
An Unsupervised Head-Dependency Language Model

by

Philip D. Sarin

Submitted to the Department of Electrical Engineering
and Computer Science in partial fulfillment of the

requirements for the degree of

Master of Engineering in Electrical Engineering and
Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 5, 2000
La.uVe zoccbj

© Massachusetts Institute of Technology, 2000. All Rights Reserved.

A uthor
Department of Electrical Engineering and Computer Science

April 14, 2000

C ertified by
Professor Robert C. Berwick

Thesis Supervisor

Accepted by (
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 2 7 2000 ENG

LIBRARIES

An Unsupervised Head-Dependency Language Model
by

Philip D. Sarin

Submitted to the Department of Electrical Engineering
and Computer Science

May 5, 2000

in Partial Fulfillment of the Requirements for the Degree of Master
of Engineering in Electrical Engineering and Computer Science

Abstract

Language models are an important component of speech recognition. They aim to predict
the probability of any word sequence. Traditional n-gram language models consider only
adjacent lexical dependencies and so ignore longer-spanning dependencies. One might
capture these long-spanning dependencies by augmenting traditional models with head-
dependency information. A head word is the critical element in a phrase. Dependents
modify the head. Prior research has shown that head-dependency relationships acquired
from an annotated corpus can improve n-gram models. We propose a probabilistic parser
and language model which incorporate head-dependency relationships obtained from the
unsupervised algorithm in [10]. Preliminary information theoretic measures suggest that a
model which combines n-grams and unsupervised head-dependencies will outperform tra-
ditional n-gram models.

We describe a probabilistic model. We discuss the algorithms and data structures neces-
sary to implement the model efficiently in a chart parser. We also outline strategies for
pruning and reestimation. Our results reveal that the automatically acquired head-depen-
dency information yields a small improvement, through interpolation, over traditional
models. A shift-reduce parser outperforms our new chart parser, but further research on
pruning strategies for the chart parser needs to be done.

Thesis Supervisor: Robert C. Berwick
Title: Professor

3

Table of Contents

1 Introduction..12
1.1 Background... 13
1.2 Previous Research.. 17
1.3 O utline..18

2 Prelim inary Statistics.. 20
2.1 M utual Inform ation.. 20
2.2 Experim ental Results ... 20

3 Probabilistic M odel... 24
3.1 Im portant Term s... 24
3.2 Com puting P(W).. 27
3.3 Initial Estim ation... 27
3.4 Unseen Events... 28
3.5 A Sim ple Parser .. 28

4 The Chart Parser ... 30
4.1 Lim itations of Shift-Reduce Parsers .. 30
4.2 Chart Parsing O verview ... 31
4.3 Com puting P(W) W ith a Chart Parser... 33
4.4 D ynam ic Program m ing ... 37
4.5 Efficiency Considerations... 38
4.6 Softw are V alidation ... 40
4.7 Conclusion ... 41

5 Reestim ation .. 42
5.1 EM O verview ... 42
5.2 EM Im plem entation ... 42
5.3 Conclusion ... 46

6 Results..48
6.1 H ead-D ependency M odel Results... 48
6.2 Com parison to Chelba/Jelinek Results.. 49
6.3 Analysis.. 49

7 Conclusion ... 52
7.1 A utom atic Gram m ar A cquisition... 52
7.2 Chart Parsing in a Head-Dependency Language Model...............................52
7.3 Future W ork... 53
7.4 Sum m ary... 54

Appendix A Com puting P(C) ... 56
Bibliography...58

4

5

List of Figures

Figure 1.1: Head-dependency links for an example sentence from the How May I Help You
co rp u s..14
Figure 1.2: Within-chunk structures. Flat (left) and ladder (right).............................16
Figure 1.3: Hierarchical derivation of the sentence in Figure 1.1. 16
Figure 3.1: An exam ple word parse.. 24
Figure 3.2: Time steps 0 through 2 for the word parse in Figure 3.1. 26
Figure 4.1: An example chart. The head words of each constituent are in parentheses. 31
Figure 4.2: Dynamic programming and agenda pruning on constituents added at a particu-
lar tim e step ... 39

6

7

List of Tables

Table 2.1: Information Characteristics of Various Measures Compared to Bigrams 21
Table 2.2: Information Characteristics of Various Measures Compared to Trigrams 21
Table 6.1: Perplexity results. 48

8

..
1. -

-
.

--.
-

I -
,

-%#
';*

-i.-.
.

.a
n

rs.
.-

11
-

;
..

.
..........

.. - .-. ...:...--
... e.e-. ...-.-----....

:----

-'----
--':-'-e-a-''"*-

--
- ---

.
.

......
.......

...
.........

....
..._..

..
.... .. ,... .

Acknowledgements

This thesis marks the close of my five years at MIT. I would like to acknowledge those

who have helped me reach this stage in life, and on whom I have the privilege to rely.

My father Raj Sarin, my mother Amita Sarin, and my brother Dave Sarin have sacri-

ficed so much for my education and well-being. I simply cannot imagine where I would be

without their love and support.

My crew from Washington, DC has inspired me to raise my standards for the past ten

years. Although we may never have the opportunity to reconvene in Room Q, I am greatly

indebted to all of them for their friendship.

I thank all of my friends at MIT for enriching my life here. They are wonderful and

caring people. Robert Pinder, in particular, has been a dear and trusted friend for every day

of my five years at MIT.

Of course, I owe thanks also to those who have helped me with my thesis. Peter Ju, my

roommate for three summers and one fall at AT&T, has been a good friend and compan-

ion. Thanks to Beppe Riccardi, Srini Bangalore, Mark Beutnagel, Alistair Conkie, Candy

Kamm, Rick Rose, Juergen Schroeter, Ann Syrdal, and all the others at AT&T. Thanks

also to Professor Berwick at MIT for supervising my thesis work.

Finally, thanks to everything-remains-raw@mit.edu for their silent, tolerant support.

10

11

Chapter 1

Introduction

Our goal is to build a better language model for speech recognition. Language models

make word predictions to help speech recognizers differentiate between ambiguous acous-

tic input. N-gram models, the traditional language models for speech recognition, have the

weakness that they only consider local lexical dependencies when making word predic-

tions. Overcoming this problem is a fundamental challenge in language modeling. We

describe a new language model which incorporates long distance dependencies in the form

of head-dependency relationships. We aim to integrate head-dependency information

obtained from the unsupervised algorithm of [10] with traditional models. An unsuper-

vised statistical parser described herein will enable the construction of head-dependency

language models and the evaluation of their performance. We hypothesize that language

models which combine n-gram and head-dependency features will outperform traditional

models.

We have two goals. First is to demonstrate that the head-dependency relationships can

be acquired through unsupervised learning. Second, we seek to prove that these relation-

ships are useful for language modeling. Previous research on head-dependency parsers

and language models has relied on annotated corpora.

In this chapter, we first discuss the background of speech recognition, language model-

ing, and head dependency relationships. Next, we cover previous work on head-depen-

dency language models and unsupervised language learning. Finally, we outline the rest of

the thesis.

12

1.1 Background
1.1.1 Speech Recognition and Language Modeling Basics

A speech recognizer transcribes speech into text. That is, given an acoustic signal A,

the recognizer determines the word sequence W such that

V = argmaxwP(W|A) = argmaxwP(AIW) x P(W) (1.1)

The language model computes P(W) for any word sequence W. This probability can be

broken down as

N

P(wlw 2... WN) = I7P(w1iwi...wi-_) (1.2)
i= 1

To limit the number of parameters to estimate, traditional language models assume

that only a fixed number of words of left context are needed to predict the following word.

Such models are n-gram language models:

N

P(wIw 2 ... WN) = 1P(wiw,"+1...~w 1) (1.3)

i=1

N-gram models have the clear deficiency that they only consider dependencies

between adjacent words. Consider predicting the word within in the sentence Art Monk

will enter the professional football hall of fame within three years.A3-

gram, or trigram, language model would estimate the probability of within using of and

fame, neither of which strongly suggests the presence of within. The verb enter is a

much stronger predictor.

Increasing n to include within would lead to an exponential explosion of the number

of parameters and to poor statistical estimates. We instead aim to augment n-gram predic-

tions by using head-dependencies, which are discussed in more detail below.

1.1.2 Head-Dependency Relationships

13

Head-dependency relationships are one manner of capturing long-spanning dependen-

cies. Head-dependency relationships represent links between key words or phrases, known

as heads, and the dependents which augment them [6]. A head is the critical element of a

phrase. Heads themselves can be dependents of other heads. That is, head-dependencies

have recursive structure. The Riccardi et al. algorithm allows automatic head-dependency

annotation of a corpus.

yes I need to get a call placed please

Figure 1.1: Head-dependency links for an example sentence from the How May I Help
You corpus.

Figure 1.1 shows the head-dependency links chosen by the Riccardi et al. algorithm

for the sentence yes I need to get a call placed here. An arrow represents a link

from dependent to head. For example, to is a dependent of get. The head words of a sen-

tence have a tree structure. The tree's root, the head word of the whole sentence, is placed

and its dependents are need and please. Head-dependency relationships, then, extract the

most critical parts of the sentence.

There are other ways of capturing syntactic structure. A common approach is phrase

structure grammars which break sentences into syntactic constituents such as noun

phrases and verb phrases. This approach has disadvantages. First, placing words and

phrases into any number of predefined categories will require learning using an annotated

corpus. Second, introducing new nonterminall symbols increases the parameter space of

the stochastic language model. The heuristics in [10] can find head-dependencies in an

unsupervised and language-independent fashion.

1. Terminal symbols are lexical elements. A nonterminal symbol maps into sequences of terminal

and nonterminal symbols. Example of nonterminals in a phrase-structure grammar are "noun

phrase" and "verb phrase."

14

1.1.3 Head-dependency heuristics
According to [10], four characteristics indicate head-dependency information in an

unannotated corpus.

1. Word frequency: Words which occur most frequently in a corpus are less likely to

be heads.

2. Word 'complexity': In languages with phonetic orthography, such as English,

longer words can be considered more complex. Words which are neither too short nor too

long are likely to be heads.

3. Optionality: Some words, such as modifiers, are more likely to be optional in a sen-

tence. Optional words are less likely to be heads. Riccardi et al. determine whether a word

(e.g., "black") is optional by comparing the distribution of trigrams with the word in the

middle (e.g., "the black cat") to the distribution of the bigrams composed by the outer two

words in the trigrams (e.g., "the cat").

4. Distance: In general, two words which occur far apart in a sentence are less likely to

be head and dependent than two words which are close together.

By taking a weighted sum of the above metrics, Riccardi et. al produce a ranked list of

head words. With this information, they have created a deterministic head-dependency

parser.

The deterministic parser operates in two steps. First, it divides a sentence into chunks,

or phrases, based on a language's function words, which typically occur at phrase bound-

aries. In languages such as English, the right-most word in a chunk is the chunk's head

word. Other languages, such as Japanese, have the left-most word in a chunk as the head.

There are two options for parsing within a chunk. In a flat structure, every word in a chunk

15

depends on the chunk's head. In a ladder structure, every word depends on the words to its

right (in English).

a call placed a call placed

Figure 1.2: Within-chunk structures. Flat (left) and ladder (right).

Next, the head words are ranked according to the heuristics above. The word most

likely to be a head word is the head of the sentence. The procedure is repeated recursively

to the words on the left of the head, and to the words on the right of the head. The head

words of the left and right subsentences are both considered dependents of the sentence's

head word.

a call placed

need please

yes I to get

Figure 1.3: Hierarchical derivation of the sentence in Figure 1.1.

Figure 1.3 shows the derivation of the sentence, yes I need to get a call placed

pleased, according to the Riccardi et al. algorithm. Notice that there are five chunks (yes

I, need, to get, a call placed, please), whose head words are in boldface. As

Figure 1.1 on page 14 shows, a flat within chunk structure was used for this sentence.

1.1.4 Parsers
A probabilistic parser is needed to determine head-dependency derivations for unseen

sentences. It will output joint probabilities P(W,) for a word sequence W and each deriva-

tion' T. From this quantity, it is easy to get P(W).

16

P(W) = EP(W, T) (1.4)
T

The parser's probability values will be trained on a corpus annotated by the determin-

istic parser described above. We will then reestimate the probabilities with parses gener-

ated by our parser. As our parser forms part of a language model for real-time automatic

speech recognition, it must build parses incrementally from left to right as input is being

received. Our parser is discussed in detail in Chapter 4.

1.2 Previous Research
1.2.1 Link Grammars vs. Phrase Structure Grammars

In [11], Riccardi and Bangalore developed techniques to acquire phrase-structure

grammar automatically. "Phrase-grammar" language models developed based on these

techniques showed minor improvements in perplexity, a measure commonly used to eval-

uate language models [12]. In addition, [12] shows the phrase-grammar models general-

ized better on unseen data than n-gram models. As noted earlier, phrase-structure

grammars have the drawback that they require the introduction of nonterminals and an

increase in vocabulary size. Other types of grammars do not have this limitation.

Sleator and Temperly propose link grammars, which are fully lexical grammars

expressed by relationships between words [13]. Head-dependency grammars are a subset

of link grammars. Link grammars have several advantages over phrase-structure gram-

mars. They allow easier addition of vocabulary and simplified handling of exceptional

cases. De Marcken places the blame for poor performance of unsupervised grammar

acquisition on the choice of phrase-structure grammars. He argues that link grammars bet-

ter represent the structure of natural language [7].

1.2.2 Previous Attempts at Statistical Parsing

1. The terms "parse tree" and "derivation" are used interchangeably in this thesis.

17

Statistical parsers trained with supervised learning algorithms have had encouraging

results [3] [2]. Chelba and Jelinek [2] have trained a statistical head-dependency parser

with the annotated UPenn Treebank corpus. They combine their parser with an n-gram

language model. Their results show that a head-dependency model exhibits better per-

plexity results than a trigram model. Interpolating between the two leads to even better

perplexity values. Speech recognizer word accuracy also improves.

Previous attempts also used different parsing algorithms. The parser in [2] was a stack-

based shift/reduce parser. The chart parser in [3] could consider more parses efficiently,

but this parser was not applied towards speech recognition and did not have a left-to-right

restriction. PGLR parsing in [1] extends the extremely powerful LR parsing technique to

natural languages. LR parsers are shift/reduce parsers which rely on a precompiled state

machine to improve speed. PGLR research, however, has required part-of-speech labeled

text and grammars consisting of parts of speech and not lexical items. With a lexical gram-

mar, a PGLR state machine is computationally too expensive to construct. We discuss

parsing techniques in greater detail in a subsequent chapter.

1.3 Outline
The next chapter discusses preliminary statistical results which suggest that the Riccardi

et. al. heuristics will show language model improvement. Chapter 3 outlines the probabi-

listic model. Chapter 4 explains our chart parser and the techniques employed to add effi-

cient probabilistic machinery to a chart parser. Chapter 5 covers reestimation. In Chapter

6, we present and discuss our results. We conclude in the final chapter.

18

-agiG
K

'-'#f-N
--52%

>
p|j$~

4%
iM

{,~
4tW

i:54%
di?'reili.d^iew

:-d.:di;~
i~

;M
ise.4%

gh.J.46::gg 4-:4
6;:.9
m

;=

...xi.
.,,. .
g

as:, -
a

7..;..:.:s..-..
.; e,;

,,. ,..._.:.,..,;s.4-

Chapter 2

Preliminary Statistics
Experiments with n-gram models and head-dependencies learned by the Riccardi et al.

algorithm indicate that these two types of relationships complement each other. We used

mutual information to measure the suitability of various word predictors. We also calcu-

lated conditional mutual information to gauge the benefits of combining these predictors.

2.1 Mutual Information
Mutual information measures the degree of dependence between two random vari-

ables, in bits. If A and B have mutual information 1, that means that the value of B reduces

A's entropy, or the uncertainty in A's value, by one bit. This property is reflected in (2.1),

the equation for calculating mutual information. More information on mutual information

and entropy is available in [4].

I(A; B) = H(A) - H(A B) = H(B) - H(B I A) (2.1)

Conditional mutual information, I(A; B C) conveys the amount of new knowledge A's

value gives about B, or vice versa, given that C's value is already known. As (2.3) shows

one can view this measure as this gain in knowledge about A that B provides in addition to

C, or the gain in knowledge about B that A provides in addition to C.

I(A; B I C) = H(A I C) - H(A I B, C) = H(B I C) - H(B I A, C) (2.2)

I(A; B I C) = I(A; B, C) - I(A; C) = I(A, C; B) - I(B; C) (2.3)

2.2 Experimental Results

Using the How May I Help You corpusi, we calculate the predictive effects of head

words and random words in the sentence. In order to predict the effectiveness of a left-to-

right parser, we also perform some measurements which consider only words drawn from

1. How May I Help You is a database of spontaneous speech responses to the prompt "How May I Help
You?" for a call-routing application. See [5].

20

a word's left context. These measurements include the previous head word, the previous

two head words, and the previous non-head word. We compare these predictors to each

other and to n-grams, and we evaluate combining n-grams with other predictors.

Legend:
b(w) -- previous word
t(w) -- previous two words
ph(w) -- previous head (not necessarily of w)
pht(w) -- previous two heads (not necessarily of w)
pd(w) -- previous dependent (non-head word)
h(w) -- head of W
r(w) -- random other word in the sentence
pr(w) -- random word before W in the sentence
bold -- highest value in column
underline -- highest value in column among measures which consider only previous words

Table 2.1: Information Characteristics of Various Measures Compared to Bigrams

combined

A(w) I(w; A(w)) I(w; A(w) b(w)) I(w; b(w), A(w)) b(w), A(w)
improvement

over b(w) alone

b(w) 3.32 0 3.32 0%

r(w) 1.12 1.77 5.09 53%

h(w) 2.72 2.33 5.65 70%

pr(w) 1.20 1.46 4.77 44%

ph(w) 2.47 1.37 4.68 41%

pd(w) 2.53 1.08 4.39 43%

Table 2.2: Information Characteristics of Various Measures Compared to Trigrams

combined

A(w) I(w; A(w)) I(w; A(w) I t(w)) I(w; t(w), A(w)) t(w), A(w)
improvement

over t(w) alone

t(w) 4.71 0 4.71 0%

h(w) 2.72 1.68 6.40 36%

pht(w) 3.89 1.35 6.07 29%

21

N-grams display the best predictive abilities. The trigram predictor contributes 4.71

bits of information while the bigram gives 3.32 bits. Automatically acquired head words

also provide a significant amount of information: 2.72 bits. All other predictors, including

the random words, also give considerable information.

Furthermore, the experiments reveal that the information which n-grams and head-

dependencies predict is largely not redundant. Combining n-grams and head words con-

tributes 70% more information over bigrams, and 36% over trigrams. There is still a sig-

nificant information gain over n-grams when we restrict ourselves to predictors from the

left context. Combining the previous head with n-grams gives a 41% improvement over

bigrams. The previous two heads improve 29% over trigrams. These results suggest that

models which combine head-dependency information with n-grams should outperform n-

gram language models.

Previous work by Wu et al. in [15] on a Chinese annotated supports these results. Wu

et al. conclude that the closest preceding word modified by w is w's best predictor when

bigram information is already known. This predictor is similar to ph(w), and Table 2.1

reflects that ph(w) is second to pr(w) in its information gain over the bigram predictor. No

baseline corpus of random words is considered in the Wu et al. analysis.

There are limitations with our analysis. First, the Wu et al. analysis operates on a Japa-

nese corpus, and not on our English corpus. Ideally, we would like to compare our results

to those of a hand-annotated version of our corpus. More importantly, the preliminary

analysis does not measure the predictive effect of the Riccardi et al. tree structure of the

left context. Our language model will have a more sophisticated approximation of that

structure than this analysis. We expect that our actual language model predictors will be

more effective than the ones used in this chapter. Since even a random previous word pro-

22

vides considerable information (See Table 2.1.), there is good reason to expect our model

to improve upon the n-gram.

23

Chapter 3

Probabilistic Model

Our probabilistic model determines the probability of any word sequence W by summing

up the joint probabilities P(W,) for all parses T. This chapter discusses how we calculate

P(W, T), and describes a simple parser closely related to our model. The next chapter dis-

cusses a more sophisticated parser which efficiently implements our model. We begin by

defining the terms used in this chapter.

3.1 Important Terms
3.1.1 Word Parse

A word parse is a sequence of binary trees known as word parse trees, each of whose

nodes is labeled with a head word. Figure 3.1 shows a word parse consisting of four word-

parse trees.

call

like make call

I would like to make a collect call

Figure 3.1: An example word parse.

The word parse can be decomposed into two parts, a word sequence W and a parse

sequence T. W is the sequence of the labels of the leaves of the word parse plus an invisi-

ble terminating symbol < /s>. For the example in Figure 3.1, W is I would like to make a

collect call </ s>. T is the underlying structure of the word parse. HEAD(p), the head of a

word parse tree p, is the label of the root node of t ("call" for the right-most tree in Figure

24

3.1). We define FIRST(p) to be the label of the left-most leaf of p ("a" for the right-most

tree in Figure 3.1).

3.1.2 Parse Actions and Parse Stacks
A parse sequence T is a sequence of parse actions which operate on a parse stack and

an input sequence. A parse stack is a stack of word parse trees. Originally, the parse stack

is empty, and the input sequence is some word sequence W. Parse actions take place at

every time step where the first time step is zero. There are three parse actions:

1. SHIFT. Move a word from the input sequence to the top of the parse stack. The

time step is the number of words which have been shifted, and so a SHIFT action ends a

time step.

2. ADJOIN-LEFT. Pop off po and p(-1) from the parse stack, the top and second items

respectively of the parse stack. Push onto the stack a node whose left child is p-1, whose

right child is po, and whose head is HEAD(p(-l)).

3. ADJOIN-RIGHT. The same as ADJOIN_LEFT, but the head-word of the new

node is HEAD(po).

25

INPUT SEQUENCE
Time Step 0

I would like to make a collect call <IS>

SHIFT action
TIME STEP 2

would

STACK
TIME STEP 2 (continued)
ADJOIN-RIGHT action

would

I would

would like to make a collect call <IS>

like to make a collect call <IS>

INPUT SEQUENCE

like to make a collect call <IS>

SHIFT action

Figure 3.2: Time steps 0 through 2 for the word parse in Figure 3.1.

Figure 3.2 gives an example of the first few parse actions for the word parse in Figure

3.1. Time step 0 consists of only one SHIFT operation, the only possible operation at that

time step. Time step 1 also contains a lone SHIFT. At time step 2, an ADJOIN-RIGHT

26

IU
SHIFT action
TIME STEP 1

STACK

replaces the i and would leaf word parse trees with one word parse tree which adjoins

them and has head would.

There are two important parsing rules:

1. A SHIFF action is the end of a time step.

2. When the symbol </s> is shifted onto the stack, parsing ends. No parse actions are

ever taken after that point.

3.2 Computing P(W)
We compute P(W) by summing all P(W, 1) for all parse sequences T.

P(W) = JP(W, T) (3.1)
T

We can compute the word parse probability P(W, T) by the following equation:

n +1 k

P(W, T) = P(wW i_ 1 T 1) x 1P(t W _1 Ti_1W I ...t -1 (3.2)
j=1

Here, t/ is the jth parsing action taken at time step i. We employ the following equiva-

lence classifications:

P(wi JW _1T _1) = P(wilh_ n-_ ... h(-1)ho, SHIT) (3.3)

P(t Wi _1Ti_ 1wit'...tj~1) = P(tlh_(m_, ... h (ho) (3.4)

Here, ho is the head word of the stack top word parse tree, h-1 is the head word of the

second to top tree, etc. The head words of items on the stack are called exposed heads.

Words are predicted by n previous exposed heads, and parse actions are predicted by m

previous exposed heads.

3.3 Initial Estimation
We initially estimate probabilities by maximum likelihood. We compute from training

data counts of all events needed to estimate probabilities.

27

1. C(w, h(1)... h(-1)ho, SHIFT)

2. C(h_(_ 1...h(l)h, SHIFT)

3. C(ti , h_(,- _ ... h _,,ho)

4. C(h_(m 1)... h(l)ho)

We estimate not only all of these counts, but also their degenerate cases with smaller

histories. These other counts are used for backoff, discussed in the next chapter.

The actual conditional probability estimation is straightforward.

PML(AIB) = C (A,B) (3.5)
C(B)

3.4 Unseen Events
Our model must be able to make word and parse action predictions in stack configurations

unseen in training. To do so, we implement separate backoff strategies for word prediction

and parse prediction events. If the size of the history H is greater than 0,

P(wIH, SHIFT) = x(H)PML(wIH, SHIFT) + (1 - a(H))P(wCHOP(H), SHIFT) (3.6)

P(tIH) = (H)PML(tIH) + (1 - P(H))P(tjCHOP(H)) (3.7)

Here, PML is the maximum likelihood probability estimate. CHOP(H) is the history H

without its least recent item. Notice that both (3.6) and (3.7) are recursive. Their base

cases, where the size of H is zero, are below.

P(w jH, SHIFT) = PML(wIH, SHIFT) (3.8)

P(tIH) = PML(tlH) (3.9)

(3.10)

3.5 A Simple Parser
A straightforward implementation of our model is a shift-reduce parser. Its prime advan-

tage is ease of implementation and validation. Each parse for a particular word sequence

28

in a shift/reduce parser is represented by a parse stack'. We would need to maintain a

parse stack for each parse that is being considered for a particular word sequence. Consid-

ering all possible parse stacks is computationally infeasible, and so we employ a pruning

strategy.

We would like a wide variety of parses to survive pruning. Flat parses, those with very

few ADJOIN-RIGHT and ADJOIN-LEFT actions, are very similar in nature to n-grams.

Deeper parses incorporate more long-spanning dependencies than flat parses, but a deep

parse is normally less probable than a flat parse because the former involves more parse

actions. Therefore, a naive pruning strategy would contain mostly flat parses. In order to

capture the long-spanning dependencies of deep parses, we must specifically preserve

them in our pruning strategy.

We shall use the method from [2]. All parses of a word sequence will be placed into

buckets based on the total number of ADJOIN-LEFT and ADJOIN-RIGHT actions. For a

25 word sentence, then, there will be 25 buckets. The n-gram parse, which contains no

adjoin actions, would be placed in bucket 0. All parses which contain 24 adjoin actions

will be in bucket 24. We prune each bucket based on two criteria:

1. Ebucket: We only keep word parses T for which P(W T) > Ebucket , where Tmax is the
P(W, Tmax)

parse of W with the highest probability.

2. MAXbucket: Each bucket contains at most MAXbucket word parses.

In this manner, a mixture of flat and deep parses survive pruning.

1. A shift/reduce parser can operate on any context free grammar. The parser derives its name from
the two actions it supports. A shift action moves a symbol from the input sequence to the top of a
parse stack, just as the SHIFT we have defined. A reduce action takes symbols from the top of the
parse stack and replaces them with a tree headed by some non-terminal symbol. In our parser, there
are only two types of reduce actions: ADJOIN-LEFT and ADJOIN-RIGHT. We abuse notation by
not differentiating between terminal and non-terminal symbols. We can do this because our gram-
mar is fully lexical. For more information, consult [1].

29

Chapter 4

The Chart Parser

4.1 Limitations of Shift-Reduce Parsers
Shift-reduce parsers discard a great deal of information in pruning. With our probabilistic

model, only the head words of word parse trees are needed to predict words or parse

actions. Therefore, two parse stacks of the same size whose corresponding elements have

the same head words are equivalent for predictive purposes in our probabilistic model. We

will either eliminate one of these stacks in pruning, or eliminate another stack instead. Ide-

ally, though, we would merge these two stacks with dynamic programming.

Another limitation of shift-reduce parsers is their inability to process word lattices effi-

ciently. A word lattice is an acyclic directed graph which serves as a compact representa-

tion for a set of word string hypotheses. Ideally, our parser should be able to parse word

lattices while exploiting their compactness.

In this chapter, we propose a chart parser whose data structure permits dynamic pro-

gramming at the expense of the shift-reduce parser's simplicity. In order to implement our

model efficiently with a chart parser, we introduce several calculations and computational

shortcuts. We also hoped to be able to use a chart parser to implement word lattice parsing.

Due to time constraints, we decided instead to focus on single hypothesis parsing. The

result is more complex than the basic parser presented in the previous chapter.

A chart parser has a more compact representation than a shift-reduce parser, and main-

tains all possible parses in a single data structure. This approach allows dynamic program-

ming to consolidate word parse trees with the same head words. In effect, this feature

allows a chart parser to consider many more parses. Chart parsers, however, do not readily

30

produce parse stacks. Implementing the probabilistic computations required by our model,

then, is more difficult with a chart parser than with a shift/reduce parser.

4.2 Chart Parsing Overview
The fundamental data structure in a chart parser is the chart. A chart contains constituents,

or word parse trees which span a part of the input sequence. Leaf constituents have a span

of length one. Every non-leaf constituent has a span greater than length one, and it has a

left and a right subconstituent in the chart. A non-leaf node inherits its head from one of its

subconstituents. The chart keeps track of all the constituents, and which sections of the

input each constituent spans.

time

0 1 2 3

FI~a I 2(bT[C4(1
C3(a)

Figure 4.1: An example chart. The head words of each constituent are in parentheses.

Figure 4.1 shows an example chart containing four constituents. C1, C2, and C4 are

leaf constituents with heads a, b, and c respectively. C3 is a non-leaf constituent with head

a. Figure 4.1 does not show C3 's subconstituents, but it is easy to determine that they must

be C1 and C2 . By looking at the leaf constituents, we can tell this chart shows parses for

the word sequence a b c.

A chart represents several word parses simultaneously. There is no explicit representa-

tion of a parse stack, however. A word parse is a path of constituents C1, C2, ... , Ck where

- C1 has starting point 0.

- Ck has end point m, where m is the number of words in the sequence.

- For 15 i < k, the end point of C; is the starting point of Ci+1 .

31

There are two word parses in Figure 4.1. The first is the sequence of constituents C1,

C2 , C4 . The second is the sequence C3 , C4. Notice that C4 has two word parse prefixes, or

paths leading to its beginning point from 0.

Basic Chart Parsing Algorithm
The basic chart parsing algorithm requires another data structure, the agenda, which main-

tains a list of constituents scheduled for addition to the chart.

While the input sequence is not empty,

1.0 If the agenda is empty, read word i, the next word, from the input sequence and

create for that word a new leaf constituent spanning from i-i to i. Add that

constituent to the agenda.

2.0 While the agenda is not empty

2.1 Take a constituent C from the agenda.

2.2 For all constituents C' in the chart whose ending position is the same as C's

starting position

2.2.1 Perform an ADJOIN-LEFT action. Create a new constituent CL

whose left subconstituent is C', whose right subconstituent is C, and

whose head is HEAD(C'). Add CL to the agenda.

2.2.2 Perform an ADJOIN-RIGHT action. Create a new constituent CR

whose left subconstituent is C', whose right subconstituent is C, and

whose head is HEAD(C). Add CR to the agenda.

This algorithm explores all possible parses for a word sequence. Before a constituent

C is added to the chart, the algorithm builds all possible constituents for which C can be

the right subconstituent. Clearly, we cannot efficiently find all possible parses for a word

32

sequence, and so we shall augment this algorithm with a pruning strategy later in this

chapter.

4.3 Computing P(W) With a Chart Parser
Computing probabilities with a chart parser is hard because we cannot access all parse

stacks cheaply. Below, we present a framework for implementing our probability compu-

tations and show how to compute P(T, W) for all parses of a particular word sequence.

Next, we show how to obtain P(W) efficiently. We finally demonstrate how to build P(W)

incrementally when constituents are added. In subsequent sections, we outline ways to

make the parser more efficient with dynamic programming and with pruning. We also

extend the machinery in this section to implement reestimation.

4.3.1 The $ Computation
In order to simplify our calculations, we would like to store as much probability infor-

mation as possible with each constituent. In shift/reduce parsing, we could give each parse

stack a probability which changes as the stack is modified. Each constituent in a chart

parser could belong to several parse stacks, and so we cannot store all the necessary prob-

ability information inside constituents.

For a given history H of exposed heads and a constituent C, $(C, H) is the contribution

which C gives to a word parse. The history is a sequence of exposed heads preceding C,

and, by convention, the history includes C's head as well. If there are fewer previous

exposed heads in the chart than the history requires, than we fill the remaining symbols in

the history with the start symbol <s>. The length of the history needed is the maximum of

the lengths of the word and parse histories chosen. That is, it is the maximum of n and m

from (3.3) and (3.4). We shall call this quantity histsize. If we choose a model with word

and parse history sizes both two, then C4 in Figure 4.1 on page 31 has two histories: [b,

c] and [a, c]. The computation of $ is below.I

33

For a leaf constituent, CL:

1. If CL starts at position 0 in the chart, then there is only one possible history h. It has

most recent symbol HEAD(CL) and preceding symbols <s>.

$(CL, H) = P(wIH, SHIFT) (4.1)

2. Otherwise, CL does not start at 0. We will delay computing any probabilities for CL-

$(CL, H) = 1 (4.2)

For a non-leaf constituent C with left subconstituent C1 and right subconstituent

C2 :

We must account for the following events in C's $ values for a history H:

1. C1 is created. ($(C 1, H))

2. A SHIFT action occurs when C1 is on the top of the stack. (Not accounted for in

$(C2). Computed by (3.4).)

3. The next word is FIRST(C2), which is pushed on top of C1 on the stack. (Not

accounted for in $(C2). Computed by (3.3).)

4. C2 is created. ($(C2))

5. C1 and C2 are adjoined by an action t (ADJOIN-LEFT or ADJOIN-RIGHT). (Com-

puted by (3.4).) The history H' is a history of size histsize grown from H with C2 's head

added on.

$(C) = $(C 1, H) x P(SHIFTIH) x P(FIRST(C 2) H, SHIFT) x $(C 2 , H') x P(tfH') (4.3)

The $ value, then, stores part of a constituent's contribution to the probability of a

word parse. It contains all of the word and parse actions which take place within the con-

1. We shall assume that all histories stored in the parser are of length histsize. If a history is longer
than is required for a specific probability computation, then we shall assume that the history is auto-
matically truncated to the appropriate length before probabilities are computed.

34

stituent, but none which take place outside (except for the case in which the constituent

starts at 0.) In the case of constituents starting at 0, there is only one history H, and $(C, H)

is the probability of the word parse consisting of the single constituent C. We next deter-

mine how to calculate P(W) from the $ values.

4.3.2 Getting P(W) from $
We shall compute P(W) by summing all P(W, T) for all parse stacks. We cannot deter-

mine P(W, T) directly from the $ values as the $ values do not contain the adjacency prob-

abilities of items on the parse stack. The chart parser's representation makes it most

efficient for us to sum up P(W, T) for classes of parses rather than individual parses. Since

we are interested most in P(W), and not P(W, 7), there is no harm in computing word parse

probabilities in bunches.

At each time step i, for all histories H which include the heads of constituents ending

at i, we shall memoize the value Pi,H. This is the probability of all word parses ending with

history H at position i. We shall also define C(i, j, H) to be the set of all constituents span-

ning from i to j with a $ value defined for H. We shall compute the P values as follows:

P1,H = ($ (C, H)) x P(SHIFTIH) (4.4)
C e C(O, 1, H)

(n
n+ 1H C C + (C)+ (, H'C P(FIRST(C)IH', SHIFT)$(C,H x (4.5)

(E C(, n+ 1, H) H'" C E C(i, n + 1, H)

P(SHIFTIH)

(n

= E C(+ 1, H)$(C + P , P(H+'|H', SHIFT) C (+ (CH))x (4.6)

P(SHIFTIH)

Equation (4.4) computes P for position 1 of a sentence. The equation is trivial as there

is only one possible word-parse from 0 to 1, a constituent from 0 to 1. The computation of

P values for subsequent positions in the sentence cannot rely on $ values alone. As (4.5)

35

and (4.6) show, we look at all constituents ending at position n+1 when computing P val-

ues at position n+1. For such constituents starting at 0, we need only include their $ val-

ues. For each constituent C not starting at 0, we must account for all word parses

containing C, where C starts at position i. For each history IT leading up to C's head, we

have Pi, I, the sum of all word parses before C with ending history H'. We multiply this

value by word prediction probability of C's first word, and then we multiply by C's $ value

to include probability computations internal to C. Notice that all of the above equations

include P(SHIFT I H). Recall that all time steps are completed by SHIFT actions.

To obtain P(W) for a n word sentence, we simply sum up Pn, H for all H which can end

at position n.

4.3.3 The p Computation
Each time a constituent C is added to the chart, we shall increment all appropriate P

counters. According to (4.6), we also must add the prefix and adjacency probabilities for C

for each history H' preceding the start of C. Furthermore, we repeat this computation for

all constituents which start at C's position. Much of this computation is unnecessary. All

constituents which start at position i are preceded by the same set of histories. We can,

then, make the computation in (4.6) more efficient by memoizing prefix and adjacency

probabilities.

We shall denote a history H's set of predecessors ending at position i as PRED(H, i).

We can rewrite (4.6)

Pn+1, H= $(C) + $ I (C, H) -p(w,,1, i, PRED(H, i)) x (4.7)
CceC(0, n+1, H) i = CceC(i, n+1, H)

P(SHIFT H)

where

p(w, i, H) = P, H .P(w IH, SHIFT)
H e H

36

The p value needs to be computed only once for a given set of parameters. Subsequent

computations can be looked up in constant time. One concern, though, is the complexity

of computing PRED(H, i). Actually, this set can be uniquely represented by the pair (H_1,

i) where H_1 is H with its most recent item chopped off. Therefore, PRED(H, i) can be

computed in constant time.

4.4 Dynamic Programming
Since our probabilistic model requires only exposed heads, and not a complete parse

action history, we can consolidate different constituents with the same exposed heads. If

two constituents have the same start position, the same end position, and the same head

symbol, then they are identical with respect to our probabilistic model. Once identical

constituents are added to the chart, then further identical constituents are created from

ADJOIN-LEFI and ADJOIN-RIGHT actions. We identify identical constituents and con-

solidate them in the agenda before they are added to the chart.

We shall represent our agenda as a heap. Constituents with shorter spans are at the top

of the heap. Constituents of the same length are sorted with respect to their head word.

Once added to the chart, a constituent C will produce other constituents for addition to the

agenda, but all of these constituents must be longer than C. By keeping shorter constitu-

ents at the top, we ensure that all constituents identical to Ctop, the top item of the heap,

are already in the agenda.

We consolidate constituents when we extract an item from the agenda.

1.0 Let Ctop be the top item of the agenda. Pop the agenda.

2.0 While the top item C' of the agenda has the same head, start position, and end

position as Ctop,

2.1 For all H of Ctop, increase $(Ctop, H) by $(C', H).1

37

2.2 Pop the agenda.

3.0 Add Ctop to the chart.

4.5 Efficiency Considerations
Because of backoff, all possible parses of a particular word sequence have nonzero proba-

billity. Even with dynamic programming, a sentence of length n would generate 1(n 3)

constituents. Each constituent would have e(nhistsize) histories associated with it. It is

essential to eliminate extremely unlikely parses from consideration.

In our parser, we prune in three stages. First, we prune at the agenda level when con-

stituents are being requested from the agenda. Second, we undertake an additional pruning

pass at the end of each time step. Finally, we eliminate low-probability histories associated

with each constituent. The first step prevents the generation of several constituents which

we would eventually prune out in the second step. We perform the second step to keep

constant the number of new constituents added at each time step. For these two steps, we

prune based on P(C), the probability of all word parses whose last item is constituent C.

The computation of this value is discussed in Appendix A. We perform the final pruning

step so that the running time will be independent of histsize.

4.5.1 Agenda Pruning

1. Since C' and Ctop have the same head word and the same start position, they are guaranteed to
have the same set of histories.

38

Ia Ia Ia

a a a

b b b

a a a

a

a dynamic agenda

b PWb P
programming pruning

b

C

C C C

C

Figure 4.2: Dynamic programming and agenda pruning on constituents added at a
particular time step.

Figure 4.2 illustrates the relationship between dynamic programming and agenda

pruning. Dynamic programming ensures that there is only one constituent with a particu-

lar head over a particular span. Agenda pruning eliminates low probability constituents

(such as a b constituent in the figure) which survive dynamic programming.

We perform pruning separately on constituents of different lengths. Recall that the

agenda is a heap in which shorter constituents are at the top. All constituents in the agenda

end at the current time step. For each constituent length 1, we select from all constituents C

of length 1 the one which maximizes P(C). We call this constituent C1*. Finally, we prune

for each length 1 according to two parameters:

1. Eagenda: We keep C only if P(C) > aed
P(1) aed

2. MAXagenda: At most this number of constituents of length 1 are kept.

4.5.2 Chart Pruning

39

Once all constituents are added to the chart for a particular time step, we perform

another pruning pass over all constituents ending at that time step. Our two parameters are

similar to those we used for agenda pruning.

1. Echart: We keep C only if P(C) > Echart where C* is the constituent which maximizes
P(C)

P(C) over all C ending at the current time step.

2. MAXchart: At most this number of constituents are kept.

4.5.3 History Pruning
We keep at most MAXhist histories for each constituent. We keep the histories H for

which the value P(C, H) is the highest, where P(C, H) is the probability of all word parses

ending in constituent C with history H. Computing P(C, H) for a constituent starting at

position i is straightforward:

P(C,H) = p(wjo,i,PRED(H))x$(C,H) (4.8)

4.5.4 Normalization
We normalize probability values after all pruning steps at time step i by multiplying all

Pi$ values by where P1 is computed after pruning. Ptotal is the probability of all word

parses at time i before pruning.

4.6 Software Validation
Our complicated computations and pruning strategy made the parser extremely difficult to

validate. The chart data structure was monolithic. It was not possible to break it into test-

able components. We had to test the whole chart parser as a unit. It was possible to design

simple controlled experiments for the chart. The pruning strategy, however, only operated

on more complicated examples, and so systematic validation was not possible.

We validated our parser's ability to handle flat parses by passing in n-gram grammars

(100% SHIFT probability) and comparing them to known results. We tested deeper parses

with simple test cases. To test pruning, we compared probability values from unpruned

40

and pruned parses, and verified that the differences were reasonable. Finally, we added

runtime assertions as sanity checks to warn of unsound probability values. These asser-

tions do not assure program correctness. No validation strategy does. By placing them in

parts of the code which are most error prone, and by allowing them to run on several thou-

sand sentences through many reestimation iterations, we are confident that we eliminated

the critical bugs.

4.7 Conclusion
In this chapter, we have outlined a chart parser to implement our probabilistic model.

Because the model is based on a shift-reduce framework, we have to do a significant

amount of book keeping to make it work in a chart parser. The chart parser is much more

complex, but its potential to store a greater number of parses and to handle word lattices

may make up for this complexity.

41

Chapter 5

Reestimation
This chapter discusses our use of the expectation maximization (EM) method for reesti-

mating probabilities. The counts initially used to compute our maximum likelihood proba-

bilities are reestimated based on all parses which survive pruning. The manner of

computing probabilities from the counts does not change. Likewise, backoff is unchanged.

We must, however, add new machinery to obtain reestimated counts from the parser.

We begin with an overview of EM reestimation and then proceed to discuss an imple-

mentation of EM with our chart parser.

5.1 EM Overview
The E part of EM stands for "expectation." For each sentence in the reestimation set, the

counter for an event is incremented by the expected number of times that event occurs

over all parses for the event. That is, for each time an event A occurs in parse T of a word

sequence W, C(A) is incremented by P(T I W).

The M part stands for "maximization." We are attempting to maximize the expecta-

tions of observed events. We can do so by continuing to estimate pre-backoff probabilities

by maximum likelihood.

5.2 EM Implementation
Implementing EM with a shift-reduce parser is straightforward. For a chart parser, reesti-

mation is more complicated. In a chart parser based EM reestimation, we store counts for

the following events for each constituent C:

1. The adjacency of C to its left context. For all left histories H, C(SHIFT, H) and

C(FIRST(C), H, SHIFT) must be incremented.

42

2. The occurrence of the parse actions internal to C. The counts for all adjoin actions

and all stack histories much also be updated.

3. The adjacency of C to its right context. This part is handled when a constituent in

C's right context is processed by the reestimation algorithm.

All of these events must be weighted by P(all word-parses containing C and H) for all H.
P(W)

We must calculate this value efficiently. We described in the previous chapter how to cal-

culate P(W). We obtain the probability of all word parses containing C and H with the fol-

lowing equation:

P(all word parses containing C and H) = P(all word-parse actions preceding C, ending in H) (5.1)
x $(C, H) x P(all word-parse actions after C and H)

The P computations help us determine the probability of all word parses preceding C,

and the probability of C's adjacency to those word parses. The $ computation provides the

probability of all word parse actions internal to C. What's currently missing is the proba-

bility of all word parse actions which can follow C.

5.2.1 The R Computation
We shall define Ri, H to be the probability of all word parse actions beginning at posi-

tion i and preceded by history H. The following algorithm calculates R after all the parser

has finished running on a particular input sequence.

1.0 For all constituents C, in descending order of start position.

1.1 All R are initially zero.

1.2 Let start be the start position of C, and end be the end position.

1.3 If no constituents begin at end,

1.3.1 For all H immediately preceding C, let H' be the corresponding his-

tory for C, and increment Rstart, H by P(FIRST(C)IH) - $(C, H').

1.4 If there are constituents beginning at end,

43

1.4.1 For all H immediately preceding C, let H' be the corresponding his-

tory for C, and increment Rstart, H by P(FIRST(C)IH) $(C, H') - Rend. H'

5.2.2 Updating Counts
The R value allows us easily to update all counts used for probability estimation. To do

so, we introduce the following helper functions:

- INCSTACKCOUNT(H, weight): Increases by weight the number of times history

H is on the top of the stack.

- INCWORDCOUNT(w, H, weight): Increases by weight the number of times the

word w is shifted from the front of the input sequence to the top of the stack when H is on

top of the stack.

* INCPARSECOUNT(t, H, weight): Increases by weight the number of times parse

action t occurs when H is on top of the stack.

When we say "H is on top of the stack," we mean that the top histsize elements in the

stack correspond to the items in H.

The algorithm for computing reestimation counts is below. For each constituent C in

the chart after a word sequence W has been parsed,

1.0 Let start be C's start position, and end be C's end position.

2.0 For all histories H which precede start,

2.1 Let H' be the corresponding history of C.

2.2 If C starts at 0, let prev be 1.

2.3 If C does not start at 0, let prev be pstart, H -P(FIRST(C)IH)

2.4 If no constituents start at end, let weight be prev x $(C, H')
P(W)

44

2.5 If constituents do start at end, let weight be

prev x $(C, H') x P(SHIFTIH') x Rend, H'

P(W)

2.6 INCPARSECOUNT(SHIFT, H, weight)

2.7 INCWORDCOUNT(FIRST(C), H, weight)

2.8 INTERNALINCPROBS(C, H, weight)

Above, steps 2.6 and 2.7 account for C's being adjacent to its left context. The internal

event counts, including counts for all stack events, is left to the procedure

INTERNALINCPROBS, listed below.

INTERNALINCPROBS(C, H, weight)

1.0 Once again, let I' be the corresponding history of C.

2.0 INCSTACKCOUNT(H', weight)

3.0 If C is a leaf constituent, return. Otherwise, continue.

4.0 Let CL be C's left child, and CR be C's right child.

5.0 INTERNALINCPROBS(CL, H, weight)

6.0 Let HL be the history of CL corresponding to H. INCPARSECOUNT(SHIFT,

HL, weight).

7.0 INCWORDCOUNT(FIRST(CR), HL, weight)

8.0 INTERNALINCPROBS(CR, HL, weight)

9.0 Let HR be the history of CR corresponding to HL. INCPARSECOUNT(t, HR,

weight). Here, t is either ADJOIN-LEFT or ADJOIN-RIGHT, whichever was used

to form C.

45

5.3 Conclusion
EM reestimation with the chart parser utilizes the chart parser's data structures and com-

putations. We only add the R computation. As with parsing, reestimation is also signifi-

cantly more complicated with a chart parser than with a shift/reduce parser.

46

liipiiiiT
M

igif||W
allem

ilm
anim

islatiff14111tfei%
%

'M
.frM

ifeM
eV

W
y61~;-16igidinkel+

1iN
M

dM
iiayesi-

Chapter 6

Results

6.1 Head-Dependency Model Results
6.1.1 Perplexity Results
Our shift-reduce reestimation algorithm produces perplexity results which give slight

improvement over the bigram. Interpolation with a bigram model yields a 1.1% improve-

ment in perplexity over the bigram. Reestimating with the chart parser, however, causes no

decrease in perplexity, but interpolation gives a small improvement. Our results are in

Table 6.1.

Table 6.1: Perplexity results.

Test
Language Model Training Set Test set interpolated

Bigram 16.96 19.99 19.99

Initial HD Model (chart) 29.59 22.53 19.99

Initial HD Model (S/R) 19.47 22.56 19.99

Chart Reestimated (5) HD (chart parsed) 17.09 20.04 19.83

Chart Reestimated (5) HD (S/R parsed) 17.09 20.05 19.84

S/R Reestimated (6) HD (chart parsed) 16.85 19.89 19.78

S/R Reestimated HD (6) (S/R parsed) 16.85 19.90 19.79

Notice that shift-reduce parsing and chart parsing of a particular model yield very sim-

ilar results. In each case, the perplexity from the shift-reduce parser is very slightly higher

than that of the chart parser. Reestimating with a shift-reduce parser, however, causes a

much greater improvement in perplexity. Perplexity numbers from chart-based reestima-

tion appear to converge to a value slightly higher than the bigram perplexity. Shift-based

reestimation results in a perplexity drop of 0.09, or 0.45%. Interpolation causes an overall

48

perplexity drop of 0.21, or 1.1% with a shift-reduce reestimated model. Interpolating the

bigram with the chart-reestimated model gives a 0.8% improvement over the bigram.

Time constraints limited the number of tests we could run. Ideally, we would have

experimented with a two item history model for comparison to a trigram model. Trigrams

are more commonly used in speech recognition than bigrams, and the Chelba/Jelinek

model was trigram based. We also did not have time to experiment with the "ladder"

within-chunk training scheme described in the first chapter. We employed a flat within-

chunk scheme instead. Finally, we were unable to test our results on different corpora.

6.1.2 Word Accuracy Results
With interpolation and shift-reduce reestimation, we achieved 0.3% improvement in

word accuracy over the bigram.

6.2 Comparison to Chelba/Jelinek Results
Our perplexity improvements were not as strong as those of Chelba and Jelinek. On an

annotated version of the Switchboard corpus1 , they demonstrated 4.7% perplexity

improvement and a 0.8% word accuracy improvement.

6.3 Analysis
Our chart parser produces lower perplexity numbers on a given model than our shift-

reduce parser, but the latter produces better results through reestimation. We believe that

the chart parser is more likely to converge to a local maximum through reestimation than

the shift-reduce parser. In this case, the local maximum appears to be the bigram model.

The chart reestimated models are very similar to the bigram model, and so they demon-

strate a smaller improvement through interpolation. The shift-reduce models are less simi-

lar to the bigram, and so perplexity results improve with and without interpolation.

1. Switchboard is an unconstrained speech corpus.

49

Why does the chart parser converge to the bigram? N-gram parses are the flattest pos-

sible parses. They have the fewest parse actions, and so they have higher parse probabili-

ties. A good pruning strategy will have to ensure that the overall probability of a sentence

does not get overrun by the probabilities of the flattest parses. The shift-reduce parser

appears to differ to a greater degree from the n-gram model. We believe that the shift-

reduce parser's pruning strategy is more successful at preserving deeper parses than the

chart parser's.

50

n a u
awaren

a

Chapter 7

Conclusion

7.1 Automatic Grammar Acquisition

Through the Riccardi/Bangalore automatic grammar acquisition scheme and the methods

described in this thesis, we demonstrated a small improvement in perplexity and word

accuracy over n-gram models. We do not achieve the results of the supervised algorithm in

[2]. Our information theoretic measures, however, do indicate that we should achieve a

significant improvement over n-grams. Although our own results do not exhibit a large

gain over bigram models, the information theoretic measures indicate that a refinement of

our approach may produce more significant improvements.

At this time, then, it is not possible to draw a firm conclusion on the suitability of Ric-

cardi/Bangalore head-dependencies for language modeling. While our own work reveals a

very small improvement, there is still hope that our work may be tuned to yield better

results.

7.2 Chart Parsing in a Head-Dependency Language Model
While we do demonstrate that it is possible to implement the Chelba/Jelinek model effi-

ciently with a chart parser, our results prevent our drawing a conclusion on the chart

parser's suitability for language modeling. While the chart parser did not yield results as

good as those of the shift-reduce parser, the former did show some improvement with a

new pruning strategy which has yet to be fine tuned.

Why did the shift-reduce parser outperform the chart parser? In particular, why did the

latter converge towards flatter parses. The two primary differences between the parsers are

the presence of dynamic programming and the pruning strategy. One would expect

dynamic programming to help deeper parses relative to flatter ones. Without dynamic pro-

52

gramming, the contribution of a particular deep parse may be entirely ignored. The prun-

ing strategies of the two models were significantly different, because imposing the pruning

scheme from [2] on a chart parser would have been extraordinarily difficult. Because of

time constraints, we did not have time to study different pruning strategies systematically.

A potentially discouraging feature of the chart parser is its extraordinary complexity

relative to that of a shift-reduce parser. Bugs were much more frequent and harder to find

in the chart parser, and validation was much more difficult. More time and greater care are

needed to implement a chart parser.

At this time, it is too early to conclude whether a chart parser is suitable for language

modeling. Considerably more work needs to be done if we are to develop a chart parser for

language modeling. At this time, we can only say that there is still potential for the chart

parser to improve through further research.

7.3 Future Work
As mentioned above, one major difference between our chart parser and our shift-reduce

parser is the pruning strategy. Further exploration of pruning strategies both for the shift-

reduce and chart parsers could produce better results more in line with the information

theoretic measures in Chapter 2. In particular, any pruning strategy will have to combat the

natural tendency to select flatter parses over deeper ones. As the chart parser is more com-

plicated and is achieving poorer results currently, a more systematic exploration of chart

parser pruning strategies would be particularly enlightening.

We would also like to have explored whether one can use a probabilistic head-depen-

dency chart parser to process word lattices efficiently. Our own probabilistic model, prun-

ing strategy, and chart parsing code base may or may not be appropriate for word lattices.

Due to time constraints, we abandoned work in this area.

53

7.4 Summary
In summary, we conclude that automatically acquired head-dependency language models

demonstrate minor improvements over n-grams. Our models also have the potential to

demonstrate further improvements. Chart parsing may or may not be a viable option for

language modeling, but they do have potential. Further research needs to be done in prun-

ing strategies, and perhaps also in parsing word lattices.

54

55

Appendix A

Computing P(C)
P(C) is the probability of all word-parses starting at 0 and ending with constituent C. If

C starts at position 0, then we can obtain P(C) directly from C's $ values. (Since C's prior

history is just the START symbol, it actually has only one history.)

P(C) = $ (C, H)
H for C

(A.1)

If C starts at nonzero position i, it is straightforward to derive P(C) from the p compu-

tation:

P(C) = $ 4(C, H) - p(wi, , i, PRED(H, i))
H for C

(A.2)

56

References
[1] A. V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Techniques, and Tools,

Addison-Wesley, Reading, MA,1988.
[2] C. Chelba and F. Jelinek, "Refinement of a structured language model," ICAPR, 1998.
[3] M. J. Collins, "A new statistical parser based on bigram lexical dependencies," Pro-

ceedings of the 34th Annual Meeting of the Association for Computation Linguistics,
pages 184-191, Santa Cruz, California, 1996.

[4] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley, 1991.
[5] A. L. Gorin, G. Riccardi, and J. G. Wright, "How May I Help You," Speech Commu-

nication, pages 113-127, 23, 1997.
[6] R. Hudson, English Word Grammar, Blackwell, Cambridge, MA, 1991.
[7] C. de Marcken, "On the unsupervised induction of phrase-structure grammars," 3rd

Workshop on Very Large Corpora, 1995.
[8] K. Inui, V. Sornlertlamvanich, H. Tanaka, and T. Tokunaga, "A new formalization of

probabilistic GLR parsing," Proceedings of International Workshop on Parsing Tech-
nologies, 1997.

[9] F. Jelinek, Statistical Methods For Speech Recognition, MIT Press, Cambridge, MA,
1997.

[10] G. Riccardi, S. Bangalore and P. D. Sarin, "Learning Head-Dependency Relations
from Unannotated Corpora," 1999.

[11] G. Riccardi and S. Bangalore, phrase-grammar paper.
[12] P. D. Sarin, unpublished, 1998.
[13] Sleator and Temperly, link grammar paper, cmu.
[14] M. Tomita, editor, Generalized LR Parsing, Kluwer Academic Publishers, 1991.
[15] D. Wu, Z. Jun, and S. Zhifang, "An information-theoretic empirical analysis of

dependency-based feature types for word prediction models," EMNLPVLC-99, 1999.

58

