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Abstract

For this thesis, I designed and implemented a program that controls data acquisition
in a novel DNA sequencing technology and coordinates several peripheral components
crucial to the operation of the sequencing machine. The module for data acquisition
control is separate from the peripheral device control. Both software modules were
designed with an object-oriented model to allow for modules providing additional
processing capabilities and new peripheral instrument control to be added. All of the
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C++. Other portions of the data acquisition software were written in assembly
language.
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Chapter 1

Introduction

1.1 Background

1.1.1 Human Genome Project

Improving methods of DNA sequencing has become a significant focus in biotech-

nology, especially with the effort to sequence the human genome with the Human

Genome Project (HGP). The HGP is jointly coordinated by the National Institutes

of Health (NIH) and the Department of Energy (DOE). The DOE and NIH initially

presented a plan of attack in 1990 and have since revised and updated their goals.

The original goals included sequencing all the base pairs of the human genome by the

year 2005 or earlier. The HGP is currently on schedule to meet its goals. However,

the rate at which DNA can be sequenced has often been cited as a limiting factor.

The challenge, now, of sequencing the genome is "largely one of doing the job cheaper

and faster" [2]. Added to the existing pressure of reaching the established goals, biol-

ogist Craig Venter announced in 1998 his plan to finish sequencing the entire genome

in 3 years, in 2001, 4 years ahead of the HGP schedule. [3]
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Nitrogenous Bases

rA

Figure 1-1: Structure of DNA. Dotted lines represent weak bonds that form between
two complimentary bases. Pentagons and circles on the outer edges represent the
sugar and phosphate backbone of the DNA ladder.

1.1.2 The Science

Basic DNA Structure

The human genome consists of all the genetic material in a human cell. It is struc-

turally divided into 23 chromosomes. Each chromosome can contain hundreds of

genes, the functional units of heredity. Genes are segments of genetic material that

prescribe the construction of a single type of protein. The basic building block of

these genes are nucleotides. Nucleotides are molecules consisting of a sugar, a phos-

phate, and a nitrogenous base. There are 4 types of nucleotide bases: adenine (A),

thymine (T), cytosine (C), and guanine (G). These nucleotide bases are pieced to-

gether linearly to form deoxyribonucleic acid (DNA) strands.

The two DNA strands are bonded together in a form of a ladder, as shown in

Figure 1-1. Each nucleotide on one strand makes a weak chemical bond with a

complimentary nucleotide on the second strand. In essence, one strand is simply the

compliment of the other and holds no extra genetic information. The chemical bonds
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that form are very specific: A only bonds with T and C only bonds with G. These

bonded bases constitute a base pair. The human genome contains about 3 billion of

these base pairs. The two DNA strands twist to form a double helix. [1]

Sequencing

The current technique for sequencing DNA is to shear many copies of the same DNA

segment into fragments of various lengths and to tag the ends of each fragment with

fluorescent dyes (a different dye for each base: A, T, C, and G). The result is a sample

containing numerous DNA segments, beginning at the same location and ending at

different locations. The sample of DNA fragments is loaded onto one end of a gel (gen-

erally agarose or acrylamide). The sample undergoes a process called electrophoresis,

in which voltage is applied across the gel and, due to the negative electrical charge of

the DNA, the DNA fragments migrate toward the positively charged end of the gel.

Smaller fragments in the sample travel faster and the longer fragments travel more

slowly. This results in a separation of the fragments in the gel based on size, with

the shorter fragments reaching the end first.

A high degree of separation must be achieved from the electrophoresis to obtain

sequence data. Electrophoresis can be performed at various voltages and for various

time durations. Controlling these two factors determines the resolution of the DNA

fragment separation. To obtain sequence from the electrophoresis, we must achieve a

resolution that allows us to distinguish fragment lengths that differ by a single base.

The migrating DNA fragments are detected at the positively charged end of the

gel. The DNA fragments pass through the detection area, which is continuously

scanned by a laser beam. The fluorescent dyes attached to each fragment are excited

by the laser and the resulting fluorescence is detected and read. Identifying these base

tags in succession, under the proper resolution, allows us to reconstruct the location

of each base and, consequently, construct the sequence.

10



1.1.3 Sequencing Instrumentation

Existing Instrumentation

The current types of sequencing instruments are slab gels, ultra-thin slab gels, and

capillary machines. Until the mid to late 1990's, slab gels were the predominant

type of instrument used in sequencing. Some of the major sequencing centers in the

world for the HGP, Washington University, The Sanger Centre and The Whitehead

Institute Center for Genome Research all have used the slab gel instrument of choice,

the Perkin Elmer ABI (Applied Biosystems) 377 slab gel apparatus. The current slab

gels can hold at maximum 96 lanes in one gel and take 4 to 6 hours to complete one

run.

Ultra-thin slab gels are also available, which are less than 0.1 mm thick. Elec-

trophoresis can be performed at higher temperatures on thinner slab gels and there-

fore, result in faster fragment length separations. This technology however, did not

gain popularity.

One of the drawbacks of slab gels is that the lanes are not clearly delineated.

Since samples migrate down one continuous piece of gel, it is the job of the software

to determine where one sample begins and the other ends.

The capillary machine is the most popular of the existing types of instruments.

Instead of a gel, each sample is run through a quartz tubule of approximately 80

pum in diameter. Each sample is loaded into an individual capillary and eliminates

the need for software to ascertain lane delineation and sample delineation. Due to

the small diameter of the capillary, less sample volume is required for electrophoresis

to attain sequence results. The decreased sample volume allows electrophoresis to

be performed at higher voltages resulting in faster run times. There are commercial

machines currently available which can process 96 capillaries at a time. [4]

Microfabricated Instruments

A novel type of instrument, using glass microfabricated devices for DNA sequencing,

promises throughput of up to 30 times that of the current slab gel instruments. This
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slab gel capillary machine microfabricated
# of lanes 96 96 384
run time 5 hrs 3hrs 80 mins
average read (bases) 800 600 700
throughput (million bases/day) 0.4 0.5 4.8

Table 1.1: Comparison of Types of Sequencing Instruments. This comparison shows
the tremendous throughput increases of microfabricated instruments due to their
greater number of lanes and significantly faster run times. (Sinclair, 1999).

form of sequencing runs each DNA sample through an isolated microchannel of 50

to 100 pm in diameter. Unlike capillary technology, which uses quartz to make

flexible capillary strands, one can etch many of these capillaries into a glass plate,

using microfabrication techniques similar to those used in the semiconductor industry.

This process allows packing a larger number of capillaries into a compact space.

A single glass plate can hold up to 384 lanes. Due to the physical properties of

the plate and the machine design itself, one is able to complete a run in a little over

an hour and maintain a high level of data integrity. This allows achievement of a

substantially higher sequencing throughput. Table 1.1 shows representative statistics

for each type of instrument.

1.2 Objectives of Thesis

The laboratory of Paul Matsudaira at the Whitehead Institute and MIT is currently

pursuing this new microfabricated sequencing instrumentation. In the midst of the

collaborative effort of chemists, biologists, and mechanical engineers to create and

refine a prototype instrument, the objectives of my thesis work were to design and

construct data acquisition and control system software to operate the prototype in-

strument.
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1.3 Organization of Thesis

In this introduction, I have presented basic background information for the science

and instrumentation behind DNA sequencing which will aid in understanding this

thesis. In Chapter 2, I present a description and specification of the instrument our

laboratory has developed as well as the objectives of the software development. The

rest of this thesis is focused on the three software modules developed: data acquisition,

instrument control, and peripheral component control. In Chapters, 3, 4, and 5, I will

discuss in depth the software requirements, design, and implementation for each of

these software modules. Chapter 6 concludes this thesis with discussion of potential

future work.

13



Chapter 2

Instrument Specifications

2.1 Hardware Specifications

2.1.1 Mechanical

Shown in Figure 2-1 is a schematic of the sequencing instrument and all of its separate

components. The largest portion of the instrument is the element which holds the

microfabricated chip. The microfabricated chip is a glass plate, of dimensions 0.11

cm thick by 25 cm wide by 50 cm long. The chip contains 384 microchannels, each

about 40 pum deep and 90 pm wide. High voltage is applied across the length these

channels to perform electrophoresis. Under the detection area of the chip is the

spinner motor, with fluorescence detection optics, which is connected to the laser

beam source. There is also a position encoder attached to the spinner motor which

allows the spinner location to be read. (See Figure 2-2)

2.1.2 Optics

The optical portion of this instrument is an epifluorescent system. The laser beam

projected through the spinner optics returns a fluorescence signal through a set of

optical filters. These optical filters are arranged to separate the fluorescence signal

into its 4 constituent colors, each corresponding to a different base dye. After the

signal passes through the filters, it passes through a set of photomultiplier tubes
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pumps

high voltage microchannel plate

spinner optical filters

spinner encoder PMT4

PMT13

_ ___ _ _adcO l-- - -

DSP aepass
3dc3 d

. ... optical signal
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Figure 2-1: Instrument Diagram. The data is acquired through the spinner optics and
passed through the optical filters, PMTs, amplifiers, and electronic filters as shown.
The data is finally collected by the DSP through the ADCs, which all reside on the
data acquisition board.

(PMTs) which process the signal. The PMTs convert the fluorescence to current,

which is subsequently amplified to a voltage and passed through low pass electronic

filters.

2.1.3 Digital Processing

The digital processing portion of the instrument includes the data acquisition board

with a digital signal processor (DSP). The specific DSP used in this system is an

Analog Devices ADSP-2181 processor, clocked at 32MHz. The data acquisition board

also has analog to digital converters (ADCs) on board which sample the voltage that

is produced by the low pass filters. The data acquisition board also has an EPP

parallel port interface which allows it to send and receive information from a PC.

The software to control the data acquisition board and collect the sequence data

15



F = 8 mm lens spot sie

mirror

rotary motor and encoder

laser in

Figure 2-2: Spinner Motor and Encoder. This schematic of the spinner motor shows
the mechanical design of the motor. The shaft which the laser enters houses the
spinner optics. Various lenses and mirrors are used to retrieve the optical signal.

must reside on the PC.

2.1.4 Peripheral Components

The remaining peripheral components of the instrument are the high voltage supplies,

pumps, valves, and the robotic arm. The custom built high voltage supplies control

a voltage of up to 10 kV. A variety of peristaltic and syringe pumps supply buffer

and gel to the chip. Valves control the direction of flow of buffers and gel and also

the refilling of the pumps. The robotic arm is mobile in 3 orthogonal, linear axes and

carries a custom built 96-tip pipetter.

2.1.5 Overall Function

The peripheral components are coordinated to prepare the instrument for an elec-

trophoretic run. The DNA sample is loaded into a special injection area at one end of

the glass plate by the robotic arm. The various pumps and valves coordinate to en-

sure that the gel is pumped into the channels and that there is enough buffer present
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Figure 2-3: Schematic of 384-lane microfabricated glass plate (top view). The sample
is loaded onto the plate at the upper portion of the plate. It migrates down the
channels toward the detection area on the bottom.

in the microchannels such that the voltage can be applied across it. A voltage in the

range of 6kV - 10kV is then applied across each channel to begin electrophoresis.

Once electrophoresis begins, the laser beam is activated and the spinner motor

begins rotation. As the spinner motor rotates 360', the laser beam sweeps across the

detection area of the chip (See Figure 2-3). The DNA sample migrates towards the

detection area as the laser continuously scans the area. As the laser intersects each

of the channels, the fluorescent tagged DNA passing through the detection area is

excited by the laser. The resulting signal passes through the optics as described in

Section 2.1.2, and produces a voltage signal for each dye color.

The separation of the signal into different colors is in effect identifying the tagged

base. Each base signal is separately sampled by the ADCs on the data acquisition

board. The DSP collects and pre-processes the incoming data and stores it in DSP

17



memory. When the memory buffers are full on the DSP, it signals the PC to begin

uploading data. The PC uploads and processes the raw data into a suitable format

for basecalling software to decode the DNA sequence.

2.2 Software Specifications

2.2.1 Software Objectives

The ultimate goal of building this software system is to create a production machine

for DNA sequencing that provides an increased throughput, measured in million bases

per day (Mb/day). The specific goals for software development are to automate

instrument operation, data collection, and processing of data to produce sequence.

Many of the tasks concerning the operation of the instrument can be automated

and controlled by software. These tasks include sample loading and labeling, in-

strument status feedback (gel volume, laser life, voltage, etc.), instrument operation,

peripheral component control, data acquisition, data pre-processing and basecalling.

This thesis specifically deals with the data acquisition, instrument operation, and

peripheral component control tasks in this system.

2.2.2 Software Modules

There are three software modules discussed in this thesis: the DSP software, the

instrument control software, and the peripheral component control software. The

DSP software is the software that resides inside the processor on the data acquisition

board. This software provides the PC with access to the hardware of the instrument.

Without this software, the application that runs on the PC could not control the in-

strument. The DSP software provides lower level coordination of the data acquisition

and instrument control.

The instrument control software is the primary piece of software that handles all

user interaction. It is the application that provides functionality to the user and

allows them to control and manipulate the instrument. This application coordinates

18



data acquisition on the highest level.

The peripheral component software is the software that coordinates the actions

of all the peripheral devices in the system. These are devices such as valves, pumps,

high voltage supplies, and robot arms, which aid in the automation of the sequencing

process. The peripheral component control software coordinates automation of all of

these devices from a central application.

19



Chapter 3

DSP Software

3.1 Software Requirements

The software requirements for the digital signal processor (DSP) software include

managing all the components that reside on the data acquisition board and managing

data acquisition from the instrument. The components on the board include the high

voltage supplies, spinner motor, position encoder, and analog to digital converters

(ADCs).

3.1.1 Component Control

The DSP software needs to provide a variety of features to operate and control the

instrument and its components. For the high voltage supplies, the software must be

able to activate them, deactivate them, and set the voltage values. For the spinner

motor, the software must control rotation, speed, and spinner location. For the

position encoder, the software must be able to read the encoder and recalibrate it.

For the ADCs, it must provide control of the sample rate and access to the data that

is sampled.

20



3.1.2 Data Acquisition

The DSP software also needs to manage the data acquisition from the instrument.

This specifically includes implementing the collection method, data pre-processing,

and storage of data prior to upload.

A design consideration in creating the data acquisition module in the DSP soft-

ware is the minimum data resolution require to sequence DNA. To sequence with

an acceptable level of confidence, a minimum number of data points per base is re-

quired. The two variables involved in determining this minimum number of data

points are the number of points per lane and the number of points per peak in the

electropherogram.

A peak is an increase in signal that corresponds to the fluorescence detected from

the DNA sample. When the sample runs down the length of the channels during

electrophoresis, the fragments separate by length. The many copies of fragments of

the same length, referred to as a band of DNA, migrate toward the detection area

with approximately the same velocity. When a band of DNA passes through the

detection area, the strength of the fluorescence emitted corresponds to the number of

fragments excited by the laser (i.e. more fragments give rise to a stronger signal). An

example of the resulting fluorescence signal is shown in Figure 3-1. In this figure, rise

in signal strength indicates a distinct fragment length passing the detection area, and

when the signal falls, it corresponds to little or no DNA fragments at the detection

area at that time.

As the laser sweeps through the detection area, it intersects each channel once

in each rotation, but may collect several data points within a channel. Ideally, we

would only need one point per channel per revolution. However, elements of noise

and low signal require us to collect more than one point per channel and then process

those points to achieve one representative point per channel per revolution. In terms

of points per peak, we need a minimum number of points to define each peak and

build the electropherogram. The minimum number of points that current basecalling

applications use to determine a peak are approximately 8 to 10 points.
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Figure 3-1: PMT signal in a single channel. The X axis shows the
which is correlated to the time elapsed. The open circles indicate
were sampled.

number of scans
data points that

3.2 Data Acquisition System Description

In order to implement the data acquisition software for this system, we need to identify

the hardware constraints in the system and understand the software aspect of data

acquisition in detail.

3.2.1 Hardware Attributes

The spinner motor is the means through which data is collected from the plate. The

spinner rotates at a rotational speed measured in encoder counts per millisecond

(cts/ms). One full revolution of the spinner is 216 encoder counts. The spinner
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can move in a clockwise and counterclockwise motion corresponding to positive and

negative speeds, respectively.

The data sample rate is the rate at which information is available to the DSP.

The data sample rate is an attribute of the ADCs, which are located on the data

acquisition board. The voltage signal that is output from the PMTs is continuously

provided to the ADCs. The ADCs sample the input at a fixed rate. The maximum

rate for the ADCs is to sample every 5 ps.

The rate at which data is uploaded from the DSP to the PC is currently fixed by

hardware and protocols at 6.6 points per millisecond. There is also an overhead of

6.5 ps for each upload that takes place. For this reason, it is more desirable to upload

a large set of points at once, than to upload smaller sets of points more often.

3.2.2 Collection Method

The collection method is the method that the DSP uses to decide when to collect

data. The ADCs are continuously sampling data that is delivered through the optics

and PMTs. The DSP, however, does not need to collect all those points. Figure

3-1 shows a plot of data that streams into one of the ADCs and the points that are

actually sampled and collected. Ideally, the DSP should only collect the data that

correspond to the channels containing DNA and ignore the rest of the data points

(e.g. data from channels without DNA, glass plate, and empty space).

As the collection method becomes more complex, the overhead involved in imple-

menting it on the DSP increases. The overhead costs processing cycles, which might

be valuable for other processes. Using more complex collection mechanisms, however,

can increase the quality of the data by reducing the amount of useless data collected.

3.2.3 Pre-processing

DSP pre-processing refers to any manipulation of the data that occurs after it is

retrieved from the ADCs and before it is uploaded onto the PC. More specifically,

this pre-processing reduces the set of data points to a single representative data point.
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An example would be to take the mode of all the data points collected in a single

channel.

The main reason for performing any data pre-processing is to reduce total upload

time to the PC. Once the DSP memory buffer is full, it can no longer accept any data

and must empty its buffers before continuing data collection. While the PC uploads

the data, data collection on the DSP has ceased. If the DSP is uploading data while

the spinner is passing through the detection region, data is lost. Pre-processing the

data to reduce the number of points stored in DSP memory allows more data to be

collected before upload takes place.

3.2.4 Data Storage

Data storage refers to how data is arranged and stored in memory on the DSP.

The data memory of the 2181 DSP chip has a capacity of 16 Kbytes. The storage

implementation affects the rate at which the data buffers can be uploaded to the PC.

The storage implementation should maximize the rate at which data can be uploaded

with the current memory limitations.

3.3 Initial Software Design

The DSP software was initially designed and written by an outside consultant (Craig

Simpson, Simpson Research, Danville, VT). We have evaluated and modified this

software to reflect the requirements and functionalities needed. The data acquisition

module of the initial version of DSP software implemented the collection method, data

pre-processing, and storage according to the design specifications of the hardware.

In the original implementation of the collection method, the DSP only collected

data points from the ADCs while the spinner was intersecting a channel. This was im-

plemented by triggering data collection when the laser hit the beginning of a channel.

When the laser beam hits the edge of the channel, the edge of the channel scatters

the beam. This is a unique effect which can be detected. This scatter signal from the

optics was used to trigger the DSP to collect data.
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The DSP was programmed to collect 8 data points after the scatter signal was

detected. After the 8 points were collected, the DSP stops data collection and pre-

processes the data. It averages the 8 points to produce one representative data point

for that channel. After saving that point to the data buffer, the DSP waits for the

next scatter signal to arrive.

The data storage in the initial design was comprised of five buffers, each holding a

maximum of 384 points (one point per channel). The first four buffers were for each

of the ADC signals and the fifth buffer was to hold the encoder position.

This initial design fulfilled the data acquisition requirements and the hardware

specifications. However, the scatter signal hardware did not function according to

the specifications. This required us to modify the initial design to achieve data

acquisition.

3.4 Software Modifications

Many modifications have been made to the initial version of DSP software over the

past several months. Most of the changes to the software pertain to the variables

and methods discussed in Section 3.2. The most current version of our DSP code is

provided in Appendix A.

3.4.1 Collection Method

The collection method (described in Section 3.2.2) can be implemented in various

modes. While determining the best implementation, two independent variables were

considered: spinner motion and collection mechanism. The spinner motion refers to

the uniformity or non-uniformity of the spinner velocity. The collection mechanism

refers to the frequency and timing of data collection.

The most simple, but inefficient, method is to collect data continuously as the

spinner rotated 3600. This mode was inefficient because all of the data points are

not needed. The DSP only needs to collect data from the 600 arc corresponding to

the detection zone on the plate (See Figure 2-3). This mode was implemented to
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provide the necessary data acquisition capabilities at the initial stages of software

development.

Spinner Motion

The problem with full 360' rotation of the spinner at a constant velocity was that

we could not meet the data resolution requirement (described in Section 3.1.2). The

spinner velocity is limited by the resolution requirement. If the spinner rotates too

quickly, the data resolution is insufficient. However, even at the fastest spinner speed,

the time that elapsed between leaving the detection region and returning to the

beginning of the region was too long. We were unable to collect enough points per

peak.

We explored methods to narrow the region that the spinner scanned. The region

for the detection zone could be defined on the DSP by a start encoder position and

end encoder position. If the spinner only moved between the start and end positions

in the region, we would only collect data from that region.

This idea seemed good in design, however, it did not prove successful. Moving the

spinner in a zig-zag motion, from beginning to end of the collection region solved the

problem of peak resolution. However, due to the mechanics of the spinner motor and

encoder, we experienced a feedback effect of the spinner motor.

After the spinner reaches the end of the detection region, it is supposed to move

back to the start location of the region to scan again. However, the spinner was not

able to move to a precise location. The spinner moved beyond the target location

and mechanically oscillated until it settled to the correct position. The time that it

took to settle to its new position added to the time it took to accelerate to sweep

through the region.

After unsuccessful attempts with spinner motion, we decided to implement a cus-

tom speed profile for the spinner motor that causes it to rotate continuously for 3600

at varying speeds. The spinner would move at a constant velocity of 60 cts/ms, low

enough for the required data resolution, and then accelerate and decelerate until it

returns to the beginning of the collection region. This method proved successful.
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Collection Mechanism

Although we solved the problem of timing, we were still collecting data under the min-

imum rate necessary. The initial experiments only used 1-30 channels and therefore

only needed limited data acquisition capabilities. As the experiments expanded to use

all of the 384 channels on the plate, the data collection mechanism was insufficient.

One of the problems with continuously collecting data is that data was collected

inside and outside of the detection zone. To narrow the region in which data was

collected, we implemented a collection mechanism that triggered data collection when

the spinner passed the start location of the detection region. The DSP continued to

collect data until it reached the end location.

Although this reduced the number of points collected, it was still insufficient. Data

only needs to be collected within the channels of the plate. Each channel is 100 pm

wide and the amount of glass between two neighboring channels is also 100 pm. This

means that we can reduce the number of points collected by 50% by collecting data

only in the channels.

The original collection method was one that collected only within the channels or

lanes. We had to find an alternative implementation to accomplish data collection

within the lanes. We knew that could successfully trigger data collection based on an

encoder position. So, we decided to trigger data collection at the beginning location

of each lane.

This method would require us to ascertain the position of all of the lanes, download

those positions to the DSP, and collect only within the width of that lane. In essence,

we are implementing data collection over 384 mini-collection regions.

One concern is that the glass plate and the 384 channels will not always be in

the same position. Once a glass plate is installed onto the instrument, however, the

locations will be fixed. But the glass plate is removable and will be replaced between

runs. This might cause a minute change in lane locations, but when dealing with

widths of microns, it is a valid concern.

The solution is that the detection of the lane edges must be done prior to every
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run, after the plate is installed. This can be accomplished by taking approximately

100 preliminary scans of the detection region. The properties of the glass and the gel

are different and their fluorescence signals will also differ. We can detect the location

of these variances and thus locate the beginning of each lane.

Once the location of each lane is determined, we can download the lane locations

to the DSP and instruct the DSP to trigger data collection only after it passes one

of these locations. We programmed the DSP to collect 8 points after being triggered.

Taking into account a constant velocity of 60 cts/ms, 8 points (one point per encoder

position) corresponds to region slightly wider than the width of one channel.

3.4.2 Pre-processing

Data upload to the PC takes on the order of 50-100ms. This is a significant portion of

time, relative to data collection, during which we cannot collect any additional data.

If the spinner rotates at 60 cts/ms, then the spinner will have moved between 3000

to 6000 encoder counts by the time data upload is complete. Considering that the

detection area is slightly less than 6000 counts wide, this poses a challenge if data

upload begins anywhere near the vicinity of the detection area.

We would like to minimize the number of points uploaded to the PC, so that we

can maximize the time the DSP has to collect data. Pre-processing data sampled

from the ADCs allows us to reduce the number of data points uploaded to the PC.

The alternatives for pre-processing are simply to upload all the points collected or to

compute the minimum, maximum, or average of a set of points to reduce the total

number of data points.

The simplest option here is to do no pre-processing at all and simply upload all

the raw data. This would require no overhead on the part of the DSP. However, due

to the fact that the DSP can execute instructions at the rate of 33 million instructions

per second, it would be to our advantage to offload some of this processing to the

DSP.

We noticed that our data set included multiple data points corresponding to a

single encoder position. The lowest distance resolution is a single encoder position,
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so it did not make sense to upload multiple points corresponding to the same location.

Only one representative point is necessary. Since a single channel spans the width

of approximately 15 encoder counts, it is unnecessary to store multiple points per

encoder position. It is inefficient to store such excess data. So we decided to reduce

the multiple set of data points corresponding to one encoder position to a single

representative point.

To produce a representative point out of a set of data points, it seems most logical

to take the average of the set of points. However, there were a variable number of

data points that needed processing at each encoder position and this was hard to ac-

commodate on the DSP, especially with the increased overhead of performing division

on the DSP. Division requires more cycles on a DSP than addition or subtraction.

The other alternatives to pre-process the data were to take the minimum or the

maximum of the set of data points. Our concern with using this method was that

any anamolous point in the set would cause a false data point to be recorded. An

anamolous point could very likely be the result of noise in the system. Due to the

properties of the amplifiers, we found that taking the minimum of the set of points

reduced the effect of noise and allowed us to collected the best quality data.

3.4.3 Data Storage

The data storage implementation was only slightly modified from the original imple-

mentation. The original implementation was to use five separate buffers, each holding

a maximum of 384 points. The significance of the data storage size is that it limits

the maximum contiguous region scanned during data collection. When the storage

is full, the DSP can no longer collect data. The faster the storage buffer reaches its

limit, the faster data collection must occur.

To allow the DSP more time to collect data, we expanded the buffer sizes to the

maximum capacity of the DSP memory buffer. As mentioned in Section 3.2.4, the

DSP has 16 Kbytes of data memory, which allowed us to expand the buffer size to

3225 data points.
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Chapter 4

Instrument Control Software

4.1 Software Requirements

The software requirements for instrument control application are to establish commu-

nication with the data acquisition board, coordinate instrument components during

electrophoresis, and upload and store acquired data. The function of this application

can be summarized in this analogy: the DSP provides the tools and this software uses

those tools to extract the desired data. This application also provides a graphical user

interface (GUI) to the instrument and data collection routines.

The instrument control application must establish communication with the data

acquisition board and DSP to control the various components. There are different

protocols involved in establishing communication on the hardware and software level

on both the PC and the data acquisition board. The control application translates

commands from the user into commands that the data acquisition board can execute.

The control application must control the spinner motion, the data sampling, the

high voltage supplies, and the data pre-processing. The control application must

coordinate all these components and tasks to acquire data from the instrument.

The GUI aspect of this application requires consideration of a number of factors.

This application will be used by biologists, chemists, and other laboratory technicians

and should be written with their needs in mind. As is true with most software inter-

faces, the goal is to abstract away the protocols and underlying hardware and provide
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a suitable, easy to use interface to the instrument. The user of the application should

only be concerned with operating and manipulating the instrument, not learning the

intricacies of using the software. As the work to date is the initial version of the

application, the emphasis is to provide functionality and establish a solid basis for

future work and improvements.

Because this version of the software will mainly be used in our laboratory for

experiments, it should allow for manual control of the instrument when desired, in

addition to automated control. For testing purposes, we would like to be able to

break the abstraction and access lower level functions that are not provided in the

GUI.

The DSP software provides the functionality for each component on the data

acquisition board. This data acquisition control software must provide the overall

coordination of all these components to perform electrophoresis and data acquisition.

This software must set the high voltage to the necessary settings, begin spinner mo-

tion, home the spinner location, set the necessary parameters on the DSP, and then

initiate data collection.

4.2 Software Design

For the instrument control software design, no formal specifications were made. Gen-

erally in software development, software requirements are evaluated to formulate de-

sign specifications. However, due to the immediate necessity for a functional interface

to the instrument, for the purposes of testing and experimentation, an initial proto-

type that provided basic functionality was needed.

4.2.1 Communication

The major function of this control software is to serve as a user interface to the instru-

ment. The first aspect in designing this application is to establish communication with

the instrument. This is accomplished by creating library files to provide communica-

tion functions for the data acquisition board and the DSP. The library functions are
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divided into three categories: lower level communication functions, DSP communica-

tion functions, and data acquisition board functions. The lower level communication

library handles all the parallel port protocol and basic access to the board. This

communication occurs at the byte level. The DSP communication library handles

all the protocol necessary to execute DSP commands. The data acquisition board

functions handle all the control and execution of the components that reside on the

board, such as the high voltage switches.

4.2.2 Graphical User Interface

The graphical user interface must give the user access to various functionalities. This

graphical interface must provide the ability for the user to activate and set the volt-

age for the high voltage supplies. The interface must also allow the user to control

spinner motion, read spinner location, and recalibrate position encoder. In terms of

data collection, this interface must allow the user to input DSP parameters for data

collection, initiate data collection, and upload data from the DSP.

4.2.3 Data Collection

The instrument control software is responsible for initiating data collection on the

DSP and uploading the resulting data from the DSP. The control software must also

store the raw data in a format compatible with basecalling software. The software

must work in conjunction with the DSP to implement data acquisition.

4.3 Implementation

The application, Sequencer.exe, was developed on the WindowsNT platform and uses

Microsoft Visual C++ as the coding environment. The initial version of this appli-

cation, shown in Figure 4-1, contained all the functionality deemed necessary at the

outset. These functionalities included: controlling spinner location and speed, setting

offset values for the analog to digital converters, controlling the high voltage supplies,
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Figure 4-1: Initial Version of Sequencer.exe. This is the initial graphical user interface
designed for the instrument control application.

uploading the appropriate version of DSP software, and starting and terminating

data collection. Functionalities that were not necessary, but possibly useful for test-

ing purposes were added. These included plotting incoming data so that data could

be previewed, and accessing memory locations on the DSP.

During the course of the software development, there have been many revisions

to the interface. These revisions include additional features, upgraded features, and

removal of features. The successive versions were prompted by user responses to the

application. Features that were not used or needed were removed. Features that were

desired were provided either by modifying existing features to meet the requirements

or implementing new features.

Some of the features removed from the initial version of the software were the

plotting capabilities and setting offset values for the ADCs. These features were

removed due to lack of use. Aside from the few features that were removed, many

more were added. The interface was changed to accommodate the specification of
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Figure 4-2: Latest Version of Sequencer.exe.

a "run type", "run mode", lane detection, and individual voltage controls. Some

of the changes to the application were prompted by changes to the underlying DSP

software. Other changes were-prompted by the progression of instrument testing and

experiments. As the instrument develops and begins to use more of the features

originally intended, the interface must provide these functionalities to the user.

The DSP software added the feature of specifying a "run mode", or more specif-

ically the spinner running mode. The spinner motion variable was discussed in Sec-

tion 3.4.1. The DSP code accommodated uniform spinner velocity as well as a variable

velocity profile. It was logical to implement a feature on the interface to specify the

mode of spinner motion.

The "run type" feature was also added to the interface as a result of changes to the
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DSP software. The DSP contained three run types: bounded, unbounded and laned.

The unbounded run type corresponds to continuous collection of data as the spinner

rotates. The bounded run type is the collection of data within a specific region. The

interface provides input to specify the beginning and end location of that region. The

laned run type is the collection method that collects only within the channels of the

chip. This run type can only be used if lane detection has already occurred.

The addition of a new laned mode in the run mode category required the task of

detecting all the lanes on the chip. The interface needed a feature that performed

lane detection. Lane detection would scan the detection area of the chip, locate

the starting location of each channel, and store that information on the DSP. This

addition is, once again, a response to changes in the DSP software.

Finally, the last modification to the software was the addition of individual voltage

controls for the high voltage supply. The voltage supply is subdivided into 8 individual

voltage control groups. Since the voltage for each group can be independently set,

the interface needed input features for each of those voltage groups.
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Chapter 5

Peripheral Component Control

Software

5.1 Software Requirements

The software requirement for the peripheral component control software is to au-

tomate the operation of the peripheral devices and coordinate the execution of de-

vice actions. There are various peripheral devices that are currently being employed

alongside the sequencing apparatus, such as the Harvard syringe pump and Master-

flex peristaltic pump. It is possible that the current devices in use will be replaced

by other commercial products in the future, each having its own unique set of proto-

cols and functionalities. The control software must therefore be able to handle such

changeable components and provide for seamless integration of all components.

An immediate requirement for this machine control application is that it must

interface with every device in the system. Each of these devices may have completely

different software interfaces and this application must be able to communicate with

all of them in order to coordinate them remotely. This application must implement

automated device control, meaning that once the program is initiated, no further

user interaction is necessary. The user should only need to specify a schedule for

device execution at the application's initialization and allow the application to run

to completion. Having an automated production sequencing instrument in mind, we
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Scheduler --- SchedulerDlg

ActionEvent Device

MasterFlexEvent HarvarcEvent

MasterFlex Harvard

Figure 5-1: Housekeeper Code Model. The Scheduler class is at the top of this class
hierarchy. It coordinates the interface through the SchedulerDlg class, and manages
the ActionEvent and Device classes. The shaded region under the Device class is
further elucidated in Figure 5-2.

need to implement automation. However, we would also like to have manual software

controls for each device available, as the instrument is still in its testing phases and

manual control during each experimental sequencing run is desirable.

5.2 Software Design

This application was named Housekeeper, because the essence of the application is to

organize the different peripheral components and manage device execution efficiently.

The general design of this application is centered around two basic concepts: devices

and events. Devices are representations of the peripheral components of the instru-

ment. Events are individual tasks that the devices must perform. For example, an

MIT Pump would be a device and starting the pump would be an event.

The code model for the Housekeeper.exe application is an object-oriented one. The

main application, HouseKeeper, maintains program control. It contains a Scheduler
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Device

Pump Valve Rcbot <other>

Harvard MasterFlex Peristaltic XYZRobot

Figure 5-2: Device Code Model. The virtual Device object has different virtual
subclasses, each pertaining to machine type. Each specific device, such as the Harvard
Pump, is implemented as a subclass to its machine type class.

object, which is the brain of the program. The Scheduler initializes and manages all

the devices in the system, all of the events to be executed, and the synchronization

and execution of events. Figure 5-1 shows how each of the objects in this application

are interconnected.

The various peripheral devices of the instrument are implemented by a virtual

Device class. Each device has the attributes of a name and whether or not it has

been initialized. Each device also knows its capabilities regarding what kinds of

events it can execute. Within the Device class, there are virtual subclasses for each

type of device in the system. The current subclasses are Pump, Valve, and Robot.

For every device in the system, a new class must be implemented as a subclass of one

of these types. For example, if we had an MIT pump, we would have to implement

an MITPump class as a subclass of Pump (See Figure 5-2).

The events in the system are implemented by a virtual ActionEvent class. An

ActionEvent knows what device is its target, what action to execute, and what time

it should be executed. This virtual ActionEvent class must also be overridden by a

subclass that is specific to the type of device used. For each device in the system,
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there should be a corresponding ActionEvent subclass implemented (e.g. if we have a

HarvardPump device, we should implement a HarvardEvent class). This ActionEvent

subclass knows how to control its specific device and call the correct function from

the Device class to execute its action.

The Scheduler class contains all the information that the user inputs to the pro-

gram. It creates, initializes, and controls all the devices in the system. It is responsible

for the event queue and correctly executing events according to an internal timer. The

Scheduler also provides the functionality to pause execution of events.

Our design meets all of the requirements of the machine control software except

manual control of the devices in the system. We decided in the design that this

functionality could be provided in a separate application and need not be included in

the final design. Manual control of the devices is only necessary during the testing

phase of the instrument and could easily be implemented.

5.3 Implementation

The Housekeeper.exe application was developed on a WindowsNT platform and with

the Microsoft Visual C++ coding environment. The application opens the initial win-

dow and begins the program (See Figure 5-3). It creates an instance of the Scheduler

class, which as we mentioned before, is the brain of the application. All of the user

input to the program concerning devices and events must be specified in an input file.

This input file must contain the devices that are present in the system and the list of

events that are to be executed. If any of the devices need extra parameters specified

with a command, it should also be specified in this file. Exact specifications for this

input file are given in Appendix B. The initial window allows the user to specify this

file.

The Scheduler then takes over, by initializing all the devices specified in the input

file. The Scheduler needs to establish communication with each device and per-

form any initialization protocol necessary. Since the Scheduler needs to perform the

initialization for each device, it must have access to functions for all devices. Com-
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Figure 5-3: Housekeeper Initial Window. This window allows the user to input the
file to specify the devices and events for the application.

munication library files needed to be created to provide this access to each device

and allow the Scheduler to accomplish initialization. The current devices used in the

system are the Harvard and Masterflex pumps previously mentioned, the pneumatic

valves, and the XYZ Robot arm. Library files were created for each of these devices,

along with device classes and event classes.

The devices must all be physically connected to the computer in order for this

program to able to control them. Remote or network control of the devices is not

implemented in this version. The Harvard Pump(s) should be connected via COM

port 1, the Masterflex Pump(s) should be connected via COM port 2. If there are

more than one of either pump type, they should be daisy-chained according to each

individual pump's specifications.

The Scheduler then loads all the event information found in the file and creates an

event queue and an internal timer thread. It displays the information in the Scheduler

Dialog Box (See Figure 5-4) and is now ready for execution. Once the user clicks on

the Start button, the timer thread begins counting from 00:00:00. When all of the

events in the list are executed, the timer thread terminates. The user can also stop

event execution by clicking on the Stop button. This suspends the thread and gives

the user the option of resuming event execution.
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Figure 5-4: Scheduler Dialog Box. The box on the left displays the event queue. Each
entry in the event queue displays the time to execute, device name, and action to be
executed. The buttons on the right allow the user to start and pause the Scheduler
timer.
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Chapter 6

Conclusion

The goals of software development for this sequencing instrument were to automate

instrument operation, data collection, and data processing to produce DNA sequence.

Over the course of the past year, we have developed a functioning version of instru-

ment control software, Sequencer.exe, and peripheral component control software,

Housekeeper.exe. These tools have allowed us to being automating instrument oper-

ation and data collection.

Future work in the area of software development include refining both of these

software pieces to develop a production piece of software. These two modules of

software should be encapsulated by a larger application to manage instrument control

as well as basecalling modules.

Immediate work that would be useful to the continuing software development for

the instrument would be to create a manual control interface to the various peripheral

devices and finish and test the lane detection mode for the DSP.
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Appendix A

DSP Code

.MODULE/RAM/ABS=O datactrl;

{------Definitions-------------}

CONST SysCtrlReg =Ox3fff;

CONST DmWaitReg =Ox3ffe;

CONST TperiodReg =Ox3ffd;

CONST Tcount-Reg =Ox3ffc;

CONST TscaleReg =Ox3ffb;

CONST SportOCtrlReg =Ox3ff6;

CONST SportOSclkdiv =Ox3ff5;

CONST SportO_Rfsdiv =Ox3ff4;

CONST Sport OAutobuf _Ctrl =Ox3ff3;

CONST SportlCtrlReg =x3ff2;

CONST SportISclkdiv =Ox3ffl;

.CONST SportIRfsdiv =Ox3ff0;

CONST Sporti.1_AutobufCtrl =Ox3fef;

.CONST pf_data =Ox3feS;

CONST pfcontrol =0x3fe6;

.CONST adcOr =0x8; {adcO read address)

CONST adclr =0x9; {adcl read address)

.CONST adc2r =OxA; {adc2 read address}

.CONST adc3r =OxB; {adc3 read address)

CONST Cdacw =OxI; {control dac write address)

.CONST Ddacw =0x2; {diag dac write address)

CONST Posx =OxO; {spinner pos counter address)

CONST startconv =0x4; {start convert address}

CONST TotalSamples =3072;

.CONST divisor =0;

CONST rotating =0;

CONST staring =1;

.CONST unboundedrun =1; {possible run-types}

.CONST boundedrun =2;

.CONST lane-run =4;

.CONST detect-run =8;

.CONST Ldbuffersize =6144; {lane detect buffer size)

.VAR/DM/ABS=OxOO control_reg;

.VAR/DM bufffull;

.VAR/DM kp;

.VAR/DM kd; {spinner servo params}
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VAR/DM ki;

VAR/DM gainshift; {system gain=2-gainshift)

VAR/DM prange; {max position error)

VAR/DM I_range; {max integral output}

VAR/DM out_range; {maximum motor command)

.VAR/DM setpos; {current position setpoint)

VAR/DM setvel; {spinner velocity in counts per loop)

.VAR/DM panic-err; {maximum error before shutdown)

VAR/DM adcO;

VAR/DM adcl;

VAR/DM adc2;

.VAR/DM adc3;

VAR/DM adcOoff;

VAR/DM adcloff;

VAR/DM adc2_off;

VAR/DM adc3_off;

.VAR/DM numsamples; {samples per lane)

VAR/DM numlanes;

VAR/DM motorval; {current motor command)

VAR/DM inlane;

VAR/DM homeflag;

.VAR/DM runmask;

.VAR/DM data_mask;

.VAR/DM homemask;

.VAR/DM endbuff;

.VAR/DM curpos;

.VAR/DM curerror;

.VAR/DM pstpos;

.VAR/DM psterror;

.VAR/DM cur_vel;

.VAR/DM home~pos;

.VAR/DM homedelta;

.VAR/DM I_outhi;

.VAR/DM Ioutlo;

.VAR/DM spinnerinit;

.VAR/DM firstpass;

.VAR/DM mtr_dismask;

.VAR/DM mtrenamask;

.VAR/DM sample-rate;

.VAR/DM servorate;

.VAR/DM homedismask;

.VAR/DM data_en;

.VAR/DM homeen;

.VAR/DM velerr;

.VAR/DM lowposition;

.VAR/DM high-position;

.VAR/DM run_type_flag; {detect/lane/bounded/unbounded}

.VAR/DM runmodeflag; {rotating or stairing)

.VAR/DM newireadpos;

.VAR/DM samplecounter;

.VAR/DM adcDmin;

.VAR/DM adclmin;

.VAR/DM adc2_min;

.VAR/DM adc3_min;

.VAR/DM endbuff2; {this is for the end of buffer for lanedetectionmode)

.VAR/DM lanemask;

.VAR/DM lane-dis-mask;

.VAR/DM/ABS=OxOO chOdata[TotalSamples];

.VAR/DM/ABS=OxDOO chldata[TotalSamples];

.VAR/DM/ABS=Oxl9OO ch2_data[TotalSamples];
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.VAR/DM/ABS=0x2500 ch3_data[TotalSamples];

.VAR/DM/ABS=0x3100 posdata[TotalSamplesj;

.VAR/DM/ABS=0x3D00 lanes[384];

.VAR /PM lookuptable[40961;

.init lookuptable :<speedir>;

.IMIT controlreg: OxO;

.INIT num-lanes: 384; {num lanes in chip)

.INIT numsamples: 8; {num samples per lane)

.INIT kp: 10000; {10000)

.INIT kd: 26000; {25000;}

.INIT ki: 1; {10;} {200}

.INIT gainshift: Ox6;

.INIT prange: 100;

.INIT Irange: 28;

.INIT outrange: 2047; {dac clamp value)

.INIT setpos: 0;

.INIT setvel: -328; {should be -328 for 5 rps, cv rotation}

.INIT panicerr: Ox4000; {maximum error before shutdown...1/4 rev)

.INIT home-flag: 0;

.INIT runmask: 1;

.INIT datamask: 2;

.INIT homemask: 4;

.INIT lanemask: 8;

.INIT home_dismask: Oxfb;

.INIT lanedismask: Oxf7;

.INIT adcOoff: 0;

.INIT adcloff: 0;

.INIT adc2_off: 0;

.INIT adc3_off: 0;

.INIT spinner-init: 0;

.INIT mtrdismask: OxOE;

.IMIT mtrenamask: Ox01;
.INIT firstpass: 0;

.INIT bufffull: 0;

.INIT samplerate: 79; {5 uS interval)

.INIT servorate: 160000; {31999=1 K Hz)

.INIT dataen: 0;

.INIT home_en: 0;

.INIT low-position: 12400;

.INIT high-position: 23800;

.INIT sample~counter: divisor; {48*2^16 o 3.2e6..number ticks that equal 8Hz)

.INIT runtypeflag: boundedrun;

.INIT run-mode-flag: rotating;

.INIT newreadpos: 0;

.INIT adcomin: 0;

.INIT adclmin: 0;

.INIT adc2_min: 0;

.INIT adc3_min: 0;

{------Interrupt vector table------}

jump start; {jump over interrupt vectors}

rti; rti; rti; {do init routine at start)

rti; rti; rti; rti; {IRQ2 interupt)

rti; rti; rti; rti; {IRQL1 interrupt }

rti; rti; rti; rti; {IRQLO interrupt }
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rti; rti; rti; rti; {SPORTO TX interrupt }

jump start-convert; {sporto RX interupt)

rti; rti; rti;

jump homejint; {IRQE interrupt, enabled for homing)

rti; rti; rti;

rti; rti; rti; rti; {BDMA interrupt }

rti; rti; rti; rti; {SPORT1 TX (IRQ1) interrupt }

jump get-data; {SPORT1 RX (IRQO) interrupt }

rti; rti; rti; {a/d done interrupt)

jump loop-t; {TIMER interupt)

rti; rti; rti; {run the pid algorithm in background}

rti; rti; rti; rti; {POWER DOWN interrupt I

{--------------SET UP SYSTEM AND MEMORY---------------}

start:

DIS ints;

ENA MMODE; {MSTAT=Ox1O;}

AX0=0x1000; {0 pgm wait states)

DM(SysCtrlReg)=AXO; {sport 0 enabled)

{sport 1 disable,flags enable)

AXO=Ox1FCD;

DM(Dm-WaitReg)=AXO; {one wait state on)

{ext mem)

{5 wait on i/o at Ox to Oxiff)

{1 waits on i/o at Ox200 to Ox3ff)

{---------------set up programable flags-------------------}

AXO=Ox7fOf; {7 boot wait states)

DM(pf _control)=AXO; {cms true for all accesses)

{pf bits 0-3 outputs)

{--------------SET UP TIMER---------------------------}

AX0=3199; {31999 32 MHz internal clock)

DM(TperiodReg)=AXO; {generate 1 kHz)

{interupt)

AX0=31999; {start after 1000 uS)

DM(TcountReg)=AXO;

AXO=OxOOOO;

DM(TscaleReg)=AXO; {dec counter every cycle)

{--------------SET UP SPORTO--------------------------I

{0110 0000 0000 0010)

AXO=0x6002; {int rcv clk,ext rec frame sync)

DM(SportOCtrlReg)=AXO; {3 bit data)

{sport 0 used to gen interupt)

AXO=OxOOOO;

DM(Sport0_Sclkdiv)-AXO; {generate (1/16) uS clock period)

AXO=DM(sample.rate); {4f- 80 sclk, period of frame sync)
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DM(SportORfsdiv)=AXO; {generate interupt every 5 uS)

AXO=OxOOOO; {enable sclk out)

DM(Sport&_AutobufCtrl)=AXO; {autobuffer not used)

{--------------SET UP INTERUPTS-----------------------}

ICNTL=Ox13; {level sensitive IRQ2}
{edge sensitive IRQO, IRQ1,enable nesting)

{irq2 irqll irqlo sprtOT sprtrOR irqE bdma irqt irqo timer)

{ 9 8 7 6 5 4 3 2 1 0)

{ 0 0 0 0 1 1 0 1 1 1)

IMASK=0x037; {enable timer,irqOsportar}

{------Wait for time to start------------

ENA g.mode;

inits:

MO=0; {increment value=0)

M1=1; {+1}

M2=2; {+2}

M3=4; {+4}

M4=1; {+1}

M5=0; {+0}

LO=0;

L1=0; {linear addressing mode)

L2=0;

L3=0;

L4=0;

IO=~chOdata; {chO_data buffer for

Il=chLdata; {chLdata buffer for

12=-ch2_data; {ch2_data buffer for

I3=^ch3_data; {ch3_data buffer for

adc0}

adcl)

adc2}

adc3}

I4=-posdata; {spinner position of data)

I5=^lanes; {start position of each lane)

AX=chhOdata; {pointer to pos-data buffer)

AYO=\%chO.data; {length of data buffer)

AR=AXO+AYO; {end of data buffer)

DM(end-buff)=AR;

AYO=Ld-buffer-size;

AR=AXO+AYO;

DM(end-buff2)=AR; {end-buff2 = start of chO

AXO=O;

IO(Cdacw)=AXO; {clear the motor dac to 0)

IFC=Oxff; {clear all pending interupts}

ENA timer;

ENA ints;

A1l=0x6102;

DM(SportOCtrlReg)=AXI;

waitt: {wait for timer)

IDLE;

JUMP wait-t;

+ Ldtbufferosize)
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{------Check the operating mode-------------}

loop.t:

AXO=DM(control-reg); {test to check the model

AYO=DM(run-mask);

AR=AXO AND AYO; {bit set... run the spinner)

IF EQ JUMP loop_1; {bit not set.. stop the spinner)

AXO=DM(spinner- init); {test to check the mode)

none=PASS AXO;

IF EQ CALL spininit; {bit not set... initialize the spinner)

jump run; {bit set... run the spinner}

loop1: AXO=DM(mtr_dismask); {complement of enable mask (1110); OxE }

AYO=DM(pf-data); {clear the motor driver enable PF0)

AR=AXO AND AYO;

DM(pf-data)=AR;

AXO=O;

DM(spinner-.init)=AXO; {clear spinner init flag. }

IO(Cdacw)=AXO; {clear the motor dac to 0)

AXO=DM(sample.rate);

DM(SportORfsdiv)=AXO; {set to 79 for 5 uS interval)

AXO=DM(servorate); {32 MHz internal clock)

DM(TperiodReg)=AXO; {generate 1 kHz, value=31999 interrupt)

RTI; { return)

{ RUN 13 cycles }

run: AXO=IO(Posx); {get the current position)

DM(curpos)=AXO; {save it)

AXO=DM(controlreg); {test to check the mode)

AYO=DM(home-mask);

AR=AXO AND AYO;

IF NE CALL home; {bit set... home the spinner)

AXO=DM(control.reg); {test to check for lane detect mode)

AYO=DM(lane-mask);

AR=AXO AND AYO;

IF NE CALL lane-detect; {bit set... go to lane detection)

AXO=DM(control-reg); {get data collect enable flag)

AYO=DM(datamask);

AR=AXO AND AYO; {check flag status)

IF EQ jump run2; {if zero don't enable data collection)

{else...}

AXO=DM(buff -full); {get buffer full flag)

none=PASS AXO;

IF NE jump runi; {if equal to 0 enable data collection)
{else...}

RESET fll,RESET fl2;

DM(data-en)=M1; {enable data collection)

jump pid;

runl: SET fl1,SET fl2; {interupt the pc to get data)

run2: DM(data-en)=MO; {clear data enable)

{----------------------PID algorithm-------------------------}

{----------------------82 cycles max-------------------------)
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pid: AXO=DM(cur-pos); {current position)

AYO=DM(run-modef lag); {get current mode)

AR=PASS AYO;

IF NE JUMP pidi; {if run-modejflag != 0, staring mode, skip to pid1}

CALL getspeedt; {called with AXO=position, returns AXO=Speed}
DM(setvel)-AXO;

AXO=DM(cur~pos); {current position}

pidi: AYO=DM(set-pos); {current setpoint position)

AR=AYO-AXO; {calculate pos error)

DM(cur-error)=AR; {current error)

SR=ASHIFT AR BY 3 (hi); {multiply by 8 to increase gain)

IO(Ddacw)=SR; {write error to the diag dac)
AR=ABS AR;

AYO=DM(panic-err); {maximum error before panic stop)

NONE=AR-AYO;

IF GE JUMP panic; {do the run-modejflag check in subroutine)

pid2: AYO=DM(pst.pos);

AR=AXO-AYO; {current velocity)

DM(cur-vel)=AR;

AYO=DM(set_vel); {velocity setpoint)

AR=AR-AYO;

DM(vel-err)=AR; {velocity error =cur-vel - set-vel}

DM(pst-pos)=AX0;

AYO=DM(p-range); {max error clamp value)

MRl=DM(cur-error);

CALL clamp;

MX1=MR1;

CALL integ; {returns with ki * integral in MR)
MYO=DM(kp);
MR=MR + MX*MY (SS); {kp*clamped error + integral)

IF MV SAT MR;
MXO=DM(vel-err);

MYO=DM(kd);
MR=MR - MXC * MYO (SS); {kp * error +ki * integ - kd * vel-err}

IF MV SAT MR;
SE=DM(gainshift);

SR=ASHIFT MR1 (hi); {multiply by 2- gain-shift}

SR=SR OR LSHIFT MRO(lo); { to increase gain)

MR1=SR1;

AYO=DM(outrange);

CALL clamp; {returns value in MRO, MRl}

AYO=DM(run-mode-flag); {get current mode)

AR=PASS AYO;

IF NE JUMP afclamp; {if run-modedflag != 0, stairing mode, skip to afclamp}

nextl: AXO=DM(cur-pos);

AYO=-30000;

AR=AX+AYO;

IF LE JUMP afclamp;

AYO=200;

call clampn;

afclamp:

IO(Cdacw)=MR; {send the command to the motor DAC)

DM(motor-val)=MR; {save value for diag purpose)

AYO=DM(set-vel); {increment the command (set) position)

AIO=DM(setpos);

AR=AXC + AYO;

DM(setpos)=AR; {by the set-vel)
RTI;

{##T#m####tscle#l########sst0a########tr###########c###

{The PC must clear 'buff jull"to C after uploading the current }
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{data. buff-full will indicate the scanner position of the data }

{ 91 cycles max -3 uS }

{this routine does not modify AXI or AY1... }

{f##fl##############**###tf#################ll######)

get-data:

ENA sec-reg; {primary regs used for PID}

AX1=DM(data.en); {equals 1 when data collect is enabled}

NONE=PASS AXI;

IF EQ jump return2; {data collect is not enabled, return)

AXD=DM(buff-full); {equals 1 when buffer is full)

NONE=PASS AXD;

IF NE JUMP return2; {if 1, buffer is full... return else...}

AXO=DM(run-type-f lag); {checking for bounded mode)

AR=AXO AND boundedrun;

IF NE JUMP bounded-mode;

AR=AXO AND lane-run; {checking for lane mode)

IF NE JUMP lane.collectmode;

AR=AXO AND detect-run; {checking for lane detection mode}

IF NE JUMP detect;

AR=AXO AND unbounded-run;

IF NE JUMP collect; {checking for unbounded mode)

JUMP bounded-mode; {if run-type isn't specified, go to bounded)

lane-collect-mode:

AR=DM(inlane);

IF NE JUMP collect;

AXO0IO(posx);

AR=AEO;

SR=LSHIFT AR BY -1 (lo);

AXO=SRO;

AYO=DM(I5, M5);

AR=AYO-AXO;

IF NE JUMP return2; {we are not yet at the start position)

AYO=DM(I5, M4);

AYO=DM(numsamples);

DM(inlane)=AYO;

JUMP collect;

bounded-mode:

AXO=IO(posx);

AYO=DM(lowposition);

AR=AXO-AYO;

IF LE JUMP return2;

AYO=DM(high.position);

AR=AXD-AYO;

IF GE jump return2;

collect: {called if we are collecting data at continuously)

AIO=IO(adcOr); {get a/d value)

AYO=DM(adc.off); (get adc offset)

AR=AXO-AYO; {remove offset}

DM(adcO)=AR; {store value - offset)

AIO=IO(adclr); {get a/d value)
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AYO=DM(adcloff); {get adc offset}

AR=AXO-AYO; {remove offset}
DM(adci)=AR; {store value - offset)

AXO=IO(adc2r); {get a/d value)

AYO=DM(adc2_off); {get ado offset}

AR=AXO-AYO; {remove offset}
DM(adc2)=AR; {store value - offset)

AXO=IO(adc3r); {get a/d value}

AYO=DM(adc3-off); {get ado offset}

AR=AXO-AYO; {remove offset}

DM(adc3)=AXO; {store value - offset}

AXO=IO(posx);

AR=AXO;

SR=LSHIFT AR BY -1 (lo);

AXO=SRO

AYO=DM(newsreadpos);

AR=AXO-AYO;

IF EQ JUMP min-compare;

{----------------------save data--------------------------}

DM(newread-pos)=AXO;

DM(14,M4)=AXO; {store pos in array "posdata"}

AXO=DM(adc&_min);

DM(IO,Ml)=AXO; {store min in array "chO-data"}

AXO=DM(adcL-min);

DM(I1,Mt)=AXO; {store min in array "chldata"}

AX0=DM(adc2_min);

DM(12,M1)=AXO; {store min in array "ch2_data"}

AXO=DM(adc3-min);

DM(I3,Ml)=AXO; {store min in array "ch3_data"}

AXO=DM(adcO);

DM(adcO-min) = AXO;

AXO=DM(adcl);

DM(adclmin) = AXO;

AXO=DM(adc2);

DM(adc2_min) = AXO;

AXO=DM(adc3);

DM(adc3_min) = AXO;

AXO=DM(in.lane);

AR=AXO-l;

DM(in_lane)=AR;

JUMP prep-next;

min-compare:

AXO=DM(adcO);

AYO=DM(adcmin);

AR=AYO-AXO;

IF LE JUMP min2;

DM(adcOmin)=AXO;

min2:

AXO=DM(adcl);

AY&ODM(adcl-min);

AR-AYO-AXO;

IF LE JUMP min3;

DM(adcLmin)-AXO;

min3:
AXO=DM(adc2);

52



AYO=DM(adc2_min);

AR=AYO-AXO;

IF LE JUMP min4;

DM(adc2_min)=AXO;

min4:

AXO=DM(adc3);

AYO=DM(adc3_min);

AR=AYO-AXO;

IF LE JUMP prep-next;

DM(adc3_min)=AXO;

prep-next:

DM(adcO)=MO; {clear for next iteration)

DM(adcl)=MO; {clear for next iteration)

DM(adc2)=MO; {clear for next iteration)

DM(adc3)=MO; {clear for next iteration)

AX0=IO;

AYO=DM(endbuff);

NONE=AXO-AYO; {test for end of buffer}

IF LT JUMP return2; {return if buffer not full else...1

DM(buff-full)=Ml; {set buff-full flag to 1 ,M1=1}

DM(data-en)=MO; {clear data enable flag}

IO=chOdata; {chOdata buffer for adcO}

I1=~ch-data; {chl-data buffer for adc1}

12=-ch2-data; {ch2-data buffer for adc2}

13=-ch3-data; {ch3ldata buffer for adc3}

I4=-posdata; {posdata buffer }

return2:

DIS secreg;

RTI;

detect:

AXO=I(posx);

AYO=DM(lowposition);

AR=AXO-AYO;

IF LE JUMP return2;

AYO=DM(high-position);

AR=AXG-AYO;

IF GE jump return2;

collect_ld: {called if we are collecting data at continuously)

AXO=IO(adc2r); {get a/d value)

AYO=DM(adc2_off); {get adc offset)

AR=AXO-AYO; {remove offset)

DM(adc2)=AR; {store value - offset)

AXO=ID(posx);

AR=AXO; {lower resolution by factor of 2)

SR=LSHIFT AR BY -1 (lo);

AXO=SRO;

AYO=DM(new-readpos);

AR=AXO-AYO;

IF EQ JUMP min-compare-ld;

{----------------------save data--------------------------}

DM(new-read-pos)=AXO;

DM(13,Ml)=AXO; {store pos in array "ch3_data")

AXO=DM(adc2-min);

DM(IO,Ml)=AXO; {store min in array "chOdata")
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AXO=DM(adc2);

DM(adc2_min) = AXO;

JUMP prep-next-ld;

min-compare-ld:

AXO=DM(adc2);

AYO=DM(adc2_min);

AR=AYO-AXO;

IF LE JUMP prep-next-ld;

DM(adc2_min)=AXO;

prepnext-ld:

DM(adc2)=MO; {clear for next iteration)

AXO0O;

AY=DM(endbuff2);

NONE=AXO-AYO; {test for end of buffer}

IF LT JUMP return2; {return if buffer not full else...}

DM(buff-full)=M1; {set bufffull flag to 1 ,M1=1}

DM(data-en)=MO; {clear data enable flag)

I=chO-data; {chO-data buffer for adc2}

I3=-ch3-data; {ch3_data buffer for pos)

JUMP return2;

{###g####*##l#####*########*#############l######)

{ HOME 25 cycles }

{##t*#tf#*##############tt###########*######

home: AXO=DM(firstpass);

none=PASS AX0;

IF NE jump homel;

IFC=OxlO; {clear pending irqe)

DM(home.en)=Ml; {set home enable flag)

DM(first-pass)=M1; {set firstpass to 1)

homel: AXO=DM(home-flag); {test for home flag}

none=PASS AXO;

IF EQ RTS; {not set? continue looking)

AYO=DM(home-pos); {save home flag position)

AXO=DM(cur-pos); {cur.pos was reset at home pos}

AR=AXO+AYO; {get home delta)

DM(home_delta)=AR;

AYO=DM(set-pos);

AR=AYO-AR;

DM(setpos)=AR; {new set position for home=0}

AYO=DM(home-delta);

AXO=DM(pst.pos);

AR=AXO- AYO;

DM(pst-pos)=AR; {new past position for home=O}

AXO=DM(home -dis.-mask); {finished homing)

AYO=DM(controlreg);

AR=AX0 AND AYO; {clear home bit)

AR=AR OR OxIC; {set homed flag)

DM(controlhreg)=AR; {write to control reg }

DM(home-en)=MO; {clear home enable flag)

DM(first.pass)=M0; {clear firstpass to 0 for next home)

RTS;
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{ INTEGRATE }

{---------integrate and clamp subroutine ---------- I
{-19 cycles + clamp( 9 cycles max) = 28 cycles max-}

{---------------the input is DM(I1in)--------------I

{---the routine...out=out+ki*(.5*in +.5*past in)---)

{f#8########################n#######fl##

integ: {integrate the error)

MXO=DM(pst-error);

MYO=Ox4000; {O.5 )

MR*MXO * MYO (SS); {.5 times past input)

MXO=DM(cur-error);

MR=MR +MXO * MYO (SS); {input + (past input * .5))

DM pst-error)=MXO; {save for past error)

MXO=MRI;

MYO=DM(ki); {and set gain. ki=ki(s) * t }

MR1=DM(I-out-hi); {get past output)

MRO=DM(I-out-lo);

MR=MR + MXO*MYO (SS); {add ki * (error +pst error)/2 to output)

IF MV SAT MR;

AYO=DM(Irange);

CALL clamp; {clamp output to I-range}
DM(Iouthi)=MRl; {save current output for next iteration)

DM(I-outjlo)=MRO;

RTS;

{********ee**********eee*****eeesee***** eaxs* **e****e**e)

{ CLAMP }

{************e*e* e**************e*** ee*****e***e***)

clamp: {-----------------clamp the value to range--------------}

{9 or 5 or 7 cycles)

{--if lin|<= clamp val, out=in else out = +- clamp val -}

{Call with value to clamp in MR, and clamp value in AYO.}

{returns with Clamped value in MR. }

AR=PASS MR1;

IF GE JUMP testp;

AR=MR1 + AYO;

IF GE JUMP done;

AR= -AYO;

MR1=AR;

MRO=O;

JUMP done;

testp: AR=MR1 - AYO;

IF LT JUMP done;

MR1=AY;

MRO=0;

done: RTS;

clampn: {-----------------clamp the value to range-------------}

{9 or 5 or 7 cycles)

{--if linI<= clamp val, out=in else out = +- clamp val -}

{Call with value to clamp in MR, and clamp value in AYO.)

{returns with Clamped value in MR. }

AR=PASS MRl;

IF GE JUMP done2;

AR=MR1 + AYO;

IF GE JUMP done2;

AR= -AYO;
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MR1=AR;

MRO=0;

done2: RTS;

{*#############S# spinner initialization ##################
spinzinit:

AXO=IO(Posx); {get the current position)

DM(setpos)=AXO; {set set-pos to current pos)

DM(pst.pos)=AXO;

DM(pst -error)=MO; {set to 0, MO=0}

DM(Iouthi)=MO; {set to 0, MO=0}

DM(Ioutlo)=MO; {set to 0, MO=0}

AXO=DM(mtrenamask); {enable mask (0001); OxO1 }

AYO=DM(pf-data); {enable the motor driver(set bit 0 of pftdata)}

AR=AXO OR AYO;

DM(pf-data)=AR;

DM(spinnerinit)=M1; {set spinnerinit flag to 1, M1=1}

RTS;

{##n##**#####f################f###########*#######)#
startconvert: {SPORTO RX interrupt}

reset FLO; {set read/convert line lo (convert)}

NOP; {32 nS wait)

IO(startsconv)=AXO; {start convert.. write to a/d)

set FLO; {set read/convert line hi (read))

RTI;

{####t##tt#### home interrupt service ########## ## fl)

homeint:

AX1=DM(home-en);

none=PASS AXI;

IF EQ RTI;

DM(homeflag)=M; {IRQE interrupt, enabled for homing)

AX1=10(Posx); {set home pos flag)

DM(homepos)=AXO; {save home position)

AX1=0;

IO(Posx)=AXO; {set position to 0)

RTI;

{#t####*fl####### panic ######################)

panic:

AYO=DM(run-mode-f lag); {get current mode)

AR=PASS AYO;

IF NE JUMP pid2; {if runmode-flag != 0, stairing mode, skip to pid2)

AXO=DM(control-reg);

AYO=Oxf8;

AR=AXO AND AYO; {clear the run,data and home bits)

AR=AR OR Ox2O; {set the panic stop bit}

DM(controlhreg)=AR;

JUMP loop-t; {return to start of interupt)

{Sfl########*#### lane detection ###################

lane-detect:

DM(buff-full)=MO; {clear buffer full)

AXO=DM(lane-dis-mask);

AYO=DM(control-reg);

AR=AXO AND AYO; {clear lane detect bit)

AYO=DM(run-mask);
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AR=AR OR AYO; {set run bit}

AYO=DM(datamask);

AR=AR OR AYO; {set data bit}
DM(control-reg)=AR; {write to control reg}

AR=detectrun;

DM (runtype.f lag) =AR; {set run-type to detection}

RTS;

{------------------ speed table lookup ---------------------- }
getspeedt:

MXO=AXO; { AXO contains current position }

SI= MXO;

L5=0;

I5=lookuptable;

SR= LSHIFT SI BY -4 (LO);

AYO=SRO;

M5=AYO;

{The following lines ensure it will not stall if speed=01

AX0=20;

AYO=DM(cur-vel);

AR=AIO-AYO;

AX0=60;

IF GE RTS;

AXO=PM(I5,MS); {move pointer to location M5 }

AXO=PM(I5,MS); {read value at IS[M5] }

AR=AIO-AYO; {AR = Set speed - Actual speed}

AYO=100;

AR=AR-AYO; {AR = Speed Diff - 100}

IF LE RTS; {Speed difference < 1001

AXO=DM(curvel);

AR=AIO+AYO;

AX0=AR;

RTS;

.ENDMOD;
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Appendix B

Housekeeper Input File

Specification

Input File specifications for HouseKeeper.exe

The format of the file is

device: <devicetype>

device: <devicetype>

events:

<time>

<time>

<time>

<devicetype>

<devicetype>

<devicetype>

as such:

<# of devices>

<# of devices>

<device no.>

<device no.>

<device no.>

<init file name>

<init file name>

<action>

<action>

<action>

The words in bold are the keywords that should be written exactly as shown. The keywords

in <...> are variables whose formats and possible values are listed below. The keywords

and variables can be tab-delimited or they can simply be separated by whitespace. They

must however be separated by at least one space.

Each device type should be specified on a separate line beginning with the ''device:''

keyword. It should then be followed by the number of such devices will be used. A separate

line must be entered for each different device type that will be used. Once a device type

has been listed, it should not be listed again. If there no instances of a particular type

of device, the device should not be listed at all. Following the number of devices <init

file name> should be specified if it exists. This is the name of the initialization file

for the associated <devicetype>. The file name should be relative to the directory in which
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the HouseKeeper class resides or absolute.

After all the devices are specified, the events should be listed. Once the ''events: '' keyword

is specified, the program will expect the rest of the file to contain event specifications.

Anything other than events listed after the ''events: '' keyword to the end of the file

will cause the file to be parsed incorrectly and cause the program not to run properly (most

likely by throwing an exception during execution).

The events should be listed in chronological order. The program looks to execute the events in

the order that they are read in, so if an event is out of order, this could halt execution of

all events after the out of order event. The device number refers to the unique id that is

associated with each device. It will commonly be a consecutive numbering starting from the

device directly attached to the last device connected in a chain, if the devices are daisy-

chained to the computer. The action that is associated with an event should be a valid one

for that particular device type. A listing of valid actions are given below. The parameters

associated with an action should be listed after the action. If an action does not have a

parameter, none should be listed. If the action needs one or more parameters, they should be

listed after the action and separated by spaces. There should be a carriage return after the

last parameter is entered.

Variables and Formats:

devicetype:

there are only 4 valid devices at this time: harvard and

masterflex and xyzrobot and valve.

# of devices:

an integer value that reflects the number of devices of

the type specified.

Init file name:

the name of any initialization file required by the device.

time:

a time for this event to be executed. the format is HH:MM:SS

where HH is a two digit value for the hour, MM is the two

digit value for the minute and SS is the two digit value for

the second. If the value is a single digit, a leading zero

should be inserted. The hour value ranges from 0-23, the

minute value ranges from 0-59 and the second value ranges from

0-59.

action / params:

- for the harvard devicetype, the valid actions are:

start - no parameters
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stop - no parameters

setdir - has 1 parameter, direction. This parameter is

just a string, ''infuse'' to set the pump to infusion

and ''refill'' to set the pump to refill.

setinfrate - has 2 parameters, rate and units The format

for the rate is nnnnnn, a numerical value with 5

digits and 1 decimal point (10.000 or 3.00000 e.g.).

There are 4 possible units of measurement which are

as follows:

ul/mn - microliters per minute ul/hr - microliters per hour

ml/mn - milliliters per minute ml/hr - milliliters per hour

setrefrate - has 2 parameters, rate and units. The format

is the same as detailed above.

changemode - has 1 parameter, mode. This parameter is a

string that can be set to either ''pump"', ''volume"'

or ''program'".

- for the masterflex devicetype, the valid actions are:

start - no parameters

stop - no parameters

setrevs - has 1 parameter, revolutions. This parameter has

the format nnnnn.nn, a numerical value with 2 significant

digits and a maximum value of 99999.99.

setvel - has 1 parameter, velocity. This parameter has the

format [+/-]nnnn.n, a signed numerical value with 1 significant

digit and a maximum value of 9999.9. A positive value specifies

a clockwise rotation and a negative value specifies a

counterclockwise rotation.

- for the xyzrobot device type, the valid actions are:

write - 1 parameter. Command to write to the 6K controller. For

command listing, see 6K Series Command Reference

start - no parameters

- for the valve devicetype, the valid actions are:

open - no parameters

close - no parameters
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