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Abstract
We consider a class of models for processing networks such as job shops or distributing data-processing
systems. The defining features of this class of models are: (1) The network operates in discrete time, such
that work is completed during fixed-length periods and work arrivals and transfers occur at the start of
these periods. (2) Work arrivals are stochastic, characterized by a finite mean and variance. (3) Work
flows are Markovian in that processing requirements do not depend on how the work got to a station. (4)
Production at any station depends on work-in-queue levels through some production function. (5) We can
write recursion equations (either exact or approximate) relating the moments of production and queue
lengths in one period to the moments of production and queue lengths in the next period.

We call models satisfying these properties Moment-Recursion (MR) models. MR models support
a variety of performance evaluation, optimization, and decision-support applications, such as capacity
planning, resource allocation, production smoothing, and inventory control. They apply to a wide range
of scenarios in which production depends on work-in-queue levels. Most directly, MR models apply to
shops with control rules that minimize production fluctuation, or with machines that show saturation
effects. They apply to systems in which people work at varying speeds in response to work-in-queue
levels, or show the effects of overtime. MR models also address networks in which resources may be
reallocated between different flows of jobs at regular intervals, such as in flexible job shops or data-
processing networks.

We consider a variety of MR models, using the recursion equations to calculate the steady-state
moments of the stations' productions and queue lengths for all model types. These types include:
* Models whose production functions are linear functions of the queue levels. These models may

address basestock job shops, Kanban shops, and shops using other linear rules to minimize production
variances.

* Models with nonlinear production functions. We develop approximations for the steady-state
moments using Taylor-series expansions of the production functions.

* Models that maintain a constant weighted-inventory constraint. We use the resulting models to find
weighted-inventory rules that minimize steady-state production fluctuations.

* Models that incorporate complex work transfer relationships. Here, work completed upstream is
converted into jobs (or lots), and then triggers job arrivals downstream through complex probabilistic
relationships.

We use the production and queue-length moments to solve a variety of steady-state optimization
problems. We formulate maximum performance, maximum throughput, and minimum cost problems,
and discuss nonlinear programming techniques to solve them.

Finally, we use the recursion equations to describe the transient behavior of MR-networks. We
first derive the exact transient moments for models with linear control rules, both analytically and
numerically. We then derive the production functions that minimize quadratic objective functions of the
production and queue-length quantities, and find that the optimal functions are always linear control rules.

Thesis Supervisor: Stephen C. Graves
Title: Abraham J. Siegel Professor of Management and Co-Director, Leaders for Manufacturing
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Chapter ]: Introduction

1. The Concept of a Moment-Recursion Model

This thesis is devoted to studying the ramifications of a simple recursion equation, derived below.

Consider a job shop or other network of processing stations. We model the shop in discrete time, such

that stations process some amount of work in process during each time period, and transfer work to other

stations (or out of the shop) at the start of the next time period. We also assume that work at a station can

be modeled as a fluid (e.g. "3 hours of work at station 2") rather than as a set of distinct jobs. Then, each

station i must satisfy the following elementary inventory balance equation,

;,= ,_- , + Ai, , (1)

where Qi, is the queue level at the start of period t, Pi,1 is the amount of work processed over period t-1,

and A;, is the amount of work that enters station i at the start of period t. We write the above inventory

balance equations for all stations simultaneously in matrix form as:

Qt = Q-1 - Pt_1 + At, (2)

where Qt is a vector of queue lengths, Pt is a vector of production quantities, and At is a vector of work

arrivals. Suppose we make the following assumptions about Pt-1 and At.

* P, will be a function of the work in process at the start of period t-1. Then Pt, = p t 1 (Qt_), where

p(.) is a production function or control rule. Note that Pt 1 usually is a deterministic function of Q,

although we will consider situations where Pt is a probabilistic function.

* A, has two components. The first consists of work sent from stations to other stations, and will be a

probabilistic function of Pti. This component incorporates the concept that completed work at one

station triggers work at another station. Mathematically, this component is A, [P(Qt-1 )], where

A [.] is the internal arrivalfunction.

* The second component of At consists of work that arrives to stations from outside the shop. We will

also allow this component to depend on Qt; modeling the component this way will allow us to

explore various control schemes such as constant inventory (or CONWIP) job shops.

Mathematically, this component is At [Qt-], where A'[-] is the external arrivalfunction.

Now, substitute the above expressions for Pt1 and At into the inventory balance equation. This yields the

recursion equation that forms the basis of the thesis.

7



Chapter J: Introduction

(MR) Qt = Qt_ - P,_1 (Q_,) + AN [p(Qt_)] + AR [Qt_- 1 (3)

At first glance, this equation does not appear useful since Qt is a random vector, and the various functions

in the equation are probabilistic functions. However, suppose that the following conditions are satisfied:

* We know the expectation and variance of Q,.. (Note that E[Qt.,] is a vector and Var[Qt.,] is a

covariance matrix).

* We can use (3) to write closed-form expressions for E[Q] and Var[Qt] in terms of E[Qt-,] and

Var[Qt.,]. These expressions may be exact or approximate, depending on the production and arrival

functional forms.

Call shop models that satisfy these two conditions moment-recursion (MR) models.

We may generate exact or approximate estimates of E[Qt] and Var[Qt] for moment-recursion

models. This fact is extremely useful. By repeatedly iterating our closed-form expressions for E[Qt] and

Var[Qt], we can track the distributions of the shop queues over time. Similarly, by using the inventory

balance equation, we can write variants of (3) in terms of the production moments, E[Pt] and Var[Pt].

Then we can track the distributions of the production quantities over time, as well.

Alternately, assume we have a job shop that has a defined steady state (all stations in the shop are

stable, aperiodic, and ergodic). Then we can iterate the closed-form expressions indefinitely, converging

to steady-state values for E[Q] and Var[Q]. In some cases, we find closed-form expressions for E[Q] and

Var[Q]; in other cases, we start with reasonable estimates for E[Q] and Var[Q] and converge to steady-

state values. Similarly, we find steady-state values for E[P] and Var[P]. In many cases, these moments

will be exact; in other cases these moments will be approximate, but quite accurate over the range of

reasonably well-behaved networks. Importantly, we will find that the steady-state moments are

calculated in O(n3 ) time, where n is the number of stations in the network.

We may use the expected queue lengths to calculate the expected waiting times, E[W], as well.

The thesis will show that there is a fast way to calculate the expected steady-state arrival rates at all

stations using (3); then, by using Little's Law, knowing E[Q] immediately yields E[W].

Knowledge of the moments of production and queue lengths are sufficient to carry out a great

number of performance evaluation, optimization, and decision-support tasks. For example, we may use

MR models to help optimize networks. We may maximize the performance of a network (as measured by

waiting times or inventory levels), minimize the cost of the network (in terms of capacity costs), and

maximize the expected throughput of the network. We may also find control policies that reduce

production and queue length fluctuations (i.e., minimize the variances) - important in situations requiring

output predictability such as Just-in-time manufacturing. We may use a MR-model for "what-if'
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Chapter 1. Introduction

analysis, asking what will happen if a station is added, or work is re-routed, and receiving comprehensive

results in terms of the production and queue-length moments (both transient and steady-state).

We expect that MR-models will be applicable to the wide range of scenarios in which work is

best treated as flows of jobs, and in which production quantities are related to queue levels. Examples of

such scenarios include the wide range of environments in which people naturally work faster when more

work is present, and slower when less work is present. Similarly, MR models apply to shops in which

people work overtime; overtime work is less efficient than regular work, resulting in functional

relationships between overtime work-in-queue and overtime production.

Concerning machines, MR models apply to workstations showing saturating behavior (i.e. the

machine's work-per-period is flexible, but marginal work decreases with the work-in-queue). They also

model flexible job shops, in which some resources may be moved around the shop between work periods,

and in which stations support sophisticated production-control policies.

Finally, MR models may be used in flexible data-processing environments, in which computing

resources may be regularly reallocated between job processes. They also apply to computers that process

multiple jobs simultaneously. Jobs are generally time-shared, so that an increase in jobs initially results

in a direct increase in production. As more jobs are added, the computer becomes overloaded, so that the

marginal increase in production declines with more jobs.

Consequently, this thesis studies a variety of situations in which we can generate moment-

recursion models. It also discusses optimization and decision-support applications for these models.

2. Thesis Outline

This thesis presents steady-state analysis results for a variety of MR model classes, discusses steady-state

optimization of MR models, and describes the transient analysis and control of MR models. To describe

the models and applications presented in this thesis, we present a classification scheme for moment-

recursion models. The scheme describes MR models as xxx-MR, where, xxx is a 3-letter prefix, and:

* The first letter describes the control rule function that determines how much of the work-in-queue to

process each time period.

* The second letter describes the work transfers between stations.

* The third letter describes the work that enters from outside of the shop.

We have the following definitions for the letters in the classification scheme.

* Lxx-MR. The control rule is a linear function of the work-in-queue. Usually, we assume that the

production rule is J = aQ, where ai is a fixed constant in [0,1]. This rule states that stations

9



Chapter 1. Introduction

process a fixed fraction of their work-in-queue each time period. We also consider the multi-queue

linear control rule = aQ 1 ; this rule sets production to be a weighted sum of inventory levels

throughout the network.

* Gxx-MR. The control rule is a general function of Qt, which we assume is continuous and twice-

differentiable. We will consider single-queue control rules and multi-queue control rules.

* xLx-MR. The internal arrival function has the form AN [Pt(Qt)] = DP + F t. In other words, work

arriving to a station is a linear combination of work at other stations plus random noise from an

independent distribution.

* xGx-MR. The internal arrival function is a general probabilistic function. (We will not consider

xGx-MR models explicitly in this thesis.)

* xRx-MR. The request-based external arrival function is a special type of function. It dictates that

completed jobs, rather than completed work, generate work at downstream stations. In particular, the

request-based function first divides completed work into some number of completed jobs. Completed

jobs then become work requests at downstream stations. Each request generates a random number of

jobs, and each job requires a random number of instructions to complete. The total number of

instructions in queue at a station is the "work-in-queue" at the station.

* xxS-MR. Arrivals from outside the shop come from an independent distribution.

* xxL-MR. Arrivals from outside the shop depend linearly on Qt, e.g. ARt = BQt, where B is a matrix.

* xxC-MR. A special subclass of xxL-MR, the external arrival function for this class generates new

work to maintain a constant inventory constraint on the job shop. (We will restrict our consideration

of xxL-MR models to this subclass.)

* xxG-MR. Arrivals from outside the shop come from a stochastic function that depends upon Qt.
(We will not consider xxG-MR models explicitly in this thesis.)

In Chapters 2-5, we explicitly consider the following MR models:

Chapter 2: LLS-MR Models. (Linear control rules, linear internal arrival functions, and stationary

external arrival functions.) LLS-MR models are the simplest class of MR models. Nonetheless, these

models may be applied in a wide range of situations.

We first present the simplest LLS-MR model, the Tactical Planning Model (TPM), first

developed by Graves (1986). The TPM uses the simplest linear production rule, i = aiQ, . We also

present a modified TPM by Leong (1987), in which the production rule makes up a fraction of an

inventory shortfall each period. Mathematically, this rule is PJ = a -(T - Q1), where T is an inventory

target. This rule allows for the modeling of "pull-based" or Kanban systems.

10



Chapter I. Introduction

We then expand the TPM to include models with general linear control rules (also known as

affine control rules). These rules allow production to be a weighted sum of inventory levels at multiple

stations, plus a random noise term.

We conclude with two examples showing the utility of LLS-MR models. We first study a

network that uses highly sophisticated affine control rules, theproportional restoration rules of Denardo

and Tang (1997). We then use a LLS-MR model to study a communications capacity-planning problem

faced by the U.S. Department of Defense.

Chapter 3: GLS-MR Models. (General control rules (i.e., nonlinear but twice-differential), linear

internal arrival functions, and stationary external arrival functions.) In this chapter, we show how to

analyze MR-models with nonlinear control rules. By doing so, we can model a large number of nonlinear

production relationships that occur in practice, such as machine-saturation and overtime effects.

GLS-MR models cannot be analyzed directly. Instead, we develop approximations for the

steady-state moments of production and queue lengths by analyzing Taylor-series expansions of the

general control rules. We develop two separate algorithms, both of which exactly determine the expected

production quantities, find a second-order estimate of the expected queue lengths, and calculate first-order

estimates of the variances of production and the queue lengths.

In addition to developing the algorithms for both single-queue and multi-queue control rules, we

evaluate the algorithms' performances on a single station, a six-station chain, and a thirteen-station job

shop that manufactures mainframe subcomponents, first considered by Fine and Graves (1989). We find

that the estimated expected queue lengths closely match the simulated average lengths, and that the

estimated variances are reasonable provided that the stations are fairly well-behaved (i.e. stations are not

saturated, and the standard deviations of the work arrivals are not greater than the expected work arrivals).

Chapter 4: LLC-MR Models. (Linear control rules, linear internal arrival functions, and external

arrivalfunctions that maintain a constant inventory in the job shop.) With LLC-MR models, the external

arrival function generates new work to maintain a constant weighted inventory in the shop.

Mathematically, at the start of each period, the queue lengths satisfy the following constraint:

wiQit = W,Vt,

where the wi's are a set of weights and W is an inventory target. This extension allows the modeling of

constant work-in-progress rules, which are much used strategies to control inventory and production

variability.

11



Chapter 1: Introduction

In the chapter, we first derive equations for the steady-state production and queue length

moments, and find sufficient convergence conditions for these equations. We show how to create

comparable LLC-MR models from LLS-MR models. We also show how to set the vector of weights to

minimize a sum of production standard deviations by solving a nonlinear program. Finally, we compare

the performance of LLC-MR models to constant release models (LLS-MR models where external arrivals

are kept constant). We find sufficient conditions guaranteeing that LLC-MR models see lower production

variability than constant release models. We also compare the performance of LLC-MR models and

constant release models on a set of ten-station job shops, and find that the LLC-MR model often generates

significantly smaller production fluctuations than the constant release model.

Chapter 5: LRS-MR Models. (Linear control rules, request-based internal arrival functions, and

stationary external arrival functions.) The other models considered in this thesis treat work as fluid

flows. In particular, fluid work completed at one station is multiplied by a constant and becomes fluid

work at a downstream station. In practice, however, completed jobs trigger work at downstream stations.

In this chapter, we study a special type of MR model that accounts for work transitions based on

completed jobs. LRS-MR models implement flexible request-based relationships between the work at

upstream and downstream stations. First, the work completed upstream is expressed as some number of

completed jobs. These jobs become work requests at downstream stations. The downstream station

randomly converts the requests into some number of jobs, then converts the jobs into a quantity of fluid

work. The downstream station then processes an amount of work, separates the completed work into

jobs, and continues the process by sending the completed jobs further downstream.

Request-based relationships allow the modeling of very general relationships between work

completed at one station and work arriving at another station. However, it is far from obvious that

analyzing request-based relationships is tractable. As we see in Chapter 5, work arrivals are not simple

functions of work completed upstream. Instead, work arrivals become complicated multiple random

sums of random variables. Thus, while we can write a formula for the production in period t, the formula

contains sums of work requests, jobs, and instructions per job that cannot be written in terms of

production in period t - 1. The resulting formula is not a recursion equation, and cannot be analyzed

directly.

Instead, with some difficulty, we derive linear recursion equations for the expectations and

variances of production. (We cannot calculate the variances exactly, but we do find close bounds on the

variances.) Then, by iterating these equations, we calculate the steady-state expected production and

queue lengths, and find bounds for the steady-state production and queue length variances.

12



Chapter 1: Introduction

In addition to presenting the derivation of the recursion equations, we apply the resulting model

to an eighteen-station data processing network, similar to a United States Department of Defense network.

In addition to steady-state performance evaluation of MR-models, we consider steady-state performance

optimization of these models, and the transient analysis of these models.

Chapter 6: Steady-State Optimization. We consider a variety of optimization problems for MR-

models, including maximum performance (as measured by minimum waiting times or queue lengths),

maximum throughput, and minimum cost problems. We show how to formulate these problems for

models with linear control rules and general control rules, and discuss nonlinear programming techniques

appropriate for solving the resulting problems. We also present two example optimization problems:

maximizing the performance of an 18-station LDS-MR network, and minimizing the capacity cost of a

13-station GLS-MR network.

Chapter 7: Transient Analysis and Optimization. This chapter focuses on the transient analysis of

MR networks, as opposed to the steady-state analysis of the previous chapters. Our approach is to use the

MR equation, (3), directly and repeatedly to track the moments of production and queue lengths over

time. We focus our attention on LLS-MR models, since the moments generated by repeated applications

of (3) are exact for LLS-MR models.

We begin by presenting mathematical equations for the transient behavior resulting from several

simple changes to expected work arrivals. We also show how to calculate the moments of the aggregate

production quantities over multiple periods. Next, we use the MR equations numerically, and track the

moments of production and queue lengths in a ten-station job shop facing a variety of major network

changes. We conclude by deriving the optimal production policies for MR models seeking to minimize a

multi-period, quadratic objective function, and find that the resulting policies are always linear functions

of the queue levels.

The final chapter, Chapter 8, summarizes the contributions of the thesis and presents opportunities for

future research.

13



Chapter 1: Introduction

3. Literature Review

We devote the remainder of this chapter to a literature review. We first consider work to date on MR-

models. We next compare the features of MR models to other models of processing networks, including

deterministic models and queuing-theory models.

3.1 Work to Date on MR-Models

The first paper that presented what may be described as an MR model is Cruickshanks, Drescher, and

Graves (1984). In this paper, the authors studied a single production station using a bounded linear

control rule, of the form P, = JaiQ,,Mi }, where M, is the maximum single-period production at stationi.

Using a simulation study, they found that the behavior of the station approached the behavior of a station

using the unconstrained linear control rule Pi; = aiQ,, provided that M is sufficiently large.

Graves (1986) developed the Tactical Planning Model, or TPM (discussed in detail in Chapter 2).

As noted, the TPM calculates the steady-state moments of production and queue lengths for general

configurations of stations, provided that all stations use the linear control rule Pi, = aiQ,, and that all

fluctuations in work arrivals come from stationary distributions with a finite mean and variance. Graves

also described the makeup of the work queues to analyze the waiting times at each station.

Parrish (1987) presented several extensions to the TPM. He first showed how to model work

releases needed to meet a schedule of finished product demand. (The resulting model is similar in

character to the constant inventory models discussed in Chapter 4.) He next introduced two service

measures, the probability that demand exceeds inventory in any particular period, and the average number

of successive periods in which demand is not met. He then showed how to use TPM outputs to generate

these service measures, and how adjusting the TPM input parameters changed these measures. Finally, he

analyzed the transient behavior of the TPM with respect to three model changes: a one-period impulse, a

continuous increase in expected work arrivals, and a steady oscillation between low and high expected

work arrivals. (We review Parrish's analysis of transients in Chapter 7.)

Leong (1987) adapted the TPM to model Kanban and other pull-type stations. In a pull system,

stations produce to meet a downstream inventory shortfall rather than produce in response to new work at

the station. Thus, production is given by the linear control rule Pi, = a (T - Q,), where T is a target

inventory level. (We review Leong's work in Chapter 2.)

Graves (1988a) used a single-station model, similar to a one-station TPM, to evaluate

requirements for safety stocks designed to protect against stock-outs due to normal demand fluctuations.

He also showed that a linear control rule was the optimal solution to quadratic cost problems involving
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Chapter 1: Introduction

the station (see Chapter 7), and presented conditions for which a rule of the form Pi, = aiQi, was the

optimal solution.

Graves (1988b) used another single-station model, again similar to the TPM, to model a repair

depot. He showed how to use the model results to determine the optimal size of the depot's work force

and the optimal number of spare parts that should be kept in inventory.

Graves (1988c) presented three extensions to the single-station TPM. First, he presented steady-

state moment results for a station that failed according to a Bernoulli process such that the station had a

probability p of producing zero work in any particular period. Second, he presented approximate steady-

state moment results for a station with lot-sizing. In this model, work completed by the station is

packaged into lots of fixed size in, and these lots are routed probabilistically. (Chapter 5, which discusses

request-based models, may be thought of as a major generalization of this work.) Finally, he presents

mathematical bounds on the behavior of a station using a bounded control rule of the form

Pi, = min{aQ,,, Mi}.

Mihara (1988) extended the multi-station TPM to include stations that fail according to a

Bernoulli process. He also performed simulation studies of a multi-station TPM in which the station used

bounded control rules of the form P;, = min{aQ, ,Mi }. Similar to Cruickshanks, Drescher, and Graves,

he found that the behavior of the bounded models approached the behavior of the unbounded TPM

provided that the Me's were sufficiently large.

Finally, Fine and Graves (1989) applied a variant of the TPM to a real-world job shop that

manufactured thermal conduction modules for IBM mainframes. (In particular, they used Parrish's

extensions to model requirements-driven work releases.) They found some empirical evidence for the use

of linear control rules in practice.

Several authors have studied a discrete-time system similar in character to MR models. Denardo,

Tang, and Lee have studied Markov production models using proportional control rules. These rules

adjust the probabilities that a job at one station progresses to a downstream station in accordance with a

linear control rule. The linear control rules are complicated pull rules: they adjust the production rate

(e.g. transition probabilities) at one station to counteract excess inventory or insufficient inventory at all

downstream stations. (Chapter 2 discusses an MR model that uses similar control rules.) Despite their

similarity, these models are not MR-models, since they track discrete jobs moving between stations in

accordance with a Markov chain, whereas MR models treat work as fluid quantities. Major papers on

Markov production models with proportional control rules include Denardo and Lee (1987, 1992), and

Denardo and Tang (1997).
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3.2 Deterministic Models

Several major types of deterministic models are worth comparing to MR models. We consider models for

aggregate and capacity planning (similar to steady-state applications of MR models) and models that track

the evolution of a manufacturing system over time (similar to transient-analysis applications of MR

models). Usually, these models track expected production and queue levels by assuming that these

quantities are deterministic quantities.

The major difference between MR models and deterministic models is that MR models are

stochastic models that track production and queue length variances. In addition to providing information

about the production and queue length distributions, the variances also impact the true expected queue

lengths at stations (see Chapter 3). Nonetheless, the fact that these models are deterministic makes it

possible for them to model complicated production rules (including discontinuous and piecewise-

differentiable control rules), as well as priority policies. These system features cannot be addressed by

MR models.

Many deterministic models for aggregate planning and capacity planning model station capacity

as a simple hard constraint. Production is given by the bounded control rule P, ={Q , Mi }, such that a

station processes up to its fixed capacity each period. While a simple and natural way to represent station

capacities, this method does not account for capacity-loading effects, lead-time effects, or any other

effects that cause production quantities to have direct relationships with queue levels. As noted, MR

models cannot process bounded control rules, although LGS-MR models may use concave control rules

that roughly approximate bounded control rules. Reviews of these models are presented in Hax (1978),

Lin (1986), Baker (1993), and Bitran and Tirupati (1993).

At a lower level, the method of Input / Output control (Wight, 1970) is commonly cited. This

method, effectively, is a discrete-period simulation of job arrivals and processing steps, assuming that all

stations use a bounded control rule of the form P, = {Qit, Mi}. The drawbacks of this method are that it

assumes a simple capacity bound relationship, and it is almost as complex to use as a real simulation of

the job shop.

Kamarkar (1989, 1993) developed a deterministic model for a single facility in which the control

rule is a concave nonlinear function designed to model saturation and congestion behavior. He suggests

the control rule P, = MiQ, /(V + Q,), where M is an asymptotic maximum capacity and Pi is a

parameter determining the rate at which production increases to Mi. He presents transient and steady-

state results for the resulting model, along with a nonlinear programming model that minimizes facility

costs over a set of periods.
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Significant portions of this thesis develop the stochastic form of Karmarkar's model. Chapter 3

extensively discusses MR models using the control rule P, = MjQj, /(p1 + Q,, and shows how to

develop approximations for the steady-state production and queue length moments. Then, Chapter 6

presents and solves steady-state optimization problems for models using this class of control rules.

Nonetheless, it may be difficult to use the MR-equivalent of Karmarkar's model to perform transient

analysis and transient optimization. As shown in Chapter 3, the recursion equations for the moments are

approximations, so that iterating them repeatedly to perform transient analysis may cause the resulting

estimates to be inaccurate.

For some MR models, however, the moment recursion equations are exact (i.e. linear control

rules). Thus, they may be used for exact transient analysis (see Chapter 7). As such, these models may

be compared to fluid-flow models and systems dynamics models. Fluid-flow models are commonly used

to track quantities such as expected queue length and expected total production over a given interval.

However, fluid-flow models and systems dynamics models are continuous models that generally assume

deterministic behavior on the part of the queues, whereas MR models track distribution information, as

well. Some work on probabilistic fluid flow models has been done (c.f. Karandikar and Kulkari, 1995,

and Asmussen, 1995), but these are one-station models assuming that the inventory in a buffer follows a

Reflected Brownian Motion process. In Chapter 7, we will track the expectations and variances of the

queue lengths and total production quantities over a given interval for all shop stations simultaneously.

3.3 Queueing Models

Queueing models have been widely used to model processing networks, beginning with the work of

Jackson (1957, 1963). There is a large body of literature on queueing networks, much of it validating

queuing models against simulations of manufacturing systems (c.f. Solberg, 1977; Buzacott and

Shantikumar, 1985; Bitran and Tirupati, 1988, etc.). Reviews of queueing models of manufacturing

systems include those by Buzacott and Yao (1986) and Suri and Sanders (1993).

Generally, however, queueing models assume that average production rates are constant and that

service times are independent and identically distributed. They usually also assume that new arrivals are

given by a Poisson process, and departures from a particular station are exponentially distributed (so that

a continuous-time Markov chain theoretically represents all the states in the queue and all the transition

relationships between the states). There are exceptions to these rules.

First, it is possible to model networks of queues in which the service rates depend on the state of

the network, starting with extended Jackson networks (1963). The resulting equilibrium balance

equations, however, may prove very difficult to solve. Alternately, one can create queuing networks

similar in character to the Tactical Planning Model by having each station be an infinite-server queue; the
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analysis of such networks was done by Baskett et. al (1975) and Kelly (1975, 1976). Neither of these

formulations truly models queues that adjust their service rates with the total amount of work in queue,

however. Further, infinite server queues do not accurately model the fact that jobs wait in queue as

opposed to entering service immediately. Among other effects, the waiting-time estimates will differ

between MR-models and infinite-server queueing models.

Second, there are models of queueing networks in which the stations need not have

exponentially-distributed service times. BCMP networks (Baskett et. al, (1975)) and Kelly networks

(Kelly, 1975 and 1976), both allow the distributions of Cox (1955) to generate customer service times,

provided that the all queues use the processor-sharing, last-come first-served preemptive resume, or

infinite-server disciplines. The Cox distributions include all those distributions with a rational Laplace

transform; the importance of these distributions is that they can be constructed by a sequence of

exponential stages.

Other models provide approximate results for networks of GI/G/m queues. Whitt (1983a and

1983b) developed a two-moment approximation model, the Queueing Network Analyzer. This model

was extended by Bitran and Tirupati (1988). Much recent literature has focused on the development of

heavy-traffic models. These models use results that queueing networks may be approximated by

Brownian motion models such that departures become exponentially distributed as they become heavily

loaded (queue busy at least 90% of the time, usually). Work in this area includes that of Harrison and

Williams (1987), Harrison (1988) and Wein (1992). The drawback of both of these types of methods is

that they are approximations of varying accuracy; notably, heavy-traffic approximations only work well if

the queues are heavily loaded.

An advantage of MR models is that they allow the modeling of splits in workflows (in which one

job at a station becomes multiple jobs downstream); this generally is not allowed in queueing models. On

the other hand, it is somewhat difficult to model probabilistic job routing in an MR-model, whereas

probabilistic job routing is a fundamental feature of queueing models. Nonetheless, Graves (1988c)

presents an approximate method for modeling probabilistic job routing in the TPM, and Chapter 5

discusses the approximate modeling of very general relationships between jobs completed at one station

and jobs arriving at another station.

In general, we see that queueing models will be preferred when the network has stations with

independent service times for individual jobs (especially times close to exponential), operates

continuously, and has jobs consisting of distinct classes of "customers" moving randomly around the

network. MR models will be preferred when the network has queue-dependent service times as a

function of total work, operates either in discrete periods or has discrete control-review periods, and is

well defined by work flows and / or streams of jobs rather than by individual customers.

18



Chapter 2: The Tactical Planning Model and Other

Models with Linear Control Rules (Class LLS-MR)

1.I Introduction ........................................................................................................................................ 20

2. The Tactical Planning M odel ............................................................................................................. 20

2.1 M odel Developm ent ....................................................................................................................... 21

2.2 M odel W aiting-Tim e Statistics................................................................................................... 23

2.3 A General Approach to Develop M R M odels........................................................................... 28

3. The Tactical Planning M odel for Pull-Based System s................................................................... 30

4. The General LLS-M R M odel............................................................................................................. 32

4.1 M otivation for the General LLS-M R M odel.............................................................................. 33

4.2 M odel D evelopm ent....................................................................................................................... 34

5. Example: A Stochastic Production System Using Proportional Restoration Control Rules........... 35

5.1 M odel Developm ent....................................................................................................................... 36

5.2 An Exam ple Production System ................................................................................................ 37

6. Exam ple: A Com m unications Problem ......................................................................................... 38

6.1 Introduction .................................................................................................................................... 38

6.2 M odel Developm ent....................................................................................................................... 39

6.3 Converting System Data to M odel Inputs ...................................................................................... 43

6.4 Calculating the Results................................................................................................................... 46

6.5 Interpreting the Results................................................................................................................... 47

19



Chapter 2: Models with Linear Control Rules

1. Introduction

In this section, we consider moment-recursion models with linear control rules and independent and

identically distributed work arrivals. These models are the simplest MR models, but show the basic

analytic techniques expanded upon in later chapters. They also apply to a wide range of systems, and in

certain cases, may help produce control policies that will be provably optimal with respect to minimizing

production variances.

We begin with the simplest, and first, MR-model, the Tactical Planning Model (TPM), developed

by Graves (1986). The TPM is a "push" model in which stations deterministically process a fixed

fraction of the work in their input buffers each time period. We next review an adaptation of the TPM

that models "Pull-based" or Kanban systems, developed by Leong (1987) in which stations process an

amount needed to make up a fraction of the shortfall in their output buffers each time period.

We then develop a General Linear Control Rule model, which adds several major extensions to

the TPM. First, production quantities can depend on the queue lengths of multiple stations. Second, part

of a station's production quantities can be constants. Last, we allow fluctuations in the work actually

processed by a station. Together, these extensions allow us to model general linear (or affine) control

rules, which will allow us to model shops using very sophisticated control policies.

We conclude the section with two examples showing the utility of linear control rule MR models.

We first present a model of a shop that uses sophisticated linear control rules, theproportional restoration

rules of Denardo and Tang (1997). We then conclude the chapter with a digital-communications capacity

planning application, which applies MR models to a scenario that one would not normally associate with

manufacturing models.

2. The Tactical Planning Model

The Tactical Planning Model (TPM), developed by Graves (1986), was the first moment-recursion model,

and is the simplest model in the LLS-MR class. It is a discrete-time, continuous-flow model that tracks

work flows rather than jobs through a job shop. We assume an underlying time period for the model and

express the arrival of work per period in terms of time units (i.e. hours) of work rather than individual

jobs. We model production per period at a workstation as the amount of work performed rather than as

the number of jobs completed. Individual jobs have no identity in the model. (Note that most MR

models assume that work is modeled this way; the xGx-MR models form the exception.)
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Chapter 2. Models with Linear Control Rules

2.1 Model Development

Each station uses a simple linear control rule to determine the amount of work to perform each

period:

pi = aQ , (1)

where P;1 is the production of work station i in time period t, Q, is the work-in-process or work-in-queue

at the start of period t, and the parameter a,,0 < ai : 1, is a smoothing parameter. In words, production

at workstation i is a fixed portion (a) of the queue of work remaining at the start of the period. The

inverse (1/ a,) corresponds to the planned lead-time at workstation i.

To use the control rule, we specify the queue level Q, by the inventory balance equation:

Qi, = Q,,_1 - 4, + A,, (2)

where A;, is the amount of work that arrives at workstation i at the start of period t. By using the control

rule (1) to replace Qi, in the balance equation (2), we get a simple smoothing equation:

pi = (I - ai)Pi,t + aiAi, . (3)

We next characterize the work arrivals. A workstation receives two types of arrivals. The first

type comprises new jobs that have their first processing step at the station. The second type comprises

jobs in process that have just completed processing at an upstream station. We model the arrivals to a

station from another station by the following equation:

Ay, = U P ,_, + eat- (4)

In this equation, AU, is the amount of work arriving to station i from stationj at the start of period t, $g is a

positive scalar, and cut is random variable. Thus, we assume that one unit (e.g. hour) of work at stationj

generates #U time units of work at station i, on average. The term i; is a noise term that introduces

uncertainty into the relationship between production atJ and arrivals to i; we assume this term is a serially

i. i. d. random variable with zero mean and a known variance.

Then, the arrival stream to station i is:

A,,= A, + Ni, (5)

where N;, is an i. i. d. random variable for the work load from new jobs that enter the shop at stationi and

at time t. Substituting for A,:

21



Chapter 2: Models with Linear Control Rules

Ai, = i,,'-1 +.ci, , where ci, = Ni, + -cut - (6)

Note that gi, represents the work arrivals not predictable from the production levels of the previous period,

and includes work from new jobs and from noise in existing workflows. By assumption, the time series

gi, is independent and identically distributed over time.

We next rewrite the equations for production (3) and work arrivals (6) in matrix-vector form:

Pt = (I - D)P,_i + DA, t, (7)

At = DI,_ P,_1 +e,. (8)

Here, P, ={Pj,,..., P}', At = {AI, Ani ', ande, = {It,...,e I,'are column vectors of random

variables, n is the number of workstations, I is the identity matrix, D is a diagonal matrix with

al,..., an }on the diagonal, and D is an n-by-n matrix with elements #!;. By substituting equation (8) into

equation (7), we find:

Pt = (I - D + D(D)P,_ I + D., . (9)

By iterating this equation and assuming an infinite history of the system, we rewrite the above equation as

the following infinite series:

Pt = (I-D+DD)DsDet,. (10)

To calculate the moments of the production random vector P, we denote the mean and the

covariance for the noise vector c, by pu = {p j,..., p}', and by E = {or }, respectively. Then, the

expectation of the production vector is given by:

E[P,)= (I - D + D(D)s Dp,
s=O

=(I - Q-p

provided that the spectral radius of D is less than one (see Graves 1986). The covariance matrix of

production, S, is given by:

S = var(Pt) = IBDDB's' (12)

where B = I - D + DD.
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Again, this infinite series converges if the spectral radius of D is less than one. Note that from S we have

found the production variance for each station, as well as the covariance for each pair of workstations.

The relationship Pt = DQt immediately implies the moments of the queue lengths:

E[Q, ]= D'P,, and

var[Q,] = D'SD~.

2.2 Model Waiting-Time Statistics

Throughout this thesis, we primarily will calculate the moments of production and queue lengths.

However, it is possible to use the TPM to develop some other useful statistics, as well. Graves (1986)

showed how to characterize the queue backlogs, the amount of work that waits for a particular amount of

time at each workstation. Under certain situations, it is possible to use these results to characterize the

distribution of the waiting times at each station.

2.2.1 Characterization of Queue Backlogs

We begin by reviewing the characterization of the amount of work that waits for a particular

amount of time. Assume that work at each station is always processed in first-in, first-out order (FIFO).

Then, define Q1, to be:

Qi1t = Q$P
Qt Qimt~- -- i-1,

0 M (14)
=Q,"t-m - I i'-

S=1

where Qi, = Q,. In words, if Q'" is positive, it represents the amount of queued work at stationi that has

been in queue for at least m periods prior to the start of the current period. If Q"' is negative, it indicates

that none of the current work has been in queue for in periods. Instead, the station has processed - Q'"

worth of more recent arrivals. In matrix notation, we rewrite all Q" 's simultaneously as:

m

Qm Q tM -I Pt-s- (15)
s=1

Using the fact that Q0-m = D'Pt-m yields:

m

S=I
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so that the queue level is written entirely in terms of the production vectors. From the development in

section 2.1, it is clear that Q " can be rewritten in terms of the noise vectors, the t 's, as well. From the

latter representation, we find that:

E(Q')=((D1 - mIXI - (D)~'P, and (17)

M-1
var(Q') = Ir-+...Bj-1 )DED-'(I+...BJ-')

j=1 (18)

+(D~' -I -B --...- B"'~)S(D~' -I - B-...-B"'-1 )',

with S, B, and E defined in section 2.1.

2.2.2 Characterization of the Waiting Times Under Normality Assumptions

The probability that the waiting time at station i is between in and rn - 1 periods, P(nz!w, m-l)'

equals the probability that Q,-' > 0 and Q7, ! 0. The first condition states that a positive amount of

work has been in queue at least rn-] periods, while the second implies that no work has been in queue for

more than m periods. Mathematically, we have:

S1- p(Qj, 0), in =(9
p(Q, 1 > 0) - p(Qm > 0), in >1.

In words, p(w,,_m is the probability that work has been queue at least in - 1 periods less the

probability that work has been in queue for m periods. The special case for in = 1 is needed since all work

waits during its processing time. If we can calculate the probabilities that Q' > 0, we can calculate the

distributions of the waiting times. For example, suppose that all the work arrivals are normally

distributed. Then, the production quantities will be normally distributed, since the production quantities

are sums of the work arrivals. Thus, equation (16) implies that the Q7"''s are normally distributed, as

well. Define Z(x, -) to be a normal distribution with mean x and standard deviation o-. Then, we can

rewrite (19) as:

P(w,,mag.-I) = - p(Z(E(Qi-' ), -(Q'- )): <)- [ - p(Z(E(Qm"), -(Qm )) <o),

= p(Z(E(Qm), o(Q ,)) 0)- p(Z(E(Qj," ), U(Q 1 )) 0 ), n 2, (20)

and

p l~w o) = p(Z(E(Q,),-(Q',)) 0),rn = 1.
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Again, the special case for in = 1 is needed since all work waits in the queue for at least part of one

period. Using (20) for all values of in yields the probability mass function for the waiting times at a

particular station. To ensure that (20) creates a valid probability distribution, we calculate the

corresponding cumulative distribution function:

P(w1 sM> = p(Z(E(Q, ), a(Q, )) 0)+ m [p(Z(E(Q,',), u(Q,'")) o)- p(Z(E(Q"-1 ), a(Q,-1 O)
m=2 (21)

= p(Z(E(Q,"'), a (Q'))< o

so that lim p(,wM) = 1, since lim E(Q,)= -oo.

Example. Consider a single work station that receives an average of 5 units of work per period with a

standard deviation of 3 units of work (variance of 9 units). Assume that the station is forced to redo a

random amount of work each period. The expected random work to be redone is 30% of the production

quantity, with a variance of 1 unit. In terms of the TPM input variables, this implies thatp, = 5, #l = 0.3,

and ', = 9 + 1 = 10. The smoothing parameter is set to be a, =1/5 (so the lead time is 5 periods).

Applying the steady-state TPM equations to the station, the station's moments of production and queue

lengths are:

E(PI) var(PI) E(Qj) var(Qj)
7.14 1.24 35.71 6.20

The moments of the queue backlogs are (through in = 10 periods):

in E(Qm") var(Q,') in E(Q,') var(Q,')

1 28.57 24.58 6 -7.14 15.26

2 21.43 15.55 7 -14.29 21.81

3 14.29 10.63 8 -21.43 30.31
4 7.14 9.27 9 -28.57 40.48
5 0 10.95 10 -35.71 52.08

Using the above formulas, and assuming all arrivals are normally distributed, yields the following

distribution for the station's waiting times. Note that the distribution is given in terms of discrete

intervals; for example, the probability of "4-5" is the probability that work will wait in queue between 4

to 5 periods.

Waiting Time (periods) Probability Waiting Time (periods) Probability
0-1 .0000 5-6 .4663
1-2 .0000 6-7 .0326
2-3 .0000 7-8 .0011
3-4 .0095 8-9 .0000
4-5 .4905 9-10 .0000
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In this example, about 96% of all the work in queue waits between 4 and 6 periods. One of the

consequences of using a linear control rule is that waiting times become quite predictable, even with a

high variance for work arrivals.

2.2.3 Characterization of the Waiting Times Without Normality Assumptions

If the work arrivals are not normally distributed, we have fewer options. We can calculate the

expected waiting time explicitly, using Little's Law. Recall the law states that Q. = Aiw,, where Q is the

expected queue length, 2 is the arrival rate, and wi is the expected waiting time. The TPM is a

conservative model in which work arrivals equal work departures at each station. Thus, the total arrival

rate to a station simply equals the station's expected production, E(Pi). L = E(Q) by definition; from

(12), we also have that L=a.E(P). Substituting into Little's Law, and simplifying, we find that

w = 1/ a . Thus, setting the smoothing factor implicitly determines the expected waiting times, or lead

times. This result holds regardless of the arrival distributions or the order in which the station processes

the jobs. Importantly, the fact that W = I/ca sets up tradeoffs between queue waiting times and

production and queue length variances; these tradeoffs form the basis of optimization problems discussed

in Chapter 6.

Unfortunately, however, the variance of the waiting time generally cannot be calculated explicitly

from the moments of production and queue lengths. While there are generalized versions of Little's Law,

they require that arrivals be exponentially distributed (for example, Keilson and Servi (1988)), or they

require the full distribution of the queue lengths (Bertsimas and Nakazato, (1995)). This leaves

approximations. First, one might use the technique developed above under normality assumptions. Since

the backlog quantities are expressed as sums of production vectors, this approach should provide

reasonable results if the arrival distributions are not too far away from normal and the production

quantities are not too highly correlated.

One can also use the production and queue length moments directly to develop simple lower and

upper bounds that identify the waiting time variance within a factor of 2. If the queue length isQ;,, it will

take approximately Q, / E[J3] periods for the work at the top of the queue to leave the queue. Thus, if we

ignore the variations in the production quantities, a lower bound for var(w) is var[Q, ] /(E[P ]) .

To derive an upper bound, we make several assumptions. We assume that the production

quantities are independent from Q;. Instead, we assume a constant production quantity, p,, while the

current work is in progress. Further, pi is randomly selected from a random distribution with mean E[Pi]

and variance var[P;] (the steady-state production moments). Under these assumptions, it will take Q, / pi
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periods for the work to leave the queue. Thus, var(Qi, Ipx) is an upper bound on var(wi), for two reasons.

First, it ignores the relationship relating processing speed to queue length. Second, choosingp, from a

single random draw ignores the fact that the actual production quantities vary between periods while the

current work is in queue. The average of several production quantities will have a lower variance thanpi.

Both of these effects overestimate var(w,).

We cannot calculate var(Q, /pi) directly, but we can find a first-order approximation of it using

a Taylor-Series expansion. We will discuss Taylor-series approximate methods for moment

approximations in detail in Chapter 3 (for models with general control rules). For now, we state without

proof that the approximate variance is:

var Qt ~z var(P) (E(Q,) +var(Q,) 1 2,(22)

S(E(i))
4  (E(Pi))2

which is the same as the lower bound plus the addition of a var(P) term. Using the relationships between

the production and queue length moments, we can write both the upper and lower bounds entirely in

terms of production moments, which yields a lower bound of var[P]/ a 2(E[P])2, and an upper bound

of:

Q,(E(P;)) 2 i
var ( var(Pi) 2 4) + var(P.) (22

pia, (E(P) a, (E ))2a(23
2var(Pi)

a2(E (p ) 2

Thus, using only the steady-state production moments, and making no assumptions about the waiting time

distributions or the relationships between queue lengths and production quantities over time, we have:

var(P.) 2 var(P)
2 2var(w) . (24)

Ct (E (P) a, (E())2

In between these two estimates, one can assume that it will take approximately Q, /pi* periods for work

to leave the queue, where p,* is the sum of E(Q,)/E(PJ;) independent draws from the production

distribution independent from Q,. With this assumption, the estimated waiting time variance becomes:

var " var(PJ) (E(p)) 2  1var(P
Pt * (E(Qj)/E(P)) a2(E(P;))4  a2 (E()) 2  (25)

(1+ a,)var(P,)~I+ 2i i ,since E(Q)/ E(P) = 1/a 1 .
a, (E(P ))2
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The drawback of this estimate is that it is neither an upper nor a lower bound. The fact that this estimate

ignores the relationship between queue lengths and production quantities tends to overestimate var(w).

However, setting pi* to be the sum of E(Qi,) / E(i,) independent draws will tend to underestimate

var(wi), since production quantities are correlated over time.

2.3 A General Approach to Develop MR Models

The development of the TPM model uses the following general approach:

1. Write the control rules of the model into equations that relate production quantities to queue length

quantities.

2. Write equations describing work arrivals for each station. Include work arriving to the station from

outside the network, and work arriving as a result of production at upstream stations.

3. Substitute the control-rule and work-arrival equations into the standard inventory balance equations to

each station, yielding a single set of recursion equations relating work (or queue lengths) completed

in the last period to work (or queue lengths) in the current period.

4. Iterate the recursion equations infinitely, which will yield a power series expression for the steady-

state production (or queue lengths) at all stations. Take the moments of this expression to find the

steady-state expectation and variance of production (or queue lengths).

5. Use the control-rule equations to calculate the moments of the queue lengths (or production

quantities, if the recursion equations were written in terms of queue lengths).

We will use this approach repeatedly to develop and analyze more complicated MR models. We begin

with a simple extension, the application of the TPM to base stock models. For example, we use this

approach to analyze models with general linear control rules, discussed in Chapter 4. Models with

general control rules, along with the other models we consider in later chapters, are significantly more

complicated than the TPM, but we will use the same basic approach to analyze them.

Example: Base Stock Models. As an example, we use the approach to derive an extended TPM that

models base stock job shops. As written, the TPM assumes that work enters from outside the shop enters

at particular stations (from order requests, for instance), and that this work then pushes its way through

the network. In this section we consider a modification to this "push" model, called a base stock job

shop. Here, completed products are stored in a buffer. Each time an item is removed from the buffer, the

buffer sends an order to make a new item. Figure 1 diagrams a single-product base stock job shop.
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Workstations Buffer

Demand s

-----------------------

Item demand creates work orders at workstations

Figure 1 -- A Base Stock Job Shop

To apply the TPM to a basestock model, we first note that all stations except the buffer station behave

exactly as in the original TPM. Thus, we consider removals from the buffer and the corresponding orders

to the first stations in the work flows.

We assume that the number of units demanded in a given period can be treated as a continuous

random variable. As with work arrivals, the demand comes from a serially i.i.d. distribution with finite

mean and variance. Thus, the demand from the buffer station at time t is written as c;,, except that E;, is

now explicitly negative. The demand has an expected value, p, < 0, and a variance, YZ, > 0.

We now model the order requests sent to the first stations in the work flow that produce the item.

Suppose that stationj is one of these first stations. As with all other work arrivals, the orders to replace

items leaving the buffers in time t are written as Ejt; to apply the TPM, we need to find the expectation and

variance of Ej,. Let station] require hj, time, on average, to produce one unit in the final buffer. Then,

removing i;, from the buffer creates - h11ei, of work at station j. Using this relationship, the expected

quantity of the orders is p, =-hjiup, and the variance of the incoming orders is E. (h11 ) 2 Ed. Further,

since the orders equal a negative multiple of the units leaving the buffer, the correlation coefficient ofs,

and j, equals -1. Therefore, the Eu and Ej; entries in the input covariance matrix must be those entries

that produce a correlation coefficient of -1; these entries are E, = E -(h Yj)

In a base stock model, the expected number of products entering the buffer equals the expected

number of products demanded from the buffer. (Otherwise, either the buffer's inventory or back orders

would grow without bound.) Since we model demand to be negative work arrivals, the expected

"production" at the buffer station will equal 0, making the size of the buffer (i.e. the buffer's expected

queue length) indeterminate. From the perspective of the model the analyst may set the buffer size as

desired. In practice, we may wish to make the buffer as small as possible to meet certain performance

guarantees against the probability of back orders. For example, if the product demand is approximately
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normal, one may want to make the size of the buffer equal to twice the standard deviation of the

"production" at the buffer. This size will provide an approximately 97% chance that the buffer will not

run out of items in any particular period.

We have now completed steps 1-2 of the General Approach, defining the production rules (same

as the TPM) and characterizing the work arrival processes (modified for stock replenishments). Since we

have now written the model parameters as TPM input matrices, we can apply the TPM moment-

calculating formulas directly, completing steps 3-5 of the General Approach.

As a numerical example, consider the four-workstation plus buffer model shown in Figure 1. The

following table presents a set of inputs corresponding to this model.

Workflow (D') To Station
From Station 1 (Input 1) 2 (Input 2) 3 (Process 1) 4 (Process 2) 5 (Buffer)
1 (Input 1) 1.0
2 (Input 2) 1.0
3 (Process 1) 1.0
4 (Process 2) 1.0
5 (Buffer)

Demand (i') 3.0 (60% demand) 2.0 (40% demand) -5.0
Covariance (E)
1 (Input 1) 1.8 -3.0
2 (Input 2) 0.8 -2.0
3 (Process 1) 0.10
4 (Process 2) 0.10
5 (Buffer) -3.0 -2.0 5.00
Lead Time 4 (0i = 0.25) 4 1 1 1 (N/A)

The resulting moments of production and queue lengths are:

Station Expected Production Standard Deviation Expected Queue Standard Deviation
of Production Length of Queue Length

1 (Input 1) 3.0 0.508 12.0 2.028
2 (Input 2) 2.0 0.338 8.0 1.352
3 (Process 1) 5.0 0.687 5.0 0.687
4 (Process 2) 5.0 0.756 5.0 0.756
5 (Buffer) 0 2.360 N/A N/A

As discussed, a good estimate for the size of the buffer would be twice the standard deviation of

"production" at the buffer, which here is 4.72 units (or 5 units if the buffer only stores discrete objects).

3. The Tactical Planning Model for Pull-Based Systems

Much of the rest of this thesis may be seen as creating extensions and generalizations of the TPM. The

first extension we consider is an adaptation allowing the TPM to model "pull-based" systems. The TPM

by itself is a "push-based" system, in which each station processes a fixed fraction of the amount of
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inventory in its input buffer. In 1987, however, Leong showed how to apply the TPM to "pull-based"

systems, such as the popular Kanban systems. In these systems, each station now has an output buffer,

from which downstream stations draw inventory; each buffer has a "target" inventory level. Production

quantities no longer depend on work in the input buffer. Instead, each period each station produces

enough to make up a fixed fraction of the shortfall between a target level, Ti, and the amount of inventory

actually in the buffer. (For example, if the target level is 6 hours worth of on-hand inventory, the buffer

only contains 4 hours of on-hand inventory, and the fixed fraction, ai, is 0.5, the station will produce one

hour's worth of inventory over the next period.)

The development of the TPM for pull-based systems is very similar to that of the original TPM.

The one key difference is that the inventory balance equations are no longer written in terms of Qt, the

inventory actually at the stations. Instead, the balance equations are written in terms ofVt, the difference

between the target inventory levels and the actual inventory levels. Mathematically, the new production

rule is:

pit = i i , where
= T,-Q.(26)

V1, = T - Qit I

The inventory-balance equation now represents the inventory shortfall in each time period:

Vi =Vi , -- i ,_, + Ai,, (27)

where A, is work that leaves stage i's output buffer at the start of time t, thus increasing the shortfall that

must be filled. The equation for the arrivals appears the same as it was in the TPM:

Ait =Z( iPj,,_, +P1  ,)+ Ni,. (28)

However, the meaning of the terms is different. Oi is the amount of work that one unit of production at

stage j pulls from stage i. Ni, is the quantity demanded externally from stage i at period t. This new

characterization of work arrivals might allow one to model assembly stations that draw product

components from upstream stations, for example.

Despite the change in meaning of the variables, the recursion equations have remained the same;

thus, the recursion equation Pt is exactly what it was for the TPM, Pt = (I - D + D<)Pt +E.

Consequently, we find the moments of the production and the shortfalls the same way, as well:
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E[Pf= (I - (D)-'Ip

var[P] = B'(DIDED), where B = I - D + DO
S=O (29)

E[V] = D~'E[P]

var[V] = D-'var[PJD-.

The relationship V, = T - Q, immediately implies the moments of the actual inventory levels, Qt:

we have that E[Qi] = T - E[V], and var[Qj] = var[V]. In practice, we will want to set the T's large

enough to ensure that the inventory levels are non-negative.

4. The General LLS-MR Model

In this chapter, we consider the general form of LLS-MR models, where production is a general linear

function of the work-in-queue at multiple stations. The production rule is:

(GLR) Pi = Ea. Qj +A +7,it, (30)

where the parameters aii are smoothing parameters, #; is a constant, and y;, is a serially-iid random

variable with zero mean and finite variance. Note that individual a,'s need not be between 0 and 1,

provided that the resulting production is neither negative nor requires more inventory than that in queue

(or is very unlikely to be negative or require more inventory than that in queue). Indeed, some a U's

could be negative; a negative a. implies that production is slowed down as a queue level increases.

Negative a. 's can model policies that seek to prevent upstream stations from sending excess inventory to

downstream stations. For example, the pull networks discussed in section 3, which produce work to

eliminate shortfalls at downstream stations, may be modeled using (GLR).

Similarly, the pull network formulation discussed in section 3 models general control rules with

negative a. 's. The formulation of a general control rule for pull networks is:

Pi, = YaiVi, + Pi +i,,

where V, is the inventory shortfall at stationj at time t. With this convention, all 'j's are positive.

Further, V, does not need to be positive. A negative V implies that a queue has too much inventory, so

that upstream stations will reduce production. The expanded Vi, allows the modeling of
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"counterbalancing" control rules; we will present an example of a model that uses counterbalancing

control rules (the Denardo-Tang model) in the next section.

4.1 Motivation for the General LLS-MR Model

Control Theory. The use of general linear control rules has an important advantage: if the objective of

the shop is to minimize a quadratic cost function of production and inventory levels, a linear control rule

will minimize the objective. For example, consider the following dynamic minimization problem:

(V-MIN) minE E dt[(P, -E[P])'C,(Pt -E[P])+(Q,_ 1 - Q*)'C(Q s -Q*) (31)

s.t. Qt = Qt_1 +(( - I)P, + E,,Vt,

where d is a discount factor, Q* is a vector of target queue levels, Cp is a matrix setting the cost for

production quantity fluctuations, and CQ is a matrix setting the cost for queue level fluctuations. The

objective function seeks to minimize the variances of production and queue lengths over a discounted

infinite time horizon. The recursion equations for Qt are the TPM recursion equations, with E, being a

serially-i.i.d. noise vector, as previously discussed . Consequently, problem V-MIN seeks the production

quantities that will minimize the production and queue length variances within a discrete-time

manufacturing model over an infinite discounted time horizon- a problem we expect might be of great

interest in a variety of manufacturing applications.

The solution to V-MIN will be discussed in detail in Chapter 7, which examines dynamic control

of MR-models. For now, however we state that the formula for the optimal production quantities will be

a linear function of the queue lengths of the form:

Pt = E[P]+Kt(Q - Q*), (32)

where Kt is a matrix. Further, in steady state, Kt will converge to a constant matrix K provided that d < 1.

(These results come from the application of dynamic programming theory to linear systems with

quadratic cost; see, for example, Bertsekas (1995a)). Then, the optimal steady-state production quantities

in the discrete-time manufacturing model will be given by a general linear control rule.

Processing Time Predictability. In addition to minimizing production and queue length variances,

linear control rules make waiting times predictable, as well. In the single-station example in Section 2,

96% of all the work in queue waited between 4 and 6 periods, despite fairly high fluctuations in the

arrival stream to the station.
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Modeling of Adaptive Control Rules. Beyond optimal policies for quadratic-cost systems, the general

LLS-MR model allows the analyst to model other control rules which modify station production rates to

limit production and inventory fluctuations throughout the entire shop. This modeling ability is important

for just-in-time manufacturing applications, for instance.

One example of adaptive control rules is theproportional restoration control rule suggested by

Denardo and Tang (1997). These rules are pull models where stations' productions are controlled by the

need to restock downstream inventories. In particular, the production at each station is the amount needed

to restock some fraction of the shortfall across all downstream inventories. Job shops with proportional

restoration rules will be discussed in the next section.

Production Fluctuations. Allowing random fluctuations in production quantities is also an important

extension. This addition allows the analyst to model situations in which production does not depend

exactly on queue lengths - which will likely include many situations.

Empirical Evidence for Linear Control Rules. There is empirical evidence that stations may follow

linear control rules in practice. For example, Fine and Graves (1989) showed that many stations at a

mainframe subcomponent manufacturing plant empirically obeyed a linear control rule.

4.2 Model Development

We develop the general linear control rule model for push networks. The equations for pull networks are

similar, except that the Qt's are replaced by Vi's. We write the production rules simultaneously in

matrix-vector form as:

P, =DQ, + p+ y,,or Qt = D-'(P, --- y,). (33)

Here, D is a non-diagonal matrix, assumed to be non-singular. Solving the equation for Qt and

substituting the results into the inventory balance equation, Qt = Qtuj - P-1 + At, yields:

D~1 (Pt - j - ,= D~'(P,_, - P - y,_,)- P,_, + At,, where At = (DP,_, + Ct (4
-:> Pt = (I -D + DD)Pt_, + De, + (y, - Y,_,).

The constant production term, 8, cancels out of (30). The term will reappear in the equations for the

queue length moments, however.

By iterating (30) and assuming an infinite history of the system, we find the following power

series equation (similar to the results for the TPM):
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Pt = Y, + ZBs (DEt-s + (B - I)y,__ ),- (5
S=O

where B = I - D+D(.

Since the mean of yt equals zero, E[P] is:

E[P]= (I - B)-'Dp. (36)

=(I - () -' p.

The expected production in this model is exactly the same in the general linear model and in the TPM.

This is not a coincidence. In the next chapter, we will show that if the production rule is any general

function of the queue lengths such that the resulting network is stable, the expected production at each

station will always be E[P] = (I - )y,

The steady-state variance of P is similar to what it was for the TPM. To account for the y,'s, we

add an additional term to the infinite series:

S = var(P,) = F + DED'+Z Bs (DXD'+(B - I)F(B - I)')B",
S=1 (37)

where B = I -D + DO, and F = cov(y,)

The moments of Pt imply the moments of the queue lengths, Q,:

E[Q] = D-'(E[P] - P), and
(38)

var[Q] = D~'(S - T)(D-')'

The calculation of E[Q] follows directly from the equation Qt = D- (Pt - P - Yt). The calculation of

var[Q] is a more subtle. Note that yt appears in the recursion equation for Pt, whereas - y, appears in the

equation for Q,. Thus, the contribution of yt is negated, so the variance of yt must be removed from the

variance of Q. (This is not an issue with E[Q], since E[y] = 0.)

For pull models, we find the moments of the shortfalls, E[V] and var[V] rather than E[Q] and

var[Q]. We find the moments of the queue lengths using the same formulas as the TPM for pull

networks: E[Q] = T - E[V] , where T is the vector of target inventories, and var[Q] = var[VI.

5. Example: A Stochastic Production System Using Proportional

Restoration Control Rules

In this section, we apply general linear control rule models to a stochastic production system using the

proportional restoration rules developed by Denardo and Tang (1997). As discussed, these rules are pull
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models where stations' productions are controlled by the need to restock downstream inventories. In

particular, the production at each station is the amount needed to restock some fraction of the shortfall

across all downstream inventories. We first derive the MR model that uses proportional restoration rules,

and then apply the model to a problem suggested by Denardo and Tang (1997).

5.1 Model Development

Mathematically, the production of station i at time t is given by:

= E(P)+ EE(Q,) -Qjj(D*;+7,, , (39)
j:0j >0

or, in accordance with the notation of the pull models,

N

i, = E(PI)+ r * Vj ,+,Y, (40)
j:(D >0

Here, E(Qj) is a target buffer size, or desired queue level for stationj, r; is a control factor set by the user

such that 0 r :1, and C*D is the estimated work that must be completed at i to get one unit of work to

arrive at stationj. In words, this rule says that the production at station i is the expected production plus

or minus a restoration quantity that partially restores the queues at downstream stations to the desired

expected queue lengths. On average, r; of the shortfall (or excess) at stationj will be restored each

period.

As with the TPM models discussed previously, we continue to assume that et represents

fluctuations in work arrivals. As before, ct is a serially-i.i.d. random variable with mean p and covariance

matrix E.

The proportional control rule is a general linear control rule for a pull network with:

a.; =" r~,*,,

, = E(P), and (41)

Yit is a serially - iid random variable with zero mean.

To use the model equation derived in the previous section, we simply need to find the E(P;)'s and 0;*'s.

As discussed in the previous section, regardless of the cj's, E(P) = (I -() p . Using the derivation of

pull models discussed in Section 3, V* equals the expected amount of work one unit of demand at station

j induces at station i. Thus, each I* element is the Qj) element of the matrix * = (I - )-' .
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We apply the equations in Section 4 directly, yielding E(P), var(P), E(V), var(V), E(Q), and

var(Q). E(V) merits a special comment; using the formula in Section 4, we see that

E[V]= D-'(E[P]- P)= D-'(E[P]- E[P])= 0, (42)

implying that the expected queue lengths will be whatever the target buffer sizes are. Mathematically, we

have freedom to choose any target buffer sizes. In practice, we want to choose target buffer sizes large

enough that the probability of stockouts are small. If the production fluctuations are approximately

normally distributed, a good choice is to make the buffer sizes twice the standard deviation of the queue

lengths (this is the approach recommended by Denardo and Tang (1997)). This rule gives rise to

nonlinear programs to find the r;'s minimizing the required buffer sizes; these nonlinear programs will be

discussed in some detail in Chapter 6, on the optimization of MR Models.

We conclude the development by noting that Denardo and Tang's model is not a MR model. Denardo

and Tang modeled production systems using an underlying Markov chain, such that production

fluctuations are due to work discarded in accordance with a binomial distribution. They also assumed

that the shop contains no cycles in the work flows.

The MR-models behave differently. They do include a Markov assumption that work requirements at a

station do not depend on how a particular workflow got to that station. However, instead of Binomial

distributions, the fluctuations in production and work transfers may be modeled by any distributions

independent from the production and queue length quantities. The latter assumption prevents MR models

from directly copying Denardo and Tang's models, since the latter's production variances are directly

proportional to the amount of work produced. Further, MR-models do allow cycles in work flows;

transitions showing work returning to upstream station are treated like any other transitions. The latter

ability models job shops that subject items failing quality tests to rework, for example.

5.2 An Example Production System

Denardo and Tang (1997) present a six-station assembly line controlled using proportional restoration

rules. Finish products are removed from the buffer at station 1, while station 6 receives inventories from

an infinite source. The assembly line is shown in Figure 2.

Buffer Station

Figure 2 - A Six-Station Assembly Line
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External demand at station 1 is Poisson with a mean and variance of 20 units. At each station, the failure

rate is 15%, so one unit of demand at station i induces an average of 1/.85 units of demand at station i + 1.

As discussed, we cannot model Binomial-distribution failures directly with MR-models, so we

approximate the variance caused by failures at each station to be EX1 = E(P )(0. 15)(0.8 5), using the fact

that the true variance of Binomial distribution failures would be Ed, = P (0.15)(0.85). (This particular

approximation underestimates the variances somewhat.)

Finally, Denardo and Tang suggest the control parameters r, = 0.25, r 2 = 0.35, r3

= 0.60, and r6 = 0.68. Together, these inputs yield the following model parameters:

= 0.43, r4 = 0.51, rs

Workflow, ' To Station
From Station 1 2 3 4 5 6
1 1.176
2 1.176
3 1.176
4 1.176
5 1.176
6
Demand, Pi 23.53 0 0 0 0 0
Expected 20/0.85 = 23.53 23.53/0.85 = 32.57 38.31 45.07 53.03
production, E(P) 27.68
Input variance, 23.53*0.15*0.85 27.68*0.15* 0.85 4.15 4.88 5.75 6.76

+ 20 = 23.00 = 3.53
ri 0.25 0.35 0.43 0.51 0.60 0.68

Running the model yields the following results. Note that the recommended buffer size is twice the

standard deviation of the queue length:

Station Expected Production Standard Deviation Standard Deviation Recommended
of Production of Queue Lengths Buffer Size

1 23.53 2.51 7.25 14.50
2 27.68 2.87 3.65 7.30
3 32.57 3.30 3.66 7.32
4 38.31 3.79 3.74 7.48
5 45.07 4.36 3.86 7.72
6 53.03 5.03 4.05 8.10

6. Example: A Communications Problem

6.1 Introduction

Linear-MR models provide a great deal of flexibility to model (and optimize) a wide variety of

situations which can be represented by a "processing network." Here, we consider a communications

application similar to capacity-allocation problems faced by the US Department of Defense.
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In this example, a set of antennas broadcast signals at probabilistic intervals; broadcasts may be

correlated (positively or negatively) with each other. Each broadcast signal uses a random amount of

bandwidth with a finite mean and standard deviation. These signals are received by a set of remote

receivers; each receiver transmits the signals it receives to a communications satellite, which transmits

collections of signals to a central base. Analysts at the central base then send control signals back to the

remote receiver stations requesting additional information about particular signals, which the receiver

stations provide through the same connections as the original signal. It is assumed that a receiver or a

satellite cannot store signals; signals must be transmitted immediately or dropped. The objective is to

determine how much bandwidth must be installed at each receiver and satellite to meet certain levels of

service (i.e. avoid dropping too many signals.) Figure 3 graphically shows the situation.

Broadcast
Antennas Receiver Communications

Stations Satellites

Central Base

(Analysis)

Data
signal

Control

signal

Figure 3 - A Communications Example from the Department of Defense

6.2 Model Development

At first glance, this scenario appears not to be relevant to MR models; no work is queued

anywhere in the model, and the Markovian assumption is not satisfied directly (different signals require

separate handling by the same receivers, satellites, and analysts). However, this situation is amenable to

MR modeling with a few minor adjustments.

First, "no work queued anywhere in the system" is equivalent to requiring the lead times at all

stations to be one. This forces the stations to process all work within a single period. Assuming the

"period" for this communications period is quite short (a second or less), the resulting MR model should

realistically represent near-instantaneous communications. Second, the signal bandwidth at any time is
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the same across all stations handling that signal, since the bandwidth depends on the signal itself, not

interactions between stations handling the signal. Thus, in the MR model, we have one station that

"transmits" the signal; this station sends work flows directly to all the stations that receive the signal. For

example, a signal's "antenna" station directly sends work to a receiver station, a satellite station, and a

base station. The receiver station, satellite station, and base station do not send work to each other.

To address distinct signal handling, we add stations to the model as follows: there is one dummy

station representing every particular signal handled by a particular communications station (receiver,

satellite, or analysis base). We then apply the steady-state moment equations to the resulting "extended"

model. Using the linearity of expectation, we know that the expected throughput at a communications

station is the sum of all the dummy stations associated with the station. The variance of the throughput is

the sum of the variances of the dummy stations, plus all the covariance terms between those stations. The

covariance terms are especially important in this case; in addition to multiple signals being correlated

with each other, all the stations that handle a single signal are perfectly correlated with each other as they

will see the exact same bandwidth at any given time.

Knowing the expectation and variance of the throughput implies how much capacity will be

needed to meet desired levels of service; the capacity that needs to be assigned to each communications

station is given by:

Ci = E[Ji ]+ki var( , (43)

where Ci is the required capacity, and ki is a safety factor used to translate variance of production

information into level of service requirements. A factor of 2 is often used in practice, since, if the

production levels were normally distributed, the resulting capacity would be able to handle the required

load about 97% of the time. In our scenario, however, "production levels" (i.e. data signals) will not be

normally distributed given that they are convolutions of a distribution determining whether a source is

broadcasting and a distribution determining how much data is generated assuming the source is

broadcasting. Thus, simply applying a safety factor of 2 will be inappropriate.

Nonetheless, there are more appropriate ways to calculate the safety factors. We will discuss an

analytic approach to estimating the needed safety factor at the end of this section. Alternately, analysts

may perform simple Monte-Carlo simulations to translate the expectation and variance results to capacity

levels required to meet service requirements. These simulations would be simple single-distribution runs

that could be completed in a few tenths of a second; discrete event simulations are not required.

We now present a small example of the communications problem. We have six broadcast

antennas, three receivers, and two communications satellites. The six antennas can be divided into three

groups, with 1, 2, and 3 antennas per group. If two antennas are in the same group, their broadcasts are
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positively correlated; if two antennas are in different groups, their broadcasts are independent. Figure 3

(presented previously) shows how the three groups of antennas, the receiver stations, and the

communications satellites communicate with each other.

To model this scenario in terms of a linear MR model, we create one work station for every

particular signal handled by a communications device. Here, each signal travels through a receiver, a

satellite and a base; the signal then creates a corresponding control stream that travels from the base, back

through the satellite to the receiver. Thus, there are six stations per signal: one representing the broadcast

antenna, one representing the base, and four representing the data and control streams to and from the

receiver and satellite. Since there are six signals, the model has a total of 36 stations. Figure 4 shows the

signal flows between the stations that will be used in the MR model.

Data Flow (d)

Comm
Satellites

Central Base
(Analysis)

Control Flow (f)

Comm
Satellites

Group : l
A a2 ri si b_ s _r_

I- ' 1a3-

Group 
r2

Group K
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a5

a6

-4n
0Iz 2--

Figure 4 - Signal Flows in the Physical Communications Network

In the figure, the arcs represent data flows between stations. Note that not all the arcs between the

control-flow receiver stations and the data-flow receiver stations are shown. The boxes group the stations

that correspond to a processing step for a correlated group of signals on a single piece of equipment. For

example, there is a box corresponding to receiver r] processing all signals within signal group 1.

Although Figure 4 shows all the stations in the MR model, and the physical signal flows between

these stations, the figure does not show the actual layout of the model. As previously discussed, all the

stations handling a given signal will see the same bandwidth at any time (data stations will see the whole

signal, and control stations will see a fraction of the signal). It is not the case that the stations transmit
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signal chunks across multiple time periods. This situation is modeled accurately by having each signal's

antenna station send work to the stations that receive the signal simultaneously. Figure 5 shows the

antenna stations broadcasting to the receiver, satellite, and base stations simultaneously, and thus shows

the true layout of the MR model.
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Figure 5 also shows the stations that comprise the signal handling required by each

communications device. Recall that we are most interested in the aggregate capacity required for each

communications device, which involves combining the results for all the stations corresponding to a piece

of communications equipment. For example, the aggregate capacity on communications satellites2 is a

function of the six stations in the box labeled "s2".

We are also interested in the aggregate capacity throughout the system required for a particular

signal. This estimate involves combining the results for all the stations corresponding to that signal. For

example, the aggregate capacity required by group l's third signal is a function of all the stations

connected to station a3.

As noted, the aggregate capacity recommended for a device is a function of the expectation and

variance of the total throughput through that device. The total expected throughput equals the sum of the
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expected throughputs at all stations corresponding to that device. The total throughput variance equals

the sum of all the variance and covariance terms between the stations corresponding to the device.

The time required to estimate the throughput moments is proportional to the cube of the number

of stations. While 36 stations should not be a problem, stations with hundreds or thousands of signals

could cause serious computational difficulties. Fortunately, in this problem we can decompose our single

model representation into multiple representations. In our models, stations that correspond to separate

signals do not send information to each other. The only way these stations interact with each other at all

is if their corresponding signals are in the same group (i.e. correlated with each other). If not, the stations

do not interact with each other, so any aggregate results will not reflect any interactions between the

stations. Thus, we can decompose the single model into a completely separate model for the stations

corresponding to signals in each group. In our example, we therefore have three independent models,

shown in Figure 3 by the lines separating the "Group A", "Group B", and "Group C" stations. If a

communications device is represented in multiple models (for example, the satellites2), its aggregate

expected throughput is the sum of the corresponding expected throughputs for each model, and the

aggregate throughput variance is the sum of the corresponding throughput variances for each model. (The

latter statement holds since all covariance terms between stations in separate models are zero.)

6.3 Converting System Data to Model Inputs

We have the following numerical data for each signal:

Signal 1 2 3 4 5 6
Signal Group A A A B B C
Broadcast Probability 0.2 0.3 0.1 0.05 0.15 0.2
Broadcast Correlation Coefficient for Group 0.3 0.3 0.3 0.5 0.5 NA
Mean Signal Bandwidth (Mbits/sec) 2 3 4 10 1 5
Standard Deviation of Signal Bandwidth (Base) 0.2 0.05 1.5 5 0.8 2

Mean Bandwidth of Corresponding Control Stream 0.2 0.3 0.4 0.2 0.2 1
as a fraction of signal bandwidth
Standard Deviation of Control Bandwidth 0.1 0.1 0.1 0.1 0.1 0.4
Standard Deviation of Signal Bandwidth that results 0.2 0.2 0.5 1 0 0.5
from control stream instructions

We now use this numerical data to define the matrices used in the MR equations. In defining the

entries for the matrices, we use the following subscripts:

a: broadcast antenna station

r: receiver station

s: satellite station

b: central base
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* d: station that is part of a signal data flow to the base

* f station that is part of a control flow from the base

* i,j: indices of a particular signal

* k,: indices of a particular communications device

Entries for broadcast antenna stations. These are the only stations that receive arrivals from outside

the network of stations, representing the generated signals. Three factors enter into the matrix entries.

First, each station has a probability that it will broadcast at any particular time. Second, these

broadcasting periods are positively correlated with each other. Third, when broadcasting, each station

generates a signal according to a random distribution with the mean and standard deviation given above.

Then, the overall mean signal generated by antenna station ai is:

Pai = paimai, (44)

and the input variance of the signal generated by antenna station ai is:

aiai = Pais~i + pai ( - P)ai (Mai )2 , (45)

where Pai is the probability that station ai is broadcasting, mai is the mean bandwidth when the station is

broadcasting, and S ai is the variance of the bandwidth when the station is broadcasting. (These formulas

both result from the moment formulas for a random sum of random variables.) The covariance between

each pair of broadcast stations in the same group is:

Zai,a = Pa,a1 JmaiPai (1 - Pai)mbiPa (1 - Paj) (46)

where pajaj is the correlation coefficient between the broadcasting of stations i and j. As discussed, the

covariance between stations not in the same group is 0, which for separate models representing each

group of signals. Note also that the covariance does not depend on the variance of the bandwidth when

the stations are actually broadcasting, because signal bandwidths are assumed to be independent.

We conclude by noting that the broadcast antenna stations do not receive any flow from other

stations. Thus, all workflow matrix (0) entries representing expected work arriving from other station to

antenna stations equal 0.

Entries for receiver stations. There are two sets of receiver stations; the first set represents signal data

(marked by subscript d), and the second set represents control flows (marked by subscript]).
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We consider the signal-processing stations first. The base signal that enters the receiver station is

the same signal emitted from the broadcast antenna. Thus, the workflow matrix entry representing flow

between antenna and receiver stations equals 1, or:

(Drdi,ai = 1, for all signals i.

The control flow for each signal affects the amount of the base signal that the signal-processing

stations have to transmit. This effect is modeled through a random variable with zero mean and a finite

variance. It is the only effect that adds to the variance of the throughput at this station. Thus, the input

variance for signal-processing stations is:

rdi,rdi rsi,rfi

where the second term is the variance that control-flow station rfi induces at station rsi.

We next consider the control-processing stations. They receive the control flow transmitted to

them by their communications satellite. As previously discussed, this transmission is modeled by a direct

flow from the signal's antenna station to the receiver station. Thus, the workflow matrix entries are:

Drfl,ai = Of,, for all signals i,

where of is the expected control bandwidth as a percentage of the signal bandwidth.

The input variance entries are:

Z, = CT 2  for all signals i,
rfl, rfl fi'

where 0- is the variance of the control bandwidth.

Entries for satellite stations. Again, there are signal data and control flow satellite stations. Signal data

stations receive the signals passed to them their receivers, which is just the base signal data. Then the

workflow matrix entries are:

0 sdi,ai = 1, for all signals i.

The input variance entries are the same as for the data receiver stations. The signal fluctuations

entering the receiver station are duplicated in the satellite stations, since the communications satellite does

not alter the signal data it receives. The only signal fluctuations result from the influence of the signal

control flows, as described in the discussion of data receiver stations. Thus, the input variance entries are:

Zsdi,sdi rsi,rf

the same as the data receiver stations.

Control-flow satellite stations are the first stations to receive control signals (broadcasted from

the base), but this fact is of little modeling significance; like all other stations, they receive work directly
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from the their signal's antenna station. Thus, the workflow matrix entry representing the control signal's

flow equals:

Dsflbi , for all signals i,

where the second term is the expected control bandwidth as a percentage of the signal bandwidth. The

input variance entries are:

E =-, for all signals i,

where the second term equals the variance of the control bandwidth

Entries for base stations. There is only a single set of base stations, which both receive signals from the

satellites and transmit control flows to the communications satellites. In the model, only the base

stations' receipt of the data signal appears, since all stations receive work from their signal's antenna

station. Base stations receive the same bandwidth as the other data stations. Thus, the workflow matrix

entries are:

b bi,ai = 1 , for all signals i,

and the input variance entries are:

bibi rsi,rfl

where the second term shows the influence of the control flow on the amount of the base signal

transmitted.

6.4 Calculating the Results

We have developed MATLAB scripts that convert the signal data into model inputs, generate the

resulting three MR models (one model for each group), calculate the throughput moments for each

station, and aggregate the results for each communications device in the system. The results are shown

below. The following table displays the expected throughput in Mbits/sec (first number) and standard

deviation of the throughput (second number) for each of the 36 stations in the model.

Signal Data Signal Control
Signal Antennas Receivers Satellites Base Satellites Receivers
1 0.4 0.8 0.4 0.83 0.4 0.83 0.4 0.83 0.08 0.19 0.08 0.19
2 0.9 1.38 0.9 1.39 0.9 1.39 0.9 1.39 0.27 0.43 0.27 0.43
3 0.4 1.29 0.4 1.38 0.4 1.38 0.4 1.38 0.16 0.84 0.16 0.84
4 0.5 2.45 0.5 2.65 0.5 2.65 0.5 2.65 0.1 0.54 0.1 0.54
5 0.15 0.53 0.15 0.53 0.15 0.53 0.15 0.53 0.06 0.23 0.06 0.23
6 1 2.19 1 2.25 1 2.25 1 2.25 1 2.25 1 2.25

We then find the expectation and standard deviation for the throughput for each communications device.

Recall that the 36 stations each correspond to the data or control processing of one signal on a particular
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device; the stations corresponding to each device were labeled in Figure 2. The expected throughput on a

device equals the sum of the expected throughput of each of the device's stations. The variance of a

device's throughput equals the sum of all of the variance and covariance terms of each of the device's

stations. The following table displays the expectation and standard deviation of the throughput for each

of the communications devices. The table also displays the signal flows processed by each device.

Communications Device Signals Processed Expected Throughput Standard Deviation
Antenna 1 (al) 1, data 0.4 0.8
Antenna 2 (a2) 2, data 0.9 1.38
Antenna 3 (a3) 3, data 0.4 1.29
Antenna 4 (a4) 4, data 0.5 2.45
Antenna 5 (a5) 5, data 0.15 0.53
Antenna 6 (a6) 6, data 1 2.19
Receiver 1 (ri) 1, 2, 3, data and control 2.21 3.4
Receiver 2 (r2) 4, data and control 0.6 3.11
Receiver 3 (r3) 5,6, data and control 2.21 4.73
Satellite 1 (si) 1, 2, 3, data and control 2.21 3.4
Satellite 2 (s2) 4, 5, 6, data and control 2.81 5.66
Base (b) All, data 3.35 4.45

6.5 Interpreting the Results

6.5.1 Single Station Results

Recall that the recommended capacity for each station (and communications device) is a function of the

expectation and standard deviation of the throughput at that station, as follows:

Ci = E(I)+ k* -o-T ,

where C, is the recommended capacity for station i, E(T) is the expected throughput, o-T, is the standard

deviation of the throughput, and k is the "safety" factor that converts the standard deviation of the

throughput to a performance guarantee. This equation is well-defined except for ki.

As discussed, a ki of 2 is not appropriate in this scenario. The throughput distributions are not normally

distributed - they are the convolution of a Bernoulli trial and a general distribution. Usually, the

throughput is 0, corresponding to the antenna not broadcasting a signal. Other times, with probabilitypi,

the throughput's value will come from the distribution for a signal's bandwidth given that the signal is

being broadcast. Thus, setting the safety factor to 2 does not translate to a performance guarantee.

However, we can use the fact that the distribution at each station is a convolution of a Bernoulli

trial and another distribution to generate more appropriate k-factors for individual stations. The

Department of Defense is interested in performance guarantees conditional on a signal actually being

transmitted. For example, the Department might wish to guarantee that a signal, when transmitted, has a
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97% chance of being processed at any given moment. Assuming the distribution for a signal's bandwidth

is approximately normal, the capacity needed to process the signal is:

C = E(Bi)+ 2 -aBi 5

where E(B;) is the expected bandwidth of the signal, and o-B is the standard deviation of the bandwidth

used by the signal, when transmitted. We would like the capacity recommendations that result from the

throughput moments and the above equation to be the same. Thus, we can equate the two formulas for

capacity and solve for ki:

E(T)+ki - rT = E(BL)+2 .UBi

=> ki = E(Bj)- E(T)+ 2-Bi (47)

CTi

The terms E(T) and 0 -7 are given by the MR model, while E(B7) and o-B are not known directly.

However, we now use the fact that the throughput distribution at each station is a convolution of a

Bernoulli trial (whose parameter,pi, is known ) and the distribution for the signal's bandwidth given the

signal is being transmitted. The moments of the latter distribution are simply E(B;) and o-B. We then

solve the expressions for the throughput moments for E(B) and O-Bi. We first find E(B7):

E(T ) = pE(B) (48)
-> E(B,)= E(TI) / pi.

Similarly, we find o-Bi:

- 2 = (E(Bi))2

> = / p, )- (1- pi)(E(Bi)) 2  (49)

- Bi = V i / pi)- 1 - pi)(E(Bi))2

Substituting, we find the desired expression for ki:

k- (I/p -1)E(T) + 2. Ti- / p;)-(1- p,)(E(T)/p) 2 . (50)
CTi

The following table shows the resulting safety factor and recommended capacity for each of the

36 stations in the example model. Note that most of the safety factors are significantly greater than 2.
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Signal Data Signal Control

Antennas Receivers Satellites Base Satellites Receivers

Signal ki C, k, C ki Ci ki Ci ki Ci ki C,
1 2.48 2.40 3.11 2.98 3.11 2.98 3.11 2.98 4.09 0.85 4.09 0.85
2 1.60 3.10 2.04 3.74 2.04 3.74 2.04 3.74 2.35 1.27 2.35 1.27
3 5.11 7.00 5.75 8.36 5.75 8.36 5.75 8.36 5.32 2.96 5.32 2.96
4 7.96 20.00 8.66 23.42 8.66 23.42 8.66 23.42 8.18 4.19 8.18 4.19
5 5.41 3.00 5.41 3.00 5.41 3.00 5.41 3.00 5.54 1.35 5.54 1.35
6 3.65 9.00 3.82 9.58 3.82 9.58 3.82 9.58 3.90 9.90 3.90 9.90

6.5.2 Commmunications Device Results (Multiple-Station Results)

The above results apply to single stations. However, planners are most interested in determining

capacity for communications devices, which comprise multiple stations. Again, the recommended

capacity is a function of the expectation and standard deviation of the device's throughput, as follows:

Cd = E(Td)+kd k U, (51)

where d is the index of the communications device. Let D be the set of model stations that comprise

device d. Due to the linearity of expectation, and the bilinearity property of covariance, we find:

E(T)= E(T),
ieD

-Td = Y I cov(T, T). (52)
ieD jeD

The model computes the expectation terms for every station, the variance of every station, and the

covariance of every pair of stations. Thus, E(T) and o-Td are readily calculated. This leaves the

calculation of the safety factor. As before, simply setting kd to be 2 will be unsatisfactory, as the

throughput distribution is not approximately normally distributed.

Unfortunately, determining k will be much more complicated for communications devices than

for individual stations, as the device represents the throughput of multiple signals rather than a single

signal. Each signal has its own underlying Bernoulli process and performance requirements. The

complexity of the situation is compounded by the fact that the joint distribution of signal broadcasts can

be quite complicated (since we allow signal broadcasts to be correlated).

We consider two strategies for estimating device capacities.

Exact Strategy. The first strategy assumes perfect knowledge of the joint distribution of the signal

broadcasts. It has the following steps:
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1. Calculate the Ci's, the capacities required for each individual signal at a particular device when that

signal is broadcasting. We create a separate MR model corresponding to each signal that includes

only the stations corresponding to that signal. The model inputs assume that the signal is always

broadcasting (p, = 1). The result will be the expectation and variance of the signal's throughput

when broadcasting. We thus find each C, to be Ci = E(T)+ 2-UTi.

2. Use the C1's and the joint distribution of the signal broadcasts to find the Cd's, the capacities required

at each communications device. We consider all combinations of signal broadcasts that might flow

through a particular device. For each combination, we multiply the probability of the combination

times the capacity required to process the combination (sum of the Ci's for the signals being

broadcast). This gives us the combination's mass (the fraction of all signals flowing through the

device that will fall into that particular configuration). We then order all the combinations by the

capacity required for each combination. Then, using the mass information, we choose a Cd such that

the total fraction of all the signals successfully processed by the device meets a performance

requirement for that device. We do this by making Cd large enough to process enough signal

combinations to meet the performance requirement.

If very precise capacity estimates are needed, this method may be required. However, the method is

complicated, and may not be tractable if many signals flow through a particular device.

Approximate Strategy. This method uses the expectation and standard deviation of the throughput of

the device directly to recommend a capacity for the device. As previously stated, however, the difficulty

with this method is calculating the device's safety factor,kd. Here, we approximate kd to be the weighted

sum of the safety factors of the stations comprising the device. The weights are the normalized expected

throughputs at each of the stations. Specifically, we approximate kd to be:

kd - IiED k E[Ti ]

iED E[Ti ]

The justification for this safety factor: at any time, the bandwidth demand on the device is some

combination of demands required by separate signals. Each signal's demand requires a certain safety

factor, k;. The probability that a certain amount of demand is due to a particular signal is the expected

bandwidth of that signal divided by the total expected bandwidth. Thus, the expected safety factor

required for any particular unit of demand is given by the above equation for kd.

The following table shows the safety factor, kd, for each communications device in the example

model.
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Communications Device Signals Processed Weighted k-factor Recommended
Antenna 1 (al) 1, data 2.48 2.40
Antenna 2 (a2) 2, data 1.60 3.10
Antenna 3 (a3) 3, data 5.11 7.00
Antenna 4 (a4) 4, data 7.96 20.00
Antenna 5 (a5) 5, data 5.41 3.00
Antenna 6 (a6) 6, data 3.65 9.00
Receiver 1 (rl) 1, 2, 3, data and control 3.26 13.27
Receiver 2 (r2) 4, data and control 8.58 27.26
Receiver 3 (r3) 5,6, data and control 4.01 21.20
Satellite 1 (si) 1, 2, 3, data and control 3.26 13.27
Satellite 2 (s2) 4, 5, 6, data and control 4.99 31.05
Base (b) All, data 4.28 22.40

To process signal 4: 23.42

As with any approximation based on expected values, care must be taken that the resulting

recommended capacities actually meet system requirements. For example, consider the recommended

capacity for the Base; it is less than the capacity required to process signal 4 by itself. This

recommendation is not surprising, since signal 4 broadcasts infrequently in comparison to the other

signals. If processing signal 4 is a requirement, however, the recommended capacity at the base station

must be at least that required to process signal 4.
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1. Introduction

In Chapter 2, we considered LLS-MR models, which used linear control rules. These control rules were

either single-queue rules (form P, = aiQ,, where a is a constant) or multi-queue rules (form

P, = ZjaQj, , where the a, 's are constants). In this chapter, we consider GLS-MR models. We recall

the taxonomy of MR models in Chapter 1 to identify the properties of these models:

* General control rules. Here, the control rules are general functions of the queue lengths. We will

consider single-queue control rules of the form P, = p, (Qi,), and multi-queue control rules of the

form P, = pi(Q') .

* Linear inter-station work transfers. Work arrivals from upstream stations are linear functions of the

production at upstream stations plus a random noise term.

* Stationary and independent exogenous arrivals. Work arrivals from outside the network come from

stationary and independent distributions. Combined with linear work arrivals from upstream stations,

we see that GLS-MR models use the arrival process discussed in chapter 2. Work arrivals are defined

by At = DPj + et , where D is a constant matrix and ct is a random noise vector.

The defining feature of GLS-MR models is the fact that the control rules are general functions of the

queue lengths. Unlike linear control rules, we will not be able to find the first two moments of the

production quantities and queue lengths exactly; instead, we will develop approximations of them using

Taylor-series expansions.

Throughout this chapter, we make the following assumptions about the control rules and other

model dynamics:

* The production functions, p (Q,), are continuous, twice differentiable, and monotonic over the

ranges of production and queue length quantities seen by the stations in the job shop.

Mathematically, these conditions hold for P min Pt Pma and Qmin Qt m.x, where Pmi, and

Pmax are vectors denoting the minimum and maximum production quantities, and Qnin and Qnax are

vectors denoting minimum and maximum queue lengths.

* The production functions have inverse functions, qj(Pt), that are continuous and twice differentiable

over the ranges of possible production and queue length quantities. (Note that the conditions on the

production functions imply the existence of the inverse production functions.)

We do not require that these assumptions be met outside the ranges of possible production and queue

lengths. Thus, we can analyze control rules that violate the assumptions outside the ranges. For example,
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we will consider control rules that become infinitely negative as Q, approaches some negative value; this

is of no concern since Q,, is assumed to be non-negative.

Exploring models with general control rules has practical value. Below, we present some

applications of models for networks using general control rules.

Manufacturing. A conventional approach to job-shop capacity planning is to assume that the

amount of work a station produces per period is constrained by a fixed capacity limit. This production

function (called the bounded control rule) has the following form:

(Q ) { Qit:Qit <M i,
Mi ,Qi, >! Mi,

where Mi is the maximum production level of station i. The capacity level has no impact on the

production quantities, unless the maximum production level is reached. Examples of this approach

include Hax (1978), Lin (1986), Baker (1993) and Bitran and Tirupati (1993).

In practice, the bounded control rule often does not hold exactly. Instead, machines often show

saturation or congestion effects. With these effects, machines increase their service rate somewhat to

account for increased work-in-queue; for example, operators will try to push more work through a

machine in a given period. However, the rate of production increases diminishes with increased work-in-

queue, due to machine clogging, increased probability of quality problems, and so on.

Karmarkar (1989, 1993) discussed production functions called clearingfunctions that account for

saturation and congestion. The basic form of a clearing function is:

M,Q,
P (Qi) = ' (2)

A; + Qi

Here, Mi is an upper bound on the service rate, and A3 controls the rate at which the production approaches

the upper bound. The parameter Mi is the maximum production, asymptotically approached as Q,
approaches infinity. The parameter pA determines the rate at which the production approaches Mi.

Clearing functions are continuous and twice-differentiable, making them amenable to the modeling

approach we develop in this chapter.

Karmarkar uses queuing theory to justify clearing functions. Consider an M/M/1 queue. Let Ai

be the arrival rate at station i, and let p be the service rate. The average waiting time in an M/M/1 queue,

W , is given by:

S /t, (3)
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Using Little's Law, we have that W = Q, / 2k , where Q1 is the expected queue length. Substituting for

W in (3), and solving the resulting equation for A yields:

. = . (4)
' +Qi

More generally, for any queuing model in which the waiting time is proportional to 1/(1 - A2 / pi), (such

as an M/G/1 queue, for example), we find that the expected arrival rate will be proportional to

pQ./(1 + Q). If the queue is stable, the expected arrival rate equals the expected rate of production.

Thus, we have that the expected rate of production is proportional to M1 Q /(i + Q as well.

Now consider a discretized version of (4). Rather than have an expected production rate (which

equals the expected arrival rate), we have an expected quantity produced each time period, and an

expected queue length at the start of each time period. The resulting discretized version of (4) is:

MI.E(Qi)
E(P) = M1E(Q \ (5)

1+ E(Qj)

We now use (5) to suggest a control rule. We change (5) from a relationship between production

and queue length moments to a relationship between the actual production and queue length quantities.

The resulting control rule is:

P= MiQi, (6)
1+Qt,,

which has the form of a clearing function. Indeed, clearing functions are generalizations of (6), with 1

replaced by pi.
Thus, queuing models, commonly used to model manufacturing networks (reviewed, for instance,

by Buzacott and Yao (1986) and Suri and Sanders (1993)) suggest the use of clearing functions in

discrete-period networks.

Staffing in Manufacturing. Graves (1988) considers the staffing levels in a repair depot, and

suggests the following piecewise linear production function:

pt = min(Qi, ,K + Qj,1,8] , (7)

where K and 8 are constants. At low work-in-queue levels, employees simply complete the work in the

queue within a period. At higher work-in-queue levels, employees complete work according to a linear

control rule. The rule at higher levels might correspond to overtime situations, for example, in which

employees can only complete a portion of the additional work.
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This piecewise linear production function cannot be evaluated directly; as a result, Graves

suggests using the approximation P, = K + Q, / P, assuming that the work-in-queue will almost always

be greater than the quantity dictating that 1 = K + Q,, / 1. (For reference, this quantity is

Qi, = K - K /,8 .) This assumption will not be valid, however, for shops that regularly oscillate between

comparatively low and high demands. In such an environment, a concave production function, such as a

clearing function, may be a better approximation than a linear control rule. Indeed, an analysis of the

work at an actual shop may show that production quantities are better explained by a concave production

function than a piecewise linear function, especially if productivity returns diminish with increasing

overtime (see next example).

Staffing in General. Duncan and Nevison (1996) present empirical research that compares real

productivity against hours worked. They found that the resulting curve was a concave function; for

example, working 60 hours yielded, on average only 50 hours of real work, and working 70 hours yielded

little more. (This result applies to a single week of overtime; after 10 weeks, working 70 hours yielded

only 30 hours of real work.)

Section 2 presents the basic methodology used to approximate the production and queue length

moments. Section 3 develops algorithms that approximate the steady-state production and queue length

moments for single-queue control rules. Section 4 analyzes the empirical behavior of the approximation

algorithms on a single station, a six-station assembly line, and a thirteen-station job shop that

manufactures mainframe subcomponents, originally considered by Fine and Graves (1989). Section 5

extends the algorithms to multi-queue control rules. Finally, Section 6 derives a strict lower bound on

expected queue lengths for concave production functions.

2. The Delta Method for Production and Queue Length Moments

We assume that the control rules, P, = pi (Q,), are continuous functions that are twice differentiable with

respect to Q',. Then we can use the Delta Method (c.f. Rice, 1995, pp. 149-154) to find approximations

for E(Q;) and var(Q;). In this section, we discuss single-queue control rules; production functions of

multiple queue lengths are discussed in Section 5.

2.1 Method Development

The Delta Method approximates a function of a random variable with Taylor series expansions of that

function around the mean of the random variable. Suppose that:

Y = g(X), (8)
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where X is a random variable with mean px and variance o- . Then the first-order Taylor expansion of Y

is:

Y ; g( p) )+ (X -- px )g' ( p), (9)

and the second-order expansion of Y is:

Y g(PX) + (X - px )g' (pX) +I(X - p2 g" PX). (10)
2

Using the second-order Taylor expansion of Y, a second-order aproximation of E(Y) is:

E(Y);z g(p) )+ - u-xg"(px) . (

Taking the variance of the first-order Taylor expansion of Y, we find that a first-order approximation of

Var(Y) is:

Var(Y) o-X[g',(p)] 2 . (12)

Note that we use only the first-order expansion, since using the second-order expansion would require the

computation of fourth moments.

We now use the Delta Method to develop two sets of approximate recursion equations for the

GLS-MR model. In the first set, the recursion equations are in terms of queue lengths. This set gives us

recursion equations for the expectations and variances of the queue lengths. In the second set, the

recursion equations are in terms of the production quantities. This set gives us recursion equations for the

expectations and variances of the production quantities. As we will see, both sets will be useful in

analyzing GLS-MR models.

2.2 Recursion Equations for the Queue Lengths

Consider the recursion equation for the LLS-MR model:

Qt =Qtj +(D -I)DQt 1 + c,. (13)

Let Pt = p(Qt,) rather than DQt_, , where p(Qt,) is a continuous and twice differentiable vector-

valued function of QI. Assume that the control rule for each station depends only on the work in queue

at that station; or, mathematically, p(Qt,) depends only on Qi,. This yields a new recursion equation

for the GLS-MR model:

Qt = Qt-1 +(D -I)p(Qt,)+ E,. (14)
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The first-order expansion of the recursion equation is:

Qt;~ Q,_, +((D-I)p(Q,)+((D-I)- H,j [-l _, - Q +E, , (15)

and the second-order expansion of the recursion equation is:

Qt ~ Q,- +(D -I)p(Qt1 )+(D -I). ,_- -[Q _ - Q, I+ ([-) ]-2,t-I - "'t (16)
2

where:

* Q- 1 is the vector of expected queue levels at time t-1;

* t- is a diagonal matrix whose ii'th element is pj'Q1 _ );

* "2,t- is a diagonal matrix whose ii'th element is pi"(Q _t); and

* Q'"_ is a vector whose ith element is (Q,,-_ -Q_ )2

Then the expectation of the second-order approximation is:

Q, ~ Qt, + (D - I)- p(Q,_, )+{(D -I)- 2,-I [- 1 + l, (17)
2

where Q'I is a vector such that QO,_ = var(Q,_). (Since Q'_, will not be known exactly, we will use the

first-order approximation for Q'I described below).

The variance of the first-order approximation is:

var(Q,) ~ B- var(Qt,)- BT +Z (18)
where B = I + (D - I)H,_1

Equations (17) and (18) are approximate recursion equations for the moments of the queue

lengths, as desired.

2.3 Recursion Equations for the Production Quantities

Consider the basic recursion equation for the GLS-MR model, Qt =Q, +( - I)p(Qt_,) + t. We

rewrite this equation in terms of production quantities, using the relationship Qt = q(P,):

q(P) = q(P, )+(D - I)P_( + E t19)

where q(Pt) is the continuous and twice-differentiable function ofP, that is the inverse of p(Q). A first-

order expansion of (19) around E(P) is:

q(Y)+V,- Pt , ~qt_ +,,-s -P,_1) +((D -- I)Pt_, + Et (20)
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and the second order expansion is:

q(i,)+T, .(P, -F )+ T ", -[P]2] q(i,_, )+ v,_ -(P,_1 - i 1 )+1T1 , [p'"+ (2 -]i)P+_, +;, (21)
2 2

where:

* Pf is the vector of expected queue levels at time t;

* Pt is a diagonal matrix whose ii'th element is qj'(1,);

* P,, is a diagonal matrix whose ii'th element is qj"(T,); and

* P tm2 is a vector whose ith element is ( 2 

Then the expectation of the second-order approximation is:

[PO EV2, - q(-t-I 2,,-I * [t-1 I () -1 + t (2,
2 2

where Pt" is a vector such that P;, = var(PI,). (Since Pt' will not be known exactly, we will use the first-

order approximation for Pt' described below).

The variance of the first-order approximation is:

'Is --,). t)-P =var(Pt_,)-(D-I+ ,_,)'+ 1. (23)

Equations (22) and (23) are approximate recursion equations for the production moments, as

desired.

2.4 Using the Recursion Equations for Transitive Analysis

One use of the recursion equations is transitive analysis. Suppose we begin at time 0 with estimates of

the expectation and variances of the production quantities and queue lengths. Then we repeatedly apply

equations (17) and (18) to find the approximate expectations and variances in periods 1, 2, 3... t. (Note

that equation (17) needs the queue length variances to calculate the next expected queue length vector; we

use the approximate variances calculated by equation (18). )

However, it is not simple to use (22) and (23) directly for transitive analysis. These equations do

not give explicit formulas for the production moments. Indeed, (22) and (23) create simultaneous

nonlinear equations for E(Pj1) and var(P,) at each station i. As a simpler approach, we can apply the

Delta Method to pi (Q,) for each period t. Doing so yields:

- 1 -
E(P,)~zpi(Q,)+ -pj"(Qj,) -var(Q,), and (24)

2
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var(P;,) ~ ('Q.)) 2 var(Qi,) (25)

The drawback of (24) and (25) is that the estimated production moments are "approximations of

approximations." While this is unlikely to be a major problem for E(P;,), which is a second-order

approximation, the first-order estimates of var(Pi) may err significantly.

Of course, the above discussion highlights a major concern with the recursion equations: each

successive set of estimates comprises approximation of approximations, so that the estimation errors may

grow with the number of periods. Thus, in practice, we would only use the recursion equations to "look

ahead" a few periods.

The same methodology applies to the transitive analysis of a network starting in a fixed state,

with initial inventory levels Qo. We simply apply the methodology with E(Q 0 ) = Q0 , E(PO)=p(Qo),

and var(Qo) =var(PO) =0 .

We are interested in steady-state analysis, as well. Steady-state analysis is the topic of Section 3,

where we use the recursion equations to derive expressions for the steady-state production and queue

length moments.

3. Steady-State Analysis for Models with Single-Queue Control Rules

In this section, we derive approximations of the steady-state moments, E(Q), E(P), var(Q), and var(P) for

networks with single-queue production functions. To do so, we assume that the networks do have steady-

state moments. Thus, as necessary conditions, we assume that the networks are aperiodic and ergodic.

3.1 Equations for the Steady-State Moments

We could derive approximations for the steady-state moments by repeatedly iterating the recursion

equations from Section 2, starting from E(Qo) and var(Qo), and wait for the estimates to converge.

However, as highlighted at the end of Section 2, this approach has several problems.

* Accuracy. Note that the model "converges" to estimates of E(Q) and var(Q) by taking

approximations of approximations each iteration. The method raises questions of how accurate the

steady-state approximations are, or even if the resulting approximations converge.

* Convergence speed. There is no immediately obvious way to accelerate the recursion-equation

calculations, since the control function results and derivatives have to be recalculated after every

iteration.
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Consequently, we will focus on a different approach: finding fixed-point solutions for the recursion

equations. Clearly, the estimates for the moments will be fixed-point solutions to the recursion equations

(although the reverse need not be true).

The queue-length recursion equations, (17) and (18) provide the following system of equations

for E(Q) and var(Q):

((D - I1p(Q)+ 1((D - I)- 1-2 [Qu ]+ p=0
2 (26)

[I+ (0 -I)p(Q)]- var(Q). [i + (D -I)- rif - var(Q) + Z = 0

Here, fl is a diagonal matrix whose ii'th element is pi'(Qj) and H 2 is a diagonal matrix whose ii'th

element is pi"(Q). Note that the first equation in (26) contains fewer terms than (17), since

Q= Q,_j = E(Q) in steady state.

Similarly, the production recursion equations, (22) and (23) provide the following system of

equations for E(P) and var(P):

((D - I)E(P) + It =0 (7(27)
(D -I+T)- var(P)-(F -I+) T -T -var(P) -I T + E = 0

Here, T is a diagonal matrix whose ii'th element is qi'(), and T2 is a diagonal matrix whose ii'th

element is qi"(). The first equation of (27) is much simpler than (22), since

q(it)+ T2,1 [iPa ]= q(r,, )+ ! -21 t1 in steady state. (28)
2 2

To calculate the production and queue length moments, we could solve both sets of equations.

Alternately, we can solve system (26) and approximate the production moments by applying the Delta

Method to the queue length moments or solve system (27) and approximate the queue length moments by

applying the Delta Method to the production moments.

Following term-by-term multiplication for either set of equations, we find that there are

approximately n + n2/2 equations for n + n2/2 variables for each set (the expectations and the distinct

covariance terms). Trying to solve a system this large by brute force could be quite difficult; indeed,

iterating the recursion equations might produce faster estimates. Further, with systems this large and

complicated, there is no guarantee that the returned solution would comprise the true moment

approximations.

Instead, we take advantage of the structure of the systems, which yield approaches that make

finding the fixed-point solutions fairly simple. The key insight is that the expected production can be
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found analytically, regardless of the control rules. Note that the steady-state equation for the expected

production in (27) is extremely simple - it implies that E(P) (I-()_ p . Proposition 1 shows that this

expression is exact.

Proposition 1. Suppose we have an ergodic and aperiodic network, and that all the network's stations are
stable (i.e., stations eventually process all the work they receive). Then the steady-state expected

production vector is P = (I - D)-'p , regardless of the form of the control rule.

Proof Assume that a steady-state production vector, f, exists. Then the vector of expected arrivals

equals (FP +p, since work arrivals are defined by At =Pj + E . But then, P must equal the

expected arrivals, or else Q, -+ ±oo . Solving P = FP + p for P yields P = (I - Q)- p .

Proposition 1 is a powerful result; it guarantees that we can find the expected production at every

station in a job shop regardless of the control rule used (assuming the control rule used results in the shop

being stable). We will see that knowing the expected production quantities greatly simplifies the

calculation of the expected queue lengths.

If we can find an estimate for E(Q), knowing E(P) allows the computation of the expected

waiting times. Little's Law says that the expected queue length at a station equals the arrival rate at the

station times the expected waiting time. In steady-state, however, the arrival rate must equal the expected

production for the system to be stable. Then, once we obtain an estimate for a station's expected queue

length, an estimate for the waiting time is just the expected queue length divided by the expected

production.

Below, we use E(P) to create two algorithms to estimate the steady-state moments. The first

algorithm solves the queue-length recursion equations, system (26). The second solves the production

recursion equations, system (27).

3.2 Estimating the Steady-State Moments Using Queue Lengths

In this section, we develop an iterative algorithm to solve the queue-length recursion equations. We begin

by using E(P) to find a first-order approximation for E(Q). Recall that the first-order approximation for

E(P), given E(Qj), is p(Q.). Since we know E(Pi) from Proposition 1, a first-order approximation for

E(Qj) is the solution to the equation pi (Q.) = I-. (Alternately, if the inverse production function, qj (P),

is known analytically, a first-order approximation for E(Qj) is Q- qj (_).)
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We next find a first-order estimate for var(Q) given an estimate for E(Q). Consider the first order

recursion equation for the variance, var(Qt)~B-var(Qt 1 )-B'+E, where B=I+( -1 -I)-H,_,. In

steady-state, and given an estimate for E(Q), this equation becomes

var(Q)~ B -var(Q)- BT + E , where B = I+(D -I)- H , (29)

and where H is a diagonal matrix whose ii'th element is pi'(Q). But then, the resulting B is a constant

matrix, as with the linear control rule models discussed in Chapter 2. Then we find the steady-state

solution to the first-order recursion equation by iterating the recursion equation infinitely, as with the

linear control rule models. The result is following power series:

var(Q) IBEB's (30)
s=O

where B= I + (D - I) -H.

The power series may be evaluated numerically or analytically using the techniques discussed in

Chapter 2. Indeed, the power series expression for var(Q) is the same as that for linear control rules, with

the smoothing matrix D replaced by the diagonal matrix H . Thus, the first-order approximation maps a

linear control rule onto the general control rule, with the smoothing factors being p,'(Q.) rather than aj.

The resulting "lead times" of the fitted TPM model are given by Li = I/ pi'(Q). Consequently, the linear

approximation of var(Q) is heavily dependent on the first derivative of the control rule at the expected

queue length. In particular, the approximation requires the first derivative to be between zero and one. If

the first derivative is more than one, the approximation will not converge, since in the corresponding

linear model the station is processing more than its queue each time period. First derivatives approaching

zero correspond to having longer and longer lead times, which smooth production but increase the queue

lengths - and the variances of the queue lengths.

We now find a second-order estimate for E(Q) given an estimate for var(Q). Recall that the

-1 
second-order approximation for E(P;), given E(Q,), is pi (Q.) + - pi " (Q.)- var(Qj). In this case, we know

2

E(Pj), so a second-order approximation for E(Q,) is the solution to the equation

- 1 - -
pj(Qj)+-pj"(Qj)- var(Q) = P.

2

The above discussion suggests an iterative algorithm to solve system (26), yielding the desired

estimates for E(Q) and var(Q).
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Algorithm MomentsQ

1. Initialization. Calculate the first-order approximation of E(Q) by solving pi (Q) = for Q . Use

this E(Q) to calculate a first-order approximation of var(Q), using the formula var(Q) O BsYB's

where B = I + ((D - I)- H , and H is a diagonal matrix whose ii'th element is p .

2. Iteration. Use the previous estimate of var(Q) to calculate a new second-order estimate of E(Q) by

-1 f- - -
solving the equation p (Q.)+ -p"(Q.)- var(Qi) = Pi for Q1. Use the new E(Q) to calculate a new

first-order estimate of var(Q).

3. Convergence. Repeat the iterative step until the estimates of E(Q) and var(Q) converge to within

desired limits.

MomentsQ is not guaranteed to converge for all possible control rules. The analyst would need to

examine specific control rules to determine whether MomentsQ would converge. However, we expect

that MomentsQ usually will converge for the family of control rules considered in this chapter

(monotonic, concave, and twice-differentiable).

Also, the above algorithm does not generate an estimate of var(P). (Recall that E(P) is found

exactly using Proposition 1.) We can find an estimate of var(P) using the first-order estimate of var(Q).

Since P = p(Q), a first-order estimate of var(P) is:

var(P) H var(Q) -. T. (31)

The drawback of this procedure is that it creates a first-order approximation of a first-order

approximation; the resulting var(P) may be inaccurate. (In Section 4, however, we will see that there are

certain conditions under which this approximation is quite good.)

Finally, MomentsQ has the drawback that it is an iterative algorithm. In addition to convergence

uncertainty, it will be slower than an analytic algorithm. In the next section, we will see that the algorithm

based on the production recursion equations is analytic.

Nonetheless, MomentsQ does have certain advantages. As discussed, the queue-length recursion

equations are much easier to work with when doing transitive analysis. Further, MomentsQ works

particularly well on an important class of multi-queue control rules. (Multi-queue control rules are

discussed in Section 5).

Example. Suppose that the stations in a job shop use clearing functions of the form:
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pQ(Q,)= Qi'. (32)
A3 +Qi

Here, Mi is an upper bound on the service rate, and A controls the rate at which the production approaches

the upper bound.

Given E(P), the equation for the first-order approximation of E(Qi) is:

M,Q~ - (3- = P (33)
pA + Qi

which is a linear equation with the unique solution:

- pik- Ji pi
' M- P 1- p (34)

p, =P>'Mi.

This expression is quite similar to common queuing theory expressions for expected queue lengths, in that

the expected queue length is proportional to the inverse of the service utilization, pi = Pi / Mi. In

addition, the expected queue length is proportional to the rate at which the production approaches the

maximum service rate.

To estimate the first-order variances, we need to find the entries of F given an estimate for E(Q).

Recall that Li = p1 '(Q.). Applying this formula to the clearing function yields:

= M _' 2 (35)

(ji ' +Q)

so we immediately use formula (30) to estimate var(Q).

To generate second-order estimates for E(Q), we need to solve pi (Q) + -p "(Q )o P for
2

each E(Qi). With clearing functions, we need to solve the following equation for E(Q):

M Qi Mi/ (36)
- -var(Q1)=P . (36)

Si+ Qi (Q~, + pi )'

Equation (36) is not easy to solve analytically, since it is a cubic equation. However, it can be solved

using standard numerical techniques for one-variable equations.

With all the formulas defined, MomentsQ may now be applied to the shop. We present

MomentQ results for job shops using clearing functions in Section 4.
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3.3 Estimating the Steady-State Moments Using Production Quantities

In this section, we develop an analytic algorithm to solve the production recursion equations, and use the

resulting moments to estimate the moments of the queue lengths analytically.

We begin by calculating E(P) exactly. Recall that Proposition 1 tells us that P = (I - Q)-'p .

We next consider var(P). Recall that the first-order expansion of the production recursion

equation was:

q(P, + T, -(P, -5, q (P__j+ T,_ - P,-, ,)+((D - I)Pt_, + F., . (37)

In steady state, the expected queue lengths and production quantities are the same in all periods, so

equation (37) becomes:

i')+ T -(Pt -F) q(P5)+T -(Pt,_ -)+ (D-I)Pt-1 + Et (38)

where T is a diagonal matrix whose ii'th element is qj'(Ei). Simplifying (38) and solving the resulting

equation for Pt yields:

Pt = (I - T - + T -'D)P t_1 + T - 'Ft (39)

Taking the variance of (39) yields a recursion equation for var(Pt):

var(Pt) = B -var(P_1) -BT + ~'IT-IL 1 , (40)

where B =I - T-1 +~'PT.

Iterating this equation infinitely yields the desired first-order estimate for var(P):

var(P) ZBsl'~ET-B's (41)
s=O

whereB =I-- -' + -0.

The power series may be evaluated numerically or analytically using the techniques discussed in Chapter

2. As with the development of MomentsQ, the power series expression for var(Q) is the same as that for

linear control rules, with the smoothing matrix D replaced here by the diagonal matrix ' . Thus, the

first-order approximation maps a linear control rule onto the general control rule, with the smoothing

factors being 1 / qi'(Ji) rather than a1 . The resulting "lead times" of the fitted TPM model are given by

Li = q1 '(J). Here, the first derivatives of the inverse production function impact var(P). High first

derivatives correspond to heavy smoothing by having long queue lengths, which will lower var(P) but
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will likely raise var(Q). Low first derivatives correspond to less smoothing; indeed, the power series will

not converge if qj'(PI) <1.

We use the production moments to estimate the queue length moments. Using the Delta Method

applied to the inverse production functions, the second order-estimate of each E(Q,), given estimates of

E(P) and var(P), is:

E(Q) =q(P)+ -q"() - var(P) (42)
2

We have two choices to estimate var(Q). First, we can use the Delta Method directly. Since

Qt = q(Pt), a first-order estimate of var(Q) is:

var(Q)~ T -var(P) -TT (43)

The drawback of this approximation is that the resulting var(Q) is a first-order approximation of a first-

order approximation, and may be inaccurate.

Alternately, we can use the second-order estimate of E(Q) to estimate var(Q). We simply apply

the power-series expression for var(Q) found in the previous section, so that:

var(Q) 0 LBsB's , where B= I+(D -I)- 1I (44)

This technique yields a first-order approximation of a second-order approximation, and should be more

accurate. Indeed, we will see in Section 4 that this approximation for var(Q) usually is virtually identical

to the approximation for var(Q) from MomentsQ.

The above discussion suggests an analytic algorithm to find the production and queue length

moments.

Algorithm MomentsP
1. Calculate E(P)=(I- I)-'u.

2. Use E(P) to estimate var(P) ~ BZYBsT-P'lB's , where B = I -' 1 + -'P1 , and where ' is a
S=O

diagonal matrix whose ii'th element is q,'0.

3. Use E(P) and var(P) to find E(Q), using the formulas E(Qj) = q () + -- q " ()- var(P) for all
2

stations i.

4. Use E(Q) to estimate var(Q) ~ BZB'S , where B = I + ((D - I) -1.
S =0
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MomentsP has a significant advantage over MomentsQ in that it is an analytic rather than iterative

algorithm. Thus, in general, we prefer to use MomentsP rather than MomentsQ. We will see an

important case where MomentsQ is preferred, though, when we discuss multi-queue control rules in

Section 5. Further, MomentsP assumes that we can work with the inverse production functions and their

first and second derivatives directly. If doing so is difficult, i.e. the production functions cannot be

inverted analytically, MomentsQ will be preferred, since this algorithm works directly with the

production functions.

Example. Suppose that the stations in a job shop use clearing functions, which have the

form p1 (Qi) MQ, i(ip + Q). The inverse production functions have the form:

q,(i) = .i(45)

The calculation of E(P) is automatic, and is given by E(P) = (I - (D)-p

To calculate var(P), we need to calculate the entries of T. Recall that Ti' = qi'(E(PF)); applying

this formula to the clearing functions yields:

q' (P)= -)2 ,(46)
(M, -i)

so we immediately use formula (41) to estimate var(P).

The second-order estimate for E(Q) uses the formulas E(Qi)~ q,(I) + i- q"(T) var(P) for all
2

stations i. Applying these formulas to clearing functions yields:

E(Q_) __ + ' _ var(P) (47)
i -6 (Mi -_)

Finally, to estimate var(Q) we use the same formula used by MomentsQ, (30), with the expected

queue length terms coming from the second-order estimates for E(Q). To do, we need to calculate the

entries of the 1I matrix, which again are:

M 8.11 = _ '2(48)
Wps+ )S

We present MomentsP results for job shops using clearing functions in Section 4.
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Numerical Example. Suppose we have a single station which uses a clearing rule, with parameters

Mi =15 and , = 15 . The expected work arrival to the station is p = 10 , and the variance of the work

arrivals is EiZ =16. We apply the MomentsP algorithm to this station.

Step 1: Calculate E(P). For a single station with no feedback, E(PI) = p =10.

Step 2: Estimate var(P). We apply (41) to estimate var(P). To do so, we first find

Tij = qj'(E(P)). Equation (46) is the first derivative of an inverse clearing function; using (46) yields

T,' =15 -15/(15 -10)2 = 9. Now, by defnition, B = I - T-1 + T-' . For a single station with no

feedback, B becomes 1- (1/9) + (1/9) -0 = 8/9. Then, applying (41), a first-order estimate for var(P;) is:

var(PI) ~ (8/9)2 s (1/9)2(16) = 0.9412.

Step 3: Estimate E(Q). We apply (42) to estimate E(Q,). To do so, we calculate qj (E(Pi)) and

qj"(E(P)). Equation (45) is the inverse clearing function; applying it yields

qj (E(PF)) = 15-10/(15 -10) = 30. Equation (47) gives the second derivative of the inverse clearing

function; using it yields qj"(E(PI)) = 2-15 -10/(15 - 10)' = 3.6. Then, applying (42) yields

E(Q,) = 30 +0.5-3.6-0.9412= 31.6941.

Step 4: Estimate var(Q)fron E(Q). Finally, we apply (30) to estimate var(Q,), using the second-

order estimate for E(Q,). To do so, we first find H1 1 = p,'(E(Qi)). Equation (48) is the first derivative of

a clearing function; using (48) yields H-I1 =l15-15/(15 +31.6941)2 = 0.1032. Now, the B used to calculate

var(Q,) is B=I+(O-I)-H. For a single station with no feedback, B becomes

1+ (0 -1) 0.1032= 0.8968. Then, applying (30) yields var(Q,) - (0.8968)'s (16)= 81.7408.

We compare the MomentsP approximations to simulation results. We performed two hundred

1500-period simulations of the station. The following table shows the results.

MomentsP Results Simulated Results (with Percent Difference
2-sigma conf. intervals)

Expected Production 10.0000 10.0007 ± 0.0142 0.01%
Variance of Production 0.9412 0.9249 ± 0.0146 1.76%
Expected Queue Length 31.6941 31.7018 ± 0.1395 0.02%
Variance of Queue 81.7408 81.2414 1.6177 0.61%
Lengths
In this case, the MomentsP and simulation results were nearly identical, with all approximations except

var(P,) falling within the simulation confidence intervals. We will see in Section 4 that the MomentsP

results closely track the simulation results if the maximum capacity (M,) is significantly larger than the

expected work arrival, and if the arrival variances are not large.
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Extension: Generalized Single-Queue Control Rules. We extend the MomentsP algorithm to cover

generalized single-queue control rules of the form P, = pi (Q,)+ P + y7, , where 8i is a constant and yv,
is a random noise term with zero mean and finite variance. This generalized rule allows the modeling of

production constants and fluctuations.

To begin the extension, we note that -Q, = q (P, -, -;v,, or in matrix-vector form,

Qt = q(Pt - P - yt) (49)

Substituting (49) into equation (37) yields:

q(Pt -P- yt)= q(Pt_j - P- yt_j)+((D- I)P,_j +Et,. (50)

From Proposition 1, E(P)=(I- )-'u. To find var(P), we consider a first-order expansion of (50)

around E(P):

qrP)+ T -(Pt - P - yt - P) = q(P)+ T -(P_,-I - -Y, - P) +(D - I)Pt_, + ct,,(1

-:> Pt = (I - T-' + T(~-)Pt_, + (y, - yt_1) + T-lc,.

Consequently, the first-order recursion equation for var(Pt) is:

var(P, ) = B -var(Pt_, ) -B T + (Ft + Ft-) )+ T-1 -Z -T~1, where B = I - T -1 + V -'(D, (52)

and where Ft is the covariance matrix of y,. (Ft is assumed to equal a constant F for all t; we use the

separate subscripts for the sake of clarity.) We iterate the recursion equation for var(Pt) infinitely, which

yields the following power series:

var(P) ~F + ZBs(- -( -T '+(B -I)F(B - I)' '',
S=O (53)

whereB =I-' -- '+ l'P,and F = cov(yt),Vt

We now use the two moments of P to calculate a second-order estimate for E(Q). We use the

formula given in equation (42), modified for the fact that Qa, = q (Pi; -, - ri,) instead of Qj, = q (P,).

Then a second-order estimate for the expected queue length at each station i is given by:

E(Q,) = qj(Pi -A pg+-- q,"(Pi - ,)- (var(P) -var(yi)) . (54)
2

To calculate var(Q), we apply the new form of the production function to the queue-length

recursion equation, (14),

Qt = Q,_I + (< -I)(p(Qt_j) + P + Y,)+ E,, (55)
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Chapter 3. Models with General Control Rules

and taking the variance of (55) yields

var(Q,) _ B -var(Q,-) -B T +(D _-I)F((D -I)T + Z, (6
where B = I + (1) - I)-I.

Then, by iterating (56) infinitely, a first-order estimate for var(Qt) is:

var(Q) ~ B' -[(4 - I)rT(D --I)T + Z] B's (7

where B = I + (D1) - I)1 .

The above estimates for the production and queue length moments use equations very similar to those

used in MomentsP. Thus, they define a generalized MomentsP algorithm, as desired.

4. Empirical Behavior of Models with Single-Queue Control Rules

In this section, we study the empirical behavior of the approximation algorithms on models with single-

queue control rules. All of our examples use single-queue clearing function for control rules. We begin

by examining the behavior of a single station. From there, we consider a six-station chain. Finally, we

study a thirteen-station network based on a mainframe subcomponent plant, considered by Fine and

Graves (1988).

4.1 A Single Station

In this subsection, we examine the behavior of the approximation algorithms on an individual station. We

have two objectives in doing so. First, we develop a general sense of how well the algorithms

approximate the simulated performance of a single station, and determine general guidelines for when

using the algorithms is appropriate. Second, we determine whether the MomentsQ or MomentsP

algorithm provides markedly better performance. Note that unless the iterative algorithm provides

markedly better performance, the analytic algorithm will be preferred because of its faster running time.

4.1.1 Simulation Parameters

In the simulation, the station receives work from a Gamma distribution, with an expectation of 10 units

and one of 10 standard deviation settings ranging from 0.5 to 15. The station processes work via a

clearing function with a maximum service rateM;, ranging from 105% to 300% of the arrival rate (10.5

to 30); the increase rate parameter, 8i, = Mi for all tests.

In practice, , will vary in order to model the behavior of the station being analyzed.

Nonetheless, when modeling "generic" stations, setting 8i, = Mi is a natural choice. With this ., the first
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derivative of the control rule approaches one as the queue length approaches zero. Thus, for low queue

lengths, the station will behave (approximately) as if it processed all the work in its queue over the course

of a period. Completely finishing small amounts of work in a single period is generally expected.

The following input standard deviation and maximum service rates were used:

* Mi= {10.5, 11, 12, 13, 15, 17, 20, 23, 26, 30}
* G = {0.5, 1, 2, 3, 4, 6, 8, 10, 13, 15}

For each of the 100 scenarios, two hundred 1500-period simulations were performed.

4.1.2 Comparison of the MomentsQ and MomentsP Algorithms

The first graph, Figure 6, (on the next page) compares the differences between the simulated

expected queue lengths and the approximated queue lengths. It presents the percentage differences

between the simulated results and the MomentsQ and MomentsP results in ten separate charts. Each chart

displays the results for all ten simulations with the same maximum service rate (M). Within each chart,

the percentage differences are plotted against the input standard deviation, which ranges from 0.5 to 15.

The ten charts share a common Y-axis, which shows the percent difference between the approximate

queue lengths and the simulated queue lengths, with the formula:

Error = [(Approximate E(Q)) / (Simulated E(Q))] - 1.

Thus, a negative error value corresponds to the approximate E(Q) being lower than the simulated E(Q),

and a positive value corresponds to the approximate E(Q) being higher than the simulated E(Q).

In general, the two approximations for E(Q) perform well, and perform approximately the same.

The analytic approximations tend to be a bit higher than the iterative approximations, but the differences

usually are minor. The only scenarios for which the approximations do not perform well are where the

maximum service rates approach the arrival rates (Mi = 10.5, 11, 12), and the input standard deviations

are high (10 or higher). These results are not surprising. Recall that estimating the queue lengths

involves taking quadratic approximations of the inverse production functions. With maximum service

rates that are only 105% and 110% of expected arrivals, the inverse production functions will be nearly

vertical, implying that approximations of the inverse production function will not be terribly accurate.

Indeed, with M = 11, for example, the simulated average queue length ranged between 110 and 207,

depending on the input standard deviation. These queue lengths are much greater than the expected

production of 10 units. With such high queue lengths, significant errors would be expected. All

differences were less than 25%, even with the lowest Mi's, which is quite good.

Similarly, greater input standard deviations are associated with greater differences. These results

are not surprising. Greater input standard deviations increase the second-order variance terms in the

72



Chapter 3: Models with General Control Rules

estimation formulas. Larger second-order terms naturally increase approximation errors, and the larger

variances inflate the effects of variance-estimation errors.
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Figure 6 -- Simulated Queue Lengths v. Approximate Queue Lengths

The MomentP approximations are biased to be greater than the MomentQ approximations. As a

result, the MomentP approximations performed significantly better on scenarios with low maximum

service rates (such as 12), and the MomentQ approximations performed better on scenarios with high

maximum service rates and input standard deviations (MSR > 15, and input standard deviations > 1). As

will be shown shortly, errors estimating production variances cause these queue length errors.

Nonetheless, if the maximum service rate was greater than 120% of the expected arrival rate, and the

input standard deviation was less than the expected arrival rate, the errors between the simulated and

approximate results were less than 5%, and usually less than 2%. Also, there never appears to be a strong

reason to use the iterative MomentQ algorithm unless great accuracy is desired for a model with high

maximum service rates and input variances.

The next graph, Figure 7, compares the differences between the simulated queue length standard

deviations and the approximate queue-length standard deviations. Three approximations to the queue

length standard deviations are compared:
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* MomentsQ, which uses E(Q) to calculate var(Q).

* MomentsP, which uses the second-order estimate of E(Q) to calculate var(Q).

* A variant of MomentsP, which uses the first-order estimate of var(P) to calculate var(Q).

The format of Figure 2 is identical to that of Figure 1. Figure 2 presents ten charts, each displaying the

percentage differences for the ten simulations with the same Mi. Within charts, the percent differences

are plotted by the input standard deviations.
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Figure 7 -- Simulated Queue Length Standard Deviations v. Approximate Queue Length Standard

Deviations

We first note that the estimation errors for the queue-length standard deviations are significantly

worse than the estimation errors for the average queue lengths. This result is not surprising given that the

queue length standard deviation approximations are first-order estimates. Again, the approximations

degrade with low maximum service rates and high input variances, to the point that the estimates with

very low maximum service rates are not useful. In general, though, if the maximum service rate is greater

than 120% of the arrival rate, and the input standard deviation is less than the arrival rate, the errors were

under 10%.
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Note that the E(Q)-based approximations were much more accurate than the var(P)-based

approximation. Recall that the latter estimate is a first-order approximation of a first-order

approximation, so its poor performance was not surprising. However, the two E(Q)-based

approximations were virtually identical, so there appears to be no reason to use the more expensive

MomentsQ algorithm with clearing functions.

Finally, Figure 8 compares the difference between the simulated production standard deviations

and the approximate standard deviations. Three approximations to the standard deviations are compared:

* MomentsQ, which uses the first-order estimate of var(Q) to estimate var(P).

* MomentsP, which uses E(P) to estimate var(P).

* A variant of MomentsP, which uses the first-order estimate of var(Q) to calculate var(P).

The format of Figure 3 is identical to that of Figure 1. Figure 3 presents ten charts, each displaying the

percentage differences for the ten simulations with the same Mi. Within charts, the percent differences

are plotted by the input standard deviations.
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Figure 8 -- Simulated Production Standard Deviations v. Approximate Production Standard

Deviations
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Again, the errors from production standard deviations are significantly worse than the errors for

the average queue lengths, with estimates with low maximum service rates being meaningless. As with

the queue length standard deviations, the errors are generally less than 10% if the max service rates are

greater than 120% of the arrival rate, and the input standard deviations are less than the arrival rate.

However, with queue length standard deviations, the E(Q)-based approximations clearly provided

greater accuracy than the var(P)-based approximations. It is not possible to make such a clear distinction

in this case. For medium maximum service rates (between 120% and 170% of the arrival rate), the E(P)-

based approximation were more accurate. However, as the maximum service rates increased to 200% of

the arrival rate or greater, the var(Q)-based approximations were considerably more accurate. This result

is not immediately obvious since var(Q)-based approximations are first-order approximations of first-

order approximations.

The chart suggests an explanation. Note that E(P)-based approximations are greater than the

var(Q)-based approximations. Further, the mean errors for both types of approximations increase with

the maximum service rate, and the rate of the increase diminishes with higher maximum service rates.

These two factors cause the var(Q)-based estimates to become accurate over a fairly wide interval of high

maximum service rates. Note that both var(Q)-based estimates were virtually identical over this range, so

the analytic algorithm may be used when a var(Q)-based estimate is desirable.

The chart also explains the pattern of queue length errors shown in Figure 6. Comparing the two

charts, we find that the queue length errors are greatest where the production standard deviation errors are

greatest. Thus, the analytic algorithm (which uses E(P)-based approximations for var(P)), is less accurate

on models with high maximum service rates and input variances. Conversely, the iterative algorithm is

less accurate on models with low maximum service rates.

4.2 A Six-Station Assembly Line

In this section, we study the behavior of the approximation algorithms on multi-station networks. In

particular, we study whether differences between the simulated and approximated moments increase for

stations that are farther downstream, and if so, how pronounced the effects are.

We consider a six-station assembly line, in which each station processes an average of 10 units of

work each time periods. We characterize work transfers between successive stations as follows: the work

arriving at station i is the work completed at station i-I last period ((D U_1 = 1), plus a random noise

term, e,. The noise terms have an expectation of 0, and a variance, Ei,, that varies with the tested

scenario. All stations use clearing functions. Figure 9 shows the assembly line.
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Figure 9 -- A Six-Station Assembly Line

We consider nine scenarios for the shop, varying the maximum service rates and estimated production

standard deviation at each station.

We restrict our tests to the MomentsP algorithm, which is usually preferred because it is an

analytic algorithm. We perform tests specifically designed to determine whether errors ever increase with

station position. To perform these tests, we assume that the stations are as similar as possible, with the

exception of line position. Thus, all stations have the same expected arrival rate, the same clearing

function parameters (M, and p,), and, ideally, the same production standard deviation.

Of course, the production standard deviations cannot be determined exactly. Instead, we use

MomentsP to set the input variances (the Zj 's) so that all the production variances are equal. For

example, suppose we want the production standard deviation at each station to be one unit. We first find

the input variance to the first station, Z1 , that makes the production standard deviation at the first station

(as estimated by MomentsP) equal one. We next find the input variance to the second station, E22 , that

makes the production standard deviation at the second station equal one. Note that the input variance

calculation at the second station accounts for the estimated variance in the work arriving from station 1.

We then calculate the input variances for the remaining stations, 3 to 6.

The following table shows the clearing function parameters and the desired production standard

deviation for each scenario. (Note that Mi = , for all the scenarios.) The table also shows the input

standard deviations (VYi) used for each scenario, as calculated by the MomentsP algorithm.

Clearing Production Input Standard Deviation, XFunction Standard ___________________________________________
(Mi andfid Deviation 1 2 3 4 5 6

14 1 4.85 3.43 2.99 2.83 2.86 2.97
14 2 9.70 6.85 5.99 5.67 5.72 5.94
14 3 14.54 10.28 8.98 8.50 8.58 8.91
20 1 2.65 1.85 1.61 1.47 1.38 1.31
20 3 7.94 5.55 4.83 4.41 4.13 3.92
20 5 13.23 9.26 8.05 7.35 6.88 6.53
26 1 2.07 1.42 1.24 1.14 1.06 1.01
26 3 6.21 4.27 3.73 3.41 3.19 3.03
26 5 10.35 7.11 6.22 5.69 5.32 5.05
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Each scenario was simulated 100 times; each run comprised 2000 periods (plus a 100-period start-up).

The following set of graphs, Figure 10, compares the percentage differences between the

approximate and simulated expected queue lengths for each station in the chain, across the nine scenarios.

The gray lines plot the hypothesis limits for whether the approximate expected queue lengths equal the

true expected queue lengths. (Each hypothesis limit equals ±twice the standard deviation of the simulated

expected queue lengths.) Graphs in the same row have equally-sized y-axes. (Note that graphs in the

same row have identical production standard deviations.)
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Figure 10 -- Approximate v. Simulated Expected Queue Lengths in a 6-station Chain

The approximate and simulated estimated are within 3% of each other in most of the scenarios, which is

consistent with the results in the single-station model. Further, the errors often do not appear to follow

any patterns. The estimates for station towards the end of the chain generally do not seem worse than the

estimates for stations towards the beginning of the chain. The exceptions are the scenarios with a

maximum service rate of 20 and production standard deviations of 3 or 5; there appear to be slight order

biases in these scenarios. Later on, we will see that these biases are probably caused by errors in the

production standard deviation estimates. Note, however, that the effects are not pronounced.
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One scenario has fairly significant differences between the simulated and estimated service

lengths (maximum service rate = 14, production standard deviation = 3). Such differences are not

surprising, given the scenario's very high input variances. We note that, oddly, station 6's simulated

average queue length is closer to its estimated queue length than four the preceding four stations.

However, given the wide confidence intervals of this scenario, the result is likely due to random noise.

The next set of graphs, Figure 11, compares the percentage differences between the approximate

and estimated queue length standard deviations. The gray lines plot the hypothesis limits for whether the

approximate standard deviations equal the true standard deviations. Graphs in the same row have

equally-sized y-axes.
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Figure 11 -- Approximate v. Simulated Queue Length Standard Deviations in a 6-station Chain

As in the single station case, the estimates of the queue length standard deviations are generally less

accurate than the expected queue length estimates. Here, we do see some location biases. With the

higher maximum service rates, downstream overestimate the queue length variances compared with the

upstream stations. The effect, however, is only pronounced with high input standard deviations (i.e., the

desired production standard deviation equals 5).
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The patterns of differences are reversed when the maximum service rate is 14; then, downstream

stations underestimate the queue length standard deviations with respect to the upstream stations. Note

that in some cases, this underestimating effect corrects for estimation errors at upstream stations, making

the estimates more accurate at the downstream station. In addition, in the scenario with the production

standard deviation of 1, station 6's estimated and simulated queue length standard deviations are quite

different from the rest of the stations. While the underestimating effect holds for this scenario, as well,

part of the difference is probably due to random noise (given the size of the confidence intervals).

Finally, the following set of graphs, Figure 12, compares the approximate and simulated

production standard deviations. The gray lines plot the hypothesis limits for whether the approximate

standard deviations equal the true standard deviations. Graphs in the same row have equally-sized y-axes.
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Figure 12 - Approximate v. Simulated Production Standard Deviations in a 6-station Chain

As with production standard deviations, there is some location bias for the higher maximum service rates.

As with the queue length standard deviations, downstream stations overestimate production standard

deviations. The effect is pronounced when the input standard deviations are high (which occurs when the

desired production standard deviation is 5). Note that this pattern of errors likely explains the slight
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biases in the expected queue length results, since MomentQ's average queue length estimations depend

on the estimated production variances.

Unlike the queue length standard deviations, the production standard deviations do not show any

distinct trends when the maximum service rates are low. The exception is that in the scenario with the

production standard deviation of 1, station 6's estimated and simulated queue length standard deviations

are quite different from the rest of the stations. However, this result just appears to be the same outlier

discussed above (for queue length standard deviations).

Thus, in the scenarios tested, the expected queue lengths showed little if any location biases; the

queue length and production standard deviations did show location biases, especially with high maximum

service rates and high input standard deviations. Figure 3, in the previous section, implies a possible

explanation - the analytic algorithm increasingly overestimates the production standard deviations with

high maximum service rates and input variances. When this phenomenon is repeated throughout an entire

chain of (ideally) identical stations, it can create a reinforcing cycle. Each station overestimates the

production variances of the previous station, thus causing the station to overestimate its own production

variance and propagate the error downstream. Nonetheless, in most cases likely to be seen in practice

(that do not have input standard deviations greater than the expected production quantities, or have chains

of identical stations), the effect does not appear significant enough to cause serious problems with the

accuracy of the approximations.

4.3 A Job Shop that Manufactures Mainframe Subcomponents

In this section, we consider a job shop that manufactures subcomponents of mainframe computers. Fine

and Graves (1989) first considered the job shop, located at an IBM plant in Poughkeepsie, New York, as

an application of the original Tactical Planning Model. Here, we consider a variant of the shop that uses

the clearing functions as production functions.

Figure 13 shows a diagram of the job shop. The shop contains 13 stations; work enters through

the NB Release and OTN Release stations and exits through the Encapsulation station. There is a

feedback loop in the flow, related to subcomponents failing tests and requiring repair work. The numbers

on each arc (ij) represent the expected amount of work that arrives at stationj given one unit of work at

station i.
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Figure 13 -- A Job Shop that Manufactures Subcomponents of Mainframe Computers

The following table shows the input data for the shop, including the average work that arrives to

the NB Release and OTN Release stations, and the input standard deviations, the expected production

quantities, and maximum capacities at each station. Note that a station's maximum capacity becomes

both the Mi and A8 parameters of the station's clearing function.

Station Average Arrivals per Input Standard Maximum Capacity Expected Production
Period Deviation

NB release 40 20 80 40
Wiring 6.3 16.3 12
OMU for NB 0 60 30.4
Joining 0 50 40
Bum-in 10 50 40
OTN release 30 12.5 60 30
Disassembly 12.5 45 30
OMU for OTN 0 60 29.6
Chip rework 12.5 45 29.6
Wire rework 12.5 18.8 12
Test 17.5 125 87.6
Analysis 0 50 26.3
Encapsulation 7.5 87.5 70

The following graphs compare the results of the iterative and analytic algorithms to a 250,000

period simulation of the job shop. The bar chart in Figure 14 compares the simulated and approximated

expected queue lengths at each station. The table in Figure 14 presents the percent differences between

the approximate and simulated results.

82



Chapter 3: Models with General Control Rules

0 50 100 150 200 250 300 350 400

NB Release Z
-Z

Wiring

OMU for NB

Joining

Bum-In

OTN-Release
Disassembly

OMU for OTN

Chip rework

Wire rework

Test

Analysis -u

Encapsulation

a Iteratie N Analytic 3 Simulated

Figure 14 - Expected Queue Lengths for the Mainframe Subcomponents Job Shop

In general, the iterative and analytic approximations are quite close to the simulated results, with no

difference being greater than 3%. The larger differences track closely to the differences observed in the

single-station case, not to the location of a station in the job shop. For example, the Bum-in and

Encapsulation stations, which have the greatest differences, also have very high queue length and

production variances (discussed below). They are also heavily loaded (maximum service rate / expected

production is 1.25 for the Bum-in station, and 1.17 for the Encapsulation station). In the previous

sections, combinations of heavy loading with significant production variances were associated with

inaccuracies in estimating the expected queue lengths.

Figure 15 compares the estimated and simulated standard deviations of the queue lengths.

Percent Difference Between Approximations and
Simulation Results

Station Iterative Analytic Analytic
(from E(Q)) (from Var(P)) (from E(Q))

NB Release -1.02% -5.50% -0.95%

Wiring 5.37% -9.85% 5.43%

OMU for NB -0.50% -0.46% -0.37%

Joining 1.62% -4.62% 2.04%

Burn-In -11.53% -10.14% -10.99%

OTN-Release -0.38% -2.45% -0.37%
Disassembly -0.06% -6.71% -0.07%
OMU for OTN -5.85% -1.13% -5.92%

Chip rework -1.92% -6.62% -1.91%

Wire rework -6.16% -25.62% -5.59%

Test -7.24% -5.78% -7.19%

Analysis -9.33% -4.09% -9.53%

Encapsulation -22.08% -20.83% -22.00%

Figure 15 -- Queue Length Standard Deviations for the Mainframe Subcomponents Job Shop
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Percent Difference Between
Approximations and Simulation Results
Station Iterative Analytic
NB Release -0.30% -0.16%

Wiring 0.56% 0.47%

OMU for NB -0.34% -0.09%

Joining -0.65% -0.15%

Burn-In -2.82% -1.77%

OTN-Release 0.10% 0.13%

Disassembly 0.20% 0.18%

OMU for OTN 0.03% 0.11%

Chip rework 0.26% 0.31%

Wire rework 1.08% 1.34%

Test -0.34% -0.05%

Analysis -0.06% 0.05%
Encapsulation -1.87% -1.48%
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Again, the estimates track fairly well with the simulated results; most differences were less than

ten percent. The biggest differences were for the heaviest-loaded stations, Bum-In and Encapsulation.

Usually, the estimates based on the expected queue lengths did a bit better than the estimate based on

production variances, although there were some exceptions at the Test and Analysis stations. The

estimate based on production variances was especially far off at the Wire rework station; presumably, this

is because the estimate of the production standard deviation erred significantly (see below).

The third graph, Figure 16, compares the estimated and simulated standard deviations of the

production quantities.

Percent Difference Between
Approximations and Simulation Results

Station Iterative Analytic
(from var(Q)) (from E(P))

NB Release -4.72% 1.24%
Wiring -14.48% -0.75%
OMU for NB -4.74% 0.19%
Joining -11.86% -1.42%
Burn-In -21.11% -10.06%
OTN-Release -2.30% 0.44%
Disassembly -5.90% 0.58%
OMU for OTN -7.68% -2.35%
Chip rework -4.17% 1.35%
Wire rework -8.08% 16.06%
Test -10.37% -4.29%
Analysis -11.85% -5.88%
Encapsulation -23.94% -17.57%

Figure 16 -- Production Standard Deviations for the Mainframe Subcomponents Job Shop

The estimates continue to track well with the simulated results, although in general there is much

more of a performance gap between the iterative and analytic estimates. Here, the analytic estimates,

based on expected production results, generally were better. These results do not conflict with the single-

station results; recall that the analytic estimates became worse than the iterative estimates when the (1)

maximum service rate was greater than 200% of the expected production, and (2) the input standard

deviations were high. In this model, most of the maximum service rates are less than 200% of the

expected production, and the input standard deviations never reach very high values. The exception is the

Wire rework station; its input standard deviation, not counting fluctuations in work arrivals, is 105% of its

expected production.

The other stations with great differences between the simulated and estimated results, Bum-in and

Encapsulation, are the stations that previously have had the greatest differences. Again, these differences

are associated with the heavy loading at these stations.
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Most importantly, the differences between the simulated and approximate results were not

noticeably associated with station locations. Thus, for example, estimates for stations near the end of the

work flows were not noticeably worse than those for stations at the front of the work flow.

Consequently, the approximation algorithms discuss in this chapter should provide useful results for

multi-station networks.

5. Steady-State Analysis for Models with Multi-Queue Control Rules

In the previous sections, we assumed that each station used a single-queue control rule,P, = pi(Q,). In

this section, we extend our results to multi-queue control rules. We consider rules of the form

1% = p(Q,), where Q, is the vector of all queue levels at time t. In matrix-vector form, this rule is still

P, = p(Q,) , but there is no longer a requirement that the individual production values reduce to functions

of single queue lengths. Similarly, the inverse production functions are Q, = q(P,), with individual

queue lengths now being a function of multiple production values. We present extensions to both the

MomentsP and MomentsQ algorithms; either approach may be preferable, depending on the nature of

production functions.

5.1 The Delta Method for Models with Multi-Queue Control Rules

We first present multi-queue generalizations of the Delta Method formulas developed in Section 2.

Suppose that Y = g(X), where X is a vector. The second-order Taylor-series of expansion of Y around

E(X) is:

Y~ g(X)+1i(X-X') + I (Xi -)i)(X- ) .((58)

Then a second-order approximation for E(Y) is given by:

E(Y) ~ g(X) + eT -(var(X) e V2g(X)). e , (59)
2

where the large dot-sign represents array multiplication, e is a unit vector, and V 2g(X) is a Hessian

matrix such that V2 g(X) = (a2 g(MX)axiax)

A first-order approximation for var(Y) is given by:

var(Y) ~ Vg(X) -var(X)- Vg(X)T, (60)

where Vg(X) is a gradient vector such that (Vg(X))i = ag(x)/ax.
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5.2 The Multi-Queue Form of the MomentsQ Algorithm

The equations of the multi-queue MomentsQ algorithm appear similar to those of the single-queue

MomentsQ algorithm. However, the calculations of the queue-length moments are considerably more

complicated. Previously, we generated successive estimates for the expected queue lengths by solving

single-variable equations for those estimates. Now, we must solve systems of nonlinear equations to find

the successive estimates. We find that there is one class of common multi-queue control rules for which

the systems solve easily. This is the class of separable control rules.

We begin this section by deriving the equations of the multi-queue MomentsQ algorithm. We

then show how this algorithm becomes simple to use for models with using separable control rules.

5.2.1 Algorithm Development

Step 1: Initialization. As in the single-queue control rule case, we begin by finding E(P), and use E(P)

to find a first-order approximation of E(Q). Now, however, solving E(Q) requires finding the solution to

the system of nonlinear equations

p, (Q) = Pi, for all stations i. (61)

We then use this value of E(Q) to calculate a first-order estimate of var(Q), again using the power-series

equation

var(Q)~ BsYB's (62)
s=O

where B = I + (D - I)- f.

Now, however, H is a non-diagonal matrix whose ij entry is Dp(Q)/Qj. This matrix definition

follows from the fact that the first-order expansion of pi (Q) pi (Q) + jj (Q - Q) - p (0)/Q , for

all stationsj. Then, writing all of the first-order expansions for all production functions simultaneously

yields p(Q,)- p(Q)+ H .-(Q - Q), where the elements of H are those previously described.

Step 2: Iteration. The next step is to use the newly found var(Q) estimate to generate a second-order

estimate for E(Q). To do so requires solving the system of nonlinear equations

- if
p(Q)+ -e' .var(Q) e V2p(Q))- e = Ti, for all stations i , (63)

2
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where the large dot-sign represents array multiplication, e is a vector of ones, and V2 pi (Q) is a Hessian

matrix whose ij element is a2'p(Q)/OQiaQj. This system results from applying the second-order

equation for E(Y) to each of the E(P)'s.

Once this nonlinear system is solved, the new estimate for E(Q) is used to generate a new

estimate for var(Q).

Step 3: Convergence. Step 2 is repeated until successive estimates of E(Q) and var(Q) converge to

desired limits.

5.2.2 The MomentsQ Algorithm and Separable Production Functions

The MomentsQ algorithm can be quite useful when paired with separable multi-queue production

functions. A separable production function is a sum of single-queue production functions, and has the

following form:

pit = k p (Qt), (64)

where the k;'s are constants, and each p is a single-queue production function. With this form of

production function, the systems of nonlinear equations for the expected queue lengths decompose into a

set of equations where each equation contains a single expected queue length variable. To show this, we

first note that with a separable production function, 82 pi (Q) / aQ8Qj =0 unless i = j. Then, applying

(63) to a network with separable production functions yields the following system:

P = iki -[p (Q )+ p "(Qj)- var(Qj)j, for all stations i . (65)

If the quantities in the brackets are temporarily treated as variables, (65) becomes a linear system.

Solving for the quantities in the brackets yields the set of equations:

- I
p1 (Q) + -p "(Q ) -var(Qj) = (K~'T)j, for all stations j, (66)

where (K-1)i is the ith entry of the vector indicated, and K is the matrix of k; terms. Each equation in

this new set contains a single expected queue length variable, as desired. Thus, with separable production

functions, using the MomentsQ in the multi-queue case is not much more difficult than using the

algorithm in the single-queue case.
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Example. Consider a general, but separable form of a clearing function,

pi (Q,)= k- Q . (67)

The system of equations for the expected queue lengths solved at each iteration simplifies to:

M1 Q1  M 1 /3 -var(Qj)=(K- i), for all stations j. (68)
Qj +j (Q, +83)'

The entries of the H matrix used to calculate the queue length variances at each iteration are:

ap (Q) k-M V. (6
H ,aQj. (69)

Thus, it is almost as simple to process the generalized clearing function as the original, single-queue

function.

5.3 The Multi-Queue Form of the MomentsP Algorithm

The equations of the multi-queue MomentsP algorithm appear similar to those of the single-queue

MomentsP algorithm. The computational difficulty, however will be much greater, since finding q(P,)

and its first and second derivatives no longer involves solving a sequence of one-variable equations.

Instead, we have to solve systems of simultaneous nonlinear equations, or estimate the values of q(P,)

numerically. Consequently, the multi-queue MomentsP algorithm will be preferable to the multi-queue

MomentsQ algorithm when the work required to calculate all the first and second derivatives ofq(Pt) is

less than the work required to solve a sequence of systems of nonlinear equations.

As with the MomentsQ algorithm, we find a class of common multi-queue control rules for which

MomentsP is easy to use. Rules in this class, rules with separable inverse functions, have a special

structure making it simple to calculate the first and second derivatives of q(Pt).

We begin this section by deriving the equations of the multi-queue MomentsP algorithm. We

then show how this algorithm becomes simple to use for control rules with separable inverse functions.

5.3.1 Algorithm Development

Step 1: Calculation of E(P). By Proposition 1, E(P) = (I - cD)- i.
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Step 2: Estimate of var(P). The power-series equation of the first-order estimates of var(P) is the same

as it was in the single-station case:

var(P) ~zs Y lcB lET-B's, where B = I - T-1 + -'P-. (70)

Note that P is no longer a diagonal matrix; it is now a general matrix such that

TPj = aqj()/P . This expression follows from the fact that the first-order expansion of

q1 (P)~ q(f) + I.(P - P) -8q(f)/&P , for all stations j. Then, writing all of the first-order

expansions for all qi(P) functions simultaneously yields q(P,) q(f) + T -(P, - F), where the elements of

' are those previously described. Finding ' will require calculating up to n partial derivatives of the

inverse production functions.

Step 3: Estimate of E(Q). A second-order estimate for the expected queue length at each station i is

given by:

E(Q)= q(P)+- e (var(P) V2qj (p)).e, (71)
2

where V2 q, (F) is the Hessian matrix of qj (P).

This step may be where the general algorithm becomes intractable, as the estimate for E(Q) may

require the calculation of up to n3 partial second derivatives (n 2 partial second derivatives for each inverse

production function.) Alternately, if a high degree of accuracy is not required, one can use the first-order

estimates of E(Q), which only requires calculating the inverse production functions for each queue.

Step 4: Estimate of var(Q). We use the procedure of Proposition 4 to calculate var(Q):

var(Q)~ BEB's , where B = I +(D -I)- . (72)
s=O

As with the calculation of var(P), the matrix H must be modified to account for the fact that p1 (Q) is

now a function of multiple queue lengths. The modified 17 has entries:

H.. .p(Q) (73)

These entries come from the fact that, with production functions of more than one queue, the

first-order expansion of p(Q,) is p(Q,), H -(Qt - Q), where H has the entries given above.
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5.3.2 The MomentsP Algorithm and Separable Inverse Production Functions

The MomentsP algorithm can be quite useful on the class of multi-queue production functions whose

inverse production functions are separable. This class has the form:

p = pi (.kuQi, ) for all stations i . (74)

Assume that K, the matrix of ky entries, is invertible. Then when inverted, (74) becomes:

qj(P,) = jkiQ(75)

-Q, = , ku'qi(Pt

where k,' is the ij element of IC'. This formulation makes it easy to calculate the vectors and matrices

needed to run the analytic algorithm. Recall that to use MomentsP, we:

1. Calculate E(P) = (I - uD)- p.

2. Estimate var(P), which requires calculating all of the first partial derivatives of the inverse

production functions.

3. Estimate E(Qj) for all stations i, which requires calculating the inverse production functions and all

of the second partial derivatives of the inverse production functions.

4. Finally, estimate var(Q), which requires calculating the first partial derivatives of all of the

production functions.

Thus, we need to calculate the inverse production functions, along with their partial first and second

derivatives. Equation (75) shows the inverse production functions. The first partial derivatives are:

8q (P)
a P = k- lq i'( ) (76)

and the second partial derivatives are:

a2
= kq"(P),i k;-FB (77)
= 0, otherwise.

Finally, we calculate the first partial derivatives of the production functions. These are also

simple to calculate:
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ap,(Q) = k p k Q for all stations i (78)aQi p t Q

Thus, it is comparatively easy to use the MomentsP algorithm on production rules with separable

inverse functions.

Example. Consider a general form of a clearing function whose inverse production function is separable:

_, = pi(Q) \. (79)
/A + *k Qj

The inverse production functions are:

Q;, =q(P,)= k .,,itVj, (80)

where k.' is the ij element of K-', and where K is the matrix of ku entries. The first derivatives of the

inverse production functions are:

aqj (P) M ku fl
,- M vJ' (81)

aF; (M i- i)2

The second partial derivatives are:

a2q (P) 2M kJ/ if i k 

&F 8Pk (M -F) 3 ' ' (82)
=0, otherwise.

Finally, the first partial derivatives of the production functions are:

api(Q) - IMk/ ,Vi,j. (83)

It is almost as simple to process this alternate generalized form a clearing function as the original, single-

queue form.

6. An Asymptotic Lower Bound on Expected Queue Lengths

So far, the approximations considered in this chapter have not provided any guarantees on how close the

approximations come to the actual moments. We conclude this chapter with an asymptotic lower bound

91



Chapter 3: Models with General Control Rules

on the expected queue length at all stations in a network, provided that the production function used at all

stations is concave. Thus, the bound will apply to most general production functions seen in practice,

such as the Clearing Functions. The bound also becomes tight as the standard deviation of production

approaches zero. Finally, the lower bound is an expression we have seen before - it is the first-order

estimate for the expected queue length.

Define p(Q,) to be a vector-valued function whose ith returned variable is p,(Qt). Then we

have the following proposition to calculate the lower bound.

Proposition 2. Consider a network in which every station's production rule is concave, monotonically

increasing, and has partial derivatives less than one when Qt > 0. Then a lower bound on the steady-state

expected queue lengths, Q , is the solution to the equation p(Q) = P .

Proof. Consider the following nonlinear program, EQ-Opt:

T

min or max im IQl2 (a)
t=1 T 2

subject toP, p(Qt),t = 1.. .T (b) (84)

Qt= Qt + (( - I)Pt_, + p,t = 2... T (c)

Qt O ,t =I ... T . (d)

Pt 0, t =I1... T (e)

We show that Qt = E(Q), and Pt = E(P), for all t, is a feasible solution of EQ-Opt. We first

show that E(Q) and E(P) obey constraint (b). By assumption the production functions are concave, and a

concave functionf has the property that E(f (X)) f(E(X)). This property implies that P p(Q), since

P=E(p(Q)).

Next, E(Q) and E(P) obey constraint (c), since (c) is just the expectation of the inventory balance

equation, Qt = Qt, + (D -I)Pt_ 1 +.6, .

Finally, E(Q) obeys (d) since we assume that negative work-in-queue levels are not allowed,

E(Q) > 0. Similarly, E(P) obeys (e), since negative production levels are not allowed.

Since E(Q) and E(P) comprise a feasible solution, the optimal solution ofEQ-Opt implies a lower

bound for the steady-state E(Q) if the objective (a) is minimized, and an upper bound for E(Q) if (a) is

maximized. The bound created is:
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E(Q*)= lim T ,Qt (85)
T-*,c T (5

- t=1

where Q, *, for all t, is the optimal solution to EQ-Opt.

The program EQ-Opt is unbounded if it is maximized, since we can quickly verify that Pt =0

and Q, arbitrarily large for all t is a feasible solution.

This leaves the minimization of EQ-Opt, which we do by term-by-term minimization. Since the

objective function (a) is a summation of norms of the Qt 's, it will be minimized by making each Qt as

small as possible. Thus, we begin by setting Q, = 0. We next consider the successive Qt 's. Consider

constraint (c), which dictates Qt as a function Q,_1 and Pt_-. To minimize Q,, we need to make the

quantity added to Qt_1, ((D - I)P,_,, as negative as possible. Now, (D is a MR-model workflow matrix,

so we assume that (D is a positive matrix with a spectral radius less than one. Then, (( - I)P'_ is most

negative when Pt 1 is as great as possible. Constraint (b) dictates that Pt p(Qt),Vt , so Pt, is

maximized by setting P, = p(Qt),Vt. Substituting this value for Pt into constraint (c) yields a recursion

equation for every Qt that minimizes EQ-Opt:

l* = 0,(86)
Qt* = Q,_1 *+((D - I). p(Qt-, *)+ p,t = 2 ... T.

In steady-state, this recursion equation becomes:

(1 (*) = (87)
-> p(Q *) = (I - 4) * p = E(P)

which is the system of equations that must be solved to yield a first-order estimate of E(Q). It remains to

show that Q, * -+ Q *; if so, Q * will be the desired lower bound on E(Q). We show a stricter condition

in the following lemma, the proof of which is given in the appendix at the end of this section.

Lemma. Qt* - Q *, where Q * is the solution to the equation p(Q*) = P . Further,

0=Q , * -Q,* <Q* for all t.

Since Qt * -+ Q *, and 0 = Q,* Q,* Q *, we have that the sequence of Qt *'s both converges

and is bounded. Thus, we immediately have:
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Qim = * (88)
T- t=1

where Q * is the solution to the system of equations p(Q)= E(P). This proves the proposition. D

The production rules covered by this proposition are likely to be those most often used in

practice. Presumably, most rules will feature production increases in response to increasing queue

lengths, but that the rate of these increases diminishes; these conditions will create production rules that

are monotonically increasing and concave. Further, with a monotonically increasing and concave

function, the condition that the partial derivatives be less than one simply ensures that a station will not

produce more work than it has in its queue.

Next, we note that this lower bound is tight. If the variance of production at all stations is 0

(implying the arrival streams to all stations have a variance of 0), by definition the (now deterministic)

steady-state queue lengths at all stations will be the solution of p(Q) = P.

An important open question would be to find a valid upper bound on E(Q). Unfortunately,

finding such an upper bound would likely be much more difficult than finding the lower bound. At the

least, the upper bound would depend on the input and / or production variances, since it can be shown that

the an infinite arrival variance corresponds to an infinite expected queue length. Consequently, the

approach used in Proposition 2 (which only uses expected queue lengths and production quantities) could

not be applied directly.

Appendix: Proof of the Convergence Lemma in Proposition 2

Lemma. Q, * - Q *, where Q * is the solution to the equation p(Q*)= P. Further,
0=Q , * -Q,* <Q* for all t.

Proof. We compare the difference between Q * -Q * and Q*-Q,_ *:

Q*-Q * _Q*-(Qt_ *+(( -I)p(Qt,*)+p)

Q * Q tI Q~- * *i (89)
=1- (DI)p(Q. 1 *)+ p

Q*-Q,_, *

To show convergence and that 0 = Q* Q,* Q *, the right hand side of (89) must be between 0 and 1.
This is equivalent to showing:

(Q * -Q-, 1 *)> ((D -I)p(Q I,*) + p, for all t, and (90)

(D - I)p(Qtl *) + p >0, for all t . (91)
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We show that (90) and (91) hold through an inductive proof.

Invariant: this proof uses the invariant condition Q *-Q,, * >0.

Base case: for Q1 *= 0 , we have that Q * -Q * >0. Then (90) holds since:

(Q *Q *)> ((D - I)p(Q *)+ p (92)
=>Q* >.

Further, (91) holds since:

(D - I)p(Q*)+ p = p > 0. (93)

Induction step: assume that Q * -Q_ * >0 .
We first determine whether (91) holds. The invariant condition, the monoticity of the production

functions, and the fact that (D has a spectral radius less than one requires that:

((D - I)p(Q,_l *) > (D - I)p(Q*). (94)

Further, from (86), ((D - I)p(Q*) + p = 0. These two facts imply that (D - I)p(Q,,*) +,u >0, so

(91) holds.

We now consider whether (90) holds. By assumption, Q * -Q *>0 . Define , to be the

nonnegative vector such that Q* = Q * *+P,_ . Substituting, we rewrite (90) to be:

(Q * -(Q *-pt-)) > ((D - I)p(Q * -Pt_,)+ p (5
=: Pt-l >(D-1)p(Q *-P,-j)+ p.

By assumption, the partial derivatives of p(Q, *) are less than one, which implies that:

p(Q*) --p] < p(Q*-Pt-,) (96)

Now, consider the following:

P,_-1 >((D - 1)(p(Q*) - P -,+ p

: P _,1> (I -F)p,, +(D -I)p(Q*)+ p (97)

> P t_1 > (I - I)ps

The transition from the second to third step of (97) comes from the fact that

(cD -I)p(Q*)+ p = 0. The final inequality of (97) holds since D > 0 and P,_, > 0. But then, (97),
combined with inequality (96) implies that that (95) holds. Then (90) holds, as desired.

Finally, to complete the induction, we need to show that the invariant will hold for the next

iteration, i.e. that Q *-Qt*>0 :

= (Q*-Q * (Q*-Q t*>-(((D- I)p(Q * p) (98)
=(Q*-Q *)0,

since condition (90) implies that (Q * -Q,_ *)> ((D - I)p(Q,,*) + p .

Thus, we have proven that Qt* -+ Q *, and 0 = Q, * Q* Q * for all t. D
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Chapter 4. Models That Maintain a Constant Inventory

1. Introduction

In previous chapters, we have assumed that new work arrivals to job shops come from

distributions independent from the amount of work in the job shop. In this chapter, we consider constant

inventory models of job shops. In these models, there is a set of stations whose inputs we control; we

adjust these inputs to keep constant the weighted inventory of the shop.

Keeping the inventory in a shop constant is a much-used strategy to control inventory and work-

in-progress levels, along with production variability, and has been studied in detail. Recent work on

constant work-in-progress rules includes that of Spearman, Hopp and Woodruff (1989), Duenyas, Hopp

and Spearman (1993), Duenyas and Hopp (1993), Duenyas, Hopp and Spearman (1993), Hopp and

Spearman (1996), Gstettner and Kuhn (1996), and Herer and Masin (1997).

For the sake of simplicity, the models we will study in this chapter will be identical to the

Tactical Planning Model (TPM) with the exception of the new-work arrival processes. Thus, we assume

that stations process a fixed fraction of the work in their queues each time period, or P, = a Q, , and that

arrivals from upstream stations are linear combinations of the work produced upstream plus a noise term.

We will show how to extend the TPM to keep the shop's work-in-progress constant, and how this

extension significantly reduces the variability of the shop's production. Section 2 of this paper quickly

reviews the original TPM's moment equations. Section 3 expands on the TPM equations to derive the

constant-inventory tactical planning model. Section 4 discusses how the analyst can set inventory

weights and initial inventories to optimize the performance of the job shop. Finally, section 5 tests the

constant-inventory model on an example job shop, which demonstrates the advantages of the model over

both the TPM and a constant-release model where we keep the input to a station constant. Further, the

example also shows the importance of using the optimal weighting vector - we find that using a simple

weight vector (for example, all weights equal one) may result in very poor performance.

2. Review of the Tactical Planning Model

Recall that the Tactical Planning Model (TPM) uses the simplest possible linear control rule to determine

the amount of work to perform each period. The rule is:

.P = (1)

where Pi, is the production of work station i in time period t, Q,, is the work-in-process or work-in-queue

at the start of period t, and the parameter ai ,0 < ai 1, is a smoothing parameter.
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The characterization of work arrivals is also simple. A workstation receives two types of arrivals.

The first type comprises new jobs that have their first processing step at the station. The second type

comprises jobs in process that have just completed processing at an upstream station.

We model the arrivals to a station from another station by the following equation:

A, = gPi,t- + -yt - (2)

In this equation, AU, is the amount of work arriving to station i from stationj at the start of period t, #U is a

positive scalar, and ey, is random variable. Thus, we assume that one unit (e.g. hour) of work at stationj

generates #U time units of work at station i, on average. The term eg, is a noise term that introduces

uncertainty into the relationship between production atJ and arrivals to i; we assume this term is a serially

i. i. d. random variable with zero mean and a known variance.

Then, the arrival stream to station i is given by the following:

Ai= Au, + Ni, (3)

where Nit is an i. i. d. random variable for the work load from new jobs that enter the shop at station i and

at time t. Substituting for AUg, we find:

Ai,= ## j,,-1 + jit , where eit = Ni, + ut (4)

Note that e;, represents the work arrivals not predictable from the production levels of the previous period,

and includes work from new jobs and noise in the flow. By assumption, the time series ei is independent

and identically distributed over time.

Next, substituting the production rules and the characterization of work arrivals into a standard

inventory balance equation yields the following recursion equation:

Pt = (I - D + D(D)P,_, + DE, . (5)

Here, Pt = .P,..., Pt }' and Et = {e1t,..., -,}' are column vectors of random variables, n is the number of

workstations, I is the identity matrix, D is a diagonal matrix with {a1 ,... , a,,} on the diagonal, and (D is an

n-by-n matrix with elements #u. By iterating the equation and assuming an infinite history of the system,

we rewrite the above equation as the following infinite series:

Pt = (I - D + DD)sDsts. (6)
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To calculate the moments of the production random vector Pt, we denote the mean and the

covariance for the noise vector Et by p = {u, -,n ', and by E = t-, , respectively. Then, the

expectation of the production vector is given by:

E[Pt = (I -D+DF)s Dp,
S=O(7)

provided that the spectral radius of D is less than one (see Graves 1986).

The covariance matrix of production, S, is given by:

S = var(Pt) = IBDEDB's' (8)
S=O(8

whereB = I - D+ DD.

Again, this infinite series converges if the spectral radius of (D is less than one.

3. The Constant Inventory Model

In this section, we extend the TPM equations to create the Constant-Inventory Tactical Planning Model

(CI-TPM). This model requires that the weighted inventory of the shop is equal to some constant, W.

Mathematically, this constraint is:

wiQ, = W,Vt. (9)

Here, w; is a non-negative weight for the inventory or queue at station i. As the work-in-queue Q,, is work

load at station i, the weights would reflect how to combine workloads at different stations into a common

measure of inventory or workload in the shop.

The constraint (9) provides a very general mechanism for modeling workload-regulating control

polices such as CONWIP (c.f. Hopp and Spearman, 1996) or Drum-Buffer-Rope (c.f. Goldratt, 1986).

The constraint assures that the weighted workload in the shop remains constant, where we only require

that the weights be nonnegative. We can model different polices by the choice of weights. For instance, if

w; is the number of jobs per unit of work at station i, then we are regulating the number of jobs in the

shop. Alternatively, if wi is the amount of remaining work for the shop bottleneck(s) per unit of work at

station i, then we are regulating the work load upstream of the bottleneck(s). Similarly we can regulate the

amount of work at or destined to any subset of the stages in the shop.
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We can also use the above constraint to set constraints on production. Since we assume a linear

control rule (1) for setting production, we can use (9) to model any linear constraint on the production

rates, e. g.,

viFJ, =V,Vt. (10)

For instance, if the shop had a single bottleneck, we might impose a simple constraint that specifies the

bottleneck's production rate and then use the model to characterize the work flow throughout the shop.

To adapt the TPM to include the constraint (9), we assume that the initial work-in-queue Qi

satisfies (9). Then to assure (9) for all time periods, we must have that

W (Q, -Q, = 0, Vt . (11)

The difference between Q, and Q,, equals arrivals of new work less completed work, i.e.

Q,, - ,1 = A, - it. Then we can rewrite the above equation as:

w; (Ai, - P,_,)=0, Vt (12)

In order to achieve constant inventory, as specified above, we need to assume that we can control

the release of work to the shop in some way. In particular, we assume the following:

* In each period we have uncontrolled and controlled releases. As with the TPM, the uncontrolled

releases are given by Ni, , an i. i. d. random variable for the work load from new jobs that enter the

shop at station i and time t. In addition, to assure that (9) holds, we release additional jobs; define Ri,

to be the work load from these jobs that enter the shop at station i and time t. We allow R;, to be

negative, denoting that we would remove work from the uncontrolled releases, or even from the shop

floor. Nevertheless, we assume that, on average, each station receives work each time period, so that

work removals are infrequent. We also assume that work queues are generally large enough that

removing work will not require us to make a station's work-in-progress negative.

* We assume that each period we release r, units of work to the shop, where work r, is set to assure that

(9) holds. Each station i receives a fixed fraction pA of the controlled-release work load r,. For

example, one station would always receive 70% of the work load, and another station would always

receive 30%. Thus, we have that each station i receives Ri, =,gir . Note that there are no controlled

releases to stations withp3, = 0.
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* In order to have a controllable system, we require that w's > 0, where w = {w1,..., w, }, and

p ={,,..., 8, }. If this is not true, then we cannot assure that (9) holds because we can only release

work to stations that appear in the constraint with zero weights.

Now we write the arrivals to each station as:

Ait = iPji+ + +Ni+ R , =1,..., N (13)
j I

Here, Ri, is the work that arrives to station i at time t to help maintain constant inventory.

Substituting (13) into (12), we find:

N

Wi O#P + Nit + jc, + R, - =O,0Vt. (14)

Solving for the sum of the Ri,'s, we find:

N N

1wiRi= wP %, - #OUPi'tz - Nit - Ijt Vt. (15)
i=1 i ~ j

We can rewrite (15) in matrix-vector form as follows:

w'Rt = w'((I - )Pt- -O (16)

Here, w = {w,...,,}, Rt = {R,..R.,}, and the other vectors and matrices are the same as in the TPM

model. From our previous discussion of inputs to the controlled stations,

R, = r, .j = rp (17)

where r,, a scalar, is the amount of work that arrives to the shop to maintain constant inventory, and the

Pi's are "templates" for the constant-inventory releases. Then,

W'1Rt = r, (w'p) = w'((I - I)Pt-, - E t (18

Without loss of generality, suppose that we choose w and P such that w's = 1. We can do this since

w'p > 0. Then,
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r = w'((I - b)P, -E t ), and
t (19)

R, = pw'((I - (D)Pt_., - Et ).

Now, if we write (13) in matrix form, we find:

At = DPt- + E, + R(
= 4DP,_ + E, + pw'((I - D)Pt, - Ft).

As in the TPM, the station productions at time t are given by the following equation:

Pt =(I - D)P,_I + DAt,
=(I - D)Pt_, + D(FPt, + et + pw'((I -t)Pt_1 - et)),

which can be simplified to the following form:

Pt = (I - D+ DF)P 1 + DGt , where

F = (D+ pw'(I - (), and (22)

G =I - pw'.

Note that (22) has the same form as (5), the recursion equation for the TPM. In comparing (25) to (5), we

have replaced (D by F, and c, by GEt .

We now prove three propositions about the constant inventory model in order to characterize

whether the moments of Pt converge as t -+ oo, and to what.

Proposition 1. If the spectral radius of the work flow matrix (D is less than one and if the vector of
inventory weights are such that F > 0 , then the spectral radius of the matrix F is equal to 1; furthermore,
the left eigenvector of F is the vector of inventory weights w.

Proof. The proof that w'F = w' is immediate from (22) and the assumption that w's = 1.
Since F is a positive matrix, a result from the Frobenius theory of reducible nonnegative matrices

(c.f. Gantmacher, 1959, p. 66) guarantees that F has a maximum eigenvalue A( 2 0, and associated left

eigenvector y' such that y'F = 20y'. From (22), we can rewrite F as: F = cD + P( w' - w'ci). Suppose

AO >1. We consider three cases:

(i) y'3 = 0. Then y'F = y'D + y'P(w'-w'D) = y'F = 2y'. This contradicts the assumption that

the spectral radius of the work flow matrix (D is less than one.

(ii) y'p > 0. Without loss of generality, we can re-scale y' so that y'p = 1. Then y'F =

y'F + y'P(w'-w'F) = y'1 + (w'-w'40) = AOy', and jZOy'jj > 1y'll since AO >1. Thus we have

1(y'--w') > |(y'-w') . This contradicts the assumption that the spectral radius of the work flow
matrix cD is less than one.
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(iii) y'p <0 . Without loss of generality, we can re-scale y' so that y'P = -1. Then y'F =

y'( + y'p(w'-w' () = y'( - (w'-w'O) = Aoy', and | IOy'||>||y'l since AO > 1. Thus we have

J(y'+w')( > f(y'+w')J|. This contradicts the assumption that the spectral radius of the work flow

matrix (D is less than one.

Thus, we cannot have Ao > 1. Since w'F = w', we have that the maximal eigenvalue AO =1 with

associated left eigenvector w'.

To interpret Proposition 1, we note that F 0 is equivalent to the following:

S+ W , - Wk k, j 0,Vi,] (23)
k

The left-hand-side of (23) is the expected amount of work that will arrive next period at stationi

per unit of work completed at stationj in the current period. The first component, #;, represents the direct

flow from stationj to station i. The second part of (23) corresponds to the amount of work to be released

to station i per unit of work completed at stationj. A unit of work at stationj will reduce the work load

constraint directly by wj. But this unit of work at stationj will increase the workload at downstream

stations, and thus increase the workload constraint by lk wk#ki . Thus, the difference is the impact on

the workload constraint; the fraction$8i of this impact will result in new releases to station i.

Thus, the condition that F 0 assumes that for every pair of stations (i,j), the expected amount

of work that arrives at station i per unit of work completed at stationj is non-negative. In other words,

production at stationj would not on average reduce the arrivals at station i in the next period. As such,

this is seems to be a fairly weak restriction on the choice of weights.

To show that P, converges if F's spectral radius equals one, we rewrite (22) as

P, =(I - D+ DF)'DQO + (I - D+ DF)DG,,s (24)
s=O

where we substitute Po = DQ, for Q, being the initial work-in-queue. We now prove that the expectation

and covariance matrix of P, both converge.

Proposition 2. Suppose we have a job-shop model in which the expression for the steady-state

production vector, P, is given by the formula:

P = (I - D + DF)'DQO + (I - D + DF)s DGe_ (25)
SAO

Assume that the spectral radius of F = 1. Then the expectation of P converges to a finite value.
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Proof. Define B = (I - D + DF) . B's largest eigenvalue equals the largest eigenvalue ofF (the argument

is identical to that given in Graves, 1986), so the spectral radius ofB is 1. Further, we see by substitution
that w'D-' is the left eigenvector of B corresponding to B's maximal eigenvalue:

w'D-'B = w'D (I - D + DF),

=w'D-1 - w' + w'F, (26)

= w'D-1 .

Here, we use Proposition 1 for the last step. We then have the following decomposition of B':

BS =Is v1w'D- 1 + Es. (27)

Here, 1 is the largest eigenvalue of B, v, is the corresponding right eigenvector of B, w'D-' is the

corresponding left eigenvector of B, and E is an orthogonal matrix such that vlw' D-'Es = 0. Further, E

has a spectral radius strictly less than one. By substituting the expression for Bs into the formula for P,
and multiplying through terms, we find:

P =B"DQO + I (Sv 1w'D'DGc,_, +E'DGe,_,). (28)
S=O

We know that B'DQO converges to a finite value, since the spectral radius of B is one. This leaves the

infinite summation. From (22), we immediately find thatw'G = 0, so the first term in the summation is
zero. But then, since the spectral radius of E is less than one, the second term must converge to a finite
value. Consequently, the expectation of P converges to the following:

E[P]= B-DQ0 + E DG(
S=O (29)

= v1w'QO +(I-E)-'DGt,

where pI = 1pu,..., p,} ' is the expectation of the noise vector 6t. 0

Proposition 3. Suppose we have a job-shop model in which the expression for the steady-state
production vector, P, is given by the formula:

P =(I - D + DF)"DQO + (I - D + DF)sDGets . (30)

Assume the spectral radius of F = 1. Then the covariance matrix of P converges to afinite value.

Proof. Define B = (I - D + DF). The covariance matrix for P is denoted as S and given by:

S= varL1BsDGs,_,,

= varh EsDGe j, as shown in Proposition 2, (31)

= ZEDGZG'DE' .
S=O

Here, E is the covariance matrix of the noise vector. This summation converges, as the maximal
eigenvalue of E is less than one, as shown in Proposition 2. 0
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Note that it is possible to generate a set of weights where the resulting F is not a positive matrix,

and where E(P) and var(P) do not converge. Indeed, some natural choices for weight vectors (such as w

is a vector of ones) can create instabilities. For example, consider a two-station Tactical Planning Model.

Station one receives an average of one unit, of work each period, and each unit of work at station one

results in an average of ten units of work at station two ((D21 = 10, all othe- (D entries are zero). We

convert station one into a constant-inventory station, so that A = 1, and 8 2 = 0 . The vector of weights is

just w = (1,1)'. Using the relationship (22) for F, we find:

F= 1, and Ao =-10,2i =-1.
10 0

Assume that the lead time at each station, Di1 =1. Then, if we attempt to use the results of Propositions 2

and 3, we will find that the resulting expressions do not converge.

Intuitively, what is happening is that a small fluctuation of t at station 2 immediately produces a

-8 change to the arrivals at station 1 to keep inventory constant. In the following period, however, said

-(5 change at station 1 induces a -108 fluctuation at station 2. This large fluctuation sets off a

reinforcing loop between stations one and two, causing the "inventory" and "production" quantities to

oscillate in ever-widening levels.

4. Setting the Vector of Inventory Weights and the Initial Inventories

4.1 Making Initial Inventories Large Enough to Address Production Fluctuations

Equation (18) defines the constant-inventory releases, which tell the shop to increase or decrease

work at the controlled stations depending on the most recent inventory fluctuations at the other stations.

Increasing work presents little difficulty. However, decreasing work requires that the typical work-in-

progress at the controlled stations be great enough that the typical production less any decreases be

greater than zero. In theory, this is not possible, since we assume that the fluctuations are normally

distributed. In practice all fluctuations will be bounded, so we expect the model to work well if the

prescribed input is greater than zero "most of the time".

For example, if the fluctuations are approximately normally distributed, and we let "most of the

time" be more than 97% of the time, we can develop a formula to find acceptable initial inventory levels.

We want to have Qi, for controlled stations positive more than 97% of the time, which, in steady state, and

recalling properties of the normal distribution, is equivalent to having E[Qi]>2 var[Q,]. Since
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p = aQ,, the previous inequality is equivalent to a 1 E[P] 2a, -var[P], which simplifies to

E[P]2 2var[ ] .

Substituting in the formulas for the expectation and variance of P that we found in the previous

section, we require that we set Q0 large enough that:

E[I] 2 var[PJ]= 2 S, (32)

for all controlled stations i.

In addition, depending on the job shop, we might ensure that work arrivals to stations are almost

always positive, as well. (The latter is important in shops where work cannot simply be removed from

queues.) By definition, we have that arrivals At = DPt + E, . Again assuming that arrival fluctuations are

approximately normally distributed, we want the expected arrivals to be greater than or equal to twice the

standard deviation of the arrivals. Mathematically, we want:

E[A;]22 var[Ai] (33)

for all controlled stations i. By taking moments of A, = DPt + Et, we find that E[A]= DE(P)+ p, and

var[A] = 4'var(P)4D + L.

4.2 Creating Equivalent TPM and Constant Inventory Models

In this section, we create constant inventory models that are equivalent to TPM models of the

same job shop. By equivalent we mean that all stations have the same expected production, expected

queue levels, and expected exogenous inputs in both models.

In this section, we will compare similar variables from the TPM and the constant inventory (CIM)

models. We denote TPM variables with the subscript TPM, and CIM variables with subscript CI We

first show how to create a CIM model from a TPM model.

Proposition 4. (TPM => CIM) Suppose that we have a CIM model and a TPM model with identical

flow matrices D, and matrix ofsmoothing factors D. Suppose that the TPM model has vector of expected

inputs gTpm. Assume that EI[PCI,O] = E[PTpmJ, where E[PcI,0] is the vector of initial production

quantities in the CIM model. Also assume that tTPM e Fc. Then, given any CIM inventory vector w

that satisfies w' (pM P- pi c ) # 0, we can find a CIM template vector P such that w' P > 0, and:

(i) The models have the same expected production vectors, or E [PcI = E [PTPM .
(ii) The models expect to receive the same work arrivals from outside the shop each time period, or

EIR+ sci = PTPM -

(iii) The expected weighted inventory in the shop is W =w' D-'E(PTpm).

106



Chapter 4: Models That Maintain a Constant Inventory

Proof. For the CIM model, the expected production at time t satisfies the following recursion equation:

E[PcIt I = (I - D + DF)E[PcI,t-j I+ DGtc, . (34)

We are interested in finding a fixed-point solution to (a), such that E [PcI,t= E[PCI,t-1 . In particular,

suppose we can find a template vector P such that E[PcII]=E[Pc,- 1] =E[PTpm]. Then, if

E[PCO] = E[PTpm, it follows that E[PC1 ]=.E[Ppm . Mathematically, we want to solve the following

equation for P:

E[Prpm I= (I - D + DF)E[PTpm I+ DGcip,

- E[Psm (I - D + D[D+ Pw'(I - (D)DE[PTpmI + I - pW')i1 - (35)

The solution to (35) is:

(I - 4)E[Ppm ]-I , (36)
w'((I - ')E[Prm] - tcil)

which is well-defined provided that (I - (F)E[PTpm 1 c i and w's > 0. Note that

(I - D)E[PTP I = lTPM follows immediately from the TPM formula for E[PTPM]. Then we can rewrite
(36) as:

= TPM - PC[ (37)

W'([TPM -C[)

Thus, we have found a P such that E[PcI]=E[PpI and w'p =1, provided that TPN # sCI and

W'I(sTM -PCI ) #0.-

Further, since E[Qc1 ]= D~'E[Pcl], we immediately have that E[Qc 1 ]= E[QTPM], and that the

total expected weighted inventory in the shop is W = w'D-E(Ppm).

It remains to show that with this p, E[R] + sC, = PTPM .We set p so that E[PCI] E[Pp 1. By
the inventory balance equations, (2), we have that:

E[Qc I= E[QcI- E[PCI ]+ E[Ac 1 , and E[QTPM I= E[QTPM I- E[PTPMI + E[ATPM ]. (38)

We have that E[Pc] ]= E[PTpm 1, and we have shown that E[Qc1 ]= E[QTPM ]. Then E[Ac I = E[ATPM ] .
Substituting yields:

DE[PCII +E[R] + = E[AC1 I = E[ATPM J= DE[Ppm + P, (39)

It immediately follows that E[R] + PC,= 1TPM -

The requirement that w'(ITPM -PO ) 0 says that the weighted inventory being kept constant

must include at least one of the constant inventory stations. Consequently, it is easy to create a CIM

model from a TPM model, as follows:

1. Compute the expected production vector for the TPM model, E[PMpI.
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2. Select the stations that receive constant-inventory rule inputs by giving them non-zero 8j's in

accordance with formula (37), so that P = (ItTPM - Pci XV'(FpTPM -PCI '
3. Create the equivalent constant inventory model by setting the CIM's initial inventory levels to

Q0 = D-'E[Pp ], and noting that the total expected weighted inventory is W = w'D~'(ETPM).

We now show how to create a TPM model from a CIM model.

Proposition 5. (CIM => TPM) Suppose that we have a CIM model and a TPM model with identical

flow matrices (D, and matrix of smoothing factors D. Suppose that the CIM model has vector of expected

inputs pcl, weight vector w, and template vector J. Then we can find a ptTPM such that E[Pcj] =

E[PPM] and E[R] + scl = PTPM '

Proof. Note that E[Pci] solves the steady-state recursion equation:

E[PcI =(I - D + DF)E[PclI ]+ DGc(4
= (I - D + DF)E[PcI + (Dp w'(I - I1)E[PclI + D(I - pw')ptcj)(

Set TPN = P w'(I - (D)E[Pci ] + (I - pw')jci . Substituting this expression into (40) yields:

E[PcI= (I - D+ D )E[PcI ]+ D ,TPNI. (41)

Further, note that E[PTPNII is the unique solution to the TPM recursion equation:

E[Pp ]= (I - D + DD)E[Pp, ]+ DPT,, . (42)

But, since (41) and (42) are the same equations, we immediately have that E[Pc] = E[PTPM] provided that

,TPM = p w' (I - (D)E [Pc1 ] + (I - Pw')pci . Then, by applying (19) to the latter equation, we have that

E[R] + sic, = p1TPM - E

4.3 Minimizing Production Standard Deviations

In this subsection we show how to minimize production standard deviations under the constant inventory

rule by optimizing the inventory weights and the choice of AI's . In general, we will have two motivations

for doing so. First, minimizing production standard deviations may often be useful in just-in-time

environments, or in minimizing wear on machines caused by large production fluctuations. Second, a

common way to set a station's capacity is to set the capacity equal to the expected production plus some

constant times the standard deviation of production; doing so will allow the machine to process the

desired amount most of the time. For example, if production fluctuations are normally distributed, setting

the capacity at the station to be the expected production plus twice the standard deviation of production

will allow the station to process the desired amount -97% of the time. Thus, minimizing standard

deviations directly translates to reductions in required capacity and cost savings.
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We assume that we have an existing TPM job shop that we would like to convert to a constant

inventory job shop. Thus, in the new CIM shop we want to have E[QcI] = E[QTPM] and

E[Pcj] = E[PTpM ]. In Proposition 4, we found that meeting these requirements is equivalent to ensuring

that w'(sTPM -- )# 0 and setting p =(ftTPM - c XW'(1LTPM - CI)) ' Consequently, finding the

CIM shop that minimizes production standard deviations is a nonlinear programming problem with w

and pcl as decision variables. We have the following nonlinear program, S-MIN:

min f(w, P)
(S-MIN) s.t. w > 0, (43)

P =((PTPM - PCI XW(TPM -
1 I

0 sCii M ITPM'

where f(w, P) is given by the following algorithm:

1. Generate the corresponding F and G matrices. Calculate the resulting covariance matrix of
production, var(P), using Proposition (3).

2. Let f(w, P) be the sum of the square roots of the diagonal entries of var(P) (the diagonal entries of

var(P) are the station variances).

Despite its complicated appearance, f(w, P) is a continuous and continuously differentiable function that

has been fairly easy to minimize in practice. First, we move the constraint on 3 directly to the objective

function, yielding a new nonlinear program with an objective function f(w,scl) and without the third

constraint. This new nonlinear program has only orthant constraints, and there are special methods that

solve nonlinear programs with orthant constraints quickly.

In particular, to find the optimal solution for the examples in the next section, we employ the

Two-Metric Projection Method (c.f. Bertsekas, 1995c, 224-229) with diagonally scaled steepest descent

iterations (taking numerical approximations of derivatives). Using this approach, an SGI workstation

found the optimal solution in well under a minute of computing time.

4.4 Comparison of Constant Inventory and Constant Release Models

In this subsection we compare the constant inventory model with a constant release (CR) model. In a

constant release model, we add the same amount of work to the "controlled" stations each time period,

regardless of queue levels at other stations. We can use the nonlinear program in section 4.3 to prove

that, under certain conditions, constant inventory models always achieve lower variances than constant

release models.

109



Chapter 4: Models That Maintain a Constant Inventory

As in section 4.2, we will compare similar variables from the constant release and constant

inventory models. We denote constant release variables with the subscript CR.

Proposition 6. Suppose that we have a constant inventory (CI) model and a constant release (CR) model
with the following properties:
* The CI and CR models have identical flow matrices (D, matrix of smoothing factors D, vector of

expected inputs pt, and input covariance matrix E.
* Define all stations that receive input from outside the system to be controlled stations. Controlled

stations behave according to the constant inventory control rule for the CI model, and receive a
constant amount of work each period in the CR model. Let the controlled stations be numbered 1 to
K. Then the exogenous variance at each controlled stations in either model is 0, or

var[Nic ] = var[NicR] =0 , for stations 1 to K.

* E[QCRJ = E[Qci] and E[Ri'cI] + pi,ci = prpm for all controlled stations i.

Define g(S) to be 1 S11 , where S is a production covariance matrix. Further, for the constant

inventory model, g(Scd is found as the optimal value of the program S-MIN. Then:

* (Case 1) If none of the controlled stations receive input from another station, g(SC, ) g(SCR).
* (Case 2) If there is only one controlled station, g(SC,) g(SCR).

Proof. Case 1: Consider the following weight vector:

wi = 1, i a controlled station{C = w = 0, otherwise (44)

Choose pc, = 0 , so that all arrivals to the controlled stations come only from constant-inventory arrivals.

Clearly, we and pc. is a feasible solution to the nonlinear program. We now determine whether we
determines a constant release policy identical to that of the CR model.

This weight vector requires that Qi,, = K Q,, 1 . By assumption, none of the controlled

stations receives input from other stations, so they never see arrival variances resulting from fluctuations
at other stations. Further, the exogenous variances at all controlled stations are assumed to be zero. Then
the controlled stations process exactly the same amount of work each time period. Then, satisfying the
constant inventory constraints forces the controlled stations to receive exactly the same amount of work
each period, as in the constant release model. Further, since we require that E[R] +pc = ITPM , wC will
cause the constant inventory model to behave just like the CR model.

Consequently, for this case we have found a feasible solution to the nonlinear program that
duplicates the CR model. Then g(SCI) g(SCR).

Case 2: Consider the same weight vector we presented in case 1, and set pc = 0 . As in Case 1, w, and
pcl is a feasible solution to the nonlinear program.

Note that a constant inventory model with this feasible solution does not correspond directly to a
constant release model, since the controlled station adjusts for fluctuations in the arrivals from the other
stations. Thus, the inventory in the controlled station will remain constant, whereas the inventory in the

constant release station will fluctuate. Then, for controlled station i, 0 = var(I0,ci) var(,CR).

By definition, the work that arrives at any stationj from station i is given by Ajit = 1DjiPL, + .6, .

Then var(A 1) = ( ) var(P,) + var(cji) . But then, the fact that var(Jc%) var(Pi,CR) implies that

var(Ajic) var(Aji,CR). The latter fact directly implies that var(Pj.c )! var(Pj,CR), for all stations j,
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since all other model parameters are the same for the CIM and TPM models. But then, since g(S) directly
increases with respect to the var(P)'s, g(S I wC ,0) g(SCR). Since we have found a feasible solution to

S-MIN whose objective value is less than g(SCR), we immediately have that g(SC1 )! (SCR

5. An Example

We illustrate the use of the constant inventory model with the same example given in Graves (1986).

This example corresponds to a job shop that produces spindle components for grinding machines. The

job shop consists of ten stations, and the work flow is described by the matrix (D given in Table I. The

only station that receives work from outside the network is station 1 (the lathe); it receives 4 hours of

work, on average, each time period.

Recall that (D is not a probability matrix; its elements show the expected amount of work

generated at a subsequent station by a fixed amount of work at the current station. For example, one hour

of work at station 8 creates, on average, 3.43 hours of work at station 9.

Table 1 -- Work Flow Matrix for the Example

From Work Station
To Work Station 1 2 3 4 5 6 7 8 9 10
1 (lathe) 0.11 0.68
2 (copy lathe) 0.15
3 (drill press) 0.04 0.01 0.71 0.6 0.07
4 (milling) 0.01 0.41
5 (rough grinder) 0.03 0.37 1.36
6 (internal grinder) 0.24 0.15 0.13
7 (thread cutting) 0.10
8 (hole abrading) 0.01 0.22 1.00
9 (precision grider) 3.43
10 (ultra-precision grinder) 1.16

To test the performance of the constant inventory model, we perform a 2k design test, as follows. We

consider pairs of stations (1 and 2, 3 and 4, etc.), and we alternate between giving the pairs "high" input

variances and "low" input variances. Each "high" station has an input variance of 4, and a lead time of 4.

Each "low" station has an input variance of 0.05, and a lead time of 2. There are 32 test cases formed by

choosing all ways to assign "high" or "low" to the station pairs. Table 2 shows the input variances and

lead times for each test.

Table 2 -- Tested Input Variances and Lead Times

Station Input Variances Station Lead Times Station Input Variances Station Lead Times
Test 1,2 3,4 5,6 7,8 9,10 1,2 3,4 5,6 7,8 9,10 Test 1,2 3,4 5,6 7,8 9,10 1,2 3,4 5,6 7,8 9,10
1 0.05 0.05 0.05 0.05 0.05 2 2 2 2 2 17 4.0 0.05 0.05 0.05 0.05 4 2 2 2 2
2 0.05 0.05 0.05 0.05 4.0 2 2 2 2 4 18 4.0 0.05 0.05 0.05 4.0 4 2 2 2 4
3 0.05 0.05 0.05 4.0 0.05 2 2 2 4 2 19 4.0 0.05 0.05 4.0 0.05 4 2 2 4 2
4 0.05 0.05 0.05 4.0 4.0 2 2 2 4 4 20 4.0 0.05 0.05 4.0 4.0 4 2 2 4 4
5 0.05 0.05 4.0 0.05 0.05 2 2 4 2 2 21 4.0 0.05 4.0 0.05 0.05 4 2 4 2 2
6 0.05 0.05 4.0 0.05 4.0 2 2 4 2 4 22 4.0 0.05 4.0 0.05 4.0 4 2 4 2 4
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Station Input Variances Station Lead Times Station Input Variances Station Lead Times
Test 1,2 3,4 5,6 7,8 9,10 1,2 3,4 5,6 7,8 9,10 Test 1,2 3,4 5,6 7,8 9,10 1,2 3,4 5,6 7,8 9,10
7 0.05 0.05 4.0 4.0 0.05 2 2 4 4 2 23 4.0 0.05 4.0 4.0 0.05 4 2 4 4 2
8 0.05 0.05 4.0 4.0 4.0 2 2 4 4 4 24 4.0 0.05 4.0 4.0 4.0 4 2 4 4 4
9 0.05 4.0 0.05 0.05 0.05 2 4 2 2 2 25 4.04.0 0.05 0.05 0.05 4 4 2 2 2
10 0.05 4.0 0.05 0.05 4.0 2 4 2 2 4 26 4.0 4.0 0.05 0.05 4.0 4 4 2 2 4
11 0.05 4.0 0.05 4.0 0.05 2 4 2 4 2 27 4.0 4.0 0.05 4.0 0.05 4 4 2 4 2
12 0.05 4.0 0.05 4.0 4.0 2 4 2 4 4 28 4.0 4.0 0.05 4.0 4.0 4 4 2 4 4
13 0.05 4.0 4.0 0.05 0.05 2 4 4 2' 2 29 4.0 4.0 4.0 0.05 0.05 4 4 4 2 2
14 0.05 4.0 4.0 0.05 4.0 2 4 4 2 4 30 4.0 4.0 4.0 0.05 4.0 4 4 4 2 4
15 0.05 4.0 4.0 4.0 0.05 2 4 4 4 2 31 4.0 4.0 4.0 4.0 0.05 4 4 4 4 2
16 0.05 4.0 4.0 4.0 4.0 2 4 4 4 4 32 4.0 4.0 4.0 4.0 4.0 4 4 4 4 4

For each test, we evaluate the sum of the production standard deviations, g(S), across all stations

for three rules: original TPM, constant release, and constant inventory rules.

* For the original model, we simply let the input variance at station 1 be 0.05 or 4, depending on

whether the station is set to "low" or "high".

* For the constant release model, the input variance at station 1 is always 0.

* For the constant inventory model, station 1's input is completely controlled to maintain a constant

weighted-inventory throughout the job shop (i.e. pc, = 0, so that 81 =1). We consider two CIM

models. First, we evaluate a shop with w = a vector of ones. Second, we evaluate a shop with the w

that optimizes the nonlinear program S-MIN.

Table 3 gives the results of the 32 tests. For each test, we give the sum of the standard deviations

of production across all station for each of the three models. We also present percentage comparisons

between the models ("% change" is the percent difference between the listed model's g(S) and the

original TPM's g(S).)

Table 3 -- Test Results (Sums of Production Standard Deviations)

Original TPM Constant Release Constant Inventory Constant Inventory
(w = ones) (w = optimal w)

Test g(S) g(S) % Change g(S) % Change g(S) % Change
1 2.28 2.22 0.03 2.70 -18.7% 2.05 10.2%
2 3.27 3.21 0.02 5.63 -72.4% 3.03 7.3%
3 9.67 9.63 0.00 13.97 -44.6% 9.24 4.4%
4 8.91 8.88 0.00 15.61 -75.1% 8.51 4.6%
5 4.57 4.55 0.00 5.35 -17.1% 3.87 15.2%
6 5.18 5.16 0.00 7.24 -39.8% 4.53 12.6%
7 10.84 10.82 0.00 14.67 -35.3% 10.15 6.4%
8 10.12 10.10 0.00 15.83 -56.4% 9.44 6.7%
9 6.21 6.19 0.00 6.59 -6.1% 4.71 24.1%

10 6.80 6.79 0.00 8.47 -24.5% 5.47 19.6%
11 12.45 12.43 0.00 15.87 -27.5% 11.25 9.6%
12 11.71 11.70 0.00 17.00 -45.2% 10.53 10.0%
13 7.18 7.17 0.00 8.02 -11.7% 5.83 18.9%
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Original TPM Constant Release Constant Inventory Constant Inventory
(w = ones) (w = optimal w)

Test g(S) g(S) % Change g(S) % Change g(S) % Change
14 7.64 7.63 0.00 9.53 -24.8% 6.39 16.3%
15 12.96 12.95 0.00 16.45 -26.9% 11.79 9.0%
16 12.23 12.22 0.00 17.25 -41.0% 11.10 9.3%
17 4.53 3.83 0.15 3.87 14.6% 3.31 26.9%
18 5.36 4.71 0.12 5.49 -2.3% 4.24 21.0%
19 11.40 10.84 0.05 12.38 -8.6% 10.30 9.6%
20 10.66 10.09 0.05 13.10 -22.9% 9.57 10.2%
21 6.10 5.59 0.08 5.68 6.9% 4.89 19.8%
22 6.67 6.18 0.07 6.89 -3.4% 5.52 17.2%
23 12.21 11.76 0.04 13.35 -9.3% 11.09 9.2%
24 11.49 11.04 0.04 13.77 -19.8% 10.39 9.6%
25 7.30 6.87 0.06 6.45 11.6% 5.51 24.5%
26 7.87 7.45 0.05 7.77 1.3% 6.25 20.6%
27 13.44 13.07 0.03 14.29 -6.3% 12.00 10.7%
28 12.70 12.33 0.03 14.72 -15.9% 11.28 11.2%
29 8.17 7.80 0.05 7.71 5.7% 6.59 19.4%
30 8.62 8.25 0.04 8.78 -1.8% 7.14 17.1%
31 13.90 13.55 0.02 15.01 -8.0% 12.52 9.9%
32 13.17 12.83 0.03 15.25 -15.7% 11.83 10.2%

The table shows that the constant inventory rule (with the optimal w) offers substantial decreases in

production variability over the original model. Decreases in the sum of production standard deviations

ranged from about 5% to over 25%, with the average being about 13%. This performance is much better

than the constant release rule, which only manages decreases from 0.2% to 12%, with the average being

about 3%. Note that the constant release rule was particularly ineffective for cases in which most of the

variability was far downstream from the first station (cases 1 to 16). The constant inventory rule usually

produced a significant decrease, even for cases in which most of the variability was far downstream from

the first station. As noted, these decreases in production standard deviations may reduce capacity

requirements, lowering costs.

However, the table also shows that a great deal of care must be used in determining w. In this

case, the natural choice of w (w = ones), resulted in large increases in production variability over the

original model. In some cases, the increase to g(S) was as great as 75%. This is an important effect, so

we discuss it in some detail.

Consider experiment 8, in which the input standard deviations at the first four stations are 0.5,

and the input stations at the last six stations are 4. Thus, in this experiment, the major production

fluctuations are relatively far downstream from the controlled station, station I.Table 3 lists g(S) for the

optimal weights as being a 6.7% improvement over the original model, but g(S) for the unit weights as
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being a 56.4% worsening over the original model. The following table compares the optimal and unit

weights, along with the production standard deviations produced by each weight vector.

Table 4 -- Comparison of Optimal and Unit Weights

Optimal Weights Unit Weights
Station Input Standard Weights Production Weights Production

Deviation Standard Deviation Standard Deviation
1 0.5 9.7104 0.0070 1 5.8906
2 0.5 0.0995 0.1290 1 0.8236
3 0.5 0.0183 0.2518 1 0.3845
4 0.5 0.1284 0.1350 1 0.3901
5 4.0 0.0118 0.8084 1 1.0585
6 4.0 0.0225 0.8388 1 1.1394
7 4.0 0.0000 0.7588 1 0.7561
8 4.0 0.0057 0.9571 1 0.8734
9 4.0 0.0021 2.6901 1 2.2507
10 4.0 0.0013 2.8663 1 2.2628

We see that the optimal weight vector massively overweights the first station's queue. As a

result, the production standard deviation at the first station is near zero, and the production standard

deviations at the station that receive significant work from station 1 (stations 2-6) are lowered as well,

largely because the work coming from station 1 is smoothed. Conversely, with the unit weights, the

production standard deviation is extremely high - greater than expected production at station 1. The

standard deviations at stations 2-6 are elevated as well.

Intuitively, what is happening is similar to the example in Section 3, in which we demonstrated

the existence of weight vector which cause the resulting vectors to be unstable. With the unit weights, the

network responds to large weighted-queue fluctuations at the downstream stations by making large

controlled releases to station 1. Unfortunately, doing so results in large fluctuations at the first station.

Further, by the time the controlled releases reach the downstream stations, most of the downstream

fluctuations causing the releases will have vanished. Thus, the controlled releases cause more

fluctuations downstream that are then addressed through more controlled releases, establishing a

reinforcing cycle. In extreme cases, as in the Section 3 example, this reinforcing cycle may cause the

system to become unstable. In this instance, the network is stable - indeed, the standard deviations

downstream are slightly lower with the unit weights than with the optimal weights. Nonetheless, the

benefit downstream is very small in comparison to the increased production variability upstream.

Conversely, the optimal weight vector recognizes that one cannot counter downstream

fluctuations with controlled releases that will not reach the downstream stations until after the fluctuations

have largely dissipated. This explains the overweighting of the first station's queue, and the small
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weights placed on the queues of the stations that receive work from station 1. Controlled releases will

counterbalance fluctuations upstream.

The optimal weights are not always as pronounced as they are for experiment 8. Nonetheless, in

general, optimal weight vectors will substantially overweight the queues of the controlled release stations

and place some weight on the queues of the, stations receiving work from the controlled release stations.

Weights on queues of stations farther downstream will be small if not zero.

In summary, we have shown how to add constant weighted-inventory constraints to TPM models,

and how to set vectors of inventory weights to minimize production standard deviations. The resulting

models appear to significantly reduce fluctuations in production for fixed work-in-process levels, which

may lead to reductions in capacity requirements for fixed work-in-process levels. Alternately, we have

discussed in Chapter 2 that longer lead times and higher inventory levels are associated with smoother

production flows; by applying constant-inventory rules we should be able to lower lead times and work-in

process levels while maintaining the same production variances.

We note three opportunities for future research on constant-inventory TPM models. First, the

stability of these models should be explored further. Proposition 2, the condition on the inventory

weights that guarantees convergence, is a sufficient but not necessary condition. Experimental tests

suggest that models whose weights violate the proposition are able to converge if (1) the resulting total

weighted arrivals are less than the total weighted production, or (2) if station lead times are lengthened

sufficiently. These phenomena warrant additional study.

Second, constant inventory models with multiple constraints should be explored. Multiple

constraints would allow us to control constant inventory stations independently. Controlling stations

independently would allow these stations to reduce production variations more effectively. Therefore,

multiple-constraint constant inventory models would be the next logical step in this research area.

Finally, we note that although the discussion in this chapter was restricted to TPM models, this

was done so solely for simplicity. It should be fairly simple to develop a constant inventory models for a

job shop with general linear control rules. The derivation would be similar to that in Section 2, except

that D would be a non-diagonal matrix, and additional yi, terms representing production fluctuations

would be carried through the equations. Similarly, developing an approximate constant inventory model

for a job shop with general control rules should be tractable, as well.
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1. Introduction

In previous chapters, we have treated work in the job shops as if they were fluid flows. As such, fluid

work completed at one station is multiplied, and becomes fluid work at a downstream station. In practice,

this relationship often does not hold. Instead, rather than process "work", stations process jobs, and it is

the completion of jobs that triggers work at downstream stations. Further, a job completed at one station

need not become a job at a downstream station; it can trigger multiple jobs (or zero jobs) downstream.

For example, consider a data-processing environment in which the completion of one computing

job initiates other computer jobs downstream. The number of new jobs is a random variable, which may

be zero. The downstream computing station then receives all the work required to complete the new jobs.

Note that the new work at the downstream station depends on the new jobs, not the computing work

completed at the upstream station. Further, the work required to complete one of the upstream jobs may

vary by orders of magnitude from the work required to complete one of the downstream jobs. In this

environment, a direct relationship between work completed at upstream and downstream relationships is

no longer suitable.

In this chapter, we study the LRS-MR model, which incorporates work transitions that are major

generalizations of the fluid-flow transfers. In particular, the LRS-MR model implements a flexible,

request-based relationship between the work completed at an upstream station and work arrivals at

downstream stations. In the new relationship, the work completed at an upstream station is expressed as

some number of completed jobs. These jobs become requests at a downstream station. The downstream

station converts the requests into a number of jobs to perform, and then converts the jobs into some

amount of work (measured in instructions). The downstream station processes the work and separates the

completed work into completed jobs. The completed jobs are sent to stations farther downstream, and the

process continues. The resulting flexibility of the LRS-MR model should make it a useful addition to the

existing scheduling and planning manufacturing models.

The new relationship gives rise to two new control rules. For the sake of simplicity, we will

assume that stations process a fixed fraction of their work-in-queue each period, as with the Tactical

Planning Model. However, we allow "work-in-queue" to have two definitions. A station may process

either a fixed fraction of the total work in its queue, measured in instructions (the instruction-control

rule), or a fixed fraction of the jobs in its queue (the job-control rule). We will be able to model networks

using either or both of these rules.
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We also assume, for the sake of simplicity, that new work arrivals to the network come from

independent distributions. However, note that these distributions now generate work requests, not the

fluid amounts of work seen in previous models.

However, it is far from obvious that request-based relationships can be modeled using the

approach used to analyze other MR models. No longer are work arrivals simple functions of work

completed upstream. Instead, as will be seen, work arrivals become complicated random sums of random

variables. While we can and will derive a formula for production, this equation cannot be written solely

in terms of previous production quantities because the work arrivals are now functions of completed jobs,

new jobs, and instructions per job. The resulting formula is not a recursion equation, and cannot be

analyzed directly.

The trick we will use is that we can, with some difficulty, derive linear recursion equations for the

expectation and variances of production. (Note that we will not be able to calculate the variances exactly,

but we will be able to find closed bounds on the variances.) Consequently, the moment recursion

equations are amenable to the infinite-iteration techniques we have used in previous chapters, and yield

the steady-state expected production quantities and bounds on the steady-state production variances.

Section 2 gives an overview of the derivation of the LRS-MR model. Section 3 describes an

example model of a data-processing network. The example illustrates ways to analyze job shops

(including data-processing networks) with the LRS-MR model, and shows how the LRS-MR model's

results may be used to improve job shop operations. Section 4 further discusses the LRS-MR model and

its assumptions, and describes possible generalizations to the model. Finally, Section 5 derives the LRS-

MR model in detail. (Section 6 is an appendix that presents the lemmas used in Section 5.)

2. An Overview of the Model Development

2.1 Model Assumptions

The LRS-MR model's input data are:

* The expectation and variance of the number of requests entering each station from outside the job

shop.

* The expectation and variance of the number of jobs each station j will process per request from

station k, for all pairs of stations (j,k).

* The expectation and variance of the amount of work per job at each station. The work per job is

measured in instructions.
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The model produces the following outputs:

* The expectation and variance of the workload at each station in the system, measured in instructions

per time period.

To calculate these outputs, the LRS-MR model makes the following assumptions about station behavior.

* Every station operates in discrete time. All incoming work arrives at the start of a period. A set

fraction of the station's work-in-progress is processed during that time period.

* Incoming work is characterized as follows:

* Stations receive a random number of requests at the start of each period. Each incoming

request is converted into a random number ofjobs. (Note that a request can be converted into

zero jobs.)

* Each incoming job becomes a random number of instructions.

* The total work in instructions is added to the station's work queue.

* Job requests are characterized as follows:

* Whenever a station completes a job, it sends a request to all the stations immediately

downstream of it. Formally, for each job that station k completes in period t, station k sends

one request to each immediately-downstream station at the start of period t+]. These

transfers are called internal requests.

* Stations also receive requests from outside the system. These are called external requests.

External requests come from a random distribution with an expectation and variance that do

not vary over time.

* Incoming requests may be treated differently depending upon their source. Mathematically,

the distribution that converts requests sent from stationk to stationj into jobs may differ from

the distribution that converts requests sent from station I to station j. The random

distributions that convert requests into jobs do not vary over time. Further, these random

distributions do not depend on the past history of the requests received.

The following figure shows how the LRS-MR model calculates the work done at a single station in a

single time period.
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Figure 17 -- How the LRS-MR Model Determines a Station's Workload

At the start of a time period, the station receives requests from two sources. First, it receives two

requests from outside the network. It also receives one request from upstream station 1 and three requests

from upstream station 2. This means that in the previous period station 1 completed one job and station 2

completed three jobs.

Next, the station converts the requests into a random number of jobs. The distribution that

converts requests into jobs varies with the source of the request. Here, the station turned every external

request into one job, every request from station 1 into three jobs, and every request from station 2 into

two jobs.

The station then converts each job into a random number of instructions. The station uses the

same distribution to convert jobs into instructions for all jobs, regardless of where the jobs came from.

However, the number of instructions per job can vary substantially, as shown in the figure. The resulting

block of instructions is added to the station's work queue.
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Finally, the station completes some specified amount of the work in its queue during the time

period. Each time the station completes enough work to finish a job, it sends a request to all of its

downstream stations. The downstream stations then convert these requests into work at the start of the

next time period.

Each station in the network obeys one of the following control rules.

* Instruction control: each time period, station k processes 1 / Lk of the total work (in

instructions) at its queue, for some constant Lk. The constant Lk is called the leadtime at

station k.

* Job control: each time period, station k processes 1 ILk of the number of jobs in its queue.

* Note: we assume that stations always process their specified workload (no production

errors). A station's workload always equals its production.

The following figure shows the difference between the instruction-control and job-control rule.

One-third of the instructions

Instructions

Jobs

One-third of the jobs

Figure 18 -- Comparison of the Two Control Rules

Here, we see how the station can process very different amounts of work under the two rules, even using

the same parameter (lead time set to three). We also see the advantages and disadvantages of the rules.

With the instruction-control rule, we smooth out the work done at the station. However, the number of

jobs produced each period can vary substantially, which will lead to greater fluctuations in the work at the

downstream stations. With the job-control rule, the amount of work done each period varies more, but we

smooth out the number of jobs the station produces each period. This will lead to lower fluctuations in

the work at the downstream stations. Clearly, we will be interested in determining where to use each

type of rule.
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Further, we will be interested in two variations of the instruction-control rule. In the first case,

we simply process the required fraction of instructions each time period, regardless of where the

breakpoints in the jobs are. In second case, we reorder the jobs to process the required fraction of both

jobs and instructions in the same period. We expect that the latter rule will be quite complicated to

implement and will impose heavy costs on the system, but will smooth work both at the current station

and at downstream stations. We will be interested in knowing where to install this "double-control" rule.

2.2 Variable Declarations and Assumptions

The LRS-MR model uses a series of equations to calculate statistics for the station workloads. These

equations use the following input variables.

* R is a random variable for the number of external requests entering stationj from outside the

network at the start of period t. This variable is independent from the time period, the number of

internal requests, and the work levels at all other stations. E[R'] and Var[R,] are inputs to the

model.

* Jk is a random variable for the number of jobs per request sent from station k to station j. It is

independent from the time period, the number of requests, and the work levels at all other stations.

E[J),J and Var[Jyk] are inputs to the model.

* JR is a random variable for the number jobs per request entering stationj from outside the system. It

is independent from the time period, the number of requests, and the work levels at all other stations.

E[J] and Var[jR] are inputs to the model.

* X is a random variable for the number of instructions per job. It is independent from the time period,

the number of requests, the number of jobs, and the work levels at all other stations. E[XJ and

Var[XjI are inputs to the model.

The equations of the LRS-MR model use the following "intermediate" variables as well.

* P is the number of instructions processed by stationj in period t.

* Q is the length of stationj's work queue (in instructions) at the start of period t.

* Ak, is the work, in instructions, that station k sends to station] at the start of period t.

* Ap is the total work, in instructions, that arrives at stationj at the start of period t.

* N is the number of jobs completed by stationj during period t.

S qjt is the number of jobs in stationj's work queue at the start of period t.

The model estimates the following statistics for each station:
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* E[Pj], the expected work per period (in instructions) in steady state.

* Var[P], the variance of the work per period in steady state.

2.3 Model Mechanics

The strategy behind the LRS-MR model's derivation is as follows: We assume we know the expected

workload, workload variances, and covariances for all stations in time t-1. We then find an equation for

the expected workload and variance at each station in time t. We then write all of these "t-1 to t"

equations simultaneously in matrix form, and analyze infinite recursions of the resulting matrix equations.

The result is a set of matrix formulas that calculate the expected workloads and estimate the workload

variances for all stations.

We develop the equations differently for stations using the instruction-control rule or the job-control rule.

* Under the instruction-control rule, a station processes a fixed fraction of its queued instructions each

time period. Consequently, the model equations keep track of the work done in instructions at the

station. This rule's advantage is that the equations' results are the desired results,E[Pj] and Var[Pj].

The disadvantage, however, is that we must find ways to convert results measured in instructions to

results measured in jobs to properly calculate the work requests sent to downstream stations.

Consequently, we will be unable to precisely calculate the variances at the stations.

* Under the job-control rule, a station processes a fixed fraction of its queued jobs each time period.

Consequently, the model equations keep track of the work done in jobs at each station. The

advantage of this rule is that we can represent work requests sent to downstream stations directly in

terms of the jobs completed at the station. The disadvantage is that we must convert results measured

in jobs into results measured in instructions to calculate E[P] and Var[P]. However, we can use

fairly simple formulas to do this.

* Finally, we will need sets of equations to relate work done at stations using the instruction-control

rule to stations using the job-control rule, and vice versa.

We first describe the mechanics of stations using the instruction-control rule, and then describe the

mechanics of stations using the job-control rule.

2.3.1 Instruction-Rule Mechanics

Work Arrivals. Let station k be upstream of stationj. Stationk sends Nk,,- requests to stationj at the start

of period t. Further, recall that each request is converted into a random number of jobs. Then, each job is
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converted into a random number of instructions. Then the work, in instructions, that station k sends to

stationj at the start of period t is:

Nk ,tI 'Jlki

(1) Ak , = x )"
1=1 m=l

(As stated, Jjk, Jj., and X do not depend on t. The t-indices are included to clarify the summation.) In

words, (1) says the number of work instructions arriving to station k is the number of instructions per job,

X, summed over the number of jobs per request, Jk, and summed over the total number of requests,

Nk .I

Now, let stationj receive input from a subset of stations, K. (Note that K can include j, since a

station can send requests to itself.) The total arrival (in instructions) to j at the start of period t, as a

function of all the requests received from the stations in K plus the external requests, is:

Nk, 1  R , J

(2) A,,= E X)," + XXXm
kEK 1=1 m=I 1=1 m=l

Control rule. Each period, stationj processes 1/L1 of the work in its queue. Mathematically, this is

P = Qj, / Lj. We relate the queue length at period t to the queue length at t-1. We have:

(3) Q = QI,_, - P + A
Queue last period Instructions Arrivals (in instructions)

processed last period this period

Now, substitute Q1, = LJItP. into the preceding equation, and solve for Pj,t.

SL.P. = L P _,- P.,_ + A

(4) 1(4) ~~ P,-I --- P _1 + At.

Finally, substitute in for A1 ,. This gives us a recursive formula for P,,:

Nk Jik ReJ, J

(5) P,, =1 .- 1 +4 ZXi +L Z xJ".
j' j k eK =1 m=1 =1 m=1

Equation 1-- Recursive Formula for the Work at Stationj
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2.3.2 Job-Rule Mechanics

Measurement of Work. Under the job-shop rule, the model equations track the work at all of the stations

in terms of jobs, not instructions. Consequently, the equations under the job-shop rule make no reference

to instructions. In calculating the results of the model, we will first compute the expectation and

variances of the workloads in jobs per period. Then, we will apply formulas for the expectation and

variance of a random sum of random variables to calculate the expectation and variance of the workloads

in instructions.

Work Arrivals. Let station k be upstream of stationj. Stationk sends Nk,,, requests to stationj at the start

of period t, each of which is then converted into a random number of jobs. Then the work, in jobs, that

station k sends to stationj at the start of period t is:

Nkasl

(6) a = J
l=1

Now, let stationj receive input from a subset of stations,K. (Note that K can includej, since a station can

send requests to itself.) The total arrival (in instructions) to k at the start of period t, as a function of all

the requests received from the stations in K plus the external requests, is:

Nk- Rj,

(7) a1, = ,JJk± + J ,R,t
keK 1=1 1=1

Control rule. Each period, stationj processes 1/L 1 of the work (in jobs) in its queue. Mathematically, this

is Nj, = qj, / Lj. We relate the queue length at period t to the queue length at t-1. We have:

(8) qj,= qj,,-1  - N ,1  + a,.

Queue injobs Jobs processed Arrivals (in jobs)
last period last period this period

Now, substitute qj, = L. N 1 into the preceding equation, and solve for NA,,.

-->L. N 1 = Li N,_ - N,_ + a1,,

(9) N, = rl- N-J 1,_ + a1 ,.

Finally, substitute in for a1 ,. This gives us a recursive formula for Pp:
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(10) N. =j1- JN _ + L IIJ,, +I J,R,t}
( 1 0) 't L j t - j y k E K = 1 = 1 j , ;

Equation 2-- Recursive Formula for the Jobs Processed at Stationj

2.3.3 Discussion of the Mathematical Derivations

Objective. We want to calculate the following statistics for all stationsj in the job shop:

* E[P], the expected work per period (in instructions) in steady state.

* Var[P], the variance of the work per period in steady state.

* Cov[Pi, P], the covariance of the work between two stations in steady state.

The calculations of these statistics are complicated, and are listed in their entirety in section 5. However,

an overview follows. We first assume a model in which all stations use only the instruction-control rule.

To calculate these values, we use Equation 1 to find recursive relationships for E[Pj,] and Var[Py], at

time t, provided that we know these values (along with the covariance values) at time t - 1.

Calculating the relationship for expected workloads (Section 5.2) uses results concerning the

linearity of expectations and the expectation of a random sum of random variables, and is straightforward.

(The appendix presents formulas for the expectation and variance of a random sum of random variables.)

Calculating the relationship for the variances of the workloads (Section 5.3) uses results concerning the

linearity of variances, and the variance of a random sum of random variables. Calculating the variance is

complicated, since the applicable formulas themselves are complicated. Further, it is difficult to convert

the variance of the station's workload (measured in instructions) to the variance of the number of jobs

produced. We will assume that the number of instructions per job is exponentially distributed, which

implies that the breakpoints between jobs are uniformly distributed throughout the station's work queue

(see appendix). We will see how the uniform-distribution assumption allows us to convert,

approximately, the workload variances (in instructions) to the variance of the completed jobs.

Once we derive the recursive relationships for E[Pp] and Var[Pp], we will first show how to

write all of the relationships for all stations simultaneously in matrix forms. We will then iterate the

matrix relationships to derive steady-state values ofE[P], Var[P] and Cov[P;, Pj]. The expectations are

calculated in section 5.2, and the variances are calculated in section 5.3. The covariances are calculated

in section 5.10. (The covariances derivation is a general proof that applies to networks with stations using

either or both control rules.) The results of these derivations are summarized below.
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2.4 Input Matrices and Vectors

The following matrices and variables are used to calculate the steady-state expected workloads and

workload variances.

2.4.1 The Workflow Matrix

Each entry of the workflow matrix, cDIk, shows the expected amount of work that arrives at stationj for

each unit of work at station k. It has the following entries, depending on the control rules used at stations

j and k:

* If station k sends no work to stationj, cDFk = 0.

* If stations j and k both use instruction control, Qjk = E[Jjk ]E[Xj]/ E[Xk ]. By definition, this

term presents the expected number of instructions appearing at station j, given one instruction

completed at station k. This term comes from taking the expectation of equation (1), the formula for

, and writing the resulting expression in terms of the instructions produced at stationk. (Details

are given in Section 5.)

* If stations j and k both use job control, j k = E[J ].

* If stationj uses job control, and station k uses instruction control, Oik = E[Jjk]/ E[ Xk].

* If stationj uses instruction control, and station k uses job control, iJk = E[Jjk ]E[Xj]

2.4.2 The Input Covariance Matrix

The input covariance matrix is a square diagonal matrix. Each entry, Ej, shows terms used to calculate

the workload variance at stationj that do not depend on the variances of other stations.

The Ej entries are calculated as follows:

* If stationj uses instruction control,

=E[Pk (EEJk ]Var[X ] + Var[ j,, ](E[X]))
kEK L[kJ

+E[R ](E[JjR ]Var[X1 ] + Var[J,, ](E[Xj ])2) + Var[R e ](E[ JjR ]E[Xj]).

* If station j uses job control,

E[ kJVar[Jk] +E[R]Var[JjIR]+(E[JjR ]) 2 Var[R].

Note that these expressions use expected work quantities. We can calculate the expected work, before we

calculate the work variances, so we can use the expected work as inputs to the variance equations.
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The above expressions are quite complicated, and do not have as simple explanation. As noted

the ZJ 's present the terms needed to calculate the work variances that do not depend on work variances

at other stations. The instruction control ZJ contains many terms of the variance of the right hand side

of (5), which presents Pj,, in terms of Pj,,1 and the incoming work (measured in instructions). The job

control ZJ contains many terms of the variance of the of the right hand side of (7) which presents Pi't in

terms of Pj,,, and the incoming work (measured in jobs). For both E., 's, the first summation represents

the variance resulting from work coming from other stations, and the second and third terms represent the

variance from work coming from outside the network. (Section 5 presents detailed derivations of the

E 's.)

2.4.3 The Flow Correction Matrix

The Flow Correction Matrix, U, is a square diagonal matrix. Its entries, Ujj, show "fudge factors" that

convert workload variances given in terms of instructions to workload variances given in terms of jobs.

The formulas are as follows:

* If stationj uses the job-control rule, Ujj = 0.

If stationj uses the instruction-control rule, there are two possible cases.

* A lower bound on the correction term is:

E[P ]Var[X1 ]

"ji- L1E[X ]

This term approximates using the "double-control" rule at stationj, where we try to process the same

fraction of jobs and instructions each period.

* An upper bound on the correction term is:

uJ= ( (1i(L ) E[P ]Var[X1 ]
Uj ..--- L E[ P ] _-

Lj L J L E[X]

This term approximates using a rule in which we ignore the placement of jobs in the work queue, and for

which the instructions per job is exponentially distributed.

2.4.4 The Lead Time Matrix

The Lead Time Matrix, D, is a square diagonal matrix with the inverses of the lead times of all the

stations on the diagonal. Consequently, Djj = 1 / Lj.
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2.4.5 The Vector of External Inputs

The entries of this vector, j, show the amount of work (either in instructions of jobs, depending on the

control rule) that enter stationj each period.

* If stationj uses job control, pj = E[Rf ]E[JjR].

* If stationj uses instruction control, p = E[R' E[JjR ]E[Xj].

2.5 Model Equations and Results

The following formulas calculate the steady-state expected workloads and workload variances.

2.5.1 Primary Matrices

Compute the following vector p and matrix S:

p = (I - (D) 1 p, where I is the identity matrix.

* S = I Bs ((D(D)U(DG)'+DZD)B's , where B = I - D + DOD.
s=O

We use p and S to calculate the expected workloads and workload variances. Section 5 derives these

results.

In practice, p is calculated directly, while S is approximated by a finite series.

approximates a matrix very similar to S using the following technique.

first n terms. Then:

(11)

Graves [1986]

Define S, to be the sum of the

San = B"S B'" +S.

By repeated application of the above expression, we get a very good estimate of S; for example, seven

iterations gives the sum of the first 128 terms in the series.

2.5.2 Expected Workloads

* If stationj uses instruction control, E[P]= p.

* If stationj uses job control, E[P ]= E[Xj ]p .

2.5.3 Workload Variances

Unlike the expected workloads, these are estimates.
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* If stationj uses instruction control, the estimate of Var[P.]= S . This estimate is a lower bound if

the lower bound Ujj's are used for all instruction control stations, and an upper bound if the upper

bound U;j's are used for all instruction control stations.

* If stationj uses job control, the estimate of Var[P = pjVar[X ]+ (E[X ]) 2 .

2.5.4 Workload Covariances

Again, these are estimates, not exact calculations.

* If stations j and k both use instruction control, the estimate of Cov[Pj , P ]= Sk.

* If station j uses instruction control and station k uses job control, the estimate of

Cov[P,, Pk] = SjkE[Xk]. This estimate is a lower bound if the lower bound U j's are used for all

instruction control stations, and an upper bound if the upper bound Ujj's are used for all instruction

control stations.

* If stationsj and k both use job control, the estimate of Cov[P, P]= SjkE[Xj]E[Xk].

2.6 Some Useful Modeling Techniques

This subsection discusses two useful modeling techniques used in the example model. They are:

randomly sending a job to one station in a group of stations, and processing a "follow-up" job.

2.6.1 Randomly Sending a Job to a One Station Out of a Group of Stations

In some job shop environments, a "broker" station assigns jobs to one (or more) stations out of a group of

stations. (For example, callers to a technical support line will be directed to one technician out of a group

of technicians.) We need to describe this distribution of jobs to the servers in analytic-model terms. This

means characterizing the jobs per request, or Jk distribution, for requests sent from broker k to serverj.

We model the arrivals to each service provider as Bernoulli. Each request that exits the "Broker"

workstation k will have some probability, pjk, of being sent to providerj.

This formulation is not quite accurate. At first, we might assume that each request that exits the

Broker would be sent to one service provider. The Bernoulli model allows the same request to be sent to

multiple stations or no stations. Further, the formulation also assumes that requests are distributed

randomly to the providers. This will not be the case if "broker" stations send jobs to the least busy

servers. Consequently, the Bernoulli model overstates the variance at the servers somewhat. Generally,

however, the overstatement should be acceptable.
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Under the Bernoulli model, the number of jobs per broker request is a random sum of independent

random variables. It has the following form: jk j , where bjk is a Bernoulli variable with

possible values 0 and 1. Further, bjk has parameter pj, the probability that a request leaving station k is

sent to service providerj (namely, the probability that b.k =1. Finallyj> is a random variable for the

number of jobs per request that arrives at stationj. In words, this formulation says that stationj receives

jobsj; with probability pjk, and nothing with probability 1 -pk.

To find the moments of the jobs per request, E[Jjk] and Var[Jjk], we apply formulas for the

expectation and variance of a random sum of random variables (see Appendix) to find:

E[Jk ] = pIkE[jjk], and
(12) Var[ Jk] = pIkVar[jI]+ pI,( - pjk)(E[Jk]) 2

2.6.2 Follow-Up Jobs

In a job-shop, the completion of a job can randomly generate a new "follow-up" request at an upstream

station. Here, we want to model, Jjk, the distribution of the requests at the upstream stationj per job

completed at provider k.

Again, we use a Bernoulli model. This time,pjk represents the probability that a service request

leaving station k will generate a new request at upstream stationj. Since we are using the same model, we

get the same formulas for the input statistics for E[J,] and Var[Jjk]:

E[Jjk] = pjkE[ j ], and
(13) VrJk

Var[ J j ] = p jkg rjj ]+ pjkl - pj )( E[ JjkB

3. An Example Job Shop

3.1 An Example Model - A Data-Processing Network

Figure 19 shows an example data processing network. In this network, computing jobs first go through

one of two chains of control stations. The control stations determine the work that needs to be done to

complete a job, and then assign service providers (which can be thought of as computation boxes) to

perform the work. When completed, a fraction of the jobs immediately create new computational jobs.

These control stations process the new jobs, and the cycle continues.
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Operations Mgr. 1 Scheduler 1
(Determines exact (Deternines the Assign I

Task Manager 1 computing services service providers (Physically assigns

(Determines type required to complete that will work the job to a set of
Incoming of job to perform) the job) on thejob) service providers)
computing
jobs

Service Providers
(Perform the computational
work necessary to complete
the jobs) Sv I Sv 2 Sv3 Sv4 Sv5 Sv6 Sv7 Sv 8 Sv 9 Sv 10

Incoming
computing 4
jobs

Task Manager 2 Operations Mgr. 2 Scheduler 2 Assign 2

Figure 19 -- Diagram of Example Data-Processing Network

This is a fairly simple network, although it closely resembles an actual data-processing network design

studied by the author. In the following calculations, we assume that we already know the overall

probability that a request is sent to any service provider, as well as the expectation and variance for all

requests sent to that provider. Further, we assume that no service provider ever rejects a job sent to it.

(Note that the techniques of the previous section model the distribution of jobs to the service providers,

and the flow of jobs back to the Task Manager stations.)

Table 5 shows the input statistics for this job shop, including the number of requests entering

each control chain per second, the number of jobs per request at each station, and the number of

instructions per job. There are two "Jobs per Request" values for each service station; each value is the

probability that a request from a control chain is sent to that service station. (Note that there is a 10%

probability that jobs sent through chain 2 will be canceled at the end of the chain.) It is assumed that

service stations process one job per received request. Note the high values for the instructions per job, as

compared with the number of jobs moving through the network.

Table 5 -- Input Statistics for the Example Model

Station Jobs per Request Instructions per Job

Expected Variance Expected Variance

First Control Chain (CI)
Service Requests Entering N/A N/A 10 requests per second 4

System per Second

1. Task Manager 1 1 0 1,000 100
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Station Jobs per Request Instructions per Job
Expected Variance Expected Variance

2. Operations Mgr. 1 1.5 0.2 1,000 64
3. Scheduler 1 1 0 5,000 40,000
4. Assign 1 1 0 10,000 4,000,000
Second Control Chain (C2)
Service Requests Entering N/A N/A 20 requests per second 16
System per Second
5. Initialize 2 1 0 1,000 100
6. Operations Mgr. 2 1.1 0.1 1,000 64
7. Scheduler 2 1 0 5,000 40,000
8. Assign 2 1 0 10,000 4,000,000
Service Providers
9. Service Station 1 Cl: 0.20 Cl: 0.16 5,000 4,000,000

C2: 0.25 C2: 0.1876
10. Sv 2 Cl: 0.05 Cl: 0.0475 50,000 36,000,000

C2: 0.07 C2: 0.0651
11. Sv 3 Cl: 0.05 Cl: 0.0475 100,000 100,000,000

C2: 0.03 C2: 0.0291
12. Sv 4 Cl: 0.10 Cl: 0.09 10,000 25,000,000

C2: 0.05 C2: 0.0475
13. Sv 5 Cl: 0.30 Cl: 0.21 3,000 10,000

C2: 0.20 C2: 0.16
14. Sv 6 Cl: 0.05 Cl: 0.0475 100,000 400,000,000

C2: 0.04 C2: 0.0384
15. Sv 7 Cl: 0.05 Cl: 0.0475 150,000 2,500,000,000

C2: 0.06 C2: 0.0564
16. Sv 8 Cl: 0.05 Cl: 0.0475 75,000 144,000,000

C2: 0.06 C2: 0.0564
17. Sv 9 Cl: 0.05 Cl: 0.0475 250,000 6,400,000,000

C2: 0.04 C2: 0.0384
18. Sv 10 Cl: 0.10 Cl: 0.09 70,000 400,000,000

C2: 0.10 C2: 0.09
Using these input statistics and the LRS-MR model equations we next derive some useful resul

this network.

3.1.1 The Effect of Increasing Lead Times

Table 6 shows some basic results from the model. The first column shows the expected workload at each

station. The second column shows the standard deviation of the workload at each station when all the

lead times are set to one. The third column shows the standard deviations of workload when all the lead

times are set to three, and all the stations use the "double control rule," in which the stations process one-

third of both the instructions and jobs in their queues each period. The fourth column compares the

standard deviations for the two lead times.

Three notes about the following table:

* The expected workloads do not depend on the lead times.

* When the lead times are set to one, all stations process all of the work in their queues every time

period. In this case, there is no difference between the control rules.
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* The double-control rule generally produces lower standard deviations than the other two rules, so the

comparison between the one-period and three-period results is the most favorable possible. Other

rule choices will lead to somewhat inferior comparisons.

Station Expected Standard Standard % Improvement
Workload Deviation Deviation by Setting Lead
(Instructions / with Lead Times with Lead Times Times to Three
second) of One of Three

First Control Chain (Cl)
1. Task Manager 1 17,720 3,610 1,520 57.9%
2. Operations Mgr. 1 26,580 5,740 1,900 66.9%
3. Scheduler 1 132,910 28,710 8,110 71.8%
4. Assign 1 265,830 58,350 15,620 73.2%
Second Control Chain (C2)
5. Initialize 2 25,150 4,660 2,060 55.8%
6. Operations Mgr. 2 27,660 5,370 1,790 66.7%
7. Scheduler 2 138,310 26,870 7,610 71.7%
8. Assign 2 276,630 54,750 14,650 73.2%
Service Providers
9. Service Station 1 61,160 19,300 7,910 59.0%
10. Sv 2 163,280 91,680 39,940 56.4%
11. Sv 3 215,900 148,650 65,240 56.1%
12. Sv 4 40,410 22,710 9,860 56.6%
13. Sv 5 40,520 11,470 4,550 60.3%
14. Sv 6 243,570 160,200 70,270 56.1%
15. Sv 7 448,340 275,140 120,420 56.2%
16. Sv 8 224,170 132,240 57,770 56.3%
17. Sv 9 608,910 412,190 181,000 56.1%
18. Sv 10 379,720 171,750 73,740 57.1%

Table 6 - Example Results v. Lead Times

In this "best case" scenario, we see that increasing the lead times to three at all stations lowers the

standard deviations by fifty-five percent to seventy-three percent. The price of this reduction, however, is

a three-fold increase in the expected time to complete a service request. (Recall that the lead time at a

station is the expected time to complete a job at the station). Further, these reductions come from using

the most sophisticated control rule at each station, the double-control rule. There may be substantial

system costs for using the double-control rule.

These lead time / standard deviation tradeoffs suggest a use of the LRS-MR model. We know

from queuing theory that the lower the variance of the work flows, the lower the stations' service rates

will need to be to meet a given level of performance (as measured in expected waiting times). We can

input a set of desired lead times into the LRS-MR model, and use the model results in simple simulations

to determine the service capacities needed at each station. This use will be examined in Chapter 6, on

Optimization.
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3.1.2 The Effects of Using Different Control Rules

The variances of demand vary with the choice of the control rule. Table 3 compares the standard

deviations of demand under four different scenarios:

* Double Rule: Each station uses the double-control rule.

* Instruction Rule: Each station uses the ifistruction-control rule.

* Job Rule: Each station uses the job-control-rule.

* Combined Rule: All of the control stations use the job-control rule. All of the service stations use the

instruction-control rule. (The motivation for this combined rule is explained below.)

The lead times are set to three for all rules at all stations. For each rule, the table lists the numerical

values for the standard deviations, and percentage differences between the rule and the double-control

rule. As with the lead times, the stations will have the same expected workloads under all control rules,

so the expected workloads are not reprinted.

Table 7 -- Standard Deviations v. Control Rules

Station Double Instruction Rule Job Rule Combined Rule
Rule
Standard Standard % Standard % Standard %
Deviation Deviation Increase Deviation Increase Deviation Increase

First Control Chain (Cl)
1. Task Manager 1 1,520 1,660 9.2% 1,520 0.0% 1,570 3.3%
2. Operations Mgr. 1 1,900 3,110 63.7% 1,890 -0.5% 1,950 2.6%
3. Scheduler 1 8,100 15,520 91.5% 8,130 0.2% 8,370 3.3%
4. Assign 1 15,580 32,530 108.4% 18,060 15.6% 18,450 18.2%
Second Control Chain (C2)
5. Initialize 2 2,050 2,100 1.9% 2,050 -0.5% 2,070 0.5%
6. Operations Mgr. 2 1,790 2,730 52.5% 1,790 0.0% 1,810 1.1%
7. Scheduler 2 7,600 14,390 89.2% 7,660 0.7% 7,720 1.4%
8. Assign 2 14,630 30,830 110.4% 17,380 18.6% 17,470 19.3%
Service Providers
9. Service Station 1 7,900 9,270 17.3% 10,070 27.3% 7,910 0.1%
10. Sv 2 39,920 42,000 5.2% 41,070 2.8% 39,940 0.1%
11. Sv 3 65,220 67,620 3.7% 66,510 1.9% 65,240 0.0%
12. Sv 4 9,850 10,430 5.9% 13,340 35.3% 9,860 0.1%
13. Sv 5 4,540 5,620 23.7% 4,540 -0.2% 4,550 0.2%
14. Sv 6 70,240 72,920 3.8% 75,570 7.5% 70,270 0.0%
15. Sv 7 120,370 125,520 4.3% 143,030 18.8% 120,410 0.0%
16. Sv 8 57,750 60,420 4.6% 60,640 5.0% 57,770 0.0%
17. Sv 9 180,940 187,450 3.6% 212,580 17.4% 181,000 0.0%
18. Sv 10 73,680 79,630 8.1% 84,610 14.7% 73,740 0.1%

The instruction-control rule creates much greater variances at the control stations than does the double-

control rule (more than doubling the standard deviation at the brokering stations), and significantly

greater variances at the service providers. The job-control rule performs substantially better than the
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instruction-control rule for the initial-processing stations (even matching the double-control rule in some

cases), but somewhat worse at the service stations.

These results suggest an alternate mixed-rule model, in which the job-control rule is used at the

initial-processing stations and the instruction-control rule is used at the service providers. The results are

shown in the last two columns. This mixed model does almost as well as the double-control rule for the

control stations, and virtually matches its performance at the service stations. By using a combination of

simpler control rules, we have almost matched the performance of much more complicated rules with

much greater system costs. Determining where to make these control-rule assignments will help save

system costs.

3.1.3 The Diminishing Returns of Increased Lead Times

As previously noted, increasing the lead times decreases the standard deviations of the workload at the

stations. However, these decreases diminish as we continue to increase the lead times.

Table 8 shows the effects of these decreases. The table shows sets of integer lead times needed to

lower the standard deviations of the workloads to be under 10% of the expected workloads, using the

control rules discussed in the previous section. The table also compares the lead times under each rule to

those of the double-control rule.

For reference, we used the following heuristic to find the control rules:

* We first found the integer lead times needed to reduce each control station's workload standard

deviation sufficiently. We did so one station at a time, starting with the first station in each control

chain, and working through the fourth station in each control chain.

* Keeping the controls stations' lead times fixed, we then found the integer lead times needed to reduce

each service provider station's standard deviation sufficiently, again proceeding one station at a time.

Obviously, the heuristic is not guaranteed to find the smallest lead times that meet the standard

deviation conditions. Nonetheless, the heuristic does take into account the facts that lowering workload

standard deviations at one station will immediately lower workload standard deviations at downstream

stations, and that the feedback requests from the service providers to the control elements are not great.

The resulting lead times are likely quite close to the optimal set of lead times.

Table 8 - Required Lead Times v. Control Rules

Station Double Instruction Rule Job Rule Combined Rule
Rule
Lead Time Lead % Lead % Lead %
Needed Time Increase Time Increase Time Increase

First Control Chain (CI) IIIII
1. Task Manager1 3 3 0.0 3 0.01 3
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Station Double Instruction Rule Job Rule Combined Rule
Rule

2. Operations Mgr. 1 2 4 100.0 2 0.0 2 0.0
3. Scheduler 1 1 5 500.0 1 0.0 1 0.0
4. Assign 1 1 5 500.0 1 0.0 1 0.0
Second Control Chain (C2)
5. Initialize 2 3 3 0.0 3 0.0 3 0.0
6. Operations Mgr. 2 2 4 100.0 2 0.0 2 0.0
7. Scheduler 2 1 4 400.0 1 0.0 1 0.0
8. Assign 2 1 4 400.0 1 0.0 1 0.0
Service Providers
9. Service Station 1 6 8 33.3 Infinite N/A 6 0.0
10. Sv 2 17 20 17.6 29 70.5 17 0.0
11. Sv 3 25 28 12.0 43 72.0 25 0.0
12. Sv 4 17 20 17.6 Infinite N/A 17 0.0
13. Sv 5 4 6 50.0 5 25.0 5 25.0
14. Sv 6 23 26 13.0 Infinite N/A 23 0.0
15. Sv 7 20 23 15.0 Infinite N/A 20 0.0
16. Sv 8 17 19 11.7 95 458.8 17 0.0
17. Sv 9 24 27 12.5 Infinite N/A 24 0.0
18. Sv 10 11 14 27.3 Infinite N/A 11 0.0

Note that the lead times at the service stations are much higher than we might expect given the big

variance decreases we made by increasing the lead times from one to three. (The initial-processing

station variances are low in comparison to their expected demands to begin with, so their required lead

times are small.)

Also, choice of control rules can greatly affect the required lead times. As with the previous

table, the "combined rule" (job-control rule at initial-processing stations, instruction-control rule at

service stations) virtually matches the performance of using the double-control rule at all stations. The

instruction-control rule by itself performs substantially worse than the double-control rule, especially at

the control stations.

Further, note that the job-control rule by itself performs unacceptably in this case. Under the job-

control rule, stations process fixed fractions of queued jobs, ignoring the variance of the instructions per

jobs. There will always be some residual variance in the work processed each period, regardless of the

lead times. Consequently, stations using the job-control rule have strictly positive lower bounds on their

variances, which can make the job-control rule unsuitable. Here, the residual variances prevented us from

reducing the workload standard deviation below ten percent of the expected workload at six of the ten

service stations.

4. Discussion of the Model

In this section, we discuss the assumptions and limitations of the LRS-MR model, and suggest possible

areas of future research. We also suggest possible uses for the LRS-MR model.
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4.1 Fractional Control Rules and Resource Allocation Studies

As with the original Tactical Planning Model, one of the biggest limitations of the model appears to be its

fractional control rules, which assume that there are no fixed constraints on the production levels each

time period. An alternate control rule might require a station to process the minimum of the work

proscribed by its fractional control rule and- a maximum capacity. This rule appears more appropriate

than the plain linear control rule for stations with well-defined maximum processing speeds, such as

certain types of computers. Analyzing this bounded control rule analytically seems difficult.

However, we can ensure that stations have maximum capacities capable of processing their

required workloads "most" of the time, so that stations will "usually" behave like they are modeled. For

example, assume that all of the workload variances are normally distributed. Then, setting the maximum

capacity of a station to be its expected workload plus twice its workload standard deviation implies that

the station will be able to process its proscribed amount about 97% of the time. More generally, we may

want to set the capacity of a stationj to be:

P. "a = E[ P. ] + k .Var[ P

where k is a safety factor.

This relationship suggests a use of the LRS-MR model: varying lead times and capacity

allocations so that the performance of a job shop (as measured by its lead times) meets both performance

requirements and budget constraints on station capacities. One may develop mathematical programs,

using the LRS-MR model as a subroutine, that approximately optimize capacity allocations to meet

budget and / or performance constraints. We present mathematical programs using LRS-MR models in

Chapter 6, on Optimization.

We may need to perform simulation studies, however, to find useful relationships between station

capacities and the expected workloads and workload variances estimated by the LRS-MR model. Such

simulations will be especially important for general cases in which job shops have large numbers of

stations, and the distributions of the stations' workloads are not normally distributed. We present an

example of these simulations in Chapter 6, as well, and show how these simulations generate functions

yielding the required safety factors.

4.2 Markov Assumptions

The LRS-MR model also has the disadvantage that it is Markovian. We assume that work flows in the

job shop can be modeled such that accounting for the history of a work flow is not necessary. In the

general case, it does not seem possible to address this assumption without having models with
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combinatorial complexity. However, there are some limited generalizations that may help address

history-dependent work flows.

* Assume the work flows through the job shop can be decomposed into a few distinct job types, each

with their own routings and production requirements. Assume further that the stations can be

configured to process jobs of each type in each time period. Then we can create one LRS-MR model

for each job type. Provided that these job-type flows are independent, the total expected loads and

load variances on each station will be the sum of the statistics from the LRS-MR models.

* If the history dependencies are defined by a small number of sequential states (for example, work

goes from station A to station B, then back to station A for reprocessing), we can create an LRS-MR

model in which each state has one model node. Assuming that the stations can handle the work in

each state through separate queues, the expected workload at a station is the sum of the expected

workloads at the corresponding state nodes. The workload variance is the sum of the variances of the

corresponding state nodes, plus the sum of the covariances between the state nodes.

Using these generalizations, we might study ways to allocate a station's capacity between different types

of jobs and work states.

4.3 Model Decomposition

Finally, we consider instances in which we wish to model very large job shops. The overall complexity

of the LRS-MR model is O(n3 ), where n is the number of stations modeled. This complexity results from

inverting or multiplying n-by-n matrices to generate the model's results. While this complexity is

excellent for small to medium-sized networks, it becomes impractical for stations with many thousands of

nodes - especially if we attempt to use the LRS-MR model as an optimization subroutine.

Clearly, then, we might want to study ways to decompose the calculations of the LRS-MR model.

Such decomposition techniques are especially important for "sparse" job shops (job shops with lots of

nodes, but comparatively few work flows between them). We note that the LRS-MR model is a discrete-

time model; the recursion equations produce the expected workloads and workload covariances in one

period, given the expected workloads and workload covariances of the previous workload. Further, these

calculations appear to converge quickly. Computational experience suggests that the model's covariance

matrix converges to more than four significant digits between 32 and 64 periods; we expect results for

expected workloads are similar. These facts suggest iterating the recursion equations directly, or in small
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matrices covering sections of the job shop, to converge to the steady-state expected workloads and

workload covariances.

5. The Derivation of the LRS-MR model

In this section, we present the derivation of the LRS-MR model, done in several steps.

* Sections 5.1 to 5.3 derive most of the model equations for networks in which every station uses the

instruction-control rule, under which a station processes a fixed fraction of the number of instructions

in its queue each time period. The sections derive the station mechanics under the instruction-control

rule, the expected workloads, and the variances. The covariances between stations under the

instruction-control rule are not be defined in these sections. Instead, the covariance equations under

all rules are derived in section 5.10.

* Sections 5.4 to 5.6 derive most of the model equations for networks in which every station uses the

job-control rule, under which a station processes a fixed fraction of the number of jobs in its queue

each time period. The sections derive the station mechanics under the job-control rule, the expected

workloads, and the variances.

* Sections 5.7 to 5.9 derive most of the model equations for mixed networks in which some stations use

the instruction-control rule and others use the job-control rule. Section 5.7 explains the mechanics of

sending work between stations using different rules. Section 5.8 derives the resulting expected

workloads equations, and section 5.9 defines the variance equations.

* Section 5.10 derives formulas for the covariances between stations. It shows that, without any

modifications, the matrix equations that calculate station variances also calculate the covariances

correctly.

5.1 Instruction-Rule Mechanics

The following equations mathematically describe the behavior of the workstations under the instruction-

control rule, as declared in Section 4.2.

Work Arrivals. Let station k be upstream of stationj. Stationk sends Nk,_, requests to stationj at the start

of period t. Further, recall that each request is converted into a random number of jobs, which is then

converted into a random number of instructions. Then the work, in instructions, that station k sends to

stationj at the start of period t is:

(14) A,kt X m
1=1 m=1
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(As stated, J, Jj, R, and X do not depend on t. The t-indices are included to clarify the summation.)

Now, let stationj receive input from a subset of stations,K. (Note that K can includej, since a station can

send requests to itself.) The total arrival (in instructions) to k at the start of period t, as a function of all

the requests received from the stations in K plus the external requests, is:

.Nka ,k,t(, Rj,, Jj,,,,

(15) A,= I X" + x m
kEK 1=1 m= =1 M=

Control rule. Each period, stationj processes l/L3 of the work in its queue. Mathematically, this is

P = Q , / Li. We relate the queue length at period t to the queue length at t-1. We have:

(16) QIt = Q - P1 it1 + A1,t.
Queue last period Instructions Arrivals (in instructions)

processed last period this period

Now, substitute Q = L P into the preceding equation, and solve for Pj,t.

=:>L P., =L.P.,_ - P.,_ + A

(17) 1 1

Finally, substitute in for A,. This gives us a recursive formula for Pp:

(I1 N , J,(,k., Ri. j,, 
(18) P t = I- + X" + I I Xm.

SL J'/L kj kK 1=1 m=l 11 m=1 J

Equation 3 -- Recursive Formula for the Work at Stationj

Objective. We want to calculate the following statistics for all stations j in the network:

* E[P], the expected work per period (in instructions) in steady state.

* Var[Pj], the variance of the work per period in steady state.

* Cov[P, P], the covariance of the work between two stations in steady state.

To calculate these values, we will use (18) to find recursive relationships for E[P,], Var[Pp], and Cov[Pi,

PJ].. Then, we will iterate the recursions to find the steady-state values ofE[Pj], Var[Pj] and Cov[Pi, PJ].

The expectations are calculated in section 5.2, and the variances are calculated in section 5.3. The
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covariances are calculated in section 5.10. (The covariances derviation is a general proof that applies to

networks running both the job-control rule and the instruction-control rule.)

5.2 Instruction-Rule Expectations

5.2.1 The Recursion Equation

Previously, we saw that P = (1 - I / L1 )P1 1 +(1 / Lj)AI . Using the linearity of expectation, we find

that

(19) E[Pj ] = I - E[ P,.-1 ] + E[ A ]-

We consider E[AjJ. Recall that

Nkj- i kaR j R. i

(20) A. = it X + X 'm
keK 1=1 m=1 I=1 m=1

We see that Aj, is made up of random summations of random variables. Then we can apply the following

useful elementary probability formula.

Lemma 1. Let Y be an independent random variables with a finite expectation and a finite variance, and

let Zi be a set of identically distributed random variables, independent of Y, that have a common mean

E[Z].

Then E Z = E[Y]E[Z].

Proof See Appendix.

Iterating this expression, we find that:

(21) E[Aj 1 ] = (E[N]E[J ]E[Xj + E[R ]E[J,R]E[ Xj].
kEK

There is one problem with this equation: we want to find the work at time t in terms of the work (in

instructions) completed at time t-J. This equation relates work at timet to the number of jobs completed

at t-1. We need to get the expected number of jobs completed in terms of the expected work completed.

However, this is not complicated. Again using the linearity of expectation, we see the expected number

of jobs completed in a period, E[Nk,_-], is the expected production (in instructions) divided by the
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expected number of instructions per job. Then we have E[Nk,_] = E[Pk,,,]/ E[Xkt]. Substituting

this expression into the equation for E[Aj i], we find:

E[A,]= I E[Jjk]E Xi E[Pk,]

This term comprises
constants that are given.
Replace it with (Djk

(22)

+ E[Re ]E[JR ]E[ X].
This term comprises
constants that are given..
Replace it with uj.

-> E[ A ,]= I E[P _l]+pj.
k eK

We plug this expression into the equation for E[Pp,]:

(23) E[Ij1]= I- E[ P + L]E[P- ]= + - j_,+E[P, ] + p .
j Lj k EK

Equation 4 -- Recursive Formula for the Expected Work at Stationj

This equation applies to all stations in the model.

5.2.2 Calculating the Recursion in Matrix Form

We write the above equation for all stations simultaneously in matrix form.

* Let (D be a square matrix whose (jk) entry is jk.

* Let D be a diagonal matrix whose (ij) entry is 1 /Lk.

* Let E[Pt] be a vector whose jth entry is E[Pj.

* Let p be a vector whose jth entry is P3.

Then, we can write all of the E[PJJ equations simultaneously as:

E[Pt I= (I - D)E[Pt-I] + DOE[P_ ]+ Dp,

(I - D +DO)[P,_,]+ Dp,
Call this B

= BE[Pt, ]+ Dp.

The proof of this is term-by-term multiplication. Iterating this recursion yields:
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E[P,]= BE[PtJ]+ Dp,

(25) = B(BE[P,,] + Dp) + Dp,

= B(B(B... (BE[PtJ]+ Dp)+...+Dp) + Dp) + Dp,

which, when iterated to infinity, becomes

(26) E[P, ]= IBsDp.
s=O

Using linear algebra theory, and assuming that 4D has a spectral radius less than one, we can evaluate this

summation in closed form:

(27) E[P,] = (I - (D)p.

Equation 5 -- Formula for the Expected Workload at All Stations

This gives us a formula for the steady-state expected workload at all the stations, as desired9

5.3 Instruction-Rule Variances

5.3.1 The Top-Level of the Recursion Equation

Previously, we saw that P = - 1 / Lj)PtI + (1 / L ,)AI,. If we take the variance of this sum, we find

that

([2 
\12

(28) Var[ P, ] 1 - L )Var[ P,_-, ] + (L.
Var[ A ] + 2(1 - Cov[P ,

To use this equation, we will need to calculate Var[Aj,,] and Cov[P,_,, A].

5.3.2 The Variance of Arrivals

We begin by looking at Var[Aj,]. Recall that

Nk,_ JI

A' = I I E
kEK 1=1 m=1

Rf, J]R

X ,'m + XXI'
1=1 M=1

Since A, comprises random sums of random variables, we apply the following lemma for the variance of

a random sum of random variables.
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Lemma 2. Let N be a random variable with finite expectation and a finite variance. Let X be a set of

independent, identically distributed random variables, independent of N, that have a common mean E[X],

and a common variance, Var[X].

N

Define Q = X1 . Then Var[ Q] = E[ N]Var[ X] + (E[ X]) 2 Var[N].

Proof See appendix.

5.3.2.1 The Variance of External Arrivals

We begin the study of Var[Aj,,] by looking at the second term of the expression for Aj, which represents

arrivals from outside the system. (Call the arrivals from outside the systemA,.) We have:

(30) A = I Xi
1=1 M=1

Then Var[ A.] is the variance of a random double summation of random variables. We calculate this

value by applying the above "useful formula", iterated once. We find:

Var[ Aj,] = E[R']E[J,]Var[Xj]

(31) + E[R ]Var[JR ](E[X ])2

+ Var[RJ](E[JR 2 (E[X ]) 2 .

We see that Var[ A']] comprises given constants. In future equations, we will simply summarize

Var[ A 1 ] to be .

5.3.2.2 The Variance of Internal Arrivals

We now look at the first term of the expression for Ap, which represents arrivals from other stations in the

network. (Call this term the internal arrivals, orA, K.) We have that

Nk.,_1 J ,-k,

(32) A , =Z Xkm.
kEK 1=1 m=1

Now, define a new variable. Let

N J

(33) A -- Z Xk m.
m=1 M=1
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In words, A k, is the work (in instructions) station k sends to stationj at the start of period t. We then have

that Ar, = j A 1 t . We take the variance of this sum using the "Bilinearity Property" of covariance.
k ceK

Bilinearity Property (Form for a Sum of Random Variables). Let X be a set of random variables with

finite mean and variance. Then,

var biXi = Z bib cov(Xi,Xj).

(This is a generally known result, and so is not proven here.)

Using the bilinearity property, we find that Var[Af, ] is:

(34) Var[ Ar,] = Z Var[ Alk, + Cov[ Alk, A11,]
keK kEK1eK

1#k

5.3.2.2.1 The Variance of the Workflow Between Two Stations

To evaluate this expression, we first characterize Var[Ajk,].

5.3.2.2.1.1 Initial Development

Nk.,_1 .i~k

Since A = 1 X". we reapply the formula for the variance of a random sum of random
=1 m=1

variables to find:

Var[ Ak, ] = E[ Nk,, 1 ]E[Jk ]Var[ Xj]

(35) + E[Nk,,,]Var[Jik ](E[X ]) 2

+ Var[Nk,,_](E[Ji k])2(E[X])2.

As with the expectation calculations, we must write Var[Nk,] as a function of Var[P,,,] and other given

constants. To do so, we first look at the variance of the number of instruction in station k's work queue,

Qk. The number of instructions queued at station k is itself a random sum of random variables. In

particular, Qk,, = Z'kI X',_ , where q,, is the number of jobs queued at station k at time t-1. We

therefore have that

(36) Var[Qk,,] = E[q,_, ]Var[Xk] + (E[Xk ])2 Var[qk,,_]
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Next, recall that , = Qk,_1 / Lk. This implies that L'Var[Pk,,_]= Var[Qk,,], and

E[Qkt] = LkE[P,-_]. If we substitute these expressions into the equation for Var[Qkt,,], and solve for

Var[qk,_,], we find:

L4Var[Pk,,l] Lk E[Nk ]Var[Xk]
(37)- Varaq ]=(37) Var[q]k,t-1 (E[Xk ])2 - (E[Xk ])2

Next, we attempt to find Var[N,,,] in terms of Var[Qk,,,]. This involves answering the following

question: given that there are qkt_ jobs in the queue, how many jobs will be in the Qk-J /Lk instructions

processed in period t-1?

The answer depends on how we control the work at station k and what the distribution of Xk is. We

compute Var[Nk,_1d exactly for two "simple" cases that provide upper and lower bounds for Var[NtJ] for

most networks.

5.3.2.2.1.2 A Lower Bound - "Double Control"

Case 1 (Lower Bound). We control the order in which station k performs instructions so that the number

of jobs processed each period is approximately equal to qk,,, / Lk. (This is feasible if we expect lots of

jobs in the queue each period, and if Xk is a reasonably "nice" distribution.) But

then, Nk,_ l qk,,- / Lk => Var[Nk,_] Var[q,]/ L'. Substituting this expression into the equation

for Var[qk,_1], we find that:

Var[Pk ,_,] E[Nk,t ,]Var[Xk]
(38) Var[ NLk (E[Xk )2

Now, recall from the previous section that E[Nk,,] = E[Pk,,,] / E[X]. Substituting this into the previous

equation, we find that, for Case 1,

Var[ P -] E [ P,,,]Var[ Xk]
(39) Var[NO- _ ]>

(E[Xk ])2 Lk (E[Xk ])3

5.3.2.2.1.3 An Upper Bound - "Simple Control"

Case 2 (Upper Bound). In this case, jobs are processed on a first-come, first-served basis, and that the

Xk's are exponential. Then we can apply the following lemma:
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Lemma 3. Let X be a set of independent, identically distributed random variables that come from an

exponential distribution with parameter A. Consider a queue containing Njobs, where N is some positive

integer, and where each job has length X. Assume the total length of the queue is Q. Then the endpoints

of the first N - 1 jobs in the queue will be uniformly distributed over (0,Q).

Proof. See appendix.

Then, each of the first q, - 1 jobs in the queue has a 1 / Lk chance of being processed in period t-1.

Equivalently, the chance that each of these jobs is processed in period t-1 has a Bernoulli distribution with

parameter 1 / L,.

Then, we can derive an upper bound for the total number of jobs processed in period t-1 from a random

sum of random variables. We have that N,,_1 -- pi , where p, is a Bernoulli random variable

with parameter I / L. This summation cannot be used directly, because it can produce negative numbers

when the work queue is empty. In particular, the summation will create negative numbers when

E[qk] 1. We can, however, use an upper bound for Nk,_, by assuming that the last job in the queue, the

qkth job, also has a 1 / Lk chance of being processed. This assumption gives us an upper bound of

N < pi . Since this upper bound consists of adding a positive random variable to the previous

summation of random variables for Nk,,,, we have that Var(N,,_1 )<V p1 ). Reapplying the

formula for the random sum of random variables, we find that

(40) Var[Nk,_ ] < E[q ,,l ]Var[p] + (E[pi ]) 2 Var[q,,,1]

The expectation of a Bernoulli random variable with parameter 1 / Lk is just 1 / Lk; the variance is

(1/ L -1 / Li). E[qk,,_] is the expected number of instructions in the queue divided by the number of

instructions per job, E[Qkt,] / E[Xt.]. Noting that E[Qk,,]t= LkE[P,-],we see that E[qk,_,] =

LkE[Pk,_t] / E[Xt-1]. Var[qk,,_] was calculated above. Substituting these expressions into the above

equation, we find that:

k [,,_,] VrP,t,] E[P,,_,]ar[Xk]
(41) Var[Nk] < -- + '

k LkJ E[Xk] E[Xk ] 2 Lk(E[Xk D3
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Note that this is the same as the variance in Case 1, except for the addition of the first term, which is on

the order of E[Pk,,I] / E[X] = E[Nk].

As stated, the variance found in Case 1 and Case 2 are lower and upper bounds for Var[N,,_J,

respectively. The lower bound always hol;s; the upper bound will hold provided thatXk is a "nice"

distribution. The following lemma provides a mathematical description of "nice".

Lemma 4. Suppose that X, a nonnegative random variable for the number of instructions per job at

station k, satisfies the following condition: for all values of a constant to 0,

E[Xk -tO IXk >to] E[Xk].

Then the following result holds:

Var[Nk] ; E[qk]{ -- 2 + 2 Var[q],
Lk L Lk

where Nk is the number ofjobs contained in the first 1 / Lk fraction of instructions in the queue at station

k, and qk is the total number ofjobs in the queue.

Proof See appendix.

In words, the condition E[Xk -to I Xk > to] E[Xk] means the following. Suppose we arrive at station k

at a random time, and wait for the current job in the queue to finish. Further, suppose we know that

station k has been working on the current job for at least to time units. The condition says that the

expected time remaining until the job is finished is less than the unconditional expected time to process a

job at station k.

5.3.2.2.1.4 Completing the Derivation

For both cases, Var[Nk,.J] has the following form:

Var[Pk,,_] ]
(42) Var[N ,_,=(E[k ])2 + Uk,

where uO is a set of constant terms equal to -(E[P,, ,]Var[X ) Lk(E[Xk D if station k uses the

double-control rule, and
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Uk-y Lk) E[P]

k kL E[ Xk]

E[Pk,,, ]Var[Xk]
Lk(E[Xk ])3

if station k uses the simple instruction control rule. Note that the "constant terms" containE[Pk,,-]. We

can treat this term as a constant if we solve for the expected workloads for the stations first, which yields

E[Pk], and note that E[Pk,,.] equals E[Pk] in steady state.

Now, we substitute the above expression for Var[Nk,1,] back into our expression for Var[Ajk,].

yields:

This

Var[ Ajk,] = E[Nk,-1 ]E[J,k ]Var[ Xj ]

+ E[Nk,,_,]Var[ ](E[X ])2(44)

Var(P,, )

(E[X X)2
+ u (E[J ])2(E[Xj ])2

We simplify this expression as follows. The first two terms comprise given constants. We add them

together and call the sum o-k, . To simplify the third term, we recall that in the previous section we let

(Djk = E[Jjk ]E[Xj] / E[Xk]. Making these substitutions, we find that:

(45) Var[ A ,] = t ,(Var[Pk ,_ ] + u ) + a

where uk =(E[X] 2 )u 0

5.3.2.2.2 The Variance of a Sum of Workflows

Now that we have Var[Ajk,], the next step is to

internal arrivals to stationj at time period t-1.

5.3.2.2.2.1 Initial Derivation

We have:

(46) Var I Ajk,
.k EK _I

compute Var I Alk,j which is the variance of the
..kEK_

= jVar[Ak, ] + 1 Cov[AjIk , , A , ]
kEK kEKIEK

1ltk

We will use the following lemma to compute this sum.
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Lemma 5. Let N be a set K of random variables, each with a finite expectation and a finite variance.

Let Yik be a set of independent, identically distributed random variables, independent from every Nk , that

have a common mean E[Yg, and a common variance, Var[Y].

Nk

Define T = I Z k. Then:
keK i=1

Var[T] = (E[Nk ]Var[Y] + (E[Y ])2 Var[ Nk])
keK

N~k

= Var I Yl
kEK( i=1 _

We can apply Lemma 5 directly to Var[ kEK Aj,k,t by letting the NS in this derivation equal the Nk's

in the lemma, and by letting the lemma's X" . Doing so yields:

(47) Var[
kEK

A,,,
S(Var[

k reK

Ajkt ]) + X (E(J ]E[X, ])(E[Jj, ]E[ Xj ])Cov[ Nk,,_, N1,.
keK lEK

l#k

As before, we need to find Cov[N, N,,1 ] in terms of Cov[P 1 , P,,-1 ]. We begin by calculating Cov[qkI

, q1,,.]. Recall that Qk,,_ = ~. Applying Lemma 5, we find that:

Var Qk,,-1
IkEK

(Var~ 1 1) + X (E[Xk])(E[X ])Cov[qk q,,
_ keK kEK IeK

l#k

But, by the bilinearity property of covariance, we also have that:

Var I Qk,t,_ = Var[
_k(=K I k cK

Qk,,-] + I I Cov[ Qk,-I 1,
keKIEK

l*k

If we equate the above two expressions for Var[zkK Qk,t-hI , we find:

(50) XX
keK lEK

/;-,k

COv[ Q,,_5,Qk,,_, ] =E E[ X]E(X ]Cov[q,,,q
kEK 1E

1*k

Since this equation must hold for all possible sets K, we must have that:
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]E[Y]Cov[Nk ,N ]+ j j E[Y
kEK eK

Iek

+ j ZE[Y ]E[Y] Cov[ Nk ,AT].
kEKleK

l#k

(48)
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Cov[QkI ,, ]= E[Xk ]E[ X,]Cov[q,,,q,,_-1 ],Vk,Vi.

Now, recall that Qkt- = LkPkt,. Using the bilinearity property of covariance, this implies that

COV[QktI Q, I]= LkLlCov[Pkt_, P-]. Substituting, and solving for Cov[qk,1, q',t,], we find:

(52) Cov[ ,, , = LLCOV[PO-l 5pXt-i

The next step is to find Cov[NtI, N,,1 ] in terms of Cov[q,.1 , q,t-]. We use the same two cases as before,

when we found Var[Nkt].

5.3.2.2.2.2 Case I -- Lower Bound (Double Control)

In the lower-bound case, Nk,t1 approximately equals qk,t1, / Lk. Then, the linearity property of covariance

requires that Cov[q 1 ,q,,,] = LkLCov[Nk,_,,N, 1_]. Substituting this expression into the equation

for Cov[qkt,_, qi,,_], we find:

(53) Cov[Nkl ,-, N,,_1 ] = Cov.Pk, 1
E[X k]E[X,]

5.3.2.2.2.3 Case 2 - Upper Bound (Simple Control)

In this case, we process jobs and instructions on a first-come, first served basis, and assume that all of the

Xk's have an exponential distribution. Recall this implies that N q = - p , where p, is a Bernoulli

random variable with parameter ] /Lk. But then we can apply Lemma 5 directly to Var(kEK NO,_),

which yields:

= (Var[ N,
k EK

,]+ '; ; Cov[q ,_1 ,q 1,]
+t- IJ IL

kEKlEK k i
Itk

(Here, we have used the fact that E[pk] - 1 IL.) Of course, by the bilinearity property of covariance, we

also have:

(55) Var I Nk_ = Var[Nk, 1 ] + 3 Cov[ Nk ,_,, N,,-]
LkEK I keK keKleK

1#k

Equating these two expressions for Var( kK Nk,.) , we find:
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(56) J Z Cov[Nkt,1 NI,_, ] =I I Cov[,qkN1  ,L Lq,

keKleK keKleK Lk L
1#k l#k

Since the above expression must hold for all possible sets K, we see that:

(57) Cov[Nkt , N1,,_1 ] = Cov[q, l, ]Vkv.
Lk Li Vl

Substituting this expression into the formula for Cov[qk,-,, ql,,I], we find:

Cov[ P,,,P,_
(58) Cov[Nk,,_I, N,_, 1 ] = .

E[Xk]E[X,]

Note that this is the same value for Cov[Nk,,1 , N ] we found in Case 1.

5.3.2.2.2.4 Completing the Derivation of the Variance of Internal Arrivals

Recall that an expression for Var[ kEK Aj,k,tI is:

(59) Var!
.k EK

Ajkt = IZ(Var[At ]) +
k EK

If we substitute in the expression for Cov[NktJ, N1 ,,1 ] we found for both the upper and lower bound cases,

and recall that Djk = E[Jk ]E[X ] / E[Xk], we find that:

(60) Var [ Ajkt=
Ik rK I

k (ar Ajk)
k E=K

+ z x Ik DJICov[ P, ,_-, P,,_1
keKleK

lIk

This gives us a formula for the internal arrivals to stationj at time period t-1, as desired.

5.3.2.3 A Formula for the Variance of Arrivals

Now, we return to our original formula for Var[Aj,], which was:

Var[ Ajt ] =

(61)

Nkj_1 Jil-k,,

VarZZ I Ix ,' I
keK 1=1 m=1

Arrivals from other stations
(Internal Arrivals)

jRi ,t R,t

+Var IJ ]'
t=1 m=1

External arrivals

=Var L A +7,

_k EK _~~
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Since we derived formulas for the variances of internal arrivals and external arrivals above, we now know

Var[A].

5.3.3 The Covariance of Workload and Arrivals

To calculate Var[P,], we need to calculate one final term: Cov[Pj,_1 , A1,,]. To do this, consider Cov[Ajj,,

A11]. This is the covariance of the arrivals station j sends to itself with the arrivals from all of the other

stations. By looking at the covariance terms in Var Z Ak t
_kEK _

(62)

we see that

Cov[ A1 1 , A11 ] = . 1 1Cov[ P,_ 1 ,P_].
1EK

But then, by the Bilinearity Property of Covariance,

(63) Cov[P,_1, A1 ] ]= Y j, Cov[P ,_,,P ].
le-K

5.3.4 Completing the Recursion Equation for Workload Variances

Now, we return to our original formula for Var[P 1], which was:

(64) Var[ P 1 ] = t Var[ [P,] + jVar[ A, ] + 2( 1 - Cov[ P ,_, A , ] .

If we substitute in the expressions we found for Var[Aj,,] and Cov[Pp,1 , A1 ], we find that:

I( Vk ar[P, ] +Uk ) ,k

Lj kEK kJ kt

2

Var[ Pjy ] = I Var[ Pj _ ] +
L i

(65)
L

2
2

7 2 + )
j L

kE E k ( CoV[P
kEK 1EK

+ 2 1 -*f j[bCov[P,,P 'jk,t-I ,_

5.3.5 Calculating the Recursion in Matrix Form

As with the expectation calculations, we write all of the Var[Pj,,] equations simultaneously in matrix form.

Let:
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* St be a square matrix with the Var[P]'s on the diagonal, and Cov[Pj,, Pki's on the off-diagonal

elements.

* U be a diagonal matrix with the Uk'S on the diagonal.

* be a diagonal matrix with diagonal elements Z= + - .
k EK

* D be a square matrix whose (Jk) element is (j.k

* D be a diagonal matrix with the 1 /Lk 's on the diagonal.

* B be a square matrix that equals (I - D - DOD), where I is the identity matrix.

Then, a matrix equation for S, in terms of S,_ is:

(66) St = BS,_1B'+(DG)U(DG)'+DZD.

This equation may be checked by term-by-term multiplication. If we recurse this equation, we find that:

St = BS,_,1B'+(D(D)U(D(D)'+DZD

= B(BSt- 2B'+(Dci)U(DP)'+DED)B'+(Di))U(Dp)'+DED

= B(B(B...(BS,_,B'+(Di))U(D0)'+DZD)...

B'+(DD)U(DD)'+DD)B'+(DD)U(Di)'+DED)B'+(Dci)U(D)'DD,

which, assuming an infinite history of the system, becomes:

(68) S = I Bs ((DcD)U(Dci)'+DZD)B' 5 .
S=O

Equation 6 -- Variances and Covariances of All Station Workloads

We have found a formula for the steady-state variances and covariances of all of the station workloads, as

desired. D

(Note: The derivation of (68) assumes that the above matrix equation for St calculates the covariance

between pairs of stations correctly. Otherwise, we would not be able to recurse on the equation for St to

find the steady-state variances and covariances. Section 5.10 proves that the equation for St calculates the

covariance terms correctly.)
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5.4 Job-Rule Mechanics

The following three sections derive the LRS-MR model equations for networks in which all stations use

the jobs shop rule. In this section, we mathematically describe the behavior of the workstations under the

job-control rule, as declared in Section 4.2.

Measurement of Work. Under the job-shop rule, the model equations track the work at all of the stations

in terms of jobs, not instructions. Consequently, the equations under the job-shop rule make no reference

to instructions. In calculating the results of the model, we will first compute the expectation and

variances of the workloads in jobs per period. Then, we will apply our formulas for the expectation and

variance of a random sum of random variables to calculate the expectation and variance of the workloads

in instructions.

Work Arrivals. Let station k be upstream of station j. Stationk sends Nk,1, requests to stationj at the start

of period t, which is then converted into a random number of jobs. Then the work, in jobs, that stationk

sends to stationj at the start of period t is:

N _

(69) a = Jl
1=1

Now, let stationj receive input from a subset of stations,K. (Note that K can includej, since a station can

send requests to itself.) The total arrival (in jobs) to k at the start of period t, as a function of all the

requests received from the stations in K plus the external requests, is:

N 5 .- R1 ,

(70) a11  Z Z Jk,, +ZJj.,R,,
keK 1=1 =_

Control rule. Each period, stationj processes ilL of the work (in jobs) in its queue. Mathematically, this

is N,, = qj, / Li. We relate the queue length at period t to the queue length at t-1. We have:

(71) q = q, - N + a .

Queue injobs Jobs processed Arrivals (in jobs)
last period last period this period

Now, substitute q = LjN , into the preceding equation, and solve for N.
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-:> Lj Nj,, = Lj Nj_,I - Nj' + aj

(72) 
=> Nj, = Il- I-)JNi_ + L aj'

Finally, substitute in for aj,. This gives us a recursive formula for Nj,,:

-11 Re

(73) Nj, = 1- Nj,_± 2 + J
t Lj) t-I+ j (kEK 1=1 JI =1 j, ;

Equation 7-- Recursive Formula for the Jobs Processed at Stationj

Objective. Again, we want to calculate the following statistics for all stations j in the network:

* E[Pj], the expected work per period (in instructions) in steady state.

* Var[P], the variance of the work per period in steady state.

To calculate these values, we will use (73) to find recursive relationships for E[N,] and Var[N,]. Then,

we will iterate the recursions to find the steady-state values ofE[N] and Var[N]. Next, we will use our

formulas for the expectation and variances of random sums to calculate E[P] and Var[Pj].

5.5 Job-Rule Expectations

We know that N = (1-1 / Lj)Nj,_- + (1 / Lj)a 1 Then, by the linearity of expectation, we must have:

i1 t

(74) E[N~ ]= 1 I E[Nj ,,-] + E[a,,].

We first consider E[aj,,]. Since

N Rj

(75) a1 ~ J klt + J j,R,t'
kriK =1 =,

the formula for the expectation of a random sum of random variables implies that:
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E[a ,] = Z(EJjk ])E[N,,,,]+E[RJe]E[JjR]

Let this Let this

(76) be zDk beuj.

-- Ea,] = kE[NktI I + .
k eK

We substitute this into the expression for E[Njt], which yields:

(77) E[Nj ,= I- E[N ,]+ L - j kE[Nkt- + Pj

Equation 8 -- Recursive Formula for the Expected Jobs at Stationj

This equation applies to all stations in the model. We write these equations for all stations simultaneously

in matrix form.

* Let (D be a square matrix whose (jk) entry is jk-

* Let D be a diagonal matrix whose (jj) entry is 1 /Lk.

* Let E[NtI be a vector whosejth entry is E[NJ.

* Let p be a vector whose jth entry is Il.

Then, we can write all of the E[NjJ equations simultaneously as:

E[N,]= (I - D)E[N,, ] + Dc1E[N, ,+ Dp,

(78) _( - D + D )E[N,I+ Dp,
Call this B

= BE[Nt_ ]+ Dp.

The proof of this is term-by-term multiplication. Infinitely iterating this recursion yields:

(79) E[NtI = ZBDp.
s=O

Using linear algebra theory, we can evaluate this summation in closed form:

(80) IE[N]= (I - )p

Equation 9 -- Formula for the Expected Jobs at All Stations
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Now, to calculate E[PJ, the expected demand in instructions at stationj, we recall that P= '

But then, the formula for the expectation of a random sum implies that:

(81) E[P]= E[N,]jE[Xj],

where E[Nt]j is the jth entry of E[Nt], for all stationsj. This gives us a formula for the steady-state

expected workload at all the stations, as desired.P

5.6 Job-Rule Variances

5.6.1 Basic Formula

If we take the variance of N = ( - 1/L)N 1 +(1/ Lj)a 1 ,, we get:

(82) Var[N3 ,] = 1 - Var[ N,,I ] + Var[a1 ]+ 2 I- Cov[Nj, ,a ]

5.6.2 Variance of Arrivals

As with expectations, we consider Var[aj,] first. We have:

Nk I Re

(83) a3 , = I k+ Z jRt
kEK 1=1 1=1

Since ajt comprises random sums of random variables, we can apply the formula for the variance of a sum

to it.

First, we apply this formula directly to the second term of the expression for a,. Here, the second term

represents a the arrivals from outside the network. Applying the formula, we find:

(84) Var[ab ] = E][ 2 Var[JR]+(E[JR Var[ Rj.

The first term represents aiIt, the arrivals from other stations. Finding its variance is a bit more

complicated. We see that a..It is a double sum of random variables, and that the variables of the

outermost sum (the Nk's) are not independent. However, recall that Lemma 5 (in the appendix) gives a

formula for the variance of this type of double summation. Applying that lemma yields:

(85) Var[af,] = Z(E[N a[ ]]+ (E[Jk 2 Var[N ] + ZE[Jjk ]E[JJ, ]Cov[ , N1]
kEK kEKlEK

I#k
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5.6.3 Covariance of Arrivals and Production

The external arrivals are independent from the arrivals from other stations, so to find Var[a,] we simply

add together Var[a',,] and Var[ajK]. We can rewrite this sum as follows:

Var[a1 ] = Z D,, Var[ N, ] + DZ ' IbkQlCov[ Nk N, ] + Y , where
kEK kEKIEK

(Ek

(86) j= E [J,k], and

E = Z(E[N ]Var[J]
kEK

+ E[RJe ]Var[Jj,R ]+(E[ J ,2])2Var[R e].

To calculate Var[Nj,,], we need to find one additional term: Cov[Nj,,-, a,]. This is the covariance of the

job arrivals station j sends to itself with the arrivals from all of the other stations. To calculate this term,

consider Cov[a1 1 , , a1 ,]. Here, ajj,, is the work in jobs stationj sends to itself at the start of period t, and

so is a function of Nj,,_. By looking at the covariance terms in Var[aKj,t], we see that:

(87) Cov[a ,1, a1 , = Z(DJ1 jICov[N1 _, , N1,
IEK

But then, by the bilinearity property of covariance, we must have:

(88) Cov[N, _ ,a ]= X _,Cov[N, N,].
1EK

5.6.4 The Recursive Equation

We now return to our original formula for Var[N I], which was:

2
1

LJ)ar

2

Nj ]+ L Var[a ,+ 2 1 - Cov(Nj _I,aj ]

Substituting in the expressions for Var[aj,] and Cov[N,,., a1,] yields the recursive equation for the

variances under the job-control rule:

(90)

Var[N,] = I- Var[N ]+ ) K 2 Var[Nk,

+(I) Z [kjlCov(Nk,,l, N ,t]]
L j kEK EKC

h k

+ 2 1-- I jkCov[Nj,1,
L J - k-EK-,N tI
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5.6.5 Matrix Equations

As with the expectation calculations, we write all of the Var[N,,] equations simultaneously in matrix

form. Let:

* St be a square matrix with the Var[Nj,,]'s on the diagonal, and Cov[N,,, Nk,]'s on the off-diagonal

elements.

* E be a diagonal matrix with diagonal elements E.

* D be a square matrix whose (,k) element is Cjk.

* D be a diagonal matrix with the 1 /Lk 's on the diagonal.

* B be a square matrix that equals (I - D - D(D), where I is the identity matrix.

Then, a matrix equation for S, in terms of St.1 is:

(91) S, = BS ,_B'+DED.

This equation may be checked by term-by-term multiplication. Infinitely iterating this equation yields:

(92) S = I Bs(DED)B"s.
S=O

Equation 10 -- Variances and Covariances of Jobs at All Stations

(Note: The derivation of (92) assumes that the above matrix equation for St calculates the covariance

between pairs of stations correctly. Otherwise, we would not be able to recurse on the equation for St to

find the steady-state variances and covariances. Section 5.10 proves that the equation for St calculates the

covariance terms correctly.)

But now, recall that we want to find the variances and covariances in terms of instructions at each station.

We note that P X , . Then we apply the formula for the variance of a random sum to find:

(93) Var[P] = E[Nj ]Var[X 1 ] + (E[Xj ])2 S

Further, we found in Section 5.3 that Cov[Nk,,_,, N,,,]= Cov[ ,P,, ]/ E[Xk]E[X]. Then we

can write:

(94) Cov[P 1 ,_1,,F_1]= E[Xk]E[XI]SI .
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These are formulas for the steady-state variances and covariances of all of the station workloads, as

desired.0

5.7 Mixed Network Mechanics

In a mixed network, we have some stations operate according to an instruction-control rule, and other

stations operate according to the job-shop control rule.

In general, we can apply the recursion equations we found in the previous sections. We use the

instruction-control recursion equation at stations that operate under the instruction-control rule, and the

job-control recursion equation at stations that operate under the job-control rule. Then, we write all of the

recursion equations simultaneously in matrix form (whether they are instruction-rule or job-rule

equations), and find recursive relationship that tells us what the expectation and variance of demands are

for all stations.

However, to do this we must make some adjustments to the recursion equations. In a mixed model, we

can have job-rule stations feed into instruction-rule stations, and vice versa. But, the LRS-MR model

equations for job-rule stations maintain all statistics in terms of jobs, while the equations for instruction-

rule stations maintain all statistics in terms of instructions. We will need to convert statistics in terms of

jobs (E[Nk,,,], Var[Nk,.I]) to statistics in terms of instructions (E[Pk,_I], Var[P,_-]), and vice versa.

Fortunately, this is simple to do. We make the following substitutions:

* When a model equation calls for E[Nk,-,]: We use E[N,-,1] directly if station k uses the job-control

rule, since the model equations track this value under the job-control rule. If stationj uses the

instruction-control rule, the model equations track E[Pk,.J]. In the latter case, we use the formula for

E[Nk,_J] in terms of E[Pk,.], which is:

E[Nk,,] = E[Pkt,, ]/E [Xkt]

(This equation was derived in Section 5.2.)

* When a model equation calls for Var[NkJ,-]: We use Var[Nkt-1] directly if station k uses the job-

control rule. Otherwise, we use either the lower-bound or the upper-bound formula for Var[Nkfl] in

terms of Var[Pk,-,]. The formulas are:

Lower bound: Var[N _ Var[P],>] E[PlJVar[Xkk,4 (E[Xk ]) 2 - Lk (E[ Xk ]) 3
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I E [ Pt_, Var[ P,,_, E[ P, ,_ ]Var[ Xk
Upper bound: Var[N t] < - ' [ + ' .

k t- ' k E[Xk] E[Xk] 2  Lk(E[ Xk]) 3

(These equations were derived in Section 5.3.)

* When a model equation callsfor Cov[N,,, N,.1], we make the following

- If stations k and 1 both use job control, we use Cov[Nk,,, N,,] directly.

- If station k uses job control, and station 1 uses instruction control,

Cov[Nktl , N1,, 1] = Cov[ Nk,PP] / E[X,].

- If stations k and 1 both use instruction control, we

Cov[Nkt ,N,_,] = Cov[ Pk P, ]/ E[Xk ]E[X,].

(These equations were derived in Section 5.3.)

substitutions:

we make the substitution

make the substitution

We then recalculate the recursion equations for each station, making these substitutions. Section 5.8

gives the results of these calculations for the expectation equations, and Section 5.9 gives the results of

these calculations for the variance equations.

5.8 Mixed Network Expectations

5.8.1 Instruction-Rule Stations

Making the substitutions given in the previous section, we can derive the following recursion equation for

instruction rule stations:

E[JPj,] = - E[Ij, ] + L (,,p,t1 + P/j,
LJ Lj k EK

where

Pkt1 = E[Nkl_], if k uses job -control;

(95) Pkt1 = E[Pkt_], if k uses instruction -control;

Djk= E[Jj ]E[Xj], if k uses job - control;

= E[Jj]E[Xj ]/E[Xk], if k uses instruction control; and

p = E[RJ ]E[Jj ]E[Xj].

Equation 11 -- Recursion Equation for the Expectation of an Instruction-Rule Station
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5.8.2 Job-Rule Stations

Making the substitutions given in the previous section, we eventually derive the following recursion

equation for job-rule stations:

E[N ]= 1- IE[N _l]+ X P,_i + +

where

Pkt1 = E[N l ], if k uses job -control;

(96) Pkt-I = E[P 1 ], if k uses instruction -control;

Djk = E[Jj], if k uses job - control;

= E[Jj]/ E[Xk], if k uses instruction control; and

Pj = E(R e]E(Jj].

Equation 12 -- Recursion Equation for the Expectation of a Job-Rule Station

5.8.3 The Matrix Equation for Expectations

Define the following vectors and matrices:

* I is the identity matrix.

* D is a diagonal matrix with the lead times on the diagonal.

* (D is a matrix whose (jk) entry is given by the formulas in the recursion equations above.

p is a vector whose jth entry is given by the formulas in the recursion equations above.

* p is a vector whose jth entry is given by the formulas in the recursion equations above.

Then we can rewrite all of the recursion equations in matrix form simultaneously in the following form:

, = (I - D),_, + Dcop,_, + Dp,

(97) = (I - D + DD)p,_, + Dp,
Call this B

= Bp,, +Dp.

The proof of this matrix equation is term-by-term multiplication. Infinitely iterating the above equation,

and applying linear algebra theory, we find:

(98) p=

Equation 13 -- Results Vector Used to Calculate Expected Demands
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But then, we have a results vector P whose jth entry is E[N] if station j uses the job-control rule, and E[P]

if station j uses the instruction-control rule. In the former case, we can calculate E[P] by using the

relationship E[P] = E[N]E[X]. This gives us a method to calculate the expectation of demand at all

stations in the mixed-rule model, as desired.

5.9 Mixed Network Variances

5.9.1 Instruction-Rule Stations

Making the substitutions discussed in Section 5.7, we can derive the following recursion equation for an

estimate of the variance of an instruction-rule station:

2 2

Var[P ]= r[ ] + r [ (S ,t_ + Uk) + Ikt]
Li ) (Li-)k EK

2 x2

( 9 9 ) + 2 + k ,S k , , -,
Li Li./ kc-Kl

l#k

+2 1- 1 [:jS _t+ L21 ) Li~JIkEK
ktj

Equation 14 -- Recursion Equation for the Variance of an Instruction-Rule Station

In this equation:

* k = E[Jjk ]E[X ] / E[Xk ] if station k uses instruction control.

* k = E[JIk]E[Xj ] if station k uses job control.

* 2 E[Pk] (E[J ]Var[ X ] +Var[Jik ](E[Xj ])2 .
Ujkt = E[Xk] +I

* = E[R ](E[Jj]Var[XJ +Var[JjR](E[X]) + Var[R;](E[JjR]E[X 1 ]).

Skkt1 = Var[Pk_] if station k uses instruction control.

* kkt-1 = Var[N _-]if station k uses job control.

S kt-1 = Cov(Nkt , No ,_) if stations k and / both use job control.

* klt-1 = Cov(Pkt 1 , NI,_-) if station k uses instruction control and stationj uses job control.

* kit-I = Cov(Pk_ , P',- 1 ) if stations k and 1 both use instruction control.
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U E[Pk]Var[Xkif station k uses instruction control with the lower-bound approximation.
LkE[Xk]

Uk - 1- ) E[P

- P ]Var[Xk] if station k uses instruction control with the
LkE[Xk]

upper-bound approximation.

* = 0 if station k uses job control.

5.9.2 Job-Rule Stations

Making the substitutions discussed in Section 5.7, we can derive the following recursion equation for an

estimate of the variance of the number of jobs produced at a job-rule station:

2 2

Var[N ]= ( - Var[Nj, ](+ Z V S + U) + -

(100)+ + GS
Li~~~~E ) iE )k KIj kt1 k Ok

+ 2 2 )1#k

L/ L( -/ k ,EK
kej

Equation 15 - Recursion Equation for the Variance of a Job-Rule Station

In this equation:

* O = E[Jk ]/ E[Xk] if station k uses instruction control.

* k = E[Jk ] if station k uses job control.

2 =E[P]ar[ J,, ] E [ Xk].
22

* jk = E[PR](Var[JjR])+Var[ Re ](E E JjR

* S kkt-1 = Var[Pk ,] if station k uses instruction control.

* S kkt- = Var[N _1]if station k uses job control.

* Skit = Cov(Nkt , N 1 ,1) if stations k and I both use job control.

* Skit1 = Cov(P,tI, N 1,) if station k uses instruction control and stationj uses job control.

* Sklt1 = COV(Pkt, P ,) if stations k and / both use instruction control.
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* = - E[Pk]Var[Xk if station k uses instruction control with the lower-bound approximation.
LkE[Xk ]

1 1 ])E[ P]Var[Xk]
* =u - -IJ E[P]- E a ]if station k uses instruction control with the

Lk ('k L kEP LkE(Xk

upper-bound approximation.

Uk = 0 if station k uses job control.

5.9.3 The Matrix Equation for Variances

Define the following vectors and matrices:

* St be a square matrix whose Sjj,t and Sj,k,t-,1 entries are given by the recursion equations above.

* I is the identity matrix.

* D is a diagonal matrix with the lead times on the diagonal.

* cD is a matrix whose (],k) entries are given by the formulas in the recursion equations above.

* U is a diagonal matrix with Uk's defined above on the diagonal.

* Xis a diagonal matrix with diagonal elements E = +

* B be a square matrix that equals (I - D - D(D).

Then we can rewrite all of the recursion equations in matrix form simultaneously in the following form:

(101) St = BS,_,B'+(DD)U(DG)'+DED.

This equation may be checked by term-by-term multiplication. Infinitely iterating this recursion, we find:

(102) S = ZBS((Dci)U(DD)'+DSD)B' 5 .
S=O

Equation 16 - Results Matrix Used to Estimate Network Covariances

But then, S is a results matrix whose entries are the following estimates:

* Sj = Var[P] if stationj uses instruction control.

* Sjj = Var[N] if stationj uses job control. To find Var[P] in this case, we use the following relation:

Var[Pj] = E[NA]Var[X] + Var[N](E[j]) 2.

* Sjk = Cov(Pf, Pk) if stationsj and k both use instruction control.

* Sjk = Cov(N, Pk) if station] uses job control and station k uses instruction control. To find Cov(P,

Pk) in this case, we use the following relation: Cov(P, Pk) = E[X] Cov(N, Pk).
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* Sik = Cov(N, Nk) if stationsj and k both use instruction control. To find Cov(P, Pk) in this case, we

use the following relation: Cov(Pj, Pk) = E[X]E[X] Cov(N, Nk).

These are estimates of the steady-state variances and covariances of demand for all of the stations, as

desired. These estimates do assume that the above matrix equation for St calculates the covariance

between pairs of stations correctly. Otherwise, we would not be able to recurse on the equation for S, to

find the steady-state variances and covariances. The following section proves that the equation for St

calculates the covariance terms correctly.

5.10 Mixed Network Covariances

This section derives the covariances between pairs of stations, and shows that the formula for the station

variances and covariances derived in the previous section correctly calculates the covariances.

5.10.1 Initial Development

Define the following variable: W, is a measure of the work produced by station i at time t, and is:

* W, = P7, if station i uses the instruction-control rule, and;

* W1, = N, if station i uses the job-control rule.

We will derive a formula for Cov[W,,, Wj,] in terms of the workstation expectations, variances, and

covariances at time t-1.

From Sections 5.1 and 5.4, we know that:

(103) W,, W, +- ,

whether W', is measured in jobs or instructions. Here, Aj, measures the arrivals to stationj at the start of

period t, and is measured in instructions if stationj uses the instruction-control rule, and measured in jobs

if stationj uses the job-control rule.

Then, we have that:

(i 1 1 1
(104) W , +W = 1--W, + L- A'' + 1- -lW _+ A.

Taking the variance of (We, + W),), we find:
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Var[W , + J,] = Var[Wit] + Var[W, ] + 2Cov[ W,, Wj,]

= -9 Var[ W>] + 7 Var[ A ] + 2(1 - T ) (T1J Cov[ W, 1 , 4,]

We recognize this as Var[Wi].

(105) + - Var + 11 Var[A 1 ,]+2 1 J- Cov[ Wj,, 1 , Aj,]

We recognize this as Var[W,].

+ 21 -- - -Il Cov[W, _ ]+ 2 1 - Cov[ Wi 1,,A 1 ,]

+ 2 1- Cov[ Ai ,,W ] + 2 Cov[ A, A1 ,].

Equating terms, and solving for Cov[W, Wj], we find:

Cov[W1, Wj,] = 1 - 1 Cov[,_,, 'iY] + lJCov[Y,_,, A,]

(106)

10)+ - Cov[ A  W/,_]+ Cov[A A1 ,].

To calculate the terms in this expression, we will need to calculate Cov[A1,, A1 ] and Cov[W,, A1,].

5.10.2 The Covariance of Arrivals

Aj., has the following form:

Nk R

(107) A1, Z YZIt + ZYR,t

Arrivals from Arrivals from
other stations outside the system

Here, the N's are the incoming requests from the other stations, R1,, is incoming requests from outside the

network, and the Y's are independent, identically distributed random variables representing the work per

request from each source. (The I's are the number of jobs per request if the station uses the job-control

rule. They are summations of instructions if the station uses the instruction-control rule.)

By assumption, there is no dependence between any arrivals from outside the network and any other

arrivals. Then, to find Cov[A,,, A1,], it is sufficient to find:
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Nk .,I Nk ,t- ]
(108) Cov[ A ,A ,]Cov A ',2 ~,-

LkeK 1=1 keK 1=1 j

To do so, we will extend Lemma 5 to calculate Var(A;, + A1j), and use the resulting formula for Var(A, +

Aj,) to calculate Cov[Ait, Ajt].

First, define T to be:

Ig,,_1 Nk,,_,

(109) T = i z' +( Y,,.
keK 1=1 kEK 1=1

The "Law of Total Variance" (see Lemma 2), tells us that

(110) Var[ T] = Var[ E(TIN)] + E[Var(T| N)],

where Nis some event. Here, let N be the event {Nkt = nkVk} .

Now, using the linearity of expectation,

(111) E(T1N)= X NkE[ }k]+INkE[Y.j.
kEK kEK

Then, noting that E[Yik] and E[Yk] are constants, and applying the bilinearity principle of covariance, we

find that:

Var[E(IN)]

(112)

= jXE[Yjk]E[ K,]Cov[N Nj,+ZE E[Yk]E[Yj Cov[N Nj,
kEK IeK k eKleK

+2ZZE[ k ]E[Y]Cov[Nk,N].
kEK lEK

Next, recalling that the variance of a fixed sum of independent random variables is the sum of their

variances, we find:

Var(TIN) =
(113)

Ark Nk

IVar['k ] +EjiVar[Yk]
kEK 1=1 keK 1=1

= ZNkVar [k]+ZNkVar[Yjk],
kEK keK

and, taking the expectation over N, we find:

(114) E[Var(T I N)] = I E[Nk]Var[Yk]+ ZE[Nk]Var[Yk],
keK kEK

Adding these terms together, we find:
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Var[T] =Var[E(TIN)]+ E[Var(TIN)]

= kI E[ k]E[G,]Cov[NI,N,]+ XE[YK,]E[YK,]Cov[N ,N,]
kEK lcK k EK EK

+21:Z E[,]E[Yj,]Cov[N,,N,]+ZE[Nk]Var[Yk]+ E[N,]Var[Yjk
kEKIEK kEK kEK

Now, let us group together the terms of Var[T] as follows:

Var[T] = J E [Y,] E [Cov[N, N]+JE [ Nk]Va[Y]
k EK EK k EK

+ X ZE[Yk]E[YJ]Cov[N,,NJ]+J:E[
kkEK1eK kEK

+21X: E[Y, ]E[Y, ]Cov[NkNl],
kEKIEK

Nk ] Var[ Y)]

which we recognize to be:

Nk -INk -1

(117) Var[T]=Var[ I ',]+Var[ Z,]E[+2JikE[Yi]E[YCov[N,N].
keK 1=1 kEK 1=1 kEKlEK

Now, by the definition of covariance, we know:

N ,_1 Nkal Nk.,_ Nk.,-1

(118) Var[ T] =Var[ I I Z ', ]+Var[ E I Y,]+2Cov[J J ',, I Y,-
keK 1=1 keK 1=1 kEK 1=1 keK 1=1

So, equating terms, we solve for Cov[Ai,Aj,]:

Nk.,_, Nk 1

(119) Cov[ A, A, ]=Cov E kIZ KYk, 1
_kEK 1=1 keK 1=1 _

= ZX E[Yk]E[Y]Cov[Nkt,Nlt ] .
keKleK

Now, this expression for Cov[A,Aj,] is in terms of E[Yik] and Cov[Nk,_1 ,Nt,_]. In section 5.8, we found

that we replace the E[Yik] terms with:

* E[Jik]E[X] if station i uses the instruction-control rule.

* E[Jik] if station i uses the job-control rule.

Next, in section 5.9, we found that, for k# 1 we can replace the Cov[Nkt_,NtJ,] term with:

* Cov[Nk,.,Nt,.-], if stations k and 1 both use the job-control rule;

* Cov[Pkt.,Nlt,] / E[Pk] if station k uses the instruction-control rule and station / uses the job-control

rule; and
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* Cov[Pk, 1 ,P,t1] / E[Pk]E[P] if stations k and / both use the instruction-control rule.

Finally, for k = 1, the Cov[Nk,,/,Nt-,] becomes Var[Nk,,], and we replace this term with:

* Var[Nk,,/] if station k uses the job-control rule; and

* (Var[Pk,,t] + ut) / E[X] 2 if station k uses one of the instruction-control rules. (Recall that Uk is one of

the two variance correction terms discussed in section 5.3 of the LRS-MR model paper.)

But then, we can rewrite the expression for Cov[Ai,Aj,] as follows:

(120) Cov[ A, , Ap,]= E IDikcJSk,1,,t + 1 tik jUkk
kEKIEK kEK

where:

* Oik = E[Jik] if stations i and k both use the job-control rule.

* Dik = E[Jik]E[X] if station i uses the instruction-control rule and station k uses the job-control rule.

* cik = E[J7k] / E[Xk] if station i uses the job-control rule and station k uses the instruction-control rule.

* (ik = E[Jk]E[X] / E[X] if stations i and k both use the job-control rule.

* Sk,[,t. = Cov[Nk,t1 , N 11], if stations k and / both use the job-control rule (recall that Cov[Nk,.-,Nit,]

terms become Var[Nk,,I] terms when k = 1);

* Sk,,t.1 = Cov[P,, 1, Nt,1 ] / E[P] if station k uses the instruction-control rule and station / uses the job-

control rule;

* Sk,l,t. = Cov[Pkt_,Pt] / E[Pk]E[P] if stations k and / both use the instruction-control rule;

* Ukk = 0 if station k uses the job-control rule; and

* Ukk = Uk, if station k uses one of the instruction-control rules, and where Uk is the appropriate variance

correction term, as discussed in section 5.3.

5.10.3 The Covariance of Arrivals and Workload

Now, we need to calculate the covariance of work arrivals with workload in the previous period, or

Cov[A 1,,4, Wj,_]. To do so, let us consider Cov[ A ,A ,], which is the covariance of the arrivals

at station i with the arrivals stationj sends to itself. We can write this as:

(121) Cov[ A A , ]= COV , Y .
_kEK 1=1 1=1

In the previous subsection, we found that the covariance of all the arrivals at station i with all of the

arrivals to stationj is:
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(122) Cov[ Ai, A]= Cov I(Y,'ij
_kEK 1=1 kEK 1=1 -

= 11 X ik(I@;SkI,t-1 + 1(k ikU .kk
kEK!EK keK

But then, by the bilinearity principle of covariance, the covariance of all the arrivals at stationi with the

single arrival of the work stationj sends to itself is:

(123) Cov[Aj,,AjI]=Zt = ik(J 1 S kj,t1 + cD j 1 Uj.
k EK

Now, Sk,,t-. is a linear function of Cov[Wk,,-, W ],J. Then, the bilinearity principle implies that to change

to Cov[A,',W,,_1], we simply drop the Ij terms from the equation for

Cov[ A,,, A 1 , ]. This gives us:

(124) Cov[A,,, = A ifkSk + U.
I EK

5.10.4 A Formula for the Covariance Terms

Recall that a formula for Cov[ Wi, Wj,] is:

Cov[W,,W, ] = C Cov[ W>1, W' t I] + CI - T Cov[W,,, Aj, ]

+ (Il -- Cov[C ~ L i 1
Ai9 W _ ] + W ) Cov[ A ,, A,,].

Using the formulas of the previous two subsections for Cov[Wi1 , A1 ] and Cov[A1 , A,], we find:

Cov[W,,TW,]= C 1- Cov[J'J'-1 , Wj, 1 ]

(126)

+ 1- i : S, ,tI
Lj LEK

r1
+LI I

+ Uii)

" OUjUk kSk,j,t-1
k rK

!r i-)jI ( ?J Cz DijsK L. L.ik j k,,t-I

Finally, we can write all of the non-variance Cov[W,,, Wj,] equations in matrix form as follows:
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St = BS,_,B'+(D )U(DG)'+DZD,(127)

where all the matrix variables are the same as they were for Equation 19. By term-by-term multiplication,

we can check that the (ij) entry of S, is the recursion equation above. U

This completes the derivation of the LRS-MR uodel. U

6. Appendix: Lemmas Used in Model Derivations

6.1 Expectation of a Random Sum of Random Variables

Lemma 1. Let N be a random variable with finite expectation, and Xi be a set of independent, identically

distributed random variables, independent of N, that have a common mean E[A7. Define Q N X

Then E[Q] = E[N]E[X].

Proof. (c.f. Rice, 1995, pp. 137-138.) We first prove the following result: E[Y] = E[E(Y]X)]. (This

result is sometimes called "the law of total expectation.") This law states that. To prove this result, we

will show that:

(128) E(Y) = I E(YX =x)p,(X),

where E (Y|X = x) = IYP, (y x) .

The proposed formula for E(Y) is a double summation, and we can interchange the order of this

summation. Doing so yields:

(129) ZE(Y|X = x)px (x) = YEpyx (y\

Now, by the definition of conditional probability, we have:

(130) py(y)= I Px(yix)rp(x).

Substituting, we find that:

x)PX(x).
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(131) y pyp,(yx)p,(x)= Iyp,(y)= E(Y)

which is the desired result.

We now consider E[Q]. Using the result, E[Q]= E[E(TN)]. Using the linearity of

expectation, E(QjN = n) = nE[X], and E(QIN) = NE[X]. Then we have:

(132) E[Q] = E[E(Q N)] = E[NE(X)] = E[N]E[X],

which is the desired result. 1

6.2 Variance of a Random Sum of Random Variables

Lemma 2. Let N be a random variable with finite expectation and a finite variance. Let X be a set of

independent, identically distributed random variables, independent of N, that have a common mean E[X],

and a common variance, Var[X]V.

N

Define Q = Xe.. Then Var[ Q] = E[ N]Var[ X] + (E[ X]) 2 Var[N].

Proof. (c.f. Rice, 1995, pp. 138-139.) We first prove the following result:

Var[Y]= Var[E(YJX)]+ E[Var(YIX)]. (This result can be thought of as the "law of total variance.")

By definition of variance, we have:

(133) Var(Y|X) = E(Y 2jX = x) -[E(Y)|X = x] 2.

Then the expectation of Var(YX) is:

(134) E[Var(Y|X) = E[E(Y 2 JX)] - E {[E(Y|X)] 2 }.

Similarly, the variance of a conditional expectation is:

(135) Var[E(YX)]= E{[E(Y|X)]2 }- {E[E(YjX)]} 2 .

Next, we can use the law of total expectation to rewrite Var(Y) as:

(136) Var(Y) = E(Y 2 ) -[E(Y)] 2 = E[E(Y2 IX)]- {E[E(IIX)]} 2 .

Substituting, we find that:

Var(Y) = E[E(Y 2 IX)]- {E[E(YIX)]} 2

(137) = E[E(Y2 |X)]-E{[E(Y X)]2 }+ E {[E(Y X)]2 }- {E[E(YX)]} 2

= E[Var(YIX)] + Var[ E (YIX)],
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which is the desired result.

Now consider Var[Q]. Using the result, we have that

(138) Var[Q] = Var[E(T A')] + E[Var(T|N)].

Because E(Q N) = NE(X), we have that

(139) Var[E(QIN)] =[E(X)]2 Var(N).

Further, the fact that the X's are independent allows us to write:

N

(140) Var(QJN) = Var3 X, = N(Var[ X]),

and, taking expectations, we find that:

(141) E[Var(QIN)]= E(N)Var(X).

Substituting into the expression for Var[Tj, we find:

(142) Var[Q] = E[ N]Var[ X] + (E[ X]) 2 Var[N],

which is the desired result. 0

6.3 Uniform Distribution of Arrivals in a Poisson Process

Lemma 3. Let X be a set of independent, identically distributed random variables, that come from an

exponential distribution with parameter A. Consider a queue containing Njobs, where N is some positive

integer, and where each job has length X. Then the breakpoints of the firstN - 1 jobs in the queue will

be uniformly distributed.

N

Proof (c.f. Gallager, 1995, p. 45.) First, note that the queue has a total length of Q= X . Next,

define Si to be the location in the queue of the breakpoint between the ith and i+lth job. We know

SN= Q, since the end of the last job marks the end of the queue.

We will calculate the joint distribution of SI, S2 , ... SN-I, which isf(S I N-1) =

f(SI=sI, ... , SN-1=Sn-J I N -I breakpoints in Q). Now, for a small o, f(S I N - 1), approximately equals the

probability of no breakpoints in the intervals (0, sj], (sl+5 s2J, ... ,(sN-J+, Q], and precisely one

breakpoint in each of the intervals (si, si+3, i = 1 to N - 1, conditional on the event that exactly N - 1

breakpoints occurred.
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We first consider the unconditional probability off(s1 , ... sN-9 8 - Since the X,'s are exponential

with parameter X, the probability of no arrivals in one of the (sj+i, s+,j] intervals equals

exp[-A(si+, - si - 9)]. Similarly, the probability of one of the arrivals falling in one of the (si, si+d]

intervals is Atexp[-28]. Then, the unconditional probability is simply the product of all the

exp[-A(sigl - si - ,)] and A2exp[-28] terms. Now, there is one exponential term for each subinterval

of (0, Q], so multiplying them together yields exp[-2Q]. Further, there are N - 1 (L) terms, so we have:

(143) f(s1 ,...,sN-I )3 = ( 2 (5)N-1exp[-2Q].

Now, using conditional probability, we know that:

(144) f(sI ,..., N-1 IN -1 breakpoints in Q) = f(si,..., N-

P(N -1 breakpoints in Q)

Since the X's are exponentially distributed, P(N - I breakpoints) is given by a Poisson distribution.

(Effectively, P(N - 1 breakpoints) is the probability of N - 1 arrivals of a Poisson process with parameter

in an interval of length Q). Then we have:

f(sI ,...,sN-1 |N - I breakpoints in Q),5= f (sI...sN-1)
P(N -1 breakpoints in Q)

(145) NA)-'ep1 1Q
(AQ)N-'exp[-AQ]'

(N -1)!

(A.)N-1 (N - 1)!
(AQ)N-1

Dividing by Sand taking the limit as 1 -+ 0, we find:

(N-i)'
(146) f(sI...,sN-1 IN -1 breakpoints in Q)= N- 1 O<s <...<N<Q.

Thenf(S I N - 1) has a uniform distribution, as desired. r

6.4 An Upper Bound on the Variance of the Number of Jobs Processed Per

Period, for "Nice Distributions" of the Number of Instructions Per Job

Lemma 4. Suppose that X, a nonnegative random variable for the distribution for the number of

instructions perjob at station k, satisfies the following condition: For all values of a constantto 0,
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E[Xk- toJIX > to ] E[Xk].

Then the following result holds.:

Var[Nk] E[qk]- 2 + 2 Var[q],
L( Lk Lk

where Nk is the number ofjobs contained in the first 1 / Lkfraction of instructions in the queue at station

k, and qk is the total number ofJobs in the queue.

Discussion. In words, the conditionE[X- tIX > to] E[Xk] means the following: Suppose we

arrive at station k at a random time, and wait for the current job in the queue to finish. Further, suppose

we know that station k has been working on the current job for at least to time units. Then the condition

says that the expectation of the time remaining until the job is finished is less than the unconditional

expected time to process a job at station k.

Distributions which satisfy this property can be thought of as "nice" distributions. Most common

distributions satisfy this property, including deterministic, uniform, triangular, normal, and beta

distributions. The exponential distribution satisfies this property with equality: by definition, the fact that

we have been waiting to for the completion of a job tells us nothing about when the job will be done.

An example distribution in which the property is not satisfied is the following: suppose that the

time to complete a job is either two seconds or five hours. If we wait for more than two seconds, we

expect to wait a long time before the current job is completed.

Proof. We consider two different nonnegative distributions: X, which satisfies the condition of the

lemma, and X', which is an exponential distribution. Both distributions have the same mean, E[Xk]. The

variance of X is not known; the variance of X' is (E[Xk]) 2. However, an established result from queuing

theory is that:

Var[Xk] Var[Xk']
(147)

since Xk satisfies the property that E[Xk -tIX > to]: E[Xk]. Since Xk and Xk' have the same mean,

we have that Var[X] < Var[Xk].

Now, define N to be the number of jobs whose endpoints are in the first Qk / Lkinstructions of the

work queue, given that the distribution of the number of instructions per job is Xk. Similarly, defineNk'
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to be the number of jobs whose endpoints are in the first Qk / Lk instructions of the work queue, given that

the distribution of the number of instructions per job is Xk'. Mathematically, we define N to be:

(148) Nk = Nk: Xk - ! X,k

and the definition of N'k is similar. We want to show that Var[Nk] Var[Nk']. We will use the Law

of Total Variance to prove this result.

Recall this law states that Var[Y]= Var[E(YjX)]+ E[Var(Y|X)]. Here, let Y = Nk or N'k as

appropriate, and let X be the event that Qk and qk equal certain fixed values.

Var[E(YX)I: Given qk, E[Nk] = E[Nk'] = qk/ Lk. Then,

(149) Var[E(Nk IX)] =Var[E(N'k IX)] = Var(qk) / Lk.

E[Var(YIX)I: Using the definition of variance for discrete distributions, we have that:

(150) Var(NIX)= N kp(N IqLI
Nk =1 k)

The expression for Var(N'k I X) is similar.

Recall the probability that N equals a particular value, nik, is the probability that the sum of the

instructions of the first nk jobs in the queue is less than or equal to Qk / Lk, and that the sum of the

instructions of the first nk + 1 jobs is greater than Qk / Lk. Then we can rewrite the above equation as:

qk gk2 (Nk Qk Nk+1

(151) Var(NkIX)= N - L Xi, k Xi /

Nk =1 k i=1 k i=1

If we take the expectation of this expression, we find that:

E[k ]) 2 N* E [ Qk] +(152) E[Var(NIX)]= N- L[ <p I X X.

NT =0 e sk j=1 Vk j=1

The expression for Var(N'k X ) is similar. Then, the fact that Var[ X ] s Var[ X', ] implies that:
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E[Var(Nk IX)] =

qk(

I =Nk
E[qj 2 (pN X

j=1

k I~~~ E[q k]jjJ2( NxY
O (N', - E q 2 k

N'k =0 j=1

E[Qk] N'k +1

k j=1

E[Var(N'k fX)].

The inequality follows from the following argument: since Var[X ] < Var[X'j], the overall probability

that I kX k takes on values comparatively far from E[Qk L] is less than the probability that

ZkXf takes on values comparatively far from E[Qk]/Lk . The inequality follows.

Var(Y) = Var[E(YIX)] + E(Var(YIX): We have shown that Var[E(N k IX)] = Var[E(N'k I X)], and

that E[Var(Nk IX)] E[Var(N'k X)]. Adding these two terms together, we find that:

(154) Var[Nk ] = Var[E(N kI X)] + E(Var[NkIX)
<4 Var[E(N',, kX)] + E(Var[ N'k IX) = Var[N'k ],

Now, we found in section 5.3 that

Var[N'k ] E[qk
L Lk I

1
+ 2Var[qk]-

Lk

(Recall that the result follows from the fact that X'k is an exponential distribution.) The result of the

lemma immediately follows. 0

6.5 Covariance of a Sum of Random Sums of Random Variables

Lemma 5. Let N be a set K of random variables, each with a finite expectation and a finite variance.

Let Xk be a set of independent, identically distributed random variables, independent from every Nk , that

have a common mean E[Xk], and a common variance, Var[XJ].

Nk

Define T= ZZXik. Then:
keK i=1

Var[T] = Z(E[Nk ]Var[X ]+(E[X])2 Var[Nk ]) + ZZ E[Xk]E[X]Cov[Nk ,Nj].
kEK kEK eK

1 k
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E[Qk ]
Lk

Nk +1

I j,k
j=1
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Proof We assume the following result: Var[Y] = Var[E(YjX)] + E[Var(YIX)]. (This result was

proved in the development of Lemma 2.) Let N be the event {Nk = nk ,Vk} . Using this result, we have

that:

(156) Var[ T] = Var[E(T|N)]+ E[Var(T|N)].

Now, using the linearity of expectation,

(157) E(1N) = I NkE[Xk].
k eK

But then, noting that E[X] is a constant, and applying the bilinearity principle of covariance, we

find that:

Var[ E(T N)] = Var I N,E[ X,] ,

(158) ~kEK 2

= (E[ Xk])2Var[N,]+ ZZE[X,]E[X,]Cov[NN ].
keK kEKIEK

l~k

Next, recalling that the variance of a fixed sum of independent random variables is the sum of

their variances, we have:

Var(7N) = Var (1: Xi1
k eK i=1

Nk

= L Var[
keK i=1

Xk]= NkVar[Xk],
kEK

and, taking the expectation over N, we find:

E[Var(7]N)] = Ef1: NkVar[Xk
kEK

We therefore have:

Var[ T] = Var[ E(T N)] + E[Var(TIN)]

= Z(E[NkVar[k± +(E[ X, ])2Var[ Nk])
k EK

=J E[N]Var[Xk].
keK

+ >LZE[Xk ]E[X]Cov[NkA,N],
k eK

which is the desired result. 0
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Chapter 6. Steady-State Optimization

1. Introduction

Previous chapters have focused on the steady-state performance evaluation of MR models. We assumed

that all the model parameters were specified, and computed the resulting moments of production and

queue lengths. In this chapter, we focus on the steady-state optimization of MR models. Here, we use

nonlinear programs to find the optimal model parameters. We develop nonlinear programs for a variety

of objectives, including:

* Maximize performance (usually, minimize a weighted sum expected waiting times or queue lengths;

alternately, maximize throughput) given a network budget.

* Minimize network cost, given performance requirements.

* Minimize production or queue length variances, given performance and / or inventory requirements.

These nonlinear programs use the moment equations developed in previous chapters to define objectives

and / or constraints. We develop the nonlinear programs for two families of MR models: those with

linear control rules (classes Lxx-MR), and those with general control rules, especially concave rules such

as Karmarkar's clearing functions (classes Gxx-MR).

Section 2 discusses a key issue involved in formulating optimization problems, the formulation of

station capacities. This issue is particularly relevant to models with linear control rules, since these

models do not have capacities per se. Instead, stations process a fixed fraction of the work-in-queue,

regardless of queue size. Thus, production capacities and capacity constraints must be implied from the

station's production moments, which may require simple simulations (an example simulation is

presented). With general-control rule models, formulating capacity constraints becomes a matter of

fitting nonlinear production functions to station capacities.

Section 3 formulates a variety of optimization problems for models with linear and general

control rules. Within linear control rule models, we formulate problems for LLS-MR and LRS-MR

models. Within general control rule models, we restrict our attention to GLS-MR models. In general, the

optimization problems balance network cost against network performance.

Section 4 discusses solution techniques for the optimization problems. Most of the discussion

focuses on the commonly used Method of Moments, which minimizes an augmented Lagrangian function

to solve the optimization problems.

Section 5 considers the optimization of LRS-MR models explicitly. We find that LRS-MR

optimization problems are more complex than LLS-MR models, since the user may choose one of three

control rule types for each station. These choices make the resulting optimization problems combinatorial
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as well as nonlinear. To simplify the problems, we present a simple dynamic programming heuristic to

determine control rule types.

As noted, most of the nonlinear programs involve a network performance measure, often a

weighted sum of expected waiting times. Section 6 shows how to set the weights so that the resulting

sum approximately corresponds to a very useful measure: the expected end-to-end completion time for all

work flows in a network.

Finally, Section 7 presents two optimization examples. We first consider the problem of

minimizing waiting times in an eighteen-station LRS-MR network subject to a budget constraint, and

show how the solution changes as the budget constraint increases. We then consider the problem of

minimizing cost in a thirteen-station GLS-MR network subject to constraints on the expected waiting

times.

2. Formulation of Station Capacities

The nonlinear programs we will consider include terms related to station production capacities, such as

capacity constraints. In a maximum performance problem, for example, we install capacity at each

station to maximize performance, while keeping the price of the capacity within a budget constraint.

Similarly, for a minimum cost problem we economize on capacity purchases while ensuring that the

capacity installed meets performance requirements. In this section, we consider techniques to model

capacity in MR models. We first consider models with linear control rules, and then consider models

with general control rules.

2.1 Capacities for Models with Linear Control Rules

As noted, models with linear control rules do not define station capacities. It is assumed that stations

process the required fractions of their work-in-queues, regardless of the size of the queues. Instead, we

present an indirect method to model station capacities.

2.1.1 Capacities and Bounded Control Rules

In Chapter 3, we discussed the idea of a bounded control rule, which is:

Pi. = min(zi, aiQi),()

where zi is the capacity (or production bound) of the station, and aiQi is the amount that would

be produced if the station's capacity was not bounded. This control rule clearly introduces station

capacities. Unfortunately, the bounded control rule cannot be analyzed directly.
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Instead, we consider an alternate approach: set the capacity level z; high enough that the station

will not have to produce the maximum capacity most of the time. Such azi allows us to ignore station

capacities when determining production and queue length moments, so that the MR-model moments may

be used directly. A common way to do this is to set the capacity equal to the expected production plus

some multiple times the standard deviation of production. Thus, capacity becomes:

zi = E(P)+ki var(PJ) , (2)

where ki is a constant, called the safety factor. Once ki is determined, this formula maps the

moments of production into a station capacity, suitable for use in the optimization problems. For

example, suppose that the cost of the capacity at all stations must be less than some budget constraint,C.

In terms of capacity, this constraint is Ec z C, where ci is the unit price of capacity at station i.

Applying equation (2), this constraint becomes:

c - E(i)+ki var(P))< C , (3)

where E(Pj) and var(P) are the production moments from the MR-model's moment equations.

2.1.2 Interpolating the Safety Factor

The drawback with equation (2) is that we have not specified ki. If the production quantities were

normally distributed, setting ki to be 2.0 would dictate that the station would produce less than its capacity

approximately 97% of the time. However, there is no guarantee that a station's production will be

normally distributed. Further, knowing that the station will produce less than its capacity 97% of the time

does not imply that the resulting system will behave as if there were no capacity constraint. There may

be significant errors between the actual and modeled production and queue length moments, even withki

= 2.0. Alternately, k = 2.0 may be too conservative; the actual system might be similar to the model ifk

= 1.5. Thus, setting k; = 2.0 might require too much capacity.

Setting ki to be an arbitrary value, such as the common kI = 2.0 , is the best we can do without

any knowledge of the production distributions. If we do know something about the distributions,

however, we can use simulations to interpolate a function fork as a function of the MR model results and

parameters (namely, E(P), var(P), and the lead times). Unlike the ki = 2.0 assignment, the function k (-)

specifically sets k; to a value needed to make a station with control rule (1), expected production E(Pi),

production variance var(P), and lead time L, behave as if it used an uncapacitated linear control rule.

To create the function, we define a measure of similarity between stations using the bounded and

linear control rules. Define H; to be E(Qj) given that the station uses a bounded control rule, divided by
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E(Q,) given that the station uses a linear control rule. By definition, Hi >1, since a station always

produces as least as much with the linear control rule as with the bounded control rule. Thus, an H, of

1.01 implies that the two expected queue lengths will be within 1% of each other. In our models,H is a

user-set parameter, and we will make k, great enough to meet the desired value of Hi. Generally, H

should be kept fairly close to 1.

Alternately, H, is the expected waiting time, E(W;), with a bounded control rule, divided by E(W;)

with a linear control rule. This result follows from Little's Law, which here states that

E(P,) -E(W,) = E(Q,), and that E(P;) is the same whether the bounded or linear control rule is used.

In addition to H;, we expect that k; depends on the variance of production at the station, and the

lead time at the station. Rather than consider the variance of production directly, we use the coefficient of

variation, s, = var(P)/E(j). This formulation makes k; invariant to the type of unit measuring

production. The lead time, Li, is the expected waiting time at the station if it used a linear control rule,

and is L, =1/a 1 .

Therefore, k, is specified by a function k;(H,,sj,L). The form of the function, however, cannot

be known analytically, since we cannot analyze the bounded control rule analytically. We do know that

the form will likely be a function of the production distribution. We propose the following simulation

technique to interpolate k,(H 1,sj,L ):

1. Create a simulation of a single station using the bounded control rule, such that the work arrivals to

the station create the known production distribution.

2. Simulate the station with a variety of ki's, si's, and Li's. Record the observed Hi for each simulation.

(Note that E(Q,) given a linear control rule is found analytically.)

3. Through regression analysis, find a function of kI, s7, and L, that explains H, well. Solve this function

for ki; the result will be the interpolated k, (H, ,si, L1) .

Obviously, the results of this process will be inexact. The resulting function comes from a

regression of a set of simulations. Further, the technique ignores work arrivals from upstream stations,

which may have a different distribution (due to averaging) than arrivals from outside the network.

Nonetheless, if applicable, this approach should generate safety factors that are more appropriate than

arbitrary assignments.

2.1.3 An Example Interpolation of a Safety-Factor Function

Here, we develop a single-station simulation, design and perform a simulation sequence, and

perform regression analysis to interpolate a function k,(H 1 ,sj,L 1) .
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We first identify a distribution for the work arrivals. Here, we assume that the work arrivals

come from a Gamma distribution. In general, if the arrival distribution is not known exactly, but is

believed to be "well-behaved", the Gamma distribution is a good choice, for the following reasons.

* It produces only non-negative values, important since we assume that arrivals are non-negative.

* A Gamma distribution is completely defined by its mean and variance, the two statistics estimated for

MR-models. Indeed, a Gamma distribution exists for any pair of mean and variance values greater

than zero, making it possible to simulate a wide range of mean and variance combinations.

* A sum of gamma distributions is also a Gamma distribution (or, in the case of linear control rules, a

multi-period average of Gamma distributions is also a Gamma distribution).

* Finally, Gamma distributions are widely implemented in mathematical and simulation packages.

We assume that the expected arrivals, E(A;), equals 1000 units for all periods. (As discussed

above, the units used do not impact the results.) Thus, E(P;) also equals 1000 units. The variance of the

arrivals varies with the simulation parameters, in accordance with the following formula:

var(A;) =(2Lj -1-Ei)-s;)2 (4)

This formula follows from s = var(Ij) / E(Pi) and var(A) =(2L - 1)- var(PI). The latter formula

comes from taking the steady-state variance of the production recursion equation for Tactical Planning

Models,

1, = t- +- Ai, (5)
(I-Li ), Li

and solving the resulting equation for var(Ai).

To specify the bounded control rule, we set the capacity of the station, zi, to be:

z= E(P)+ k var(P), (6)

or, using the definition of si,

zi =(I+ kisi)E(Pi) . (7)

We next design the simulation runs. The simulations follow a combinatorial design, so that one

simulation is performed for each combination of the following values of Li, s;, and ki:
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Parameter Values simulated

Li (Lead time) {1, 2, 3, 5, 10, 20, 40, 80, 160}

si (Standard deviation / expectation) {0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2}

k,(Safety factor) {0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6}

The design yields 792 separate simulations. We performed this set of runs in MATLAB. Each

simulation ran for 8,000 periods.

We next perform regression analyses on the simulation data. Our goal is to find a function

ki (H, ,si, Li), which generates the desired safety factor k, as a function of H,, si, and L;. We do so in

several steps. First, we find a function that explains Hi as a function of k,, si, and Li. This function,

Hi(k,s,,L1 ) is solved for ki, yielding the form of the function k(H ,si,Li). We then re-estimate the

parameters of ki (H, ,si, Li) through a separate regression analysis. (Simply solving Hi (k ,si, Li) for k;,

as is, can result in inaccurate estimates for k;.)

We note several desirable properties for ki (Hi, si, Li) .

* The function arises from a regression equation that fits the data well (high adjusted R2 statistic).

* The function produces "reasonable" k-values for most values of s. Ideally, k-values estimated by the

function should increase with s. It also means that k-values estimated by the function should not get

overly large, head towards infinity, or become negative ass varies. Instead, k-values estimated by the

function approach zero as s approaches zero, and the rate of increase in k-values should become small

as s gets large.

* The function can be written in closed form, allowing it to be substituted into nonlinear programs.

To get insight into the relationships between H, k;, si, and Li, we present several scatter diagrams

of the simulation results. Figure 20 relates Hi to the safety factor, k,. The diagram implies that Hi is

inversely proportional to ki.
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Figure 20 -- H v. Safety Factor

Figure 21 relates Hi to st, the "normalized" standard deviation. The diagram implies that H, is

directly related to si in some way. It is difficult to tell the exact nature of the relationship by looking at

the graph, other than that it appears to be nonlinear. (Interestingly, one of the best fits is a negative linear

relationship between the inverse of Hi and si.)
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Figure 21 -- H v. Production Standard Deviation

Finally, Figure 22 relates H to L;, the lead time at the station. At first glance, there appears to be

a direct relationship between Hi and L;. However, the relationship is an illusion caused by a few outliers
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on the right side of the graph. The relationship between the mean ofH and Li actually is not statistically

significant. (In some simulation runs used for debugging, outliers appeared on the left side of the graph.)
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Figure 22 -- H v. Lead Time

Using these plots as a guide, we performed a large number of regression analyses on the simulation data.

These regressions tested relationships between H, and k;, Li, and si. As it turned out, the class of functions

that best explained Hi all had the following form: all related 1/ Hi against si and a function of s, / k;. In

general, Li was not a significant factor in explaining 1/ Hi.

The table below summarizes the regression results for this class of functions. The table also

shows the regression result for the one function found in which Li was significant. (To simplify the

notation, the i-subscripts are not shown).

Regression Equation Adjusted R2 Statistic

1/H s+ -J.k 0.5380

1/H ~ s + sk 0.5541

1/H ~s+s 2k 0.4672

1/1H ~ s + sl /0.6041

1/H -s+s/k 0.6053

1/H s+ s/k 2  0.5852

1/H -s+Vis/k 0.5890

1/H _s+s 2 /k 0.5261

1/H~s-+ s 0.5654

1/H-L+s+s/k 0.6151 (L-term significant; less than .0004)
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All of these functions explain 1/H, fairly well, given the noise of the data. All other functions

considered had far lower R2 statistics (R2 < 0.4).

We consider the three functions with R2 > 0.6, all of which might lead to suitable functions fork,.

Of these three functions, the function 1 / H, - s + s, / k, has some usability advantages over the other two.

It is a function of only two variables, not three, which simplifies its use in comparison to

1 / H, - L, + s, + s, / k,, especially given that the effect of L; in the latter function is extremely weak.

Further, solving it for ki gives rise to a comparatively simple function for ki, as opposed to

1/H- s+s/5 k.

The regression plot of the fitted function 1/ H, ~ s + s, /k is:

1.8

1.6

1.4

1 + + + +

+ ++ ++

0.8 y =X + + + +
R2 = 0.6053

0.4 
+ ++ + ++ + +

0.2 + + +
0.2 +

0
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Regrission formula: -0.365s + 0.095s/k +1.007

Figure 23 -- Regression Plot of the Interpolated 1 / H Function

With the exception of the three outliers at the top of the graph, this plot shows a clearly linear

relationship, meaning that the fitted function has a form close to the true relationship betweenH and the

other variables. The regression plots for the other two functions with R2 > 0.6 look virtually identical to

the above graph. Consequently, we may choose from any of the three functions, and we select the

function 1 / H, ~ s, +, / ki for the reasons mentioned above.

Solving 1/ H, s, + s, / ki for k, yields a nonlinear function for k, that is difficult to regress;

inverting the resulting function yields:

1 1 1(8~ - -- + - (8)
ki Hisi si
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which is a linear regression in terms of 1/ ki and the other variables. Fitting this function yields an R2 of

0.5487, a reasonably good fit. As with our exploration of the class of functions for 1/Hi, however, we

consider a number of functions for 1 / ki, similar to (8), to determine if we can find a better fitting

function. As it turns out, fitting the function:

1 1 1

ki sv ii, si,
(9)

yields a higher R 2 coefficient of 0.5625. The regression graph of (9) is:

19_______________________________________

+ +

R2 = 0.562,

2 25

Figure 24 -- Regression Plot of the Interpolated 1 / k, Function

which clearly shows a linear relationship. The regression graph of (8) showed a more pronounced

curvature, implying that (9) does a better job capturing the true relationship between 1 / ki and the other

variables. Thus, we use (9) to create our function for the safety factor ki. The fitted function is:

-2.5881 2.5935
,+ +0.5233 I

~~'y s, H s,
(10)

Figure 25 uses (10) to plot the safety factor k, against different values of si, parameterized by Hi.
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Figure 25 - Safety Factors as a Function of si and Hi

The graph implies several facts about our interpolated k (H ,s;,Lj) . First, the function satisfies all of the

desired properties for a safety-factor function. It has been written in closed form. It generates a

reasonable value of ki for all positive values of s,. It approaches 0 as si approaches 0, and its rate of

increase slows as si increases. In this case, ki approaches the following limit as s; increases:

2.5881 2.5935 ____
limk;(Hi,sj,Lj)=lim - + +0.5233 =1.911. (11)
s--*oms-*cx+ si H s1  0.5233

Second, the graph demonstrates the tradeoffs between H, and ki. We see that by allowing fairly

small tolerances in H (say, allowing the simulated waiting time to be 10% greater than the lead time) we

substantially reduce the safety factor and the resulting capacity installed at a given station. Further, the

gains in k; decrease as H increased; for example, the gains resulting from increasing H; from 1.10 to 1.20

are not as significant as increasing H, from 1.05 to 1.10. These tradeoffs suggest the following:

* The Hi parameters may be- decision variables in the optimization problems. In particular, for

optimization problems where "performance" is measured by expected waiting times, we can varyHi

to find a minimum k, that yields a desired expected waiting time.

* However, in practice we should limit how much we increase any particular Hi. The simulations

calculated expected waiting times at a single station, not for an entire network. We expect that having

high H; parameters - which cause stations to hit their capacity bounds frequently - may cause

significant deviations in the downstream work flows. Consequently, having H; values significantly
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greater than one may cause network-wide effects that will result in the inaccuracy of the analytic

results.

* In addition, we may wish to place lower bounds on k;, regardless of the values implied by

ki (Hi ,si, L1). The lowest safety factor tested in the simulation was 0.6; in other simulations, lower

values of ki produced very long waiting times.

Finally, the graph shows that the initial approximation of simply setting k, = 2.0 had significant

value, at least in the case where work arrivals come from a Gamma distribution. If we set theH, values

close to one (i.e., we want the capacitated network to behave similarly to the uncapacitated network), we

note that the k values rapidly approach the upper bound of 1.911 as si increases. Indeed, the graph

implies that if we know that s, is likely to be at least 0.2, there is little need to substitute ki (Hi, si, L1 ) into

the nonlinear programs. We can simply set k =1.9 for all stations in the network, significantly

simplifying the resulting optimization problems.

2.2 Capacities for Models with General Control Rules

Capacity modeling for stations with general control rules is dependent on the form of the control

rule. Often, we use bounded concave control rules. At first glance, the bound suggests a natural capacity.

For example, clearing functions (discussed at length in Chapter 3) have the form:

P= M Q (12)
Q, + 8p.

where M; and A are parameters, with Mi being an asymptotic bound on production. Obviously, Mi might

be used as the "capacity" of the station.

However, it is not the case that a station's capacity should automatically become the asymptotic

bound. Instead, the user should take some care to match the rated capacity of the station, which generates

costs in the optimization problem (for example, the rated capacity of a machine), with the actual

production behavior of the station, represented by the production function.

For example, suppose we model the behavior of a machine with a clearing function, and suppose

the machine has some rated capacity, yi. It may be the case that y, is a true production bound, in which

case M =y,. However, the machine's rated capacity might exceed its true capacity, in which case the true

production bound, M;, will be lower than yi. In an entirely different scenario, yi may be a rated capacity,

but the users find that the capacity may be exceeded in overtime scenarios. In this case, Mi > yi. In

practice the analyst should calculate Mi by analyzing the observed behavior of the station, and mapping

the rated capacity to the actual production bound.
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Note that most production functions have parameters besides the asymptotic bound; these

parameters usually determine how quickly production rises to meet the asymptotic bound. In the case of

clearing functions, for instance, this parameter is A. In Chapter 3, we usually assumed that 83 = Mi, so

that the rate of production equaled one as the queue length approached zero. However, there is no reason

why 83 must be one; it may be any positive value. In practice, /3i should be set by analyzing the

observed behavior of the station.

Thus, in general, our goal is to find functions that map the rated capacity of a station (which

entails costs) to the parameters of the production function. With a clearing function, for instance, we find

translating functions fm and fp such that we can write the production function as a function of the rated

capacity, y:

Sfm (yi) -Q (13)
Qi+ffl(y i )

This form of the production function may then be used in optimization problems that involve capacity

cost and network performance tradeoffs.

Translating functions are dependent on the production function and the structure of the rated

capacities. In general, the functions will be interpolated from statistical data.

3. General Forms of Optimization Problems

In this section, we discuss general forms of optimization problems of MR-models. For the sake of

simplicity, we assume that the control rules at all stations are single-queue control rules. Derivations of

nonlinear programs for multi-queue control rules are similar, with the addition of notation to deal with

multi-queue rules. (For example, with single-queue linear control rules, D is a diagonal matrix of

smoothing parameters; with multi-queue linear control rules, D is a nondiagonal matrix.)

3.1 Definitions

Terminology. The following are terms and symbols that will be used in the mathematical programs.

* F(x, y) is a vector (or matrix) valued function with vector (or matrix) valued arguments x and y.

F (x,y) is the jth element of F(x, y) if the function is vector-valued. Similarly, F. (x,y) is the (ij)

element of F(x, y) if the function is matrix-valued.

* The expression A e B represents the array product of matrices (or vectors) A and B. A e B produces

a matrix whose (ij) entry is AUBU.

* The expression A -B or AB represents ordinary matrix or vector multiplication.
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e is a vector of ones.

* diag(A) is a function that produces a vector whose entries are the diagonal entries of A.

Decision variables. The following variables will be decision variables in some of the nonlinear

programs.

z is a vector whosejth entry is the capacity installed at stationj.

p is a vector whose jth entry represents the expected workload arriving at stationj from outside the

network.

* (Lxx-MR models only) L is a vector whose jth entry is the lead time at stationj. (Recall that in Lxx-

MR models, L = 1/aj , where 0 < ac 1 is a smoothing parameter.) Associated with the matrixD,

a diagonal matrix with the smoothing parameters on the diagonal, so that Di. = a = 1/L .

* (LRS-MR models only) r is a vector whose jth entry represents the control rule used at stationj

(instruction-control, job-control, or double-control).

* (LRS-MR models only) RE is a vector whose jth entry represents the expected number of job requests

entering stationj from outside the network. This variable is used in place of p for LRS-MR models.

Fixed variables. The following variables are fixed inputs to the nonlinear programs.

w is a vector whosejth entry is a weight that measures the significance of the expected waiting time

or queue length at stationj, or the significance of the expected input at a station (depending on the

nonlinear program).

* (Lxx-MR models only) H is a vector whosejth entry is the similarity measure used to model bounded

control rules, discussed in Section 2.1. Recall that H is the expected queue length of stationj, using a

bounded control rule, divided by the expected queue length of stationj, using an unbounded linear

control rule. (In Section 2.1, we discussed the possibility of using H as a decision variable; however,

we will assume that H is fixed at a value close to a vector of ones for the duration of this paper.)

Implied variables. The MR models have a number of other inputs not listed above. However, these

inputs define the model of the shop, and remain constant across all nonlinear programs using that model.

Thus, we do not show these inputs in the nonlinear programs. Examples of these implied inputs include

input covariance matrices and workflow matrices. For GLS-MR models, implied inputs also include the

control rules, and the transition functions mapping capacity vectorz to control rule parameters. For LRS-

MR models, the implied inputs include the expectation and variance of the jobs per request at each
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station, and the expectation and variance of the instructions per job at each station (as discussed in

Chapter 5).

We may evaluate models in which the input covariance matrix is a function of the expected

arrivals (i.e., we associate greater expected arrivals with a greater variance in those arrivals). In this case,

the covariance matrices become functions of p.. Nonetheless, the input covariance matrices need not be

specified in the nonlinear programs, since p is already listed as a decision variable.

Functions. The following functions will be used in the mathematical programs.

* Function c(z) calculates the cost of building a network, given a vector of station capacities.

* Function PE(p) produces a vector of expected workloads given a vector of expected arrivals. (For

LRS-MR networks, this function becomes PE(RE)-)

* Function Spo produces a steady-state covariance matrix of the production quantities. Its argument list

depends on the model class. For models with linear control rules, Sp is a function of the lead times

and expected arrivals (assuming the input covariances depend on the expected arrivals); we have

Sp(L, p.). For LRS-MR models, Sp is a function of the expected requests and the control rule choices,

as well; we have Sp(L, RE, r). For GLS-MR models, Sp is a function of the expected arrivals and the

station capacities; we have Sp(z, R).

* (GLS-MR models) Function QE(P, z) produces a vector of estimated expected queue lengths given a

vector of expected arrivals and a vector of station capacities. This vector may come from either the

MomentsP or MomentsQ algorithm (discussed in Chapter 3). Note that for linear control rule

models, we simply write the expected queue lengths to be D-PE@.

* (GLS-MR models) Function SQ(z, p) produces an estimate of the steady-state covariance matrix of

the queue length given a vector of capacities and a vector of expected arrivals. The matrix may come

from either the MomentsP or MomentsQ algorithm.

* (Lxx-MR models) Function k(H, L, pt) computes a vector of safety factors, as discussed in Section

2.1. It is a function of the H vector, the lead times, and the production variances calculated by Sp()

(which, in turn, may be functions of p). As discussed in 2.1, we require the capacity at each station
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to be the expected production plus k times the standard deviation of production at stationj. Note that

for LRS-MR models, k is also a function of the control rule choices, r, as well.

3.2 Optimization Problem Formulations for Models with Linear Control Rules

We use the above functions and variables to define a series of general mathematical programs for models

with linear control rules. For each program, we list the constraints along with a description of what the

constraints mean. The following programs are for LLS-MR models; the same programs apply to LRS-

MR models by changing p to RE and by changing the argument lists of the Sp() and KO functions to

include r, the vector of control rule choices.

3.2.1 Maximum Performance Given Throughput and Budget

Constraint

min w'.(H e L)

subject to

PE () + k(H,L, p) * diag(S , (L, p)) z

Description

Minimize a weighted sum of the expected waiting
times at all of the stations.

Capacity required to meet the current performance
level is less than the capacity currently installed, for all
stations.

c(z) C Total cost of building a network with the specified
capacities is less than the total budget, C.

p 2 mp Expected inputs to the network (throughput) are greater
than a set of minimums.

L e The lead times are all greater than one.

rj = {instruction, job, double}, allj

(LRS-MR models only)

The control rule at each station is set to be one of the
three possible control rules (instruction- control, job-
control, or double-control).

This nonlinear program seeks to minimize waiting times. It is similar to a nonlinear program that seeks to

minimize a weighted sum of expected queue lengths (i.e. "minimize expected inventory"). The only

change that would need to be made is to the objective function. The new objective function is

minw'.-[He (D -P, p))].

3.2.2 Maximum Throughput Given Performance Requirements and Budget

Constraint Description
max w'-p Maximize a weighted sum of the expected arrivals at
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all of the stations.

subject to

E(p) + k(H,L,p) diag(S (L, F)) z Capacity required to meet the current performance
level is less than the capacity currently installed, for all
stations.

c(z) C Total cost of building a network with the specified
capacities and control rules is less than the total budget,
C.

w'.(H e L) T A weighted sum of the expected waiting times is less
than some constant, T.

L e The lead times are all greater than one.

Impose expected arrival bounds as
example, if new arrivals only appear at
for all the other stations equals 0.)

needed. (For
one station, M

The control rule at each station is set to be one of the
three possible control rules (instruction- control, job-
control, or double-control).

3.2.3 Minimum Budget Given Performance Requirements and Throughput

Description

Minimize the total cost of the network.

Subject to

PE ()+ k(H,L,;t)@ Capacity required to meet the current performance
level is less than the capacity currently installed, for all
stations.

p > p Expected inputs to the network (throughput) are greater
than a set of minimums.

w'.(H e L) ! T A weighted sum of the expected waiting times is less
than some constant, T.

L e The lead times are all greater than one.

r = {instruction, job, double}, allj

(LRS-MR models only)

The control rule at each station is set to be one of the
three possible control rules (instruction- control, job-
control, or double-control).
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3.3 Optimization Problem Formulations for Models with General Control Rules

Here, we define a series of general mathematical programs for models with general control rules (class

GLS-MR). For each program, we list the constraints along with a description of what the constraints

mean.

3.3.1 Maximum Performance Given Throughput and Budget

Constraint

I .. E,( )Min W EJ(9Z
PE (W)

Description

Minimize a weighted sum of the expected waiting

times at all of the stations. (Here, we use the fact that

the expected waiting time is E(Qj) / E(P).)

subject to
c(z) C Total cost of building a network with the specified

capacities is less than the total budget, C.

> p Expected inputs to the network (throughput) are greater
than a set of minimums.

This program has a simpler form than the equivalent program for linear control rules, since the functions

mapping z to control rule parameters are be part of function QE( L, z).

The form of this program is similar to a nonlinear program to minimize a weighted sum of

expected queue lengths (i.e. minimize weighted inventory). The only change is to the objective function,

which becomes minw'-QE(p, z.

3.3.2 Maximum Throughput Given Performance Requirements and Budget

Description
maxw'-p Maximize a weighted sum of the expected arrivals at

all of the stations.

c(z) C Total cost of building a network with the specified
capacities and control rules is less than the total budget,
C.

wL ' QEi (j P9Z) <n T

Pj,miin !! Pj !! Pj,miax, Vf

A weighted sum of the expected waiting times is less
than some constant, T.

Impose expected arrival bounds as needed. For
example, if new arrivals only appear at one station, J
for all the other stations equals 0.)
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3.3.3 Minimum Budget Given Performance Requirements and Throughput

Constraint Description

min c(z) Minimize the total cost of the network.

Subject to

pt I'min Expected inputs to the network (throughput) are greater
than a set of minimums.

w. QEJ(p,z) A weighted sum of the expected waiting times is less
- T than some constant, T.

4. Nonlinear Programming Techniques

The nonlinear programs discussed in Section 3 can all be expressed in the following general form:

minimize f(x)

subject to g(x) 0, x e X

In the above program, x is a vector containing all the variables being solved for in the model, andf(x) is

the objective function (which depends on the type of program being solved). The term g(x) 0 is the set

of all the computationally hard inequality constraints. If we cannot optimize an objective function over a

constraint easily, the constraint is "hard". The term x e X means that all the variables must be within a

set of computationally easy constraints. Here, "easy" means it takes roughly the same amount of work to

optimize the objective function with or without the constraints; for example, simple upper- and lower-

bound constraints are considered to be computationally easy. In our nonlinear programs, the following

constraints are computationally hard:

* The constraints requiring the capacity to be sufficient to meet performance requirements.

* The constraints requiring the'capacity costs to be less than some amount (budget constraints).

The other constraints are upper- and lower-bound constraints, which are computationally easy. These

constraints include upper and lower bounds on the vector of expected arrivals, and lower bounds on the

lead time vectors (for linear control-rule models).

Generally, for the programs in Section 3, we can rewrite the computationally hard inequality

constraints to be equality constraints. This is beneficial, since the nonlinear programming techniques we

will discuss are simpler to use with equality-constrained problems. We usually use production functions
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such that station performance (measured by expected queue length or waiting time) strictly improves as

the amount of capacity increases, and cost functions such that costs strictly increase with the installed

capacity. These two assumptions imply the following rules:

* If there is a performance constraint, the installed capacity should always equal the capacity required

to meet a performance level. Otherwise, one could reduce cost by reducing capacity at some of the

stations.

* If there is a budget constraint, the cost of the installed capacity should equal the constraint.

Otherwise, if the capacity is less than the budget constraint, one could improve performance or

throughput by increasing capacity.

These two rules imply that the computationally hard inequality constraints can be rewritten as equality

constraints without affecting the optimality of the solution.

These arguments assume that each nonlinear program has at most one performance constraint and

one budget constraint (like those in Section 3). The same arguments apply to programs with multiple

performance and budget constraints as well, provided that each individual station is not affected by more

than one performance constraint or budget constraint. Otherwise, if a station appears in multiple budget

constraints say, it usually will satisfy one of the constraints with equality, with the others being not

binding.

Consequently, we will rewrite the nonlinear programs to have the form:

minimize f(x)

subject to h(x)= 0, x e X,

where:

* f(x) is the objective function, which is either maximize throughput, maximize performance, or

minimize network cost;

* h(x) is the set of performance-capacity and budget constraints, and

* X represents the set of the remaining constraints, which usually are bounds on the lead times and

expected inputs to the network.

To solve these programs, we use a common technique, the Method ofMultipliers, as follows:

1. Form the augmented Lagrangian function, L,(x,A) = f(x) + 2'h(x) + -c1h(x)12 . Here, 2 is a vector
2

of Lagrange multipliers. The I1h(x)112 term calculates the sum of the squared penalty violations, andc

is a positive penalty parameter that determines the "cost" of the sum of the squared penalty violations.

2. Optimize the following nonlinear program: min{L (x,A)Ix e X}.
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3. Update the Lagrange multiplier to be A = A + c -h(x) . Increase c by some amount (usually, c is

multiplied by a factor of 5 to 10).

4. Repeat steps I to 3 until the x-vector converges to desired limits.

It can be shown that the Method of Moments converges to a local minimum. Further, the solution found

is optimal if the constraints are convex, and if the objective function is convex (c.f. Bertsekas, 1995c).

In the example nonlinear programs in Section 6, we will use linear cost functions and linear or

concave control rules. Concave control rules imply convex inverse production functions, meaning that

the expressions for the expected queue lengths will also be convex functions. Thus, the solutions to the

examples will be globally optimal.

To solve each of the augmented Lagrangian functions, we use the technique of Gradient Projection with

Diagonal Scaling and the Armijo Rule. (All techniques c.f. Bertsekas, 1995c) The technique works as

follows:

1. Diagonally-scaled gradient calculation. We begin with a vector of current variablesxk that satisfies

x e X , but need not satisfy h(x) = 0 exactly. We calculate the gradient of L, (xk I, A) with respect to

Xk and A, yielding VL,(xk , A). We also compute the principal second derivatives of L,(xk IA) . (A

principal second derivative has the form 9'f(x,y) / dx2 .) We then calculate the descent direction

-HkVL,(Xk ,,A), where Hk is a diagonal matrix with entries Hki, 9 2 Lx ,, ( /&,.

Sometimes, this calculated direction is not a descent direction; in that case, the feasible direction is just

the negative gradient, - VL,(xk, 2).

2. Projection with Armijo Rule. The next vector of current variables, Xk+, is

Xk+1 = [xk - kHk VL, (xk ,,2)]+. Here, Sk is a positive scalar, and the operator [.]+represents the

projection of Xk = Xk - SkHkVL (xk , A) onto the lower- and upper-bound constraints. The projection

is simple: if a component of Xk exceeds one of the bounds, that component is set to be the violated

bound. Other components of Xk are left as they are. We choose sk so that L,(xk1 ,, A) will be

sufficiently smaller than L (xk,2) to guarantee that the sequence of Xk's will converge to a local

minimum. The Armijo Rule provides this guarantee if the following condition holds:

L,(xk ,) -L, (Xk(B' ), A)> 2VxL,(xk , A)'(xk - Xk(B')),
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where x,(Bm)=Xk B'HkVL,(XkI), B is a scalar fixed between zero and one, m is a

nonnegative integer, and o-is a small constant greater than zero (usually set to be less than 0.1). We

set Sk to be the largest value ofBm such that the Armijo condition holds.

3. Iteration. We set xk+, = [xk - SkHkVL, (Xk )], and repeat step one. We repeat the iteration until

the Xk vectors converge.

The biggest bottleneck in the nonlinear optimization is the gradient calculation. The augmented

Lagrangian is a function of the "difficult" constraints in the network problems, notably the budget

constraint and the performance-capacity constraints. The performance-capacity constraints are functions

of SpO, the covariance matrix of production. Recall that the covariance matrix of production is calculated

via a power series of matrices, for models with general or linear control rules. Consequently, it is difficult

to find the partial derivatives of the augmented Lagrangian directly.

Thus, we may approximate the gradient and second partial derivatives using difference formulas.

The first derivatives of the gradient are approximated by the central differenceformula:

~(x1 ) L,(x + hei - L,(x - he )). (16)
ai 2h

In this expression, h is a small positive scalar, and ej is a vector whose ith element is one, and whose other

elements are zero. The error of this estimate is O(h2 ), which is quite good. "Practical experience"

(Bertsekas, 1995) suggests that h be chosen to balance the error from the approximation against the

computer's roundoff error. For a machine using 16-digit precision, an h of about 10- will be used.

The second derivatives of the augmented Lagrangian are calculated as follows:

1 2f(x)). (17)
~ --2 Lc (x +hei) + L, (x-e, 2Lx).17

(a) h

This formula is less accurate than the formula of the first derivative, but practical experience suggests that

the second derivatives do not need to be computed extremely accurately to get good convergence

performance.

The two formulas require two evaluations of the augmented Lagrangian (which requires

computing two covariance matrices) for each first and second partial derivative. This means every

iteration of the nonlinear optimization algorithm requires computingO(n) covariance matrices. This is a

significant bottleneck, which may hinder our ability to optimize large networks.
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Consequently, if one needs to solve a nonlinear program for a particular large model frequently,

one may be better off trying to calculate the derivatives of the augmented Lagrangian exactly (using the

program MAPLE, for instance). For smaller models that will not be solved often, however, calculating

the derivatives often will not be worth the effort.

5. Optimization of LRS-MR Models

For the most part, optimization of LRS-MR models is similar to the optimization of LLS-MR models.

The LRS-MR model equations require more fixed inputs (expectations and variances of jobs per request

at each station, and expectations and variances of instructions per job at each station), but the moment

calculations given the inputs are similar to those of LLS-MR models. Thus, the constraints and objective

functions are similar for LRS-MR and LLS-MR models. Indeed, we optimize an LRS-MR model in

Section 7.

However, LRS-MR models do have one significant complication: the choice of control rule at

each station (instruction-, job- or double-control; see Chapter 5 for more details). The choice affects the

production variance calculations, which in turn affect the capacity calculations needed in the nonlinear

programs. (Recall that Lxx-MR models use var(P) to estimate the capacity needed to meet expected

queue length requirements.) The choice of control rules makes LRS-MR optimization problems

combinatorial as well as nonlinear. Solving a nonlinear combinatorial problem to optimality usually is an

intractable problem.

Consequently, we use a structured approach to solve LRS-MR optimization problems

approximately. First, we use a heuristic to assign control rules to the stations. Then, we solve the

resulting nonlinear program given fixed control rule assignments.

A conventional heuristic approach would be to solve some sort of program which allowed

"fractional" control rules, and then used a rounding scheme to convert the fractional results to integers

representing actual rules. Unfortunately, this approach does not apply to the LRS-MR model; the

variance functions depending on the control rules are not defined for "fractional" rules. Therefore, we

design a heuristic using a different approach.

As discussed in Chapter 5, our preferred choice would be to use "double control rules" which

process fixed fractions of jobs and instructions simultaneously. However, double-control rules usually do

not exist in practice, leaving us with instruction-control and job-control rules. We recall the following

properties of the control rules in creating a heuristic:
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* In comparison with the job-control rule, the instruction-control rule decreases the production variance

of a station, but increases the variances of downstream stations. The instruction-control rule

smoothes the instructions processed by a station, but not the flow of jobs.

* In comparison with the instruction-control rule, the job-control rule increases the production variance

of a station, but decreases the variances of the downstream stations. The job-control rule smoothes

the flow of jobs out of the station, but not the instructions processed by the station.

These two properties suggest a dynamic programming heuristic for networks that are acyclic graphs. (An

acyclic graph is a network with no feedback loops.) Let the estimated required capacity as a function of

var(P) be the vector-valued function Z(var(P)). Consider the following heuristic:

Heuristic AssignRules

1. Sort the stations in the network in topological order, from 1 to n. (A topological ordering gives

stations the property that if there is a work flow from station i to j, station j's number is higher than

station i's number.)

2. Set all the control rules to be instruction control rules. Evaluate var(P) and Z(var(P)).

3. Starting with station n, consider all the stations in reverse topological order, as follows. Let the

station considered be station i. Evaluate quantity ZNi, the sum of the Zj(var(P))'s for stations i to n.

Mathematically, this means calculating ZNi = j Z3 (var(P)). Next, switch the control rule at

station i to be the job-control rule. Recalculate the sum of the Z(var(P))'s for stationsi to n, using the

new control rule at station i, and call this quantity Zj;. If ZX, < ZNi' make the change to the job-

control rule permanent; otherwise, switch station i's control rule back to instruction-control.

4. Let i <- i -1, and repeat step 3 until all stations have been considered.

This heuristic is not guaranteed to be optimal for two reasons. First, it assumes that switching the rule at

station i does not change the relative values of the control rule choices for stations i + ,...,n. Second, it

ignores the effects of multiple stations sending work to a single downstream station (since the sending

stations are only considered individually). Nonetheless, this heuristic does account for the dominant

behavior of control rule assignments, and makes locally optimal decisions on whether the job-control or

instruction-control rule is preferred. The resulting vector of control rule choices is likely to be near

optimal. If a better solution is desired, one may explore various neighborhood search heuristics, using

AssignRules to generate a starting solution.

207



Chapter 6: Steady-State Optimization

AssignRules assumes that the modeled network is acyclic. One of the strengths of MR-models,

however, is that they allow feedback loops. In such cases, we use an approximate version of

AssignRules; we find a topological order of the network by assuming that the feedback loops do not exist,

and run the rest of the heuristic unchanged. Obviously, ignoring feedback loops degrades the

performance of the heuristic. However, if the flows going across the feedback loops are small (for

example, a small percentage of products failing testing being sent upstream for rework), the impact of the

control rule choices across the feedback loop will be small, as well. Then AssignRules should produce

near-optimal rule choices in these cases, as well.

For example consider the following data-processing network, similar to computer networks used

by the U.S. Department of Defense. (This network was studied in Section 3 of Chapter 5.)

OperationsMgr. I Scheduler 1
(Detenines exact (Deternine the Assign I

Task Manager 1 computing service service providers (Physically assigns
(Determines type required to complete that will work the job to a s et of

Incoming of job to perform) the job) on thejob) service providers)
computing _
jobs

Service Providers
(Perforn the computational
work necessary to complete

the jobs) Sv I Sv 2 Sv 3 Sv4 Sv5 Sv 6 Sv 7 Sv 8 Sv 9 Sv 10

Incoming
computing -
jobs

Task Manager 2 Operations Mgr. 2 Scheduler 2 Assign 2

Figure 26 -- An Example LRS-MR Network

In this network, large numbers of requests are sent through control chains, which distribute them to a

number of service providers. The service providers then process the jobs, sending a (usually) small

fraction of the requests back to the control chains for reprocessing. The control chains see lots of jobs

with small numbers of instructions per job; the service providers see fewer jobs, but with large numbers

of instructions per job. This description implies that the control chains greatly influence the work of the

service providers, but the service providers do not impact the control chains that heavily. Not
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surprisingly, the heuristic usually (depending on input parameters) has the control stations use the job

control rule, and the service provider stations use the instruction control rule.

6. A Performance Measure: Expected End-to-End Completion Times

The MR-model optimization problems usually involve a network performance measure, either as the

objective function or as a constraint. Often, this measure is a weighted sum of expected waiting times or

queue lengths. How to set these weights may not be obvious. If the problem is to minimize expected

inventory costs, for instance, the vector of weights equals the vector of per-unit holding costs. However,

suppose the problem is to maximize network performance as measured by "waiting times". Then it is not

obvious how to set the weights.

This section discusses a way to set the weights that corresponds to an important performance

measure in practice - the average end-to-end (ETE) completion time of all the job flows in the network.

(We will explain why this method produces approximate results at the end of the section.)

We first explain what a job flow is. With the exception of the LRS-MR models, all the MR

models we have studied have treated work as a continuous fluid rather than as distinct jobs. (Indeed, the

LRS-MR model works by showing that the model moments can be treated as if they came from a

continuous fluid.) Nonetheless, in practice, the shop being modeled processes distinct jobs. For

example, the mainframe subcomponents shop, first considered in Chapter 3, routes circuit boards through

a variety of processing steps. Consequently, a job flow tracks the number of jobs flowing through a

station, not units of work.

We treat a job flow as if it were a fluid, like the work flows. However, unlike work flows, the

number of jobs leaving a station exactly equals the number of jobs the station sends to downstream

stations. A job leaving a station is assumed to appear, as is, at another station; no extra jobs are created or

destroyed. We can make this assumption without a loss of generality, by assuming that components

combined or split apart in the actual network maintain their job-flow identity. For example, assume that

two parts are combined into a single circuit board at a station; the job flow leaving that station is still one

(the circuit board now represents "two jobs".) Similarly, suppose a circuit board is split into two

components that take different paths; each component represents "one half of a job."

Like work flows, we define a job-flow matrix 4F . Similar to the workflow matrix 4D, we define

D to be the fraction of jobs leaving stationj that arrive at station i. Mathematically, the constraint that

no extra jobs are created or destroyed becomes j =1 for all stationsj. In general, D # F

We also define a vector of expected job arrivals, pF . We define pF to be the expected jobs that

first enter the network through station i. For example, in the mainframe subcomponents model, an
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average of 40 circuit boards enter processing per period at one station, and an average of 30 circuit boards

enter processing per period at another station. The two pf 's are 40 and 30, respectively.

Importantly, we calculate the steady-state expected job flow across each station, E(F), the same

way we calculate E(P). We have:

E(F) = (I F (18)

We now define our performance measure - the average end-to-end completion time of the job

flows. In words, this is the average, across all stations, of the average waiting time at a station weighted

by the number of jobs visiting that station. Note that if a job visits a station more than once we count it

more than once. By definition, this measure is the following double-summation:

stations i n=1 Fk )

Here, W is the expected waiting time at station i. F is the total flow of jobs across entire network,

measured as the average number of jobs that arrive to the shop each time period. F is therefore the sum of

the elements of PF . For example, for the mainframe subcomponents network, F = 70. Finally,f, is the

job flow across station i of work that has visited station i exactly n times. For example, suppose all jobs

go through station i. However, station i has a feedback loop to itself, so that half of the work the leaves

station i returns to station immediately. Thenfik, = Ffi 2 = F/2,f k, = F/4, etc. We can simplify WETE

quickly by recognizing that fi, is the steady-state expected job flow across station i, E(F).

Then, we rewrite WETE into a form representing WETE as the inner product of the expected waiting

times and a vector of weights, as desired:

WETE = W wi ,

-E(F), (20)
'F

E(F)= (I[ -_ q FF

We note that this scheme for setting the weights produces the true WETE provided the control rules

are linear; with general control rules, the resulting WETE may be approximate. The reason for this

statement is as follows: the formula for WETE uses the expected waiting times, the W's. The difficulty is

that the actual end-to-end completion times do not depend on the W's per se - they depend on the average

waiting times the jobs actually see as they enter the stations. The two quantities generally are not the

same; the exception is for queues obeying the ASTA property, or "arrivals see time averages." MR
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models with linear control rules and independent work arrivals from outside the station obey this

property, as shown in the following lemma.

Lemma. Suppose we have a MR model with linear control rules and independent and stationary work
arrivals. Then, all stations in the MR model obey the ASTA property.

Proof. An alternate definition of ASTA is that the steady-state distribution ofQ equals the steady-state
distribution of Q, just after an arrival has occurred. In Chapter 2, we found that the steady-state
distribution of Q is:

Q = (I-D+(DD)"s,, (21)
s=O

where D is the matrix of smoothing factors, (D is the workflow matrix, and ct is the vector of exogenous
work arrivals.

The steady distribution of Q, just after an arrival has occurred is given by the inventory balance
equation, which is:

Qt -Q_1 - P- + A,, (22)

and, using formulas from Chapter 2, (22) can be rewritten as:

Qt = (I -D+D)Qt 1 +E. (23)

Now, since the network is assumed to be in steady-state, Q-1 has the same distribution has (21). Then
(23) becomes:

Qt I (I-D +D)sc,-, +c, (24)
s=1

which exactly equals (21), as desired. O

As noted, however, the above lemma does not apply to MR models with general control rules. In such

cases, the computed WETE will be approximate, along with all other results pertaining to general control-

rule models.

7. Examples of MR-Model Optimization Problems

In this section, we present two examples of MR-model optimization problems. First, we maximize the

performance of an LRS-MR network given a budget constraint. In doing so, we use the interpolated

functions for the safety factors (developed in Section 2.1) to create nonlinear programs. The model being

optimized is the Department of Defense network discussed in Section 3 of Chapter 5, and the

performance objective is to minimize a weighted sum of the expected waiting times.
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Second, we minimize the cost of a GLS-MR model subject to constraints on the expected waiting

times. Here, we optimize a model similar to the mainframe subcomponents model considered by Fine

and Graves (1989).

7.1 Maximizing the Performance of an LRS-MR Network

7.1.1 Using a Safety Factor Function

Before we present the specific optimization problem, we show how to use the interpolated safety factor

function developed in Section 2.1. Recall that through our statistical analyses we interpolated the

following safety factor function:

ki (H 1,Si Li) =r2.5881 2.5935 +
kHs, - + Si

S.

0.5233

(25)

-2.5881/ +2.5935+0.5233si

We replace k(H, L, RE), with this function. Further, we also place lower bounds on the safety factors

(requiring k to be greater than 0.4, for example). Thus, we replace the following constraint in general

form,

PE(RE)+k(H,L,RE)e diag(S,(L,R )) z Capacity required to meet the current performance
level is less than the capacity currently installed, for
all stations.

with the following sets of constraints:

P (RE)+ke diag(S,(r,L,R) E z,

= -2.5881/ +S'JJ (L, RE) /PEJ(RE)

-2.5881/H +2.5935+0.5233(S pJ(LRE E]j(RE))'

Same constraint as above

Safety factors are at least that
required by function
K. (Hj sj, Lj)

k > K , Safety factors are at least some
minimum value

We assume that the Hj's are parameters close to one, set by the user.

Clearly, we want to choose the smallest possible safety factors, since we want to minimize the

amount of capacity that needs to be installed to meet a given performance level. Then we can substitute
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the right sides of the inequalities for the safety factors directly into the performance-capacity constraints.

Doing so, and simplifying the resulting expression, yields the following performance-capacity constraints:

PEjRE)+ SpJ(LRE) z V stations j. (26)

PE (RE)(-2.5881/ H1 +2.5935)+0.5233 SJ (L,R)s

7.1.2 Problem Description

We find the maximum performance of the example network given in Section 3 of Chapter 5, subject to a

budget constraint. Figure 27 shows the network.

Operations Mgr. 1 Scheduler 1
(Determines exact (Determines the Assign 1

Task Manager 1 computing services service providers (Physically assigns
(Determines type required to complete that will work the job to a set of

Incoming of job to perform) the job) on thejob) service providers)
computing _____"
jobs

Service Providers
(Perforn the computational
work necessary to complete
the jobs) Sv I Sv 2 Sv3 Sv4 Sv 5 Sv 6 Sv 7 Sv8 Sv9 Sv 10

Incoming

cobmputing 
_

jobs

Task Manager 2 Operations Mgr. 2 Scheduler 2 Assign 2

Figure 27 -- An Example LRS-MR Network

Here, we define maximum performance to be a weighted sum of the expected waiting times, which, for

linear control rule networks, becomes a weighted sum of the station lead times. The input parameters for

this network were presented in Section 3 of Chapter 5. To create a nonlinear program to maximize

performance, we add the following data to the input parameters:

* The cost of adding a single unit of capacity anywhere in the network is $1.00.

* Hj, the parameter used in setting the safety factor, is fixed at 1.005 for all stations.

* The expectation and variance of all the inputs to the network are fixed to be the values given in

Section 3 of Chapter 5.
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* The weights of the lead times are chosen so that the weighted sum will equal WETE.

Consequently, the only variables are the lead times, since they are also the expected waiting times.

Therefore, all the expected production values become constants with respect to the nonlinear program, so

the production variances are solely functions of the lead times. To maximize performance, we make the

lead times as small as possible while keeping the needed capacity within the network's budget constraint.

We have the following nonlinear program:

min w, L, , such that:

E(Pi) + ~ S,ji(L) < i
0.0119.E(P)+0.5233 S (L)

I$1.00z ; C,

Minimize a weighted sum of the lead times.

Expected production plus a multiple of the standard
deviation of production is less than the capacity
installed at the station. (The constraints result from

substituting H = 1.005 for all stations, and
simplifying)

Cost of the total capacity installed is less than a
budget constraint.

L 1,V,. All lead times are greater than one.

We simplify this program further. All of the station capacities (thezi's) are used solely in a single budget

constraint, implying the production-capacity equations will be satisfied with equality. Then we replace

the capacities with the expressions for the capacity demands in the budget constraint, yielding:

min wpLi , such that:

1.00 E(PI) + '(L) < C,
0.0l19 -E(j)+ 0.5233 _,(L)

L, 1,V, .

This nonlinear program has only the lead times as variables, and has only a single nonlinear constraint.

Consequently, it is fairly simple to optimize.
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7.1.3 Optimization Results

The above nonlinear program was solved for a variety of network budgets, ranging from about 1.1 to 1.5

times the sum of the stations' expected production. In "monetary" terms, the budget therefore ranged

from $3,550,000 to $5,000,000. The following graph shows the results.

Figure 28 -- Optimal Performance Curve for the LRS-MR Model

We see that performance initially improves rapidly, but then levels off. An initial $200 thousand increase

in the budget, from $3.55 million to $3.75 million, halves the weighted sum of the lead times (from 23.2

to 11.3). However, an increase more than three times as large, from $3.75 million to $4.5 million, is

needed to halve the weighted sum of the lead times again (from 11.3 to 5.6). Performance improvements

will level off after this budget value. The minimum possible value of the weighted sum is 5, which

occurs when all lead times are set to one.

7.2 Minimizing the Cost of a GLS-MR Network

In this section, we minimize the capacity cost of a network similar to the Mainframe Subcomponents job

shop in Chapter 3, first considered by Fine and Graves (1989).
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7.2.1 Problem Assumptions

Before considering the specifics of the problem, we derive the form of the minimum cost program. We

assume that the cost of capacity is linear, so that the cost of one unit of capacity at stationi is given by c.

We also assume that the vector of expected arrivals, pi, is fixed, implying that expected production is also

fixed. (Recall that in chapter 3 we found that expected production was solely a function of p1).

We assume that all stations use clearing functions as production functions. Recall that a clearing

function has the form:

P MQ(Q1) ' , (27)

where M is the asymptotic maximum production of the station, and fli is a parameter determining the

rate at which production approaches the maximum. For the sake of simplicity, we assume that the

capacity at station i, zi, equals M,, and that M = p8 . With this choice of Ap, the first derivative of the

clearing function approaches one as the work-in-queue approaches zero, implying that the station will

(approximately) process small queue levels in a single period. Substituting, the production function used

at each station is:

PQ(Q)= ziQ . (28)
zi + Qj

We assume that we use the MomentsP algorithm, developed in Chapter 3, to estimate the expected queue

lengths. Using MomentsP, a second-order estimate of E(Q;) is:

E(Q.) -zE(Ji) + ' .-var(P). (29)
z -E(Pi) (z. - E(R;))

Note that E(Pi) will be a constant, since E(P) is a function of p, and we assume p is fixed. However,

var(Pi) is a function of z. Using MomentsP, a first-order estimate for var(P) as a function of z is:

S, (z) = var(P) z B -IIN2TlB's , where B = I - T_'- + T-1~ , (30)
s=O

where Z is the input covariance matrix of production, and ' is a diagonal matrix with elements:

2

Ti; = ' 2 .(31)
(zi -E(P))

By definition, var(P) is the (i,i) element of Sp(z).
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We derived the general form of a minimum cost problem for GLS-MR networks in Section 3.3.3.

If we substitute the linear cost function, the fixed i, and the formulas for the expected queue lengths into

this nonlinear program, we find:

Constraint Description

min c'.z Minimize the total cost of the network.

Subject to
z > p Capacity installed at a station must be greater than

the expected production at that station.

W zE 2 A weighted sum of the expected waiting times is
i i __E(_)_z__- S (z) T less than some constant, T.

E(P) zi - E(PI) (z - E() P

7.2.2 Problem Description

We find the approximate minimum cost of a network similar to the mainframe subcomponents network

considered in Section 4.3 of Chapter 3. (By definition, any "optimal" results using GLS-MR models will

be approximate, since the queue length and production moment calculations are approximations.) Recall

that the shop contains 13 stations; work enters through the NB Release and OTN Release stations, and

exits through the Encapsulation station. The following figure diagrams the job shop. Note that the

numbers on each arc (ij) represent the expected amount of work that arrives at stationj given one unit of

work at station i.
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Figure 29 An Example GLS-MR Network

The following table shows the input data for the job shop. The "maximum capacities" are the capacities

stated in Fine and Graves (1989). Our problem is to optimize these capacities to minimize network cost.

Station Average Arrivals per Input Standard Maximum Capacity Expected Production
Period Deviation (zi)

NB release 40 20 80 40
Wiring 6.3 16.3 12
OMU for NB 0 60 30.4
Joining 0 50 40
Burm-in 10 50 40
OTN release 30 12.5 60 30
Disassembly 12.5 45 30
OMU for OTN 0 60 29.6
Chip rework 12.5 45 29.6
Wire rework 12.5 18.8 12
Test 17.5 125 87.6
Analysis 0 50 26.3
Encapsulation 7.5 87.5 70

We assume that the cost of capacity is the same at all stations, and equals $100 per unit. We set thewi's

on the average waiting times in the constraints so that the resulting sum will equal the estimated expected

end-to-end completion time for all work flows (discussed in Section 6). Thus, we seek to minimize

network cost, given a requirement on the average expected end-to-end completion time.
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When substituting the weights back into the expected waiting time constraint, we find that

w /E(P) = 0.0 144 for all stations. This result is due to two reasons. First, the workflow matrix for this

job shop is actually a fractional routing matrix, so that D = OF. Second, the vector of expected arrivals

actually equals the expected number of components entering the shop each period, so that F = [F

7.2.3 Optimization Results for a Single Instance

We first study a single instance of the optimization problem. The estimated ETE completion time of the

network, using the above capacities and calculating the second-order estimated expected queue lengths, is

24.8421 periods. The capacity cost of the network is $74,760. Our first question is to determine whether

we can reduce the cost of the network while keeping the same estimated ETE completion time.

The answer is yes; for this instance, the cost of the optimal solution is $67,619. The following

graph compares the current capacity allocations and the optimal capacity allocations.

0 20 40 60 80 100 120 140

NB Release

Wiring

OMU for NB

Joining

Bum-In

OTN-Release

Disassembly

OMU for OTN - -

Chip rework

Wire rework

Test

Analysis

Encapsulation

* Current Capacity M Optimal Capacity

Figure 30 -- Current v. Optimal Capacities in the GLS-MR Network

The optimal solution economizes on capacity at a number of stations, especially NB release, OMU for

NB, OTN Release, Analysis, and OMU for OTN. The optimal solution makes a few modest capacity
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increases at the Wiring, Joining, Bum-In, and Encapsulation stations, but these are significantly less than

the capacity decreases. The total reduction in cost from the current to optimal solution is about 9.5%

Figure 31 shows how the optimal solution keeps the performance constant while economizing on

capacity.
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Figure 31 - Expected Queue Lengths in the Current and Optimal GLS-MR Networks

We see that the comparatively small capacity increases made by the optimal solution reduce queue

lengths sufficiently to counteract effects of the large capacity decreases made by the optimal solution. In

summary, the optimal solution found more efficient ways to allocate capacity to meet a performance goal

than the current solution. (Of course, the optimal solution is only optimal for this particular instance.)

7.2.4 A Minimum-Cost Performance Curve

We solve the minimum-cost problem for a variety of required ETE completion times, ranging from 9

periods to 50 periods. (The asymptotic minimum ETE completion time for this problem is 6.82 periods,

which assumes that each station processes its entire queue in one period.) The following graph shows the

results.
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Figure 32 - Optimal Cost Curve for the GLS-MR Network

We see that, initially, one can greatly economize by accepting slightly worse network performance, but

these savings level out quickly. Initially, one can more than halve the capacity cost by going from an

ETE completion time of 9 periods to 13 periods. However, it is not possible to halve the cost again, even

by almost quadrupling the ETE completion time to 50 periods.

In summary, we have shown how to derive and solve optimization problems involving MR

models, including maximum performance problems and minimum cost problems. We have considered

two examples of optimization problems. In both examples, we found that one could initially make

substantial gains in the optimal solution's objective value through small relaxations in the constraints, but

that successive constraint relaxations resulted in smaller improvements to the optimal objective value.

These results imply that in designing MR-model networks, we will often find a "knee" in the tradeoff

curve between performance and cost. Solutions at the knee will provide good performance at a

reasonable cost, thus providing excellent indicators of how to design the network.
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Chapter 7: Transient Analysis and Optimization

1. Introduction

The previous chapters of this thesis have focused heavily on steady-state analysis and optimization. In

this chapter, we turn to the transient analysis and optimization of MR models. Here, we will use the

moment recursion equations directly to track the production and queue length moments over time, as

opposed to using the moment recursion equations to calculate steady-state results. We will also study the

dynamic optimization of MR models under special conditions.

The use of MR models for transient analysis can be a powerful tool. One can predict how a

network will behave from a given starting point, given a set of predictions about changes to the inputs and

other model parameters over time. MR networks usually only provide production and queue length

moments (unless all arrivals are normally distributed), but these are likely to be the statistics the analyst

most cares about.

Transient analysis allows the analyst to predict the near-term behavior of a network. It also

allows the analyst to answer a variety of what-if questions (such as what would happen if certain types of

arrival or processing disturbances occurred), without recourse to simulation studies. It is also not a

capability generally allowed in conventional queuing networks. While a great deal of research on the

transient behavior of queues has been done, most of this research has focused on individual queues, and

the results have often been ungainly. For example, Abate and Whitt (1988) showed that the transient

solution to an M/M/1 queue is given by a complicated second-order Bessel function. Cohen (1969)

showed that, for G/G/1 systems beginning at rest, the transient terms of the expected queue lengths decay

in an exponential manner. Venkatakrishnan, Barnett, and Odoni (1993) developed a numerical method

for tracking the behavior of a two-queue M/M/l queue with a varying arrival rate, and used it to estimate

the daily average delays at Logan Airport. More recently, Asmussen (1995) and Karandkar and Kulkarni

(1995) combined deterministic fluid flow models with an assumption that actual queue levels followed a

Reflected Brownian Motion process, but this result only applies to individual stations.

A notable exception to only considering the transient behavior of a single queue is the work of

Keilson and Servi (1994). They calculated the transient joint distribution of station populations in

networks of M(t) / G / oo queues with respect to changes in job-arrival rates. In particular, they found that

the transient joint distribution consists of product-form equations similar to the stationary M / G / oo case,

with the terms corresponding to job arrival rates being function of time as opposed to constants.

However, their analysis is not a complete transient analysis, since they require the initial state of the

network to be a valid M/G/oo probability distribution as opposed to a deterministic assignment of jobs

at stations.
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The major drawback of transient analysis is that the moment results are exact only for models

using linear control rules. As discussed in Chapter 3, the moment recursion equations for models with

general control rules are approximations rather than exact formulas - in particular, the expectation

equations create second-order estimates, while the variance equations create first-order estimates that feed

into the expectation equations. Thus, moment estimates generated for models with general control rules

may degrade quickly, as the recursion equations successively generate approximations from

approximations. We expect that the approximate estimates may be useful for predicting network behavior

over a few periods, though. Nonetheless, all the models discussed in this chapter use linear control rules

and have stationary arrivals, as in Chapter 2 (MR model class LLS-MR).

Section 2 presents mathematical equations for the transient behavior resulting from several

common changes. We consider the transient behavior resulting from a one-period impulse and a

permanent increase in expected arrivals. We also consider the transient behavior resulting from a linear

increase in work arrivals, and the behavior resulting from an oscillation between a low expected arrival

rate and a high expected arrival rate. This section largely reviews the work of Parrish (1987), who studied

the effects of these transients on the original Tactical Planning Models (recall that these are LLS-MR

models in which a station's production is a fixed fraction of its work-in-queue).

Section 3 discusses the direct use of the moment recursion equations to track the behavior of a

LLS-MR shop over time. In addition to discussing the use of the recursion equations to track queue

levels and production quantities on a period-by-period basis, we show how to calculate the moments of

the aggregate network production over a number of periods. As an example, we consider a ten-station

shop that produces precision grinders, first considered by Graves (1986). We track the moments of

production at the final station on a period-by-period basis, and compute the moments for 100 periods of

aggregate production for all stations. We calculate these results for two different scenarios: a scenario in

which expected production orders to the first station increase linearly, and a scenario in which the

expected orders in any particular period come from a uniform distribution. (In both scenarios, the

standard deviation of the orders is directly proportional to the expected orders.)

Section 4 moves from transient performance analysis to transient optimization for a special class

of problems involving LLS-MR models. Suppose that our problem is to minimize a quadratic function of

the queue lengths and / or production quantities over a finite set of periods. (A function involving

production variances would be an example.) Then, it can be shown that the optimal policy for the

production in any given period is given by a linear control rule, and that these policies may be found

through a deterministic dynamic programming formulation. The section develops the dynamic

programming procedure, and applies it to a 4-station example job shop.
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2. Transient Analysis of Simple Changes to LLS-MR Models

In this section, we describe the mathematical behavior of LLS-MR networks resulting from simple

changes to new work arrivals. We describe the mathematical behavior resulting from the following four

changes:

* A large, single-period change in the expected arrivals, with the distribution of work arrivals returning

to the steady-state distribution immediately afterwards.

* A permanent change in the expected arrivals.

* Linear growth in expected arrivals over successive periods.

* A regular oscillation in which the expected arrivals vary between a low level and a high level.

All of these changes affect only the expected work arrivals; the work arrival variances are assumed to be

constant. Thus, the studied changes affect the transient behavior of expected production and queue

lengths solely.

Our work draws heavily on the work of Parrish (1987), who considered the effects of these

transients on Tactical Planning Models. (Our derivations are somewhat different that Parrish's, however.)

Recall that the Tactical Planning Model assumes that the work produced at a station is a fixed fraction of

the work-in-queue at that station, or:

Fj, = aQ1,, (1)

where (Xi is a smoothing factor between 0 and 1.

For the most part, Parrish's analysis applies directly to the more general LLS-MR models, which

have production functions of the following form:

1, = a Z xQ, +, + ri, (2)

where the a, 's are general smoothing factors, /i is a constant production quantity and ri, is a random

variable with zero mean and finite variance. In matrix vector form, (2) becomes:

P, =DQ, +P+y, (3)

where D is the matrix of the a, 's, 3 is the vector of constant production quantities, and yt is the vector of

production fluctuations.

Parrish's analysis applies for several reasons. First, we only consider results affecting expected

production and queue length quantities, so we do not consider the terms representing production

fluctuations. Further, in Chapter 2 we found that the 8, terms cancel out of the recursion equation for
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production, so we will only incorporate 8, when we calculate the transient expected queue lengths from

the transient expected production quantities. Finally, Parrish's analysis does not requireD to be diagonal,

provided some additional conditions are met (see the next section).

We note that knowing the transient behavior of expected production immediately yields the

transient behavior of the expected queue lengths. By solving (3) for Q,, and taking the expectations of

both sides, we find that:

E(Qt) = D-'E(Pt) - P) (4)

Thus, in the following sections, we focus exclusively on formulas for the transient expectations of the

production quantities.

2.1 Preliminary Results

We first state several results of use in calculating the transient behavior of LLS-MR networks. These

results are stated without proof; details are given in Parrish (1987).

Consider the matrix B = (I - D + D(D), where I is the identity matrix, cD is the workflow matrix of

an LLS-MR model, and D is the matrix of smoothing factors that determines the amount of work

produced at each station. Recall that for Tactical Planning Models, D is a diagonal matrix with diagonal

entries between 0 and 1; for general LLS-MR models, D can contain negative and off-diagonal entries. B

is of great significance in analyzing LLS-MR models, as the recursion equation relating production

quantities in one period to production quantities in the previous period is:

Pt = BPt + De, + y, , (5)

where Et is vector of arrivals, and yt is the vector of production fluctuations. The recursion equation for

E(Pt) is:

Pt = B. E(P )+ Dp , (6)

where p. is E(Et). No y terms appear, since E(y,) = 0, by assumption.

Assume that B has a spectral radius less than one. Then we have the following results concerning

power series of B:

B' = (I - B)-' (7)
S=O

ZBS =(I -B)-(1-B') (8)
S=0
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B'(I - B)-' = (I - B)~'B' (9)

t -1
IsB' = (I - B)-'I - B') (I - B)' -- (I - B)-'I + (t -- I) B'] (10)

S=0

All four results are given in Parrish (1987).

In addition to these algebraic results, we present two matrix-theory results. Without loss of

generality, suppose that B is nonnegative (recall that in Chapter 2, we showed how to represent negative

smoothing factors using the Pull Model formulation of Leong (1989)). Then a theory of nonnegative

matrices states (I- B)' >0, (Lancaster and Tismenetsky, 1985, p. 531) and a result from the Frobenius

theory of reducible nonnegative matrices states that B has a real, positive eigenvalue equal to its spectral

radius (Gantmacher, 1959, p. 66).

2.2 A One-Period Impulse

We first present the behavior resulting from a one period impulse. Assume the network is in steady-state,

so that the expected production in period zero is simply E(P). In period zero, suppose that the vector of

expected work arrivals is 8 + pi rather than p. From (6), we find that:

E(P)= B -E(P)+D -(I + ). (11)

By the definition of steady-state expected production, E(P) = B -E(P) + Dp . Then we can rewrite (11)

as:

E(PI)= E(P)+ D8. (12)

If we repeatedly iterate (11), remembering that E(P) = B -E(P) + Dii, we find that:

E(P,) = E(P) + B''D6. (13)

Thus, we see that the transient expected production always equals E(P) plus a term representing the

remaining impact of the impulse. Since the spectral radius of B is less than one, this term decays

asymptotically to zero as the period number increases.

2.3 A Permanent Change in Expected Arrivals

Again, assume that the network is in steady-state, so that expected production equals E(P) at time zero.

Now suppose that the vector of expected arrivals changes by 8 in period zero, and that this change

remains for all successive periods. Using (6), we have that:
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E(P,) = B -E(P) + D(p + 8), (14)
= E(P) + D8,

where the second equation follows from the fact that E(P) = B -E(P) + Ds . Iterating (14), and noting

that E(P) = (I - B)' Dpt, we find that:

E(P,) = E(P) + ZB'D8,
S=O

= E(P) + (I - B')(I - B)' D6, (15)

= (I - B)' D(pt +8) -B t (I - B)~' D&.

where the second equation follows from (8). Thus, the transient expected production tends towards a new

equilibrium, given by E(P) + (I - B)' D6 . The spectral radius of B' dictates the rate of change to this

new state.

2.4 Linear Growth in Expected Arrivals

As in Section 2.2, suppose that the expected production in period zero is E(P). Suppose that, starting in

period 1, the expected arrival vector is given by p + t6. Using (6), and iterating the resulting equation,

we find that:

E(P,)= BE(P)+ BsD(p +(t - s)8). (16)

By the definition of steady-state expected production, we have that:

t-1

E(P) = B'E(P) + IBsDg, Vt. (17)
S=O

Then, (16) can be rewritten as:

E(P,)=E(P)+jtBsD-- sBsD6 (18)
s=O s=O

Using equation (8), the second term of (18) is expanded to:

tB-D6 = t (I - B')(I - B)' D6 (19)
S=O

Using equation (10), the second term of (18) is expanded to:
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-sB'D8 = -[(I - B)-'(I - B)t - I -(t -l)B' (I - B)~'D5 (20)
s =0

Combining (19) and (20), we find:

E(P,) = E(P) + [t (I - B) -(I - B)' (I -B') + I+(t - l)B'] (I - B)-'D8

= E(P) + [(t +1I)I -(I - B)-' + ((I - B)-I - I) B' (I - B)-'D.5

Again, B' has a spectral radius less than one, so the term with B' within it asymptotically decays to zero.

Thus, we can divide (21) into a long-term, "steady-state" growth path,

limE(P,)= E(P)+[(t +)I -(I - B)-'] (I - B)-'D8 , (22)

and a transient component in the expected growth path,

PT,t = ((I - B)-' - I)B'(I - B)-'D8 . (23)

2.5 Regular Oscillations in Expected Arrivals

Finally, Parrish (1987) considers a cyclical pattern of changes in the expected arrivals. Here, the expected

arrivals increase by 8 for c periods, then returns to p for d periods, and the cycle then repeats Figure 33

shows the pattern of expected arrivals.

p+

ii I I
t=1 t=c+1 t=c+d+1 t=2c+d+1

Figure 33 -- Cyclical Changes in Expected Arrivals

The pattern of expected arrivals, E(At), is given by:

E(A,)= ,i, t<l,t=(i+1)c+ id+l,...,(i+l)(c+ d), for i=0,l,2,...
E(At)= p, + 8, t = i(c+ d)+1,...,i(c+ d)+ c, for i=0,1,2,...

We examine E(Pt) over the intervals t = 1 to t =c, t= c + 1 to t = c + d, and t= c +d+ 1 to t = 2c + d; all

subsequent transients can be determined by repeating these.
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In the first interval, the system responds to a steady increase in the expected arrival rate. In

particular, at time t = c,

E(P,)= E(P) + (I - BC)(I -B')D8 . (25)

Thus, expected production equals the original E(P) plus a steadily-increasing transient showing

the impact of the 6-increase to E(A).

In the second interval, the expected arrival vector returns to p. Thus, we have that:

E(Pc+,) = B -E(P,) + Dp,

= (B -E(P) + Ds) + B(I - BC)(I - B-')D8, (26)

= E(P) + B(I - BC)(I -B-')D8.

Iterating (26) yields:

E(P, )= E(P)+Bj(I-B')(I-B-')D8, 1 ] j ! d (27)

Thus, in the second interval, we have that expected production is the original E(P) plus a steadily-

decreasing transient.

Finally, in the third interval, starting from c + d + 1, the expected arrival vector returns to p + 6.

We have that:

E(Pd+I)= B -E(Ped ) + D(p + 8),
(28)= E(P) + B d(I -Bc)(I -B-')D6 + D8.

Iterating this equation yields:

E(PC+d+j)= E(P) + Bi [Bd (I - B )(I - B-')D] + BD,(
S=O (29)

=E(P) + Bj/* (I - Bc)(1 - B-)D + (I -Bj)(I - B)-' D8, 1 5! j! s c.

Here, expected production equals the original E(P), plus a steadily-increasing transient showing

the impact of the current 8-increase, but also plus a steadily-decreasing transient showing the remaining

impact of the first interval, in which E(A) was increased by 6.

Therefore, in general, during intervals where E(A) = p + 6, expected production will be E(P) plus

a steadily increasing transient for the current increase in E(A), plus a decreasing transient showing the

remaining impacts of all previous intervals. Similarly, during intervals where E(A) = , expected

production will be E(P) plus a decreasing transient showing the remaining impacts of all previous

intervals.
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2.6 Discussion of Transients

If we review the decaying transients discussed in Sections 2.1 - 2.5, we see that they all have the form of

B multiplied by some power times a constant vector. The exponent of B is a function of the number of

periods elapsed since the change creating the transient entered the system. Consequently, the nature of

the decay of the transients is governed by the powers of B through its eigenvalues.

We have already noted that, assuming B is positive and has a spectral radius less than one, B's

maximum eigenvalue will be real, positive, and less than one. Thus, the transients always decay,

asymptotically, to zero, ensuring that the network returns to a new equilibrium. The rate of decay

depends on the size of the maximum eigenvalue of B. For example, Parrish has calculated the number of

periods required for a transient to decay to 1% of its original value, given a variety of maximum

eigenvalues:

Eigenvalue X Periods n for X" to decay to
0.01X

.50 8

.60 10
.70 14
.80 22
.90 45
.95 90

The exact nature of the decay depends on the other eigenvalues of B, which may cause the nature

of the decay to be fairly complex. Negative and complex eigenvalues tends to produce oscillatory

patterns; negative eigenvalues generate period-by-period oscillations, while complex eigenvalues generate

sinusoidal oscillations (Luenberger, 1979, pp. 154-170). Such behavior is not surprising. The B matrix

represents the transfer of work between stations each period, so taking powers of B tracks the progress of

a fixed amount of work through the network over multiple periods.

Notably, the magnitude of the maximum eigenvalue depends heavily on the smoothing factorsin

the D matrix. For example, in Tactical Planning Models, decreasing the smoothing factors correspond to

increasing the lead times at stations. Doing so increases the queue levels, which corresponds to more

work staying in the network for longer amounts of time. Thus, increasing lead times creates higher

maximum eigenvalues. Parrish demonstrated this effect by showing how increasing the lead times in the

mainframe subcomponents shop considered by Fine and Graves (1989) increased the maximum

eigenvalue of the shop's B matrix.

3. Numerical Analysis of the Transient Behavior of LLS-MR Models

In the previous section, we derived algebraic formulas for certain simple changes that only affected

expected production (and expected queue lengths). However, we are not limited to analyzing the impact
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of these simple changes. Instead, we can use the recursion equations to calculate the transient moments

resulting from any changes to any of the LLS-MR model parameters. We can examine the impacts of

changing expected arrivals, variances of arrivals, variances of production fluctuations, and smoothing

parameters in any pattern. This generality does imply that we cannot find simple algebraic expressions

for most of the transient moments resulting from these changes. Nonetheless, we can calculate the

moments numerically exactly, on a period-by-period basis.

3.1 The LLS-MR Recursion Equations

In Chapter 2, we found that the production recursion equation for a LLS-MR model is:

Pt = BPt + DEt + (y, - Y 1 ) (30)

where B = I - D + DD (as discussed in Section 2), D is the matrix of smoothing parameters, Et is the

vector of new work arrivals, and yt is the vector of noise in the production quantities. Taking the

moments of (30) yields the transient moments of production:

E(P,) = B. E(P,1 ) + Dst , and (31)

var(P,) = B -var(Pt) -B'+ DD' + t + ), (32)

where pit = E(ct), E, = var(c,), and F, = var(yt). Using the relationship (also in Chapter 2) that

Qt = D- (P - -y), we immediately find the transient moments of the queue lengths:

E(Q,)= D' (E(P) - p), and (33)

var(Q,)= D- (var(P,) - r,) (D-')'. (34)

Using these equations, we can track the transient moments in response to any changes to the model

parameters, including changes to the input moments, the variances of the production fluctuations, the

smoothing parameters, and even the workflow matrix (D.

For example, calculating the transient behavior of a network, starting from known inventory

levels (and known production levels,) is quite simple. Let the known production at time zero be P,.

Then we simply set E(Po) = Po and var(Po) = 0, and find the transient production moments in successive

periods by iterating (31) and (32). The transient moments of the queue lengths follow immediately from

(33) and (34).
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In addition to the transient moments in individual periods, we may track the moments of

aggregate production across multiple periods. The expected production of multiple periods is the sum of

the expected production in those periods; we have:

E( PT = E(Pt).
t=1 1=1

(35)

The variance of the production of multiple periods is more complicated. The production

variances are correlated across periods, so the variance across multiple periods is not the sum of the

variances. Instead, we take advantage of the fact that the work arrivals and the production fluctuations

are independent across periods. For the sake of simplicity, assume that the production fluctuations (the

yt's) are zero as in the original Tactical Planning Model. Then, iterating (30), we have that:

P, =BP, + De1 ,
P2 =BP +BDE + DE2, (36)

PT= BPO +B Dc, + BTD 2 +... + D T

Then, if we add the expressions for P, through PT together, group the results by the CE's, and take the

variance of each term, we find:

(37)

3.2 Example: Transient Behavior of a Job Shop Producing Spindles

Graves (1986) considered a Tactical Planning Model of a job shop that produces spindles for ultra-

precision grinding machines. We consider the transient behavior of a variant of this job shop, with

parameters given below. In this shop, new orders for spindles enter the first work station, and completed

spindles exit the tenth work station.

Workflow Matrix (D' From Work Station
To Work Station 1 *2 3 4 5 6 7 8 9 10
I (lathe) 0.11 0.68
2 (copy lathe) 0.15
3 (drill press) 0.04 0.01 0.71 0.6 0.07
4 (milling) 0.01 0.41
5 (rough grinder) 0.03 0.37 1.36
6 (internal grinder) 0.24 0.15 0.13
7 (thread cutting) 0.10
8 (hole abrading) 0.01 0.22 1.00
9 (precision grinder) 3.43
10 (ultra-precision grinder) 1.16
Input pii Varies

Covariance matrix -i Varies 0.01 0.01 0.01 0.04 0.04 0 0.01 0.04 0.04
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Lead time 1 / ac 4 1 1 1 1 2 1 1 3 3

Arrivals to the first station are assumed to come from an exponential distribution, so that the expectation

and standard deviations of the arrivals are always the same.

We track the behavior of the model in two scenarios. In the first scenario, the orders for grinders

grow linearly. The shop is empty at time zero. In period one, the expected arrival to station 1 is 4 hours;

in successive periods, the expected arrivals to station 1 increase by 0.2 hours.

Figure 34 charts the growth in the expected arrivals to the first station over 100 periods. It also

tracks the expected production at the last station, along with 2-sigma confidence intervals for the

production at the last station. (The lower-bound intervals are set to zero if E(Pi,) - 2ao- <0.)

25
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0
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0
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Period Number

60 70 80

....... Expected arrivals at first station

Expected P(t) at final station

Upper confidence interval on P(t)

Lower confidence interval on P(t)

of final station

of final station

Figure 34 -- Transient Moments of Grinder Production With Linear Order Growth

After an initial ramp-up, the moments of production at the tenth station grow linearly in response to

increasing arrivals at the first station.

For reference, the following table shows the moments of production for all stations across the

entire 100 periods.

Station Expected Aggregate Standard Deviation of
Production Production

1 (lathe)
2 (copy lathe)
3 (drill press)

1600.3
235.8
207.6

171.1
25.4
22.4
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4 (milling) 110.6 12
5 (rough grinder) 409.9 44.4
6 (internal grinder) 495.5 53.4
7 (thread cutting) 40.2 4.4
8 (hole abrading) 162.2 17.6
9 (precision grinder) 525.9 57.7
10 (ultra-precision grinder) 575.7 63.9

In the second scenario, the distributions of arrivals to the first station vary randomly every period.

In particular, the expected arrival in each period comes from a uniform distribution between 0 hours and

40 hours.

Figure 35 charts the expected arrivals to the first station over 100 periods. It also tracks the

expected production at the last station, along with 2-sigma confidence intervals for the production at the

last station.

45

40

35 - -

25 --- ,.0- -: - - --. :-,

20102

1071

15 -

Period

XExpected arrivals at first station

- Expected P(t) at final station

Upper confidence interval on P(t) of final station

Lower confidence interval on P(t) of final station

Figure 35 -- Transient Moments of Grinder Production With Random Expected Orders

As with the first scenario, the tenth station has an initial ramp-up period. After this period, the

moments of production at the tenth station resemble a moving average of the arrival stream to the first

station. This is not surprising, given that one of the major motivations of LLS-MR models is production

smoothing.

For reference, the following table shows the moments of production for all stations across the

entire 100 periods.
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We can draw several conclusions from these examples. First, we have demonstrated that we can

calculate the transient production moments for LLS-MR models under a wide array of network changes,

As shown, these changes can be extremely complicated, such as the second example's random changes to

the work arrival distributions. We have also calculated the moments of aggregate production across a

number of periods.

Next, we see that the numerical results are consistent with the analytic formulas given in the

previous section. In the first example, expected production at the tenth station experienced a transient

"ramp-up" period, and then grew linearly, matching the analytic formulas in Section 2.4. Further, the

production standard deviations also grew linearly with the arrival standard deviations. In the second

example, expected production also experienced a "ramp-up" period, and then acted as a moving average

of the arrival distribution changes. This behavior is similar to the analytic formulas for expected

production in networks with oscillating work arrivals, given in Section 2.5.

Finally, the results demonstrate the value of LLS-MR models in smoothing production variations.

In the second example, despite substantial changes to the arrival distributions, the production distribution

at the last station remained remarkably constant.

4. Optimal Control of MR Models

In this section, we consider the optimal control of MR models, using dynamic programming. We find a

sequence of optimal control rules (or, equivalently, finding a sequence of optimal production quantities)

that minimize the expectation of a quadratic cost function of the production and queue levels over the

next T periods. As an example, we might consider minimizing a weighted sum of the variances of

production and inventory levels over the next T periods. This gives rise to a rolling-horizon control

problem; in each period, we generate the control rule for each period by computing the rule that

minimizes the variances over the next T periods. Critically, we find that the optimal control rules are

linear functions of the queue lengths; thus, an "optimal" MR model will always be a LLS-MR model.

These results provide an important justification for LLS-MR models.
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Station Expected Aggregate Standard Deviation of
Production Production

1 (lathe) 2505.6 287.0
2 (copy lathe) 373.0 42.9
3 (drill press) 335.6 38.9
4 (milling) 176.4 20.4
5 (rough grinder) 663.3 76.9
6 (internal grinder) 800.4 92.7
7 (thread cutting) 65.7 7.7
8 (hole abrading) 264.3 30.7
9 (precision grinder) 878.0 103.3
10 (ultra-precision grinder) 982.9 117.0
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4.1 Rule Development

Most of the following development is based on Bertsekas (1995a, pp. 130-132). Suppose we have the

following quadratic cost function of the queue lengths and production quantities over the next T periods:

minE QT'YQT + Y'QT +C+ Q YQ, + y'Q +c + PZP, + z'P, + d)) (38)

Here, Y and Z are constant matrices, y and z are constant vectors, and c and d are constants. We

assume that the quadratic cost functions are convex, so that Y and Z are positive definite symmetric

matrices. As an example quadratic cost function, note that:

min E(QT -Q *)' Y(QT Q t+ Q Q *) Y(Q - Q*)+(P -E(P))'Z(P, --E(P)) (39)

minimizes a weighted sum of the production variances and the variances of the queue lengths around

target levels. When multiplied out, (39) has the same form as (38).

For the sake of simplicity, we restrict our discussion to models in which there are no production

fluctuation terms. Rather than have P, = f(Q, ) + y,, where y, is a random variable with zero mean and a

finite variance, we assume that P, = f(Qt). We also assume the LLS-MR work arrival structure, so that

A, =P, + 1 , where sF.- is the vector of random work arrivals with mean p and covariance matrix Y.

(In chapter 2, we assumed that the vector of random work arrivals appeared at the start of period t; we

simply shift the subscript here. This shift simplifies the DP analysis.) Note that we do not assume that

production is a linear function of the queue lengths; we will derive that the optimal functions are linear

using dynamic programming. Then, using the standard inventory balance equation, we have the

following relationship relating Q, to Q.1 and Pt..:

Q, =Qt1 +FPt, +c c, where F =(D - I). (40)

Using this relationship, our complete dynamic programming problem is:

In QQ y ++ (Qt,YQ, + y, +C) + (PZP, + Z'P, + d
minE{QT'YQT +Y'QT ~'~+)(P'P zPt+)}(1

s.t. Qt = Qt- + FPts + F-.

Using the dynamic programming algorithm, we have that:

JT(Q )= QT'YQT + Y'QT +c, (42)
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J, (Q,)= min { Q,'YQt + y'Q, +C + P'ZP + z'P, + d) + J+ (Q, + FP + ,), (43)

where the J,'s are the cost-to-go functions. We show that these cost-to-go functions are always quadratic;

thus, the control rules are linear functions of the queue lengths. We do by induction.

We first write (43) for t = T- 1:

h(QT m PT-1 + y'QTI +C)+ (P ZPT-I + z'PT- + d)

Jr-I (Mr0 = min E 1(44)
{ +(Q +FPT- + T- +)+-( +FP_ +8-)+ y'(Q + FPT + 7-I)+ C

Expanding the quadratic form on the right hand side of(44), and taking the expectation of the resulting

expression, yields:

JT-_ (QT_) = (Q'- YQT1 + y'QT_ +c)

(P'_IZPT-I + z'PTI_ + d) + Q'r-1 QT-1 + Pt'IF'YFP + p'Y(

+min 1+2Q' IYFPT-1 + 2pt'YFPT-I + 2pt'YQT{(
Pr-I

+(Y'QT-I + y'FPT-I + y's + c)

As noted, all the quadratic functions are convex, so we can find the optimal PT-I by differentiating (45)

with respect to PT-1, and setting the resulting expression to 0. Doing so yields:

0 = (2Z + 2F'YF) PT- + 2F'YQT._ + 2F'Yp + F'y + z (46)

The matrix multiplying PT.I is positive definite since Z is positive definite (hence invertible) and F'YF is

positive semidefinite. Then, solving for PT.I yields the optimal control rule:

_,= DrQr-I + pr, where:

DTI =(Z + F'YF)' F'Y, and (47)

PTI =-(Z+F'YF) (F'Yp +F'y/2+z/2).

Substituting (47) into the expression for JT-l, we have:

JT-I (QT-) = QT-I'KTIQTI_ + k'rI QTI + CTI, (48)

where KT-I is a matrix, kTl is a vector, and CT-I is a constant such that:

KT-I =Y+D'_,ZDT_ +(I+FD-I) Y(I + FDT ) , (49)

kTI = y + 2p'_IZDT_, + z'D +2(FP + pi)'(I + FDrI + y'(I+ FDT- 1 ) (50)
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CT =2c + d + P'TZP_ + +'P- +I _F'YFPT- +2P' F'YsL + E{c EYE1 }+ FPT 1  (51)

Importantly, K-1 is a positive definite symmetric matrix, since Y and Z are positive definite symmetric

matrices. Thus, like JT, we have that JT- is a positive definite quadratic function.

We can iterate the above process to find JT-2 , etc. through Jo, which is the optimal control rule for

the current period. At each stage, through an analysis identical to that for t = T- 1, we find:

P*a = Dt1 Q, 1 + P,-,, where:

D,= -(Z + F'K,F)' F'K,, and (52)

P,4 = -(Z + F'KF)' (F'Ktp + k'F /2 + z /2).

Further, Kt and kt are generated recursively by the following algorithms:

K, 1 = Y + D'_1 ZD,_1 + (I + FD,_1 )' K, (I + FDI) (53)

kt- = y + 2p' 1ZD,, + z'D_, + 2(FP + R)' (I + FD, 1 )+ k' (I + FD,_) (54)

4.2 Discussion of Optimal Control Rules

Using the above dynamic programming formulation should be fairly easy to use in practice. At the start

of each time period t, we calculate Dt and P. Then, we find the optimal production using the formula

P* = DQ, +P,. Bertsekas (1995a, pp. 133-141) shows that the Kt's have spectral radii less than one,

guaranteeing that the resulting system will be stable.

Note that if none of the parameters involved in calculating D, and Pt ever change, and we always

look ahead the same number of periods, Dt and Pt do not change from period to period (i.e. we only have

to calculate them once). Further, if Dt and P, remain constant, we can immediately find the steady-state

expected queue lengths, as well. We have the recursion relationship Q, = Q, +FP, + c, , where

F = (D - I), and P, = DQ, + P. Iterating this recursion equation infinitely, and taking the expectation

of both sides, yields:

E(Q)= (I + FD)S(DP + p) = (-FD)' (DP + p). (55)
s=O

The preceding analysis yields the optimal production quantities when production quantities do

fluctuate randomly (i.e. Pt = f(Q,) + y,). Since the means of these fluctuations are assumed to be 0, all

terms with both yt and P, drop out of the J, formulas, which results in the same formulas for Dt and P,
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given above. The expected costs will be higher, however, since the J, formulas will contain E(y'Zy,)

terms. (This is not surprising, considering that the yt terms increase the production variances.)

For the sake of simplicity, in the above analysis we assumed that only the queue levels and

production quantities change over time (due to random fluctuations). However, one can calculate the

optimal production quantities given any known changes to the control parameters over the next T periods,

including changes to the cost matrices (Y, y, Z, and z), changes to flow routing (i.e. changes to F), and

changes in the pattern of expected arrivals (p). The cost, however, is that the D and f matrices will need

to be completely recalculated over most periods. In addition, E(Q) cannot be calculated analytically

using (55) when model parameters change over time.

We can use an analysis similar to the above to find optimal policies for discounted-horizon

problems. In this class of problems, the objective function costs decrease by a factor of a in each

successive period, where 0 < a <1. These problems reflect the idea that analysts care more about short-

term costs than long term costs, given that the state of the network many periods from now is largely

unknown, and given the time value of money. The discounted-horizon problem is:

minE a (QT'YQT + Y'QT) +c + j(at (Q'YQ ' + Y'Q + a P'ZP + z'P, + d)) (56)

s.t. Qt =Q,_, +FP,, +Et.

Through an analysis similar to that used for the undiscounted problem, we find that at each state the

optimal policy is:

P,*1 = D,.1Q,_1 + P,-,, where:

D,_, =-a(Z + aF'KF)' F'K,, and (57)

= -a (Z + aF'K,F)' (F'KIp + k'F / 2 + z / 2).

Further, K, and k, are generated recursively by the following algorithms:

K,_1 =Y+D ,ZD ,+a[(I+FD,_ 1) K,(I+FD,_)]. (58)

k,_= =y+2pZD,+z'D,+a 2(FP, +P)'(I+FD,_) + k,(I+FD,1 )]. (59)

As in the undiscounted case, Bertsekas (1995b, pp. 150-152) shows that the K,'s have spectral radii less

than one, guaranteeing that the resulting system will be stable.

There is one important drawback to finding the optimal policies using dynamic programming. If

one looks at the dynamic programming formulation, one sees that there are no restrictions on either the
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production quantities or queue-length quantities being negative in any particular period. As a result,

situations may arise in which a control rule either tells a station to produce a negative amount or produce

more than a station has in its queue.

This problem is common to LLS-MR models with production rules that are functions of the work

in more than one queue. In Chapter 2, for instance, we considered models using the Denardo-Tang rules;

recall these rules tell stations to produce an amount needed to counteract inventory fluctuations at

downstream stations. If a Denardo-Tang shop is short of inventory at downstream stations, the rule may

tell a station to produce more than it has in its own queue. Conversely, if the shop has a large excess of

inventory at downstream stations, the rule may tell a station to produce a negative amount of work.

Thus, in practice, we might use truncated policies. Should a particular control rule tell us to

produce a negative amount at a station, we produce nothing at that station; similarly, should a control rule

tell us to produce more than is in the queue we process the queue. Over time, these truncated policies

should produce the desired equilibrium, as more work arrives to the station. Alternately, there are

environments in which it may be possible to add work to a station's queue or process more than a station

has in its queue. The former might correspond to introducing additional work orders to the shop, while

the latter might correspond to stations having access to additional parts depots.

4.3 An Optimal Control Example

Figure 36 shows an example four-station network. Station 1 receives an average of one unit of work each

period, and completed work exits from station 4; the workflow ('Di) entries are shown in the figure.

Figure 36 also shows the network's expected production.

1 2 Station E(P)
1 1.6
2 2.8

2 -33 3.2
4 6.0

0.2 F 3 0.1

Figure 36 - A Four-Station Network
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We are to solve an undiscounted rolling horizon problem. The objective in each period is to minimize a

sum of the production variances and a sum of the queue-length variances around the smallest possible

expected inventory levels (ideally, we would like E(Q) = E(P)). The resulting dynamic programming

problem is:

(QT -E(P))' I(QT -E(P))
minE

P, +1 (QT - E(P))' I (QT - E(P))+(P, -E(P))' I(P -E(P)) ,(60)
1t=0

s.t. Q, = Q-1 + FP, + Et-1.

which, when written in the form of equation (41), becomes

QT'IQT -2E(P)'QT +E(P)'E(P)
minE T-1 QtQ

m + (QIQ, - 2E(P)'Q, + E(P)'E(P)) + PtI, - 2E(P)'P + E(P)'E(P)))} (61)

s.t. Q, = Q- +FP,_, +Et-_'

The following table compares the optimal D, P, and steady-state E(Q) when we look ahead one

period, and when we look ahead an infinite number of periods (here, "infinite" is approximated by

looking ahead 500 periods).

One-Period Results Infinite-Period Results
D E(Q) D E(Q)

0.206 -0.164 -0.231 -0.110 3.128 1.600 0.323 -0.130 -0.191 -0.079 -0.375 16.701
0.054 0.437 -0.164 -0.161 2.982 2.800 0.292 0.528 -0.093 -0.092 -4.604 8.058
0.174 -0.276 0.285 -0.273 4.416 3.200 0.432 -0.209 0.376 -0.208 -3.196 8.084
0.088 0.049 0.068 0.303 3.686 6.000 0.600 0.217 0.234 0.444 -12.326 10.493

The one-period P is much larger than the infinite-period P (the latter has the station add work to the queue

rather than subtract it). Further, the one-period expected queue lengths are significantly smaller than the

infinite-period queue lengths. Indeed, the one period E(Q) exactly equals E(P), implying that minimizing

production fluctuations was significantly less important than minimizing queue-length fluctuations in the

one-period problem. These results imply that the more periods are added to the horizon, the more

significant minimizing production fluctuations becomes in comparison to minimizing queue-length

fluctuations.

It should be noted that the one-period results are fundamentally no more or less optimal than the

infinite period results; both are optimal solutions to their respective problems. The very different natures

of the solutions, though, illustrate the importance of determining the correct objective function for a

particular network.

242



Chapter 7: Transient Analysis and Optimization

We can quantify the relative change in importance between minimizing queue-length and

production fluctuations. Figure 37 graphs the steady-state total expected inventory, 1,E(Q1 ), against

the number of periods included in the objective function.
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Figure 37 -- Optimal Expected Inventory v. Look-Ahead Periods

In this case, as the number of periods in the horizon increases, the total expected inventory corresponding

to the optimal control rules increases in accordance with an S-shaped curve.

Intuitively, for a fairly small number of look-ahead periods, the cost of minimizing queue-length

fluctuations tends to outweigh the costs of minimizing production fluctuations by a significant amount. A

possible explanation for this effect comes from the formulation of the objective functions. If we look at

the formulation, (41) we see that the costs of queue-length fluctuations are considered one additional time

compared to production fluctuations. In particular, we account for queue-length fluctuations at time T,

but not production fluctuations.

As the number of periods increases, however, the costs of the production fluctuations required to

minimize queue-length fluctuations grow, and grow faster than the costs of the queue length fluctuations.

This effect causes the optimal policy to change from one of minimizing queue-length fluctuations by

keeping queue lengths low (and production fluctuations comparatively high), to one of minimizing
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production fluctuations by keeping queue lengths comparatively high. The difference between the growth

rates explains the geometric growth in expected inventories shown on the first part of the curve.

Recall that Bertsekas (1995a, pp. 133-141) showed that the class of problems including the

example will be stable, such that the optimal policy will converge to a single policy as the number of

look-ahead periods approaches infinity. This convergence is shown in the second part of the curve. The

costs of production fluctuations are still growing faster than the costs of queue-length fluctuations, but the

resulting policies are now converging asymptotically to the infinite horizon solution (with expected

inventory equal to 43.3358).
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1. Contributions

In this final chapter, we review the contributions of this thesis. We also present some

opportunities for future research.

First, and importantly, we have defined the class of MR models. Previously, work on this class of

models had been limited to the Tactical Planning Model (TPM) and direct extensions to the TPM.

Consequently, all research assumed that production is a fixed fraction of work-in-queue, and that work

arrivals are stationary fluid arrivals. We have shown that the TPM is one model in a much larger class of

models that may all be analyzed through similar techniques.

We began by generalizing the current TPM to include linear control rules of multiple queues

along with production fluctuation terms. We showed how this larger subclass (LLS-MR) encompasses a

variety of common network and job-shop control techniques, including pull-based systems such as

Kanban networks, Basestock networks, and more complicated variance suppression rules, such as the

proportional restoration rules of Denardo and Tang (1997).

Next, we demonstrated how to calculate approximations for the steady-state moments of MR-

models with general (i.e. nonlinear) control rules (class GLS-MR). This technique allows for the

modeling of a wide range of realistic machine and human behavior, including machine congestion,

machine overloading, and the effects of overtime work. The drawback, however, is that the results are

approximations. As shown in Chapter 3, there are situations (usually, very heavily loaded networks with

a great deal of random noise) in which the approximations are inadequate. Further, the applicability of

the approximations to transient analysis is limited, since estimating the transient behavior of a network

with general control rules involves taking approximations of approximations. Nevertheless, GLS-MR

approximations are quite accurate over the range of networks one generally finds (i.e. reasonably well-

behaved networks), and opens a wide range of steady-state optimization and decision-support applications

for networks whose stations have nonlinear production functions. We expect such networks (and

applications) are quite common in practice, given that they incorporate realistic human behavior and

machine behavior. Thus, the ability to analyze GLS-MR models is quite significant.

We then developed MR-models that maintain a weighted constant inventory constraint (class

LLC-MR). This subclass permits models of shops obeying common control rules, such as CONWIP (c.f.

Hopp and Spearman, 1996) and Drum-Buffer-Rope (c.f. Goldratt, 1986). In fact, this subclass of MR-

models generalizes the conventional CONWIP rules, producing job shops that have less variability, and

require less capacity, than shops using simple CONWIP or constant-release policies.
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Next, we developed a class of MR-models that process discrete jobs (class LRS-MR). In these

models, downstream work arrivals depend on completed jobs, often in complicated, probabilistic ways,

not on completed fluid work. This class allows the modeling of environments in which jobs have greatly

differing processing requirements, and relationships between jobs completed upstream and jobs

completed downstream are given by complicated probabilistic relationships. This ability is especially

important in environments such as data processing, where the completion of one upstream job may

randomly trigger cascades of downstream jobs, and where the processing times of the jobs may differ by

orders of magnitude.

We then showed how to set up and solve steady-state optimization problems related to MR-

models, including maximum performance, maximum throughput, and minimum cost problems. In doing

so, we showed how to model capacity requirements for models using linear and general control rules.

Further, our example problems showed that cost-performance tradeoff curves (resulting from solving a set

of optimization problems with varying constraints) often indicated a set of solutions that provided good

performance at a reasonable cost.

Finally, we used the underlying recursion equations to find the transient behavior of MR-models.

For simple network changes, we found analytic expressions for the transients, extending the work of

Parrish (1987). We also demonstrated using the MR recursion equations directly to numerically calculate

transient behavior with respect to a very broad class of changes, including changes to mean arrivals,

arrival variances, routing flows, and smoothing parameters. We also found optimal control rules given a

multi-period quadratic objective function, by using a dynamic programming formulation. Importantly,

we found that the optimal policies were always linear functions of the work in queue - a key justification

for the use of linear control rules.

2. Opportunities for Future Research

The following opportunities for future research apply to all MR models. Possibilities for extensions to

particular classes of MR-models have been discussed in the corresponding chapters.

2.1 Modeling Multiple Work Flows and History-Dependent Work Flows

All of the MR-models have the disadvantage that they require Markov assumptions for the work flows.

They assume that work flows in the network can be modeled such that accounting for the history of the

work flow is not necessary. In the general case, it does not seem possible to relax the Markov

assumptions without having models with combinatorial complexity. However, there are some limited

generalizations for history-dependent work flows that are worth further study.

247



Chapter 8: Conclusions

First, assume that the flows through the network may be decomposed into flows corresponding to

a few distinct job types, each with its own routings and production requirements. Further, assume that

stations can process jobs of each type each period independently (i.e. a station processes a fixed fraction

of the queue of type-one jobs each period, regardless of how many jobs of other types there are). Then

we can model the different job flows by having one MR model for each job flow. Provided the job flows

are independent, the total expected loads and load variances on each station would be the sum of the

statistics from the individual MR models.

In an alternate scenario, assume that the history dependencies are defined by a small number of

sequential states (for example, work goes from station A to station B, then back to station A for

reprocessing), we can create an MR model in each state as one model node. Again assuming that the

stations can handle the work in each state through separate queues, the expected workload at a station is

the sum of the workloads at the corresponding state nodes. The workload variance is the sum of the

variances at the corresponding state nodes, plus the sum of the covariances between these state nodes.

Note that the above scenarios assume that jobs of different types, or in different states can be

processed independently. In practice, this often will not be the case, as a shared station might use a batch-

processing rule, instead. Under batch processing, the station processes an amount of work based on all

the jobs currently in queue for it, regardless of the jobs' type or state. Thus, an important area of research

would be to model batch processing; doing so has two requirements. First, the model must accurately

assess the total load on the shared station resulting from processing multiple types of work. Second, the

model must accurately depict the work flows of each type and state coming out of the station. We have

done some preliminary work in this area, and expect that modeling batch processing is feasible. The

batch-processing policies would be modeled through general control rules of multiple queues.

2.2 Decomposition Approaches for Large Models

All of the example MR-models considered in this thesis have been fairly small (the largest model had

eighteen stations). However, there are a number of applications for MR-models which have very large

numbers of stations. For example, we consider manufacturing or data-processing applications in which

there are many physical stations or processing nodes, many job types, and many processing steps per job

type. Modeling such an environment may require thousands of stations.

The overall complexity required to generate the steady-state moments of an MR-model is O(n3 )

where n is the number of stations. While this complexity is excellent for small to mid-sized networks, it

is impractical for a network with thousands of stations - especially if we want to optimize the network,

using the MR-model as an optimization subroutine.
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Consequently, an important area of research would be methods to decompose the calculations

required to analyze MR-models. Such decomposition techniques would be quite useful for "sparse"

networks (networks with many stations, but comparatively few flows between them.)

2.3 Period-Sizing and Discrete Control Networks

One of the fundamental assumptions of MR networks is that they are discrete-time networks. Work

transfers between stations occur only at fixed intervals (between periods). This a reasonable assumption

for manufacturing plants with distinct work shifts, or other facilities involving people completing work in

distinct shifts. However, there are many environments where this assumption does not apply.

In many manufacturing facilities, job components shuttle between stations continuously, not just

at shift breaks. Graves (1986) suggests that MR models (the TPM, at that time) still applies to such an

environment if the periods are sized carefully. He suggests the periods be large enough that a significant

amount of work gets done per period, but small enough that a job is unlikely to travel through more than

one station in a particular period. Additional research on sizing periods within real job shops, expanding

on Graves' ideas, would be valuable.

Beyond manufacturing facilities, we might consider the application of MR-models to data

processing systems. In these systems, streams of computing jobs enter and leave the network

continuously. Further, the computing requirements for particular jobs may vary by several orders of

magnitude, making a discrete-period assumption unrealistic. Instead, we assume that the network is a

discrete-control network. At regular intervals, we make decisions about the capacity to allocate between

the different work flows, presumably in accordance with the production quantities suggested by an MR

model. To use an MR model in this setting, we will need to model the fact that particular jobs may travel

to one of several stations, or leave the system, during the next period (defined by the interval between

successive control decisions). We would need to calculate the distributions for where particular jobs are

likely to be at the decision points (these calculations would probably be approximations). Developing

such a model would be extremely valuable, as it would allow MR-models to be applied to sophisticated

data-processing systems.

2.4 Continuous-Time Models

Another way to address the discrete-time issues would be to create a continuous-time MR model.

Intuitively, one might consider shrinking the period lengths to zero. Doing so creates a set of equations

that look like a system of linear differential equations with random process terms for new work arrivals.

Analyzing the resulting set, however, appears extremely difficult. The natural choice for the

random process terms - reflected Brownian Motion (RBM) processes - are by definition non-
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differentiable everywhere. Further, the analysis of even simple, individual queues with RBM arrivals is

quite complicated (ex. Karandikar and Kulkarni, 1995). Thus, it is not clear whether the creation of a

continuous-time MR model is possible. The creation of such a model, however, would be quite valuable

for theoretical and practical applications.
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