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Abstract

This thesis evaluates the performance of exception handling services operating in
multi-agent systems. The hypothesis is that agent systems with exception handling
services will outperform agent systems where each individual agent detect and re-
solve errors on their own. Agents communicate using the Contract Net Protocol
[16, 3]. The experiments focused on one exception, namely "agent death". Four
configurations of agent systems have been simulated under three exception handling
strategies (Simple Survivalist, Simple Citizen, Complex Citizen) and one base case

(no exceptions). The results showed that exception handling service is beneficial to
agent system performance in the average case. The result was quite remarkable in
the long task case. However, system performance under exception handling service is
not very consistent. Future work is required to resolve the consistency problem.

Thesis Supervisor: Chrysanthos Dellarocas
Title: Douglas Drane Career Development Assistant Professor of Management
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Chapter 1

Introduction

1.1 The complexity in open multi-agent systems

Software agents often work together to carry out complicated task execution. In a

system where a lot of interaction among different components persist, there tend to

be high complexity within. Solving errors once they occur in multi-agent systems,

thus becomes an arduous task. Agents can die without a warning, resources can be

taken up by idle agents, deadlock can occur in the system, communication links can

break down, for instance. The problem poses a serious threat in open multi-agent

systems, where agents with different implementations communicate and coordinate.

Due the variety and complexity of these problems, agents in dynamic systems have

to be equipped with their own problem solving strategies, which has made imple-

menting agents a complicated effort. We have hypothesized that these exceptions

can be resolved much more efficiently if they are handled by the appropriate system

component.
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1.2 Coordination Mechanism: The Contract-Net

Protocol

In an environment with limited resources, agents must coordinate their activities with

each other to further their own interests or satisfy group goals [6]. Therefore, agents

in a dynamic society need a common protocol in order to coordinate with each other.

The Contract Net Protocol (CNP) [16, 3] was originally developed for use in dis-

tributed sensor systems. The Protocol consists of contractor agents and subcontrac-

tor agents. When a contractor is assigned a task that it does not have the ability

to carry out, it announces the task qualification to a system of agents. Agents who

qualify for the task and are free to do the job will submit bids to the contractor.

When the expiration time of the task announcement has been reached, the contrac-

tor then reviews the bids and awards the task to the agent with the most promising

qualifications. If no bids have been received after the task announcement expires,

the contractor may wait for a time interval before reinitiating the bidding process.

Waiting before re-announcing the task increases the chance of agents submitting bids

because it allows qualified, but busy, agents to finish executing their tasks and be-

come available for bidding. If a subcontractor is assigned a task that is composed of

subtasks which it does not have the skills to complete, it takes the role of a contractor

agent and begin the search for qualifying agents.

Because it serves as a foundation of many other coordination protocols, the Con-

tract Net is one of the most important paradigms developed in distributed artificial

intelligence(DAI). The agents in this experiment thus coordinate under this protocol.

1.2.1 Extension to the Contract Net Protocol

In order to design experiments for this thesis, and because it has not been specified in

the original paper [16, 3], some assumptions have to be made regarding the contract

9



net protocol. They are listed below:

1. Subcontractors can be involved in negotiation of only one task at a time, and

can only execute one task at a time.

2. When a subcontractor is waiting for any sort of response from the contractor

during negotiation phase, if the waiting period has passed and no response has

been received, then the subcontractor can abandon the negotiation and free up

itself.

Figure 1-1 outlines the Contract Net Protocol.

1.3 Approaches to Tolerate Failure

There have been several attempts to come up with the most effective approach to

handle exceptions in multi-agent systems. (See Chapter 4 on related works.) Most

of the current work on exception handling under the Contract Net Protocol are ori-

ented towards solving domain-specific problems [14, 17]. This thesis, on the other

hand, focuses on generic exception handling (non-domain-specific). Two approaches

to tolerate failure are presented below: one is a classical approach from the creators

of the CNP [3], the other is the approach that forms the hypothesis of this thesis.

1.3.1 Survivalist Agents: Self-contained Agents

Survivalist agents have their own error detection and resolution mechanisms. Some

agents have prevention-avoidance mechanisms built-in to their coordination protocol

[17]. While it results in effective exception handling capabilities, survivalist agents are

complicated to implement due to the extra exception handling component. Further-

more, message overhead problems might arise due to messages sent by each survivalist

agents while performing detection and prevention mechanisms.

Originally, survivalist agents operating under the CNP adopt the timeout-retry mech-

anism when faced with an error. This mechanism is the simplest form of exception

10



Contractor

Request for a list of
qualified agents

Abort task

Announce task to qualified agents

Collect bids

Bid Collection Timeout

If no bids received, reannounce task.

Otherwise, award task to the best bidder-

Wait for result

Collect result

Matchmaker

Send null list
no agent qualifies)

or

fL Send list of qualified agents

(if

Subcontractor

Send bid

Wait fbr award

Execute Task

Return result

Figure 1-1: The Contract Net Protocol
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handling. An agent detects an error by simply waiting for a reasonable amount of

time, if nothing happens (when it is supposed to), then the agent assumes that there

has been an error. The resolution is to restart the protocol again.

To illustrate the mechanism in terms of the CNP, take for example, an contractor

agent who is waiting for the result from its subcontractor agent. If the deadline for

task completion that was promised by the subcontractor has passed, then the con-

tractor assumes that the result will never arrive (due to the subcontractor's death,

communication failure, etc.). The contractor simply restarts the process of finding

the next available and eligible subcontractor.

1.3.2 Citizen Agents: Systems with Exception Handling Ser-

vice

There is a special class of software agents that is used to anticipate, avoid, detect, and

resolve conflicts among multiple agents in the system called the exception handling

(EH) agents. These agents detect problems in the system and prescribe solutions by

accessing a knowledge base of possible solutions to various problems. EH agents also

anticipate exceptions and adjust the infrastructure to avoid them. Klein and Dellaro-

cas [8] have hypothesized that systems with multiple agents can perform better with

citizen agents using shared exception handling services (provided by EH agents) than

survivalist agents (those without the help of EH agents).

Citizen agents operate in systems that include EH agents. The implementation of a

citizen agent does not necessarily include the exception handling component, unlike

the case of a survivalist agent. Nevertheless, citizen agents need to be able to com-

municate with EH agents in order to exchange diagnostic information, and receive

instructions should an exception arise. For a detailed description of the architecture

of the exception handling service, see [8] and [1].
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Exception Handler

Send pol s

Receive Poll Receive Poll

Wait for responses

Send response Timeout waiting for responses Send response

If receive response
set next polling time

If died, If died,
then no response then no response

otherwise, depending on the level of
exception handling, carry out

resolution accordingly

Figure 1-2: General Exception Handling Service - Agent Death Exception

Figure 1-2 outlines the general exception handling service for the agent death ex-

ception.

1.4 Thesis Goal

This thesis attempts to identify interesting regions within a design space of the Con-

tract Net marketplaces, and explore the effects of exception handling service for each

region. Our hypothesis is that the exception handling service will improve the per-

formance of multi-agent systems. The parameters that compose the design space are

explained in Chapter 2. The results will be a potentially useful compilation of the

different regions within a design space of the CNP agent community, and an analysis

of the performance of survivalist versus citizen agents in those regions.
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1.5 Outline

The rest of the thesis is organized as follows: chapter 2 describes the rationale of the

experiment design; chapter 3 includes the evaluation criteria and outline the results

and the analysis; contributions to related work and future extensions are discussed in

chapters 4 and 5, respectively.
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Chapter 2

Experiment Design

2.1 Survey of Multi-Agent Systems Domain

The experiments in this thesis are designed in the attempt to resemble existing multi-

agent systems. In order to accomplish the intention above, several literatures have

been reviewed to explore the possible domains of agent marketplaces. Currently, there

are four major domains: electronic commerce, information servers, supply chain, and

virtual enterprise. Each of which is described below:

2.1.1 Electronic Commerce

Activities in the electronic commerce domain comprise of one-to-one on-line purchase

transactions, possibly with an extended series of interactions to carry on a negotiation.

Customers (contractors) initiate the purchase transaction, with the requirements for

purchase (i.e. maximum price requirement, quality of goods). Retailers (subcon-

tractors) reply with the details of their products (i.e. lowest price estimate). The

contractor can then pick the most desirable subcontractor, if there is any. Otherwise,

the contractor can re-announce the purchase transaction in the hope that additional

subcontractors will reply, or existing subcontractors will lower their prices (or increase

product quality, etc.). Once a subcontractor is chosen to engage in transaction, the

task is a simple exchange of money and goods. Task decomposition trees within this

15



domain are one level deep with only one branch. Each contractor and subcontractor

can be modelled as an agent, whose goal is to complete purchase transactions ac-

cording to some constraints. Due to the distributed nature of the internet, there are

currently a large number of on-line customers and retailers.

2.1.2 Information Servers

In this domain, customers (contractors) request information from web servers (sub-

contractors). The tasks are simply information retrieval activities. Web servers

(which provide the information) have largely unique capabilities, and handle a large

number of short tasks. The task structure for this domain has depth of one, and

can have many leaf tasks. The parent task, which is to analyze information, takes a

moderate amount of processing time. The leaf tasks, which are purely information

retrieval, take up much less processing time. Since there are not that many qualified

subcontractors, and because subcontractors can only process one task at a time (see

section 1.2.1), the contractor needs to wait long enough for bids from any potentially

busy subcontractor.

2.1.3 Supply Chain

The supply chain model consists of agents delivering products from suppliers to cus-

tomers. These products can be used as inputs for some other larger, more complicated

products, as in the case of manufacturing shop floor control[9]. On the other hand, the

purpose of delivery can be just to transport goods to consumers, as in transportation

scheduling. The tasks in this model consists of relatively large tasks in high volumes.

The task decomposition trees have multiple levels (since the nature of the tasks in

this model is concerned with transporting objects from source nodes, which can be

more than two levels from the destination node), and a small number of branches

(since there is not much variety in the source nodes).

16



2.1.4 Virtual Enterprise

This domain refers to a type of agent community where a vast number of heteroge-

neous agents coordinate (potentially on-line) in a virtual organization to carry out

complicated tasks. Examples of applications in this domain are coalition operations,

rescue operations, financial institutions and large scale collaborative designs, for in-

stance. Tasks in this model can include subtasks which belong to any of the domains

mentioned above. Task completion times range in size from small (10-20 times com-

munication delay) to large (300-500 times communication delay). Task decomposition

trees also range in size from moderate to large in both depth and breadth.

2.2 Exception Handling Strategy

We only consider the "agent death" exception. The reason for selecting this particu-

lar type of exception is that it is domain-independent, is fairly common among agent

systems, and poses a significant performance degradation.

The basis for these exception handling strategies are based on the survey of ap-

proaches to tolerate failure in section 1.3.

2.2.1 Survivalist Strategy

In this strategy, each agent avoids and resolves exceptions on its own, using timeout-

retry mechanism. We tested the case of Simple Survivalist. In this case, if a

subcontractor does not deliver results by the deadline set by a contractor, the con-

tractor simply restarts the contract.

2.2.2 Citizen Strategy

Citizen agents rely on central monitoring agent(s) (Exception Handling (EH) Agents)

to detect and resolve errors. EH Agents can also prevent and avoid exceptions in

the system. This thesis will focus only on detecting and resolving errors, and not

17



on prevention or avoidance. The following are two levels of exception handling for

citizen agents:

I Simple Citizen: When the exception handler detects an agent death, it instructs

the corresponding contractor and subcontractor to abort or re-announce prop-

erly in order to avoid abandoned or wasted tasks.

II Complex Citizen: Once an agent dies, the exception handler:

" Creates a proxy agent for every subcontractor (if any) of the dead agent.

The proxy agent should have the same skills as the subcontractor to which

it correspond.

" Instructs the subcontractors of the dead agent (if any) to send the results

to their corresponding proxy agents.

" Informs the dead agent's contractor (if any) to reannounce.

See Appendix A for more details on different exceptions, and their detection-

resolution mechanisms.

2.3 Experiment Parameters

From the survey in section 2.1, we can extract several important features of multi-

agent systems. General characteristics of a multi-agent system can be defined using

three independent parameters:

2.3.1 Task Tree Topology

Each contractor agent is assigned a task at the beginning of each experiment. Each

task that an agent has to execute is represented by a tree. The structure of the tree

represents the complexity of the task (ie. how many subtasks are needed to complete

the whole task, and how much dependency exists among the subtasks). There are both

vertical and horizontal dependencies among subtasks in a task decomposition tree.

18



Since the agent death exception have the most impact on tasks that are vertically-

related, the experiments in this thesis only include the vertical dependency between

subtasks. In addition, since short task chains (flat tree) are a subset of long task chains

(deep trees), we consider one type of task tree-Deep and Narrow (depth = 4,

branch = 2).

2.3.2 Task Execution Time

Task execution time can be determined relative to the time needed to communicate

among agents in the system (network latency).

a) Long execution time (500 * network latency)

b) Short task execution time (50 * network latency)

2.3.3 Subcontractor Resource-boundedness

Since the number of subcontractors with a particular skill varies depending on the

type of agent system, we use the subcontractor resource-boundedness to account for

this characteristics in the experiments.

a) Abundant skills (many qualified subcontractors available to perform a task at one

time)

b) Scarce skills (few qualified subcontractors available to perform a task at one time)

19



Table 2.1: Experiment Configurations

Experiment Task Tree Number of Task Duration
Parameters Subcontractors
deep & narrow branch = 2 18 1000
short task depth = 4
scarce skills
deep & narrow branch = 2 48 1000
short task depth = 4
abundant skills
deep & narrow branch = 2 18 10000
long task depth = 4
scarce skills
deep & narrow branch = 2 48 10000
long task depth = 4
abundant skills

2.3.4 Exception Handling Strategy

In addition to the variables that constructs the design space, another variable is used

to indicate the presence of exceptions, and exception handling service.

a) Base case: No exceptions

b) Exceptions with Simple Survivalist

c) Exceptions with Simple Citizen

d) Exceptions with Complex Citizen

All experiments are run until the variance of the task completion time falls within

a predetermined confidence interval. The rationale is that we would like the sim-

ulation to run until the system is stable, so any measurements we make is a good

representation of the system. The experiments are simulated in a discrete event-based

multi-agent system simulator implemented by Juan Rodriguez-Aguilar. The simula-

tor is built on top of the Swarm Simulation System (Minar, Burkhart, Langton and

Askenazi [12]). The initial design was based on the theses of two former Master stu-

20



dents: Lijin Aryananda [1] and David Shue [15], under the supervision of Professor

Chrysanthos Dellarocas and Dr. Mark Klein.
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Chapter 3

Experiment Analysis

This chapter defines the criteria for analysis as well as outline the results from the

experiments and their evaluation.

3.1 Evaluation Criteria

Performance of the citizen and survivalist cases will be compared according to the

following dependent variables:

3.1.1 Task Completion Time

The task in this section refers to the top-level task assigned to each contractor when

the contractor becomes active. The task completion time when there is no exception

in the system is the shortest time that agents in a particular system configuration

could achieve. However, when errors do occur, it may disrupt task processing, causing

some of the subcontractors to submit their results late. This, in turn, will delay the

completion time of the top-level task. We use the following variables to observe this

behavior and compare it across different exception handling strategies:

a) Maximum Refers to the maximum top-level task completion time among all task

instances and all contractors in a single simulation.

22



b) Average Refers to the average top-level task completion time across all task

instances and all contractors in a single simulation.

c) Variance Refers to the variance of the top-level task completion time across all

task instances and all contractors in a single simulation.

3.2 Results and Evaluation

3.2.1 Deep Trees, Short Tasks

Average Task Completion Time - Deep Trees, Short Tasks

25000 --- -

.120000

15000-

10000

5000-

0-
none (no simple simple citizen complex

exceptions) survivalist citizen

EH Strategies

-+-scarce skills
+ abundant skills

Figure 3-1: Average Task Completion Time for Deep Trees and Short Tasks

According to Figure 3-1, the average completion time of the tasks improved in both

of the citizen cases, compared to the simple survivalist case. Citizen agents finished

tasks 2-3 times faster than survivalists agents. Between the two citizen cases, complex

citizens performed roughly as well as simple citizens in the scarce agents case, and
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slightly better than the simple citizens in the abundant agent case. Because the task

process time is short, it is less likely that an agent who dies will have subcontractors

performing jobs for it at the time of death (the subcontractors could finish the tasks

and return the results to the contractor in a short time). Therefore, this configuration

is less likely to benefit from the complex citizens' strategy of saving orphaned tasks.

S.D. of Task Completion Time - Deep Trees, Short Tasks
(Percentage of Average Completion Time)

90.00 -

80.00- p76A7 :43

70.00

60.00-

50.00 44 -scarce skills

S40.00- n } 10.1 + abundant ski ls

30.00-
20.00 #16.17

10.00-

0.00-

none (no simple simple citizen complex
exceptions) survivalist citizen

EH Strategies

Figure 3-2: Standard Deviation of Completion Time for Deep Trees and Short Tasks

The standard deviation (Figure 3-2) follows almost the same pattern as the av-

erage task completion time. The significant difference is that the S.D. in the scarce

agent case of complex citizen agents is much higher than that of simple citizen agents,

even higher than survivalist agents. Scarce agents have a more fluctuating task com-

pletion time than abundant agents in the citizen cases. The magnitude of the S.D.

of the scarce and complex citizens is large due to the highly fluctuating nature of

agents in this case. When the complex citizens' strategy of salvaging orphaned tasks

succeeded, the performance was greatly improved. However, when the strategy failed,
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Maximum Task Completion Time - Deep Trees, Short Tasks

0
0
U

U

60000

50000

40000

30000

20000

10000

0

-- scarce skills
-- abundant skills

none (no
exceptions)

simple simple citizen complex
survivalist citizen

EH Strategies

Figure 3-3: Maximum Task Completion Time for Deep Trees and Short Tasks

system performance severely declined, resulting in a high standard deviation. A plau-

sible description of why the complex citizen strategy failed was due to some extreme

cases, where an agent who was at a very high level in the task execution chain died

after having received all the results from its subcontractors. Complex citizens could

not apply the task salvaging strategy, since there was no subcontractor processing

tasks from the dead agent. All the results, thus, are lost with the dead agent.

The results for the maximum task completion time (Figure 3-3) followed the same

pattern as the standard deviation (Figure 3-2). Abundant citizen agents outper-

formed scarce citizen agents. Simple citizens outperformed complex citizens, which

in turn, outperformed simple survivalists. Although the shape of the graph does not

exactly resemble that of the standard deviation plot, they have similar qualitative

interpretations.
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3.2.2 Deep Trees, Long Tasks

0
0
U

U

Average Task Completion Time - Deep Trees, Long Tasks

160000 -

140000- 142704
19562

120000

100000 -

scarce skills
60000 - abundant skills

60000-- 592 511
o0080 -5944---- 51739!

40000- 477

20000

0
none (no simple simple citizen complex

exceptions) survivalist citizen

EH Strategies

Figure 3-4: Average Task Completion Time for Deep Trees and Long Tasks

Citizen agents significantly reduced the average task completion time that the

agent system achieved under the survivalist strategy. The improvement is remarkable

in the case where there is a long chain of task execution (Figure 3-4). The average

task completion time of citizen agents turned out to be only 18-19 percent longer

than that of the base (failure-free) case.

Complex citizens delivered slightly better performance than simple citizens. This

is surprising, since we were expecting complex citizens to dramatically improve the

results compared to simple citizens. A plausible explanation for this phenomenon

follows the description of why citizen agents fail in Section 3.2.1.
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Figure 3-5: S.D. of Task Completion Time for Deep Trees and Long Tasks

The standard deviation (Figure 3-5) and the maximum task completion time (Fig-

ure 3-6) follow almost the same pattern as the average task completion time. The

significant difference is that the S.D. and the maximum task completion time for

complex citizens is higher than that of simple citizens in the abundant agents case,

contrary to what happened in the scarce agents case. Citizen agents are more benefi-

cial to scarce agents, because their strategy is to utilize scarce resource (by avoiding

the reprocessing of a task in an environment where eligible agents are hard to find). In

the abundant case, however, salvaging orphaned tasks means more free agents, which

in turn will result in more task announcement and bidding messages. The increase in

communication delay generated by additional message passing can contribute to the

increase in size of the maximum completion time when an exception occurs. This, in

turn, will increase the fluctuation of the task completion time, resulting in a higher

standard deviation.
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Figure 3-6: Maximum Task Completion Time for Deep Trees and Long Tasks

The reader may notice that in every configuration and every variable measured, scarce

agents always outperformed abundant agents under the simple survivalist stategy.

This behavior was unexpected. Abundant agents should be able to accomodate the

loss of an agent much better than scarce agents due to the high availability of free

agents. No plausible explanation exists at the moment. We will have to asses the

statistical significance of this behavior.

3.3 Summary

The experiments demonstrated that the exception handling service generally im-

proved system performance. The result was quite remarkable in the case with long

task completion time. The average task completion time in the error-prone cases was

reduced to within 20 percent of that in the failure-free case. The improvement was
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still evident in the short tasks case, though not as significant as the long tasks case.

Consistency of the results is still unsatisfactory. Complex citizens delivered fluc-

tuating results compared to simple citizens, contrary to our expectation. One plau-

sible explanation for this behavior is stated in the standard deviation analysis in

Section 3.2.1. Further work is required to investigate the consistency problem.
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Chapter 4

Contribution to Related Works

4.1 Related Works

There has been several research projects on the effect of exception handling in multi-

agent systems. The following is a summary and comparison of the most relevant

efforts against the approach taken in this thesis.

4.1.1 SAM: Socially Attentive Monitoring

Kaminka and Tambe [7] proposed a domain-independent approach to monitoring

and diagnosis for multi-agent domains called SAM (Socially Attentive Monitoring).

There are three essential parts in this approach: first, its failure detection technique,

influenced by social psychology (specifically Social Comparison Theory), utilizes other

agents as information sources and detects failures both in agent and in its teammates;

second, SAM uses an explicit model of teamwork to reason about the failures in its

team (social diagnosis); finally, SAM employs model sharing to lessen the inherent

inefficencies associated with representing multiple agent models.

According to Social Comparison theory, differences with other agents are meaningful

only to the extent that agents are socially similar. If agents are heterogeneous, they

may not be able to contribute relevant information towards the monitoring of each
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agent's performance. Furthermore, hostile agents may intentionally deceive other

agents in order to influence the agents' decision making in order to advance their own

agendas. Since SAM uses comparison with peers to detect potential errors, agent

homogeneity is assumed within the system. Unfortunately, this assumption does not

hold in domains with heterogeneous agents.

The experiments to evaluate the performance of SAM were constructed as to de-

termine whether SAM has succeeded in detecting and/or diagnosing the problem.

The results from the experiment helped determine which type of agents should be

running SAM in order that the detection and diagnosing be effective. The nature of

the experiments is different from the ones in this thesis, which apply the exception

handling service to agent domains and observe the performance of the system in terms

of task completion time.

4.1.2 Enterprise: A Market-like Task Scheduler for Distribut-

ing Computing Environments

Enterprise was a system for scheduling tasks among processors developed by Malone,

Fikes, and Howard [11]. The system used a protocol similar to the Contract Net

to assign tasks to processors. It adopted the timeout-retry strategy in dealing with

late or absent tasks from subcontractors. The authors introduced three assignment

policies for assigning tasks to subcontractors: lazy assignment, eager assignment, and

random assignment. A series of simulations were conducted to evaluate the efficiency

of the assignment policies. Each simulation was composed of a unique combination of

job loads, estimation errors, machine configuration, communication delays, and retry

policies. The critria used to evaluate the results were based on average flow time, and

maximum flow time.

Although Enterprise used the same communication protocol, and measured the per-

formance of the system by the maximum flow time of the tasks, it differed from the
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experiments in this thesis through the independent variables of the experiments. The

primary goal of the experiments in Enterprise was to measure the performance of

the system due to different task assignment policies, while the primary goal of our

experiments is to study the effect of different exception handling mechanisms on the

task processing time.

4.2 Contributions

Below are the contributions from this thesis to the field of exception handling service

in distributed environments:

4.2.1 Domain-independence

Most of the research related to exception handling in agent systems using the Contract

Net Protocol are domain-specific [14, 17, 2, 13]. This thesis focuses on domain-

independent agent systems. The exception handling service in this system has a

knowledge base of rules on the detection and diagnosis of exceptions, which can

contain both general information on error diagnosis in agent systems and information

specific to errors found in some domains.

4.2.2 Compilation of Agent Domains

In this thesis, I have reviewed several literatures which described agent systems op-

erating under the Contract Net Protocol. In addition, I also looked at real-life ap-

plications of multi-agent systems. From those papers and applications, I have inden-

tified four agent domains, according to the shape of the task decomposition trees.

Within a domain, there are subdomains defined by task processing time and agent

resource-boundedness. The compilation serves as a guideline by which one could

model multi-agent system domains.
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4.2.3 Evaluation of Exception Handling Strategies

Using the exception handling service described in [8] and [1], the experiments in this

thesis measure the performance of two exception handling strategies: the Simple Citi-

zen approach and the Complex Citizen approach (see section 2.2.2). The experimental

results are evaluated against those from the classic timeout-retry (Simple Survivalist)

approach (see section 2.2.1).
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Chapter 5

Future Extensions

There are several possible ways to improve the experiments and their analysis pre-

sented in this thesis.

5.1 Variety of Exceptions

Agent death was the only exception considered for the experiments in this thesis.

This is clearly unrealistic, but was adopted for ease in implementing the initial proto-

type of the simulator, and controlling the behavior of the experiments. In the future,

more than one type of exception should be introduced to the system. These ex-

ceptions include: message lost, resource poaching, message congestion, delay in task

executions, etc. Note that all the exceptions mentioned are domain-independent.

Domain-specefic exceptions can also be introduced if the focus is on a particular

domain.

5.2 Task topology

So far only the "narrow" task topologies are present in the experiments. Our rationale

is that the agent death exception will have the most direct effect on tasks that are

vertically-related in the task tree. However, the bigger the number of branches in

the tree, the more likely that a complete result from one branch of the tree cannot
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be used due to an exception that occured in another branch of the tree. Analyzing

results accross different number of task tree branches and depths will provide further

insights on the effect of exception handling services, though the simulations can take

up a huge amount of resource and time.

5.3 Exception Handling Inference Engine

The EH strategies used in the experiments were hard-coded during implementation.

Further development of the exception handler to look up the symptoms and resolu-

tions to a problem is needed. A separate effort on the development of the knowledge

base of detection-resolution and prevention-avoidance strategies is also valuable.

5.4 Additional Exception Handling Strategy

We have considered the Complex Survivalist exception handling strategy, but did

not test it. Including this strategy in future experiments will help provide a more

complete picture of system behavior without exception handling service. Below is a

brief description of the strategy (see Appendix A for a complete diagram):

Complex Survivalist: Contractors poll the late subcontractors. Alive (but late)

subcontractors respond to the poll with new deadlines for task completion time.

5.5 Coordination Protocols

It would be valuable to study the effect of the exception handling service on agent

systems operating under communication protocols other than the Contract Net. This

can bring up new exceptions that may have not occured under the Contract Net

Protocol.
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Appendix A

Exception Handling Strategies
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Contractor

Request for a list of
qualified agents

Abort task

Announce task to qualified agents

Collect bids

Bid Collection Timeout

If no bids received, reannounce task.

Otherwise, award task to the best bidder-

Wait fo result

Collect result

Or, if no result was returned
(due to death or lateness of subcontractor),

then restart contract
(if still need the task result)

Figure A-1: Simple Survivalist
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Contractor

Request for a list of
qualified agents

Abort task

Announce task to qualified agents

t

Collect bids -

Bid Collection Timeout

If no bids received, reannounce task.

Otherwise, award task to the best bidder---

Wait fo result

Collect result

Timeout for collecting result.
If no result was returned,

poll subcontractor

Extend result deadline

Timeout for poll response.
If no response,
restart contract

(if still need task result)

Execute Task

Return result

Respon

Receive poll

I with a new deadline

If died, then no response.

Figure A-2: Complex Survivalist
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Exception Handler

Idle or processing task
A

Receive Poll

Send response
If died,

then no response

Resume previous state

Reannounce task

H
Send pol s

Wait for responses

Timeout waiting for responses

If receive response
set next polling time

Otherwise, if no response from
contractor, instruct its subcontractor
(if any) to abandon task executio

Or

If no response from subcontractor,
-instruct its contractor to reannounce
the task assigned to the subcontractor.

Idle or processing task

Receive Poll

Send response I
If died, I

then no response

Resume previous state

Terminate task execution

Figure A-3: Simple Citizen
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Exception Handler

Idle or processing task
A

Receive Poll

Send response
If died,

then no response

Resume previous state

Reannounce task

Send pol s

Wait for responses

Timeout waiting for responses

If receive response
set next polling time

If no response from subcontractor,
instruct its contractor to reannounce
the task assigned to the subcontractor.

Or

If no response from contractor,
1. create a proxy agent for each of
its subcontractor. The proxy agent will
have the same skill as the subcontracto
to which it corresponds.

2. instruct the subcontractors
(if any) to send the results to t he-
proxy agent.

Idle or processing task

Receive Poll i

Send response
If died,

then no response

Resume previous state

Send results

Figure A-4: Complex Citizen
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Appendix B

Empirical Results
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Table B.1: Numerical Data
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Experiment EH Strategy Maximum Task Average Task S.D.
Parameters Completion Time Completion Time
deep short none (no exceptions) 13957 6821.56 2536.86
scarce simple survivalist 46954 19857.52 13041.53

simple citizen 29250 10032.02 4173.43
complex citizen 40345 10330.01 8411.50

deep short none (no exceptions) 10343 6644.71 1074.19
abundant simple survivalist 52961 20780.95 15891.33

simple citizen 25255 9021.85 3324.30
complex citizen 35025 8324.22 3341.26

deep long none (no exceptions) 59195 50079.86 3288.58
scarce simple survivalist 471053 129562.41 103803.28

simple citizen 166435 63338.14 23090.17
complex citizen 139036 59251.03 15155.06

deep long none (no exceptions) 42773 42771.77 11.20
abundant simple survivalist 572452 142704.23 131551.41

simple citizen 91447 50944.49 10186.69
complex citizen 228056 51738.58 20927.55
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