTR1 instruction to the chip. Then the address that specifies a particular

DA table entry is supplied to the data register of the TAP controller. Recall from

Chapter 2 that there are 16 distributed arithmetic tables and each table has 8 en-

tries. The addressing scheme uses "one-hot encoding" for the 16 most significant bits

Mnemonic Binary Value Description
MUCTRL-INSTRO 0000001 Sets TAP to accept micro-controller instructions

NLSLJNSTRO 0000010 Sets TAP to accept NLSL instructions
NLSLINSTR1 0000100 Sets TAP to accept NLSL configuration settings

DA-INSTRO 0001000 Sets TAP to accept write enable bit for all units
DAINSTR1 0010000 Sets TAP to accept DA table addresses
DAINSTR2 0100000 Sets TAP to accept DA table values
DA_INSTR3 1000000 Sets TAP to accept DA configuration settings

Table 3.1: TAP Instruction Words

35

C IDLED RESET BUTTON

Load TAP Load Load TAP Load
Instruction Register DA Address Instruction Register DA Table Data

(DA Address) Data Register (DA Table Data) Data Register

Loop 128 Times

Load TAP Load TAP
Instruction Register Clear Write Enable Set Write Enable Instruction Register

(DA Address) (Write Enable)

Clear Load TAP Load Load TAPI
DA Address Instruction Register DA Configuration Instruction Register

Data Register (DA Configuration) Data Register (NLSL Configuration)

Load TAP Load Load TAP Load
Instruction Register NLSL Microcode Instruction Register NLSL Configuation

(Write Enable) Data Register (NLSL Microcode) Data Register

Loop 8 Times

Load TAP Load
Set Write Enable Clear Write Enable Instruction Register NLSL Configuation

(NLSL Configuration' Data Register

Load TAP Load Load TAP
Set Write Enable Instruction Register Microcontroller Instruction Register

(Write Enable) Data Register (Microcontroller)

Loop 256 Times

Clear Load TAP
Set WR Word Enable WR Word Enable Clear Write Enable Instruction Register

(Microcontroller)

FINISH Clear

ENABLE CHIP Microcontroller
Register

Figure 3-4: Programming Controller FSM State Diagram

36

Instruction Type Bit-width
TAP Instruction 7

Micro-controller Instruction 31
Micro-controller Write Enable 2

NLSL Filter Instruction 37
NLSL Configuration 9
NLSL WArite Enable 1
DA Table Address 19

DA Table Value 11
DA Table Write Enable 1

Table 3.2: Program Instruction Bit-sizes

(MSBs) of the address to select one of the 16 tables. The 3 least significant bits

(LSBs) represent the binary number of which table entry is selected. After each table

value is loaded into the boundary scan register, the write enable is toggled. Toggling

the write enable is accomplished in the same manner as loading addresses or data

into the scan register. The process of loading table addresses and table data values is

repeated 128 times since there are 8 table entries in 16 tables. After all tables have

been programmed, the DA address register must be cleared. Clearing the address

register allows data from the input shift register to access the DA tables instead of

the scan register.

After programming the DA table values, the DA configuation register must be

programmed. The DA table configuration setting is a 34 bit word. The 16 MSBs are

enable bits for each DA table. The next 3 bits select the input data bit-width. The

next 4 bits are the truncation setting for the linear filter accumulator. The binary

values for the bit-width and truncation settings are given in Table 3.3. The remaining

11 bits are the initial condition of the linear filter. The instruction format of the DA

table programming words is shown in Figure 3-5.

Once the programming for the DA unit is complete, the NLSL instructions must

be programmed. This process is begun by initializing the NLSL configuration regis-

ter. Then the 8 NLSL instructions can be programmed. The final step is to set the

configuration register to the appropriate truncations settings for the SAC and MAC

37

Truncation Settings
Binary Truncation

0001 Output = bits[11:0]
0010 Output = bits[15:4]
0100 Output = bits[19:8]
1000 Output = bits[23:12]

Bit-width Settings
Binary Bit-width

001 1
010 2
100 4
000 8

Table 3.3: Truncation and Bit-width Configuration Settings

accumulators. The binary encoding of the truncation setting is identical to the DA

truncation settings shown in Table 3.3. The NLSL instruction format can also be

seen in Figure 3-5. The first 3 MSBs are the instruction address. The next 7 bits are

the Square/Accumulate instruction. The next 11 bits are the Multiply/Accumulate

instruction. The remaining 16 bits are the Load/Store instruction. The NLSL con-

figuration word is 9 bits wide. The MSB is the the filter enable. The next 4 bits are

the truncation setting for the SAC (ACCO). The remaining 4 bits are the truncation

setting for the MAC (ACC1).

The last remaining sets of information to be programmed into the chip are the

micro-controller instructions. The micro-controller programming word is 31 bits wide.

The MSB is an enable bit and should always be set to 1. The next 8 MSBs are the

address of the instruction to be entered. An empty (zero) bit is placed after the

address. The remaining 21 bits are the micro-controller instruction. The micro-

controller instruction memory load is repeated for each of the 256 instructions that

can be loaded into the SensorDSP chip.

All of the programming data is stored in a 64Kx8 bit programmable read-only

memory (PROM). Each byte is loaded from the PROM into a shift register and shifted

(LSB first) into the SensorDSP chip through the TDI pin. Since the programming

information can be as much as 37 bits or as little as 1 bit, the programming control

38

18 3 2 0

Table Select 16 bit (one-hot) Entry Addr

DA TABLE ADDRESS

10 0

DA Table Value

DA TABLE VALUE

33 18 17 15 14 11 10 0

DA Table Enable (one-hot encoded) Bitwidth Truncation DA Table Initial Condition

DA TABLE CONFIGURATION

36 34 33 27 26 16 15 0

Address Square/Acc Instr. Multiply/Acc Instruction Load/Store Unit Instruction

NLSL INSTRUCTION & ADDRESS

8 7 4 3 0

En Truncation Truncation
En ACCI ACCO

NLSL CONFIGURATION

31 30 22 21 20 0

En Instruction Address 0 Microcontroller Instruction (21 bits)

MICROCONTROLLER INSTRUCTION & ADDRESS

Figure 3-5: Programming Instruction Formats

FSM is responsible for controlling the TMS signal, the load signal and the shift signal

to the shift register. The programming controller maintains a count of how many

bits have been shifted, a count of how many times a particular sequence has been

repeated, and the current address for the PROM. A block diagram of the programming

controller is shown in Figure 3-6. For words longer than 8 bits, the word must

be contained in multiple addresses of the PROM. For words less than 8 bits, the

remaining bits of the PROM address are left unused.

The parallel to serial shift register and address counters for the PROM, as well

as, the finite state machine are implemented in a single complex programmable logic

device (CPLD).

39

"Repeat Counter"
8 bit Counter

8
-1

zwL

"Shift Counter"
5 bit Counter

< -J
C) z 5

ENABLE 3 bit

, Counter
CLEAR

ENABLE

w-J

z

12

12 bit Address Counter 8 bit Shift Register

Figure 3-6: Programming Interface Block Diagram

3.2 Analog Sensor Interface

The analog acoustic sensor is a microphone and amplifier contained in a small package

that can be placed against the neck or chest of an individual to sense and amplify.

The sensor was provided my the Army Research Laboratory. The amplifier has 4

gain settings (20, 10, 3, 1). The output of the analog sensor is sampled with an 8 bit

analog to digital converter (A/D). The A/D converter is an Analog Devices AD670

successive approximation converter [11]. The AD670 was chosen because it has the

capability to operate in a bipolar or unipolar analog input. It has an adjustable

analog input range and a selectable output data format. The A/D is set to operate

40

ICc

q:
wU

FSM

Controller

ROM

C')

a:

I- LOAD

in bipolar mode with an analog input range of +1.28V to -1.28V. The output format

is set to be 2's complement.

One potential problem with the analog interface is the conversion time of the A/D.

The AD670 has a maximum conversion time of 10ps. During conversion, the status

bit of the A/D is a logic high. For the intended application, the sample rate is less

than 1kHz, therefore the conversion time is not a limiting factor.

Since the SensorDSP chip expects a serial input data stream, the parallel output

of the AD670 must be converted to serial. This is done with a shift register within a

CPLD similar to the programming interface. A strobe from the I/O controller is sent

to the A/D initiating a conversion. The data is then loaded into the shift register.

During the next N clock cycles (where N is the desired bit-width of the input data)

data is shifted (MSB first) into the SensorDSP chip. At the end of N clock cycles

the A/D receives another strobe and begins conversion again. A timing diagram of

the A/D interface is shown in Figure 3-7.

CLK

R/W

A/D DATA

SHIFT REG SHIFTXSHIFTXSHIFTXSHIFTXSHIFTXLOAD SHIFT

Figure 3-7: A/D Converter Timing

A significant part of properly using the system is choosing an appropriate matched

filter for the desired application. As such it is useful to have a controlled input data

stream to the chip, for testing and verification purposes. The SensorDSP system

provides the capability to insert a PROM containing test data that can be supplied

to the chip instead of data from the A/D converter. This is done by placing the

41

PROM's data lines on the bus with the A/D data. The I/O controller deactivates

(sets the outputs to tri-state) either the A/D or the PROM based on a selection

switch on the board. The I/O controller increments the PROM address at the same

rate it triggers the A/D, thus simulating the presence of real data. A block diagram

of the Analog Sensor Interface is shown in Figure 3-8.

8 Data Bus 8

Analog ASerial Out
, AD67 PROMSHIFT

Input r e/CE n aREG

R/W /CE

INPUT LOD

CONTROL
SHIFl

Bit-Width Select

Figure 3-8: Analog Sensor Interface Block Diagram

3.3 Heartbeat Indicator

The SensorDSP chip has a limited output capability. Due to constraints on the

number of pins, the chip only has a 12-bit output bus. To increase functionality and

testability, this bus is 8-way multiplexed via a 3-bit select input. The data available

from this bus are listed in Table 3.4.

The 3-bit selection input is supplied from the output controller. The output

controller is contained within a complex programmable logic device (CPLD). The

most straightforward way to indicate when the chip has made a heartbeat detection

42

Table 3.4: SensorDSP Output Bus Selection

is to watch the program counter. The assembly code that implements the heartbeat

detection algorithm is written such that the program jumps to a unique location of the

instruction memory when a heartbeat is detected. By default, the output controller

sets the SensorDSP output bus multiplexer to the program counter.

Eight external switches on the system board allow the user to enter which in-

struction memory address the controller will watch for. When the program counter

matches the value on the input switches, an indicator light emitting diode (LED) is

lit. The LED is held lit for a fixed amount of time to ensure that it is visible to

the human eye. In addition to a single LED indicator, three hexadecimal numeric

displays are available to display information extracted from the SensorDSP chip. For

the given application, the hex displays provide an approximate "beats per minute"

value. A block diagram of the heartbeat indicator circuit is shown in Figure 3-9.

The output controller CPLD can easily be reprogrammed to extract other useful

information from the chip such as filtering results or micro-controller calculations.

3.4 Clock Generation

As mentioned in Chapter 1, the SensorDSP chip operates on a slow clock and a fast

clock. The SensorDSP has an embedded clock generation module. This module takes

in a clock reference (rei) that is twice the desired fast clock frequency. Based on the

value of the clock configuration bits (CCONF switches), the (ref clock is divided by a

43

Binary Select Test Bus Output
000 DA Filter Output
001 NLSL AccO (SAC)
010 NLSL Acci (MAC)
011 DA Filter Buffer Output
100 NLSL Acc0 (SAC) Buffer Output
101 NLSL Acci (MAC) Buffer Output
110 Micro-controller Memory Data Bus
111 Micro-controller Program Counter

HEXADECIMAL DISPLAY

E lj

SELECT LED

"3\ /
SENSOR DSP OUTPUT

CHIP CONTROL

TEST PORT

8

CONTROL SWITCHES

Figure 3-9: Heartbeat Indicator Block Diagram

scaling factor to produce the slow clock. Equation 3.1 calculates the clock frequency

based on the frequency of the (ref signal and the value of the CCONF switches. The

value of (1),ef for the system is 230.4 kHz.

fslowelk = 2C+2 (3.1)

where C is the decimal value of CCONF

44

The clock generation module outputs the desired clock as well as the read trigger

signal (RD-TRIG). The RD-TRIG signal is a clock that has a 45 degree phase shift

with reference to the system clock. This signal is used for the timing of memory

accesses within the chip. Figure 3-10 shows the timing of this signal.

CLK

RD TRIG

Figure 3-10: Read Trigger Timing

It was the designer's choice to isolate the clock generator module from the chip

architecture. Subsequently, the "CLK" and "RDTRIG" signals must be externally

fed back into the chip. As such, the user can opt to use the internal clock generator

module or the external clock generator module. Since there is combinational logic

that enables the chip to switch clock frequencies there is a potential for glitches or

"runt pulses" to appear on the clock signal that could cause the system to execute

an incorrect instruction or skip an instruction. Because of the overall low speed

operation of the system, the potential for this error is small. Additional precautions

have been taken to avoid this problem by adding NOP instructions in the microcode

at the locations where this glitch could occur. This is easy to do since the switching is

controlled by a microcode instruction. For almost all applications, using the internal

clock module is recommended.

In addition to generating the clock for the SensorDSP chip, the external clock

module generates the clock for all other components in the system. The input/output

controller receives the same slow clock as does the SensorDSP chip. The programming

controller receives a separate 14.4 kHz clock. Figure 3-11 depicts a block diagram of

the clock generator subsystem.

45

C.i
Z -

LD-W-U

CCONF

2XCLK

CLK

TCK

T 0 SDSPCLK

t ~ T 0 - RDTRIG

FAST
MODE

Figure 3-11: Clock Generation Circuitry

3.5 Power Measurement

The overall goal of the system is to demonstrate the functionality of the signal process-

ing application at ultra low power levels. First, an ammeter connection is provided

on the board to accurately measure the current being drawn from the power sup-

ply. Second, a bar-graph LED display in embedded in the system to allow for an

approximate power measurement. A schematic of the power measurement circuitry is

shown in Figure 3-12. This circuit utilizes a bank of eight comparators and a resistor

voltage divider network. A resistor is placed in series between VDD and the chip. The

comparator array detects the voltage drop across the resistor and lights the appro-

priate LEDs of the bar-graph. Since the current drawn by the chip is on the order

of lptW, or less the resistance of the series resistor must be on the order of 200 kQ

in order for there to be a noticeable voltage drop. Because of this voltage drop, the

external VDD will need to be increased to maintain the necessary 1.5V delivered to

the chip. The default setting for power measurement yields approximately 0.5PA per

LED, however, a potentiometer can be adjusted to calibrate the measurement.

46

Vdd

+L

1 00k

200k 150k

SensorDSP
Chip

LO)C,.j20

U20

LO)

C,"

j1250

Figure 3-12: Power Measurement Schematic

47

Lea

0

0

3.6 Battery Vs. External Supply

The option to utilize battery power instead of an external power supply is provided

in the system. The internal power supply generation is provided by a 9V battery

and two voltage regulators. One is a fixed, 5V voltage regulator [14] that supplies

power to all the support electronics on the board. The second is an adjustable voltage

regulator [13] that supplies the VDD of the SensorDSP chip. The schematic for the

internal supply is shown in Figure 3-13. Jumper wires on the board are placed by

the user to select external or internal mode.

LM340
5V Fixed 5V

Regulator

lu T lu

LM317
Adjustable : Vdd

+ Regulator
9V -_40

U lu

5k

Figure 3-13: Power Regulation Schematic

3.7 Test Ports

The SensorDSP board has 7 test ports that can be used to monitor the operation of

the board. Table 3.5 lists all signals available from the test ports. Figure 3-14 shows

the pin diagram of a standard test port. Each test port is a 16 pin dual-in-line header

pin. Eight of the pins are signal pins; the remaining eight are connected to ground.

48

8 7 6 5 4 3 2 1
00000000

00000000
GROUND

TP#

Figure 3-14: Test Point Pin Diagram

TP# Pin #'s Signal Name
1 1 - 8 Program PROM Data Bus

2 1 - 8 Program PROM Address Bus (7:0)
3 1 SensorDSP TDI
3 2 SensorDSP TMS
3 3 SensorDSP TRST
3 4 Program IDLE
3 5 - 8 Program PROM Address Bus (11:8)
4 1 - 8 SensorDSP Test Port (11:4)
5 1 - 4 SensorDSP Test Port (3:0)
5 5 PRE
5 6 WORD-EN
5 7 DLATCH
5 8 BUFWEN
6 1 - 8 Test Data PROM Data Bus
7 1 FASTMODE
7 2 XOUT
7 3 SensorDSP TDO
7 4 RD-TRIG
7 5 CLKIN
7 6 LED-DETECT
7 7 SensorDSP TCK
7 8 XIN

Table 3.5: Test Port Signals

49

LSB MSB

50

Chapter 4

System Details

"Using The SensorDSP System"

This chapter contains instructions for using the SensorDSP system. The following

is a list of required components in order to properly use the system.

1. The SensorDSP board

2. The Heart Sensor Amplifier and Filter or compatible analog signal receiver

3. Dual Source Adjustable Power Supply

4. Cypress Warp2ISR Programmable Logic Kit for PC (VHDL or Verilog) Flash370i

Series

5. The SensorDSP Initialization Program (for Unix)

6. A Programmable Read-Only Memory Programmer (compatible with Intel MCS-

86 Hexadecimal Format)

51

There are many steps that must be followed in order to successfully program and

use the SensorDSP system. This chapter is a step-by-step "walk-through" of the

usage of the system. The topics that are covered in this chapter are:

o Compiling Program Data

o Running the system

o Using the test data input

o Extracting data from the board

o Additional Features

o Troubleshooting

Figure 4-1 is a floor-plan of the system board. All parts, switches, ports, and

displays can easily be identified by referring to Figure 4-1 and Table 4.1, which lists

the parts of the board with brief descriptions.

4.1 Compiling Program Data

The compilation of program data is accomplished by running the "SensorDSP Ini-

tialization Program". The program enables the user to enter linear filter coefficients,

NLSL instructions, and micro-controller instructions. The program then generates

an Intel MCS-86 hexadecimal formatted file (filename.ntl). The PROM can then be

programmed and inserted into the system board. Before running the "SensorDSP

Initialization Program" there are several steps that must be performed.

1. Choose coefficients of the matched filter. The filter coefficients should be ar-

ranged in a text file with a carriage return separating each number. There

should be a maximum of 64 coefficients and each coefficient must be in the

range from -255 to +255.

52

A R6-

Pot

J6 5J71
Power Jumpers RED

D30

00
Ammeter Ammeter

Out In

51
Ammeter
Jumper

TF
GREEN
OD1

Power Jumpers

4 |

CONTROL
SWITCHES

D2

0
HEART

DETECT
LED

Hexadecimal
Display

TP6

SensorDSP

PGM CTRL I/O CTRL

TP5

IT P=7
-H PGMROMSEL

CCONF

CLKGEN

CLK Jumpers

DATAROMSEL

S3 S4 S5 S8 S10 S9

RESET STARY 7

0
TWINAX

Global Enable

Unused
Input/Output

Control
Reset

U
Mode

UP: Test Data
DN: Sensor Data

nused

Figure 4-1: SensorDSP System Board Floor-plan

53

9V

BATTERY

PGM

PROM
TEST
DATA
PROM

Components

Ref# Nomenclature Description
U1 SensorDSP Ultra Low-Power Classification Processor

U2 I/O CTRL Input/Output Control Logic (CPLD)
U3 PGMROM Program Data ROM
U4 DATAROM Test Data ROM
U5 AD670 Analog to Digital Converter

U6 PGM Control Programming Control Logic/FSM (CPLD)

U7 LM340 Fixed 5V Voltage Regulator

U8 LM317 Adjustable Voltage Regulator

U9 CLKGEN Clock Generator Logic (CPLD)
U10 MAX924 Quad Comparator

U11 MAX924 Quad Comparator

U12 74LS393 Ripple Counter
Switches

S1 CONTROL Select Value for Program Counter Comparison

S2 CCONF Select Clock Speed
S3 GLB EN SensorDSP Global Enable (Debugging Only)
S4 Unused
S5 I/O RST Disables I/O Control and Stops Program Counter

S6 DATAROMSEL Select 1 of 16 Test Data Blocks in ROM
S7 PGMROMSEL Select 1 of 16 Program Data Blocks in ROM
S8 MODE Select I/O Mode (UP: Test Data, DN: Sensor Data)
S9 Unused
S10 Unused -

Table 4.1: Component Reference Designations

2. Write a program for the NLSL unit. A separate file should be created containing

the instructions for the SAC, MAC, and LSU units. Each file must have less

than 8 instructions. Refer to Appendix C for the details of the NLSL instruction

set. Sample files are also contained in Appendices D.2, D.3, and D.4.

3. Write a program for the micro-controller unit. Refer to Appendix B for details

regarding the micro-controller instruction set. The heartbeat detection assem-

bly code is contained in Appendix D.1. Section 4.7 of this chapter contains

some additional details necessary for writing assembly code.

4. Choose input data bitwidth size. Using 8-bit data is recommended.

54

5. Choose the truncation settings for the DA and NLSL units. This can be done

by simulating a matched filter with recorded data to predict the peak output

values. In general, it is best to chose the highest truncation setting (i.e. lowest

order bits are truncated) and then examine the result of the filter. If the output

is zero, then a lower truncation setting should be set.

Once all the above files have been created, the "SensorDSP Initialization Program"

can be executed. Start by typing: SensorDSP.

The opening screen is shown below:

* SENSOR DSP INITIALIZATION PROGRAM *

* *

* 1. Assemble Microcontroller Code *

* 2. Assemble Non-Linear/Short-Linear Filter Code *

* 3. Generated Distributed Arithmetic Tables *

* 4. Generate PROM file for SensorDSP board *

* 5. Exit Program *

* *

* Please enter the appropriate number and press return *

Proceed by selecting option 1 and following the instructions indicated by the

program. The program will display any errors that occur during the complilation of

the micro-controller assembly code. If there are no errors, then proceed to option 2

and then 3. Once options 1,2, and 3 are successfully completed without errors, choose

option 4 to compile the data into a .ntl file. The .ntl file will be placed in the working

directory. This file can now be used to program the PROM in a standard PROM

programmer.

The following section describes how to properly set up and use the board.

55

4.2 Running the System

This section describes how to initialize and run the system.

4.2.1 Initial Settings

Before turning the power on to the board, the following steps must be completed.

1. Set jumpers J1 and J2 to internal clock (INT).

2. Place jumper on J3.

3. Set GLB EN switch (S3) to OFF (DOWN).

4. Set I/O RST switch (S5) to ON (UP).

5. Set PGMROMSEL and DATAROMSEL to 0000 (all DOWN).

6. Set CCONF to 0110 (DN, UP, UP, DN). Refer to Section 4.6.2 for alternate

clock settings.

7. Set CONTROL switch (S1) to the Program Counter value to be compared.

8. If an external power supply is being used: Set Vcc to 5V. Set Vdd to 1.5V -

3V. Place jumpers on J4 and J5. Remove jumpers from J6 and J7.

9. If the battery supply is being used: Place jumpers on J6 and J7. Remove

jumpers from J4 and J5.

10. If no power measurement is needed, place a jumper on J8. If power measurement

is needed, the jumper on J8 must be removed.

11. Insert Program ROM in U3 ZIF socket (left). Insert Test Data ROM in U4 ZIF

socket (right).

56

4.2.2 Operating the System

Once the above steps have been completed, power can be turned on. NOTE: When

using the battery, power can be turned off by removing jumpers J6 and J7. The

following is a list of steps to operate the board:

1. Press the RESET (BLACK) Button. The Green LED (D1) should be ON and

the Red LED (D3) should be OFF. The system is in the IDLE state

2. Press the START (RED) Button. The Red LED (D3) should turn ON and the

Green LED (D1) should turn OFF. The system is in the PROGRAMMING

state. While the Red LED is ON, the SensorDSP chip is being programmed.

3. When programming is complete, both LEDs will be ON. The system is in the

RUN state.

4. Select the MODE setting: UP = test data from PROM, DN = data from analog

sensor.

5. Switch I/O RST DOWN. This enables the SensorDSP chip. The DETECT

LED (D2) will flash when the chip makes a positive classification.

The system can be halted by switching the I/O RST switch UP. To restart the

system, the procedure outlined above must be repeated.

4.3 Analog Signal Requirements

The analog to digital converter used in this system expects a bipolar analog signal

in the voltage range from -1.28V to +1.28V. The signal processing capability of the

system is limited to medium to low throughput applications. It is highly recom-

mended that the analog signal be low pass filtered prior to sampling to eliminate any

high frequency noise components. For heartbeat signals, a suggested low pass filter

bandwidth is 500 Hz.

57

Gain (dB) Switch Position
20 0
10 1
3 2
1 4

Table 4.2: ARL Sensor Gain Settings

To allow the SensorDSP system to sample analog data, the switch labeled "MODE"

must be in the "DOWN" position. More information regarding this switch is dis-

cussed in section 4.4. The serial data input can be disabled entirely by setting the

"I/O-RST" switch to the "UP" position.

4.3.1 Using the ARL Sensor

The analog sensor used in the system was provided by the Army Research Laboratory.

The sensor consists of a microphone, amplifier, and low pass filter (fcorner = 490Hz).

Acoustic vibration is coupled to the microphone via an acoustically conductive fluid

contained within the packaging of the sensor. The amplifier has a variable gain

setting that can be adjusted via an 8 position rotary switch. The rotary switch can

be accessed through a small hole in the under-side of the sensor package using a

precision screwdriver. Table 4.2 shows available gain setting and their corresponding

switch setting. The sensor connects to the SensorDSP board via the "TWINAX"

connector indicated in Figure 4-1. On the sensor connector, the plug is the signal

out, the pin is the +5V power supply, and the body (shield) is the ground. The sensor

is capable of a -2.5V to +2.5V voltage output. The recommended gain setting for

heartbeat detection is 20dB (setting 0).

4.4 Test Data Input

Digital test data can be sent to the SensorDSP chip in place of the sampled data

from the A/D. This digital test data is stored in a PROM. Similar to the program

58

data, the test data is stored in 4KB blocks in the PROM. The address to the test

data PROM is incremented at the same interval that the A/D would sample. To

operate the SensorDSP board in test mode, set the switch labeled "MODE" to the

"UP" position. The "MODE" switch is also referred to as "S8". The test data must

be in two's complement format. The data can be stored in the PROM by whatever

means are the easiest for the user. The recommended method is to create a file

containing the two's complement data in hexadecimal format and convert the file to

an Intel MCS-86 Hexadecimal format using the "DAT2NTL" program supplied with

the system.

4.5 Extracting Data

As mentioned in Chapter 2, the SensorDSP chip has a limited data output capability.

The internal data-path of the chip is multiplexed to a single 12-bit test port. As such,

additional control logic was designed to acquire and analyze data from the chip. This

additional control is contained within the "I/O CTRL" CPLD. This CPLD can be

re-programmed to perform a different function than the one described in this section.

The subsequent sections describe the three methods for extracting information from

the SensorDSP chip.

4.5.1 Heartbeat Detection Indicator

A single indicator light (LED) is provided to display when the chip has made a positive

classification of a heartbeat. As part of the micro-controller assembly code, a unique

location in the program memory is jumped to when a heartbeat is detected. The

I/O CTRL logic sets the test multiplexer of the chip to select the program counter as

the output. When a specific value of the program counter is reached the LED is lit.

The LED remains lit for a fixed period of time, yet cleared before another potential

detection is made. The switches labeled "CONTROL" in Figure 4-1 allow the user

to select which program counter value the I/O CTRL logic triggers on.

59

4.5.2 Hexadecimal Display

The hexadecimal display is a set of 3 hexadecimal numeric displays that are connected

to the I/O CTRL CPLD. For heartbeat detection the hexadecimal display is used to

display the number of beats per minute that are being detected. The I/O CTRL

CPLD can be re-programmed to use the hexadecimal display for other application

specific purposes.

4.5.3 Using the Test Ports

There are 7 test ports on the SensorDSP board that allow access to the digital signals

that pass into and out of the SensorDSP chip. A logic analyzer can be connected

to these test ports to acquire data for analysis and debugging purposes. Refer to

Table 3.5 and Figure 3-14 in Chapter 3 for the pin configuration of the test ports.

In order to extract information from the chip it will most likely be necessary to

re-program the I/O CTRL Logic CPLD.

4.6 Additional Features

The following a a brief description of the additional features implemented in the

SensorDSP system.

4.6.1 Multiple Programs

The total amount of memory utilized in the PROM to store the programming infor-

mation is less than 4KB. As such, as many as 16 different programs can be stored on a

single 64K x8 PROM. Programs can be stored in higher address spaces in the PROM

by selecting an appropriate offset address when programming the PROM. After the

device is inserted in the board, the alternative programs can be selected using the

switches labeled "PGMROMSEL" as indicated in Figure 4-1. By default, the starting

address of the program data is 0, thus, the PGMROMSEL switches should be set to

0.

60

The block size of data stored in the "Test Data" PROM is also 4KB. Thus, there

is space within the PROM to store 16 different test samples. The samples stored in

the higher address spaces of the PROM can be accessed by appropriately setting the

switches labeled "DATAROMSEL" as indicated in Figure 4-1.

4.6.2 Changing Clock Speeds

As described in Section 3.4, the SensorDSP system is capable of varying the speed at

which the signal processing algorithm is executed. Equation 4.1 calculates the clock

speed given a value on the CCONF switches.

fslowdik 2 C+2 (4.1)

where C is the decimal value of CCONF

4.7 Troubleshooting

When testing the SensorDSP board the following steps are recommended:

1. Use an external power supply instead of the battery supply.

2. Use 8-bit input data bit-width. Lower bit-widths yield less accurate results.

3. Use test data stored in the "Test Data" PROM. With known input data, it is

significantly easier to debug the system's output.

4. Use the default clock speed settings as described in Section 4.2.1.

The most common problem that will occur with the use of the SensorDSP system

is having an incorrect truncation setting. If the truncation is set such that valid high

order bits are truncated, the micro-controller will see overflow in the data. If the

truncation is set such that the low order bits containing valid data are truncated, the

micro-controller will see all zero, or negigible results. Picking the correct truncation

setting, is in most cases, a trial and error procedure.

61

A recommended test of the system is to supply the impulse response to the chip

via the test data input. By re-programming the Input/Output CPLD, the test port

of the SensorDSP chip can be accessed. The outputs of the DA and NLSL units can

then be monitored from the TP4 and TP5 test ports.

When writing micro-code for the feature extraction and classification processor,

the following preamble should always be used:

CONFIG FAST-MODE CLR

CONFIG DATA-VAL CLR ;

NOP ;

NOP ;

NOP ;

NOP ;

NOP ;

CONFIG ALLENABLE SET ;

In order to maintain synchronization of the input data, the ALLENABLE SET

instruction must occur exactly 8 clock cycles after the beginning of the program

execution. Refer to Appendix D.1 for more examples of SensorDSP microcode.

The the end characater for the assembly language is $. The microcode will not

compile correctly if the end character is missing.

When programming the CPLDs, it is imperative that an external power supply

be used. The In-System-Reprogrammable (ISR) cable presents a significant load to

the 5V power supply and subsequently, drains the battery very quickly.

62

Chapter 5

Conclusions

A photograph of the SensorDSP system board is shown in Figure 5-1. The SensorDSP

chip is located in the center of the board. The acoustic sensor is place to the right of

the board.

The system is a self-contained re-programmable system that can be used for a va-

riety of low-power signal processing applications. The heartbeat detection algorithm

was demonstrated using the system.

Future work with the SensorDSP system will reveal that a useful signal process-

ing device can be power by ambient vibrational energy. A future iteration of the

SensorDSP could incorporate the sensor, amplifier, and A/D converter into a single

mixed-signal DSP chip.

All files pertaining to the operation of the SensorDSP board are stored in /obi-

wan/daverowe/. The files are arranged in the following subdirectories: (C, DA, muc-

trl, nlsl, VHDL, data, verilog). README files are provided in each directory to

describe the contents.

63

Figure 5-1: SensorDSP Demonstration System Board

64

Appendix A

SensorDSP Chip Pinouts

11 10 9 8 7 6 5 4 3 2 1

S E TOP VIEW

11 10 9 8 7 6 5 4 3 2 1

L

K

J

H

G

F

E

D

c

B

A

Figure A-1: SensorDSP Chip Footprint (Top View) [1]

L

K

H

G

F

E

D

c

B

A

1 2 3 4 5 6 7 8 9 10 11

BOTTOM VIEW ® ©

0 11

1 2 3 4 5 6 7 8 9 10 11

Figure A-2: SensorDSP Chip Footprint (Bottom View) [1]

65

Signal Pins

Pin# Signal Name Type [Description

1
2
3
4
6

10
11
12
13
14
15
22
28
29
34
37
38
39
40
41
42
43
46
47
48
49
53
54
55

56-67

PRE
WORD-EN
DLATCH

BUF.WEN
Xin
TDI
TMS
TCK

TRST
TDO
Xout

GLBEN
DATANVAL-SET

MUCTRLEN
RST

FAST-MODE
RD-TRIG.OUT

CLK-OUT
RD-TRIG
CLKIN

CLKRST
<bref

CCONFO
CCONF1
CCONF2
CCONF3

YTEST-SELO
YTEST-SEL1
YTESTSEL2
YTEST[0:11]

Power Pins
Pin# Name
7, 9,16,18, 20, 23, 25 Ground
26, 30, 32, 36, 44, 50, 52 Ground
17, 19, 27, 35, 51, 68 VHH, Chip Pad Power
8, 21, 24, 31, 33, 45 VDD, Chip Core Power

Table A.1: SensorDSP Chip Pinout

66

Output
Output
Output
Output
Input
Input
Input
Input
Input

Output
Output
Input
Input
Input
Input

Output
Output
Output
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input

Output

SRAM bit-line precharge
SRAM Word Enable
SRAM Data Latch
SRAM Write Enable
Serial Data Input
Test Data Input (Programming)
Test Mode Select (Programming)
Test Clock (Programming)
Test Reset (Programming)
Test Data Output (Programming)
Output of Serial Shift Register
Global Enable (Forces All units ON)
Filter buffer data valid bit alway set
Micro-controller Enable
Reset
Fast mode indicator
Internal clk generator module outpul
Internal clk generator module outpu
SRAM Read Trigger Clock
System Clock Input
Internal clk generator module reset
Reference clock for clk gen module
Clock speed select
Clock speed select
Clock speed select
Clock speed select
Test Port Multiplexer Select
Test Port Multiplexer Select
Test Port Multiplexer Select
12-bit Test Port Bus

t
t

Appendix B

Sensor DSP Microcontroller
Assembly Language [1]

The backend processing of the Sensor DSP chip is done on a microcontroller with
a custom instruction set architecture. The microcontroller is a load/store, single
pipeline stage architecture. This appendix is a user guide and documentation for the
microcontroller ISA.

B.1 Instruction Set Overview

The programming model for the Sensor DSP microcontroller is shown in Figure 2-6
and repeated in Figure B-1 for convenience. It is a straightforward single instruction
word RISC architecture. Both the filter buffer and the microcontroller data memory
share the same address space, as will be discussed below.

Instruction Types
(OPCODE)
(OPCODE)
(OPCODE)
(OPCODE)
(OPCODE)
(OPCODE)

(OPCODE)

(OPCODE)

0000
0000
(DEST)
(CC BIT)
(DEST)
(DEST)

(DEST)

(DEST)

0000

(SRC 0)

00000000
(ADDRESS)
(ADDRESS)
(ADDRESS)
(CONSTANT)
00000000

(SRC 0) (CONSTANT)

(SRC 0) (SRC 1) 0000

no operand
unconditional jump
direct memory instruction
conditional jump
load constant
2 operand w/o constant
indirect memory instruction
2 operand with implicit
destination
2 operand w/ arithmetic

constant
3 operand w/ constant
field padding

Table B.1: Microcontroller instruction types.

67

Data
Memory

Register
File

Instruction
Memory ALU

z

Figure B-1: Sensor DSP microcontroller architecture.

The Sensor DSP microcontroller is a twelve bit data load/store architecture with
only one pipeline stage. Instructions are fetched from the instruction memory, de-
coded, operands are read from the register file, an operation is performed, and the
result written back all in one cycle. Consequently, there are no concerns about pipeline
bubbles. All instructions take exactly one clock cycle to complete so there is no pos-
sibility of out-of-order execution or issuing instructions while previous instructions
are still "live". All of this makes programming the machine fairly simple.

The instruction types that the microcontroller opcode decoder recognizes are
shown in Figure B.1. The actual instruction memory locations must be padded
with extra O's when a field will not be interpreted. There are 32 instructions for a
five bit opcode. There are also 16 registers so register specifiers require 4 bits each.
Loads and stores to the register file are done explicitly and must be performed before
the operands are used in any subsequent arithmetic operations. Writes of arithmetic
operation results only go back to the register file. Arithmetic operations have either
two sources and one destination register or one source and one destination register.
Conditional jumps require a field specifier which accesses one bit of the Condition
Code (CC) register. Jump targets are twelve bits wide as well for compatibility rea-
sons: the instruction memory on-chip is only 256 instructions deep. There are twelve
address bits for data memory accesses as well. There are two kinds of constant oper-
ations: explicit loads take full twelve bit constants while some arithmetic operations

68

have implicit four bit constants.

B.2 Registers and Other State

There are two sets of state that may be written by the microcontroller program. The
first set is the set of registers that store the temporary values for the computation.
The second is a group of bits that control the configuration of the front-end processing
units and chip clocks, thus making the microcontroller the master functional unit on
the chip.

Register Specifiers
Special Registers
Mnemonic Opcode Notes
DA-ACC 0000 distributed arithmetic result
ACCO 0001 NLSL SAC ALU result
ACC1 0010 NLSL MAC ALU result
BUFPTR 0011 segment buffer pointer
CC 0100 condition code
MUACCL 0101 microcontroller accumulator, low order word
MUACCH 0110 microcontroller accumulator, high order word
Other Registers
R7-R15 0111-1111

Table B.2: Microcontroller registers.

Table B.2 shows the register specifiers for the various registers in the architec-
ture. There are numerous special registers that interface with the preprocessing units
(the Distributed Arithmetic Unit and the Nonlinear/Short Linear Filter Unit). The
DA-ACC register is implicitly loaded with the results of the DA operation from the
filter buffer. Similarly, the ACCO and ACC1 registers store the results of the two
filter ALUs from the NLSL Unit, also via the filter buffer. BUFPTR points to the
location of the current sample in the filter buffer. The condition code register CC
implicitly stores several bits from the datapath that are useful for conditional opera-
tions. Its use will be described in detail below. Lastly, MUACCH and MUACCL
are the high low twelve bit words of the twenty-four bit wide microcontroller accu-
mulator. The results of certain arithmetic operations have twice as many bits as the
datapath operands so it is necessary to have this register store the full result. The user
is then free to implement any roundings or truncations he or she sees fit. Registers
R7 through R15 are general purpose registers and are never implicitly written.

Table B.3 shows the various specifiers for the bits of the condition code register.
Conditional instructions branch based on the value of the one bit specified using these
mnemonics. These specifiers and their use will be described in more detail below in
the discussion of control flow instructions in Section B.3.7. Note that in addition to

69

CC Register Field Specifiers-
CC Field Mnemonic Opcode Notes

CC[0] SIGN12 0000 ALU 12 bit result sign bit
CC[1] OFLW12 0001 ALU 12 bit result overflow bit
CC[2] WNOR12 0010 wired NOR of ALU 12 bit result bits
CC[3] SIGN24 0011 24 bit accumulator sign bit
CC[4] OFLW24 0100 24 bit accumulator overflow
CC[5] LOW12 0101 ALU 12 bit result low bit
CC[6] WOR12 0110 wired OR of ALU 12 bit result bits
CC[7] PCSEL 0111 jump select bit result
CC[8] WHIGH 1000 wired high
CC[9] WLOW 1001 wired low
CC[10] DATA 1010 new buffer data valid bit
CC[11] FAST 1011 fast mode enable bit

Table B.3: Condition code register field specifiers for conditional jumps.

the mnemonics, the strings CC [i] may also be used as register field specifiers. CC [0]
is equivalent to SIGN12 to the instruction decoder.

Configuration Bit Specifiers

Mnemonic Opcode Notes

DAENABLE 0000 distributed arithmetic unit enable

NLSLENABLE 0001 nonlinear/short linear filter unit enable

DATA-VAL 0010 filter buffer valid data bit
BUF.ENABLE 0011 filter buffer enable
ALLENABLE 0100 enable all units
FAST..MODE 0101 fast mode select

Table B.4: Configuration state bit specifiers for configuration instructions.

The Sensor DSP microcontroller is also responsible for software enables of the

preprocessing filter units and selection of the appropriate clock frequency for real-

time operation. This is accomplished using the configuration bit specifiers shown in

Table B.4. See Section B.3.9 for instructions and examples of their use.

B.3 Instruction Descriptions

In this section, we describe in detail the commands that the assembler understands.

In addition to explicit instructions implemented in the hardware, there are several

macros which the assembler expands into one line assembly instructions. All macros

are also implemented in one cycle. Some additional commands for naming branch

targets and aliasing constants and memory locations are also described.

70

Note that the assembler program muctriasm is case-insensitive, even though the

majority of the example code is uppercase.

B.3.1 RTL Description

Instruction Syntax and RTL Description
Mnemonic Oprnd Oprnd Oprnd I Notes

NOP
MACC
MDEC
MULT
ADD
SUB
ADDC
SUBFC
NOT
NAND
AND
NOR
OR
XOR
EQ
LRSHFT
LLSHFT
ARSHFT
LCIRC
RCIRC
JUMP
CTJUMP

[R1]
[Ri]
[R1]
[R1]
[R1]
[R1]
[R1]
[R1]
[R1]
[R1]
[R1]
[Ri]
[Ri]
[Ri]
[Ri]

[Ri]
[Ri]
[Ri]
[addr]

[CC][1]

[R2]
[R2]
[R2]
[R2]
[R2]
[R2]
[R2]
[R2]
[R2]
[R2]
[R2]
[R2]
[R2]
[R2]
[R2]
[R2]
[R2]
[R2]
[R2]

[R3]
[R3]

[const]
[const]

[R3]
[R3]
[R3]
[R3]
[R3]
[R3]

[addr]

CFJUMP [CC][i] [addr]

LOAD [R1] [addr]
STOR [R1] [addr]
LDI [Ri] [R2]
STI [R1] [R2]
LDC [Ri] [const]
CONFIG [CNF][i] [state]

(MUACC) <-
(MUACC) <-
(MUACC) +-
(Ri) +- (R2)
(R1) +- (R2)

(MUACC) + (R1)*(R2)
(MUACC) - (R1)*(R2)
(R1) * (R2)
+ (R3)
- (R3)

(R1) +- (R2) + [const]
(R1) <- [const] - (R2)

(R1) *- (R2) (bitwise NOT)
(R1) +- ((R2) * (R3)) (bitwise NAND)
(R1) +- ((R2) * (R3)) (bitwise AND)
(Ri) +- ((R2) + (R3)) (bitwise NOR)

(Ri) +- ((R2) + (R3)) (bitwise OR)

(111) +-((R2) (x) (113)) (bitwise XOR)
(R1) +- ((R2) (x) (R3)) (bitwise EQ)
(R1) +- { 0, (R2)[11:1] }
(R1) +- { (R2)[10:0], 0 }
(R1) +- { (R2)[11], (R2)[11:1] }
(R1) +- { (R2)[0], (R2)[11:1] }
(R1) +- { (R2)[10:0], (R2)[11] }
(MUCTRLPC) +- [addr]
if (CC[i]) then (MUCTRLPC) +- [addr]
else (MUCTRLPC) +- (MUCTRLPC) + 1
if (CC[i]) then (MUCTRLPC) +- [addr]
else (MUCTRLPC) +- (MUCTRLPC) + 1
(R1) +- (DMEM[addr])
(DMEM[addr]) +- (R1)

(111) +- (DMEM[(R2)])
(DMEM[(R2)]) +- (R1)

(1) +- [const]
(CNF[i]) +- [state]

Table B.5: Microcontroller instruction syntax and RTL level description.

71

The instruction syntax and RTL description for the explicitly implemented in-
structions are shown in Table B.5. Macros and other abstracted instructions get
their operands from the same fields as their underlying implementations, which are
described in various tables throughout this manual. Refer to Table B.5 to determine
which fields operands are coming from and results are going to within a program.

B.3.2 Miscellaneous Instructions

Miscellaneous Instructions
Mnemonic Opcode Notes
NOP 00000 separate instruction to disable accesses

and save power

Table B.6: Arithmetic instructions and opcodes.

Table B.6 summarizes the miscellaneous and utility instructions for the architec-
ture. Each of these will be described in turn below.

NOP

This is the null operation instruction. It is implemented by simply turning off the
write enables to the microcontroller register file.

Example: NOP.

B.3.3 Arithmetic Instructions

Arithmetic Instructions
Mnemonic Opcode Notes
MACC 00001 multiply-accumulate
MDEC 00010 multiply-decumulate
MULT 00011 multiply
ADD 00100 add
SUB 00101 subtract
ADDC 00110 add constant
SUBFC 00111 subtract from constant

Table B.7: Arithmetic instructions and opcodes.

Table B.7 summarizes the arithmetic instructions for the architecture. Each of
these will be described in turn below.

72

MACC

MACC is the multiply-accumulate instruction. All multiplication related instruc-
tions implicitly send their results to the multiplier accumulator register MUACC and
so require only two source operands to be specified instead of two sources and a des-
tination. MACC takes the product of its operands and adds them to the contents
of the MUACC register.

Example: MACC ACCO ACC1

MDEC

The multiply-decumulate instruction is MDEC. It works similarly to the multiply
and accumulate instruction, except it subtracts the product of its operands from the

MUACC register instead of adding them.
Example: MDEC CC MUACCH

MULT

MULT multiplies its operand together and overwrites the value in the MUACC
register with the resultant product. It also has an implicit destination like the previous
instructions.

Example: MULT R7 R8

ADD

ADD performs arithmetic addition. It computes the sum of its operands and stores

the result in the destination register.
Example: ADD R9 R10 R11

SUB

Arithmetic difference is computed by SUB. It writes the value of subtracting its
second operand from its first into the destination register. Integers are represented
in two's complement notation so negative values are allowed.

Example: SUB R12 R13 R14

ADDC

ADDC is similar to ADD above, except that one of its arguments is an eight bit
two's complement integer constant. This constant is sign extended to twelve bits
when the actual addition is performed.

Example: ADDC R15 R15 17

SUBFC

SUBFC (SUBtract From Constant) computes a difference like SUB above except
that one of its arguments is an eight bit constant. Also, the order of the operands

73

in the computation is reversed (see Table B.5) in that the value from the register is

subtracted from the sign extended version of the eight bit constant.
Example: SUBFC R7 R9 -1
In the example above, the contents of register R9 would be subtracted from -1

and stored into register R7.

B.3.4 Arithmetic Macros

Arithmetic Macros
[R1] [R2] 0
[R1] [R2] 0
[R1] [R1] 1
[R1] [R1] -1
[R1] [R2] -[const]
[R1] [R1] [R1]

arithmetic negation
register to register copy
increment
decrement
subtract constant, negation
zero a register

Table B.8: Arithmetic macros and implementations.

Table B.8 shows the definitions of various arithmetic macros that may be used

exactly like real instructions in an assembly program. The assembler handles the
expansion and any other preprocessing before the final translation into binary.

NEG

NEG computes the additive inverse in two's complement notation of the contents of
register R2 and stores the results in register R1.

Example: NEG R7 R8

COPY

COPY copies the contents of register R2 and stores them into register R1.
Example: COPY R9 R10

INC

Incrementing macro INC adds 1 to the contents of register R1 and stores the result

in the same place, overwriting its previous value.
Example: INC R11

DEC

Decrementing instruction macro DEC works just like INC above, except that the
contents of R1 are replaced with the sum of R1 and -1.

Example: DEC R12

74

NEG
COPY
INC
DEC
SUBC
ZERO

SUBFC
ADDC
ADDC
ADDC
ADDC
SUB

by assembler

SUBC

SUBC subtracts an explicit constant from the contents of R2 and stores the value
into destination register R1. Thus, the order of its operation is the same as the SUB
instruction above and the reverse of the SUBFC instruction.

Example: SUBC R9 R10 16

ZERO

ZERO zeroes out a register by subtracting its contents from itself.
Example: ZERO R6

B.3.5 Relational Macros

Relational Macros
GT SUB CC [R2] [R1] greater than
LT SUB CC [R1] [R2] less than
EQUAL SUB CC [RI] [R2] arithmetic equivalence
LTC ADDC CC [RI] -[const] less than constant,

constant negated by assembler
GTC SUBFC CC [R1] [const] greater than constant
EQC SUBFC CC [R1] [const] equal to constant

Table B.9: Relational macros and implementations.

Table B.9 shows the definitions of various relational operator macros that may be
also used exactly like real instructions in an assembly program. These instructions
are implemented as macros to conserve opcodes in the instruction set. All relational
instructions implicitly write the condition code register using the same data from
implicit writes in typical arithmetic and logical operations even though the macro
expansion explicitly uses the CC register specifier as the destination. This implicit
write is implemented within the instruction decoding ROM of the microcontroller.

GT

GT (Greater Than) determines whether the value in register R1 is greater than in
register R2 and stores the result bit implicitly in the CC register field SIGN12.

Example: GT R7 R8
In the example above, the GT instruction sets the SIGN12 bit in the CC register

true if the value in R7 is greater than the value in R8. This is done by subtracting
the value in R7 from the value in R8. If this difference is negative, the sign bit of the
result will be 1 and the relation will be true.

75

LT

LT (Less Than) sets the SIGN12 field of the CC register true if the value in register
R1 is less than the value in register R2.

Example: LT R9 R10

EQUAL

EQUAL sets the WNOR12 field of the CC register true if the value in register R1
is equal to the value in register R2.

Example: EQUAL R11 R8

LTC

LTC (Less Than Constant) compares the value in register R1 to an explicit constant.
It sets the result bit in the SIGN12 field of the CC register.

Example: LTC R12 9

GTC

GTC (Greater Than Constant) is the complement of LTC above: it compares the
values of register R1 and an explicit constant and stores the result bit into the SIGN12
field of the CC register.

Example: GTC R9 25

EQC

Comparing equality with a constant is the function of the EQC macro. If register
Ri's value is equal to the explicit constant, then the WNOR12 field of the CC register
is set to true.

Example: EQC R6 -33

B.3.6 Logical and Shift Instructions

In addition to the arithmetic instructions and macros supported above, the micro-
controller architecture also implements a set of logical and shift operations. These
are summarized in Table B.10 and described in detail in the following section.

NOT

The bitwise negation instruction NOT inverts the bits of the contents of its argument
register and stores the result into the destination register.

Example: NOT R7 R8

76

Logic and Shift Instructions
Mnemonic Opcode Notes
NOT 01000 logical negation

NAND 01001 logical nand
AND 01010 logical and
NOR 01011 logical nor
OR 01100 logical or
XOR 01101 logical xor
EQ 01110 logical equivalence
LRSHFT 01111 logical right shift
LLSHFT 10000 logical left shift/arithmetic left shift
ARSHFT 10001 arithmetic right shift
LCIRC 10010 circular left shift
RCIRC 10011 circular right shift

Table B.10: Logical and shift instructions and opcodes.

NAND

NAND performs a bitwise NAND operation between the values stored in its operand

registers and writes the result into the destination.
Example: NAND R6 R10 R11

AND

AND computes the bitwise AND of the values in its argument registers. The results

are written to the destination. AND is the bitwise inverse of NAND above.
Example: AND R6 R10 R11

NOR

NOR computes the bitwise NOR of the arguments and writes the result to the

destination.
Example: NOR da..acc r8 r9

OR

The bitwise OR of the operands is performed by the OR instruction, which is the

bitwise inverse of NOR above. Results are written to the destination register.

Example: OR da-acc accO muacci

XOR

XOR computes the bitwise XOR of the two operands and writes the result to the

third register.
Example: XOR bufptr cc acci

77

EQ

EQ is the bitwise inverse of XOR above and computes the bitwise equivalence of the
two operands and writes the result to the destination.

Example: EQ r6 r7 r1O

LRSHFT

LRSHFT (Logical Right SHIFT) takes a single operand and bit shifts it to the right,
shifting in a 0 into the most significant bit. The result is written to the destination
register.

Example: LRSHFT r1i r12

LLSHFT

LRSHFT (Logical Left SHIFT) takes a single operand and bit shifts it to the left,
shifting in a 0 into the least significant bit. The result is written to the destination
register.

Example: LLSHFT r13 r14

ARSHFT

ARSHFT (Arithmetic Right SHIFT) takes a single operand and bit shifts it to
the right, shifting in a 0 into the most significant bit if the previous MSB is 0, and
a 1 if the MSB was previously 1. This preserves the sign of the binary value if it is
interpreted as a two's complement number. The result is written to the destination
register. Note that there is no complementary instruction since the arithmetic left
shift is equivalent to the logical left shift.

Example: ARSHFT r15 r15

LCIRC

LCIRC (Left CIRCular shift) takes the value stored in its operand register, shifts
it to the left one bit, and copies the previous most significant bit into the new least
significant bit position. The result is written to the destination register.

Example: LCIRC r7 da.acc

RCIRC

RCIRC (Right CIRCular shift) is the complement of the LCIRC instruction above.
It takes the value stored in its operand register, shifts it to the right one bit, and copies
the previous least significant bit into the new most significant bit position. The result
is written to the destination register.

Example: RCIRC r1O muacch

78

Control Flow Instructions

Mnemonic Opcode Notes

JUMP 10100 jump
CTJUMP 10101 conditional jump true
CFJUMP 10110 conditional jump false

Table B.11: Control flow instructions and opcodes.

B.3.7 Control Flow Instructions

Table B.11 lists the control flow instructions available to the microcontroller program-
mer. These consist of one unconditional and two conditional jumps. Because of the
limited instruction set size and instruction memory on-chip, there are no provisions
for subroutines.

JUMP

JUMP is the unconditional jump instruction. It loads the program counter (PC)
register with its argument, an explicit address or an address label.

First Example: JUMP Ox1AF
In the first example, the target for the jump is the hexadecimal address Ox1AF.
Second Example: JUMP LOOP1: ; jump forward
The second example shows the use of an address label. The assembler makes two

passes over the source code and resolves labels like LOOP1: into absolute addresses
like in the first example. The program example in Section B.4 shows an example of
the use of address labels in a loop structure.

CTJUMP

CTJUMP (Conditional True JUMP) replaces the program counter with its address
argument if the boolean argument is true. The boolean argument is the bit of the
condition code register specified with one of the condition code field specifiers listed
in Table B.3.

Example: CTJUMP CC[0] LOOPO:
The example will write the program counter with the address referred to by the

address label LOOPO: if the value of the CC[0] field of the condition code register is
true.

CFJUMP

CFJUMP (Conditional False JUMP) is the complement of CTJUMP above. It
replaces the program counter with its address argument if the boolean argument is

false. The boolean argument is the bit of the condition code register specified with

one of the condition code field specifiers listed in Table B.3.
Example: CFJUMP sign24 0x232

79

The example will write the program counter with the address referred to by the
address label 0x232 if the value of the sign24 field of the condition code register is 0
(false).

B.3.8 Memory Instructions

Memory Instructions
Mnemonic Opcode Notes
LOAD 11000 load register from memory
STOR 11001 store register to memory
LDI 11010 indirect load register from memory
STI 11011 indirect store register to memory
LDC 11100 load 12 bit constant to register

Table B.12: Memory instructions and opcodes.

Table B.12 shows the memory interface instructions of the microcontroller. The
Sensor DSP microcontroller is a load/store architecture, so memory accesses use only
the register file as a destination. It can use either the register file (for storing variables)
or the instruction stream (for storing constants) as a source. Constants can only
be written to the register file. The instruction set supports both direct and indirect
operations. Only the data memory is visible to the processor; the instruction memory
can only be loaded through the JTAG programming interface. Consequently, self-
modifying code is not allowed.

LOAD

LOAD is the direct load from memory. It retrieves the data stored in the data
memory (or filter buffer, since the processor sees a flat address space) and stores it
in the destination register.

Example: LOAD R7 0x1FF
The example loads the value at memory location Ox1FF and stores it in the register

R7.

STOR

The direct memory write instruction is STOR. This operation takes the data stored
in the source register and writes it to the memory location specified as a target.

Example: STOR R11 Ox9AC
The data stored in register R11 will be written to data memory location Ox9AC in

the above example.

80

LDI

LDI is the indirect load instruction. It takes two register specifiers as arguments and
reads the contents of the memory location addressed by the operand register value
and writes this value into the destination register.

Example: LDI R12 R13
In the example, the data memory location pointed to by the value of register R13

is written to the destination register R12.

STI

STI is the indirect store instruction; it is the complement to LDI above. It takes
the contents of the operand register and writes the value to the memory location
addressed by the contents of the destination register.

Example: STI R6 R15
The above example reads the contents of register R6 and writes the value to the

data memory location pointed to by the value stored in register R15. Note that this
convention is the reverse of the argument convention for LDI

LDC

LDC (LOAD Constant) is the register constant load instruction. It takes the explicit
12 bit integer constant specified as an argument and writes it to the register location
also specified in its arguments.

Example: LDC R9 -3
The example writes the constant -3 (in two's complement representation) into

register R9.

B.3.9 Filter Interface Instructions

Filter Interface Instructions
Mnemonic Opcode Notes
CONFIG 11110 set configuration state bits

Table B.13: Filter interface instructions and opcodes.

The front-end filtering units of the Sensor DSP chip are under software control of
the microcontroller using the configuration instructions and state bit specifiers shown
in Tables B.13 and B.14 respectively.

CONFIG

CONFIG is the sole configuration instruction available to the microcontroller. In
conjunction with the state specifiers shown in Table B.14 and the configuration bit

81

Configuration State Specifiers

Mnemonic Code Notes

CLR 00 set bit to 0

SET 01 set bit to 1
FLIP 10 invert bit
HOLD 11 maintain state (basically a NOP)

Table B.14: Configuration state specifiers and codes.

specifiers shown in Table B.4 it configures the operation of the entire processor chip.

The state of each configuration bit can be modified using the state specifiers shown

in Table B.14. An example will clarify the operation:

Example: CONFIG DA-ENABLE CLR

The example shows that the configuration bit DA.ENABLE will be cleared (set to 0)

by the instruction. The bit could also be set to 1, inverted, or held in the same state

(a null operation).

B.3.10 Unused Opcodes

Unused Opcodes

Opcode
10111
11101
11111

Table B.15: Unused opcodes.

Table B.15 lists the opcodes that are unused in the ISA specification. These

codes are not output by the assembler and should not be used if the processor is

programmed directly in binary. They actually map to the NOP instruction in the

opcode decoder.

B.3.11 Miscellaneous Reserved Words

There are three other strings that may be used in the assembly language program and

which are similar to preprocessor commands in C. The first is the .DEF construct

which is used to alias constants. Any constant in decimal or hexadecimal notation

can be referred to by an alphanumeric string. The mapping is done using the .DEF

construct.
Example: .DEF FOD OxO3E

82

;; Fibonacci number sequence - definitions
;; allocate array label
.DEF A.LOW
.DEF NUM
;;; Fibonacci number sequence - initialization

LDC R7
LDC R8
LDC RIO
LDC R11
ADD R12

;;; Fibonacci number sequence - computation
LOOP: ADD R8

COPY R9
STI R9
INC R10
ADD R12
ADD R7
COPY R9
STI R9
INC R10
ADD R12
EQC Rio
CTJUMP CC[2]
JUMP LOOP:

;;; Fibonacci number sequence - read back
READ.BACK: DEC R12

LDI R13
EQUAL R12
CTJUMP CC[2]
JUMP READ-BACK:

END: NOP
NOP
NOP
$

800
16

1
0
0
A.LOW
R11

R7
R8
R12

R11
R7
R7
R12

R11
NUM
READ.BACK:

R12
R11
END:

array of Fibonacci numbers
number of Fibonacci numbers

initialize R7 to 1
initialize R8 to 0
initialize counter to 0
initialize array pointer base address

R10 ; initialize array pointer

R8 ; compute Fibonacci number
; copy to R9 (output register for now)
; store data to memory
; update index

R10 ; point to next array location
R8 ; compute Fibonacci number

; copy to R9
; store data to memory
; update index

R10 ; point to next array location
if we've computed NUM numbers,
jump to read back numbers

;loop back

decrement pointer
read last Fibonacci number generated
if we're back to array base address,
jump to end

;loop back

Table B.16: Microcontroller instruction types.

In the example, FOO will be replaced by the binary equivalent of OxO3E in the
assembler output. This works for positive and negative decimal constants, where the
binary representation is 12 bit two's complement.

Labels are specified with colons and are mapped to instruction addresses by the
assembler during its first pass. During the second pass, the labels are resolved to the
instruction addresses they refer to.

Example: LOOP1: ZERO R8
The example labels the address of the instruction ZERO R8 with the label LOOP1:.

Control flow instructions upstream or downstream in the code can then refer to the
label as a target for branches.

Finally, comments are specified using the semicolon ;. Any characters appearing
to the right of a semicolon are ignored by the assembler until a newline is reached.

B.4 Example Program: Fibonacci Numbers

Table B.16 is a summary listing of an example program which computes the first few
numbers of the Fibonacci sequence. It begins by using the .DEF construct to alias

83

the address of an array in data memory and the number of Fibonacci numbers to
compute. Several constants are loaded to initialize the first few numbers of the series.
A loop then computes the numbers in the series. A second loop reads these back in
reverse order. Then the program terminates. Note the end of program character $
to force the assembler to stop. This character is necessary for all programs.

84

Appendix C

Sensor DSP Nonlinear/Short
Linear Filter Assembly
Language [1]

Nonlinear and short linear filters are implemented using the VLIW architecture
shown in Figure 2-5 and repeated in Figure C-1. Each functional unit, the Square-
Accumulate Unit (SAC), the Multiply-Accumulate Unit (MAC), and the Load/Store
Unit (LSU) implements its own small instruction set. To synchronize with the op-
eration of the Distributed Arithmetic Unit, the total number of instruction slots for
each of these units is only 8. This processor is a load/store architecture like the
microcontroller unit, so the arithmetic operations use only registers as sources and
destinations. The only memory interaction is with the filter buffer which acts as a
delay line and implements relative addressing. This means that any address specified
to the LSU is really an offset from the current buffer pointer backward in time to an
earlier output sample.

Since the NLSL Unit simply does filtering operations, there is no notion of control
flow in the instruction set architecture. All instructions are executed through every
iteration of the program. The program is repeated every eight clock cycles.

C.1 Registers

A total of 16 registers are available to the NLSL program, of which three are special
registers which access the current results in the accumulators of the different func-
tional units. All values are 12 bit two's complement integers. Intermediate values
are 24 bits, but these are truncated to 12 bits by specifying some configuration bits
through the JTAG interface.

Table C.1 lists the register specifiers and codes for the registers available to the
NLSL program. The DA-ACC register is loaded every clock cycle from the output of
the distributed arithmetic unit. ACCO and ACCI are also loaded every clock cycle
with the new truncated values from the SAC and MAC functional unit accumulators,
respectively. The other registers are general purpose.

85

Instruction Instruction Instruction
Memory 0 Memory 1 Memory 3

Multport Register File

Square and Multiply Load/StoreAccumulate Accumulate Unit
+x2 +ax

Figure C-1: Short linear and nonlinear filter implementation architecture.

Register Specifiers
Special Registers
Mnemonic Opcode Notes
DAACC 0000 distributed arithmetic result
ACCO 0001 NLSL SAC ALU result
ACC1 0010 NLSL MAC ALU result
Other Registers
R3-R15 10111-1111

Table C.1: NLSL Unit registers.

C.2 Instruction Descriptions

This section describes in detail the instruction sets available to each of the functional

units. Each instruction takes one clock cycle to execute. None of the units are
pipelined so there are no pipeline hazards or bubbles. All writes are implicitly to the

functional unit's accumulator except for loads and stores which require a destination
register specifier.

C.2.1 SAC Instructions

Table C.2 summarizes the SAC Unit instructions, each of which will be described in
detail below. All SAC unit arithmetic instructions take only one register specifier,
the source register for the operand.

86

SAC Unit Instructions
Mnemonic Opcode INotes
SACJNOP
SAC-SQAC
SACSQRE
SAC-SQSU
SAC-ADD
SACSUB

000
001
010
011
100
101
110
111

null operation
square-accumulate

square
square-subtract from accumulator
add to accumulator
subtract from accumulator

unused
unused

Table C.2: SAC Unit instructions and opcodes.

Example: SACSQAC DALACC
In the example, the register contents of DA-ACC are squared and added to the

accumulator value. All arithmetic operations have the same syntax as the example.

SACNOP

SAC-NOP is the null operation. No writes occur to the SAC unit accumulator for
this instruction.

SACSQAC

SACSQAC is the square-accumulate instruction. It adds the square of the contents
of its argument to the SAC unit accumulator, leaving the result in the accumulator.

SAC-SQRE

SACSQRE is the square instruction. It reads the value of is argument register,
squares it, and overwrites the contents of the accumulator with the result.

SAC-SQSU

The square-subtract instruction is SAC-SQSU. This operation subtracts the square
of its operand from the current accumulator value and writes the result to the accu-
mulator.

SAC-ADD

SACADD simply adds the value of its operand to the contents of the accumulator.
The result is written to the accumulator.

87

SAC-SUB

SAC-SUB is th complement of the SAC-ADD instruction above. It subtracts
the value of its operand from the accumulator value, leaving the new result in the
accumulator.

C.2.2 MAC Instructions

MAC Unit Instructions
Mnemonic Opcode Notes
MACNOP 000 null operation
MACMACC 001 multiply-accumulate
MAC-MDEC 010 multiply-subtract from accumulator
MACMULT 011 multiply
MAC-ADD 100 add
MAC-SUB 101 subtract
MAC-ACC 110 add to accumulator
MAC.DEC 111 subtract from accumulator

Table C.3: MAC Unit instructions and opcodes.

Table C.3 lists the instructions available to the MAC unit program. These in-
structions require either one or two register specifiers for operands and implicitly
write their results to the MAC unit accumulator.

Example: MACMULT ACC1 R3
In the example, the contents of registers ACC1 and R3 are multiplied together

and their product is written to the MAC unit accumulator. All MAC arithmetic
instructions share the same syntax.

MAC-NOP

MACNOP is the null instruction. No writes are performed to the MAC accumu-
lator when this instruction is executed.

MACMACC

MACMACC is the multiply-accumulate instruction. It computes the product of
the values stored in its operand registers and adds the result to the accumulator value.
The new result is written to the accumulator.

MACMDEC

MACMDEC is the complement of the MAC-MDEC instruction above. It sub-
tracts the product of the values stored in its operands from the accumulator value,
leaving the result of the subtraction in the accumulator.

88

MAC-MULT

The multiplication instruction is MAC-MULT. It simply computes the product of
its argument values and overwrites the accumulator result with the product.

MACADD

MAC-ADD is the addition instruction. It sums the values of its operand registers
and replaces the accumulator value with the value of the sum.

MAC-SUB

MAC-SUB is the complementary subtraction instruction to the MACADD in-
struction above. It computes the difference between its first and second operands.
The result is written to the accumulator.

MAC-ACC

MACACC is the accumulate instruction. It requires only one argument and adds
the value in its operand register to the accumulator contents, leaving the result in the
accumulator.

Example: MAC-ACC R7
In the example above, the contents of register R7 are added to the current value

of the MAC unit accumulator.

MAC-DEC

MAC-DEC subtracts the value stored in its lone argument register from the value
stored in the accumulator. The result is written to the accumulator. The instruction
syntax for this operation is the same as in the example above for MAC-ACC.

C.2.3 LSU Instructions

LSU Unit Instructions

Mnemonic

LSUINOP
LSU-LDC
LSULOAD
LSULDI
LSUCOPY

Table

Opcode

000
001
010
011
100
101
110
111

C.4: LSU

Notes
null operation
load constant to register
load direct from memory to register

load indirect from memory to register
copy from one register to another
unused
unused
unused

Unit instructions and opcodes.

89

Table C.4 lists the instructions available to the LSU Unit. These instructions
are responsible for loading data to the registers from the instruction stream (loading
constants) or previous filter outputs stored in the filter buffer. Note that there is no

store instruction as stores are done implicitly to the filter buffer every eight cycles.
Each LSU instruction requires two arguments: a destination register and a source
register, constant, or memory address.

Example: LSU-LOAD R3 OxO10000010 ; load R3 with ACCO[k-2]
In the example, register R3 is loaded with the data value from the filter buffer cor-

responding to the output of the ACCO accumulator at time k - 2, where k (the current
time) corresponds to the current value of the filter buffer pointer. There are three

specifiers corresponding to the buffers after each of the filtering units. These speci-
fiers precede the 7 bit address corresponding to the delay from the current sample:
OxOO corresponds to results from the distributed arithmetic unit, the DA-ACC register;
OxO1 corresponds to the results from the SAC unit accumulator ACCO; finally, Ox1O
corresponds to results from the MAC unit accumulator ACC1.

LSUNOP

LSU-NOP is the null operation for the LSU unit. No results are written to any of
the registers for this instruction.

LSULDC

LSU-LDC is the load constant instruction. It takes a constant specified in the
instruction stream and writes it to the register specified as its destination.

LSU-LOAD

LSULOAD is the direct memory load instruction. It accesses the filter buffer value
corresponding to the appropriate filter unit result and time offset into the previous
samples and writes this value into the destination register.

LSU-LDI

LSU-LDI is the indirect memory load instruction. Instead of using an explicit offset
into the filter buffer, it uses the value stored in its second register argument as the
filter buffer address. It takes the value stored in the filter buffer and writes it into
the destination register.

LSUCOPY

LSUCOPY is the register to register copy instruction. It takes two register spec-
ifiers as arguments and copies the value from the source register to the destination
register.

90

Appendix D

SensorDSP Sample Microcode

D.1 Micro-controller Heart Detection Code

;;;* Last edited: Mar 18 19:56 1998 (mirth)

;--
;; Initialization Code for Heartbeat Detection

;--- ---------------------
Need register storage for 4 constants:
NOTE: Make the constants as small as possible to avoid overflow!

.DEF

.DEF

.DEF

.DEF

.DEF
.DEF
.DEF
.DEF
.DEF

THRSCALE 20 thresholi
SEGONTHR 90 segmei
SEGOFF-THR 85 S
AVG-LEN 40 e
ENERGYSCALE 16 ; premultiply scaling
TRUE 1 boolean true
FALSE 0 boolean false
SEGMENT-ONWAIT 20 ; number of initial samples to wait
SEGMENT-WAIT 23 ; samples from segment beginning
one less then C code because of
timing

d scaling factor
nt on threshold
egment off threshold
iergy averaging window length

;; Memory mapping for filter outputs:
.DEF Yk_BASE OxOQO ; correlation filter base address

.DEF EkBASE 0x080 ; energy base address

.DEF uEkBASE OxlO0 ; mean energy base address

Assign registers to values - saves cycles on this tight loop

DA.ACC : correlation filter output y[k]

;; ACCO : energy E[k]

ACC1 : mean energy uE[k]
R8 : input sample count

R9 : segment beginning offset counter
R13 : SEG-ON-THR
R14 : SEGOFFTHR

R15 : ENERGY-SCALE

;; NOTE: ZERO macro won't work with Verilog's unknown value (X)

;; Timing works as follows: Once the DA unit is enabled,

;; it takes eight cycles after that instruction issues before

valid data is ready for the NLSL unit. After that, it takes

another eight cycles before valid data is read into the

segment buffer. Thus, from the time the DA unit is enabled

there are 16 cycles before the MUCTRL unit must act on the

;; incoming data.

CONFIG FASTMODE CLR ; clear fast mode

91

INITPROG:

CLR ; clear valid data bit

Initialize variables for first data pass

R13
R14
R15
R8
R9
ALL-ENABLE

SEGONTHR ; initialize values
SEGOFF.THR
ENERGY-SCALE
SEGMENT-ON-WAIT ; initialize input sample count
SEGMENTWAIT ; initialize segment counter
SET ; activate all units

Ignore initial samples while average energy is computed.

SKIP-DATA: CFJUMP
CONFIG
DEC
EQC
CTJUMP

DATA SKIPDATA: ; if no data, keep checking
DATA-VAL CLR ; clear valid bit
R8 ; decrement sample count
R8 0 ; if not on last sample,
SIGN12 SKIP-DATA: ; continue data skip

; otw, start segmenting

NOTE: The code preceding this point should only run ONCE per
activation of this
algorithm. There should not be any looping back to before this point...

;; Segmentation Code for Heartbeat Detection: < 8 Cycle Timing
; --
;R10 : segment lower bound

; R11 : segment upper bound

Look for segment beginning:
;; AVG.LEN*THRSCALE*E[k] - SEG_0N.THR*uE[k] >= 0 ->

AVGLEN*THRSCALE*E[k] >= SEGONTHR*uE[k] -> sign bit of difference
should be 0

CFJUMP
CONFIG
MULT
MDEC
CTJUMP

DATA
DATAVAL
ACCO R15
ACC1 R13
SIGN24

COPY R10 BUFPTR

SEG.FALSE: ; if no data, keep checking
CLR clear valid bit

AVG.LEN*THR.SCALE*E[k]
- SEG-ON-THR*uE[kJ

SEGFALSE: ; if not, keep looking
; otw, we're in a segment
; copy segment lower bound

;; Wait for some segment cycles to pass:

CFJUMP
CONFIG
DEC
EQC
CTJUMP

DATA
DATA-VAL
R9
R9
SIGN12

SEGWAIT: ; if no data, keep checking
CLR clear valid bit

decrement segment counter
0 while less than delay
SEGWAIT: ; keep looping

Look for segment ending:
SEG.OFF.THR*uE[k] - AVG.LEN*THRSCALE*E[k] >= 0 ->

SEGOFFTHR*uE[k] >= AVGLEN*THRSCALE*E[k] -> sign bit of
difference should be 0

CFJUMP

CONFIG
MULT
MDEC
CTJUMP

COPY
CONFIG
CONFIG

DATA
DATAVAL
ACC1 R14
ACCO R15
SIGN24

R11 BUFPTR
ALL-ENABLE
FAST-MODE

SEGTRUE: if no data, keep checking
CLR clear valid bit

SEG-OFFTHR*uE[ki
- AVG.LEN*THR-SCALE*E[k]

SEGTRUE: ; if not, keep looking
; otw, start segment processing
; copy segment upper bound

CLR disable filters
SET set fast mode

--
;Feature Extraction

92

LDC
LDC
LDC
LDC
LDC
CONFIG

SEGFALSE:

SEGWAIT:

SEG-TRUE:

CONFIG DATA-VAL

;;
;;
;;
;;

;;

Feature 1: Look for peak value of matched filter output and
;; its location in the buffer.

R7 : peak output
R8 : peak output location
R10 : segment lower bound
R11 : segment upper bound
R12 : segment memory offset
R13 : segment memory pointer
R14 : peak energy of filter output
R15 : temp

Allocate feature vector storage:
;DEF FEATURES17) 0x300

.DEF FEATURES[7] Ox180

Feature offsets (for 160Hz sample rate -

see /homes/mirth/C/medclassifier/heartdetect.h):
;; NOTE: The signs change since in the C program the buffer is

implemented as a shift
register while in Verilog it is a memory with a pointer.

.DEF

.DEF

.DEF

.DEF

.DEF

.DEF

.DEF

.DEF

FSTVLY-AFT -11
FSTVLYBEF 11
FSTPEKAFT -22
FSTPEKBEF 22
THRESH-SCALE 100
PEAKWIDTH 50
LOWADDR 127
BUFDEPTH 128

FEAT-EXT: COPY

LDC

ADD

LDI

COPY
LDC

ADD

LDI

FEAT1-LOOP: INC
LDC

AND

EQUAL
CTJUMP
LDC
ADD

LDI

GT
CFJUMP
COPY
COPY

ENERGY-FEAT: LDC
ADD

LDI
GT
CFJUMP
COPY
JUMP

SAVE-FEAT1: STOR
ADDC

LDC
AND

BOUND1-OK: LDI
SAVE-FEAT2: STOR

ADDC

R12
R13
R13
R7
R8
R13
R13
R14
R12
R9
R12
R12
WNOR12
R13
R13
R15
R15
SIGN12
R7
R8
R13
R13
R15
R15
SIGN12
R14

R7
R13

R9
R13
R15
R15
R13

LDC R9
AND R13

R10 initialize offset to 0
YkBASE ; load y[k] base address

R13 R12 add within segment offset
R13 load first value of y[k]
R13 load location of first value

EkBASE ; load E[k] base address
R13 R12 ; add within segment offset
R13 ; load first value of E[k]

R12

; increment within segment offset
LOWADDR load address bitmask
R9 ; mask off address

R11 ; outside segment?
SAVEFEAT1: ; if yes, store features
YkBASE ; load y[k] base address

R13 R12 ; add within segment offset
R13 ; load next value of y[k]
R7 ; y[k] > ymax

ENERGY-FEAT: ; if true, swap
R15 ymax = y[k]
R13 ;kmax = k

EkBASE ; load E[k] base address
R13 R12 ; add within segment offset
R13 load next value of E[k]
R14 E[k] > Emax

R15

R8

R13

FEAT1.LOOP: ; if true, swap
; Emax = E[k]

FEAT1_LOOP: ; keep looping
FEATURES[0] ; peak output feature
FST-VLY-AFT ; first valley after

;peak location
LOWADDR ; load address bitmask
R9 ; mask off address

R13
FEATURES[1] ;

R8 FSTVLYBEF ;

LOW-ADDR
R13 R9

get value
store to array
first valley before
peak location
load address bitmask
mask off address

93

BOUND2_0K: LDI R15
SAVE-FEAT3: STOR R15

ADDC R13

LDC
AND

BOUND3_OK: LDI
SAVE-FEAT4: STOR

ADDC

LDC
AND

BOUND4_0K: LDI
SAVEFEAT5: STOR

STOR
LDC

COPY
LLOC: DEC

LDC
AND
LDI
MULT
LDC
MDEC
CFJUMP
COPY
COPY

U-LOC: INC
LDC
AND
LDI
MULT
LDC
MDEC
CFJUMP
SUB
CFJUMP
LDC
ADD

SAVEFEAT6: STOR

R9
R13
R15
R15
R13

R9
R13
R15
R15
R14
R14

R13
R13
R9
R13
R12
R12
R9
R7
SIGN24
R15
R13
R13
R9
R13
R12
R12
R9
R7
SIGN24
R15
SIGN12
R9
R15
R15

R13
FEATURES[2)

R8 FSTPEK-AFT

LOWADDR
R13 R9
R13
FEATURES[3)
R8 FSTPEKBEF

LOW-ADDR
R13 R9
R13

FEATURES[4]
FEATURES[5]

get value
store to array
first peak after
peak location
load address bitmask
mask off address
get value
store to array
first peak before
peak location
load address bitmask
mask off address
get value
store to array
peak energy feature

THRESH-SCALE ; load threshold
; scaling for width

R8 ; copy peak location
; decrement pointer

LOW-ADDR ; load address bitmask
R13 R9 ; mask off address
R13 load y[k]
R14 THRESHSCALE*y[k]
PEAKWIDTH ; load peak width scaling
R9 THRESH.SCALE*y[k]-PEAKWIDTH*ymax

L-LOC: ; if not, keep looking
R13 ; otw, copy pointer
R8 ; copy peak location

increment pointer
LOWADDR load address bitmask

R13 R9 mask off address
R13 load y[k]
R14 ; THRESHSCALE*y[k)
PEAKWIDTH load peak width scaling
R9 THRESH-SCALE*y[k]-PEAKWIDTH*ymax

U-LOC: ; if not, keep looking
R13 R15 ; otw, compute peak width

SAVE-FEAT6: ; if positive, store features[6J
BUF-DEPTH ; load buffer depth constant

R15 R9 ; otw, compute relative value
FEATURES[6] ; store to array

;Classification

;Define means and covariance matrices as constants (from C program).

;HEART CLASS:

.DEF HMEANSO 376

.DEF HMEANS1 -204

.DEF H-MEANS2 -232

.DEF H-MEANS3 108

.DEF H-MEANS4 136

.DEF H-MEANS5 402

.DEF H-MEANS6 7

;NOTE: Many elements of the matrix for D8F9S8 are 0!
.DEF H-COVOO 1
.DEF HCOV06 29
.DEF H-COV11 I
.DEF HCOV16 -3
.DEF HCOV26 8
.DEF H-COV36 -5
.DEF H-COV46 7
.DEF H-COV56 -7
.DEF H-COV60 29
.DEF H-COV61 -3
.DEF HCOV62 8

94

.DEF H.C0V63

.DEF HC0V64

.DEF H-COV65

.DEF H.C0V66

-5
7

-7
1862

;; NONHEART CLASS:
.DEF NH.MEANSO 149

.DEF NH-MEANS1 -81

.DEF NHMEANS2 -87

.DEF NHMEANS3 24

.DEF NHMEANS4 34

.DEF NHMEANS5 109

.DEF NHMEANS6 7

NOTE: Many
.DEF NH-COVOO
.DEF NHCOV06
.DEF NH-COV16
.DEF
.DEF
.DEF
.DEF
.DEF
.DEF
.DEF
.DEF
.DEF
.DEF
.DEF

NHC0V26
NH.COV36
NHCOV46
NHCOV56
NHCOV60
NH-COV61
NH-COV62
NHCOV63
NHCOV64
NH-COV65
NHCOV66

;; Precomputed

.DEF PRECOV11

elements

1
7
3
2
1

-3
-1
7
3
2
1

-3
-1

260

of the matrix for D8F9S8 are 0!

Classification Parameters:

0
;; example: MACC R7
.DEF PRE-COV06 26
.DEF PRECOV16 -8
.DEF PRE-COV26 6
.DEF PRECOV36 -7
.DEF PRECOV46 11
.DEF PRE-COV56 -10
.DEF PRECOV66 1553

R7 ; + x[i]*PRECOV11*x[1]

.DEF

.DEF

.DEF

.DEF

.DEF
.DEF

.DEF

.DEF

.DEF

.DEF

.DEF

.DEF

.DEF

.DEF

.DEF

.DEF

PRECOV06X2
PRECOV16X2
PRE-COV26X2
PRE-COV36X2
PRECOV46X2
PRECOV56X2

PREMUO
PREMU1
PREMU2
PRE-MU3
PREMU4
PREMU5
PREMU6LO
PRE-MU6HI

52
-16

12
-14

22
-20

-840
360
-84

98
-154

140
0x34E
OxFF7

PREDIFLO 0x709
PREDIFHI OxO51

;; Classes and Output:
.DEF HEART-CLASS 0

.DEF NONHEARTCLASS 1

.DEF CLASS-OUT OxFFF

The matrix multiplications require quite a number of cycles to compute because
of the 24 bit data that must be shuttled around.

95

;; Scaled feature means difference:

R8

R8

R8

R8

R8

LOAD
LDC
MULT
LOAD
LDC
MACC
LOAD
LDC
MACC
LOAD
LDC
MACC
LOAD
LDC
MACC
LOAD
LDC
MACC
COPY
COPY
LOAD
LDC
MULT
LDC
MACC
LDC
MACC
COPY
LDC
LDC
MACC
MACC
LDC
MACC
COPY
COPY

; Covariance
LOAD
LDC
MULT
LOAD
LDC
MACC
LOAD
LDC
MACC
LOAD
LDC
MACC
LOAD
LDC

MACC
LOAD
LDC
MACC
LOAD
LDC

MACC
COPY
COPY
MULT
MACC
COPY
LDC
MACC
MACC

R7

R8

R7
R7
R8
R7
R7
R8
R7
R7
R8
R7
R7
R8
R7
R7
R8
R7
R14
R15
R7
R8
R7
R9
R14
R8
R8
MUACCH
MUACCL
R8
R7
R15
R8
R8
R14
R15

difference
R7
R8
R7
R7
R8
R7
R7
R8
R7
R7
R8
R7
R7
R8

R7
R7
R8
R7
R7
R8
R7
R12

R13
R7
R14
MUACCH

MUACCL
R7
R15

FEATURES[0] ; get x[0]
PRECOV06X2 ; load 2*PRE-COV06

R8 x[0]*2*PRECOV06
FEATURES[1] get x[13
PRE_COV16X2 load 2*PRECOV16

R8 ;+ x[1]*2*PRE-COV16
FEATURES[2] ; get x[2]
PRECOV26X2 load 2*PRE-C0V26

R8 + x[2]*2*PREC0V26
FEATURES[3] get x[3]
PRECOV36X2 load 2*PRECOV36

R8 ;+ x[3]*2*PRECOV36
FEATURES[4] get x[4]
PRE-COV46X2 ; load 2*PRECOV46

R8 ; + x[4]*2*PREC0V46
FEATURES[5] get x[5]
PRE-COV56X2 ; load 2*PRE-C0V56

R8 ; + x[5]*2*PRECOV56
FEATURES[6] ; get x[6]
PRE-COV66 ; load PRE-COV66

R8 ; + x[6]*PRECOV66
MUACCH ; copy high word
MUACCL ; copy low word
R12 multiply by previous high
R9 add difference high
MUACCL ; shift by 12

0
R13 ; mulitply by previous low
R9 ; add difference low

96

FEATURES[0]
PREMUO

FEATURES[1] ;
PREMU1

FEATURES[2]
PREMU2

FEATURES[3]
PRE-MU3

FEATURES[4]
PREMU4

FEATURES[5]
PREMU5

ES[6]
6HI

1

PREDIFHI

0
PRE-MU6LO

PRE-DIFLO

R8
MUACCH
MUACCL
FEATUR
PRE-MU
R8

R9

R9
MUACCL

R8
R9

R9
MUACCH
MUACCL
matrix:

get x[0]
load PRE-MUO
x [0] *PREMUO
get x[1]
load PREMU1
+ x[1]*PREMU1
get x[2]
load PRE-MU2
+ x[2]*PREMU2
get x[3]
load PRE-MU3
+ x[3]*PREMU3
get x[4]
load PREMU4
+ x[4]*PRE-MU4
get x[5]
load PREMU5
+ x[5]*PREMU5
save high word
save low word
get x[6J
get PREMU6 high word
x[6]*PREMU6 high

add previous sum high
get PREDIFHI
add PREDIFHI
shift by 12

get PRE-MU6 low word
+ x[6]*PREMU6 low
add previous sum low
get PREDIFLO
add PREDIFLO to sum
save high word
save low word

CFJUMP
LDC
JUMP

NONHEART:

SIGN24 NONHEART: ; if not heart, skip
R8 HEARTCLASS ; otw, write class

SEGLOOP-INIT: start over
LDC R8 NONHEART-CLASS otw, write class

Segmentation Code for Heartbeat Detection: Buffer Catch-Up Timing
--

;Initialize variables again for further segmentation

SEG-LOOPINIT: STOR R8 CLASSOUT

Initialize variables for first data pass

CONFIG DATAVAL

LDC R13 SEGONTHR ; initialize values
LDC R14 SEGOFFTHR
LDC R15 ENERGYSCALE
LDC R9 SEGMENT-WAIT ; initialize segment counter
CONFIG FASTMODE CLR ; clear fast mode
CLR ; clear valid data bit
CONFIG ALL-ENABLE SET activate all units
JUMP SEGJFALSE: start segmentation again

Test Structures: Stubs, Drivers, and Old Code

Dump registers: Dumps register outputs through ALU so we can see the contents in
Verilog.
ADDC R7 R7 0 ; dump register
ADDC R8 R8 0 ; dump register
ADDC R9 R9 0 ; dump register
ADDC R10 R10 0 ; dump register
ADDC R11 R11 0 ; dump register

ADDC R12 R12 0 ; dump register
ADDC R13 R13 0 ; dump register
ADDC R14 R14 0 ; dump register
ADDC R15 R15 0 ; dump register

end of file marker

97

D.2 NLSL SAC Heart Detection Code

SACSQAC DAACC ; square and accumulate DA filter output
SACSQSU R3 ; substract square of previous DA output
SACNOP

SACNOP

SACNOP

SACNOP

SACNOP

SACNOP

D.3 NLSL MAC Heart Detection Code

MACNOP
MACNOP
MACACC ACCO ; add current energy to energy sum

MACDEC R4 ; subtract previous energy
MACNOP
MACNOP
MACNOP
MACNOP

D.4 NLSL LSU Heart Detection Code

LSULOAD R3 OxOO0110100 ; load previous DA filter output
LSULOAD R4 OxO10100111 ; load previous energy output
LSU.LOAD
LSULOAD
LSULOAD
LSULOAD
LSULOAD
LSULOAD

98

References

[1] R. Amirtharajah, Design of Low Power VLSI Systems Powered by Ambient Me-
chanical Vibration, Ph.D. Thesis, Massachusetts Institute of Technology, May
1999.

[2] R. Amirtharajah and A. Chandrakasan, "Self-powered signal processing using
vibration-based power generation," IEEE Journal of Solid-State Circuits, vol. 33,
no. 5, pp. 687-695, May 1998.

[3] S. Meninger, "A Low Power Controller for a MEMS Based Energy Converter,"
M.S. Thesis, Massachusetts Institute of Technology, May 1999.

[4] A. V. Oppenheim and R. W. Schafer, Discrete- Time Signal Processing, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1989.

[5] A. Peled and B. Liu, "A new hardware realization of digital filters," IEEE Trans.
ASSP, vol. ASSP-22, no. 6, pp. 456-462, December 1974.

[6] S. A. White, "Applications of distributed arithmetic to digital signal processing:
A tutorial review," IEEE ASSP Magazine, pp. 4-19, July 1989.

[7] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-
proach, Morgan Kaufmann Publishers, Inc., San Mateo, California, 1st. edition,
1990.

[8] Cypress Semiconductor Corp., "CY7C374i 128-Macrocell Flash CPLD Data
Sheet", July 1998.

[9] Fairchild Semiconductor Corp., "NM27C512 64Kx8 High Performance CMOS
EPROM Data Sheet", July 1998.

[10] Standards Committee IEEE, "IEEE standard test access port and boundary scan
architecture," IEEE Standard 1149.1-1990, 1990.

[11] Analog Devices, Inc.,"Low Cost Signal Conditioning 8-Bit Analog to Digital
Converter Data Sheet", April 1989.

[12] Maxim Integrated Products, "Ultra Low-Power, Single/Dual Supply Compara-
tors Data Sheet", March 1995.

99

[13] National Semiconductor Corp., "LM317 Adjustable Voltage Regulator Data

Sheet", May 1999.

[14] National Semiconductor Corp., "LM340 Positive Fixed Voltage Regulator Data

Sheet", May 1999.

100

