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Abstract

The parallel computers of the future will be both more complex and more varied
than the machines of today. With complicated memory hierarchies and layers of
parallelism, the task of efficiently distributing data and computation across a par-
allel system is becoming difficult both for humans and for compilers. Since parallel
computers are available in many different configurations, from networked worksta-
tions to shared memory machines, porting to new parallel systems is also becoming
more challenging. In order to address these problems, this research seeks to develop
a method of automatically converting generic parallel code to efficient, highly opti-
mized, machine-specific code.

The approach is to use genetic programming to evolve from the initial parallel
program an augmented, performance efficient version of the program specific to the
target system. Specifically, the evolutionary system will evolve for every loop a dis-
tribution algorithm and a configuration for the work distribution. These algorithms
map each iteration of the loop to a specific thread assignment. The algorithms are
then inserted into the code along with the necessary parallel constructs. The overall
work distribution of which processors are available to each loop is also evolved in or-
der to minimize communication costs and delays. Results show a factor of two speed
increase on some tests, and in nearly all cases the system evolved solutions with mea-
surable performance improvements over the best known hand-coded methods. Also,
the evolutionary system often derived solutions that solve the scheduling problem in
an unintuitive way. The evolutionary system proved to be an effective technique for
optimizing work scheduling in parallel systems.

Thesis Supervisor: Martin C. Rinard
Title: Assistant Professor
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Chapter 1

Introduction

1.1 The Problem with Parallelization

Optimizing the performance of parallel computers is substantially more difficult than
optimizing the performance of serial computers. Parallel machines are more complex
in implementation, have performance that is difficult to measure, and are widely var-
ied. While it is obvious that parallel machines have more complexity owing to their
multiple processors, the supporting components of communication systems and mem-
ory hierarchies play a larger role. Parallel machines require some sort of medium for
communication, which ranges from low-latency memory sharing to high-latency ether-
net. These communication channels have performance characteristics that are difficult
for the programmer to estimate, including variable latency and limited bandwidth.
Also, no performance analysis is complete without an investigation of the memory
system. Locality of data is more important in parallel systems since non-local data
must be requested through the communication system. [19] Many processors may
share the same low bandwidth interface to the memory, making local caching an even
greater performance advantage. In addition to the complexity of parallel systems,
optimizing performance is further complicated by measurement difficulties. Parallel
programs are often non-deterministic in their running times, making fine tuning im-
possible. Specialized structures in the operating system or even on-chip counters are

required to properly measure parallel performance, so few accurate tools exist. Also,
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parallel computers have the extra dimension of space in addition to time—both the
processor assignment and the order of execution are important, further taxing our
ability to understand the system. Finally, parallel machines are available in many
different configurations, ranging from shared memory multiprocessor supercomputers
to networked workstation farms. Each has very different performance needs. Conse-
quently, tuning one piece of software for a spec‘iﬁc parallel machine will not be helpful
when running the software on a different parallel machine. Every piece of software
must be tuned for every machine. Optimizing parallel machines is difficult because
the performance characteristics are poorly understood and the performance gains are

difficult to migrate to different machines.

Despite these difficulties, the traditional approach to performance engineering for
parallel machines is to gather information about the performance of the system and
then use that knowledge to improve the performance. This technique is used re-
peatedly for each piece of software and target machine and is usually the work of a
team of engineers. Recently, more advanced parallelizing compilers [32] build into the
compiler knowledge about many different execution environments and target architec-
tures, and use this knowledge to develop code for a variety of target machines. Both
face the previously discussed problems of insufficient knowledge due to complexity and
uncertainty in measurement. This problem is not likely to resolve itself, since parallel
machines of the future will be even more difficult to optimize. As memory hierarchies
become deeper, microprocessors begin to support on-chip multi-threaded parallelism,
and communication topologies become more advanced, engineers and compilers will
have to constantly update their methods to account for these and many other ad-
vances. A new technique that is both automatic and efficient is needed to match the

growing complexities of parallel machines.

No matter what sort of performance engineering approach is used, it is essential to
improve the three primary performance problems of parallel programs: uneven work
distribution, communication costs, and memory access costs. All three of these per-
formance costs may be reduced by improved work scheduling. Obviously, an uneven

work distribution is inherently improved by better work scheduling. By placing more
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coarse-grain tasks on topologies that have higher communication costs, and more fine-
grain tasks on networks with lower communication costs, work distribution can lower
the total amount of time the system spends waiting for communication. Also memory
access costs can be lowered as the improved work distribution assigns the tasks in a
way that improves data locality—essential for effective cache performance. Each of
these parallel performance problems is improved by optimizing the work scheduling

algorithm.

1.2 An Evolutionary Proposal

The objective is to use genetic programming to automatically evolve nearly optimal
parallel code for a specific target machine. Given a piece of generic parallel code, the
system will evolve an efficient scheduling and distribution of the program’s parallel
work. The details are discussed later in this document, but briefly, the system takes
as input a program with sections and loops to run in parallel marked with directives
and a description of the number of nodes and the number of processors per node in
the parallel machine. From just the code and minimal system information, a popu-
lation of scheduling algorithms and processor distributions are randomly generated
for each loop. The performance of each of these potential algorithms is evaluated by
running the program with the distribution instrumented into the code. At the end
of each generation, the different individuals in the population mate, with the faster
algorithms having a higher probability of mating. The new population is tested, and
as generations pass the population improves toward nearly optimal performance. [16]
Eventually the population converges, and the best algorithms are inserted in the final
version of the code. The result is a highly optimized parallel program.

All issues of parallel optimization are not addressed, rather only iteration schedul-
ing and work distribution are considered. Also, serial code will not be converted to
parallel. Instead, the focus is scheduling work that is known to be safe to execute
in parallel. Other tasks such as identifying potential parallel regions, code restruc-

turing, resolving data dependencies, and data distribution are not supported. These
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problems have been addressed by a host of different techniques with some success,
but their further investigation is out of the scope of this research. However, given the
success of evolving efficient schedulers and work distributions, these other fields may
also merit application of genetic programming. More importantly, the two primary
causes of parallel performance degradation, uneven work distribution and poor data
locality [20] are addressed. By scheduling iterations, the problem of uneven work dis-
tribution is explicitly solved, but more over, by reorganizing the iterations the cache
misses are reduced and network communication will be lowered by placing processes
closer to the data they need. Similarly, problems of inefficient memory access can also
be implicitly improved. While not all aspects of parallel optimization are addressed
by this research, improving work scheduling does capture a wide range of parallel
performance issues.

Evolutionary systems have several advantages. This approach is automatic just
like other parallelization schemes, but does not require the performance of the target
machine to be well understood. All that is required is the system topology (the
number of nodes and processors per node) and what communication protocols are
required to communicate between the nodes. Another advantage of evolutionary
techniques is that they are likely to garner more impressive performance gains, since
it is possible that the system will evolve a work distribution that takes advantage
of some poorly understood or perhaps unknown performance charactéristics of the
target machine. Both fine-grained and coarse-grained parallelism can be exploited by
distributing the parallel work in different ways. Finally, the process of evolving many
different scheduling algorithms will hopefully yield some insight into the nature of
efficient schedulers, and could be used to build better schedulers for machine specific

compilers. Each of these possible advantages will be explored.

1.3 Related Work

This research is not the first application of genetic programming to automatic paral-

lelization techniques. The Paragen system [35] employed genetic programming to find
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data dependencies and identify parallel regions. Since the process of identifying par-
allelism has been attempted by using several different techniques, this research only
focuses on the scheduling of those parallel regions once they have been identified. The
scope of this research is limited to loop scheduling, but it could be easily applied to
other parallelization tasks. Other research has applied simulated annealing [36] and
other search techniques to the task of optimal work scheduling, but such work has
been limited to only a specific parallel architecture, not any general parallel machine.

Current approaches to automatic parallelization do not efficiently optimize for
specific target machines. Automatic parallelization research generally applies data de-
pendency analysis to discover the parallelism implicit in the serially written code [28,
19, 10]. The parallelism is then implemented for the target architecture by a compiler
into an executable. In order for the compiler to make a truly efficient executable, the
performance characteristics of the machine must be well known. More advanced sys-
tems [32] build into the compiler knowledge about many different execution environ-
ments and target architecture, and use this knowledge to develop code for a variety of
target machines. As new technology advances, more work must be expended to keep
such compilers current, and as parallel machines become more complex, performance
gains will become more difficult to obtain. By not requiring any knowledge about
the target system, the evolutionary system can automatically find optimal results for

arbitrarily complex systems.

1.4 Document Overview

The rest of this document serves to further explain the use of genetic programming
for parallel system optimization, and provide some experiments and benchmarks that
demonstrate the success of this technique. Chapter 2 discusses the methods for pars-
ing the input code and generating output code, and Chapter 3 discusses the details of
the evolutionary system. Chapter 4 presents a series of experiments‘a.nd their results.

Chapter 5 analyzes the results from those experiments and offers some conclusions.
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Chapter 2

Code Generation

2.1 Overview

The process of converting a generic parallel program into a parallel program with
efficient work distribution algorithms for a specific target architecture is divided into
six phases. First an abstract parallel representation (APR) is created from the serial
and parallel loop structures in the original code. The APR is a semantic tree that
describes the parallel and serial aspects of the original program. Second, the target
architecture description (TAD) is combined with the APR to define the space of
possible distribution algorithms. The TAD is a minimal description of the target
environment—the performance characteristics of the target system are assumed to be
unknown. Then the different semantic structures are broken into loop entities, which
are sections of the program which are independent and can be evolved separately.
Next, a population of possible distribution algorithms are randomly generated for
every loop, along with a population of thread teams for every loop entity. These
populations evolve through natural selection and crossover for a fixed number of
generations or until the population has sufficiently converged. Finally, the different
distribution algorithms are analyzed, and the most fit are inserted into the final code.
Each of these steps and the associated structures are discussed in the subsequent

sections.
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2.2 Generic Parallel Programs

A generic parallel program is a program with a non-implementation specific encoding
of the divisions of parallel work. Currently there are many ways to implement a paral-
lel algorithm, ranging from implicitly parallel languages such as Parallel Haskell (3] td
explicitly parallel communication protocols such as Message Passing Interface (MPI).
Each of these implementation techniques has its own advantages and disadvantages.
One goal is to use an evolutionary system to leverage the advantages of certain pro-
tocols dependent on the specific target architecture. A generic parallel program then
should be independent of both the implementation of the parallelism and the target
machine. Since current parallel techniques do not provide both of these elements, a
different abstract parallel representation is needed. The APR is derived from direc-
tives that mark parallel regions in the source code, and little else; most of details
of the parallel implementation are left to the evolutionary system. Specifically, the
directives mark the loops that should be parallelized, but the details of protecting and
updating shared variables, distributing private variables, and relaxation techniques
are left for the evolutionary system to evolve an efficient technique based on the target
architecture. The details of the APR directives are discussed in the next section, but
first it is necessary to further examine the importance of a directive based parallel

representation.

The directive based approach is both easy to use and provides a clear parallel
framework. The programmer does not need to implement a complicated communi-
cation scheme for every potential target architecture. Also, directive based parallel
programming has a long tradition in the parallel programming community, with the
most recent incarnation being the OpenMP standard. [29] Serial programs are easily
converted to parallel by simply inserting parallelization directives. Parallel program-
mers are accustomed to such techniques. Given such industry familiarity, using a pre-
viously defined directive set was considered, but such directives tend to be both overly
complicated and not expressive enough to handle the general case. While directives

do limit the types of parallelism the programmer can use, most of the implementation
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of the parallelisin is decided by the evolutionary system, so such limitations are not
a concern. More important than the advantages of ease of use, the directive based
approach allows the code to be divided into easily configurable regions. By identifying
the levels of nested parallelism and parallelizable loop iterations, a framework for all
the potential distributions is revealed, and hence the evolutionary space is defined.

Thus, directive based parallelism provides a clear mechanism to identify parallel work.

2.3 The Components

2.3.1 Abstract Parallel Representation

The abstract parallel representation is a description of the structure of the parallel
code. The APR is implemented as a list, with the first node representing the first
serial section of the code, and each subsequent node representing the serial and parallel
sections of the code at the top level. Loops within a parallel section are represented as
children of the parallel section that they are nested within. The children are ordered,
so the left most child appears first in the original program and each additional child to
the right is associated with the next block of source code. Nested loops are represented

as children of the loops they are lexically nested within.

Each node is not just used to represent the structure of the original program.
The parallel loop nodes store a pointer to the data distribution algorithm used for
the loop, the variables used to store the maximum number of loop iterations, the
type of communication system that is used to distribute the loop iterations, and the
nodes in the target architecture where work will be sent. The serial nodes do not
store any additional information. While the structure of the APR is not changed,
the parameters in the parallel loop nodes are evolved. Each loop has specific work
distribution needs, so each loop has a different distribution algorithm. Also, this
approach allows nested loops to distribute the data in a layered fashion, with the
outer loops dividing the work to sections of the target architecture, and the inner

loops dividing the work within those sections.
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serial Marks code to be run in serial. No parallelization is attempted in this region.

parallel(variable list) Marks the region to be run in parallel. Those variables
which must be private or shared among all processes are suitably denoted in
the variable list.

pdo(variable list) Marks a loop to be included in the evolutionary process. The
variable list consists of the program variables that define the maximum iteration,
the current iteration, and a user defined parameter for that loop.

pend Marks the end of a loop to be optimized.
|

|

)

Figure 2-1: Serial, Loop, and Parallel Nodes in an example program

A parser is used to build the APR from the program code. Directives mark the
separate regions of code, and the parser uses these directives to identify the code
to be run in parallel. A more sophisticated system could automatically identify the
parallel regions, but that is beyond the scope of this research. Each of the directives
is described below.

Figure 2-1 and figure 2-2 provide an example of sample code and the resulting

APR structure.

2.3.2 Target Architecture Description

The target architecture description is an encoding of the parallel system, including the
number of processors and the communication protocol the processors use (network or

shared memory). In the case of clusters of shared memory machines, some processors
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program test
'$APR parallel(i, j)

1$APR pdo(20,i,1)
do i=1,20
I$APR pdo(i,j,1)
do j=1,1
a(i) = i+j
end do
I$APR pend
end do
I$APR pend
I$APR serial
print *, a(20)

end program
Figure 2-2: Fortran code with directives to generate example APR

are capable of communicating to others in different ways. This information is not
used to guide the evolutionary process, but instead it is used to generate the correct
code so the evolved algorithms are implemented correctly for the target machine. The
TAD and APR are used to define the space of possible distribution algorithms. The
TAD defines the number of processors and the APR defines the variable names for

input to the algorithm.

2.3.3 Distribution Algorithms

The distribution algorithms are of central importance. Essentially, the distribution
algorithms map the iteration space of a loop to the processor space of the target
machine. The algorithms are functions of three variables, the current iteration, the
maximum number of iterations, and a user defined parameter. For output they return
a thread assignment for that iteration. |

The format of a distribution algorithm is an expression tree with two types of

nodes. The leaf nodes are terminals, consisting of the first ten prime numbers and
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Figure 2-3: An Expression Tree: CR refers to the current iteration, and MX the
maximum number of iterations.

the three input variables. The branch nodes are operators, including the simple
arithmetic functions, +, —, *, zero-safe-divide, trigonometric functions sine, and an
exponentiation operator. All the operators are protected from overflow or other run-
time errors. To execute the algorithm, the variables are set, and then the expressions
are evaluated from the bottom of the tree up. The expressions do not allow changes of
state or recursion, so the execution time is always finite. The result of the algorithm
is modular divided by the number of threads, and the result is the thread assignment
for that iteration. The modular division ensures that a valid thread assignment is
always generated.

The expression tree in figure 2-3 refers to the equation:
ThreadAssignment = (7 x (€3*°% + M X))

where CR refers to the current iteration, and M X refers to the maximum iteration.

2.3.4 Loop Entities

A loop entity is a set of loops that are only dependent on the other loops in the set.
Any loop which is lexically nested within another loop is dependent on that loop, and

any loop which has loops nested within it is dependent on those loops. Loops which
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are not lexically nested are in separate loop entities. Since the performance of the
loops in a loo;; entity depends only on the other loops in the set, each loop entity is
evolved separately. The evolutionary parameters of a loop entity are the processor
distribution suggested by the thread team and the distribution algorithm assigned to

each loop in the loop entity.

2.3.5 Thread Teams

A thread team is a structure for dividing the available processors among the loops in
a loop entity. The thread team describes which processors the loop can run on, and
then the distribution algorithm assigned to the loop distributes the iterations among
those processors.

The idea of thread teams is important, because it provides support for layered
parallelism. In cluster configurations, the associated software supports layers of par-
allelism, with each layer having varying communication costs. For a cluster of shared
memory machines, to two layers are intra-node communication and inter-node com-
munication. With non-uniform access memory and on-chip multi-threaded designs,
many more layers are possible. Optimizing the granularity of the computation with
the appropriate level is crucial to performance. Often it is appropriate to do more
coarse-grain computation among processors with high communication latencies, and
to distribute the more fine-grain work among processors that can quickly communi-
caté. Also, some target systems may have processors that can not directly communi-
cate, so having a team leader handle the communication is necessary. Thread teams
allow a logical division of the processor space that supports layered parallelism found
in complex hardware configurations.

The thread teams are a tree structure derived from the APR. They have the
same structure as the semantic structure of the lexically nested loops in the original
program. The base node is the outer most loop, and each child of the node is a nested
loop within the upper node. Each node of the tree is assigned a number representing
the number of threads available for the loop to distribute iterations over. Tracing

down the nodes of the tree determines which processors are available for each loop
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Figure 2-4: A Thread Team for a four processor system

in the original program. Based on these available processors, the system generates
code that distributes to threads on the machine where the processors are located.
Each node in the tree is a factor of the total number of processors available. The
loop may distribute work to that quantity of processors, but the physical location
of the processors is fixed by the target architecture. The code that is generated
will favor evenly distributing the available processors across the different nodes of a
system, rather than on the same machine. Loops lexically deeper in the tree have
access to all the processors of the loops they are lexically nested within, but may
also be able to distribute to additional processors. To ensure that every thread team
covers all possible processors, the leaf nodes (the deepest lexically nested loops) can
distribute to all the processors in the system. Hence, in every thread team tree, the
root node has the fewest number of processors, and the leaves can distribute to all of

the processors in the system.

The example code in figure 2-2 corresponds to the thread team in figure 2-4 and
a target architecture that has four total processors. The shown configuration, 2-4,
allows the outer loop to distribute iterations to two threads, and the inner loop to
all four available threads. The other possible configurations are 1-4, where the outer

loop is serial, or 4-4, where the outer loop is distributed parallel across all processors.

It is important to note that just because a thread team allows a loop to distribute

to all the processors, does not mean that the loop must distribute to all the processors.
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The distribution algorithm for the loop may choose to only distribute to one processor.
The thread teams vary the granularity of the parallelism, by giving the evolutionary
system a way of evolving the communication patters of the loops. By only exposing
certain processors to loops that may have coarse-grain work, they may find more
optimal solutions than if distributing on all the processors. The distribution algorithm
manages the work load balancing, but the thread team defines the size of the loads.

Figure 2-5 shows the relationship between the APR, the thread teams, and the
distribution algorithms. Each parallel node in the APR (denoted with a “P”) marks
a separate loop entity. Each loop entity is associated with a thread team that has the
same structure as the loop structure in the initial program. Each loop is associated
with a separate distribution algorithm, and each distribution algorithm contains an

expression tree.

2.3.6 Implementing Parallelism

The actual implementation of the parallelism is flexible. The GA can utilize mul-
tiple parallel protocols simultaneously to maximize performance dependent on the
requirements of a specific piece of code and target architecture. The implementation
protocols chosen for this system are described in this section.

Two parallel communication protocols are used to implement the parallelism in the
generated code: OpenMP [29] and the Message Passing Interface (MPI) [25]. Each has
very different performance advantages and restrictions. OpenMP is a directive based
technique, much like the directives presented in this research. Parallel regions, critical
sections, and loop scheduling techniques are all explicitly implemented by annotations
in the code. When the source is compiled, the directives cause extra libraries to be
included and add code to distribute the work, protect the variables, and manage
the locks. OpenMP assumes that all processors are capable of accessing the same
memory, so it only works on shared memory machines, not cluster configurations.
MPI is different in that it consists of a library of functions that allow the programmer
to directly implement parallelism. It-provides an interface for each of the processes

to send and receive messages. More complicated communication involving broadcast
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and communication groups is also available. MPI programs have separate memory
spaces, so they are usually used for network systems, but can also be used on shared
memory systems. [26)

Both communication protocols are used. First, in order to support communication
on both cluster and shared memory systems, but more importantly because they
have different performance characteristics. Communication for OpenMP is a simple
variable read from memory, yet in MPI a message must be assembled, sent, received,
and unpacked. OpenMP is therefore used for fine-grain parallelism, where low latency
communication is appropriate, where MPI is used for more coarse-grain tasks. [15]
Often times too much fine-grain parallelism can cause bus saturation and slow the
overall execution time. [9] In such cases MPI is appropriate. It is often difficult
to determine where these divisions should be drawn, so the type of communication
protocol is evolved via the thread teams. For a cluster of shared memory machines,
the thread team for a loop entity dictates which processors to distribute the work over,
and code is generated for either MPI communication, OpenMP, or both, depending
on where the processors are located and what sort of communication is needed.

The initial parallel programs are generic in their implementation, so inserting
the appropriate OpenMP and MPI code and ensuring correctness requires careful
attention to the memory consistency. Since OpenMP supports a shared memory
model, the variables are managed by the OpenMP library as specified in the APR
directive variable list. The MPI parallelism does not support a global variable space,
so the public variables must be explicitly managed with messages. A master node
is designated that accepts all the data, combines it appropriately, and redistributes
it to the appropriate nodes. Both the master and the slave nodes contain the work
distribution algorithms, so all the nodes can calculate the data that must be sent and
received. Dependant on the type of parallelism used to distribute the loop, different

memory management schemes are used.
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Chapter 3

The Evolutionary System

3.1 Introduction to Genetic Programming

Genetic Programming (GP) is an evolutionary system similar to a genetic algorithm
(GA). [22] Essentially, a GA is a search algorithm that is founded on the principles of
natural selection. A search space is represented by a genome, an encoding of informa-
tion that supports the biological operations of mutation and crossover, such as DNA
in most living creatures. An individual’s genetic material defines that individual’s set
of traits and hence fitness. More fit individuals correspond to better performance in
the original search space. To solve a problem with a genetic algorithm, it is necessary
to express the search parameters as a genome and to express the search goals as an
objective function used to evaluate an individual’s fitness. [11]

The algorithm begins by randomly generating a set of individuals, each having
their own genetic material. Each individual’s fitness is tested and then ranked by its
fitness. The next phase is selection, where individuals are chosen to mate and pass
their genetic information to the next generation. The selection is probabilistic, with
the more fit individuals having a higher probability of mating. Each offspring inherits
some of its traits from each parent, and is subject to possible mutations leading to
different traits. After many generations, the population converges toward an optimal
position in the search space. [16]

The primary advantage of evolutionary systems over traditional search techniques
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is robustness— the ability to rapidly find a solution in an arbitrarily complex search
space. [11] While other approaches require a well-behaved, well-understood search
space, genetic algorithms only require that the search space can be defined by a
genome. While genetic algorithms have probabilistic elements, they are more efficient
than random searches because of the incorporation of a fitness function. Also, GA’s
explore the search space from an entire population of individuals, not just one point.
By varying the population size and number of generations, genetic algorithms can
perform well for arbitrarily complex search spaces. [17] As much as evolutionary
systems are robust, if fitness evaluation is computationally expensive, they are equally
time consuming. Genetic algorithms require p * g fitness evaluations, where p is
the population size and g is the number of generations. A trade-off exists, greater

robustness can be achieved at the expense of more computation.

Genetic Programming differs from traditional genetic algorithms in that the genome
is the set of valid computer programs. Actual source code is used as the genetic en-
coding. GP is a technique for computers to evolve their own programs to solve prob-
lems. [22] In the case of this research, the distribution algorithms are sub-programs
simultaneously evolved with thread teams in a symbiotic genetic algorithm. The sys-
tem employs genetic programming to develop each of the individual populations, and

then a genetic algorithm to handle the interaction of all the components.

3.2 System Design: The Symbiotic Genetic Algo-

rithm

The evolutionary system is responsible for evolving a distribution algorithm for each
loop and a thread team to define the processor space for each loop entity. These
different genomes require different genetic operations of crossover, mutation, and
random generation. Each of these techniques are described beldw, in addition to the

symbiotic GA which manages all of the different populations.
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3.2.1 Genetic Representation of Distribution Algorithms

A distribution algorithm is a sub-program represented as a parse tree for an expression
that relates loop iterations to a thread assignment. Since every loop in a program
has different performance characteristics, the GA maintains separate populations of

distribution algorithms for each loop.

The genetic operations of crossover and mutation are sub-tree manipulations de-
fined for the tree-structures that represent the distribution algorithm. Crossover is
implemented by choosing a node in each parent tree, and then swapping the sub-trees.
If one of the nodes chosen is the root node of the parent, then the entire tree will be
a subtree in one of the offspring, and the other offspring will be a subtree from the
other parent. Any node in the tree can be swapped, but the upper nodes are favored
more than the leaf nodes. Since the trees are binary, the leaf nodes consist of ap-
proximately half of the total nodes in the tree. If all the nodes are chosen with equal
probability, then 75% of the crossovers will involve swapping a leaf node from one of
the parents. However, favoring swapping the upper nodes leads to better convergence
and efficiency. [22] Swapping the upper nodes encourages the formation of distinct
subtrees that handle individual tasks, much like subroutines. Also, swapping the leaf
nodes often has little effect on the overall program, while swapping subcomponents
more quickly combines the traits of the two parents. The probability of choosing a

non-leaf node for crossover is one of the configurable parameters for the GA.

Mutation is supported in two different ways, node alteration and node deletion.
Node alteration chooses a node in the tree and replaces it with a randomly chosen
node. For example, a leaf node may be replaced with a different constaﬁt or vari-
able, and a non-leaf node would be replaced with a different operator. Node deletion
is intuitive—a node and its subtree are removed from the tree. These two opera-
tions help maintain diversity in the genome in order to counterbalance the selective

pressure.

A key property of these genetic operations on tree structures is that every possible

result from crossover or mutation is a valid distribution algorithm. It will neither
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perform an undefined operation nor loop indefinitely on any input. This closure
property would not be the case on an arbitrary piece of source code represented as
text. Converting the source code into a parse tree is imperative. [23]

The random population generator creates the initial populations. The expressions
are created by starting with the root operator node and randomly choosing the argu-
ments, with each possible entry having a fixed probability. If an operator is chosen
for the argument, then a sub-expression is created, and the arguments for that sub-
expression are also randomly chosen. If a terminal is chosen, then that part of the
tree stops growing. The best set of relative probabilities for the different elements
in the expression is not known and is part of this research. As the tree increases in
depth, the probability of choosing a terminal increases in order to ensure expressions
with finite length. In this manner, a population of random expressions is created for

every loop in the program.

3.2.2 Genetic Representation of Thread Teams

A thread team is implemented a tree structure that describes the available processors
for every loop in a loop entity. Each node identifies the number of threads available
to that loop. For each loop entity in the program, the GA maintains a separate
population of thread teams.

Like the distribution algorithms, the thread teams have a tree structure. Since
the structure of the tree is fixed, the thread teams can not support the same type of
crossover and mutation operations. Crossover is the same subtree exchange, but the
two parents must exchange the same nodes, or the structure of the offspring would
not match the structure of the loop entity and the original program. Also, if the
crossover results in an invalid thread team, such as a lower node not being able to
distribute work to the same number df processors as a higher node, then the team
must be checked and fixed. Because of this potential, mutation is not supported.
Since the structures are relatively small, mutation is not a useful operation given the
high probability of generating invalid thread teams. [24]

The structure of the thread team is fixed by the original program’s loop structure,
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but the different parameters at the nodes are randomly generated. The upper nodes
are generated first, and then the lower nodes are defined out of the possible teams
that could exist given the upper nodes. The leaf nodes are all set to the maximum

number of processors.

3.2.3 The Symbiotic Genetic Algorithm

The symbiotic genetic algorithm is responsible for managing the evolution of the sep-
arate thread team and distribution algorithm populations by using shared fitness,
multiple testing, and migration. Individuals from each of the disparate populations
are assembled together to form a parallel program, and then the code is compiled,
executed, and timed, and the fitness values are reported back to each of the pop-
ulations. The evaluation stage has some complications owing to the nature of the
problem. First, each of the loop entities is separately timed by inserted timing code,
but a loop entity consists of several evolved distribution algorithms and a thread
team. Each of the distribution algorithms in the run and the thread team receive
the same fitness score, though they have very different fitness characteristics. Since
the performance of all of the loops in a loop entity are dependent, they receive the
same score. It may be the case that assigning all the distribution algorithms in a loop
the same score distorts the actual fitness, but it is difficult to know what the fitness
is of an inner loop independent of the outer loop. The key goal is to minimize the
overall running time of the loop entity, not the individual loops, so whatever assort-
ment of distribution algorithms that causes the running time to minimized will be
encouraged by the selection pressure. Unlike the distribution algorithms, the thread
team should have an independent score and be tested over several different distribu-
tion algorithms to determine its fitness score. Since the number of possible thread
teams is relatively small, the thread team populations are smaller than the distri-
bution algorithm population. Consequently, each thread team individual is tested
in several parallel programs. The fitness of a thread team is the average of all the
different execution times. In this way the thread teams and the distribution algo-

rithms complement each other. The inadequacies in one can be evolved in the other
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to still achieve near optimal performance. Finally, individuals from one population
can migrate into populations of the same type of individuals. While each loop will
require its own specialized distribution algorithm, especially good individuals from
one population should be helpful for the evolution of a different population. The
symbiotic GA employs shared fitness, multiple testing, and migration to maximize

the potential for optimal convergence for parallel programs.

The evolutionary system described here further extends the biological metaphor
of genetic algorithms. The symbiotic genetic algorithm is so named because it im-
plements the population genetics principles of speciation, inter-population migration,
and coevolution. The evolutionary environment contains multiple populations of
different types of individuals with different genomes. In this sense, the different pop-
ulations are like an ecosystem, with many distribution algorithm populations and a
few thread team populations. Each separate population evolves differently dependent
on the specific performance characteristics of the individual loop. Despite having a
common random initialization, the different loop populations quickly develop into
different “subspecies.” Every generation some individuals migrate into the neighbor-
ing population. Migration improves convergence since there are likely to be elements
of distribution algorithms that are universally good. [12] Also migration should help
maintain genetic diversity and prevent a population from becoming stuck in a sub-
optimal niche by providing a constant influx of different genes. [18] In addition to the
interactions of separate loop populations, the thread team populations also interact
with the loop populations. The performance of the thread teams directly depends
on the distribution algorithms in that loop entity. The success of both types of
entities depends on mutually beneficial traits. This symbiosis should help improve
performance as the separate populations co-evolve to overcome the disabilities of the
other. By utilizing principles from biological ecosystems, the symbiotic GA should

find efficient solutions.
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3.3 The Search Space

The nature of the search space strongly effects the efficiency of the genetic algorithm.
A gradually sloped space with single prominent global maximum is easily scaled and
surmounted by the GA, however a search space with many low local maxima and
only a single, obscure global maximum is much more difficult. The local maxima
often serve as evolutionary “dead ends” as the algorithm prematurely converges on a
sub-optimal result. Any problem would be easily solved with a large population for
many generations, but that is rarely computationally feasible. [22] A single, prominent
global maximum is best approached with a smaller population for more generations
with a low mutation rate. More generations give the algorithm time to find the very
top of the maximum. A more hilly search space requires a larger population for
a fewer number of generations and a higher mutation rate. {11] This more random
search helps the GA locate the highest peak among many. Of course, the search space
is n-dimensional, so it is not simply “hilly” or “flat,” but this is for the purpose of
visualization these terms are used. Figures 3-1 and 3-2 further illustrate the different
search spaces. In order to efficiently evolve solutions, the nature of the search space
must be considered when choosing parameters for the GA.

The search space for the problem of loop iteration assignment for a thread is
immense, yet it is completely covered by the genome representation. Describing the
search space as all mappings from loop iterations to thread assignments, there are t"
members where t is the number of threads and n is the number of loop iterations to be
mapped. Despite this large size, the distribution algorithms cover the set completely.
This fact may not appear intuitive, and the proof is strait-forward and illuminative,

so it is included below. Consider the function
a1(z/1) + az(z/2) + a3(z/3) + ay(z/4) + ... + an(z/n) =12

where again n is the total number of iterations, z is the current iteration number,
an is an integer coefficient, and t, is the thread assignment for iteration z. This

function can be expressed by a distribution algorithm, since it contains only the simple
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Single Global Maximum Search Space

Figure 3-1: A Single Global Maximum

operations of of multiplication, addition, and integer division. This function can also
be expressed as the multiplication of two vectors, | (z/1) (z/2) (z/3) ... (z/n)

y . :
az

and | g3 | Now consider a (n x n) matrix, where the ith row is results of evaluating

an
the z vector with z = 7. Multiplying this resulting matrix with the coefficient vector

yields a thread assignments vector, where t; is the thread assignment when z = 1.
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Multiple Local Maxima Search Space

Figure 3-2: A Hilly Search Space

Consider the n = 5 case of Xa =t below.

(10000 [a] [&]
21000 |a t5
31100/ %|a|=]ts
42110/ |a te
~52111_ | as | _t5_

This matrix is X has linearly independent columns, since the only solution to
Xa =0is a=0. The matrix then completely spans the 5-space, so for any vector ¢
there exists a vector a that satisfies Xa =¢. The columns are not just independent
in the n = 5 case, but are also independent for all settings of n, because the matrix
is always lower triangular with 1’s on the diagonal. This result is not sufficient since
it must also be shown that a is only composed of integers, because the evolutionary

system is not capable of evolving arbitrary real numbers.
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For this result, a simple proof by induction is necessary. First, assume that at
the kth position, all a, to a; are integers. This assertion is valid in the base case,
k = 1. The first row has 1 in the first position, and zeros in all the others, so a; = t,.
Therefore, a; must be an integer. In the a,,, case, positions 1 through k in the
row have integer values (since they are derived from integer division in the original
equation), and the k +1 position is equal to 1. From the assumption, all a; to a; are

integers, so the resulting equation is

a
az
[$k+1,1 Tk+12 - Tk+lk 1 0 .. 0= = te41

Ok

Qg+1

Tyum = G1ZTk41,1 + Q2Tk412 + - + GkTha1k

Iaum + Gks1 = e

This reduces to ax41 = ti4+1 — Isum, and since both tx4+y and I.um are integers, ag4:
is an integer. Since both the base case and inductive step are true, there exists for
every vector t a set of integer coefficients a that leads to that scheduling allocation.
To implement any set of thread assignments, it is only necessary to choose the correct
set of coefficients.

This function is one of just many functional forms that covers the entire search
space. Certainly many other forms exist. Since the end result of the function is
modular divided, many coefficient sets yield the same thread distribution. Also,
many different thread distributions yield the same performance results. When all
the processors are equivalent in a system, a simple renumbering of the threads will

cause the same result. Moreover, the execution time of some iterations is smaller than
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the timing granularity, so their assignment does not effect the final result. Although
the search space is large, the reduction to the performance space is smaller. Any
single optimal result will have many functions that are varied both in form and in
constants that yield that same optimal result. The search space therefore has many

local maximums, some of which are equivalent global maximums.

Given that there exists a single functional form that covers the space, it is not
initially clear why it is appropriate to evolve algorithms instead of coefficient sets or
mapping arrays. Such coefficient sets are only valid for a set number of iterations.
It is often the case that loops are executed multiple times with a variable number
of iterations. Consequently, a function which covers all of those possible maximum
iterations is also needed—a static coefficient set is not adequate. In addition, it is
hoped that the evolved functions will lend insight into the nature of the distribution.
Perhaps a set of consistently effective loop distribution algorithms will be discovered.
These effective algorithms could be inserted into similar code, and the evolutionary
process will be circumvented.

The search space of thread assignments for given loop iterations is very large,
yet it is completely covered by the set of all possible distribution algorithms. There
exists for every thread assignment vector a distribution algorithm that maps the set
of integers to that vector. The search space when expressed as distribution algorithms
has many local maximums and several equivalent global maximum. A principle aspect

is to find genetic algorithm parameters that perform well in this search environment.

3.4 Algorithm Tuning and Calibration of Param-

eters

Proper calibration of the evolutionary system is a key part of this research. The
evolutionary system has hundreds of different parameters, and finding the proper
set of parameters that guarantee a good result is difficult. Every potential program

and target architecture have an ideal set of evolutionary parameters that can only
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be determined after many trail runs. After some initial tests, a set of evolutionary
parameters which work well for many different test cases were found. The most

important parameters are described in the following sections.

3.4.1 Standard Crossover Techniques are Used

The two crossover parameters are the crossover rate and the node selection parameter.
The crossover rate is the probability that the offspring of two individuals are the
result of crossover instead of cloning. These tests use a crossover rate of 1, because
the replacement strategy does not remove the parents from the population unless they
are less fit than their offspring. The node selection parameter is the probability of
selecting a non-leaf node for the crossover point in a tree. A node selection parameter
of 0.9 was used, which is widely sﬁggested in the literature. [22] Previous runs with a
node selection parameter of 0.5 resulted in slower convergence and lower probability

of finding an optimal result.

3.4.2 Mutation is Minimized

The mutation in the system is controlled by three parameters, the mutation rate, the
mutation spikes, and the spike period. The mutation rate is the probability that an
individual will have a mutation when created. Often times in genetic programming,
mutation is not used because lack of diversity in the population is rarely a problem.
These tests use a low rate of mutation (0.05). It was rare that the mutation was nec-
essary, but sometimes in small populations certain alleles became extinct, so mutation
helped restore those lost genes. Mutation spikes are akin to giant radiation storms
or comets striking the Earth. They are intended to perturb a converging population
in an attempt to reinsert diversity into the population and possibly find a superior
result. The mutation spike is implemented by cloning the entire population under
a high mutation rate. The spike period is the number of generations that pass be-
tween each spike. Experimentation with mutation spikes in this research found them

generally ineffective. At times they even served to decrease diversity by crippling
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competing individuals and permitting one individual to rise out of the aftermath.
The single surviving individual rapidly reproduces itself, and quickly dominates the
population—leading to an overall loss of diversity. Mutation rarely added diversity to

the population and also slows convergence, so the system uses a low level of mutation.

3.4.3 Replacement Strategy: Direct Removal or Elitism

The two primary replacement parameters are the number of new individuals in each
generation and how to replace the old population. Once the new individuals are
created, there are two methods for replacement, direct removal and elitism. Direct
removal sorts the old population by fitness and then removes the number of individuals
equal to the number of new individuals. Then it inserts the new individuals into the
population. Elitism only inserts the new individuals if the old individuals have lower
fitness than the new individuals. This research uses elitism, which has been shown to
cause faster convergence in populations. The disadvantage of this technique is that
it may cause an overly rapid loss of diversity and converge too quickly on an non-
optimal result. The advantages of faster convergence outweigh any diversity concerns,

so elitism is used throughout the tests.

3.4.4 Multiple Tests Improve Fitness Calculations

Parallel programs are notoriously non-deterministic in their running time and are
often difficult to time accurately. Inaccurate fitness scores undermine the evolution-
ary process and make finding an optimal result less likely. A variety of statistical
techniques can be used to address this problem, but one of the simpler methods is to
test the program multiple times. Multiple execution of the test program is especially
useful in networked systems where communication has highly variable latency. In
such cases, the program is executed multiple times and the fitness is the average of

those running times.
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3.4.5 Ciriteria for the Objective Function and Selection Tech-

niques

At first glance, the objective function simply records the running time of the program;
however, there are several subtleties in both the measurement of the running time
and the use of the running time as the objective function. First, there are several
timing options. One could sum the user time spent on all processes, record the
total time spent on all processes, or simply use the wall clock change. The most
important quantity is to minimize the wall clock time, since the individual process
times may not be a good reflection of the actual program running time. Accordingly,
the objective function seeks to minimize the wall clock time. Much research has
been done in ways to relate the raw fitness score to a parameter for selecting the
individuals for mating. Often the raw fitness score is scaled by a constant factor
or a function to cause differentiation between individuals with nearly equal fitness
scores. Also, a variety of schemes are used to select individuals from ranking and
assigning a probability, or relating the probability of selection directly to the fitness
via a function. Each technique has different advantages dependent on the search
space. [3] Given the generally amicable nature of the search space, the raw fitness is
used for the selection parameter. The roulette wheel technique [39] is used to select a
pair of parents. In this technique, each individual’s probability of selection is equal to
the percentage of the total fitness score over all individuals. Hence, each individual
has a slice of the roulette wheel, directly proportional to their percentage of the total

fitness. This selection technique seems to work well, so other techniques are not used.

3.4.6 Effects of Altering the Initial Population

The primary parameter that effects the initial populations for the distribution algo-
rithms is the expected size of the expression tree, which is related to the probability
that during construction, a new node is not a terminal node. Initial trial runs revealed
that the final populations were always much larger than the initial populations. Also,

trails with smaller trees in the final population tended to perform worse than larger
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tree results. The parameters were increased to make the average depth of initial pop-
ulation trees equal to four. This change did cause results with superfluous subtrees in
the final population, but the results in general caused faster convergence and a much

higher likelihood of a near optimal final solution.

3.4.7 Population Size and Generation Number

The population number and generation size are related in that they define the running
time of the algorithm and the probability of obtaining an optimal result. [11] A
considerable amount of experimentation in this research attempted to find a good
setting for these parameters. In general, large populations for fewer generations faired
better than small populations for more generations. The results from experiments

varying these parameters need further attention and are discussed in section 4.3.3.
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Chapter 4

Results

4.1 Overview

This chapter explains the various experiments used to test the effectiveness of the
evolutionary system. First, a set of initial experiments are explained that describe
the testing environment. The next section discusses the convergence properties of the
GA, and the optimal settings of the various parameters dependent on the problem
type. The last section describes a set of more comprehensive experiments on a variety

of target architectures and programs with varied performance characteristics.

4.2 Results of Initial Trials

The initial tests are simple programs executed on a four processor shared memory
machines (SMM). The test programs have one loop with 20 iterations and the itera-
tions have no data dependencies. Three different loop work distributions were tested:
uniform, linear, and exponential. The distribution names denote the way the work is
distributed per iteration of the loop. The uniform distribution has the same amount
of work per iteration, and the linear and exponential distribution have a linearly and
exponentially increasing work distribution, respectively. Since the target machine has
shared memory, only OpenMP was used to distribute the work.

The evolved results are compared against control programs. These programs are
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Static Distribution Assignments are determined at compile time, and this tech-
nique gives each thread an equal number of iterations.

Dynamic A run-time technique, the threads poll a central manager thread which
distributes to the thread the next iteration that must be computed.

Guided This scheduling is a static technique, but it distributes the initial iterations
in larger chunks, lowering the communication costs. This technique is appro-
priate when the work load is increasing, so the iterations with less work are
grouped together.

intended to accurately model the parallel implementation using conventional, hand-
coded techniques. The control programs implement the three primary traditional
methods for parallel scheduling: static, dynamic, and guided.

Each program was tested with all three of these techniques, and the best result
was compared to the best evolved result. Figure 4-1 contains a table with results
for each of the three ciistﬁbution types, with comparison to the other hand-coded
techniques. These results are normalized, so a score of 1.00 denotes perfect scaling

for four processors, and 4.00 denotes the serial time.

Distribution Type | Uniform | Linear | Exponential
Serial Time 4.00 4.00 4.00
Hand-coded Time 1.00 1.06 1.21
Evolved Time 1.00 1.00 1.01

Figure 4-1: Normalized Performance Times for Three Distributions

In each of these cases, the evolutionary system is able to evolve a solution that
was at least as fast as the best hand-coded solution. Also, the solutions are nearly
optimal; only in the case of the exponential distribution is the result less than perfect
scaling. The more complex the work distribution, the more the GA is able to profit
over the hand-coded results. The evolved results for exponential distribution is 20%
faster than the hand-coded version.

These results took little computational time. In one hour, the evolutionary sys-
tem often finds the best result, and all of these experiments ran for less than three

hours. The GA finds nearly optimal solutions, and rapidly converges on such results.
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These tests are simple, but they are representative of some types of problems the
evolutionary system can solve.

The rest of the experiments are conducted in a similar manner. A sample program
is annotated with the directives, evolved, and then compared with the best hand-
coded result. The rest of this section discusses methods of improving the convergence

time and tests on more complex environments and source code.

4.3 Convergence Properties

A principle part of this research is to determine a set of optimal parameter settings
for the GA that will quickly and consistently evolve nearly optimal programs. How-
ever, there is no single best set of parameter settings; the best parameter settings
are dependent on the the specific problem. This section examines the relationships

between the different parameter settings and finding an optimal result.

4.3.1 Non-optimal Convergence Goal

First, it is important to more closely examine the goals of convergence for the genetic
algorithm. The evolutionary system is effective because it is probabilistic, yet the
randomness of the system can also serve to undermine it. It is possible to encourage
so much randomness in the system, that the evolved results are random as well,
with no guarantee that such a result is the best possible. In fact, any randomness
in the system disallows any guarantee of finding an optimal result, yet it would be
comforting to know that the system will find a nearly optimal result with very high
probability. The convergence goal is to choose a set of evolutionary parameters that
with high probability will evolve an optimal result.

This goal can only be accomplished by properly balancing the forces of convergence
and randomness in the evolutionary system. Optimizing this balance is not within the
scope of this research. As a researcher, tuning the genetic algorithms is a seductive
pursuit. It is tempting to spend weeks changing parameters to get closer and closer to

achieving an optimal result on every test. This research is not specifically on genetic
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algorithms, so a less ambitious goal was used. The genetic algorithm should with
very high probability (99%) exceed the performance of traditional techniques. This
goal is short of the goal of achieving the best possible performance, but since the best
possible performance is unknown, it is a more measurable goal. However, it is hoped
that in a run of the successive identical trials, most (90%) will have best evolved

solutions within 10% of the best solution found over all the trials.

Given the set of parameters used in the initial trials, this goal is not difficult
to attain for easy problems. Figure 4-2 shows a graph of population statistics per
generation for ten evolutionary run trials. In these trials, a population size of 60 was
used for 80 generations with a replacement size of 30. The three data series are the
worst individuals in the population, the average of all individuals in the population,
and the best individual in the population. Each of these quantities was found for
each trial, and then averaged for the ten trials graph.

The GA rapidly finds the optimal solution. In most cases, by the 30th generation
the GA has found the optimal result. In ten generations, the average fitness of
the population improves by a factor of two, and by 50 generations nearly all the
individuals are within 10% of the best individual.

In addition to the rapid convergence, all of the trials tend to result in similar
best individual scores, as shown in the graph in figure 4-3. This chart compares
the best performing individual in the population for each trial. Over all the trials,
the best of that set, the worst, and the average value are graphed. At the end of
the run, neither varies by more than 10% from the average. The chart in figure 4-4
compares the difference between the best time and the worst time in the 10 trials,
over each generation. The difference is much larger in early generations, since the
initial populations are randomly generated. Eventually the convergent properties of
the GA drive the difference to a much lower level.

For an easy distribution, the evolutionary system performs consistently within
accordance of the convergence goal. More difficult tests are detailed below, but in all
cases if the GA were able to find a solution better than the traditional techniques,

then multiple runs of that same trial always result in a best evolved result better than
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Figure 4-2: Ten Exponential Distribution Trials, Entire Populations Graphed

traditional techniques. Further more, no more than a 10% variability in the fitness
of the best evolved solution was ever found in the tests. The parameter settings are

detailed in the next sections.

4.3.2 Mutation Rate Has No Effect

The mutation rate controls the probability of mutation during the creation of a new
individual. After the initial populations are generated, mutation serves as the primary
source of randomness in the population. As stated before, mutation is rarely used in
genetic programming, since alleles rarely become extinct.

The mutation rate had little effect on the efficiency of the run. The graph in
figure 4-5 shows data points for a 50 trial test. Each trial was identical, except for
the mutation rate. The graph compares the total number of mutations that occurred
during the trial with the score of the best individual in that trial. Regression analysis

of this data can find neither a line nor a polynomial curve that fits the data and has
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Figure 4-3: Ten Exponential Distribution Trials, Best Individuals Only

a statistically significant t-stat value. [8] The mutation rate and the score of the best

individual in the population are unrelated.

4.3.3 Large Populations for Many Generations Produce Good
Results

The population size and number of generations tests demonstrated a clear result:
larger populations and evolutions that last for more generations produce better re-
sults. To test the effects of these variables on the performance of the GA, 48 separate
evolution runs were executed, each with a different population size and number of
generations. All tried to optimize the same program, the computation bound program
discussed in section 4.4.3. This program is difficult to optimize, so the inadequacies
of the smaller test are more pronounced. An easy distribution would have simply
shown all the results having nearly the same performance.

The results of this experiment are shown in the chart in figure 4-6. The X axis is
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Figure 4-4: Difference in Best and Worst Individuals

the number of generations and the Y axis is the size of the population. The Z axis
is the time of the best result, so a lower value reflects better performance. Increasing
both the population size and the generation number improves the performance. In-
creasing just one variable is not sufficient. Large population sizes for a short number
of generations and small populations for many generations do not always produce

good results.

4.3.4 Replacing Half the Population is Ideal

The goal of the replacement number experiment is to determine the relationship
between the number of replaced individuals per generation and the optimal score
generated. For a population of 40, the number of individuals replaced was varied from
5 to 37. Each test executed for 60 generations, and the test program was a simple
exponential distribution. The score of the best individual in the final population was

recorded for each test.
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Figure 4-5: Mutations and Best Evolved Result

The chart in figure 4-7 shows that more replacements yield better individuals in
the final population, but the correlation is small. Further statistical analysis shows
that with both few replacements and a large number of replacements, the variance
from the mean over all replacement tests is much higher. The probability of having a
very bad result is higher for extreme replacement numbers, although this is somewhat
masked by better average results for higher replacements. For consistent performance,

a number of replacements nearly equal to half the population size is ideal.

4.4 Other Test Environments Results

This section describes tests using real application code and more complicated test
environments. Each test description includes a table detailing the results. These ta-
bles are self-explanatory, except there are some issues with the timing measurements.
The times reported are not the total running time for the program, instead the times

are the sum of all the execution times of all the loop entities in the code. This cap-
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1

Figure 4-6: Population Size, Generation Number, and Optimal Score

tures all of the parallel regions and any additional time required by the parallelism,
but does not include serial code. This measurement directly compares the scaling
of the evolved code and the traditional approaches without the distortion of serial
code that does not scale. The serial time is measured by compiling the code with no
parallel constructs and then executing it on a single processor. The evolved code and
traditional scheduled code are timed in the same manner. They are executed at least
ten times (some tests have more variability and are executed more), and the averages
are reported in the table. Both the evolved code and the traditional scheduling tech-
niques are compared, with the best traditional scheduling score serving as a control
for the experiment.

Throughout this discussion of other test environments, the words evenly and

equally are used to describe two very different types of distributions.
Evenly is used when every thread receives the same number of iterations.

Equally means that every thread has the same amount of work.
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Optimal Time and Replacement
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Figure 4-7: Replacement Number and Optimal Score

In the case of a uniform work distribution, evenly and equally are equivalent; however,
in any distribution where each iteration has a different amount of work, these two have
very different performance results. The goal of this work is to evolve distributions

that are equal across the system, not even.

4.4.1 Shared Memory Applications Have Varied Results

While the initial tests demonstrated that the genetic algorithm evolves optimal so-
lutions for a variety of test distributions, it was not clear that it would perform so
well for real application code. While the test code had only a few variables that
had no data dependence, real application code is rarely so benign. Three programs
were chosen from the body of scientiﬁc numerical applications to serve as test codes.
Programs important to the scientific community were chosen because they are one
of the primary groups who could benefit from this work. The target architecture in

these tests is the same as in the initial trials, a 4 processor symmetric multiprocessor
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machine. All processors are equally fast and have equally fast access to the memory.

The three selected programs are a Monte Carlo simulator, a N-body simulator,
and a Fast Fourier Transform (FFT). The Monte Carlo simulator is “embarrassingly
parallel,” [30] the individual iterations have no data dependencies. The single parallel
loop generates a random number and places the results in an appropriate data loca-
tion. The variables have no data dependence within the loop or across loop iterations.
Also, each individual iteration does little work, so fine-grain parallelism is possible.
The N-body simulator is more complex; it has 4 parallelizable loops and some with
data dependencies requiring locks and critical sections. The FFT is the most complex
of the three, with nested loops, data dependencies, and non-obvious parallelism.

Each of these codes were in their original form serial programs. The KApTM [21]
parallelizing pre-processor was used to parallelize them. KAP annotates the serial
code with parallelizing directives and additional code to handle shared and private
variables. KAP first identifies parallelizable loops by analyzing the data dependencies
and marking the variables that must be shared and those that must be private. With
this knowledge, KAP inserts the appropriate parallel directives. These directives were
then changed to APR directives, and then the programs were sent to the evolutionary
system. These steps were rarely free from errors— often KAP would fail to recognize
potential parallelism due to complicated data dependencies. These conflicts were
solved by hand modifying the parallel sections. Constructing the hand-coded control
programs took an average of 8 hours, which is roughly equal to the amount of time
the GA réquired to find its solutions for these tests.

Each of these three tests is discussed in more detail in the following sections.

Monte Carlo

A Monte Carlo simulation is an estimation technique that has been applied to many
different problems in a variety of fields. The simulation consists of many probabilistic
trials, the results of which are tallied and used to determine some unmeasurable but
testable quantity. [40] A simple example would be to estimate m by throwing darts

at a circle of unit diameter enclosed in a unit square. The area of the square is
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known, so by tallying the proportion of darts which land in the circle compared to
the square, the area of the circle can be estimated, and from that 7 can be determined.
The probabilistic law of large numbers guarantees that as more trials are used, the
estimate is more likely to be closer to the actual value. [8]

The Monte Carlo simulation generates millions of independent trials, each of them
completely parallelizable. The result is an even distribution that perfectly scales when

using traditional techniques. Figure 4-8 shows the results of an evolved test.

Test Name Monte Carlo
Target Architecture 4 Processor SMM
Population Size 60
Generations 80
Running Time (hours:minutes)

Serial Time (sec) , 31.5
Best Evolved (sec) 7.8
Dynamic Time (sec) 7.8
Static Time (sec) 8.1
Guided Time (sec) 8.1
Best Evolved Scaling 4.0
Best Control Scaling 4.0

Figure 4-8: Monte Carlo Test

The best distribution algorithrh evolved is of the form
kix + ko + sin(:z: + ](?3)(3k4

where z is the current iteration and k;_4 are constants. The distribution is fairly
simple, owing to the nature of the regular scheduling required by the problem. The
work is evenly distributed with an offset of k3, and then a small error term changes
some of the balanced distribution, possibly with little effect or potentially to take
advantage of some poorly understood system performance situations.

This test essentially shows that in the case of a simple work distribution, the
evolved answer does not introduce enough overhead to prevent it from scaling just as
well as the traditional techniques. Also, the GA was able to find a solution quickly.

The first generation found a 7.9 second algorithm, a 7.8 second result was found
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in generation 5, and the final best result was found in generation 23. For simple
distributions, the GA quickly achieves the same level of performance as the best

traditional techniques.

N-body Simulation

An n-body simulation projects the movement in 3-space of an arbitrary number of par-
ticles interacting in various gravitational, electrostatic, and electromagnetic ways. [14]
The data used for these runs included 10,000 separate particles.

The n-body simulation code is not a good application of the evolutionary system.
The program consists of four parallelizable loops, three of which do almost no work,
and one nested loop where almost all of the computation takes place. An initial trial
attempted to schedule all four of the loops. The three low-computation loops had
running times that were less than the reliable granularity of the timing mechanism.
Without any selective pressure, the algorithms grew to be extremely large expressions.
These large expressions would take marginally more time to execute, but this level
could not be detected, so the expressions continued to grow larger. Eventually, the
expressions got so large that they could no longer be optimized by the compiler,
so the running times went from less than a hundredth of a second to hundreds of
seconds. The population had become filled with these bloated expressions, such
that almost any combination would yield an expression that exceeded the optimizing
compiler’s capabilities. The run stalled after only a few generations. Eventually the
large expressions would be filtered out of the population, but not until after much
wasted computation.

The second attempt tried only to optimize the single loop which accounts for
almost all of the running time of the simulation. This test also proved to be un-
successful. The optimized loop is within an outer loop. The outer loop can not be
similarly parallelized because it contains inherently serial code needed to parallelize
the inner loop. The inner loop is executed thousands of times, and does a little com-
putation and many memory loads and saves. The results from parallelizing this loop

are in figure 4-9
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Test Name N-body Simulation
Target Architecture 4 Processor SMM
Population Size 60
Generations 80
Running Time (hours:minutes) 12:14
Serial Time (sec) 7.5
Best Evolved (sec) 12.6
Dynamic Time (sec) 13.2
Static Time (sec) 2.2
Guided Time (sec) 7.2
Best Evolved Scaling 0.6
Best Control Scaling 3.4

Figure 4-9: N-body Simulation Test

The best results for both the evolution system and the dynamic scheduler were
significantly worse than the serial execution time. Both of these results were with
only executing on one processor; multiple thread execution caused times as high as 44
seconds in the evolutionary system and 55 seconds in the dynamic approach. While
these two techniques were not effective, the static scheduler performed well. The
static scheduler may provide a non-optimal distribution, but it requires almost no
overhead. In the case of the dynamic and evolved solutions, the overhead of adding

additional function calls caused a significant performance degradation.

Fast Fourier Transform

The Fast Fourier Transform is an algorithmic technique for performing the Fourier
Transform in log(n) independent computations. [30] Like the other applications, this
program was originally serial code, so it was first converted to a parallel version with
the KAP preprocessor. The code that KAP generated was then altered to improve
parallel performance. The KAP directives were then replaced by APR directives for
the evolutionary system.

Much like the N-body simulation, this application was not well suited to the
genetic algorithm. The code required many serial memory accesses, and has loop
iterations that have little computational work. Unlike the N-body simulation, this

test performed reasonably well. Figure 4-10 shows the results. Although the overall
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Test Name FFT Application
Target Architecture 4 Processor SMM
Population Size 60
Generations 80
Running Time (hours:minutes) 10:32
Serial Time (sec) 9.8
Best Evolved (sec) 7.1
Dynamic Time (sec) 14.6
Static Time (sec) 7.3
Guided Time (sec) 8.5
Best Evolved Scaling 1.3
Best Control Scaling 1.4

Figure 4-10: FFT Application Test

scaling was not good, it was able to extract the same level of parallelism as the control
methods. In both the N-body simulation test and in this test the dynamic time was
worse than the serial time because the loop iterations do not have enough work to
hide the overhead of scheduling them. While in the N-body test the evolved solution
also had this property, in this test it was able to vary the granularity, and move the
parallelism to an outside loop. The thread teams allowed the system to serialize the
inner loops, and distribute the more work intensive outer loops. Combined with a
more efficient scheduling algorithm, the evolved solution was able to perform better

than the best static time.

4.4.2 The GA Optimizes Mixed-mode Parallelism

Mixed-mode parallelism refers to using both MPI and OpenMP protocols to match
the granularity of the parallelism to the communication protocol that has the appro-
priate amount of latency and bandwidth. Mixed-mode parallelism is used in cluster
configurations, where each processor does not have access to all the memory of the
system, and sharing data between nodes in the cluster entails a definite performance
cost. By varying the work distribution and distribution algorithms, the GA should be
able to dramatically improve the performance over traditional techniques, since the

cluster configuration is more complex than a simple shared memory machine. The
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cluster in this case consists of two 4 processor shared memory machines from the
earlier tests, connected with a low, but variable latency memory channel intercon-
nect. Accessing the memory channel is approximately 15 times slower than the main
memory, and approximately 150 times slower than the cache. By distributing a large
problem into smaller pieces that fit easily into cache, the GA may be able to achieve
superscaling speed-ups by using the memory hierarchy to its advantage.

To test this hypothesis, a test program was developed. Nearly all the work in
the program is computation over a 20x100 array. As the program moves through the
array, each element of the array requires exponentially more work, according to the

FORTRAN code snippet:

do i=1,20
do j = 1,100
b(i,j) = kidint(exp(real(i)*real(j)/100)) * 3
end do

end do

The variable latency of the communication network in the cluster adds an addi-
tional complication. The timing of a piece of code is highly variable. On the first
attempt to evolve an optimal solution, the GA appeared to have found a good so-
lution. When the best algorithm was actually tested, it was discovered to perform
rather poorly on average and only occasionally perform well. Since the GA executes
so many tests, it is possible for such an algorithm to perform well once, secure a spot
in the population, and then pollute the gene pool with its actually inferior genes.
One attempt to remedy this problem was to replace the entire population in each
generation, so bad single test results would be multiply tested and removed. This
approach was only somewhat successful, since replacing the population further slowed
convergence. Another approach was to multiply execute the test program and use
the average as the fitness. This approach was more successful. Though it is possible
for a program to be incorrectly timed and have inaccurate fitness in all trials, it is

much less likely. Each program was executed three times, which seemed to adequately
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balance the benefit to fitness accuracy and the increase in computation time.

Test Name Mixed-mode
Target Architecture 2 node, 4 Processor SMM cluster
Population Size 80
Generations 60
Running Time (hours:minutes) 47:16
Serial Time (sec) 54.5
Best Evolved Mean (sec) 6.7
Dynamic Time (sec) 15.5
Static Time (sec) 40.4
Guided Time (sec) 13.3
Best Evolved Scaling 8.1
Best Control Scaling 4.1

Figure 4-11: Mixed-mode Parallelism Test

The table in Figure 4-11 estimates the evolved solution running time at 6.7, how-
ever some tests executed in 6.2 seconds. Others took 7.5 seconds. Over 30 executions,
the mean was 6.7 and the standard deviation 0.32 seconds. The scores for the control
runs are also averages, but they tended not to vary as much as the evolved solution.

In this test, the GA achieved a running time 1.9 times as fast as the traditional
techniques and achieved super scaling. The algorithm converged on a thread team
that distributed the outer loop between the two nodes, and the inner loop within
each node. This division led to greater locality of data, leading to better cache
performance. The algorithms themselves are difficult to analyze. Figure 4-12 contains

the distribution algorithm from the outer loop algorithm. The inner loop algorithm

((((((zSD((7 + 0), 0) - coefEx(CR, trigSin(7, 17))) * 2SD((1 + CR),
7)) - (trigSin(CR, (1 - MX)) * (coefEx(zSD((coefEx((coefEx(coefEx(((5
+ trigSin(zSD(trigSin(CR, (1 - MX)), CR), 2)) * 17), 0), (5

+ coefEx(CR, trigSin(7, 17)))) * zSD(trigSin(2, zSD(PR, 7)),
coefEx(zSD(13, 7), 17))), zSD(MX, 1)) + 13), (zSD((2 - PR), 17) +
zSD(MX, PR))), 11) + coefEx(coefEx(1, (5 + 5)), 0)))) - (1 + 7)) *

(1 + CR)) - (trigSin(CR, (1 - MX)) * (coefEx(zSD((1 + CR), 1), 11) +
coefEx(coefEx(1, (5 + 5)), 0))))

Figure 4-12: Optimal Distribution Algorithm for Mixed-mode Test

is even more complicated. Even further complicating the situation is the state of
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the thread team. The outer loop is actually distributed among 4 processors, and the
inner loop is distributed among blocks of two processors within the machines. Both
algorithms effect the distribution to the individual processors, so the algorithm makes
no clean division between nodes. The result is that each algorithm appears to have a
distribution that would not be nearly optimal, but when all the pieces are assembled
in concert, the system achieves super scaling. This result is a demonstration of the
capacity of the symbiotic genetic algorithm. By capturing the interaction between

the loops, the GA was able to far surpass traditional techniques.

4.4.3 Large Cluster Execution

A further test of the evolutionary system is to distribute a complex workload across
a large parallel machine. Two tests, one memory bound and one computation bound
were designed for an eight node, four processor per node, low latency crossbar inter-
connect system. This machine differs from the previously described cluster in several
ways. First, the individual nodes are equipped with faster processors, larger caches,
and more memory bandwidth. Second, the inter-node communication is handled by a
low latency, high bandwidth crossbar. These features make scaling on a considerably
larger system feasible. Also, since the interconnect latency is nearly constant, it was
not necessary to run the tests multiple times. Each of the two types of tests are

discussed in the subsequent sections.

Memory Bound

None of the previously discussed tests were memory bound; they all simply required
a distribution of the computation. Intuitively, it is not clear how the GA could also
improve the performance of memory bound computation. The individual processors
share the same memory bandwidth, so moving computation to a different processor
would not reduce the amount of memory resources used. However, the genetic algo-
rithm can modify the way the entire program runs across the cluster. By distributing

work that is memory intensive across many machines, and improving data locality
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and cache performance, the GA can use the memory hierarchy to achieve superior

performance enhancements over traditional techniques.

The memory bound test is a matrix multiply of two large matrices. The algo-
rithm consists of two parallelizable outer loops that iterate over the columns and
rows, and an inner loop which performs the actual multiplication of the selected rows
and columns. When framed in this manner, the algorithm does not have any data
dependencies, but it does severely tax the memory system. [13] For every multipli-
cation, two memory accesses are required. Also, the matrices are far too large to
fit in cache, and since the specific architecture of this experiment has two-way, set-
associative cache, the cache is completely replaced with each multiply for matrices of

this size.

Two different matrix sizes were tried for this test: 128x20000 and 1010x1010. The
two different sizes had dramatically different results, but also shared some similarities.
Neither test was able to scale perfectly with the number of processors. Individual
node memory bandwidth was likely a large part of the problem. The test would
perfectly scale up to eight processors, if each processor was on a different node.
Running multiple threads on a single node did not only fail to perfectly scale, but
at 32 processors, the test performed worse than on just eight processors. Executing
multiple threads on a single node caused bus saturation and excessive dirtying of
the write-through cache as multiple threads worked on the same cache lines. Also,
both tests had difficulty finding distributions with better than 8 times speed-up.
Even near the end of the generations, only a small fraction of the final population
had any members that were better, so the population never converged. It is likely
that finding such distributions is difficult, and requires exploitation of very sensitive

implementation details of the hardware and optimized source code.

The 128x20000 matrix test attained improved performance in an unintuitive way.
The thread team distributed the outer loop to the eight nodes, and the inner loop
was distributed within each node. The outer loop evenly distributed the work in an
orderly fashion, but the inner loop distributed the work serially. Only one thread

computed the inner loop iterations. The GA recognized the saturation properties,
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Test Name

Matrix Multiply, 128x20000

Target Architecture

8 node, 4 Processors per SMM Node

Population Size 80
Generations 50
Running Time (hours:minutes) 8:03
Serial Time (sec) 33.4
Best Evolved Mean (sec) 2.1
Dynamic Time (sec) 2.8
Best Evolved Scaling 15.9
Best Control Scaling 11.9

Figure 4-13: Matrix Multiply 128x20000 Large Cluster Test

and discovered that the serialization worked better than parallelization for the inner
loop. The test still achieved nearly 16 times speed-up, most likely due to cache effects
arising from the outer loop distribution. Curiously enough, changing the serial inner
loop distribution to distribute to multiple processors slowed the test, as more threads

competed for scarce memory resources.

Test Name Matrix Multiply 1010x1010
Target Architecture 8 node, 4 Processors per SMM Node
Population Size 150
Generations 80
Running Time (hours:minutes) 54:21
Serial Time (sec) 95.3
Best Evolved Mean (sec) 3.6
Dynamic Time (sec) 8.0
Best Evolved Scaling 26.5
Best Control Scaling 11.9

Figure 4-14: Matrix Multiply 1010x1010 Large Cluster Test

The 1010X1010 test performed differently than the other matrix size, but the
difference in result may have little to do with size of the arrays and more to do
with the larger population. Here the GA attained a 26 times speed-up. The optimal
thread team was again the same as before, with the outer loop distributed to the eight
nodes, and the inner loop distributed within the node. The distribution algorithms
were different. The outer loop distributed evenly across all nodes, but the inner

distribution algorithm distributed to all four processors. The outer distribution can
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be reduced to the simple expression
30— CR/34

which implies the iterations are distributed in large blocks. Also, the inner distribu-
tion can be expressed as

126 + PR/8

Here PR is the additional loop parameter, which is passed into the algorithm for the
inner loop as the iteration of the outer loop. The difference is that each inner loop is
not distributed. All of the iterations of the inner loop go to the same thread, but when
a different outer loop iteration is sent to that node, it is computed by by a different
thread. The outer loop distributes to each node a block of iterations. Each iteration
is computed by a different thread, so the threads are not working on the same cache
lines and causing coherency problems. This interdependence is another example of the
advantages of the symbiotic genetic algorithm. The two distribution algorithms and
the thread team are able to find a previously unknown and efficient task scheduling.
By constructing a test with a larger population and more generations, the genetic

algorithm found a result that is better than traditional techniques.

Computation Bound

The computation bound experiment is similar to the experiment on the two node
cluster, except a 200x100 array was used rather than a 20x100. The same exponential
distribution was also used, except some constants were changed to provide a running
time that was manageable for the test. Choosing these constants initially proved to
be challenging. If the arr.a.y was too small, then the GA would quickly decompose
the problem so it ran entirely in cache and achieved a 100 times speed-up. Such
a test was not desirable, since the timing mechanism does not have good enough
granularity to measure such fast programs. Eventually, code was inserted into the
loop which invalidated cache lines and made such a result impossible. This addition

caused only a minimal amount of memory access, so the problem remained primarily
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computationally bound.

Test Name Cluster Computation Bound Test 1010x1010
Target Architecture 8 node, 4 Processors per SMM Node
Population Size 150
Generations : 80
Running Time (hours:minutes) 47:39
Serial Time (sec) 64.0
Best Evolved Mean (sec) 3.7
Dynamic Time (sec) 6.1
Static Time (sec) 12.0
Guided Time (sec) 6.0
Best Evolved Scaling 17.3
Best Control Scaling 10.1

Figure 4-15: Large Cluster Computation Bound Test

The GA was not able to find and optimal distribution that perfectly scaled, but
judging by the performance of the best traditional technique, the problem is not easily
distributed. The nature of the problem may not allow any better scaling. The evolved
distribution algorithms are difficult to analyze; the outer loop distribution algorithm
has 455 nodes. Since the distribution is suitably complex, it is appropriate to have a

complex distribution algorithm.

4.4.4 The Evolutionary System is Not Data Dependant

One of the primary criticisms of this type of work is that the optimal work distribution
evolved by the genetic algorithm is data dependent. {27] Some would claim that the
gains found over traditional techniques are only due to exploiting irregularities in the
test set, and if the application was tested with the same algorithm and a different
data set, the results would be significantly worse. This claim seems intuitive, but is
unfounded, so it merits further investigation.

If the genetic algorithm simply optimizes for the test data, then adding random-
ness to the data set would leave the GA incapable of doing any better than traditional
techniques. To test this assumption, tests were created that added randomized data

in three ways, added noise to a well known distribution, randomly changing the ori-
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entation of the data, and changing the size of the data. If the changes to the data
fundamentally change all the performance characteristics of the original program,
then a genetically evolved solution will not be helpful. Most programs have similar
performance characteristics over a wide range of data, though the pattern is often
difficult to discern. The purpose of these tests is to simulate that model of program
use, and determine if the evolutionary system can find and exploit such patterns. The

results of these tests are detailed in the following sections.

Noisy Exponential Distribution

This test consists of adding noise to the exponential work distribution used in the first
initial trials. Half of the total work was in the exponential distribution, the other half
was randomly distributed from a uniform probability function. The resulting distri-
bution resembles an exponential distribution, but has a random amount of distortion
in each run.

The population size and number of generations are larger in this test compared to
the initial runs. This problem is more challenging compared to the noiseless test, so
the GA should have more computational capability. Also, each of the programs were
executed three times and the resulting score averaged to measure the fitness. This
redundancy should avoid the problem of evolving a single program that performs well

for a certain set of added noise, but poorly in other cases.

Test Name Random Noise
Target Architecture 4 Processor SMM
Population Size 80
Generations 80
Running Time (hours:minutes)

Serial Time (sec) 18.4
Best Evolved (sec) 4.5
Dynamic Time (sec) 5.0
Static Time (sec) 7.6
Guided Time (sec) 4.8
Best Evolved Scaling 4.0
Best Control Scaling 3.8

Figure 4-16: Added Random Noise Test
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The genetic algorithm was able to develop an distribution algorithm that filtered
through the noise and properly distributed for an exponential algorithm in the general

case. The optimal algorithm found in this test is
ki — kosin(ksze®) — z

For the smaller iterations, the kze® term dominates the distribution, but for large
values of z, the maximum value of the e* term is capped to prevent overflow. This
term becomes constant, and the distribution is dominated by the —z term. The
result is the larger iterations are evenly distributed, but since the larger iterations are
exponentially increasing, the distribution is ragged. The smaller iterations are not
evenly distributed, but instead the sin(k3;e®) term distributes the iterations in a way
to equalize the total work.

The distribution found with added noise is similar to the distributions in the
initial run, except the function governing the distribution of the smaller iterations is
different. Despite the addition of noise, this test was able to achieve perfect scaling,
and surpass the best traditional approach by 20%, nearly identical to the findings
in the noise-free tests. The addition of the random noise has little effect on the

performance of the GA, despite noise accounting for half of the total work distribution.

Random Orientation

The random orientation test uses an exponential distribution, but with probability
0.5 the exponential distribution will be decaying instead of growing. Both possibilities
have the same amount of work, but the decaying exponential is just the mirror image
of the growing exponential used in other tests.

As in the previous test, a larger population and generation number were used in
this test.‘ Also, all programs were executed three times and the scores averaged to
determine the fitness.

The generated distribution algorithm did not develop a specialized mechanism for

dealing with the two different exponential cases. Instead, much like in nature, the GA
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Test Name Random Orientation
Target Architecture 4 Processor SMM
Population Size 80
Generations 80
Running Time (hours:minutes)

Serial Time (sec) 18.5
Best Evolved (sec) 4.6
Dynamic Time (sec) 4.8
Static Time (sec) 6.7
Guided Time (sec) 4.8
Best Evolved Scaling 4.0
Best Control Scaling 3.9

Figure 4-17: Random Orientation Test

found a simpler way. The algorithm is not effected by the orientation, even though
a boolean that identifies decaying distributions was provided to the algorithm as a
parameter. Instead it distributes the iterations in an even manner. However, it is
rare for all of the growing exponentials do be together in the distribution; the two
types are interspersed. At the end of a growing exponential, some threads are still
completing the previous work, while others are idle. These idle threads continue to
the next iteration. If the next iteration is the opposite of the previous one, then the
threads are given a large amount of work to do. Although the amount of work in a
single exponential distribution is not equally distributed, because the two exponential
types are symmetric, the total work is equally distributed. If the threads have to stall
after completing each exponential and wait for all the loops to finish, the performance
is much worse. By generating a distribution that was not optimal in either specific
case, the GA was able to evolve a distribution that worked well in the overall system.

The evolutionary system was able to find a result of perfect scaling, despite not
optimizing for the individual cases. Instead the GA found a surprisingly simpler way

to achieve the optimal performance.

Random Loop Size

The random loop size experiment tests the evolutionary system’s ability to find opti-

mal solutions for a common programming environment—a nested loop that executes
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for a different number of loop iterations with each iteration of the outer loop. In the
test program, the outer ‘loop randomly selects a number of iterations for the inner
loop. The selected number comes from a previously generated set, so the actual total
number of loop iterations does not change, just the order in which they are presented
to the inner loop. Each program must have the same amount of total work in order to
compare program fitness values. The inner loop is not just a uniform distribution. To
make the problem difficult, the inner loop has an exponential distribution. In order
to adjust to the different loop sizes, the scheduling algorithm is provided with the
maximum number of iterations for the loop as a potential parameter for the evolved

distribution.

Like the previous random data tests, more generations and a larger population
was used. Also, each program was executed three times in order to prevent premature
convergence on an inefficient solution. The threads are not required to wait for all

the iterations of a loop to complete before continuing to execute code.

Test Name Random Loop Size
Target Architecture 4 Processor SMM
Population Size 150
Generations 80
Running Time (hours:minutes)

Serial Time (sec) 17.7
Best Evolved (sec) 4.5
Dynamic Time (sec) 4.7
Static Time (sec) 10.6
Guided Time (sec) 4.8
Best Evolved Scaling 3.9
Best Control Scaling 3.8

Figure 4-18: Random Loop Size Test

The results for this experiment were also surprising. At first glance, the evolved
distribution appears inordinately complex, and graphing the results reveal that the

iterations are distributed evenly. A closer look reveals the following equation:

ki + F(MX) +z
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where F(M.X) is a complex function of the maximum iteration for the loop. This
function determines an offset for the even distribution. After threads finish all the
iterations assigned to them in one loop, they continue to the next sizedlloop, with an
offset. This prevents the same threads from doing all of the work in all of the different
sized loops. The function F is suitably random such that over many differently sized
loops the work is equally distributed.

In all three cases of randomness in the performance characteristic of a program, the
evolutionary system was able to identify a pattern and develop an optimal algorithm
for that situation. In some cases, such as the noisy exponential, the GA evolved
into the same distribution as the non-random case. In the other situations, the GA
did not evolve individually optimal algorithms, but instead it found distributions
that were optimal over the entire execution of the program. In all cases, the GA
did not prematurely converge on data dependent solutions, and instead found widely

applicable algorithms.

4.5 Target Architectures

This section is dedicated to discussing the power of the evolutionary system to adapt

solutions to a wide variety of different target architectures.

4.5.1 Altering the Target System Causes Adaptive Behavior

The evolutionary system can converge to a nearly optimal result, and it can contin-
ually alter the population to adapt to changes in the target system. In this test, the
target architecture is a four processor shared memory machine. After 20 generations,
a high priority, computationally intensive process was launched on the machine. This
program constantly used one of the processors, and rarely yielded any time. At 20
generation 40, the added program was killed.

Figure 4-19 shows the population scores for this test. During the first 20 gener-
ations, the evolutionary system rapidly converged toward a four processor solution.

When the one processor was removed, the entire population suffered a performance
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loss. In subsequent generations, it began evolving toward a three processor solution.
and the best individuals avoided the busy processor. Much of the performance loss
was recaptured, and the best individual achieved perfect scaling for three processors.
After the next 20 generations passed, the fourth processor became free, and some
of the other individuals began to perform better than the three processor optimized
individuals. Soon, the best individuals in the population returned to perfect scaling
for four processors. Not only is the evolutionary system robust enough to optimize

for different target architectures, but also it can also optimize over a changing system.
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Figure 4-19: Population Scores with Changing Architecture

4.5.2 GA Adapts to Heterogeneous System

All of the previously described tests have completely symmetric processors. While
the communication latencies and bandwidth from each processor varied if they were
on different nodes, all processors were computationally identical. In this test, two of

the nodes in the cluster have slower processors with less memory bandwidth, and the
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other 2 nodes have processors that perform twice as fast.

This test used the same exponentially increasing work distribution used in the
computation bound test in section 4.4.3. The results are described in figure 4-20.
In the earlier computation bound test, the best result achieved was scaling of 17.9
on 32 processors. The communication systems on the earlier test were much better,
yet this heterogeneous test still achieved scaling of 8.8 on 16 processors, which is
slightly worse yet very similar performance. The distribution algorithms distribute
most of the iterations evenly, yet the smaller iterations are distributed to the faster
nodes, equalizing the total work. Without knowledge of the difference in the nodes,

the evolutionary system adapted in a away that took advantage of this performance

characteristic.

Test Name Heterogeneous
Target Architecture 4 node, 4 Processor SMM cluster
Population Size 150
Generations 80
Running Time (hours:minutes)

Serial Time (sec) 66.5
Best Evolved Mean (sec) 7.6
Dynamic Time (sec) 10.8
Static Time (sec) 13.7
Guided Time (sec) 9.9
Best Evolved Scaling 8.8
Best Control Scaling 6.7

Figure 4-20: Heterogeneous Test Environment
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Chapter 5

Conclusions

5.1 Overview

The primary focus of this research is to develop an evolutionary system capable of
producing a nearly optimal work distribution for a specific target parallel architecture.
For many types of parallel programs, the evolutionary system was largely successful.
In most of the test programs, the evolved solutions consistently outperformed tra-
ditional techniques on a variety of hardware platforms. In some cases the evolved
solutions exploited architectural complexities for even greater gains. Furthermore,
the evolutionary system even performed well in randomly altered test environments.
However, the genetic algorithm did not perform well in several situations. A discus-
sion of those situations and suggestions for how to improve the evolutionary system

follows.

5.2 Shortcomings

5.2.1 Analysis of Generated Distributions

It was initially hoped that the evolutionary system would generate cogent distribu-
tions that would instantly illuminate the best way to schedule tasks for the target

architecture. The resulting algorithms could be inserted directly into a program at
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compile time, avoiding the need for the lengthy evolutionary process. For relatively
simple distributions onto simple architectures. the evolved algorithms are easy to
understand. More complex work distributions evolved completely incomprehensible
algorithms. By treating these algorithms as a black box and testing the outputs for
a variety of inputs, it is possible to determine what the algorithm did. But even from
this knowledge, determining how the algorithm works is difficult. Although these
complexities do not lead to the discovery of new generalized algorithms, the results
often do lead to interesting insights into the scheduling problem posed by a particular

program and related target environment.

The evolved algorithms interact in very subtle ways. Some of the components are
non-linear; the zero safe divide has separate behavior for a zero denominator, and
the exponential function is capped at a maximum. The evolved algorithms would
often utilize these irregularities to their advantage. Often an algorithm would have
two very different behaviors over work distribution. The subtle non-linearities in
the components permitted this behavior. By analyzing these break points in the
evolved algorithms it is possible to better understand changes in the program’s work
distribution.

The evolutionary system can also expose subtle interactions that effect perfor-
mance of the host architecture. Some algorithms seemed to distribute work in a
random ordering, yet changing the ordering of iterations often proved harmful. Also,
changing an offset for a periodic system changes the results. Operating under the
standard assumptions of how the target architecture works, one would never suspect
these changes to have any effect. Duplicating such performance gains in other target
architectures, or even for different programs on the same target architecture is not
possible. These gains are the result of some sort of inexplicable interaction between

the architecture and the software and were not present in other systems.

Running multiple tests often helped identify interesting aspects of the test system.
The best way to use the evolutionary system to better understand the performance
characteristics of the target machine and software is to execute several trials. Multi-

ple evolutionary experiments for the same program on the same architecture always
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yielded seemingly different distributions. However, these different appearing expres-
sions distributed the iterations in very similar ways. While many would be similar,
equally as many would be completely different, yet still yield an optimal result. This
finding tends to confirm earlier hypothesises about the nature of the search space.
While the set of all possible expressions is large, the actual performance space is
much smaller. Many expressions map to essentially the same work distribution, and
a large number of the different work distributions are performance equivalent. By
drawing on the similarities and differences from each of the trials, it is possible to
better understand the tested system.

Though some of the tests produced results that seemed to find algorithms that may
be more generally applicable, nearly always the evolutionary system found an easier
way to achieve better performance by exploiting some program specific advantage.
The tests that did find generally applicable results were for the most part contrived
to extract a previously known result. The evolved solutions were only efficient for
the specific evolved case and were too complicated to glean any knowledge of how
to solve the scheduling problem in the general case. By examining the actual work
distribution that arises from an algorithm, more could be learned about the optimized

program and the target architecture but not about generalized algorithms.

5.2.2 Failures

While the evolutionary system proved to be very effective in many different test
programs and target architectures, there are several common programming situations
where the GA is not effective. These shortcomings arise due to a lack of parallelism
in the test code and problems inherent to all genetic algorithms.

In order for the evolutionary system to be successful, the program must consist of
a set of independent tasks that caxi be arbitrarily scheduled. The evolutionary system
can only extract as much parallelism as is available from the test program. The target
architecture can also limit the level of parallelism. For example, if all memory accesses
are serialized on a single low bandwidth bué, then the total available parallelism is

further reduced. The evolved solution will be optimal given the test environment,
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but the result may seem poor given its relative performance compared to the serial
version.

Also, the additional overhead of the inserted scheduling code can cause the evolved
solution to perform significantly worse than the traditional techniques. The N-body
simulation test highlighted this result by generating an optimal result that was worse
than the serial running time of the program. In this case, the actual computation of
the iteration assignment including the additional function call was more work than
the body of the loop. The loop iterations must contain enough computation to hide
the overhead of scheduling. Loops with a large number of low computation iterations
can often be restructured to fewer iterations of more computation per iteration. In
these situations, the GA can still be useful. In fact, this technique was used for the
Monte Carlo simulation with much success.

The use of an genetic algorithm also restricts the class of potential programs. The
evolutionary system must estimate the fitness of thousands of potential scheduling
algorithms, so programs with long running times are not feasible. Also, programs with
irregular performance characteristics are not ideal, since they must be executed many
times in order to obtain an accurate fitness measurement. Since the genetic algorithm
requires so many fitness evaluations, the test program execution is a limiting factor

in the usefulness of the GA. Possible solutions to these problems are stated below.

5.3 Suggestions for Future Work

Many of the shortcomings of this research could be ameliorated by improving upon the
system in several key areas. First, changing the evolutionary system could cause the
genetic algorithm to evolve distributions that are easier to understand. The genome
could be changed to allow self-defined functions [23]. This technique is an improve-
ment upon genetic programming that allows evolved programs to define subroutines.
Self-defined functions permit code reuse and encouraged a layered evolutionary pro-
cedure, much like the development of repeatable cell structures and organs in higher

animals. This additional construct would yield programs that had definite structure,
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instead of the single giant expressions the current system evolves. Another way to
improve the clarity of the evolved algorithms would be to reward brevity in the fitness
function. The fitness of an algorithm would be a function of both the running time
and the total expression depth. Here the evolutionary system would work to balance
both goals. Another option is to automatically reduce constant subexpressions in the
algorithms during the evolutionary process [24]. This technique often leads to loss of
genetic material, so another approach is to keep multiple populations, each ranked
by a either a fitness metric of minimum time or minimum depth. This approach has
been shown to achieve faster convergence without the loss of potentially useful genetic
material [33]. Changes in the evolutionary system may lead to the evolution of more

universally useful scheduling algorithms.

Another possible improvement would be to amortize the evolution time over the
life of the program. Many applications require a long running time, which makes
the evolutionary processes infeasible. One possible solution would be to build into
the executable of a program an evolutionary system. Every time the program is
executed, the evolutionary system would use the execution as a fitness evaluation.
A capable stable of potential work distributions could be pre-evolved, eliminating
disastrously ineflicient distributions before the process begins. Pre-evolution would
reduce the randomness in the system and may cause premature convergence, but it
would eliminate exceptionally poor performance runs. This change would allow users

to enjoy the gains of the evolutionary system without the computational expense.

Finally, the evolutionary system could be expanded to evolve many more param-
eters of performance oriented parallel programs. Parallel programs often need code
restructuring and data distribution to perform optimally. These tasks are much like
work distribution in that they are difficult to do by hand because the target archi-
tecture often has poorly understood performance characteristics. Also, these tasks
would fit well within the framework of the symbiotic GA, since they have definite
interdependencies. These additional components must be somehow represented as
evolvable structures. With these additional elements, the evolutionary system should

evolve better solutions to many more performance problems.
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5.4 Closing Remarks

This research has shown that an evolutionary system can consistently generate op-
timized parallel programs that outperform traditional techniques. By varying the
parameters of the genetic algorithm, work distributions for a wide variety of parallel
programs and target architectures can be found. While the evolved work distributions
may not perform well in the general case, they can be used to create better work distri-
butions for similar programs on similar target architectures. Also, an analysis of the
evolved distributions often reveals previously unknown characteristics of the target
architecture. The evolutionary system is an efficient and automatic way to optimize
parallel programs for a specific architecture without knowledge of the performance

characteristics of the target system.
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