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Abstract

The semiconductor industry has been the driving force behind the information rev-
olution witnessed in the last few decades. One could make a credible claim that
lithography is the backbone upon which this industry is built up. In order to sus-
tain this exponential growth, the requirements for lithographic tools are becoming
incredibly complex and expensive. Clearly, there is a need for a fresh approach to
lithography. Zone-Plate-Array Lithography (ZPAL) was proposed to provide this
paradigm shift and satisfy all the requirements for the present, as well as the future,
in a simple and elegant manner.

An analytical study of the effect of the various parameters in a ZPAL system on
the lithographic figures-of-merit is described in this thesis. A simulation tool was built
to examine the diffraction properties of zone plates based on scalar diffraction theory.
The effects of various system parameters such as the zone plate geometry and the
source characteristics are discussed. Simulated patterns are compared to patterns
that were exposed in resist using an in-house UV ZPAL system. The simulation
tool showed excellent agreement with the experimental results. Since the size of
the source is an important issue in x-ray ZPAL, a simulation tool based on classical
electrodynamics was built to study the characteristics of an electron-bombardment
x-ray source. This tool was used to propose an improved design for the source.

Thesis Supervisor: Henry I. Smith
Title: The Joseph F. and Nancy P. Keithley Professor of Electrical Engineering
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Chapter 1

Introduction to Zone-Plate-Array

Lithography (ZPAL)

Zone-Plate-Array Lithography (ZPAL) is a direct-write technique using an array of

zone plates to transfer patterns onto a substrate. This novel method of lithography

combines the economic advantages of a maskless scheme and the high throughput of

a massively parallel system as well. In this chapter, we first describe a working ZPAL

system. Then, we go on to provide some background information on this project and

finally demonstrate the need for a simulation study.

Chapter 2 describes the geometrical construction of zone plates. The necessary

equations are developed and preliminary optical properties are discussed.

Chapter 3 treats the diffraction properties of zone plates in a detailed manner.

Fresnel-Huygens principle is introduced as the first practical theory of diffraction. We

also derive the Fresnel-Kirchhoff diffraction formula.

Chapter 4 introduces the relevant numerical techniques and discusses the issues

involved.

Chapter 5 includes simulation studies of zone plate design and geometry. The

effect of the source and zone-plate parameters on lithographic figures-of-merit are

discussed. Pattern simulation results are shown and compared to the experimental

results.

Chapter 6 examines the theory and simulations for an improved x-ray source
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design. The brightness of the old and the proposed designs are compared.

Chapter 7 wraps up the thesis with the summary and recommendations for future

work.

1.1 System Description

The ZPAL system consists of 4 main parts: the substrate, the array of zone plates, the

spatial light modulators (SLMs) and the source of radiation. The substrate can be,

for example, a silicon wafer mounted on an X-Y stage. It is coated with photoresist,

which is sensitive to the patterning radiation. The zone plates behave like small

lenses and focus the radiation into an array of spots on the wafer. Planar techniques

are used to fabricate these zone plates. X-ray zone plates are typically fabricated

on membranes and UV zone plates on glass substrates. In ZPAL, the spatial light

modulators control the radiation incident on each zone plate. These SLMs can be

either reflective (micromirrors) or transmissive (in-line shutters). Software control

enables them to act as a dynamic mask, when viewed in the context of the whole

system. The source of radiation is either a laser, a bright lamp with appropriate

filters, or any other source with good spatial coherence. The main concern with regard

to the source is the temporal and spatial coherence of the radiation. An illustration

of the ZPAL system is shown in Figure 1-1. The SLM shown in the schematic is an

array of transmissive in-line shutters.

Each zone plate is responsible for writing the pixels in the region of the substrate

underneath it. This region is defined as the zone-plate unit cell. Since every zone

plate writes different portions of the substrate simultaneously, the whole pattern is

written in a massively parallel fashion. While the substrate is raster-scanned' on the

stage, each zone plate focuses the light into a spot on the pixel underneath it at that

instant in time. One zone plate is, in turn, addressed by one SLM, which controls how

much light is incident on the zone plate and hence gets focussed onto the substrate.

Thus, the SLM behaves as a dynamic mask.

'Note that the zone plates can be staggered and the substrate linearly scanned

18



Zone-Plate Array

Wafer Scan
Direction

Figure 1-1: A ZPAL system.

1.2 Development of the Project

The basic idea for ZPAL was proposed by Smith[1]. A system design based on 25 nm

lithographic resolution at A = 4.5 nm was put forward. Using a microundulator

designed for a synchrotron source and PMMA resist, a throughput of 1 cm 2 /s was

calculated. Preliminary work on ZPAL[2, 3] showed patterns written on thick resist

using 193 nm ArF laser but without using any SLMs. Preliminary system design and

simulations were also presented[4]. Recent studies[5, 6, 7] showed the feasibility of

parallel patterning by ZPAL in the UV regime. The SLMs used in this case were the

Texas Instruments Micromirror Array, and arbitrary patterns were written in resist.

The minimum feature size written was 350 nm at an exposing wavelength of 442 nm.

These recent studies cover some of the work detailed in this thesis. An overview of

19



lithography research in the NanoStructures laboratory at MIT is given in [81.

1.3 Motivation for Simulations

In lithography, the figures-of-merit are well defined. We need to get the smallest

minimum feature size, with the highest pattern contrast and fidelity. We also need a

reasonable gap between the lens (zone plate) and the substrate, with a large depth-of-

focus. These goals are affected by not only the design of the zone plates themselves,

but also by the radiation source and the geometry of the system. And many of these

effects are not explicit or obvious. This necessitates numerical simulation tools, which

could be used to study, understand and hence utilize these effects in an optimized

design for the ZPAL system. The tools would have to simulate the diffraction of the

light by the zone plates, taking into account all the system parameters of the source,

the zone plate and the working distances. With a knowledge of the diffracted light, we

would be able to simulate patterns on the resist-coated substrate, and hence carefully

analyze the above-mentioned figures-of-merit. An overview of the inputs and outputs

of the simulation tools is presented in Figure 1-2.
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Simulation

OUTPUTS

0%,

Source Parameters:
x
Bandwidth
Size
Non-uniformity...

Zone Plate Parameters:
Number of zones
Outer zone width
Phase shift/attenuation
Non-idealities...

Intensity Distribution

I
Lithographic
figures-of-merit:
Spot size
Depth-of-focus
Contrast
Pattern fidelity

Figure 1-2: Overview of Simulations
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Chapter 2

Optical Properties of Zone Plates

Zone plates, as focusing diffractive optical elements, were first proposed by Lord

Rayleigh [9] and independently by Soret [10] about 120 years ago. The understand-

ing and application of diffractive optics has come a long way since then. In recent

decades, the effort has been to extend the capabilities to shorter wavelengths in the

electromagnetic spectrum, where refractive lenses are either unavailable or extremely

expensive. Among other applications, the zone plate has been used for coded imaging

of x-ray and gamma-ray sources, for extensive holographic applications, for building

atom interferometers and, more recently, for lithography. In this chapter, we discuss

the geometry of the zone plate, which leads us to an understanding of its optical

properties.

2.1 Geometry and Optics

The simplest form of a zone plate consists of a set of concentric circles whose radii are

proportional to the square root of the natural numbers. The spaces between alternate

rings are made opaque to the radiation. This object is capable of bringing to focus a

parallel beam of light, much like a conventional refractive convex lens. This can be

understood by appealing to Huygen's Principle. The dark regions on the zone plate

block the disturbances from the alternate Huygen's zones on the wave-front. The

zones are so constructed that the transparent zones ensure a constructive interference
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Figure 2-1: Construction of a Zone Plate.

at the focal spot.

The zone plate can also be visualized as a hologram formed by two point sources

[11]. The wavefront from P (see Figure 2-1) may be imagined to be divided into a set

of half-wavelength zones by spherical wavefronts differing in radii by A/2 and having

P' as the center. As seen from F', the adjacent zones will then transmit light of

opposite phase. Hence, if the alternate zones are blocked out, then the transmitted

zones all have the same phase and will constructively interfere at P'. If these zones are

projected onto a plane perpendicular to the line joining P and P', we can construct

a zone plate. All such zones approximately have equal areas (except for the first

zone, which depends on the initial phase). The zone plate can also be considered as

a hologram formed by a uniform plane wave and a spherical wave. When alternate

zones are made opaque, it is called a Fresnel or an amplitude zone plate. Figure 2-2

shows such a zone plate. A positive zone plate is one with a transparent center as

opposed to a negative zone plate whose center is opaque.

In Figure 2-3, we see a plane wave incident on a zone plate and focussed to a

point, as expected of a lens. With the notations shown in the figure, we can derive
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Figure 2-2: A Zone Plate.

S + (n-1)J2

--{ 
S

R1

fa P
r focal length = f

I
I
U

Figure 2-3: Derivation of expressions for zone radii.

the basic expressions for the zone radii.

(2.1)

n+ f2= (S+
(n -1)A) 2

2

=> = R± (n -1)A f 2 + R +

Now, if we design the zone plate to have an outer-zone width, OZW and number

25
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2 Fresnel zones
in each transparent zone_--'
cancel each other at the S

2nd order focus

Figure 2-4: The transparent region has 2 Fresnel zones, which cancel each other at
the 2nd order focus. This is true for all even orders.

of zones, N, we can write,

2 + + (W - 1)2A2
OZW = R +(N - 1)A + N

(N-2)2A2
R+ (N( 2)A 2 + N (2.3)

V 4

It must also be noted that the zone construction technique described in Figure

2-3 can be extended to higher orders of diffraction. This is done by choosing mnA/2

as the optical path length difference between the nth and the (n-1)th zones, where m

is the order of the diffracted radiation (= +2, +3, ...). There are m Fresnel zones in

each transparent (and opaque) region of the zone plate. Hence, if m is even, we can

see that the light from these Fresnel zones cancel out and there are no even order

foci. This is illustrated for the 2nd order in Figure 2-4.

In general for the m'h order focal length of fi,

R 2 + 2l =S2

m(n - 1)A
n2 f = -(S+ )2n~mk 2

- 2 = R2 + m(n - 1)A 2 2 2 (n - 1) 2 A2  (2.4)
4
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Figure 2-5: Radii of the zones for a zone plate with f = 50 Mm, N 52, OZW
300 nm, A = 300 nm.

2 m 2 (N -1)2A2
OZW= R + m(N - 1)A fm+R + 4

Sf R m 2(N - 2) 2A2
R21 + m(N - 2)A fl +Pf+(.0)

Using the Equations 2.4 and 2.5, we can numerically design a zone plate for any

arbitrary order focus.

Zone plate design for the first order is based on the set of Equations 2.2 and 2.3.

We can define the entire geometry of a zone plate in terms of the 4 parameters: f,
OZW, N, and A. The equations can be solved numerically in Matlab and the solution

consists of the zone plate radii. These can also be used in zone plate fabrication by

electron-beam lithography [12, 13, 14]. A typical plot of the calculated zone radii for

a particular zone plate design is shown in Figure 2-5. As expected, the radii show an

approximate quadratic relation to the zone-number.

An interesting point is that not all values of the inputs give rise to a real zone

plate. This is illustrated by a 2-dimensional phase plot in Figure 2-6. Every point

on this plot is a zone plate with a different A and N (OZW and f are kept fixed).

The black regions of the plot indicate the input values where zone plates are possible.

The jagged edges are due to the quantization of A.

Here we introduce the important concept of numerical aperture (NA). The NA of
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Figure 2-6: Dark regions show possible zone plate designs for f = 50 Am, OZW
300 nm, and different combinations of A and N. White regions are those where zone
plate designs are not possible.

a lens is defined as

N A = sin0,

where 0 is the half angle measured from the focus to the lens. A higher NA lens

corresponds to a larger angle of convergence. For a zone plate, we can write:

NA= RN (2.6)

where RN and f are the radius and the focal length of the zone plate respectively.

An analysis of the higher order foci of zone plates shows some interesting features.

We show here that for very high-NA zone plates, only one focus exists in the strict

sense. In other words, there is only one point on the optical axis of a high NA zone

plate, where light diffracted from all open zones constructively interfere. We can

look at the difference in the optical path lengths between adjacent zones to any point

on the axis. Only when this difference is an integer multiple of A/2 will light from

alternate zones constructively interfere. In the calculations below, we first express

the path difference between adjacent zones in terms of A/2 and then we examine its

fractional part. This fraction is a measure of how far a point is from becoming a
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L
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Figure 2-7: Optical path lengths from all zones to a point on the axis.

focus. Referring to Figure 2-7,

Sn=

S2 =

Sn =

S2-S1

A/2
s 3 -S 2

A/2
Sn - Sn-I

#n-1 - A/2

N-i

Error= 2

i=1

where{q5} =#- int[q#],

(2.7)

and int[x] is the value, when x is rounded to the nearest integer. Error is a measure

of the deviation of # from an integer for all the zones. This in turn represents, for

any point on the axis, how far it is from having constructive interference. We plot an
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Figure 2-8: Plot showing deviation from constructive interference for all zones versus
distance along the optical axis, normalized to the focal length. For (a), OZW =

300 nm, f = 50 gm, A = 300 nm and N = 50 (NA = 0.5). For (b), OZW = 45 nm,
f = 100 pim, A = 4.5 nm and N = 53 (NA = 0.05).

example calculation of error versus z/f for two zone plates. Figure 2-8(a) shows a

zone plate with OZW = 300 nm, f = 50 pm, A = 300 nm and N = 50 (NA = 0.5).

Quite evidently, at z = f, the designed focus, we see the error go to 0. More

importantly, at every other point on the axis, we notice that the error never goes to

0. On the other hand, in Figure 2-8(b), we show the same plot for a zone plate with

OZW = 45 nm, f = 100 pm, A = 4.5 nm and N = 53 (NA = 0.05). Here we can

clearly see a few higher orders. The even orders also show up as a zero in the error

as defined in Equation 2.7, however as explained earlier, they do not form foci. This

is an important understanding for ZPAL, since almost all the zone plates, fabricated

to demonstrate ZPAL have been of high NA.

Classically, people have studied the geometry of the zone plates using certain

approximations to obtain simple, analytical expressions. In Equation 2.1, the path

length of the first zone to the focus is set to f + A/2. This leads to the following
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simplified expression.

R- A f +A 2

4

R = nAf + (2.8)
4

f - (40ZW2 - A2 )(2N - 1) + 2 V/4N(N - 1)OZW 2 (40ZW 2 - A2) (2.9)
4A

The interesting point here is that by setting the initial phase, we essentially fix one

degree of freedom, usually the focal length. This means that now only 3 parameters

are necessary to fix a zone plate.

In many cases, the second term in Equation 2.8 is much smaller than the the first,

then

n ~ nAf. (2.10)

In order to have a sense of the errors involved, we can compare the zone radii computed

using the exact Equations 2.2 and 2.3 to those computed using the Equation 2.10.

We can plot the difference in the zone radii as computed by the two methods as

a function of the zone number. This is shown in Figure 2-9 along with the exact

zone radii for comparison. This computation was performed for a zone plate with

f = 50 pm, N = 52, OZW = 300 nm, A = 300 nm. Equation 2.10 implies that R2 is

periodic in the zone number. If the number of zones is large, then we can conceptually

think about an infinite zone plate, which will diffract any incident light into many

different orders, very similar to an infinite grating. This can be analyzed by expanding

the transmission function of the zone plate as a Fourier series in R 2 [15, 16].
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Figure 2-9: Zone radii plotted versus the number of zones for a zone plate with
f = 50 pm, N = 52, OZW = 300rnm,A = 300nm. The dotted line shows the
absolute deviation of the radii computed by Equation 2.10 from the exact values.

00

f (R 2 ) = cmcos(mR 2 ) (2.11)
-=00

1 f*
Cm - I f(R 2 )d(R 2 )2ir _~

M 7r/2

Cm = - cos(mu)du
7F 0

- Cm - sin(m7/2) (2.12)
m7r

Since the diffraction efficiencies to the various orders oc c , we can calculate

efficiency of the mth order, 17m,

TIm = m m odd (2.13)

0 m even

Thus half the incident energy is absorbed by the zone plate. In order to improve

the efficiency, Lord Rayleigh first suggested the use of phase-reversing alternate zones

[9]. This phase zone plate makes use of the fact that the field from adjacent zones

constructively interfere and hence the efficiency is increased by a factor of 4. The
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Figure 2-10: Zone plate showing ±1 and ±3 order radiation.

different orders as focussed by a zone plate are shown in Figure 2-10. In the next

chapter, the diffraction properties of zone plates are studied.
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Chapter 3

Diffraction by Zone Plates

In this chapter, we analyze the properties of light diffracted by a zone plate, espe-

cially the point-spread function. We derive the expressions for the scalar theory of

diffraction. With the Fresnel-Kirchoff approximation, these integrals are numerically

evaluated to describe the diffracted fields. Finally, we discuss the effects of various

zone-plate design parameters on the lithographic figures-of-merit.

3.1 Huygens-Fresnel Principle

When light encounters an obstacle, opaque or transparent, its propagation deviates

from that predicted by the theory of geometrical optics (that light travels in straight

lines). This phenomenon is a result of the wave nature of light and is termed diffrac-

tion. Huygens' principle [16, 17], the first physical theory to qualitatively explain

diffraction involves the following statements: 1) Every point on a wavefront of light

can be considered as a source for a secondary disturbance which produces a spher-

ical wavelet; 2) The position of the wavefront at any later time is the envelope of

such wavelets; 3) The frequency and speed of the wavelets is the same as that of the

primary waves.

In order to describe the amplitude distribution on a wavefront, Fresnel introduced

the concept of interference into the Huygens' principle [16, 18]. He postulated that

the amplitude at any point in the future is a superposition of the wavelets.
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According to the Huygens-Fresnel principle, the field at any point in the plane

of observation can be derived as an integration of the contributions from all the

wavelets coming from the aperture. Consider an infinitesimal area dS at a point Pi

in an aperture S (see Figure 3-1). The contribution of a wavelet from point P, at a

point P2 is given by

exp(-ikr) dS,
U(P1) d,(3.1)

r

where U(P) is the field amplitude at P due to the light incident from the left.

> P1 dS
r

P2

Aperture

Incident
Plane Opaque Screen
Waves Plane of Observation

Figure 3-1: Derivation of the mathematical expression for Fresnel-Huygens Principle.

Hence, the total field at P2 due to the incident field being diffracted by the aperture

is given by

U(P 2 ) =CJ exp( ikr) U(P) dS, (3.2)

S

where C is a constant and the integral is over the area of the aperture. Using

this mathematical expression of the Huygens-Fresnel principle, we can calculate the
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diffraction patterns of arbitrary apertures. Consider the case of a small aperture,

illuminated by uniform plane waves. We notice that the diffraction pattern in the

plane of observation depends on the distance (d) of the observation plane from the

aperture. These patterns can be qualitatively divided into 3 types.

1) When d is very small, the pattern is essentially a projection of the aperture

with fringing effects at the aperture boundaries. This is the near-field region.

2) When d is intermediate, the fringes are more pronounced, and the structure of

the pattern changes with d. This is the Fresnel diffraction region.

3) When d is very large, the structure of the pattern does not change with d but its

size does. This is called the Fraunhofer or the far-field diffraction region. A practical

rule of thumb to demarcate this region is

a2

d >, a (3.3)

where a is the greatest width of the aperture and A is the wavelength of the illumi-

nating radiation. Figure 3-2 shows the 3 regions of diffraction.

Incide
Wav

Opa
Scr

nt
e

que I
een

Near-Field
region

Figure 3-2: Illustration of

Fresnel Fraunhoffer
region region

the 3 different regions of diffraction.
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3.2 Fresnel-Kirchhoff Diffraction Theory

A rigorous theory for diffraction can be derived from Maxwell's equations. Here, we

consider the scalar form of the equations.

A time-harmonic beam of light at point P and time t can be represented as

<(P, t) = Re{U(P) exp(i27r f, t + iO(P))}, (3.4)

where f, is the frequency of the light and O(P) is the phase at point P. Using

Maxwell's equations [17], we can derive the Helmholtz wave equation.

(V 2 + k2) U(P) = 0, (3.5)

,7 - 12 192 a2
where V2 = 02+ 02Ox 2  O9y 2  a0Z 2 1

2ir
and k = .

A

For two solutions U and U' to Equation 3.5, Green's theorem [17, 16] stipulates

that

(U' - U a I) dS = 0, (3.6)f f an On
S

where S is a closed surface and n is the unit vector of the normal to the surface

pointing into the enclosed volume. This also requires that U and U' have continuous

first and second order derivatives on and inside the surface S. Hence, by choosing an

appropriate Green's function for U', we can derive an expression for U at any point

inside the surface S.

Kirchhoff assumed a Green's function of the form

U'(P) - exp(-ikr) (3.7)
r

which represents a spherical wave originating from P and observed at a point P1. The

distance between P and P is r. This function is a solution to Equation 3.5, except
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at its singularity, when r = 0. Now if we cover the singularity by a spherical surface,

S' of infinitesimal radius f (Figure 3-3), the closed surface in Equation 3.6 can be

represented by two surfaces S and S'. This leads to

JJ(U U-U )dS=-J (U' -U )dS.
f 0n n n On

S S/

Using Equation 3.7 for a point P1 on the surface S' and taking the limit e 0,

(U' - U U) dS = -47r U(P).
ff n On

S/

Equation 3.7 ->

UP U exp(-ikr) exp(-ikr) U]dS
U(P) =. J[U r - ] dS.(3.8)47r ff 0n r r Dn

S

Equation 3.8 is a rigorous solution of the Helmholtz equation and is known as the

Kirchhoff diffraction integral.

n

S

S'

P

n

Figure 3-3: Two closed surfaces around a point P where a spherical wavelet has a
singularity.

Now, let us consider a plane opaque screen with an aperture E as shown in Figure

3-4. If we are interested in calculating the field contribution at a point P due to a

point source at So, we have to use Equation 3.8 with S = E + Si + S2. As shown

in Figure 3-4, S1 is the area of the screen opaque to light and S2 is a large surface,

such that P is enclosed by S. In order to evaluate Equation 3.8, Kirchhoff made the
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following assumptions for the boundary conditions of the field and its derivative:

1) The field within E is the same as when the screen is not present.

2) In the opaque area of the screen, i.e., on S1, U = 0 and - = 0.

These are known as the Kirchhoff boundary conditions.

IS,
P1  n

r

S P

/S2
SO

Figure 3-4: Diffraction by an arbitrary aperture.

The integral in Equation 3.8 should be evaluated over the 3 surfaces. The integral

over S2 can be shown to be 0 by making the surface very large such that for all time,

light traveling at a finite velocity never reaches it. By virtue of the 2nd Kirchhoff

boundary condition, the integral over S1 is also 0. Now for the integral over the

aperture, E, let us concentrate on a point P1 on E. The 1st Kirchhoff boundary

condition implies that

U(P) = U0 ex(-iks) (3.9)

aU exp(-iks) 1 ik
-> = U (-ik - -)cos(n, s) ~-- -Uo -exp(-iks)cos(n, s), (3.10)
On s s s

a exp(-ikr) exp(-ikr) 1 ik
( ) =(-ik - -)cos(n, r) ~ -- ex(-ikr)cos(n, r),

an r r r r
(3.11)

And Equation 3.8 implies

U(P) = iUo exp(-ik(r + s)) cos(n, s) - cos(n, r) dS (3.12)
A rs 2
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Equation 3.12 is known as the Fresnel-Kirchhoff diffraction formula. The approx-

imations in Equations 3.10 and 3.11 are true when s >> A and r >> A respectively.

It must be pointed out here that the Kirchhoff boundary conditions are mathemat-

ically inconsistent, as is evident from the following two observations. Firstly, the

2nd boundary condition implies that the solution to the wave equation is actually 0

everywhere. Secondly, the Equation 3.12 does not reproduce the Kirchhoff boundary

conditions. Despite these weaknesses, this is very widely used in practice because of

remarkable agreement with observed results [17.
In order to study the various lithographic figures-of-merit for ZPAL, one needs to

analyze the 3-dimensional field distribution at the focal point of a zone plate. We

follow the conventional point-spread function analysis here. In the next section, we

look at approximate but explicit expressions for the point-spread function. Then we

go on to numerically evaluate the exact Fresnel-Kirchhoff diffraction equation for a

zone plate.

3.3 Point-Spread Function Analysis for a Zone Plate

The approach followed here is to numerically evaluate the Fresnel-Kirchhoff diffraction

integral with the zone plate as an aperture. This is illustrated in the Figure 3-5. In

the case of an amplitude zone plate, the field at a point P1, due to light from a point

source at P, can be written as:

N-1 i UO p=Rn+1 e=27 xp(-Zk(r + s)) cos(n, s) - cos(n, r) pdpdO

n=1 r
open zones

(3.13)

where (p, 0) is a point on the zone plate in cylindrical coordinates.
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Figure 3-5: Fresnel-Kirchhoff diffraction for a zone plate.

For a phase zone plate, Equation 3.13 is modified as shown below:

U(P 1, P) =
iUO fP=-Rn+i p=27r exp(-ik(r + s)) cos(n, s) - cos(n, r)

Z ( -1)n - I Ip dp dO,
A J_ p=rsJ_ 2n =_1R=. f=0 s2

all zones

(3.14)

where p = 0, if the first zone has a 7r phase shift or else p = 1. If we consider

sources that have radial symmetry, then the point spread function will also be radially

symmetric.

In ZPAL, we are interested in the influence of the source parameters on the focused

spot of a zone plate. Specifically, we would like to incorporate a source of finite size

and a finite bandwidth into our diffraction calculations. This is especially important

in our preliminary experiments for x-ray ZPAL, where we are using an electron bom-

bardment x-ray source. We can analyze the contribution to a certain point P from
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every point on the source and we can assume that every such point on the source

is temporally incoherent, i.e., has random phase. This is valid when the distance

between the points considered is large compared to the wavelength of the photons

emitted. Under these assumptions, we can add up intensity contributions from all

such points on the source and this will give the total intensity at the observation

point. The fact that photons of different wavelengths do not interfere with each other

allows us to take into account the finite bandwidth of the source in a straightforward

manner. The intensity contributions due to different wavelengths can be added up to

give the total intensity distribution. Making the A dependence of the field explicit,

we can write from Equation 3.14,

1(P) = f U(P, P(x, y, z), A)12 dA dS, (3.15)
S A

where I(P) is the intensity at point P, S is the cross-sectional area of the source

illuminating the zone plate and the integral in A is over the bandwidth of the source.
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Chapter 4

Numerical Simulations

In this chapter, we first discuss the steps involved in computing the point-spread-

function of a zone plate. Then, we validate our choice of a parallel processing model.

We also review the advantages and limits of the available hardware and software

at our disposal. A basic flow-chart of the entire computational process is shown in

Figure 4-1.

INPUTS FUNCTION OUTPUTS

umber of zone
Wavelength
Focal Length

Outer Zone Widt

source wavelengt
source bandwidth
finite source size
source positio

o-ordinates of th
points of interest

(x',y',z')

Intensity Values
in the points of

interest

Figure 4-1: Basic flow chart of the simulations.

zone plate design is based on the set of Equations 2.2 and 2.3, and is discussed
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in Chapter 2. It is obvious that most of the computational effort will be needed to

evaluate the Fresnel-Kirchoff integral (Equation 3.12) at all the points in the region of

interest. Since the field computed using Equation 3.12 at every point is independent

of every other point, this computation is a good candidate for a parallel processing

solution. We review some of the basic principles of parallel processing below.

4.1 Parallel Processing Concepts

Parallel processing is the execution of different parts of the same program by multiple

processors simultaneously. The main purpose of this approach is to reduce the real

execution time for numerical problems. Processing schemes can be classified into 4

categories based on how data and instruction streams interact [19]. This is illustrated

in Figure 4-2.

Single Multiple

Single

Multiple

Figure 4-2: Categories of processing schemes.

Single Instruction Single Data (SISD) is the classical style of computing and is

very prevalent in today's personal computers. During each clock cycle, the central

processing unit (CPU) executes a single instruction stream acting upon a single data

stream. Thus all instructions are executed in a serial manner.
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Multiple Instruction Single Data (MISD) is the least common of all the categories.

It is included here for the sake of completeness. Several different instruction streams

act upon the same stream of data simultaneously. An example would be several

cryptography algorithms trying to decode the same encoded message.

Single Instruction Multiple Data (SIMD) is perhaps the most important category

with regard to parallel processing. In this case, the same instruction stream acts

upon several different streams of data in parallel. A big problem is divided up into

smaller pieces and the data relevant to each piece is delegated to one processor.

All the processors perform the same task but on different pieces of data. Once the

computation is carried out, all the processors return their respective outputs to the

managing processor, which puts together the solution to all the pieces, to create a

coherent whole.

Multiple Instruction Multiple Data (MIMD) is considered to be the next step in

parallel computing, where many instruction streams can be applied simultaneously

to multiple data streams. This is the most general of all the categories. However, the

requirements for hardware and software are quite challenging.

Essentially independent
Space parallel processes

I I I I I

Time
I I I I I
I I I I

V V V V V

Figure 4-3: Parallelizing the problem. A large region of interest is divided among
multiple processors and the fields at each point in space is independently calculated.

SIMD is the processing scheme most suited for our problem. The idea is to break

up the big region of interest into many smaller sub-regions. Then each processor

is responsible for calculating the field intensity in its sub-region. Finally, the field

intensities from all the sub-regions are put together to obtain the field intensity in

the entire region of interest. This is also called data parallelism, where each processor
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does the same work on a unique piece of data. This is a highly scalable form of par-

allelism. In the scalar diffraction problem, the simple spatial structure leads to very

clear parallelism. This problem belongs to a class of computational problems which

are known as embarrassingly parallel [20]. The simple spatial structure of these prob-

lems imply that no complex temporal synchronization of the processors is required

and the parallelization becomes straightforward (see Figure 4-3). One important fea-

ture of embarrassingly parallel problems is the modest node-to-node communications

overhead. Although no spatial connection implies no inter-node communication, in a

practical problem, some communication is necessary to set up the problem and accu-

mulate the results. The low communication requirements of embarrassingly parallel

problems make them suitable for implementation on distributed computing environ-

ments, such as the IBM SP, whose details are described below.

4.2 Details of Hardware

All the diffraction calculations were performed on the IBM SP at MIT. The RISC

System/6000 Scalable POWERparallel System (SP) is a distributed memory machine

from IBM. The system at MIT consists of 13 nodes (processor + memory), connected

by an ethernet and a high speed switch. The nodes have POWER2 Super Chip (P2SC)

architecture RS/6000 processors. These are superscalar pipelined chips capable of

executing 4 floating point calculations per cycle [21]. The details of the nodes are

shown in Table 4.1 [22]. The nodes communicate via HPS2 switch adapters. This

machine was made possible by IBM's SUR program.

The plotting of figures and zone plate geometry calculations were performed in

Matlab using a 450 MHz Pentium III desktop computer.

4.3 Details of Software

The operating system for the IBM SP is AIX 4.2.5, IBM's version of UNIX. It has

Parallel Systems support program 2.3. The software for calculating the diffraction
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Node Memory(MB) Clock-Speed(MHz)
1 512 133
2 512 133
3 512 133
4 512 133
5 256 133
6 256 133
7 256 133
8 256 133
9 256 133
10 256 133
11 256 133
12 256 133
13 1024 133

Table 4.1: Details of the IBM SP nodes at MIT

patterns was written in C language. In order to parallelize the code, we need to use

certain library subroutines for task management and message passing. IBM provides

the SP with the Message Passing Interface (MPI). MPI is a subroutine library for

writing distributed memory parallel programs that conform to a vendor-independent

standard and hence are reasonably portable. IBM's version of MPI has been optimized

for performance on the SP architecture.

The design of the software first started with a debugged serial version of the pro-

gram, written in C. Once we decided on the parallel algorithm as described earlier,

the serial code was modified by incorporating the calls to the MPI library, specifically

to distribute the tasks among the processors and manage the final computed results.

This also sets the environment variables for the parallel processing programs. The

most relevant environment variables are MP-PROCS and MPEUILIB. MPPROCS is the

number of processors used in the program. MPEUILIB determines the mode of com-

munication by the nodes. It can be User Space (US), which uses the high-performance

switch and enables the user to run the processes in a dedicated manner or it can be

Internet Protocol (IP), which can use a slower ethernet connection. In embarrassingly

parallel problems, the issue of communication overhead is usually not significant, so
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the second variable is not a crucial choice. Detailed information on MPI functions

and their usage can be found in the man pages (see also [19]).

The integrals necessary in the computation of the diffraction patterns are eval-

uated using subroutines provided by the IBM Parallel Engineering and Scientific

Subroutine Library (Parallel ESSL). Parallel ESSL is a scalable mathematical sub-

routine library that supports parallel processing applications on the IBM SP. It sup-

ports the SIMD programming model and provides all major mathematical functions.

The subroutines DGLNQ and DGLNQ2 are used to perform the one-dimensional and

two-dimensional numerical integrations respectively. These subroutines utilize the

Gauss-Legendre quadrature method to evaluate the integrals. The details on how to

use these subroutines can be found in the ESSL reference guide [23]. In the next

section, we discuss the issues associated with the numerical integration.

4.4 Numerical Integration Issues

The integral of a one-dimensional function can be expressed as a sum of the function

values at certain chosen points, weighted by corresponding weighting coefficients.

This is known as the rule of Gaussian quadratures [24, 25].

(x) f (x) dx ~ Wj f (x), (4.1)

where Wj are the weights and xj are the corresponding sampling points and N is the

order of the quadrature. In the particular case of a Gauss-Legendre quadrature, we

have:

w(x)1; -1 < X <1 (4.2)

2
(1 - x)P((x) 2 3)

PN (Xj) = 0, (4.4)
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where P are the Legendre polynomials defined by the iterative relation:

(j + 1)Pj+1 (x) = (2j + 1)xPj (x) - jPj _I(x); Po(x) = 1, P1(x) = x, (4.5)

and

dPN(x)
P'v(xj) dx (4.6)

dx~
x=xj

Thus, the wjs are the zeros of the Legendre polynomial, Pj(x). The Wjs are

calculated according to the Equations 4.2, 4.3, and 4.4. It can be shown that Equation

4.1 becomes exact, when the function f(x) is of polynomial order (2N - 1) or less

[25]. From Chapter 3, we know the Fresnel-Kirchhoff integral is:

U(P) = iUO exp(-ik(r + s)) cos(n, s) - cos(n, r) dS (4.7)
A II rs 2

The Gauss-Legendre quadrature method was used to compute this integral along

the axis as well as in the transverse focal plane. It was more difficult to make the

algorithm effective for points far off the optical axis due to the increased oscillatory

nature of the phase factor in the integrand. Equation 4.7 can be written in terms of

cylindrical coordinates:

U(P, P) = p=R1 o=27r iUo exp(-ik(r + s)) cos(n, s) - cos(n, r)
U(P Jp=RP) I= J A TS 2 pdp dO

(4.8)

It was observed that the maximum instability was present in the 0 integral, especially

for points of interest that were farthest from the optical axis of the zone plate. To

overcome this problem, we divided the 0 integration range of 0 to 27r into smaller

integrals. The function is continuous in 0 through those intervals. This dramatically

improved the convergence of the numerical integration routines as illustrated in Figure

4-4. All three plots are for a zone plate with parameters N = 76, f = 48 1um,

A = 442 nm, and OZW = 330 nm. The radius of this zone plate is about 50 pum.
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The horizontal axis in all 3 plots is the order of the Gauss-Legendre quadrature of

the 0 integral. The lines with the circles show the intensity values using the above-

mentioned sub-division method. The plain lines show the values using the normal

algorithm. In (a), (b) and (c), the vertical axes are the intensity values of the field at

radial distances of 10 pm, 50 pm and 100 pm from the axis, respectively. Also, note

that the field at a smaller radial distance converges faster than one at a larger radial

distance.
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Figure 4-4: Study of convergence. All plots are for a zone plate with N = 76,
f = 48 pm, A = 442 nm, and OZW = 330 nm. Intensity values at 3 different
radial distances are plotted versus the order of the 0 integral to show the improved
convergence due to the subdivision of the 0 range.
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4.5 Timing Issues

Speedup is the ratio of the total serial execution time divided by the parallel execution

time for the same problem size and number of processors. If speedup were perfect,

it would equal the number of processors. Scalability is the ability of the problem to

preserve the speedup as problem size and the number of processors are increased. As

we mentioned earlier, the scalar diffraction problem is an embarrassingly parallel one.

This implies that close to perfect speedup and scalability should be possible. The

following plot shows the speedup attained versus the number of processors used. The

problem was to compute the radial diffraction pattern at the focus of a zone plate

with parameters: A = 442 nm, OZW = 300 nm, N = 76 and f = 50 pm. We can

see that the speedup is almost equal to the number of processors used, as it must

be for embarrassingly parallel problems. We can also see that for a larger number of

processors, the curve starts to bend over, implying that the communication overheads

start becoming important.
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Figure 4-5: Speedup versus number of processors for a representative problem. The
diffraction pattern in the focal plane of a zone plate with A = 442 nrm, OZW =
300 nrm, N = 76 and f = 50 pm was calculated. Note the linear part and the slight
bending down towards the right, where communication overhead starts becoming
important.
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Chapter 5

Simulation Results

In this chapter, we present the results of the simulations of diffraction by zone plates.

The effects of the zone plate and the source parameters on the diffraction pattern

in the focal plane are studied. We also present simulations of patterns and their

comparison to patterns exposed on resist. Arguments for the validation of the scalar

theory are discussed next.

5.1 Diffraction Pattern in the Focal Plane

In ZPAL, the spots focused by the zone plates form the pixels of the patterns which

are transferred onto the substrate. We are interested in studying the geometric char-

acteristics of these spots and how they are affected by the various design parameters

in the system. For this purpose, we built a suite of simulation tools, as explained

in the previous two chapters. Here, we use those tools to show the details of the

diffraction pattern in the focal plane of a zone plate.

5.1.1 Effect of Zone Plate parameters

First, assume the case of a point source at infinity. This implies that a uniform plane

wave is impinging on the zone plate. Then, the diffraction pattern of an amplitude
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Figure 5-1: point-spread function of a zone plate with N = 100, f =

220.77 pm, OZW = 50 nm, and A = 4.5nm. Spot-size is defined as the full-width
at half-maximum (FWHM) as shown. Efficiency is defined as the ratio of the area
under the curve between the first zeros to the total area.

zone plate simplifies to:

N-1 iUO p=R+1 0=27r exp(-iks) cos(n, s) - 1
U(P1 ) = Npidpxd(,ik5.1)

ri= 1 pYR O=Rn 20=0 (

open zones

where (p, 0) is a point on the zone plate in cylindrical coordinates. We also assume

that the source is essentially monochromatic. The diffraction pattern in the focal

plane of the zone plate is then called its point-spread function (see Figure 5-1). All

the zone plate designs for ZPAL in our research have been done using the set of

Equations 2.11 and 2.12. Since this set has a reduced degree of freedom, as discussed

in Chapter 2, we can only specify 3 parameters, and the 4th one is automatically

fixed. In our case, the parameters chosen were OZW, N and A, while f was fixed by

the other 3 variables. For practical purposes, the only real design variables available

to us are OZW and N, since the A is fixed by the available light sources.

We can extract some important information regarding the spot-size and the back-

ground from this point-spread function. Here we define the spot-size as the full-width

at half-maximum (FWHM) of the point-spread function. Below, we plot the FWHM

versus the number of zones (Figure 5-2(a)) and versus the focal length (Figure 5-2(b))
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Figure 5-2: Variation of FWHM with (a) the number of zones and (b) the focal length
for a zone plate with OZW = 50 nm and A = 4.5 nm.

for a zone plate designed to work at a wavelength of 4.5 nm and with an OZW of

50 nm. While we kept A and OZW fixed, we varied N, and f changed correspondingly.

It is interesting to note that although the variation is small, the FWHM increases

slightly with both N and f. The value of the FWHM is close to the designed OZW

of 50 nm.

In order to quantify the amount of energy diffracted into the background, we define

the efficiency to be the ratio of the area under the point-spread function between the

first zeros on either side, to the total area (see Figure 5-1).

fr I(p)pdp0/= o (5.2)

where r/ is the efficiency, 1(p) is the diffracted intensity at a radial distance of p and

r, is the radial distance of the first zero. This efficiency is a measure of how much

energy is focused into the spot compared to the total energy passing through the

focal plane. The underlying diffraction process can be understood quite clearly if one

looks at Figure 5-3. We can see that the incident energy is divided up among the

various orders. At the first order focal plane, energy diffracted into every other order

contributes to the background. Figure 5-4 (a) shows an example point-spread func-

tion, where the normalized intensity is plotted in the log scale. The plot shows clear

57



3)

(0)

(0)-~-3)

Figure 5-3: Different diffracted orders of a zone plate. P_1, P-3, P3, and P1 are the
negative first, negative third, positive third and positive first order foci respectively.
RN is the radius of the zone plate. The regions of influence of the different orders are
as predicted by the geometrical theory of optics.

demarcation between the diffracted orders and the positions agree well with those

predicted by geometrical optics (Figure 5-3). Figure 5-4(b) shows the normalized

intensity integrated over the radial spread of the diffraction pattern plotted against

the radial distance. Again the regions of influence of each order are clear. It must

be noted that the plot tends to go to a constant value, indicating that orders higher

than 3 have negligible contributions to the total energy.

We plot the normalized efficiency, as a function of the number of zones in Figure

5-5(a) and also versus the focal length in Figure 5-5(b). Again it is interesting to note

that the efficiency increases with both N and f.
Figure 5-6 suggests that the requirements for lithography of smaller spot-size (for

finer feature sizes) and higher efficiency (for higher contrast) are contradictory. Figure

5-6 (a) shows the increase of the efficiency as the OZW is increased and Figure 5-6
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Figure 5-4: (a) Diffraction pattern with the normalized intensity plotted in the log
scale. Numbers in parenthesis indicate the diffracted orders. (b) The normalized
intensity integrated over its radial spread area. Both the plots show the regions of
influence of the different diffracted orders. The simulation results agree with those
predicted by the geometrical theory of optics. These simulations were performed for
a zone plate with A = 4.5 nm, f = 109.83 pm, OZW = 50 nm and N = 50.
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Figure 5-5: Normalized efficiency is plotted versus (a) the number of zones and (b)
the focal length. The fixed parameters are OZW = 50 nm and A = 4.5 nm.

(b) shows a linear relation between the OZW and spot-size, as expected.

We can also calculate the diffraction pattern along the optical axis of a zone plate.

The axial intensity distribution enables us to calculate the depth-of-focus (DOF) of

the zone plate. We define the DOF as that axial displacement which leads to a 20%

decrease in the on-axis intensity at focus [15]. In order to preserve the spot-size for

ZPAL, we need to ensure that the gap between the zone plate and the substrate is

within the DOF of the zone plate. Hence, the DOF becomes an important practical

design consideration. Figure 5-7 shows the axial intensity distribution for a zone plate

with OZW = 50 nm, A = 4.5 nm, f = 109.83 pm, and N = 50. Using the expression

DOF = 4 OZW
2 we can estimate the DOF to be about 2.2 pm, which is close to the

value obtained in the simulation. Note that the intensity peaks at the focus. From

radial intensity simulations, we know that the spot-size is at its minimum in the focal

plane.

In Figure 5-8(a), we show the variation of the DOF versus the number of zones,

and in Figure 5-8(b) versus the OZW. The DOF remains fairly constant until about

N = 50, beyond which the DOF decreases as N increases. Further study need to

be done to understand this behavior. As OZW increases, the DOF also increases.

Again, the requirement of small spot-size seems to run counter to that of a large DOE.
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(N = 50, A = 4.5 nm).

This is to be expected from the well-known approximate relation: DOF = 4OZW2
A

In order to have a clearer understanding of the role of the different zones in forming

the diffracted spot, we simulated the selective illumination of certain zones of a zone

plate. Figure 5-9 shows the simulated point-spread function as the zone plate is "built

up" from the inner center. The central peak sharpens considerably while the intensity

of the sidelobes is only slightly changed.

Figure 5-10 shows the same zone plate with a central stop of increasing radius.

The stop successively covers the zones starting from the center. As the central zones

are covered, the central peak sharpens further. However, the side lobe intensity is

significantly increased. Thus, the central zones play an important role in reducing

the background, while the outer zones cause the central peak to be sharper.

5.1.2 Effect of Source Parameters

In this section, we look at the influence of the source parameters on the diffraction

pattern near the focus of the zone plate. The properties of the source depend criti-

cally on the wavelength of the radiation. Although ZPAL was envisioned initially for

x-rays [1], diffractive optical elements such as zone plates can focus radiation of any

wavelength. Subsequent experimental demonstrations of feasibility were performed at
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UV' [2, 5]. For UV, tabletop laser sources are available. A high degree of spatial and

temporal coherence can be attained with these sources, such that they behave like

perfect point sources at infinity. However, for x-rays, the situation is quite different.

There are two types of x-ray sources. The first is when an electron makes a transition

from a higher energy level to a level close to the nucleus, emitting an x-ray photon.

This gives a line spectrum, as seen in electron bombardment of low-atomic number

targets or in the plasma of low atomic-number elements. The second is by the ac-

celeration of charged particles, such as electrons, bombarding a high atomic-number

target or electrons forced to move in circular orbits in a synchrotron. This produces

a continuous spectrum. Synchrotron sources have higher average intensities. The

brightness of synchrotron sources can be increased by using an undulator [11]. For

x-ray ZPAL, initial experiments are being performed on an electron bombardment

carbon (CK) source, emitting photons at 4.5 nm. These sources do not have perfect

spatial and temporal coherence and therefore cannot be treated as monochromatic

point sources.

Finite Source Size

Here, we look at the influence of a source of finite size upon the intensity distribution

near the focus. As mentioned earlier, the zone plate acts essentially like a lens. The

zone plate will form the image of an object. Figure 5-11 shows an extended object

being imaged by a zone plate. The object distance, z and the image distance, z' are

related through the lens equation:

1 1 1(5.3)
z z f

'The latest experiments were performed at 442 nm, which is close to the boundary of visible and
UV. However for the purposes of this thesis, we refer to it as UV.
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Figure 5-12: Effects of a source of finite size. (a) shows the plot of the FWHM versus
the source zone plate distance. (b) shows the normalized efficiency versus the source
zone plate distance. The zone plate parameters are N = 100, OZW = 25 nm, A =

4.5 nm and f = 88 /tm. Source diameter is 1mm.

where f is the focal length of the zone plate. If the size of the object is 0, the size of

the image, I is given as:

z'I fI - = 0
z Z- f

(5.4)

To study the effect of the finite source size, we simulate the effects of a source of

a given size at various distances from the zone plate.

Figure 5-12 (a) shows the FWHM at various source to zone plate distances. The

demagnified image of the source convolved with the point-spread function defines this
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Figure 5-13: Effects of a source of finite bandwidth. (a) shows the plot of the FWHM
versus source bandwidth. (b) shows the efficiency versus source bandwidth. The zone
plate parameters are N = 50, OZW = 25 nm, A = 4.5 nm and f = 27.33 1am.

FWHM. As the distance between the zone plate and the source increases, the FWHM

decreases and tends to the OZW in an asymptotic manner, as the distance goes to oc.

Figure 5-12 (b) shows the efficiency as plotted against the source zone plate distance.

As the source is brought closer to the zone plate, the spot-size increases, and as a

consequence the fraction of the energy in the spot goes up.

Finite Source Bandwidth

In order to decouple the various influences, we make use of a perfect point source

at infinity in these simulations. However, the light incident on the zone plate has a

spread in wavelength. The source bandwidth is defined as the ratio of the spread in

wavelength to the central wavelength.

BW = (5.5)
A

Figure 5-13 plots (a) the FWHM and (b) the normalized efficiency versus the

source bandwidth. Hence 0 on the horizontal axis represents a monochromatic source.

The FWHM shows a small change as the spread in wavelength is increased. The

efficiency decreases slightly when the source bandwidth is increased.
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source bandwidth. The zone plate parameters are N = 50, OZW = 25 nm, A =
4.5 nm and f = 27.33 pm.

Figure 5-14 shows the plot of the DOF versus the source bandwidth. The variation

in DOF is minimal.

5.2 Effects of Fabrication Errors

The previous simulations have been based on the design of a perfect zone plate. In the

real world, we unfortunately are limited by the fabrication processes. In particular,

we cannot specify the radii of the zones to arbitrary accuracy. There are two main

possible types of errors: zone-placement errors, which give rise to narrower or wider

zones, and phase-shift errors caused by errors in the etch depth while fabricating

phase zone plates.

5.2.1 Zone Boundary Errors

The errors are assumed to be in the zone radii, and hence the pattern remains cir-

cularly symmetric. The case of the zone plate where alternate zones are wider and

narrower are studied. This causes the opaque zones to be narrower and the trans-

parent ones to be wider or vice-versa. The error is expressed as a percentage of the
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percentage of the OZW. The zone plate parameters are N = 50, OZW = 50 nm,
and A = 4.5 nm.

OZW of the zone plate.

AR' - R
OZW

(5.6)

where R, and R' are the designed and the actual radius of the n'h zone.

Figure 5-15 shows the plots of (a) FWHM, (b) efficiency, (c) shift in focal length

and (d) DOF versus the error. These simulations were performed for a zone plate

with N = 50, OZW = 50 nm, and A = 4.5 nm. The spot-size increases while the

efficiency decreases with the error. This tends to suggest that the energy is being

diverted from the first order focus. Even orders start to appear at high errors, as

seen in Figure 5-16. The focal length of the zone plate changes as we include the
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Figure 5-16: Effect of zone-boundary error on the axial intensity distribution. Note
the existence of the 2nd order focus. The zone plate parameters are N = 50, OZW =
50 nm, and A = 4.5 nm. The error was 50%.

zone boundary error. The DOF shows a slight increase with the error. Thus the

most important effect of the zone boundary error is to shift some energy from the

first order focus into several other (including even) orders.

5.2.2 Phase Shift Errors

In phase zone plates, alternate zones have 7r phase shift compared to the other zones

and hence focus more of the incident radiation into the first-order focus. In order to

produce this phase difference between adjacent zones, we need to etch down alternate

zones and thereby create the necessary optical-path-length difference. However, the

accuracy of this etch depth cannot be controlled arbitrarily. Any error in the etch

depth translates into a phase shift error for the zone plate. We analyze how this

phase shift error affects the various figures of merit.

Figure 5-17 (a) shows the FWHM plotted against a phase shift error, expressed

as a % of 7r. The effect seems to be quite small. Figure 5-17 (b) shows the efficiency

(normalized to the first value) as a function of the phase shift error. The efficiency

decreases quite significantly as the error increases. This is seen in the increased

side-lobe intensity and more energy being diverted away from the focus and into the

background. It was also observed that the absolute efficiency was about 4 times
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that of an amplitude zone plate with similar parameters, as expected. Figure 5-17

(c) shows that phase shift error does not cause the focal length of the zone plate to

change. This is in contrast to the zone boundary error (discussed in the previous

section). Figure 5-17 (d) shows the DOF versus the phase shift error. Again, the

effect is small and does not show any simple relationship.

5.3 Pattern Simulations

The diffracted intensities near the focus of the zone plate are calculated as described in

the previous chapter. Each focused spot forms a pixel of the pattern to be transferred

onto the substrate. The substrate is coated with radiation sensitive resist. This is

usually an organic polymer that reacts to incident light in a particular way. In the

case of negative resist, the incident light makes it more resistant to developing. For a

positive resist, the light causes it to be less resistant to developing. Thus any pattern

can be transferred onto the substrate. In addition to several desirable properties [26],

we would like the resist to have very high contrast. This means that for any given

thickness of resist, we would like the resist to behave in a binary manner, i.e., the

entire resist underneath a pixel area should react completely above a certain threshold

incident light energy and not react at all below it. Although in practice no resist has

perfect contrast, there are several such as PMMA which approximate this behavior

quite well. This preliminary pattern analysis uses a binary response of the resist to

define the patterns on the substrate.

In order to simulate the exposure, the substrate is divided into a grid of sub-pixel

size, where a pixel is the spot-size (or FWHM). For every point on this grid, we

can determine the intensity contribution it receives from every exposed pixel on the

substrate, with a knowledge of the point-spread function of the zone plate. Since

intensity adds incoherently in resist, all such intensity contributions are added up to

obtain the total intensity received by that point. This is repeated for all the points

in the grid.

This simulation process is illustrated in Figure 5-18. Since the point-spread func-
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Figure 5-18: Simulating a pattern. Contribution from all the exposed pixels (black
regions) at point P are added up to obtain the total intensity received by P. Since

the point-spread function is radially symmetric, we can use circles of increasing radii
to do this calculation.

tion is radially symmetric, we can add the contributions from all the exposed pixels

on a circle of a given radius at the central point P and repeat this for circles with

increasing radii until the contribution becomes negligible. Finally, by employing a

binary clipping model of the resist, we can take a contour plot of the intensity values

throughout the substrate and obtain a simulated pattern.

5.3.1 UV ZPAL Experimental Setup

As mentioned in Chapter 1, the preliminary investigations into ZPAL were conducted

at a wavelength of 442 nm. The multiplexing of the beamlets was performed by

the Texas Instruments micromirror array. A 3 by 3 array of phase zone plates was

fabricated on a quartz substrate. These were written by Dari'o Gil using the electron-

beam lithography tool at the NanoStructures Laboratory. The design parameters for

the set of zone plates used in these experiments were N = 76, OZW = 336 nm, A =

442 nm and f = 50.94 pm. The patterns were exposed in Shipley 1813 photoresist,

which was spin-coated on a silicon wafer. A photograph of the setup is shown in
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Figure 5-19: A photograph of the UV ZPAL setup. Top left inset shows a part of the
zone plate array. Top right inset shows one zone plate.

Figure 5-19.

The patterns were first drawn up in a high level drawing program called Nanowriter

in the kic format. This program was written by Mitch Meinhold at the NanoStruc-

tures laboratory in MIT. The objective of the experiment was to show the feasibility

of parallel writing using ZPAL. Since we had an array of 3 by 3 zone plates, we drew 9

different patterns to be addressed by the 9 zone plates simultaneously. The zone-plate

unit cell is defined as the area on the wafer addressed by the zone plate. The patterns

are shown in Figure 5-20. The horizontal and vertical extents of the zone-plate unit

cells are not equal. This is to match the same mismatch in the fabricated zone plate

array. This mismatch was, in turn, introduced to account for foreshortening due to

oblique incidence of the light on the micromirrors used for multiplexing [12].

Nanowriter can output files in the kic format. The patterns were saved in kic

format and a kictozpal translator was used to convert the files to a format suitable
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Figure 5-20: Nine different patterns were drawn in Nanowriter. The horizontal and
vertical lines demarcate the zone-plate unit cells. Note that each unit cell has to
address a different pattern, which would demonstrate parallel writing. The drawing
is not to scale.

for the ZPAL system. The details of this translation and other system software are

discussed later in this chapter. After exposure and developing, the patterns were

formed on resist. Scanning electron micrographs (SEMs) of these patterns are shown

in Figure 5-21. The zone-plate unit cells are demarcated by the dotted white lines.

The X and Y extent of the zone-plate unit cell correspond to the X and Y distances

between zone plates in the array.

The same kic file for these patterns were also used to perform simulations. The

simulation software includes code to translate the kic files to a raw exposed pixel

format suitable for the simulations. The point-spread function of the zone plate with

the designed parameters: A = 442 nm, N = 76, OZW = 336 nm and f = 50.94 pm,

with a 7r phase shift in the alternate zones was calculated and is shown in Figure 5-22.

The simulated spot matches the measured one at a resist clipping level of 0.42.

This is quite close to the FWHM, which corresponds to a clipping level of 0.5. The

model of diffraction of the zone plate and the binary resist development seem to

be reliable in this case. The slightly larger value of the measured spot compared

to the designed OZW maybe due to the fact that several spots were exposed in

reasonably close proximity, leading to some background contribution to the spots.
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Figure 5-21: Scanning electron micrographs (SEMs) of 9 different patterns written in
parallel using UV ZPAL. Note the zone-plate unit cells marked by the dotted white
lines. The X and Y spacing of the unit cells correspond to the X and Y spacings in
the zone plate array.
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Figure 5-22: (a) SEM of individual spots exposed in resist using a phase zone plate
with parameters: A = 442 nm, N = 76, OZW = 336 nm and f = 50.94 pm. (b)
Simulated point-spreadfunction of the same zone plate.

Magnified SEMs of two patterns from Figure 5-21 are shown in Figure 5-23 and these

are compared to their corresponding simulations. Note that the radius of curvature

of the corners in the SEMs corresponds to a spot size of about 330 nm. This shows

the fidelity of the printed patterns. Figure 5-23 (a) shows a pattern of a line between

two pads to demonstrate the proximity effect. Figure 5-23 (b) shows a nested-L

pattern, again to demonstrate proximity effects. Figure 5-23 (c) and (d) show the

simulations of the patterns in (a) and (b) respectively. With a fixed resist clipping

level, corresponding linewidth measurements agree quite well. Note also that the

SEM has a measurement error of about ±25 nm at this magnification.

Zone plates can be used to focus light of any radiation. In order to achieve the

lithographic limit in patterning, one needs to go to smaller wavelengths. Years of

research at the NanoStructures Laboratory and elsewhere seems to suggest some ob-

vious advantages to using the 4.5 nm photon for lithography [1, 5]. Earlier work has

shown patterning of very small features (sub-20 nm) using the 4.5n x-rays [27]. Theo-

retical analysis has also shown high contrast for patterns exposed in resist with 4.5 nm

x-rays [28]. Amplitude zone plates for x-rays were fabricated by Dr. Erik Anderson

using the nanowriter electron-beam lithography tool at the Lawrence Berkeley Lab-

oratory. The opaque zones were electroplated nickel of 60 nm thickness and the zone

plate was fabricated on a 110- nm-thick SiNx membrane. These are shown in Figure

5-24. These zone plates were designed with N = 50, OZW = 45 nm, f = 100 pim and

A = 4.5 nm.

The source in our x-ray ZPAL experimental setup is a carbon target, bombarded
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(a) (b)

(c) (d)

Figure 5-23: (a) A magnified SEM of one pattern from Figure 5-21. Note proximity
effect broadening of the line due to the adjacent pads. (b) A magnified SEM of a
nested-L pattern from Figure 5-21. Again the proximity effect tends to make the
extended portion of the line narrower. Note that the notch at the edge is reproduced
faithfully. (c) Simulation of the pattern in (a). (d) Simulation of the pattern in (b).
Allowing for an SEM measurement error of +25 nm, they are in good agreement.
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Figure 5-24: SEM of the x-ray amplitude zone plates fabricated by Dr. Erik Anderson
at Lawrence Berkeley Laboratories. The design parameters are N = 50, OZW =
45 nm, f = 100 pm and A = 4.5 nm.

by electrons. The source has a measured diameter of about 0.5mm. With a distance

of about 1.5m between the source and zone plate, this corresponds to a demagnified

image size of about 33 nm diameter. Using these design parameters, the point-spread

function was simulated and is shown in Figure 5-25(a). The simulated FWHM cor-

responds very well to the expected one of about 55 nm (obtained by convolving the

demagnified image of the source with the diffraction-limited spot). Figure 5-25 (b)

shows a proximity test pattern simulated with the point-spread function in (a). The

significant proximity effect broadening at the ends of the line is mainly due to the

finite size of the source. Simulations with a perfect point source show much less

proximity effect.

Fabrication of zone plates has become quite mature recently. Researchers have

made zone plates with sub-20 nm resolution for use in x-ray microscopy and spectro-

microscopy [29]. This is the ultimate direction of x-ray ZPAL in order to obtain sub-

50 nm features. We simulated the diffraction of a zone plate with N = 100, OZW =

25 nm, A = 4.5 nm and f = 50.94 pm. In the following simulations, we assumed a
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Figure 5-25: (a)Simulated point-spread function of the zone plate in Figure 5-24. The
source diameter was 0.5mm; this corresponds to an expected FWHM of about 55 nm.
(b)Simulated proximity effect test pattern. Significant line broadening is due to the
finite source size.

perfectly collimated incident beam with zero bandwidth.

Figure 5-26(a) shows a proximity effect test pattern of a line between two big pads.

The linewidth is close to the designed value of OZW = 25 nrm. A small proximity

effect is observed. Figure 5-26(b) shows a simulated nested-L pattern. Again the

proximity effect shows up but is reasonable due to the choice of a collimated source.

These simulations indicate that patterns at linewidths of about 25 nm can be written

using x-ray ZPAL.
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(a) (b)

Figure 5-26: (a) Simulated proximity effect test pattern. Note the small broadening
of the line in the region between the pads. (b) Simulated nested-L pattern. Again a
small proximity effect is seen. The parameters of the zone plate were N = 100, A =
4.5, OZW = 25 nm and f = 50.94Mm. Note that the linewidths are close to the
designed value.
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5.4 Validation of Scalar Theory

The Fresnel-Kirchhoff diffraction theory is approximate in the sense that extra line

integrals are necessary to compute diffraction behavior along the zone edges. However,

studies have shown that the error introduced is small when the focus (observation

point) is many wavelengths away from the zone plate [30]. Beynon et al. have

compared near field computations using the Fresnel-Kirchhoff equation to the solution

of Sommerfeld for an infinite perfectly conducting half-plane and found very good

agreement.

The approximations inherent in the scalar theory cause it to give erroneous results

for small feature sizes (compared to the wavelength) and large aspect ratios. This has

been investigated by Pommet et al. [31]. They compared the diffraction efficiencies of

gratings obtained by a scalar ray tracing technique to the exact solution provided by

the Rigorous Coupled Wave Theory (RCWT) [32]. The RCWT is an exact solution

of vector Maxwell's equations for infinite periodic structures. The study concluded

that for profiles with equal lines and spaces, the grating period, rather than the

minimum feature size determines the accuracy of the calculation. Furthermore, their

simulations showed that the error for single-level diffractive elements with a 50% duty

cycle was very small, irrespective of the feature size. In the case of zone plates, the

outer zones are more prone to error because of the smaller feature sizes, compared

to the wavelength. However, locally, a zone plate looks very much like a grating

with a 50% duty cycle near the outer zones. This is illustrated in a magnified plot

of the outer zones for our designed zone plate with parameters: N = 76, OZW -

336 nm, A = 442 nrm and f = 50.94 pm in Figure 5-27. Hence, the study by Pommet

et. al. suggests that for this zone plate the scalar theory would give very good results

even though the minimum feature sizes are sub-wavelength. This is corroborated by

our earlier comparison of the simulated patterns to patterns exposed in resist.

Another important consideration we have overlooked in the simulations is the

fact that the zone plate has a finite thickness. This causes the zones to look like

truncated waveguides. Incident radiation can then couple to many modes within
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(a) (b)

Figure 5-27: (a)Designed outer zones of a zone plate with parameters: N =
76, OZW = 336 nm, A = 442 nm and f = 50.94 pm. (b) Scanning electron mi-
crograph of the fabricated phase zone plate with the same parameters. Note that
locally the outer zones look periodic with a 50% duty cycle.

these waveguide-like structures, thereby changing the point-spread function from a

simple thin lens approximation. Maser et. al. have studied this effect using the

coupled wave theory [33]. They observe that the diffraction behavior through a zone

plate varies from the "optically thin" regime in the center to an "optically thick"

regime at the edges. Numerical simulations were used to characterize these regions.

Figure 5-28 shows the refractive index variation along the radial direction in the

outer zones of a zone plate. Locally, this region is treated as an infinite grating in

the coupled wave analysis. Two parameters are defined to characterize the diffraction

properties of this region.

2 A 2
A = (5.7)

Ei A2

Q1I27r A z (58)
fo A A'

where the following are defined as shown in the Figure 5-28: A is the wavelength of

light, co is the average refractive index in the region, E, is the refractive index of the

modulation depth of the region, z is the thickness and A is the period of the local

grating. Q is the structure parameter and Q' is the thickness parameter of the region.
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Figure 5-28: Refractive index profile of outer zones of a zone plate. Locally, the profile
is treated as that of a grating in coupled wave analysis. The numbers in parenthesis
indicate the designed numbers for the fabricated zone plates.

The normalized thickness, v can be written as:

v = (5.9)
2Q

The criterion for optically thin gratings is that Q'v <; 1. For optically thick

gratings, the condition is that Q ;) 10 and Q' > 1. For thin gratings, a geometrical

approach such as the Fresnel-Kirchhoff method should give accurate results, whereas

for thick gratings, one needs to apply the Bragg condition and use the RCWT to

obtain accurate results. In the case of the outer zones of the zone plates used in the

experiments, the parameters had the following values [12]:

z = 474 nm

co = 1.233

c, = 0.466

A = 772 nm
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Equation 5.7 Q = 1.8567 ; 10

Equation 5.8 Q' = 2.3640

v = 0.6366

4 Q'v = 1.5049 ;;: 1, (5.10)

which implies that the fabricated zone plates are neither optically thin nor thick.

Usually this regime is characterized by complex diffraction behavior. However, in our

case, the product Q'v is not very far from 1 and Q < 10. And the corroboration with

the experimental results seem to indicate that the simulations do give reasonable

results. However, in order to pursue aggressive NA zone plates in the future, we

intend to implement a simulation tool to solve the full vector Maxwell's equations

using a finite-difference time-domain approach [34].
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Chapter 6

X-ray Source Simulations

In this chapter, we introduce the electrodynamical equations used to simulate the

electron-bombardment x-ray source. We present simulation results of the source-size

for various source designs. Most of the work presented in this chapter was done in

collaboration with Alex Bernstein.

6.1 Electron-bombardment x-ray Source

For x-ray ZPAL, we are using a carbon electron-bombardment source which has a

sharp peak at the 4.5 nm Ck wavelength. Although the source does not have high x-

ray flux as compared to a synchrotron source, it is compact and much less expensive.

Hence, it is suitable for research purposes in our laboratory. X-rays are generated

when the target material is bombarded by electrons at a high energy. The electrons

are generated by thermionic emission from a tungsten filament, through which a large

current is passed. These electrons are accelerated by static electric fields. Some of the

electrons colliding into the target atoms knock out some inner-shell electrons, creating

empty levels close to the nucleus. The atom then relaxes by causing an outer electron

to transit to the inner level. The energy lost by this transiting electron is released

as an x-ray photon. This process is illustrated in Figure 6-1. The characteristics and

efficiency of this emission process have been discussed previously [35, 36, 37].

In this project, we are interested in studying how the electrons are accelerated
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Figure 6-1: x-ray emission by an electron bombarding a target atom. An inner-shell
electron is ejected and the empty level is filled by an outer-shell electron. The energy
lost by the outer-shell electron is released as an x-ray photon.

using focusing electrodes. As mentioned in earlier chapters, we desire a small source

size with high flux in x-ray ZPAL. Once we understand the electron trajectories in the

static accelerating fields, we can design the fields to focus the electrons to a smaller

spot. When the electrons bombard the target on a smaller area, we can expect to

see a smaller source of x-rays as well as higher brightness due to the increased energy

density.

6.2 Electrodynamics

In order to compute the electron trajectories, we begin with the electrostatic fields

existing in space. Using one of Maxwell's equations:

V - (cE) = p (6.1)

and the relation:

E = -V V, (6.2)
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where E is the electric field, V is the electrostatic potential, e is the dielectric constant

and p is the space-charge density, we can obtain the Poisson equation:

-V - (CV V) = p. (6.3)

The x-ray source has radial symmetry which is used to reduce the dimensionality

of the problem from 3 to 2. This is important since the PDE toolbox in Matlab can

only handle 2 dimensional problems. Using the radial symmetry, the Poisson equation

in cylindrical coordinates becomes [38]

1 9(re O ) + 0(E )V =P. (6.4)r Or Or az OZ

If we assume charge-free space, p = 0 and multiplying through by r, we get

& DV 0 DV
-(rc-- ) + -(rE )=0 (6.5)

Or Or Oz z '

=> Vrz - (reVrzV) 0, (6.6)

where Vrz = r + -z. Then, by redefining c as c' rE, we can rewrite the Poisson

equation as

Vrz-(('VrzV) = 0. (6.7)

Once the boundary conditions are specified, this equation can be solved using the

PDE toolbox in Matlab for V. And by using 6.2, we can determine the electric field

in the region of interest. The boundary conditions for electrostatic problems are of

two kinds: Dirichlet or Neumann [39]. For Dirichlet conditions, the potential V is

specified on the boundary. For Neumann conditions, the surface charge is specified on

the boundary. The Neumann condition is used along the axis of circular symmetry by

specifying the surface charge to be zero, whereas the Dirichlet condition is specified

on all other boundaries.

In order to determine the dynamic behavior of the electrons in this space of static
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fields, we use the Lorentz force equation:

F =-e(E + v x B). (6.8)

The effect of the magnetic field is neglected. The magnetic field can arise from either

the filament which carries current or the motion of the electrons themselves. In the

former, the filament has only one loop and has very small inductance. This implies

that the magnetic field produced by the filament is tiny. In the case of the accelerated

electrons too, the inductance effects of individual electrons is truly negligible. The

dynamical equation can be written in terms of the scalar components.

dvs -e-_ = -E (6.9)
dt m

dx
vx = dt (6.10)

- = -E (6.11)
dt m

V = dy (6.12)
dt

Once the initial condition is specified, the above 4 ordinary differential equations

can be solved in Matlab for the electron trajectories (x, y). The initial condition

consists of the direction and the speed with which an electron is thermionically ejected

from the hot filament. It can be shown that most thermionic electrons are ejected

normal to the surface [40]. The energy at which the electron is emitted is determined

by the workfunction of the material of the filament and the filament temperature.

However, the electrons are accelerated to very high velocities by the static fields and

the simulations indicated that the choice of the initial speed was not critical to the

results. The trajectories were followed until the electron hits the target surface. This

computation was repeated for several electrons emitting from random points on the

filament in order to get a statistical measurement. Then, we measure the number

of electrons striking the target as a function of the radial distance from the center.

If we assume a direct correlation between the incident electrons and emitted x-ray

photons, the plot gives information regarding the size of the x-ray source, as well as
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the emitted x-ray flux.

6.3 Simulation Results

Measurements of the x-ray source (Head 2) in the NanoStructures Laboratory were

made (Appendix B). This source had a copper target, but the design is similar to the

Carbon target source. Figure 6-2 shows a cross-section of the source.

.......T I....

axis of ymmetry
Aperture Cage

Target

Filament

Shield

Figure 6-2: Electron-bombardment x-ray source. Electrons are thermionically ejected
out of the filament and accelerated to the target surface. x-rays are emitted through
the aperture above the target. The target is at ground and all other parts are at 5-8
keV. The shields (in black) are for protecting the target from contamination from the
filament.

The target is held at ground while the cage and everything else is at 5-8 keV.

Current is passed through the filament to heat it. The thermionic electrons are then

accelerated by the static fields to the target. After they collide with the target, x-ray

photons are emitted through the aperture at the top. The shields are used to protect

the target from contamination due to material evaporation from the filament. The

shield ensures that there is no direct line-of-sight between the target and the filament.

The electrons are focused on the target by moving the target in the vertical direction.

First, the field computations were carried out using this design in Matlab. Due

to the symmetry, only one half of the system need to be used for the computations.
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Figure 6-3(a) shows the cross-section of the system with the generated mesh points.

Note that the software automatically detects the sharp edges and creates denser mesh

points there. Figure 6-3(b) shows the computed electrostatic potential values. The

contours go from 0 near the target to 8kV near the cage. The lensing effect of the

fields which focuses the electrons is clearly evident.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9

(a) (b)

Figure 6-3: (a) Mesh generated in Matlab for the existing x-ray source. The axes are
in inches. (b) Electrostatic potential contour lines for the existing x-ray source. The
target is maintained at OV, while everything else is at 8kV. The contours go from OV
near the target to 8kV near the cage.

Using the electrodynamical equations, we can compute the trajectories of the elec-

trons emitted from the filament. Figure 6-4 shows these trajectories. Each trajectory

is computed individually and the point on the filament from which the electron is

emitted is randomly chosen for each. The electron trajectories end on the target

surface, forming a focused spot. The initial speed of the electrons did not affect the

trajectories.

By counting the number of electrons striking every point on the target surface,

we can quantify the focus. Figure 6-5 shows the two positions of the target for

two different foci. This was confirmed by experiment and the distance between the

positions of the target for the two foci was close to the calculated value. Figure 6-6(a)

and (b) show the electron distributions on the target surface for the two foci. The

bar on each figure is a measure of the number of electrons hitting the target surface.

This number is proportional to the x-ray flux.
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Figure 6-4: Computed trajectories for the existing x-ray source. The axis markings
are in inches. For each trajectory the point on the filament from which the electron
is emitted is chosen randomly. The initial velocity of the electrons was chosen to be
1.35e5 m/s normal to the surface of the filament, however this does not affect the
trajectories.

Rotational Axis of Aperture
Symmetry A

Second Focus Cage

2 mm.
First Focus
Shield

Target Filament

Figure 6-5: (a) Shows the two positions of the target for the
(c) Second focus.

two foci. (b) First focus.
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Figure 6-6: (a) Electron distribution on the target surface for the first focus, and (b)
the same for the second focus. The spatial dimensions are in mils. The graybar gives
actual number of electrons.
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We would like to obtain a smaller focus for the x-ray source. Several designs for

the focusing electrodes were studied. The main idea was to use focusing electrodes

to sharpen the trajectories and also to move the filament towards that target surface.

It was also important not to have a direct line-of-sight between the target and the

filament to prevent contamination. The cross-section of one half of the new design

for the source is shown in Figure 6-7. The extra electrodes provide a tighter focus.

Note that the target is completely shielded from the filament.

Axis of symmetry

Aperture

Cage

SFilament

Target

5 mm.

Figure 6-7: Design of improved x-ray source. The extra electrode causes the electrons
to focus to a smaller spot on the target surface. The target is completely shielded
from the filament.

Figure 6-8(a) shows the mesh generated for the new source design. Figure 6-8(b)

shows the computed electrostatic potential contour lines extending from OV near the

target to 8kV near the cage.

Using the computed potential and the dynamical equations, we can calculate the

trajectories. Figure 6-9(a) shows the trajectories, where the point of emission for each

electron is chosen randomly on the surface of the filament. As in the previous case,

the initial energy of the emitted electrons does not affect the trajectories due to the

strong fields involved. The new design does give a much smaller focus. The price to

be paid is in the loss of several of the emitted electrons as they strike the cage walls.

In the old design, almost all the emitted electrons made it to the target. However,
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Figure 6-8: (a) Generated mesh for the new design. (b) The computed potential
contours. The axis markers are in inches.

this loss is acceptable as long as the electron density in the focus on the target surface

increases. Figure 6-9(b) shows the number of electrons striking the target surface.

The focus is much smaller and the electron density is much higher than in the old

design. Thus, we should expect a higher x-ray flux output.

We have built and used a simulation tool to study various designs for the electron-

bombardment x-ray source. The proposed design predicts about 2.5 times increase

in the x-ray flux. It also seems to produce a focal spot of about half the size of

that in the existing design. Care should be taken while designing the target cooling

system because of the small focus and high heating involved. Actual machining and

experimental verification of the predictions need to be carried out in the future.
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Figure 6-9: (a)Computed trajectories for the new design. The axis markers are in
inches (b) Number of electrons striking the target surface. The focus is much smaller
and the electron flux is much higher. The spatial dimensions are in mils. The graybar
gives the actual number of electrons.
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Chapter 7

Conclusions and Recommendations

A suite of simulation tools was developed to study the diffraction properties of zone

plates in the context of ZPAL. The intensity near the focus of the zone plates was

computed, and the effects of the various source and zone plate parameters were stud-

ied. zone plate fabrication errors were also considered. Using the focal intensity

information, several patterns were simulated. These were compared to patterns ex-

posed in resist and found to be in good agreement. Software to translate high-level

kic diagrams to a format which can be used by the ZPAL system was written, and was

used to perform the parallel patterning exposures in UV ZPAL. Finally, a simulator

to study the electrodynamics in an electron-bombardment x-ray source was built. A

new design for the x-ray source was proposed which would produce higher x-ray flux

and a smaller source size.

The next stage of the research calls for the creation of a full vector diffraction

simulator. This is especially important when lateral dimensions of the structures

on the diffractive lenses are less than the wavelength. Finite-difference time-domain

techniques seem to be the method of choice among many researchers to study diffrac-

tive lenses. This will enable the study of polarization induced effects, diffraction by

sub-wavelength structures, and design of better diffractive lenses for ZPAL. These

diffractive lenses then need to be fabricated and their properties tested. Another

important future research thrust is in the pattern placement and linewidth control

problems in ZPAL. These need to be addressed with grayscale techniques. Algorithms
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need to be developed to automatically compute the necessary grayscale values for any

desired pattern. The experience gained to date using the Fresnel-Kirchhoff diffraction

model has given us confidence that a full vector model will provide valuable insight.

Further analysis will likely result in the design of improved diffractive elements.
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Appendix A

Overview of System Software

There is much system software design involved in the process starting from the concept

of a pattern in a user's mind to actual exposed patterns on a wafer. We have touched

some of the processes earlier. In this section, we will logically follow the process and

elucidate the issues. A broad flow-chart of the different processes are illustrated in

Figure A-1.

As mentioned earlier, the idea for a pattern is converted into a drawing using a

CAD software tool such as the Nanowriter. The data is stored in the kic format.

We need to convert this to a format which is more suitable for the ZPAL system.

Translation software called Kictozpal was written in C to interpret the pattern in kic

format and convert it into a more suitable form. The steps involved in the conversion

are detailed next.

1. Inputs necessary for the interpretation are obtained. These include the pixel-

size (pixel-size), the field-size in the x-direction (field-size-x), the field-size

in the y-direction (field-size-y), the number of zone plates in the x-direction

(array-size-x), the number of zone plates in the y-direction (array-size-y), a

scaling factor used in Nanowriter (lambda) and the top-left corner coordinates of the

pattern. The scaling factor is an input in Nanowriter, which scales every pixel value.

This is important in order to prevent round-off errors and avoid fractional values for

pixel coordinates. In the ZPAL coordinate system, the Y-axis is increasing in the

downward direction. Hence, we need to shift the origin to the top-left corner of the
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Figure A-1: Flow chart of process starting from the conception of the idea of a pattern
to the actual attainment of the pattern on resist on a wafer and simulations of those
patterns.
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pattern. These inputs are used to define the zone-plate unit cells in pixel values.

2. The data from the kic file is read in. The data is in the form of boxes and

they are in the format: B width-x width-y centerx center-y. This data is then

interpreted in the actual scaled pixel values.

3. Every pixel in the pattern is checked to see if it lies within a drawn box and

these are tagged. Here, overlapping boxes are checked to avoid multiple exposures.

Also unexposed pixels are eliminated.

4. The pixel and exposure data are written to a file in the format: Pixel-x

Pixel-y B1 B2 . . ., where Pixelix and Pixel-y are the x and y coordinates of the

exposed pixel (the origin is the top-left corner of each unit cell), and B1, B2, ... are

the bit values (1 if exposed and 0 if not) in the 1st, 2nd, ... unit cells. The data is

written in a serpentine fashion.

The next step in the process is the control of the stage and micromirrors. This

is done by using code written in LabView. The data in ZPAL format is read in. In

the system, one micromirror addresses one zone plate. Hence, the bit values are used

to signal the on-off state of the micromirrors. The X and Y pixel values control the

motion of the stage. The data is ordered in such a manner that the stage implements

a serpentine scan, which optimizes the writing time.
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Appendix B

X-ray Source Measurements

* All dimensions from Head 2 (in inches)

* Target (gray center) is at ground and all other
parts are at 5-8 keV

* Filament current ~ 15 A

* Height of target is varied to focus the spot

1.69

0.475

0.5
LO

0.02
Filament
dia =0.012

A 0.715
0.785
0.87

0.89
1

Figure B-i:
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