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Abstract

We show how a graphical model learning problem can be presented as a purely combinato-
rial problem. This allows us to analyze the computational hardness of the learning problem,
and devise global optimization algorithms with proven performance guarantees.

Markov networks are a class of graphical models that use an undirected graph to cap-
ture dependency information among random variables. Of particular interest are Markov
networks over low treewidth graphs, under which many operations are tractable. We study
the problem of finding a maximum likelihood distribution among Markov networks over
graphs of bounded treewidth.

We define the maximum hypertree problem, which is the problem of finding an acyclic
hypergraph of bounded width, that maximizes the weight of hyperedges it covers (or equiv-
alently, a triangulated graph of bounded clique size maximizing the weight of its cliques).
We show that the maximum likelihood Markov network problem can be formulated as a
maximum hypertree problem, and in fact the two problems are equivalent. This extends the
work of Chow and Liu (1968) who considered the case where k = 1 (i.e. trees).

We show that the maximum hypertree problem is NP-hard even for k = 2 and give the
first constant factor approximation algorithm for it. More precisely, for any fixed treewidth
objective k, we find a k-hypertree with an f(k) fraction of the maximum possible weight
of any k-hypertree graph.

Thesis Supervisor: David Karger
Title: Associate Professor
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Chapter 1

Introduction

In this thesis, we demonstrate a rigorous combinatorial and algorithmic treatment of a ma-

chine learning problem. The machine learning problem we are concerned with is learning

a maximum likelihood Markov network of bounded "complexity" (specifically, bounded

treewidth), from an empirical sample. We show how this problem corresponds to a combi-

natorial optimization problem on hypergraphs, which we formulate as a "maximum hyper-

tree" problem. We establish that the problems are equivalent by bidirectional reductions,

i.e. from the maximum likelihood problem to the maximum hypertree problem and vice

versa. We then use the maximum hypertree problem to prove the hardness of the maxi-

mum likelihood problem, and provide a constant-factor (for fixed "width") approximation

algorithm for it.

In 1968, Chow and Liu [CL68], provided such an analysis for the limited case in which

the Markov network is restricted to trees. To the best of our knowledge, this is the first

generalization of such treatment to the more general case. It allows us, for the first time, to

provide hardness results and provable approximation algorithms for the learning problem.

The approximation algorithm is of "global" nature, solving and rounding a linear problem,

as opposed to local search heuristics which have been suggested before [Mal9 1].

The presentation here is also, as far as we know, the first formulization of the maximum

hypertree problem. In this problem, given some target width k and a weight function on

9



CHAPTER 1. INTRODUCTION

candidate cliques of size up to k + 1, one seeks a treewidth k graph (i.e. a triangulated

graph with maximum clique size k + 1) that maximizes the total weight on its cliques.

The problem of finding the treewidth of a graph (and its associated tree decomposition or

triangulation) has been extensively studies. Finding the treewidth, and tree decomposition

and triangulation, of a graph is a supergraph problem- we seek to find a triangulated graph

containing our desired graph. However, the maximum hypertree problem can be viewed as

a subgraph problem.

The approximation algorithm we present is an initial step to providing good algorithms

for learning maximum likelihood Markov networks. We hope that further study of the

combinatorial problem we present will yield better algorithms. Such algorithms could then

be applied to the learning problem.

We hope this thesis will be of interest both the machine learning and to the algorithms

communities. We aim to give enough background so as the thesis will be approachable to

readers of both disciplines.

1.1 The Learning Problem

We briefly outline the maximum likelihood Markov network problem. A more complete

description is given in Chapter 2.

One of the important areas of machine learning is the development and use of prob-

abilistic models for classification and prediction. One popular probabilistic model is the

Markov network, which uses a graph to represent dependencies among the variables in the

probabilistic model. Given the graph, a probability distribution on the variables can be

succinctly represented by tables (called potential functions) of possible outcomes for each

set of variables that forms a clique.

In order to avoid over-fitting the model, it is important that the model's graph have

no large cliques. At the same time, for efficient use of the model, the graph needs to be

triangulated, i.e. have no minimal cycles of more than three vertices. Combining these two

10



CHAPTER 1. INTRODUCTION

objectives yields the actual requirement: that the underlying graph have small treewidth.

Treewidth will be defined formally later; for now we note that only trees have treewidth

one, while a small treewidth means that the graph is quite like a tree. Treewidth is closely

related to triangulated graphs: in a triangulated graph the treewidth is equal to the maximum

clique size minus one. More generally the treewidth of a graph is the minimum over all

triangulations of it, of the maximum clique size in the triangulation, minus one.

In some applications, the graphical model is specified in advance. But in others, the

goal is to generate a graphical model that "best fits" some observed data (samples from an

unknown distribution). Chow and Liu [CL68] show how the best treewidth 1 model (that

is, tree) for the data can be found via a maximum spanning tree computation on a graph

whose weights are determined by the values of the observed data. But sometimes a higher

treewidth is needed to get a good fit to the data.

1.1.1 Our contribution

We consider the more general problem: to learn, given some observed data, the maximum

likelihood treewidth k Markov network of the data. This is the maximum likelihood trian-

gulated Markov network with clique size at most k + 1.

As with the simpler case, we show how to reduce this problem to a pure graph problem.

But unlike the simple case, weights on edges are no longer enough. Instead, we show

how to assign weights to every subset of vertices of size up to k + 1. These weights are a

generalization of the Chow and Liu weights and capture the information in beyond-pairwise

interactions. We formulate a combinatorial problem using these weights, and through it

show that:

" Finding a maximum likelihood Markov network of bounded treewidth (and so also

triangulated network of bounded clique size) is NP-hard.

" For any fixed k, a Markov network of treewidth at most k (a triangulated network of

clique size at most k + 1) can be found such that the gain in log likelihood versus an

11



CHAPTER 1. INTRODUCTION

fully independent model is within a constant multiplicative factor to the maximum

possible gain in log likelihood.

1.1.2 Projections

A maximal likelihood distribution is a distribution minimizing the information divergence

to the empirical distribution. Finding a maximum likelihood distribution can thus be seen as

an instance of the more general problem of projecting a target distribution onto a distribu-

tion class, i.e. finding the distribution from within the class that minimizes the information

divergence to the target. Such projections have applications beyond finding the maximal

likelihood distribution.

Throughout the thesis, we discuss such distribution projections, and work with this

framework.

1.1.3 Related work

The problem of finding a maximum likelihood Markov network of bounded tree width has

been investigated before and discussed in [Pea97]. Malvestuto [Mal9I] discussed the con-

nection between this problem and maximal acyclic hypergraphs (which we call hypertrees

here), and suggested a local search heuristic on hypertrees.

Several other extensions to the work of Chow and Liu [CL68] for tree-shaped Markov

networks have recently been proposed. Meila [MP99] suggested modeling distributions as

mixtures of tree-shaped Markov networks. Dasgupta [Das99] suggested polytree Bayesian

networks (trees with oriented edges).

There is also work on directed graphical models known as Bayes Networks. Dagum and

Luby have results that focus on the problem of, given a specific graphical model, learning

the appropriate setting of the joint probability distributions. They show that even achieving

good approximations for this problem is NP-hard in the general case [DL93], but also give

approximation algorithms that work well on a large class of instances [DL97].

12



CHAPTER 1. INTRODUCTION

1.2 The Algorithmic Problem

Given a candidate graph with weights on edges, and also on larger cliques of size up to

k + 1, we would like to find the maximum weight treewidth-k subgraph of the input graph.

For k > 1, this problem is NP-complete. We develop approximation algorithms for it. For

an n-vertex graph with goal width k, in time n 0(k), we find a treewidth-k graph containing

at least an f (k) fraction of the maximum possible weight.

The running time of our algorithm is unsurprising, since the input problem size can (and

will often in practice) be n0(k): a weight may be need to be specified for every clique of

size up to k. It is not clear whether the dependence of our approximation factor on the goal

treewidth k is necessary, but we do in any case get a (weak) constant factor approximation

for every fixed k, which is the case that is dealt with in practice.

Our approximation algorithm is based on two main observations. The first is the iden-

tification of a structure called a k-windmill. While treewidth-k graphs can have quite a

complicated structure, k-windmills are easier to work with. We show that any treewidth-k

graph places at least a constant fraction of its weight in disjoint k-windmills, and thus set-

tle for approximating maximum weight disjoint k-windmills. To find these windmill, we

develop a linear-programming-based approximation algorithm. The linear program bears

some faint resemblance to those in recent algorithms for facility location [STA97]. Our

rounding scheme is quite different, however, and has an interesting "iterative" approach

similar to Jain's algorithm for network design [Jai98]: after solving the LP, we randomly

round some of the fractional variables; we then re-solve the linear program to make it fea-

sible again before we proceed to round other variables.

Treewidth has been defined in many different contexts and using various equivalent

definitions. We present some of these in Chapter 3, but the setting we use throughout the

thesis is that of acyclic hypergraphs.

13



CHAPTER 1. INTRODUCTION

1.2.1 Related work

Finding maximum-weight subgraphs meeting some property is of course a broad field; a

recent good example is the maximum planar subgraph work of Calinescu et al. [CFFK98].

Most recent work on treewidth has been concerned with showing, given some input

graph, that the graph has small treewidth, and on finding an appropriate tree decomposition

[SG97, Bod97, Bod96]. Here, we focus on a different problem. We would like to find

a graph of treewidth at most k that captures the greatest weight. We do not expect to be

able to include all the edges of the graph, but rather aim to maximize what can be included.

While finding a tree-decomposition of a given graph might be viewed as a covering problem

(finding a low-treewidth graph containing the target graph), our problem is a sub-graph

problem-finding a maximal small-treewidth graph inside a given graph.

1.3 Structure of the Thesis

This thesis is contains two main threads: a purely combinatorial analysis of a combinato-

rial optimization problem (the maximum hypertree problem), and an analysis of the equiv-

alence between a learning problem (maximum likelihood, or projected, Markov networks)

and the combinatorial problem, and the consequences of this equivalence.

The rest of this thesis is structured as follows:

* In Chapter 2 we introduce the notions of a maximum likelihood Markov network and

Markov network projections. We motivate the general learning setting and formulate

the specific learning problem which we tackle in this thesis.

The chapter serves mostly as an introduction and tutorial for readers unfamiliar with

unsupervised machine learning and graphical models.

* Chapter 3 serves as a tutorial on treewidth and the related concepts of tree decom-

positions and acyclic hypergraphs. It provides several equivalent definitions of these

concepts, and presents some known results which are used later in the thesis.

14



CHAPTER 1. INTRODUCTION

* in Chapter 4 we formally define the maximum hypertree problem, and prove its hard-

ness. We also present some properties of hypertrees that might be of use in solving

the problem, but that we do not use in this work.

" Chapter 5 is the core of the second thread, and the links between them. It presents

the equivalence between the learning problem and the combinatorial problem. The

first sections present known results about decompositions of Markov networks over

acyclic hypergraphs (or equivalently, triangulated graphs). Sections 5.3 and 5.4

present new results, proving the bidirectional equivalence.

" Chapters 6 and 7 hold the core algorithmic content of the thesis. In Chapter 6 wind-

mills, and the "maximum windmill forest" problem are presented, and it is shown

that a maximum windmill forest serves as an approximation to the maximum hy-

pertree. Chapter 7 presents an approximation algorithm for the maximum windmill

forest problem, which translates to an approximation algorithm for the maximum

hypertree problem

A reader interested only in the algorithmic thread and in the presentation of a new

combinatorial optimization problem, may choose to skip Chapters 2 and 5, without loss of

understanding of the combinatorial issues presented in the other chapters.

A reader interested only in the learning thread, may focus only on Chapter 2, parts of

Chapter 3 and Chapter 5. The relevant implications on the machine learning problems are

presented in these chapters.

Chapters 2, 3 and Sections 5.1 and 5.2 contain background material and review of

known results. The results in Section 4.2, 5.3, 5.4 and Chapters 6 and 7 are new results first

presented in this thesis.

Some of the results presented in this thesis are to be published in [KSO 1].

15



Chapter 2

Introduction to Density Estimation,

Distribution Projections, Maximum

Likelihood, and Markov Networks

In this chapter we introduce and motivate the notion of a maximum likelihood Markov

network and Markov network projections, and formulate the learning problem which we

tackle in this work.

The chapter is intended mostly for readers unfamiliar with unsupervised machine learn-

ing and with graphical models. It provides all the necessary background about the under-

lying machine learning issues, the motivation for the algorithmic problem, and for under-

standing the rest of this manuscript, particularly Chapter 5. It can, however, be skipped,

together with Chapter 5, without loss of understanding of the combinatorial and algorithmic

details in the other chapters.

The chapter also serves to set the basic framework, and clarify the learning scenario ad-

dressed by this work, emphasizing the differences from other unsupervised machine learn-

ing problems.

Some well known properties of Markov networks are presented in this chapter without

proof. Most of these properties are proved, perhaps in a slightly different formulation, in

16



CHAPTER 2. MAXIMUM LIKELIHOOD MARKOV NETWORKS

Chapter 5.

2.1 The Machine Learning Setting: Density Estimation

and Maximum Likelihood Distributions

2.1.1 Density estimation

One of the challenges of unsupervised learning, given a sample of observations, is to deter-

mine the distribution law from which the samples were drawn. The predicted distribution

can be used to make predictions about future, partially observed data. Often, each observed

data point is taken to be expressed as a vector of variables x = (xi,... , x2 ). A common

approach in probabilistic machine learning is to assume each data vector is drawn indepen-

dently at random from the same unknown probability distribution P0 over possible vector

values. One then aims to learn P0 from the samples.

We will use the following notation: Random variables are generally represented by

uppercase letters, and their outcomes by lower case letters. We denote by n the number of

random variables in a single sample: P0 is a distribution over random vectors of length n.

We denote by T the number of observed samples, x', . , T , where x' = (xi,. .. , x).

We assume each X' - P0 independently. Note that the variables X, ... , X1 within a

single sample vector Xt are not necessarily independent, but the sampled vectors Xt are

independent of each other. Based on the observations Xt = x', we would like to estimate

P0 . That is, we would like to learn a distribution P, such that P is "close" to P0 .

By "close" we mean that P0 and P assign similar probabilities to events. This can

be quantified by various measures, the most natural of which is perhaps the information

divergence H (P0IP ) = Epo [log .

17



CHAPTER 2. MAXIMUM LIKELIHOOD MARKOV NETWORKS

The empirical distribution and overfitting

One possible candidate for P is the empirical distribution' of the samples, P. However,

this is usually a very bad choice as P will grossly overfit the data and will not generalize

well to unobserved outcomes. In most scenarios, especially when the dimension n is large,

it is not likely that every possible outcome vector x will be encountered, as the number of

possible outcome vectors is exponential in n. But P associates a probability of zero to any

unencountered outcome, concentrating too much on the encountered outcomes, which are

usually but a small sample of all possible outcomes.

Without making any assumptions, or speculations, about the nature of the distribution

PO, not much further can be done- if we assume nothing about the behavior of P0 on dif-

ferent outcomes, there is no way to generalize from the observed values to yet unobserved

ones. In order to make such generalizations, we must use prior knowledge, speculations, or

assumptions, about P', e.g. that it is smooth in some way, that similar values are related,

or that it has only limited internal dependencies.

Limiting the distribution to prevent overfitting

A possible approach is to choose a distribution from within a limited class of distributions

D. This limited class represents our prior assumptions, or speculations, about the true

distribution P0 , or its properties.

Focusing on a specific class D, a reasonable choice it to choose the distribution P c D

which maximizes the probability of observing the data:

P = argmaxP(Xl = x1, ... , XT = xt) (2.1)
PED

The distribution P is called the maximum likelihood distribution, where the likelihood of

a distribution is the probability of observing the data under that distribution.

Note that the maximum likelihood distribution is also the distribution from within D

'The distribution which assigns to each outcome its frequency in the observed samples

18



CHAPTER 2. MAXIMUM LIKELIHOOD MARKOV NETWORKS

that minimizes the information divergence with F:

P = argmax P(X1 = x1,... ,XT = xt)
PED

arg max TIP(xt ) X' are independent
t

=arg max log P(xt)
t

replacing summation over observed outcomes with a sum over all possible outcomes,

counting the number of times they were observed using the empirical distribution,

= arg max ZTP(x) log P(x)
x

= arg min - EP(x) log P(x)
PEE)

x

The distribution P, and so also any function of it, is constant, and adding it does not change

the minimizing distribution:

- ar g m (P(x) log P(x) - P(x) log P (Xt)

arg min (X) log(x)
P PD X P(x )

= arg min H (P|1P) (2.2)
P ED\

(2.3)

Since the information divergence can be viewed as a "distance" measure2, we refer to PO

as the projection of P onto D. More generally a projection of a some target distribution

(not necessarily an empirical distribution of some sample) onto a class of distributions, is

the distribution from with in the class minimizing the information divergence to the target.

2Although it is not a metric.
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CHAPTER 2. MAXIMUM LIKELIHOOD MARKOV NETWORKS

2.1.2 Estimation error and generalization error

Limiting to a restricted class D can reduce the risk of overfitting. For example, we might

limit to the class Do of distributions in which the variables Xi in the observed vector are

independent. In this case, to estimate the maximum likelihood distribution Fo E D. one

need only estimate the marginals over each variable separately. Since these marginals have

only a few possible outcomes (compared to the total number of outcome combinations), a

good estimate can be attained with a relatively small number of samples.

However, if there are significant dependencies between variables in the true distribution

Po, as may well be the case, then Po will not approximate P0 well, because no distribution

in Do approximates P0 well.

We distinguish here between two sources of "error", i.e. discrepancies between the

estimated distribution PO and the true distribution P:

The approximation error is the discrepancy between PO and the class D, i.e. the differ-

ence between P0 and the distribution P* E D that is closest to it.

The estimation error is the difference between P* and our estimate of it based on the

observed samples, P .

The estimation error is essentially caused by not having enough samples. Had we an

infinite number of samples (and infinite time), we could find P* exactly. The fewer samples

we have, the greater the estimation error is likely to be. The estimation error also depends

on the size of the class D: intuitively, the smaller, and simpler, the class, the easier it is to

"focus in" on P*, and fewer samples will be needed to reduce the estimation error.

The approximation error does not depend on the number of samples, but only on the

distribution class D. The bigger the class D, and denser it is in the space of all distributions,

the more conceivable it is that there will be a distribution P* E D that will approximate P0

well. Of course, not only the size is important, but perhaps more important is choosing a
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class D which correctly captures the expected properties of P0 , and so ensures that P0 will

lie within the class, or at least not far from it.

We see a tradeoff between the estimation error and the approximation error, controlled

by the size of the class D. A bigger and more complex D might capture P0 better and

reduce the approximation error, but at the same time make it harder to estimate P* and

increase the estimation error. We would like to choose a distribution class that is simple and

small enough to be estimated using the samples we have, yet as large and comprehensive

as possible to allow for a good approximation of P0 . The more samples we have, the better

we can estimate even in more complex classes, and the larger the class we will aim to use.

2.1.3 Limiting to Markov networks

Earlier we described one possible, rather simple, distribution class- the class Do of distri-

butions with no dependencies between random variables. Finding the maximum likelihood

distribution from this class is straightforward. But the class is very limited and often one

would like to allow some dependencies in the distribution.

We might like to use larger, more complex, classes, when we have enough samples

to support estimation in those classes. It is convenient to use a parameterized family of

distribution classes, which gradually become larger and more complex. We can then use

the distribution class from the family that is appropriate for the sample size at hand.

A possible more general family of distributions are Markov networks, which will be

described in detail in Section 2.2. Markov networks allow a limited dependency structure,

as imposed by a graph (loosely speaking, dependencies are only allowed along edges in

the graph). The denser and "wider" the graph, the less restricted the distribution. In this

work, we consider the problem of finding a maximum likelihood distribution from within

the class Dk of Markov networks of width at most k (as will be defined in Chapter 3).
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2.1.4 Density estimation, not model selection

It is important to note that the problem we concentrate on is density estimation, and not

model selection or hypothesis testing. We discuss model selection problems briefly, in

order to emphasize what we do not do.

In model selection problems, we aim to discover the underlying distribution model. For

example we might want to decide which random variables are independent. Since a more

complex model (e.g. with more dependencies) will always predict the data better, and have

a higher likelihood, a pure maximum likelihood approach is not suitable in this scenario.

Instead, we wish to balance likelihood and simplicity, and find a model that is both simple

(e.g. assume as few dependencies as possible) and predicts the data well.

But in this thesis we do not consider the problem of model selection. In the scenario

we are concentrating on, we are merely trying to estimate a distribution, and our output is

a distribution. The quality is measured by how well the distribution itself, i.e. the proba-

bilities assigned to possible outcomes, resembles the true distribution. We are limiting to

a class of simple distributions only to overcome overfitting- had we more samples, we

would allow ourselves to choose from a wider, more complex, class of distributions, since

this will always decrease (or at least, not increase) the approximation error. This is in sharp

contrast to model selection, where even if we have an infinite number of samples, we would

still prefer a simple model.

2.1.5 Tractable models

Despite our emphasis on the distribution rather then the model, there is one sense in which

we are concerned also with the underlying model, or representation of the distribution. To

be of any practical use, the resulting distribution must be representable in some compact

form that allows efficient computation of marginal (and thus also conditional) probabili-

ties. Recording the probability value associated with each possible outcome is almost al-

ways infeasible, because of the huge (exponential in n) number of possible outcomes, and
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calculating a marginal probability with such a verbose representation requires excessive

computation.

Existence of a compact, but not necessarily tractable, representation is tied to the size

of the distribution class, since the length of the minimal representation is logarithmic in the

size of the class. Since we restrict the size of the class to avoid overfitting, we also implicitly

restrict the size of its minimal representation. In fact, from the information theoretic point

of view, the length of the representation of the distribution surely cannot be more than the

sample size, since this is our only source of information about the distribution.

However, although such a compact representation is guaranteed to exist, computations

using it, perhaps even point probability calculations, might be intractable. We will proba-

bly need to limit our distribution class D only to tractable distributions, i.e. distributions

that have a representation supporting efficient marginal probability calculations. Note that

this restriction is imposed as a practical necessity of being able to make efficient use of

the resulting distribution, and not as part of the mathematical framework of distribution

estimation.

Other than tractable computation of marginal probabilities, we might be interested in

other representation or computational properties of the distribution, such as factorizability.

2.1.6 Other approaches

We consider an approach to density estimation by limiting the distribution to a class of

Markov network distributions Dk. This is of course not the only approach to density esti-

mation.

Other families of distributions

Many of the common methods for density estimation, and its closely associated problems

of regression and classification, follow a similar approach, but with different families of

distribution classes. Some of the common families used are Bayes networks and mix-

ture families, e.g. mixtures of Gaussians, or even mixtures of limited Bayes-networks or
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Markov networks.

Using a prior over distributions

Instead of restricting to a class of equally permissible distributions, while totally disallow-

ing any other distribution, one might choose to make a "softer" limitation. This can be

done using a prior distribution over the possible distributions of X. We can then select the

distribution of X with the highest a posteriori probability: the a posteriori probability is the

probability of X having a certain distribution given the observed samples, i.e. the product

of the likelihood of the distribution and its prior probability.

The prior distribution reflects our belief as to which models are a priori more or less

likely. For example, we might assign simpler models a higher prior than more complex

models.

A true Bayesian would argue that restricting to a class of distribution, and seeking the

maximum likelihood in the class, is just assigning a uniform3 prior over that class.

Learning the parameters of a specific structure

It is also common to impose a specific structure, determined beforehand by external prior

knowledge about the distribution, and fit the distribution within this model structure. For

example, a specific perceptron architecture may be specified, or a specific directed graph

for a Bayes network.

This is also often done with Markov networks, where a specific graph is predetermined,

and the most likely Markov network on it is sought. This requires extensive prior knowl-

edge about the distribution. This problem is well studied, and discussed in Section 2.3.

3with respect to some parameterization
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Regularization

Other approaches suggested by modem developments in statistical learning theory, aim to

balance the approximation error and estimation error dynamically. Instead of pre-limiting

the level of complexity and searching for the maximum likelihood distribution within those

limits, a "regularization penalty", proportional to some measure of the distribution's com-

plexity, is combined with the likelihood, seeking a model that is both likely and non-

complex. These approaches are not discussed in this work.

2.2 Markov Networks

In this section we give a brief introduction to Markov Networks. We formally define this

family of distributions, and describe some known results about the family. We do not prove

these results here, but most are proved, in a slightly different formulation, in Chapter 5.

2.2.1 Definition

We first formally define the family of distributions we refer to as Markov Networks. In

the discussion below, X is a random vector, and x is a possible outcome value for X. X,

is an element of X, i.e. a random variable corresponding to the value of X in one of its

coordinates. x, is a possible outcome of X,.

Definition 2.1. We write A 1 B | C iffor variable sets A, B, and C, conditioned on any

values of the variables in C, the variables in A are independent of those in B.

Definition 2.2 (Markov Network). A random vector Xv, indexed by vertex set V, is a

Markov network over an undirected graph' G (V) iff each random variable Xu, conditioned

4A graph is a collection of edges between vertices. The neighbors of a vertex are the vertices to which it
has edges. See Chapter 3for complete definitions
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on its neighbors, is independent of all other elements of Xv:

(VV E V) (2.4)

Xv I {X, |u7# v,(u,v)VG}j {X (v,u)EG}

It follows that if C separates A and B in G, then for the corresponding sets of random

variables, XA I XBIXC.

Every distribution is a Markov network over the fully connected graph (a graph in which

every two vertices are connected by an edge), since then the independence requirement is

satisfied vacuously. In a Markov network over the empty graph, all the variables are in-

dependent. As a more interesting example, any finite length Markov chain is a Markov

network whose underlying graph is a path: each variable is dependent on only its predeces-

sor and successor.

2.2.2 Hammersley-Clifford clique factorization

The Hammersley Clifford theorem characterizes the distributions which follow the Marko-

vian independencies given by a graph, for distributions without so-called "forbidden com-

binations" [Bes74]:

Definition 2.3 (Strictly Positive Distribution). A random vector X is distributed strictly

positively ifffor each vector of outcomes x = (x1 , x 2 , ... , xn) for which each element has

positive marginal probability P(Xi = xi) > 0, then P(x) > 0. That is, the support of the

distribution is a cartesian product of the supports for each element, meaning there are no

forbidden combinations of values.

Theorem 2.1 (Hammersley-Clifford Theorem). A strictly positively distributed random

vector X is a Markov network specified by G(X) if and only if its distribution can be
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factored to the cliques in G:

Px(x) = (xh (2.5)
hEClique(()G)

for some set of clique factors {}, such that Oh is a function of the outcomes of random

variables indexed by the clique Xh = {x, Iv c h}

For each clique h, the factor function Oh assigns a value to each combination of possible

outcomes of variables in the clique.

The sizes of cliques in the Markov network determines the complexity of both ex-

pressing and learning the distribution. For a given Markov network, the description of the

distribution, and thus also the sample size needed to estimate it, is exponential in the clique

sizes. For each clique h, we need to specify the value of its factor function 0h for every

possible argument. A clique on k variables, even if they are only binary variables, takes on

2 k compound values. We need to record (and to estimate) the value of Oh for each of those

2k input values.

2.2.3 Triangulated Markov networks

While equation (2.5) provides an explicit formula for using the clique factors to calculate

the probability of an outcome, calculating marginal probabilities using this representation

is not necessarily easy, and might require summation over all outcomes of nuisance vari-

ables. Similarly, there is no direct way of calculating the appropriate factors for a given

distributions.

In a certain class of graphs, however, such calculations are possible.

Triangulated graphs are graphs with no minimal cycles of more than three nodes. They

are discussed in detail in Section 3.3.4. Over such graphs, marginal, and hence also condi-

tional, probabilities can be calculated directly from the clique factors in linear time [WL83],

i.e. linear in the size of the tables used for computing the factors, and hence exponential in
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the clique sizes. Conversely, for triangulated G, the clique factoring can be given explicitly

as a function of the marginal distributions over the cliques (proven in Theorem 5.1):

O1h(Xh) = . (2.6)
fOc'cc Oct (c)

Note that this representation requires a product over all cliques in (2.5), including non-

maximal cliques. Factors corresponding to non-maximal cliques can of course be sub-

sumed into some containing maximal clique factor. However this leads to clique factors

which are dependent on the graph structure. The factors given by (2.6) are unique in that a

clique's factor does not depend on the graph G, except the fact that it include the clique.

Local dependence on marginals Other than the efficient and explicit calculations, it is

also important to note that the dependence between the clique factors and the marginal

distributions is local. That is, a clique factor depends only on the marginal distribution of

the clique, and the marginal distribution of a clique depends only on factors of the clique

and its sub-cliques. This is contrary to the non-triangulated case in which a change in a

marginal distribution can propagate to factors of far away cliques, and visa versa.

If G is triangulated, the Hammersley Clifford theorem holds for any distribution, in-

cluding distributions with forbidden combinations. This will be shown in Section 5.1.

The explicit factoring also allows for simple calculation of the maximum likelihood

Markov network over a specified triangulated graph. Following (2.6), it can be shown (see

Corollary 5.3) that the maximum likelihood Markov network over a given graph structure

G is given by:

Ph(xh)Eh(xh) =)(2.7)
11c'cc Oct (Xct)

Where Ph are the empirical marginal distributions over the cliques-that is, the fraction of

the observed data points that took on given values.
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2.3 Maximum Likelihood Markov Networks

When the triangulated graph is specified in advance, (2.7) makes it simple to assign the

maximum likelihood factor functions. In some cases, however, the structure of the depen-

dency graph is unknown, and we would like to determine both the best graph and the best

parameter settings for it based on the empirical data. This is the main problem with which

we are concerned: find a graph and a Markov network over the graph, which maximizes

the likelihood of the data.

The complete graph always has maximum likelihood

Lack of edges in the graph represent independencies which must hold. Thus, adding edges

to a graph relaxes the constraints on Markov networks defined by it. If X is a Markov

network over graph G, then it is also a Markov network over a supergraph G' D G, and

in particular also a Markov network over the fully connected graph (in which every two

vertices have an edge between them). In fact, every random vector X is a Markov network

over the fully connected graph. And so, the empirical distribution of the data, which is

always the maximum likelihood distribution, is a Markov network over the fully connected

graph. Thus, the fully connected graph can always be used to maximize the likelihood.

In most cases the fully connected graph will be the only graph which achieves the

maximum likelihood. Even if the real distribution from which the data is sampled is a

Markov network over a sparser graph G, the empirical distribution will almost surely5

deviate slightly from the true distribution, and will not be a Markov network over G.

Limiting the space of admissible models

As discussed in Section 2.1.1, the empirical distribution is in most cases a vast overfitting

of the data.

5 Strictly speaking, for a continuous distribution, with probability one it will not be a Markov network over
G. If the distribution is not constant, then as the number of samples increases, the probability of the empirical
distribution being a Markov network will go to zero
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Instead, we would like to limit the space of admissible models, as represented by the

number of parameters allowed. As discussed above, the number of parameters is essentially

exponential in the clique sizes. We would thus like to limit the sizes of the cliques in the

graph.

A simple way of doing so is bounding the maximum clique size of the graph. We will

choose a clique size bound' k+ 1. and search for a maximum likelihood distribution among

those which are Markov networks over a graph where all cliques are of size at most k + 1.

Bounding the clique size bounds the number of parameters, however it is not equivalent

to bounding the number of parameters. A graph that contains a single clique of k + 2

nodes, and no other edges would not be admissible. However, a graph which contains

many cliques of size k + 1 might have more parameters (if the number of values a variable

can take is low, e.g. if all variables are binary).

In many ways, it might be more "correct" to bound the actual number of parameters,

and not the maximum clique size, in order to allow for such non-uniform graphs. This

would roughly mean bounding the sum of exponents of the clique sizes.

However, the uniform requirement of a bounded clique size yields substantially simpler

combinatorial properties, and is independent of the number of possible outcomes for each

random variable.

Limiting only to tractable models

For a non-triangulated graph, even if the graph structure is known, finding the maximum

likelihood parameters is hard. It is conceivable that finding the maximum likelihood struc-

ture and the parameters is easier, especially if it is true that the maximum likelihood graph

always has some restricted structure. However, we do not know that this is the case, and

so we cannot expect that finding the maximum likelihood structure and parameters will be

easier. Additionally, a triangulated model is more useful as a predictive model since calcu-

lations (e.g. conditional and marginal probabilities) on it are feasible (linear in the number

6The choice of k + 1 and not k will be motivated in Section 3.

30



CHAPTER 2. MAXIMUM LIKELIHOOD MARKOV NETWORKS

of parameters), whereas in a general graph they are difficult, as discussed before.

Because of this, we choose to limit the acceptable models to only triangulated graphs

with cliques size at most some bound k + 1.

Triangulated, bounded clique size, graphs also have a more "regular" number of param-

eters then general bounded clique-size graphs. The number of cliques of size k + 1 is at

most n - k and the number of parameters is at most mk ((n - k)(m - 1) + 1) - 1 (where

n is the number of variables and m is the number of possible outcomes for each variable',

and both of these bounds are attained by every maximal graph of the family. This regularity

provides for a better approximation to our underlying desire to directly bound the number

of parameters.

2.3.1 Summary: our learning goal

Our goal is thus to find a maximum likelihood Markov network over a triangulated graph

G with clique size at most some bound k + 1. As will be discussed later, this is equivalent

to requiring the graph have tree width at most k.

This is an extension of the work of Chow and Liu [CL68], which showed how to find

the maximum likelihood Markov network over a tree. A tree is a triangulated graph with

clique size at most 2, and so the Chow Liu algorithm solves the above problem for k = 1.

2.3.2 The learning goal as a projection problem

As was shown in Section 2.1.1, the maximum likelihood distribution in a distribution class

is the projection of the empirical distribution onto the class. Thus, we can view the problem

of finding a maximum likelihood distribution as a projection problem. In this thesis, we

take this approach and discuss the problem of projecting a distribution onto the class of

Markov networks over a triangulated graph G with clique size at most k + 1.

71f the number of outcomes is not the same for all variables, m is the bound on the number of outcomes,
but the bound is not attained by maximal graphs, and different maximal graphs will have a different number
of parameters
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This more generalized setting has applications beyond maximum likelihood estimation.

We might have a target distribution that is specified in some other way, perhaps through a

more complex model, as we would like to realize it as best we can using a simpler Markov

network.

2.3.3 Learning a distribution versus learning a structure

One of the common uses of graphical models, including Markov networks, in unsupervised

machine learning, is to understand the dependency structure of a sampled distribution. That

is, given samples from an unknown distribution, learn the true, minimal, structure of its

dependency graph G, such that the distribution is a Markov network over G. For example,

for two variables, we would like to decide if they seem to be dependent or independent (i.e.

if their dependency graph is empty, or includes the edge between them).

This type of application is a model selection problem, as described in Section 2.1.4, and

the straightforward maximum likelihood approach is not suited for it- adding edges will

always increase the likelihood.

We emphasize again that this work concerns learning a distribution, with the graphical

model being a convenient way to represent the learned distribution. The methods discussed

are generally not appropriate for learning the structure of a distribution.

In this sense too, this is an extension of Chow and Liu [CL68]. There too, the maximum

likelihood tree is found, even though some of its edges may be superfluous.
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Chapter 3

Treewidth and Hyperforests

In this chapter we introduce the concepts of hyperforests and the treewidth of a graph,

and review the relevant background about them. We also formally define the maximum

hypertree problem - the subject of this thesis.

All of the material in this chapter is based on previously known results. However,

some of the definitions, formulations of theorems, and proofs vary from those in the cited

sources.

We first recall the basic definitions of graphs and hypergraphs and present the terminol-

ogy we use. In Section 3.1 we introduce hyperforests (also known as acyclic hypergraphs),

hypertrees, and the related measure of the treewidth of a graph. In the rest of the chapter

we review relevant known results about hyperforests and treewidth of graphs. In Section

3.2 we present some basic properties which we use throughout the thesis. In Section 3.3

we discuss several equivalent characterizations of hyperforests and treewidth. Section 3.4

points the interested reader to further work about, or using, hyperforests and treewidth.

Preliminaries: Graphs and Hypergraphs

We give the basic definitions of graphs and hypergraphs, and present the terminology used

in this thesis.

A graph G(V) is a collection of unordered pairs (edges) of the vertex set V: G(V) C
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). A path in a graph G(V) is a sequence Vi, v2 ,... , v, of distinct vertices, such that

Vi<i<r{Vi, Vi+i} E G.

A hypergraph H(V) is a collection of subsets (edges, or sometimes explicitly hyper-

edges) of the vertex set V: H(V) C 2v. If h' C h C H then the edge h' is covered by H.

We slightly abuse set-theory notation and denote h' c H even if h' is just covered by H. A

hypergraph (or graph) H' is covered by H iff Vh'H,' h' E H (all edges in H' are covered by

H, i.e. are a subset of an edge of H); if so we write H' C H. Another way of viewing this

notion of a hypergraph is requiring that a hypergraph include all subsets of its edges.

A hypergraph in which all maximal edges have the same size k will be called a k-

edge-regular hypergraph. A graph is simply a 2-edge-regular hypergraph. To emphasize

the distinction between covered edges (which will have smaller size) and the maximal,

regularly-sized, edges, these edges will be referred to as regular edges.

If a vertex is contained in (hyper)edge, the edge is said to be incident on the vertex.

Two vertices both belong to a common (hyper)edge are said to be adjacent. The neighbors

of a vertex are all vertices to which it is adjacent.

For a (hyper)graph H(V) and vertex set V' c V, we denote by H[V'] the induced

sub-(hyper)-graph defined by H[V'] = {h n V1'h c H}. Note that for hypergraphs, the

induced sub-hypergraph includes also hyperedges covered by the original hypergraph. For

example, if H = {{a, b, c}, {c, d}} then H[{a, b, d}] = {{a, b}, {d}}.

For sets V and V2, we use the notation V \ V2 {v E V1iv V2}. For a set V and

an element v C V, we denote V - v = V \ {v} and for an element v V V we denote

V +v =V U {v}.

3.1 Hyper Trees and Tree Decomposition

Hypertrees generalize trees (here referred to explicitly as 1-trees) to hypergraphs. It will be

simpler to introduce hypertrees by first introducing hyperforests, which generalize forests.

Recall that a forest is an acyclic graph, i.e. a graph with no cycles. The generalization of
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acyclicity to hypergraphs is somewhat more complex. There are several equivalent defi-

nitions for hypergraph acyclicity, which will be discussed in Section 3.3. Here, we define

acyclicity using the notion of a tree structure:

Definition 3.1 (Tree Decomposition). A hypergraph H(V) is said to have tree structure

T(H) iff T is a tree over all the hyperedges of H and the following decomposition property

holds:

e If (h 1, h2, ... , hi ) is a path of H-edges in T, then (Vi < i < k) h1 n hk C hi.

Definition 3.2 (Acyclic Hypergraph). A hypergraph is acyclic iff it has a tree decompo-

sition. An acyclic hypergraph is also referred to as a hyperforest.

A 1-tree H(V) has the following tree structure T(H): if a vertex in v has degree 2 in H,

then the two edges incident on it in H are neighbors in T. If a vertex v has degree higher

than 2, choose one of its incident edges h, E H arbitrarily- all other edges incident on v

in H neighbor hv in T. Note that if H is not a path, the tree structure is not unique, and

depends on the choice of the arbitrary mapping v -+ hv.

Two hyperforests H1 (V) and H2 (V2 ), over disjoint' vertex sets V1 n V2 = 0, with tree

decompositions T1 (H1 ) and T2(H 2), can be joined to form a hyperforest H, U H2 , with tree

decomposition T1 U T2 U {(hi, h2 )}, created by adding an arc between any two arbitrary

hyperedges h, E H1 and h2 E H 2. Thus, a 1-forest, being a union of disjoint 1-trees, is a

hyperforest.

Unlike adding edges to a regular graph, adding hyperedges to a cyclic-hypergraph might

make it acyclic. In fact, a hypergraph containing the complete hyperedge (the hyperedge

containing all vertices) is always a hyperforest. The tree structure of such a hyperforest is

a star, with the complete hyperedge in the center.

Definition 3.3 (Width of a Hyperforest). The width of a hyperforest H(V) is the size of

the largest edge, minus one: maxhe-H IhJ - 1.

'Note that it is essential that the vertex sets be disjoint. Even for 1-forests, joining two paths might create
a cycle. In Section 3.2.2 we relax the disjointness restriction somewhat.
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Thus, the width of a standard tree is 1. We will refer to a hyperforest of width at most

k as a k-hyperforest.

Definition 3.4 (Hypertree). A hyperforest that is maximal among hyperforests of width at

most k (i.e. no k + 1-edge can be added to it) is said to be a k-hypertree.

Since we are concerned with maximum structures, we will be interested mostly in hy-

pertrees.

Definition 3.5 (Tree Decomposition of a Graph). A tree decomposition of a graph G(V)

is a covering hyperforest H(V) 2 G(V) with tree structure T(H).

Recall that H covers G if every edge of G is contained in some hyperedge of H.

Definition 3.6 (Treewidth). The treewidth of a graph is the width of its narrowest tree

decomposition, i.e. the narrowest hyperforest covering it.

Every graph can be covered by the hyperforest containing the complete hyperedge, so

every graph has treewidth at most n - 1.

A word about nomenclature To try to minimize confusion and ambiguity in the expo-

sition, we will take advantage of the common parallel nomenclatures for graphs: we will

use the terms vertex and edge or hyperedge when discussing graphs such as G and H, and

reserve the terms node and arc for the tree structure of hyperforests.

3.2 Basic properties of hyperforests and tree decomposi-

tions

We present here some basic properties of hyperforests and tree decompositions, that we use

throughout the thesis.
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3.2.1 Cliques

Lemma 3.1. The treewidth of a k-clique is TreeWidth K = k - 1.

Proof of Lemma:

Clearly TreeWidth Kk < k - 1. Suppose that TreeWidth Kk < k - 1, and let H
be a minimum-width covering hyperforest with tree decomposition T(H). Since H has
no hyperedge of size k, it does not have a single hyperedge covering all vertices in G, so
there exist three vertices u, v, w c G that are not all included in a single hyperedge of
H. Since all edges must be covered by H, for each pair of the three vertices, there must
be a hyperedge containing both of them: x, y E hi; y, z E h 2 ; x, z E h3 ; h1 , h 2, h 3 E H.
Consider the location of hl, h2, h3 in the tree T(H), and the three paths between them.
Since T is a tree, there must be a node in T, i.e. hyperedge h' E H, in which the three
paths in T meet. The node h' might be one of hl, h2, h3 or a different hyperedge. By
the separation property of T(H), {u} = h, n h2 C h' and similarly also for v and w, so
U, v, w E h', contrary to the earlier argument.

Moreover, following this argument, any covering hyperforest H of a graph G must

cover all the cliques in G.

Lemma 3.2. If G is a subgraph of G' (G C G'), then TreeWidth G < TreeWidth G'.

Proof of Lemma:

Any covering hyperforest of G' also covers G.

Corollary 3.3. TreeWidth G > max Clique (G) - 1

3.2.2 Joining hyperforests

In Section 3.1 we noted that the union of two hyperforests is a hyperforest if their vertex

sets are disjoint, but may not be a hyperforest otherwise. We now extend this to a more

general situation:

Lemma 3.4. Let H 1 (V1) and H2 (V2) be hyperforests with respective tree structures T1 (H1)

and T2 (H 2). If s = V1nV 2 is covered by both H1 and H2, then H1 UH 2 is also a hyperforest.
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Proof of Lemma:

Let s c hi E H1 and s c h2 c H2 be hyperedges covering s and consider the tree
structure T U T2 U {(h, h2)}.

Since every clique in a graph must be covered, we also have:

Corollary 3.5. If G 1 (V) and G2 (V2 ) both have treewidth at most k, and V1 n V2 is a clique

in both G1 and G2, then G1 U G2 also has treewidth at most k.

3.2.3 Maximal hyperedges in hyperforests

We now show that it is enough to concentrate on the tree structure of the maximal hyper-

edges in a hypergraph.

Theorem 3.6. If a hypergraph has a tree decomposition, that might include maximal as

well as covered edges, then there is also a tree decomposition over the maximal edges only.

Proof of Theorem:

Let H(V) be a hyperforest with tree structure T(H). We will show that any non-
maximal hyperedge of H can be removed from the tree structure, i.e. for h' c h E H we
will show how to modify T into T'(H'), a tree structure over H' = H \ {h'}.

Examine the path in T from h' to h. All hyperedges on this path must contain h' n h
h', and in particular this is true for the first hyperedge, hl, on the path, which is adjacent
to h' in T. We will remove h' from T by diverting all arcs incident on h' in T, to go to h,
instead in T'. T' remains a tree, and paths that before contained h' now contain hI instead.
But since h' c hi, the decomposition property still holds.

A tree structure T over the maximal edges of a hypergraph can always be extended to

all the subset edges, by connecting in T each subset hyperedge to a hyperedge containing

it. For this reason, we freely refer to subsets of edges as being part of the hyperforest, and

are concerned only with the tree structure over the maximal edges.

This theorem allows us to discuss hyperforests as if they consisted only of maximal

hyperedges, but freely add their covered hyperedges to the tree decomposition where nec-

essary.
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3.2.4 Minors

We have already seen, in Lemma 3.2, that taking a subgraph of a graph can only reduce the

treewidth. Taking a minor of a graph is a more general operation than taking a subgraph,

permitting investigation of more global structures in the graph. In addition to removing

vertices and edges, edge contractions are also allowed when taking a graph minor. Whereas

subgraphs can ignore the global structure and concentrate on the local structure in some

part of the graph, contractions can ignore some of the local structure and concentrate on

higher-level structure.

Definition 3.7 (Graph Minor). A graph G'(V') is a minor of a graph G if G' can be ob-

tained from G by a sequence of any number of operations from the following:

" Edge removal.

" Vertex removal (together with all incident edges).

* Edge contraction: an edge (v1, v2) can be contracted by replacing both vertices with

a new combined vertex that is incident on any edge on which either v1 or v2 were

incident.

We will extend this standard definition also for hypergraph minors. In this case, con-

traction is allowed for any edge covered by the hypergraph. That is, we do not need to

contract all vertices of a hyperedge, and are allowed to contract only some of them. Note

that any contraction of multiple vertices can be seen as multiple contractions of pairs of

vertices, or 2-edges.

Lemma 3.7. A hyperedge-contracted hyperforest is a hyperforest

Proof of Lemma:

It is enough to study contraction of a 2-edge. Let H(V) be a hyperforest and H'(V') be
the result of contracting the vertices vI, v2 into v 12 . The new combined vertex v12 replaces
either of the contracted vertices in any hyperedge in which either one appears.

We show that the tree decomposition on H is still valid for H'. The decomposition
property holds for all vertices other than v12. We need to show that it holds also for v12. Let
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V 1 2 E h', h' which correspond to hl, h2 in H. If both hi and h2 contained the same vertex
v, or v2 in H, then the path between them also contained this vertex, and now contains
v 1 2 . Otherwise, without loss of generality, v1 E h, and V2 E h2 . Let h12 be the hyperedge
covering (vi, v 2 ) in H, and consider the possibly backtracking "path"2 from hI through h1 2
to h2 in the tree structure. All hyperedges along this path must contain either v, or v2, and
so in H' they will contain v12 . Since this path covers the path from h' to h', we have shown
the decomposition property with respect to v12.

Note that some hyperedges might become identical, requiring modification to the tree
structure (as it is now over fewer nodes). If hl, h2 E H become identical, then their
intersection h, n h2, and thus also all hyperedges in the path between them, must contain
h, U h2 - V1 - v2. Following the argument above, the path must also include v 12, making all
hyperedges on the path between h, and h2 identical, and allowing us to collapse the path.

n

The tree structure of the minor of the hyperforest is therefore the minor of the hyper-

forest's tree structure formed by contracting hyperedges that differ only in which of the

contracted vertices they include.

Edge removals may turn a hyperforest into a non-hyperforest, but if a hypergraph has a

covering hyperforest, then the same hyperforest will still cover it after any edge or vertex

removals. Combined with Lemma 3.7, we can conclude that:

Theorem 3.8. A minor of a graph of treewidth k has treewidth at most k, i.e. the class of

graphs of width at most k is closed under taking minors.

This property is especially useful for proving high treewidth by proving the existence

of a high treewidth minor, such as a clique.

3.3 Equivalent characterizations of hyperforests

In this thesis, we have chosen to define treewidth and tree decompositions through the for-

malization of tree structures of hyperforests. However, this is only one of many equivalent

views (and definitions) of treewidth and the decomposition concept that appeared in previ-

ous work. In this section we present other characterizations and prove their equivalence.

2Since we allow backtracking, this is not formally a path, as defined earlier
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Presenting these equivalent characterizations serves several purposes: First, we will use

some of the alternate characterizations, and properties derived from them, in later sections

of the thesis (See below for details). Second, we hope that through these alternate views,

the reader will become more comfortable with the notions involved, and will get a better

intuition for these concepts. Each reader might find a different characterization appealing

to his intuition or background. Last but not least, through the presentation of these various

characterizations, we hope to demonstrate the tight connection of hypertrees to many graph-

theoretic concepts.

Characterizations on which later chapters depend Graham reductions, defined in Sec-

tion 3.3.1, are used extensively in the proofs in Chapter 5. This is essentially the only

characterization used in later sections. Triangulations (Section 3.3.4) were first discussed

in Chapter 2, since they are the most common characterization used in work on Markov

networks. They are referred to in later sections, but only to make connections with the

presentation in Chapter 2 and the machine learning literature.

3.3.1 Graham reduceability

A 1-forest always has a vertex of degree one, sometimes called a leaf. Removing a leaf

from the 1-forest yields a new 1-forest, which again has a leaf (i.e. a different vertex of

degree one). The 1-forest can thus be reduced to an empty graph by iteratively removing

vertices of degree one. In fact, a 1-forest can be characterized as a graph that can be reduced

to an empty graph in such a way.

A very similar characterization applies for hyperforests:

Definition 3.8. A hypergraph H(V) is Graham reduceable iff it is empty, or if it has some

vertex v G V such that v is incident on only one maximal hyperedge of H, and the induced

sub-hypergraph on V \ {v} is Graham reduceable. The vertex v is called a leaf of H and

the maximal hyperedge containing it is called v's twig.

3In fact, it always has at least two such vertices.

41



CHAPTER 3. TREEWIDTH AND HYPERFORESTS

Note that a twig of a leaf is a maximal hyperedge at the time of removal, but it might

be a non-maximal hyperedge in the original hypergraph. Twigs will be discussed in greater

detail in Section 3.3.2.

Theorem 3.9. A hypergraph is acyclic iff it is Graham reduceable

Proof of Theorem:

Every hyperforest is Graham reduceable It is enough to show that every hyperforest
has a vertex that is incident on only one maximal hyperedge. Since every induced sub-
hypergraph of a hyperforest is also a hyperforest, removing this vertex yields a hyperforest,
and the argument can be applied iteratively.

For a hyperforest H(V) with tree structure T(H) over its maximal edges, let h, be a
leaf (i.e. node of degree one) of T, and let h2 be the only node adjacent to h, in T. Any
vertex not unique to h, must also be included in h2 . Thus since h, is a maximal hyperedge,
it cannot be contained in h2, and therefore must have some unique vertex.

Every Graham reduceable hypergraph is acyclic Similarly, it is enough to show that
if H'(V U {v}) is reduceable to H(V) by removing v, and H is a hyperforest, then H' is
also a hyperforest. Let h' = h U {v} E H' be the unique maximal hyperedge covering v in
H'. The hypergraph H' is the union of H and {h'}, which we will view as a one-hyperedge
hyperforest. The intersection of the vertex-sets of these two hyperforests is covered by h'
in {h'} and by h in H, so following Lemma 3.4 the union hypergraph H is acyclic.

3.3.2 Twig sequences

An approach similar to Graham reductions is that of twig sequences. Twig sequences rep-

resent a reduction ordering of hyperedges, rather than of vertices as in Graham reductions.

Twigs in 1-trees are "outer" edges, connecting the tree to leaves. If done at the proper

order, from the outside inwards, all edges of a 1-tree can be removed such that every edge

is a twig at the time of removal. In a hypergraph a bit more care must be taken in defining

such "outer" hyperedges:

Definition 3.9 (Twigs and Twig Sequences). A hyperedge h of hypergraph H is a twig iff

there exists another hyperedge h' E H that contains the intersection of h and the rest of H:

h n (U(H - h)) c h'. The hyperedge h' is called a branch to h.
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A series of hyperedges (hi, h2 , ... , h.) is a twig sequence iff every hyperedge hi is a

twig in the hypergraph {h 1 , h 2 , ... , hi}, i.e.: Vi]j<iVk<ih, n hk C hj

Twig sequences are presented as sequences and not as recursive reductions, like Gra-

ham reductions. However, these two methods of presentation (reduction sequences and

recursive reductions) are essentially the same, and do not represent a real difference be-

tween Graham reductions and twig sequences. As discussed above, the real distinction

is that twigs are hyperedges, whereas Graham reductions refer to vertices. The choice of

method of presentation (recursive versus sequence) is based on the common presentation

in the literature.

Theorem 3.10. A hypergraph H is a hyperforest iff there is an ordering of its hyperedges

that forms a twig sequence.

Proof of Theorem:

Every hyperforest has a twig sequence We will show that every hyperforest has a twig,
and that removing this twig yields a new hyperforest. For a hyperforest H with tree struc-
ture T(H), let h be a leaf of T (a 1-tree always has leaves). We claim that h is a twig of H:
as a leaf, h has only one neighbor h' in T. The path in T between h and any other hyper-
edge must pass through h', so h' must contain the intersection of h and any other hyperedge
of H. Furthermore, note that since h is a leaf of T, it can be removed from T leaving a new
tree, which is a tree structure for H \ {h}. Thus, removing h yields a hyperforest.

Every twig sequence is a hyperforest We will show how a twig sequence can be Graham
reduced. Let hi be a twig of Hi = {h, . . . , hi} with branch hj. Every vertex of h is either
unique to Hi (incident on no other hyperedge in Hj) or included in hj. The unique vertices
can be Graham-reduced, leaving a hyperedge that is completely contained in hj, and thus
is not maximal and can be ignored. The resulting hypergraph is {hl, . , hi- 1}, which is a
twig sequence. We can proceed recursively.

Note that the branches of a twig sequence correspond to the edges in the tree structure

of the hyperforest.

A useful feature of twig sequences is that any prefix of a twig sequence represents all

the connections between vertices included in it:
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Lemma 3.11. Let H = (h1.... , h,) be a twig sequence and Hi = (...- , hi) be a

prefix of H. Then any hyperedge h' c UHi that is covered by H is also covered by Hi.

Proof of lemma:

Consider a hyperedge h' c UHi such that h' c hj E H, i < j. We will show that h'
is covered by H, for every i r < j, by induction on r from j down to i. Assuming h'
is covered by H,: if it is covered by h8, s < r, then it is also covered by h. in H-1. If
it is covered by h, then let h, be the branch to the twig h, in Hr. Since h' C h, n UHi,
according to the definition of a twig, h' must be covered by h8, which is part of H,_1.

D

Thus, every hyperedge in the twig sequences introduces all the connections between

the new vertices in it and the vertices already covered by the previous hyperedges in the

sequence.

3.3.3 Recursive separators

Hyperforests and tree decompositions relate directly to separators in graphs. First recall

the definition of a separator:

Definition 3.10 (Graph separator). Let G(V) be a graph. A vertex set S C V separates

between vertices u, v E G \ S iff every path between v and u in G passes through S.

A vertex set S C V separates two disjoint vertex sets U1, U2 C V \ S iff S separates

every u1 G U1 and U2 G U2.

If S is a separator in G(V), then the induced graph Glv\s is not connected, and thus

there is a partitioning of V into V = S U U1 U U2 such that S separates U1 and U2. We say

that S separates G(V) into U1, U2 (this is not necessarily a unique partitioning).

In a standard tree, every vertex separates the tree into the subtrees radiating out of the

vertex. We will see how this can be generalized to hyperforests.

First note that the removal of an arc from a tree T separates T (not exactly in the same

sense) into two subtrees, are on each side of the arc. In a graph G with a covering hyperfor-

est H and tree decomposition T(H), every arc in the tree decomposition corresponds to a
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separator in G: let (hi, h2 ) c T separate T into H 1 , H2. Then the intersection s = h, n h2

separates T into (UH 1 ) \ s and (UH 2) \ s.

Note that the separator is not the hyperedge, but rather the intersection of two hy-

peredges, corresponding to an arc in the tree decomposition. Being intersections of two

non-identical hyperedges of size at most k + 1, the separators are thus of size at most k. Of

course, since the hyperedges include the intersection, the hyperedges themselves are also

separators.

Consider the two induced subgraphs of G over V = UH 1 and over V2  U H2. These

two induced subgraphs are covered by H1 and H 2, which are both k-hyperforests. Thus, the

separation can be continued recursively, separating G further and further, up to subgraphs

of k+1 vertices or less. A covering k-hyperforest thus corresponds to a recursive separation

of G(V), with separators of size at most k. Note that, at each recursive stage, the separator

is part of both of the resulting subgraphs.

The converse is also true: given such a recursive separation using separators of size at

most k, a covering k-hyperforest can be constructed. We will formalize this in the following

definition and theorem:

Definition 3.11 (Recursive Separability). A graph G(V) is recursively separable with sep-

arators of size at most k iff either. (1) 1VI < k + 1 or (2) there exists a separator |S| I k

that separates G(V) into V1, V2 and the induced subgraphs of G on V1 U S and on V2 U S

are both recursively separable.

Theorem 3.12. A graph G has a covering k-hyperforest iff it is recursively separable with

separators of size at most k.

Corollary 3.13. The treewidth of a graph is the minimum k for which it is recursively

separable with separators of size at most k.

This provides an alternate characterization of treewidth, which might demonstrate the

decomposability of the graph more vividly. The graph can be decomposed into small com-
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ponents, the "glue" between the components being small in each level of the decomposi-

tion.

Connectivity

The recursive separability shows that no part of the graph is very highly connected. This

property is much stronger than the connectivity of a graph. A graph is said to be k-

connected if the minimal separator is of size k. Clearly, the treewidth is at least equal

to the connectivity of the graph. However, a graph with low connectivity may have a small

separator separating two large cliques. Low treewidth, through the recursive separation

property, guarantees a uniformly low degree of connectivity, throughout the graph. In fact:

Theorem 3.14. A graph has treewidth at most k iff every induced subgraph of it is at most

k-connected.

Proof If G has a covering k-hyperforest H, every induced graph of G is covered by the

corresponding induced sub-hyperforest of H, guaranteeing a separator of size at most k.

If every induced subgraph of G is at most k-connected, then G is recursively separable,

since after each separation we can use the separator over the new subgraphs to continue the

recursion. 0

3.3.4 Triangulations

Perhaps the most common essentially equivalent form of hyperforests found in the literature

is triangulated graphs.

Definition 3.12 (Triangulated Graph). A graph G(V) is triangulated iff it has no minimal

cycles of more then three vertices.

In a triangulated graph, every cycle of four or more vertices must have a chord, i.e. an

edge connecting two non-consecutive vertices of the cycle. Because of this, triangulated

graphs are sometimes referred to also as chordal graphs.
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Definition 3.13 (Triangulation). A triangulation of a graph G(V) is a triangulated super-

graph G'(V) D G(V).

Hyperforests and tree decompositions are tightly associated with triangulated graphs

through a structure called a junction tree.

Tree decomposition of a triangulated graph

Theorem 3.15 (Junction Tree Theorem). For any triangulated graph G(V), let C be the

set of maximal cliques in G(V). Then C is a hyperforest, i.e. it has a tree decomposition

JCC).

The tree decomposition over the maximal cliques, J(C) is called the junction tree of the

triangulated graph G.

The Junction Tree Theorem shows that the the width of C, i.e. max Clique (G) - 1

is an upper bound on the treewidth of G. But this upper bound matches the lower bound

obtained in Corollary 3.3, showing that:

Corollary 3.16. The treewidth of a triangulated graph G is max Clique (()G) - 1.

Moreover, since any covering hyperforest H of G must cover all of G's cliques, it also

covers C. The hypergraph C is thus the unique minimal covering hyperforest of the triangu-

lated graph G. Note that non-triangulated graphs do not necessarily have a unique minimal

covering hyperforest- different triangulations of G correspond to different covering hy-

perforests.

The junction tree J itself is not unique-there may be several tree structures over C for

which the decomposition property holds.

Hyperforests as triangulated graphs

We showed that a triangulated graph has a natural hyperforest associated with it. This

correspondence is bi-directional. A hyperforest H can be seen as a triangulated graph:
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Definition 3.14 (Infrastructure graph of a hypergraph). The infrastructure graph of a

hypergraph H is the graph G that contains all the possible 2-edges covered by H: G -

{(uV)| IheHu,V e h}

In the infrastructure graph, every hyperedge becomes a clique.

Theorem 3.17. The infrastructure graph of a hyperforest is a triangulated graph.

Proof of Theorem:

Let H be a hyperforest with tree decomposition T, and let G be its infrastructure graph.
Assume G is not triangulated, and let c = (v1 , v2 , .... , Vk, v, 1) be a chordless cycle in G.

Every edge in the cycle must be covered by a hyperedge in H, but no non-consecutive
vertices can lie in the same hyperedge (otherwise the edge between them is a chord). This
implies there are k distinct hyperedges hl, . . . , hk E H, each containing the corresponding
edge4 (vi, vi+i) E hi, but not other vertices from c. Note that there may be several hy-
peredges that cover each edge in c, and we choose only one covering hyperedge for each
edge.

Consider the hyperedges hi,... , hk as nodes in T and the paths in T between them. Let
pi be the path between hi- 1 and hi in T. From the decomposition property, all hyperedges
in the path pi must contain hi-1 n hi, which includes vi, so no two non-consecutive paths
can intersect (or else the hyperedges in their intersection contain non-consecutive vertices
of c, forming a chord).

We now argue that by choosing the covering hyperedges hi appropriately, we can as-
sume without loss of generality that consecutive paths pi, pi+1 do not intersect (except at
the endpoint hi). If the paths do intersect, all hyperedges in their intersection pi n pi+I must
include both vi (because they are in pi) and vj+1 (because they are in pi+i). Thus, every
hyperedge in pi n pj+1 covers the edge (vi, vi+i) and is a candidate for hi. To eliminate any
intersection, we can choose the hyperedge in the intersection that appears first in pi, as our
"new" hi, truncating pi and pi+i appropriately.

Therefore, Pi, P2,... P Pi are k-connected, but not intersecting, paths in T, forming
a cycle hk -4 h, -24 h2 -.. hk- 1 - hk in T, contrary to T being a tree.

We see that the correspondence between triangulated graphs and hyperforests is very

tight. In fact, there is a one-to-one correspondence between triangulated graphs and hy-

perforests in which all hyperedges are maximal (i.e., in which no hyperedge is covered by

4Here, and later in the proof, we omit the implied modulo on the index
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another hyperedge). In such cases Theorems 3.15 and 3.17 give the two directions of the

one-to-one correspondence.

Moreover, a graph G is covered by a hyperforest H if and only if G is a subgraph of the

infrastructure graph of H. Combining this observation with the above paragraph, we see

that a graph G is covered by a hyperforest H if and only if the infrastructure graph of H is

a triangulation of G. This leads us to the following theorem:

Theorem 3.18. For a graph G, the treewidth of G is equal to the minimum over all trian-

gulations G' of G, of the maximal clique size in G', minus one:

width(G) = min max Clique (()G') - 1 (3.1)
triang G'DG

This theorem provides an alternate definition of treewidth that does not use the notions

of a hypergraph or tree decompositions.

3.4 Further Reading

We point the interested reader to further topics related to concepts discussed in this section.

These topics are beyond the scope of this thesis and are not used in the following chapters.

3.4.1 Algorithms for calculating treewidth and finding tree decompo-

sitions and triangulations

Calculating the treewidth of a graph is NP-hard in general [CP87]. However, for a constant

k, deciding if a graph is width k, and even finding a covering k-hyperforest, can be done

in linear time [Bod96]. However, the dependence on k is so extreme that the linear time

algorithms are impractical even for very small k (as low as 4 or 5). Several approxima-

tion algorithms [BGHK95] and heuristics [SG97] have been suggested for finding narrow

covering hyperforests (or equivalently, triangulations) with better dependence on k. See

[Bod97] for further references.
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3.4.2 Graph minors

Robertson and Seymour show that classes of graphs which are closed under taking minors

can be characterized by "forbidden minors":

Theorem 3.19 (Wagner's "conjecture"). If a class g of graphs is closed under taking

minors, there exists a finite set of graphs F, called the obstruction of g, such that for every

graph G, G E g iff there is no graph in Y that is a minor of G.5

Since graphs of bounded treewidth are closed under taking minors, we can characterize

them, for any bound k, by their obstruction. This characterization is sometimes useful. For

example, the first quadratic time algorithm6 for deciding if a graph has tree width at most

k, for fixed k, was based on the obstruction characterization [RS95].

3.4.3 Applications

Tree decompositions are useful in many applications in which it is beneficial to decompose

the graph into simple elements on which computation can be done independently, propa-

gating information along the tree structure. The main application of interest in this thesis is

Markov networks, which were introduced in Chapter 2. The connection between Markov

networks and tree decompositions will be discussed in detail in Section 5.1.

In this section we mention several other applications which may be of interest to the

reader. For more applications see [Bod93].

Sparse matrix inversion

If the rows and columns of a sparse matrix can be partitioned such that each group of

rows has non-zero entries only in one group of columns, and vice versa, the matrix can be

inverted by inverting each such block separately. If the non-zero blocks overlap, this can

still be done as long as the blocks form a hyperforest. Note that in this application, the

5More formally, no graph of F is allowed to be isomorphic to a minor of G6And in fact, first poly-time algorithm where the exponent does not depend on k
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dependence on the clique sizes is cubic, or even slightly sub-cubic, and not exponential as

in most other application.

Combinatorial queries on graphs

Many combinatorial problems on graphs, which in general are hard (NP-hard and even

PSPACE-hard) can be decided in polynomial, and sometimes even linear, time on graphs

of bounded treewidth, using the covering hyperforest's tree decomposition [AP89]. More

generally, any predicate that can be expressed in (generalized) monadic second order logic

over the graph can be solved in linear time for graphs of bounded tree width [Cou90]. The

dependence on the treewidth is, of course, exponential.
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Chapter 4

Hypertrees and the Maximum

Hypertree Problem

We are now ready to state the central combinatorial optimization problem this work is

concerned with- the maximum hypertree problem. In this chapter we present the problem

(in Section 4.1) and its variants and prove that, even in a very restricted form, it is NP-hard

(4.2).

In Section 4.3 we present some properties of hypertrees that might be used in approach-

ing the maximum hypertree problem, but that are not used in our algorithms. This last

section can be skipped without loss of understanding of the rest of the thesis.

4.1 Problem Statement: The Maximum Hypertree Prob-

lem

As we will see, we would like to find a maximum weight hypertree. When working with

standard graphs, a weight function assigns a weight to each potential edge, i.e. pair of

vertices, and the weight of the graph is the sum of the weights of its edges. However, for

our applications, as will be described in Section 5.3, it is essential to assign weights also to

52



CHAPTER 4. HYPERTREES

larger subsets of edges. A hyper-weight function assigns a weight to subsets of vertices of

arbitrary size, and the weight of a hypergraph is the sum of all the weights of edges covered

by it: w(H) = EheHw(h).

The maximum hypertree problem is:
Given as inputs:

" An integer treewidth k.

" A vertex set V and a weight function w : (k ) -+ on hyperedges of size up

to and including k + 1.

Find a hyperforest H(V) of width at most k that maximizes w(H) = hEH w(h).

For a non-negative weight function, a k-hyperforest can always be expanded to a k-

hypertree with at least as much weight. And so a maximum weight hyperforest can always

be taken to be a hypertree. If some candidate edges have negative weight, this might not be

the case.

However, we limit our attention only to weight functions which are monotone on k-

hyperforests, i.e. such that for any k-hyperforest H and any sub-hyperforest of H' of H,

w (H) > w (H'). The maximum weight hyperforest will thus be also maximal with respect

to covering, and so will be a k-hypertree. It is enough to limit our attention to hypertrees,

and we refer to this problem as the maximum hypertree problem and not the maximum

hyperforest problem.

In practice, in the algorithms presented here, we will use only a weaker property, re-

quiring monotonicity only on cliques of at most k + 1 vertices. Since such cliques are

hyperforests, monotonicity on cliques follows from monotonicity on hyperforests.

When k = 1, the maximum hypertree problem is simply the maximum spanning tree

problem, which is equivalent to the minimum spanning tree problem, and can be solved in

polynomial time [CLR89].

Since a weight can be specified for each possible hyperedge of size up to k + 1, the

input can be of size G(nk+1), meaning any algorithm will, at best, have an exponential
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dependence on k. As most uses of tree decompositions are exponentially dependent on k,

this is not an overly exaggerated input size.

The weight function assigns a weight to every subset of at most k + 1 vertices. Every

such vertex set will be referred to as a candidate edge.

We will also discuss variants in which there are only zero/one weights, and in which

the weights are only on edges of a specific size.

4.2 Hardness of Maximum Hypertree

We show that the Maximum Hypertree problem with nonnegative weights (and so also with

monotone weights) is NP-hard, even for a constant k = 2 (for k = 1 this is the maximum

spanning tree problem, which can be solved in polynomial time). Furthermore, it is hard

even when the weights are only on 2-edges, and the weights are only zero or one. Under

this restrictions, the problem can also be formulated as: given a graph G, find a subgraph

G' c G of treewidth at most 2, maximizing the number of edges in G'.

We first relax the zero/one weight restriction, and show a reduction from 3SAT to the

2-maximum hypertree problem, with integer weights on 2-edges.

Theorem 4.1. The maximum hypertree problem is NP-hard, even for treewidth two, and

weights only on 2-edges.

To prove the hardness, we show a reduction from 3SAT.

Overview of the (integer-weight) reduction

Given a 3CNF formula q over n variables x 1 ,... , x, and m clauses cl, ... , Cm we will

construct a vertex set V and a weight function w over V, such that q is satisfiable iff there

exists a 2-hypertree over V with weight above some specified threshold.

The construction will consist of three layers:

e A core structure with high weight that must be included in any hyperforest that passes

the threshold. The core structure by itself has treewidth two.
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* Two "assignment" edges for each variable, corresponding to the two possible truth

assignments. The core structure combined with both edges has treewidth three, guar-

anteeing that only one "assignment" edge is chosen per variable. The weights of

these edges are such that at least one per variable must be included to reach the

threshold.

" For each literal appearing in a clause, a "satisfaction" edge of weight one. The core

construction, together with an "assignment" edge and a disagreeing "satisfaction"

edge have treewidth 3, guaranteeing that only correct literals can satisfy a clause.

Additionally, the core structure combined with two or more "satisfaction" edges for

the same clause has treewidth three. This is needed to prevent counting the satisfac-

tion of the same clause twice.

We will show that if a satisfying assignment exists, then a graph consisting of the core

structure, the "assignment" edges corresponding to the assignment, and one correct "satis-

faction" edge for each clause, has a covering 2-hyperforest, and weight exactly equal to the

threshold. On the other hand, we will show that any treewidth 2 graph with weight equal to

or exceeding the threshold must include the entire core structure, exactly one of each pair of

"assignment" edges, and a correct "satisfaction" edge for each clause, thus demonstrating

a satisfying assignment.

Details of the reduction

The vertices of V are:

" Two vertices 0 and A.

* Three vertices Xi, X7, XF for each variable.

" A vertex cj for each clause.

The weights are as follows:
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X 0 3
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A

Figure 4-1: The "core" structure

* The following "core" edges will have weight w, = 10nm:

- The edge (0, A).

- For each vertex, the edges (xi, x7T), (Xi, Xf), (Xf, XF), (Xi, 0), (xi, A).

- For each clause, the edge (0, cj).

The "core" structure is illustrated in Figure 4.2.

" For each variable, the two "assignment" edges (xf, 0) and (XF, 0) will have weight

Wa = 4m.

* For each literal xi = a in clause cj, the "satisfaction" edge (xv, cj) will have weight

one.

" All other candidate edges have weight zero.

We will require a threshold of T = 5nW+ wc + nWa +m= (5n+1)10nm+4nm+m.

We now show that # is satisfiable iff there exists a hypertree H(V) such that w(H) > T.
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If q is satisfiable, then 3H(V)w(H) = T

Consider the hypergraph H which includes the following hyperedges:

* For each variable xi the hyperedges (A, 0, xi) and (0, x-, xo), corresponding to the

value a assigned to xi in the satisfying assignment.

" Each clause cj has at least one correct literal. Choose one such literal xi = a and

include the hyperedge (0, c3 , x?).

This hypergraph covers all the "core" edges, one of each pair of "assignment" edges, and

one "satisfaction" edge per clause, exactly attaining the required threshold. To see that H

is acyclic, consider the following tree-structure T over its maximal hyperedges, and the

non-maximal hyperedge (0, A):

* The neighbors of hyperedge (0, A) in T are the hyperedges (A, 0, xi), for all vari-

ables xi.

* For each variable xi which is assigned value a, the hyperedge (0, xi, x') is adjacent

to (A, O, xi) in T.

" Each hyperedge of the form (0, cj, x') in H, is adjacent to (0, xi, x1) in T.

If EH(V)w (H) > T, then # is satisfiable

First note that H must cover all "core" edges: the threshold is greater than the total weight

of core edges, and the combined weight of all non-"core" edges is less then a single "core"

edge, and so no "core" edge can be ignored.

Similarly, since the total weight of all "satisfaction" edges is less than a single "assign-

ment" edge, at least n "satisfaction" edges must be covered. But if the two "assignment"

edges for the same variable xi are covered, then together with "core" edges, the four-clique

{o, xi, xi, j} is covered, contrary to H being a 2-hyperforest. Thus, exactly one "as-

signment" edge is covered for each variable. The covered "assignment" edges imply an

assignment. We will show that this assignment satisfies #.
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C

.. .... ................ Satisfaction edge

T F

- - Assignment edge

_ Core edge

Figure 4-2: Subgraph of width three resulting from inconsistent clause satisfaction

After accounting for the "core" edges, and n "assignment" edges, m more "satisfaction"

edges are required to reach the threshold. We will first see that if a satisfaction edge is

covered, the corresponding clause is indeed satisfied. If a satisfaction edge (xT, c) (w.l.o.g.)

is covered, and the "wrong" assignment edge (xF, 0) is also covered, then the subgraph

shown in Figure 4.2 is covered. Contracting the edge (c, 0) yields a four-clique minor,

contrary to H being a 2-hyperforest. Thus, (xT, 0) must be covered, x be assigned T, and

the clause c satisfied.

To see that all clauses are satisfied, we will show that each of the n covered "satisfac-

tion" edges satisfies a different clause. If two "satisfaction" edges (xv, c) and (xi, c) of

the same clause c are covered, the subgraph shown in Figure 4.2 is covered. Contracting

(c, X, x2 , A) yields a four-clique, contrary to H being a 2-hyperforest.

Zero/one weights

We now show how to extend the reduction to zero/one weights:

Lemma 4.2. The 2-maximum-hypertree problem, with integer weights on 2-edges, can be

reduced to the the 2-maximum-hypertree problem, with zero/one weights on 2-edges. The

reduction is pseudo-polynomial, i.e. polynomial in the value of the weights.
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C
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Figure 4-3: Subgraph of width three resulting from covering two "satisfaction" edges to
the same clause

Proof Given a weight function w over candidate 2-edges in vertex set V, we show how to

construct a graph G'(V'), representing a zero/one weight function w' over V', such that the

maximal hypertree with respect to w' is a constant additive distance away from the maximal

hypertree with respect to w.

Overview of reduction We would like to replace each candidate edge (vI, v 2 ) over V,

with w(vI, v 2 ) parallel edges in G'. Because we are seeking a simple graph, we cannot do

that directly. Instead, we will replace (v1 , v2) with w(v 1 , v2 ) parallel paths.

The straight-forward approach of adding adding w (vi, v 2 ) intermediate points, with a

path of length two through each one of them, does not work. One can collect half the

weight, without suffering any consequences, by covering only the edges incident on vi, but

not completing any path to v2 -

To prevent this possibility of eating the cake while leaving it whole, we make the edges

from v, to the intermediate points mandatory, regardless of whether (v1 , v2 ) is covered. The

collectible weights are only between the intermediate vertices and v2, and covering even

one of them is enough to guarantee a minor in which v, and v2 are adjacent.
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V1

V2

Figure 4-4: The subgraph replacing a single edge of weight four between v, and v 2

We create mandatory edges between v, and an intermediate vertex u, by adding yet

another level of intermediate points. But this time so many intermediate points, in fact

more then the whole weight in w, that any maximal hypertree must cover nearly all of them

(see Figure 4.2). In any case at least one path from v, to u must be covered, for every

intermediate vertex u on every edge (vi, v 2 ). The weight on these mandatory edges causes

an additive constant between the weight of maximal trees with respect to w and w'.

Any 2-hyperforest H over V, can be extended to a 2-hyperforest H' over V', which

covers all mandatory edges, and all additional edges corresponding to 2-edges covered by

H. The weight w'(H') is thus equal to w(H), plus the weight of all mandatory edges,

which is a predetermined constant.

We constructively show how the maximal hypertree H' with respect to w', has a minor

H which covers weight of at least w'(H') minus the weight of all mandatory edges. As

discussed above, H' must cover at least one pair of edges (vi, t), (t, u) for every interme-

diate vertex u on every edge (vI, v2 ). For every vI, v 2, u, contract those two edges, and
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delete any other second level intermediate vertices. The resulting minor is H. Consider a

non-mandatory edge (U, v 2 ) covered by H'. This edge was part of a path corresponding to

an edge (vi, v2 ), but vi and u have now been contracted together, so (vi, v2 ) is covered by

H. For every (v 1 , v 2 ), there are only w(vi, v2 ) such intermediate vertices, and so the w(H)

contains all the non-mandatory weight from H'.

Since H is a minor of H', it has treewidth at most 2, i.e. covered by a 2-hypertree, the

weight of which is at least the weight of H.

Corollary 4.3. The maximum hypertree problem is NP-hard, even for k = 2, zero/one

weights, and weights only on 2-edges.

Proof of Corollary:

Although the reduction in Lemma 4.2 is pseudo-polynomial, note that the weights in
the reduction of Theorem 4.1 are polynomial in the size of the 3CNF formula.

Note that both reduction presented have a significant additive constant, and are thus not

L-reductions, and do not show hardness of approximation.

4.3 Properties of Hyper Trees and Maximal Hyper Trees

We present, without proof, some combinatorial properties of hypertrees. We discuss how,

like 1-trees, hypertrees display a rather regular structure, with a constant number of hyper-

edges, and a balance between acyclicity and connectedness. This regular structure allows

for equivalent alternate characterizations of hypertrees, which can be used in setting the

constraints of optimization algorithms. However, we are yet unable to leverage these con-

straints for efficient algorithms to solve, or at least approximate, the maximum hypertree

problem. We present the properties for reference only; they are not used in subsequent

sections or chapters.
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For a vertex set V with at most k + 1 vertices, the hypergraph {V} consisting of the full

hyperedge (the hyperedge containing all vertices) is a hyperforest of width at most k. Since

this hypergraph obviously covers any other hypergraph, it is also the only k-hypertree. In

the discussion that follows, we will always assume there are at least k + 1 vertices.

We would like to investigate what properties of 1-trees extend to hypertrees. Recall the

following equivalent definitions for a 1-tree:

" A maximal acyclic graph.

* An acyclic graph with n - 1 edges.

" A minimal connected graph.

" A connected graph with n - 1 edges.

* An acyclic connected graph.

The definition we have used so far is a generalization of the first of these definitions. We

will see that all of these equivalent characterizations can be generalized to hypertrees, if

"connectedness" is generalized properly.

We first note that a hypertree is always a regular hypergraph, i.e. all maximal hyper-

edges in a k-hypertree are of size exactly k + 1. Furthermore, a k-hypertree over n vertices

has exactly n - k regular (i.e. size k + 1) edges. We get the second equivalent definition:

* a hypergraph with maximum edge-size k + 1 is a k-hypertree if it is acyclic and has

exactly n - k edges of size k + 1.

It is also useful that the number of covered hyperedges of each size is constant. The

number of edges of size r < k covered by a k-hypertree is exactly (k) (n - k - 1 + k+).

In order to generalize connectivity, we introduce the following definitions:

Definition 4.1. Two hyperedges of a hypergraph h1 , h2 E H, both of size k + 1, are said

to be strongly adjacent iff the size of their intersection is k: fh1 nh2| = k. A series
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of hyperedges (hl, h 2, . .. , hr) is said to be a strongly connected edge path in a regular

hypergraph H iff consecutive hyperedges are strongly adjacent. A regular hypergraph

H(V) is said to be strongly connected iff for every two vertices u, v E V, there exists a

strongly connected edge path in H, such that u appears in the first hyperedge of the path,

and v appears in the last.

Hypertrees are always strongly connected, and the following hold:

" A hypergraph is a k-hypertree iff it is minimal strongly-connected k + 1-regular

hypergraph.

" A hypergraph is a k-hypertree iff it is a strongly-connected k + 1 regular hypergraph

with exactly n - k regular (size k + 1) edges.
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Chapter 5

Equivalence of Markov Network

Projections and Maximum Hypertrees

In this chapter we describe how the Markov network projection problem can be reduced to a

combinatorial problem of finding the maximum weight hypertree. That is, how the learning

problem can be solved using the combinatorial problem. We also describe the reverse

reduction and its implications about the hardness of the learning problem, and discuss the

connections between approximate solutions of the two problems.

In Section 5.1 we set the ground for the reductions by establishing the connection be-

tween the decomposition of Markov networks and the covering hyperforest of their un-

derlying graph. This connection was first alluded to in Section 2.2.3, where triangulated

Markov networks were discussed. In particular we prove the factoring specified in equation

(2.6). Section 5.1 is based on previously known results [WL83], although the presentation

here is different in that it uses the notion of hyperforests to discuss the cliques of a triangu-

lated graph.

The rest of the chapter presents original results, relating the Markov network projection

problem to the maximum hypertree problem.

The connection between hypertrees and Markov network projections was previously

addressed by Malvistutu [Mal91]. However, hyperedge weights were not discussed in that
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work, and to the best of our knowledge this is the first formulization of the maximum

hypertree problem in terms of sum-of-hyperedge-weights. This formalization leads to a

purely combinatorial problem (finding maximum hypertrees) which, as we show here, is

equivalent to the Markov network projection problem. To the best of our knowledge, this is

the first demonstration of a combinatorial problem proven to be equivalent to the Markov

network projection problem. This equivalence facilitates analysis of the hardness and of

the approximability of finding Markov network projections.

5.1 Decomposition Over Hyperforests

In this section we show how a Markov network is factorizable over a covering hyperforest

of its dependency graph. As we will define shortly, a distribution is said to befactorizable

over a hypergraph if it can be written as a product of factors corresponding to the hyper-

edges of the hypergraph. For Markov networks, we present an explicit factorization and

prove it. We also discuss the converse, i.e. whether a factorizable distribution is a Markov

network.

The factorization presented here is essentially the same as the factorization over cliques

for a triangulated graph, given but not proved in equation (2.6) of Section 2.2.3. In fact,

since the cliques of a triangulated graph form a hyperforest (Theorem 3.15), we essentially

prove (2.6) and the Hammersly-Clifford Theorem (Theorem 2.1) for triangulated graphs.

Definition 5.1. A distribution P over a random vector XV is factorizable over a hyper-

graph H(X) if the distribution can be written as:

P(x) = ]I Oh(Xh) (5.1)
hcH

for some set {h}h H offactors, one factor for each hyperedge of H. A factor Oh corre-

sponding to hyperedge h is a function only over the outcomes of the variables Xh (i.e. those

indexed by vertices in h).
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Note that it is enough to specify factors only over maximal hyperedges, since sub-edges

can always be "swallowed" inside them. However, in many cases, it is convenient to give a

factorization in terms of all covered, not necessarily maximal, hyperedges.

We will see how Markov networks are tightly connected with factorizations over hy-

pergraphs, and especially hyperforests.

Theorem 5.1. Let X be a Markov network over a graph G(X) with covering hyperforest

H(X). Then the distribution of X isfactorizable over H, with the following factors:

#h (Xh) Pr(Xh) (5.2)
171 ch Oh' (Xh')

Note that a product of factors of all covered, not necessarily maximal, hyperedge should

be taken. Similar to equation (2.6) in Section 2.2.3, the factors (5.2) are recursively defined,

factors of larger hyperedges being based on the factors of their sub-edges.

Proof By Theorem 3.9, H is Graham reduceable. We will prove by induction on the

reduction, that the factors given by (5.2) multiply out to the correct distribution. For an

empty graph, the factorization is empty, and trivially true. We will show that if H has a

leaf v and the factors for the induced subgraph H[V - v] given by (5.2) multiply out to the

marginal distribution of Xv-,:

Pr (xv-,) =OJ #h(Xh) (5.3)
hEH[V-v]

then multiplying all the factors for H yields the complete distribution.

Since X is a Markov network, X, only depends on its neighbors in G. Since H covers

G, all neighbors in G are also neighbors in H. But v is a leaf, and so there is a unique

maximal hyperedge h c H that includes it, and so also all its neighbors:

Pr (x) = Pr (xv-v )Pr (xv xv-v)

= Pr (xv-v)Pr (xv~xh)
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Using the factorization (5.3) of Xv-:

= 1I #h'(h)Pr (X, Lrh) (5.4)
h'EH[V-v]

We now have to show that the factors of the new hyperedges H \ H[V - v] multiply out

to Pr (xV IXh). The only new hyperedges are those containing v, and the only maximal

hyperedge containing v is h, and so the new hyperedges are h itself, and the its sub-edges

containing v:

Oh(Xh) ll /h'(Xh') Pr (Xh) h' (h)
h':vh'Ch c h h':vEh'Ch

Pr (Xh)

1h hch-v Ohl (Xh')

Using the induction assumption on Xh-, with its induced hypergraph H[h - v] = {h - v},

we know that Pr (Xhv) = Hh'Ch-v Oh'(Xh'). Inserting this in the denominator of (5.5)

yields:

Oh(Xh) Ph'(rh() P = Pr (Xv Ih-v). (5.6)
h':veh'Ch -v)

Combining equations (5.4) and (5.6) yields the desired factorization of Xv. L

The converse

Theorem 5.1 shows that factorization over a covering hyperforest is a necessary condition

for a distribution to be a Markov network. Is this also a sufficient condition ? The straight-

forward converse of the theorem is not always true. In the theorem statement we required

that H be any covering hyperforest of G. A complete hyperforest (a hyperforest with

the complete vertex set as an edge) covers any graph, and any distribution, even those

incompatible with G, trivially factorizes over it.

Even if H is a minimal covering hyperforest, the converse does not necessarily hold.
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Figure 5-1: A graph on which the converse of Theorem 5.1 does not hold.

Consider the four-cycle in Figure 5.1. A possible minimal covering hyperforest is H

{ {a, b, c}, {b, c, d}}. A distribution over the binary random vector (Xa, Xb, Xc, Xd) where

IIf Xb = X
P(Xa, Xb, Xc, Xd) 8

0 otherwise

is clearly factorizable over H, but is not a Markov network over the four cycle, since Xb

and X, are dependent even given Xa and Xd. To "fix" this, the edge (b, c), which is part of

the infrastructure graph of H, would need to be added to the four-cycle. The edge (b, c) is

covered by H, and so distributions that include this dependency are factorizable over H.

The failure of the converse that we saw for a four cycle resulted from the covering

hyperforest covering "too much", i.e. covering edges not in the original dependency graph.

If, however, the graph G includes all edges covered by a hyperforest H, i.e. G is the

infrastructure graph of H, then the converse is true and every distribution factorizable over

H is a Markov network over G. 1

As shown in Section 3.3.4, the class of graphs that are infrastructure graphs of hyper-

forests is exactly the class of triangulated graphs, for which we discussed factorization in

Section 2.2.3. Thus, for a triangulated graph G, a distribution is a Markov network over

G if and only if it is factorizable over its minimal covering hyperforest, which is its clique

'Note that the converse is true for G if and only if G is an infrastructure graph of H. This condition is
also equivalent to H being the unique minimal covering hyperforest of G.
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hypergraph. If it is factorizable, a possible factorization is given by equation (2.6). Note

that there are many equivalent factorizations, (2.6) being only one of them.

5.2 Projection Over a Specified Graph

Even for a pre-specified graph G, projecting a distribution to a Markov network over G, is

not necessarily straight-forward. If G is non-triangulated, calculating the Markov network

X over G which is closest to the target distribution might require iterative calculations and

cannot be specified explicitly [Pea97].

However, as indicated in Section 2.2.3, if the graph G is triangulated then the bidirec-

tional correspondence between Markov networks over G and factorizations over its clique-

forest can be used to specify the projection explicitly. We will show that the projection

of a distribution pT onto distributions factorizable over a specified hypergraph H is the

unique distribution that agrees with pT over all marginals corresponding to hyperedges in

H. Because of the bidirectional correspondence, Markov networks over a triangulated G

form such a class (being exactly those distributions factorizable over the clique-forest of

G), and so this characterization of the projected distributions applies. We will then show

the factors of the this projected distribution can be explicitly calculated.

Theorem 5.2. For a specified hypergraph H, the projection of any distribution pT onto

the class of distributionsfactorizable over H, is the unique distribution P that agrees with

pT on all marginals corresponding to H:

VhEHP(Xh) = P(Xh) (5.7)

Note that we do not require that H be a acyclic. However, this class of distributions

corresponds to a Markov networks over some graph only if H is acyclic.
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Proof The projected distribution is the one minimizing the information divergence:

arg min H(PT P) = arg min (EPT [log pT] - EpT [log P])
P factorizable over H P

But EpT [log pT] is constant (does not depend on P), and so:

= arg max Epr [log P] (5.8)
P factorizable over H

where P is limited to distributions factorizable over H, i.e. P is any distribution that can

be written as:

P (X) = h #(Xh), (5.9)
h

for any non-negative factors #, and an appropriate normalizing constant z. Previously,

we discussed factorizations which do not require an explicit normalizing constant. This

requires the factors to multiply out to a valid distribution, and so introduces constraints

on the possible sets of factors. However, we are now about to maximize over the factors,

and so would prefer eliminating such constraints, and instead introducing a normalization

factor that depends on all the factors:

Z = E #JOh (Xh). (5.10)
x h

To solve the maximization problem (5.8), we shall set to zero the partial derivatives of

EpT [log P] with respect to #r(ig), the value of the factor #§ on the outcome t§, for all

s E H and for all possible outcomes 2 of the variables Xg:
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0- =EX~pT [log P(X)]

aExpT [log (1 HhEH Oh(Xh))]

71

[using (5.9)]

a (EhE H EXpT [log Oh(Xh)] - EX~pT [log z])

(5.11)

We will take the derivatives of the two terms separately:

a EH Ex~pT [log Oh(Xh)]

Mqg (zt)
a 9ogqh(Xh)

= Ex-pT
hEH

For h , s, log Oh(Xh) does not depend on #g (.) and the derivative is zero. Accordingly,

the only relevant term in the sum is h = s:

=Ex,~pT E log #§(X§)
= M (§) I

Similarly, #g(Xg) will only depend on #g(tg) if Xg = t§. This happens with probability

pT(2t), and in all other cases the derivative is zero:

& log Og(zt)
190§(itg)

PT (zt) (5.12)
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As for the other term of (5.11), note that z is constant with respect to X, and so E [log z]

log z and we have:

OEX-pT [log z]

gaqs~ (~
Slogz 1 z

190 Z Og (t)

1 aEx f~~qh)h _

z #(

I1 h h(Xh)

z O#5096 )

- 19 &f~ho h (Xh) -09(X9)
z &q (i )

E Hh, Oh(Xh)00§ (X§)
z Z #6(it§)

Again, #§(x§) depends on #3(z.) only if x§ z t, while in all other cases the derivative is

zero:

Hhg Oh(Xh) O9(X )

z (g)

Hh.Oqh(Xh) &5Q~
XIA z &qA1

Hfh#Oh (X(h)

zZ

zsxt Os g in( .):

But this is exactly the distribution F, as given in (5.9):

1
Z (2r P(x)

~~VA~SJ XIXA~X~

_ P(~)
(5.13)
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Substituting (5.12) and (5.13) in (5.11):

pT ('t) p(ztg)

pT(.t) = P(.g) (5.14)

This holds for all s E H and for all z, meaning that pT and the distribution maximizing

(5.8), which is the projected distribution, must agree on all marginals corresponding to

hyperedges in H. F-1

Corollary 5.3. For a specified triangulated graph G with clique-forest H, the projection

of any distribution pT onto Markov networks over G, is given explicitly by the following

factorization over H:

P(x) = J h(Xh) (5.15)
hEH

where the product is over all covered hyperedges, and the factors are given recursively by:

pT (Xh)
Oh(Xh) = - (5.16)

lh' Ch h (Xh)

Proof The class of distributions which are Markov networks over G is exactly the class

of distributions factorizable over H, and so by Theorem 5.2, the projection P onto this

class agrees with PT over all marginals corresponding to pT. By Theorem 5.1, the fac-

torization of a distribution over H, and in particular P, is given by (5.2). Note that only

marginals corresponding to hyperedges in H appear in (5.2), and so we can replace them

with marginals of pT, yielding (5.16). El
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5.3 Reducing Markov Network Projection to Maximum

Hypertrees

In the previous section we saw that the projecting a distribution onto Markov networks

over a specified triangulated graph can be found explicitly, and in a straight-forward way.

We are now concerned with the true problem of this thesis- projecting a distribution onto

Markov networks over any graph of treewidth at most k. That is, finding both a graph

G and a Markov network over G, that minimizes the divergence to the target distribution.

Note that finding the projected graph G is enough, since we already know how to find

the closest distribution among the Markov networks over it. For a graph G, we call the

minimum information divergence to a Markov network over G, the infonnation divergence

to the graph G.

A possible approach to finding the projected graph might be to enumerate over all

graphs of tree width at most k, calculating the information divergence to each one, using

the explicit specification of projection onto the graph. However, the exponential number of

possible graphs makes this approach infeasible even for a fairly small number of variables.

5.3.1 Accumulating relative entropy using weights

A possible alternative approach, that might be more efficient, is to analyze the contribution

of local elements in the graph to reducing the information divergence. Adding edges to

the graph increases the space of admissible distributions, and thus reduces the information

divergence. We would like to decompose the reduction in the information divergence due

to "local elements", e.g. edges, or small cliques. We might then be able to find a graph

which includes many such local elements with a high contribution.

Chow and Liu [CL68] analyzed the case in which the graphs are limited to be trees.

They showed that the reduction in information divergence, relative to the empty graph, can

be additively decomposed to edges. The contribution of each edge of the tree is the relative

information between its nodes. If a weight equal to the relative information is associated
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with each edge, the maximum weight tree is thus the minimum information divergence

tree. Such a tree can be found efficiently.

We show here that for k-bounded treewidth graphs, edges are not enough, but k + 1-

sized local elements are enough. We will specify weights on hyperedges instead of edges,

and show that the weight of a hyperforest is exactly the reduction in information divergence

of its infrastructure graph (versus the empty graph). Therefore, by maximizing the weight

of a hyperforest, the projected Markov network structure can be attained.

The minimum information divergence to a triangulated graph is:

[PT (X)1
H (pT J|G) = min ExpT log P(X)

P is a I I X
Markov net over G

which using the explicit factorization of the projected Markov network:

- EX~ log pT (X)

= IE hClique(G) h(Xh)

= EpT [log PT] - S Ex~pT [1og h(Xh)J

hEClique(G)

and setting the weight for each candidate clique to Wh = EpT [log qnh:

=-H(PT) - Wh (5.17)

hEClique(G)

An important point is that the weights Wh depend only on the target distribution pT, and

not on the structure of the graph G (as long as it is triangulated). This is because on a

triangulated graph the projected factors are given by (5.2), which, unrolling the recursion,

depends only on marginals of PT inside h, and nothing else. Taking the weights Wh =

EpT [log 5h] , the minimum information divergence to any triangulated graph G is given

by (5.17), summing over all cliques covered by G.
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As discussed, a weight Wh depends only on the marginal of PT over h, and is given by:

Wh = ExpT [log qh (Xh) = Ex~pT log PT jXh 1

h' ch

= --H(PT (Xah -- [W, (5.18)
h'ch

This provides for a simple recursive specification of the weights. Unrolling this recursion,

the weight of a candidate hyperedge can also be written as a sum:

Wh = - E (-1)Ih-ih'IH(PT (Xh,)) (5.19)
h'Ch

5.3.2 Negative, but monotone, weights

Note that some of the weights might be negative. For example, weights corresponding to

singletons {v} have no sub-cliques, and therefore w{v} = -H(Xv) < 0. In fact, returning

to the derivation of (5.17), EheClique(G) Wh EpT [log P1 < 0, and so the sum of the

weights is always negative. However, as more edges are added to the graph, the admissi-

ble distributions are less limited and projected distribution can become more similar to the

target distribution, thus increasing EpT [log P] (i.e. pulling it closer to zero). This means

that weights of edges beyond singletons should generally have a positive contribution, rep-

resenting the reduction in the information divergence, or equivalently the gain in negative

cross-entropy.

There might still be multiple-vertex cliques with negative weights. For example, con-

sider a Markov chain over three variables X1 -+ X 2 -+ X 3. The candidate hyperedge

(1, 2, 3) has negative weight, equal to minus the mutual information between X1 and X 3.

However, it is important to note that the weight is monotone on k-hyperforests. I.e. the

weight of a k-hyperforest is greater or equal to the weight of any sub-hyperforest, and so

the weight of the difference between two nested hyperforests is non-negative. Let G' c G
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be nested hyperforests, then:

E Wh - -- Wh jWh

hEG\G' hEG hEG'

= Z EXhpT [log &(Xh) - S EXh~pT [log h(Xh)
hEG hEG'

=- E XhPG [log & (Xh) - S E XhfG [bogh(Xh)]
heG hEG'

Hh G log &(Xh)
- E~G io~HAEG' &h(Xh)I

= E log PG
PG1

= H (PGHPG') = Hpr (Gf|G') > 0 (5.20)

where H (-||-) is the, always non-negative, information divergence between distributions,

and we use HpT (G|JG') to denote the information divergence between the projection of

pT on the respective graphs.

As suggested before, this monotonicity is not surprising, since by (5.17), the difference

in the weights of the hyperforests represents the difference in their minimum information

divergence from the target distribution. But any distribution that is a Markov network over

G' is also a Markov network over G, and so the projected distribution over G must be closer

to pT than the projected distribution over G', yielding a smaller information divergence to

G, and so by (5.17) requiring the weight to be higher.

Note that these arguments hold only if both G and G' are acyclic. Otherwise (5.17)

does not hold, and the weight of the graph does not represent any meaningful information

quantity as the product of the factors does not multiply out to a valid distribution function,

let alone the projected distribution.

Negative weights may pose a problem to many algorithm, and this monotonicity helps

resolve this problem. The algorithms we present do not work well with general negative

weights, but we show that they work properly with weight functions which are monotone
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0-
-o

0

0

-H(P T )

H (P T ||G)

-H(PG)

ZWh

-H(PO)

Figure 5-2: H (PT |G) = (EpT [log 0] - H (PT)) - ZhGClique(G),jhj>1 Wh

on k-hyperforests.

Overall picture of the decomposition

In any graph, all single vertices will form cliques, and these would be taken in any case.

The sum of these weights correspond to the negative cross entropy of the empty graph

EpT [log 0] and represent the base negative cross entropy, from which we only climb up.

This is represented in Figure 5.3.2. We would like to minimize the information divergence,

and so to maximize EheClique(G),jhj>1 Wh = HpT (G110), which is the gain in negative

cross entropy relative to the empty graph.
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5.3.3 The reduction

We have shown how the problem of projecting a distribution onto Markov networks of

bounded treewidth k (i.e. onto triangulated graphs of bounded clique size k + 1) can be

reduced to finding a maximum weight k-hyperforest for a weight function which is mono-

tone on acyclic hypergraphs. If we knew how to find such a maximum weight hyperforest,

we would choose a weight function assigning to each possible clique h, of more then a

single vertex, the weight

w(h) = -H (PT(Xh)) - Wh' (5.21)
h'ch

defined recursively on all sets of vertices, including singletons. This weight can be calcu-

lated immediately from the empirical marginal Pc. The infrastructure graph of the maxi-

mum weight hyperforest would then be the projected graph.

As discussed in Section 2.3.2, the problem of finding the maximum likelihood Markov

network for a given sample can be formulated as a projection problem of the empirical

distribution, and so can be reduced in the same way.

5.3.4 The complexity of the reduction

The reduction yields a maximum hyperforest problem of size Q(nk+l), as (n71) weights

must be specified. As we have not considered the representation of the target distribution,

we cannot discuss the complexity of the reduction in terms of the problem 'size', as this

of course depends on the representation. We do not want to go into the issues of input

representations of the distribution, except for one special case which originally motivated

us: when the distribution is an empirical distribution of some sample.

The "input representation" in this case is the sample itself, of size O(Tn log m), where

T is the sample size and m is the number of possible outcomes for each random variable.

And so, if k is part of the input, the reduction is not polynomial in the sample, as it is

exponential in k while the sample is independent of it. If k is constant, then the reduction
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is polynomial.

As the number of parameters in the resulting model, and so also the complexity of

calculations on the resulting distribution, is also exponential in k, it is tempting to hope

that the reduction is at least polynomial in the resulting number of parameters. This is

essentially the output size of the learning problem, and practically also a bound on the

input size, as one would generally not have less data then there are parameters to learn.

However, this is not the case. The number of parameters is only 0 (nrmk+1). Thus if

n >> m, the reduction is supper-polynomial even in the resulting number of parameters.

5.4 Reducing The Maximum Hypertrees Problem to the

Maximum Likelihood Markov Network Problem

It is also interesting to note that for every non-negative weight function of candidate hy-

peredges of a fixed size, there exists a distribution that yields weights proportional to this

set of weights. I.e. the problem of finding a maximum hyperforest, at least for a non-

negative weight function, can be reduced to projecting a distribution to Markov networks

of bounded treewidth. Furthermore, a "small" sample can be constructed, with an empiri-

cal distribution yielding weights which are close enough to these weights, conserving the

exact structure of the projected graph. I.e. the problem of finding a maximum hyperforest

(for non-negative weights) can also be reduced to finding a maximum likelihood Markov

network for empirical data.

This reduction is weak, in the sense that the sample size needed to produce specific

weights is polynomial in the value of the weights (and so exponential in the size of their

representation). Still, using hardness results from Chapter 5, this pseudo-polynomial re-

duction is enough in order to show NP-hardness of finding a maximum likelihood Markov

networks of bounded treewidth, even for treewidth two.
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5.4.1 A distribution yielding desired weights

For a given weight function w : (k) -± [0, 1) on candidate edges of size exactly k + 1,

we will consider each vertex as a binary variable, and construct a distribution P, over these

variables. The distribution will be such that using it as a target distribution in (5.21) will

yield weights w' proportional to w.

We will assume, without loss of generality, that Vcw(C) < 1.

The distribution P, will be a uniform mixture of (+1) distributions P , one for each

h E (k). Each such Ph will deviate from uniformity only by a bias of r(h) in the parity

of the variables in h. We show below how to select r(h) according to w(h). Explicitly:

1+r(h) is odd (5.22)
I-r(h) is evenI ii f ZvEh X1

This results in a mixed distribution Pw in which all marginals over at most k variables

are uniform (and therefore have zero corresponding weight), while the marginal over a

hyperedge h of size exactly k + 1 has a bias of b =r(h) . The corresponding weight is

therefore

w'(h) = -H(Xh) - E w(h)
h'ch

= -H(Xh) - v E h(-H(Xv))

= |h| x 1 - H(Xh)

= (k + 1) + E P(xh) log P(xh)
Xh

(k+1)+2k I o 2k - o
=(k 1)+ 2k+1 2k+1 2k+1 2k+1

= (k + 1) + ((I + b) log(1 + b) + (1 - b) log(1 - b)) - (k + 1)

= ((1 + b) log(1 + b) + (1 - b) log(1 - b)) (5.23)
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Using the natural logarithm and taking the Taylor expansion:

I(I + b) b + (I - b) - (-b)

= bz
z=2 even

- + O(b 4) = 2(k12() + 0(r(h)) (5.24)

(5.25)

Choosing r(h) to be approximately fw(h) (or more precisely, the inverse function of

(5.23)) yields weights proportional to w.

5.4.2 A sample yielding desired weights

We have shown a distribution that produces weights proportional to any desired non-

negative weight function. However, since this the biases in this distribution might be ir-

rational (and in fact if the weights are rational, the biases must be irrational, being the

inverse of (5.23)), there is no finite sample that has such a distribution as its empirical

distribution.

However, we will show a finite sample that results in weights which are close enough

to the desired weights, such that the optimal structure is conserved. Given a rational weight

function w, we will show a sample with empirical distribution P,, that produces weights

w"(h) = w'(h) + e(h) such that w' are proportional to w, andZh I e(h)I < 6 where 6 =

minh1 ,h2 ,w'(hi)#w'(h2 ) w'(hi) - w'(h 2 ) is the granularity of the weights. This is enough,

since the w' and w" weights of the optimal hypergraph will be within 6, less then the

possible difference due to taking edges with differing weights.
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Constructing a sample with rational biases

We first show how to construct a sample which yields an empirical distribution similar

in structure to P., with rational biases on k + 1 candidate edges. I.e. for any mapping

h 4 - < I (we assume a common denominator) we construct a sample S2. with empiricalQ Q

distribution P-L such that for any hI < k, the empirical distribution is uniform, and for
Q

Ihi = k + 1:

Ph+ 2n vi If Eveii X is odd

P(4 (x/) Q k+ (5.26)
1- Ph 2 -I If > x, is even

Unlike the exact P,, parities of larger sets might be very biased. However, these do not

effect the resulting weights when searching for width k Markov networks.

We will build the sample as a pooling of (kG1) equisized samples SY, one for each

candidate edge of size k + 1. Each such Sk will be constructed from Q equisized blocks
Q

of (k + 1)-wise uniformly independent sample vectors. . But for p of these blocks, we will

invert the elements of h appropriately so as to set the parity of x' to be odd for all sample

vectors in the block. Note that this can be done without disrupting the uniformity of any

other set of vertices of size at most k + 1. The resulting Sh will be uniform on all subsets
Q

of size up to k + 1, except for a bias of p(h) on h. Pooling these together yields the desiredQ

empirical distribution.

Using [AS91], k + 1-wise independent blocks can be created of size 2 nk+1, yielding a

total sample size of (kI,)Q2nk+ (Qn2 k+2 ), where Q is the common denominator of

the rational weights.

Approximating the weights with rational biases

We now know how to construct a sample with specified rational biases. However, the

biases corresponding to rational weights are not rational. We first show how to achieve

approximate weights (i.e. with total error less then their granularity) with biases which
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are square roots of rationals, and then show how these can be approximated with actual

rationals.

We saw in 5.25 that the biases of the mixture components should be approximately

the square root of the desired weights. Using biases r'(h) = w(h) yields the following

weights (where b' = '(h) < 1):

w'(h) = 1 b
i= even i(i 1)

i=4 even

b,2
+ -b

2 d

i4 eveni(i-1)

b'2  4n4-
-+ b

2 2
1

= k 2w(h) + e(h) (5.27)
2(k+1)

(5.28)

Where:

S fe(h)| = Ze(h)
h h

< n 1) In 4 - 1.(max W)2

< k + 1) 2 (n 4

0.19
3 maxw 2  (5.29)

(5.30)

Recall that we would like Eh le(h)l < 6 where 6 is the smallest difference between

weights. Since 3 scales linearly with the weights, by scaling the weights down we can

achieve this goal.

But since the weights might not be square rationals, taking their square root might
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produce irrational weights. This can be overcome in a similar fashion, by using a rational

approximation to the square root.

5.4.3 The reduction and hardness

We saw how to reduce the maximum hypertree problem to the maximum likelihood Markov

network problem, with the same k, and even if the variables are all binary. Note that

our reduction is only pseudo-polynomial, as the sample size needed is polynomial in the

value of the weights. However, since in Section 4.2 we show that the maximum hypertree

problem is NP-hard, even with zero/one weights, this is enough to show NP-hardness of the

maximum likelihood Markov network problem. The hardness result holds even for k = 2

(1-hypertrees are regular trees, for which the problem is tractable).

5.5 Approximating the Maximum Likelihood

In this thesis, we show that although finding the maximum weight bounded tree width graph

is hard, an approximate solution can be found in polynomial time. That is, a graph with

weight within a constant multiplicative factor of the optimal graph. We discuss how this

type of approximation for the combinatorial problem translates into a sub-optimal solution

for the maximum likelihood learning problem, as well as the general projection problem.

Recall the decomposition of the information divergence that was presented in Figure

5.3.2. When the target distribution is the empirical distribution, the negative cross entropy

relative to it is exactly the log likelihood. Figure 5.3.2 can be viewed as representing the

maximum log likelihoods of Markov networks over 0 (i.e. fully independent models),

Markov networks over G and and the maximum attainable log likelihood (the negative

entropy of the empirical distribution). The weight of the graph is then the gain in maximum

log likelihood versus the fully independent model. A constant factor approximation on

the weight of the graph translates to a constant factor approximation on the gain in log

likelihood.
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As can be seen in Figure 5.3.2, a constant factor approximation for the weight of the

graph does not provide for a constant factor approximation on the information divergence

itself, but only for the reduction in information divergence relative to the fully independent

model. Although approximating the likelihood itself is usually not of great interest (since it

is usually of very high magnitude, and so even the fully independent model might be within

a small factor of it), approximating the information divergence might be interesting, even

when the target is an empirical distribution. For example, if the empirical distribution is

"almost" a narrow Markov network, then approaching the optimal information divergence

to within a small factor is much stringer then approximating the gain.

5.6 Discussion

The reductions we have shown between the maximum likelihood Markov network problem

and the maximum hypertree problem are quite satisfactory in many ways. Both reductions

are L-reductions, and are sufficient for studying approximation algorithms and hardness.

Neither reduction, however, is strictly a polynomial reduction. Reducing Markov networks

to the maximum hypertree problem produces a number of weights which is exponential

in k, though the reduction is polynomial for a fixed width. The reverse reduction is only

pseudo-polynomial. This pseudo-polynomiality does not prevent us from attaining hard-

ness results, though it is interesting to see if the dependence on the value of the weights can

be reduces.

Perhaps the more interesting gap is that we only show a reduction for the maximum

hypertree problem with non-negative weights. Showing a reduction for monotone weight

functions is an interesting open problem. Such a reduction is not necessary for showing

the hardness results, but rather addresses a different interesting question: is the monotonic-

ity constraint the true constraint on the weight function ? Or is there perhaps a stronger

constraint that might aide in approximating the maximum hypertree.

Another interesting question is whether these techniques can be extended also to other
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measures of quality, beyond maximum likelihood, that incorporate in them also structural

penalties.



Chapter 6

Windmills

Hypertrees are complex to work with and maximize. This is mostly due to the global

nature of the characterization of hypertrees. There is no 'local' criterion for hypertrees

or even hyperforests. By a local criterion we mean some constant-size property 4 over a

finite number of vertices, such that a graph is a hypertree (or hyperforest) iff 0 holds for all

subsets of vertices in H(V).

As was discussed in Section 3.3, hypertrees can be defined using several criteria, in-

volving decomposition, strong connectivity and the number of hyperedges. But all three of

these properties are global and cannot be decomposed into local properties. We now intro-

duce a simpler graph structure that can be used to capture much of the weight in hypertrees,

and has a more local nature.

Let T(V) be a rooted tree on the vertices V, with root r and depth at most k (i.e. the

longest path beginning at r is of length k edges). The tree T(V) defines the following

hierarchy of vertices: r is at level zero. For any other vertex v E V, consider the path from

r to v. Vertex v is said to be on the level equal to the edge-length of the path.

Definition 6.1 (Windmill). A k-windmill based on a rooted tree T(V) with depth at most

k is a hypergraph whose edges are the paths radiating from r in T, i.e.

H(V) ={ hv {r,... ,v} is a path in T} .
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Figure 6-1: A 2-windmill

If all maximal paths radiating from r in T are of length k edges, then H is said to be a

regular k-windmill.

A k-windmill is a hyperforest with tree-structure T(H) where the hyperedges h, re-

place each vertex v in T, i.e. T(H) = {{hv, h,}I{v, v'} E T}. Its Graham reduction fol-

lows the Graham reduction of leaves of the tree T. In particular, a k-windmill has treewidth

at most k.

1-windmills are star graphs, and in some ways windmills are hyper-generalizations of

star-graphs. Figure 6 shows a 2-windmill (which resemble physical windmills). Note that

in a weighted 1-tree, there is always a disjoint set of stars that captures at least half of the

weight of the tree. We will show that this can be generalized also for hypertrees.

Definition 6.2 (Windmill Farm). A k-windmill-farm is a hypergraph that is a disjoint col-

lection of k-windmills.

Since each windmill is a hyperforest of width at most k, a windmill-farm is also a

hyperforest of width at most k.
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6.1 The Windmill Cover Theorem

In this section, we show that a hyperforest always has a windmill farm that captures a cer-

tain fraction of its weight. For simplicity, we first concentrate on the case of non-negative

weights.

Theorem 6.1 (Windmill Cover Theorem). For any hyperforest H (V) ofwidth k and non-

negative weight function w(.), there exists a k-windmill-farm F(V) such that w(H) <

(k + 1)!w (F).

Proof We use a labelling scheme followed by a random selection scheme in which each

hyperedge "survives" to be included in the windmill with probability at least 1/(k + 1)!.

This means the total expected surviving weight is at least w(F)/(k + 1)!, as desired. We

then show that the surviving edges form a windmill.

The scheme is based on a (k + 1)-coloring of the vertices, such that no two vertices in

the same hyperedge have the same color. The existence of such a coloring can be proven

by induction on the Graham reduction of the hyperforest: Let H(V) be a hyperforest with

leaf v, and recursively color H(V - v). The leaf v has at most k neighbors (other members

of its unique maximal edge) in H(V - v), leaving a color available for v. This inductive

proof specifies an order in which the vertices get colored. This is the reverse of the order in

which vertices were Graham reduced. The order of coloring imposes on each hyperedge a

(possibly partial) permutation of the colors used-namely, the order in which those colors

were applied to vertices of the hyperedge.

From this ordering we construct our windmill farm. Choose a random permutation

(ordering) - of the colors. We define a windmill farm F, to contain all hyperedges whose

color permutation (ordering) is consistent with 7r. For hyperedges with k + 1 vertices,

consistent simply means equal; for a hyperedge with fewer vertices, consistent means that

the colors that do appear in the hyperedge form a prefix of the permutation 7r.

The permutation -F of colors can be interpreted as a mapping between the colors and

the k + 1 levels of the windmill-farm F,; each vertex now goes to the level of its color.
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Each vertex of the first color 7(1) is the root of a windmill. Each vertex v of color wr(i + 1)

is at level i, with its parent being the vertex colored ir(i) in v's twig (the unique maximal

hyperedge containing v when v was removed). Note that if the twig does not have a vertex

of color 7r(i) then no hyperedge containing v is in F, : if v E h E F, , then the partial color

permutation imposed on h is at least an i + 1-prefix of ir and so must have a vertex u colored

r(i) which was colored before v. But if u was colored before v, then it was reduced after

v, so it should appear in v's twig.

To show that F, is indeed a windmill-farm over this tree structure, it is enough to show

that for every v E h E F, of color ir(i + 1), the vertex of color ir(i) in h is the parent of

v in the windmill's rooted tree. Since the permutation of h agrees with 7r, a vertex u of

color ir(i) exists in h and is colored before v. The vertex u is thus in v's twig, and so is v's

parent.

The windmill-farm F, might cover additional edges that were not explicitly selected

by the scheme above, but since these have non-negative weight, the weight is at least the

weight of the edges selected. A hyperedge of size r is selected to be in F, if it is consistent

with the permutation; this happens with probability (k + 1 - r)!/(k + 1)! > 1/(k + 1)!.

Since the weight of edges is non-negative, the expected value contributed by any edge of

weight w to F, is at least w/(k + 1)!. L

In fact, windmills can achieve the 1/d! approximation "simultaneously" for every edge

of size d:

Corollary 6.2. For any hyperforest H (V) of width k, and non-negative weight function w,

let Wd be the total weight of hyperedges of size d (so that the total weight of the hypertree

is E Wd). Then there exists a k-windmill-farm contained in H of weight at least E wd/d!

Proof We perform the above coloring and random selection, but include an edge in F, if

its colors appear in the same order in 7r, as a prefix or as an arbitrary subsequence. Then the

probability that we include an edge of d vertices is 1/d!. The parent of v of color 7r(i + 1)

is selected to be the vertex in v's twig of color ir(j), for the maximum j < i, for which the

91



CHAPTER 6. WINDMILLS

twig includes such a vertex.

Note that under this selection criterion, F, does not cover any additional edges not

explicitly selected, and so E [w(F,)] = Z wd/d! exactly.

Recall that we are actually interested in weight functions that are not necessarily non-

negative, but rather are monotone on hyperforests. Even for such weight functions, a 1/(k+

1)! fraction can still be achieved:

Corollary 6.3. For any hyperforest H (V) of width k and monotone weight function w(-),

there exists a k-windmill-farm F(V) such that w(H) < (k + 1)!w(F).

Proof Perform the same selection process as in Theorem 6.1, but analyze the weight of the

resulting windmill farm differently. Instead of considering the weights of individual edges,

consider the weight g(v) gained when un-reducing v. That is, the difference in weight of

the hyperforests before and after reducing v. Since every edge will be "gained" at exactly

one reduction, E, g(v) = w(H). Furthermore, the gain is a difference in weight between

two hyperforests, and so non-negative.

To analyze the expected weight of F, start from an empty hypergraph and add vertices

according to their coloring (reverse reduction) order, keeping track of the weight of the

sub-windmill-farm induced by F, on vertices colored so far. Each colored vertex adds

some non-negative gain. If the color permutation of a vertex's twig is a prefix of Z, then the

complete twig and all its subedges are covered by the farm, and the gained weight is exactly

g (v). Since this happens with probability at least 1/(k + 1)!, E [F,] > w(F)/(k + 1)!. 0

In Chapter 7 we will devise an approximation algorithm for finding a maximum weight

windmill farm, and use the above result to infer that the maximum weight windmill farm,

which is a hyperforest, is competitive relative to the maximum weight hypertree.
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6.2 Hardness of Approximation of Windmill

We now show that the maximum windmill forest problem is also NP-hard. In fact, we show

that it is max-SNP-hard, implying that there exists some 6 > 0 such that it is NP-hard to

find a windmill forest with weight within a multiplicative factor 1 + 6 from the maximum

windmill forest. Unfortunately, this does not imply any hardness of approximation for the

maximum hypertree problem.

Theorem 6.4. For fixed k > 1, the maximum weight k-windmill problem (and even the

maximal k-windmill problem for unit weights) is max-SNP hard.

Proof A reduction from max-2SAT

6.3 Discussion

We introduced a family of graphs, windmill farms, and showed that there always exists

such a windmill farm that captures 1/(k + 1)! of the weight of a hyperforest. Is this figure

tight, or is the true approximation ratio of windmill farms to hyperforests tight ? For k = 1

the ratio is indeed tight, but the answer is unknown for wider hyperforests. Note that even

for k = 1, a weighted tree is necessary in order to show the tightness, as for uniformly

weighted trees there is always a disjoint set of stars that captures 2/3 of the weight.

Another interesting problem is using the hardness results on windmills to show hardness

of approximation for hypertrees.
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Approximation Algorithms

In this chapter we present approximation algorithms for the maximum windmill-farm prob-

lem. As a consequence of the Windmill Cover Theorem (Theorem 6.1), these algorithms

are also approximation algorithms for the maximum-hypertree problem.

In order to gradually introduce the reader to our approximation techniques, we first

present, in Section 7.1, an approximation algorithm for a restricted case of the maximum

2-windmill-farm problem. In particular, we give an integer program whose solution is the

maximum 2-windmill-farm. We then show how to round the solution of the correspond-

ing relaxed linear program. In Section 7.2 we generalize the techniques and describe an

algorithm for a windmill-farm of any width.

7.1 An Approximation Algorithm for 2-Windmills

In this section, we present some of our basic ideas in an algorithm for the 2-windmill

problem. Recall that a 2-windmill is based on a tree with a root, a child layer, and a

grandchild layer. We assume that there are weights only on triplets (not pairs or singletons),

but this assumption can be made w.l.o.g. by adding an additional vertex u, 1 ,v2 for every pair

(vI, v 2 ) and setting w(vI, v2 , uVI,V2 ) ' w(vI, v2 ) while all other weights involving the new

vertex uv1 ,V2 are set to zero.
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7.1.1 Guessing Levels

For simplicity, we reduce to the case where the level of each vertex (root, child, or grand-

child) is fixed. We do so by assigning each vertex to a random level (probability 1/3 for

each). Any triple that appears in order vI, v 2 , v 3 in the optimal solutions will have its 3 ver-

tices given the correct layers with probability (1/3)3 = 1/27. Thus in expectation at least

1/27 of the weight of the optimum solution will fit the random level assignment, so we

expect there will be a solution that obeys the level assignment and has 1/27 of the optimum

weight.

7.1.2 An Integer Program

Given the levels, we specify an integer linear program corresponding to the maximum 2-

windmill problem. The variables in the IP are as follows:

* A variable xv, V2 for every first-level node v, and second-level node v 2 , which will be

set to 1 if v 2 is a child of v1 .

* A variable xvl,V2,V3 for every triplet of first-, second- and third-level nodes, respec-

tively, which will be set to 1 if v 3 is a child of v 2 , and v 2 is a child of v1 .

The integer program is then:

max E Vi,V2,V3 'EV1,V2,V3

V1,V2,V3

(Vv 2) xv 1 ,v2 = 1
V1

(Vv 3) XV,v2,v3 = 1
V1,V2

1VV, V2, V3) Z, V2,V3 <X1,V2

(Vv 1 , v 2 , v 3 ) xvi ,V2,V3 > 0

(VvI, v2 ) Xvi,v2 ;> 0



CHAPTER 7. APPROXIMATION ALGORITHMS

The first two equalities specify that each vertex is only on one path from the root, and the

first inequality specifies that v3 cannot be on path v1, v 2 , v3 unless v 2 is descended from

vi-we will refer to this as requiring consistency of the paths.

Solving an integer program is not a straight-forward task. However, if we relax the

requirement that the variables be integers, and allow them to be fractional numbers, we get

a linear program, described by the same inequalities. All feasible solutions to the integer

program are also feasible solutions to the linear program, and so the optimal solution to

the linear program is at least as good the solution to the integer program. Such an optimal

fractional solution (to a linear program) can be found in polynomial time. We would now

like to round the fractional solution, without loosing too much of its value.

7.1.3 Rounding

We now show how to round a fractional solution, giving up a factor of less than 2 in the

objective function value. Our rounding uses the natural probability distribution arising from

the LP constraint that ZV, xv1,V2 = 1; this suggests that v2 can choose a parent vertex by

selecting vi with probability xv1 ,V2. However, this does not show how to choose parents for

the third level vertices. We will, however, show that a simple two-step process works: first

we round the second-level vertices, and then we let each third-level vertex make a greedy

choice based on the previous level's rounding.

More precisely, the rounding to an IP solution z from an LP solution x will be per-

formed in two steps:

" For each v2, assign one zviV2 = 1 at random according to the distribution given by

XV,V2* The rest will receive value zero.

" For each v3, assign one ze ,V2,V3 = 1 with the maximum wV1 ,V2,V3 among those (vI, v2 )

for which ivV 2 = 1. The rest will receive value zero.

Note that the above rounding outputs a feasible IP solution. To analyze its value, we
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will consider each third-level vertex, and its contribution to the integer solution value, sep-

arately.

Lemma 7.1. Consider a set of items such that item i has weight wi. Suppose that each

item i becomes "active" independently with probability pi where E pi < 1. Let W be the

maximum weight of any active item. Then

E[W] > (1/2) Z wipi

Proof By induction. Assume there are n weights ordered such that wo wi > -_ wn.

Note that with probability po item 0 becomes active and we get W = wo, while with

probability 1 -po we get the maximum of the "subproblem" involving the remaining items.

By induction, the expected maximum active weight not including item 0 has value at least

(1/2) Ei>0 wipi. Observe also that Ei>0 wipi is (at worst, since E pi < 1) a weighted

average of items less than wo, so has value at most wo. It follows that

E [W] = powo + (1 - po)(1/ 2 ) Z piwi
i>O

= pOw 0 + (1/2) Epiwi - po(1/2) Zpiwi

i>O i>0

pow0 + (1/2) Zpiwi - po(1/ 2 ) ( pi wo
i>0 i>0

= (1/2)powo + (1/2) ZpiWi

i>O

as claimed. D

This lemma can be applied to our rounding scheme. Fix a particular third-level vertex

v3. Its contribution to the fractional LP objective value is EV ,,,VVWVV3. Now

consider the rounding step. Vertex v3 is permitted to choose parent pair (v1 , v 2 ), contribut-

ing weight wv1,V,,3 to the objective, if v2 chooses parent v1 , which happens with proba-

bility XV1,V2 > XVIVV3. This almost fits the framework of the lemma with the variables
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pi set to xv',V2,V3. There are two differences but they only help us. First, we may have

XViV2 > XV1,V2,V3; however, this can only increase the odds of choosing a large weight.

Second, the variables x are not independent. However, they are negatively correlated: the

failure to choose some pair vi, v 2 can only increase the chance that we instead choose some

other pair. This again only increases the expected contribution above the independent case.

It follows from the lemma that we expect a contribution of at least E woV 2,V3 ViM2,v3/2

from vertex v 3 -

This analysis holds for all third-level variables, and combining over all of them yields

an approximation ratio of 2 between the rounded solution and the LP solution. The weight

of the farm is thus:

w (rounded IP farm) > w(LP fractional farm)/2

> w(maximal farm conforming to imposed levels)/2

> w(maximal farm)/27/2

> w(maximal hypertree)/6/27/2 = w(maximal tree)/324

7.2 The General Case

Now we turn to the algorithm for general treewidth. We formulate a more general integer

program, for any width k, and weights which are monotone on cliques, which does not

assume that the assignment to levels is known. Then we give a more general rounding

scheme-one that essentially applies the technique of the previous section one layer at a

time. Some care must be taken to re-optimize the LP after each layer is rounded so that

rounding can be applied to the next layer.
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7.2.1 A General Integer Program

Consider a variable xP for each simple path in G of length between 1 and k. Setting xP to

one corresponds to having p as a rooted path in a tree corresponding to a windmill in the

solution (in particular, the first node in xP is a root). We use the notation JpJ for the length

of (number of nodes in) a path and p - q, or p - v to denote the concatenation of two paths,

or a path and vertex.

The weight w, of a path is the gain in weight of adding the last vertex of p to the

windmill. That is, for p = q -v, wp = EhCp w(h) - Eh, w(h). Since the weight function

is monotone on cliques of size at most k + 1, it follows that the weights of paths are non-

negative.

We first investigate the following integer program for the problem:

max Y xPWP
P

(V p,v ) xP., < xP

(VV) EXq., < 1
q

(Vp) xP E {0, 1}

Both p in the first inequality and q in the second inequality vary over simple paths of

length up to k, including the empty path. The first inequality requires consistency of paths,

i.e. that every prefix of a path in the windmill is also in the windmill, as we did in the

2-windmill case. The second inequality constrains that there is only a single path from the

root to any vertex, i.e. that paths do not converge, but rather form a tree.

We would now like to relax the integer program (7.1) to a linear program, so that we

can solve the linear program and try to round the solutions. But instead of just relaxing the

variables x, to non-negative real values, we replace the two inequalities with a single uni-

fied inequality. The unified inequality agrees with (7.1) for zero-one values, but is stronger

(more constrained) for fractional values. This constrains the fractional feasible polytope to
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be smaller, and so closer to the integral polytope, while still containing it. This reduces the

integrality gap, and will aid us in rounding.

The linear program has a single equation for each simple path p - v, 0 < JpJ < k.

The variable x, (for the empty path of length 0) appears in the linear program only for

uniformity of structure, but is set to one:

max E xPWP
P

(Vp,v) Y Xp.q.v < Xp
q (7.2)

(Vp) xP > 0

XE = 1

Both p and q in the inequality vary over simple paths of length up to k in the graph,

including the empty path. Since we are only concerned with simple paths of length up to

k + 1, v c p is not allowed, and the sum is only over paths of length at most k - JpJ that

are disjoint from p -v. Note that since only simple paths of length up to k + 1 have positive

weight, allowing additional variables and equations for non-simple or longer paths will not

affect the optimal solution.

The key constraint of (7.2) requires that the total fractional quantity of paths that share

a prefix p and terminate at v is less than the fractional quantity of path p. This is a stronger

inequality than the inequalities in (7.1):

" For any v and IpI > 0, since all variables are non-negative, and focusing on q = E,

the inequality implies xp.v < xP, the first inequality of (7.1).

" For p = c, we get Eq Xq.v 1, the second inequality of (7.1).

For integer values {0, 1}, there can only be a single path leading to each vertex. Thus

for any p, v, there can only be one q with non-zero xp.q.v, and so the inequality reduces to

Xp,.q.v xP, which follows from the path consistency. Therefore, on such values, (7.1) and

(7.2) are equivalent.
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7.2.2 A Rounding Scheme

Suppose now that we relax the integrality constraint and find a fractional solution. We

propose to round each level iteratively, in a fashion similar to the previous section.

" Start with a solution x0 to the LP, and no rounded variables z.

" For i = 1 to k:

1. For each node v, the LP constrains that E, x,7 ; 1. So choose a single

path ending in v, or perhaps no path, such that each path p - v is chosen with

probability x'7J. If p is of length i - 1, set ,p.v +- 1. In any case, for all other

paths p of length i - 1, set p, - 0.

2. Re-solve the LP, fixing all variables corresponding to paths of length up to i to

be constants equal to their rounded values 1. Take xZ to be the solution to this

ith modified LP.

Note that since E _ zxj- may be less than one, it may be that no path ending at

vertex v will be rounded to 1 at some iteration. This corresponds to deciding that the vertex

is at a higher level, or perhaps does not appear in the farm at all.

After the k iterations, only variables corresponding to length k + 1 paths remain. The

optimal solution to this LP is integral and can be found greedily, just as the last layer was

found greedily in the 2-windmill algorithm.

This rounding method is a generalization of the rounding presented in the previous

section for k = 2 and predetermined level assignments. The first iteration (i = 1) is trivial

for predetermined levels, since all first-level vertices have only a single choice of ancestor

(the unique level 0 vertex). The greedy assignment of the third level vertices in the second

stage of rounding in the previous section exactly re-solves the linear program after rounding

the second level nodes.

Note that the rounding step (1) itself preserves the expected value of the solution, but it

might make the present solution infeasible. We show that after each step of rounding there

101



CHAPTER 7. APPROXIMATION ALGORITHMS

is still a reasonably good feasible solution. To show this, we present an explicit solution to

the ith modified linear program.

Theorem 7.2. The ith rounding iteration decreases the optimum LP value by a factor of no

worse than 1/8(k + 1 - i).

Proof At the ith iteration, consider the following solution x(') to the modified LP:

* For each variable xp,.q with Jp= i, if ic = 0, set x) +- 0 (this is mandated by the

LP). If ;i = 1, set

pq 4(k + 1 - i)x- (7.3)

" For each node v: if EP xp., > 1, then set all variables for paths in which v appears

to zero (i.e. for all p, q set xp v.q <- 0). We say that the node overflowed and so all

the paths it appeared on were purged.

We claim that the solution presented satisfies the LP constraints (since we purge any

variables that violate the constraints) and that its value is at least 8(k+1i) of the value

before the iteration. The optimum LP value can only be better. Before proving this claim

rigorously, let us present the intuitive reasoning for why 8(k1I of the value is retained.±1k~-i)

Consider a particular path p - q, where JpJ = i. The rounding scheme above rounds

the prefix p to 1 with some probability a, and to 0 otherwise (also zeroing the path), but

it also scales the path p - q by 1/4(k + 1 - i)a if it does not zero it, so the expected

value of xp.q after rounding is just xp.q/ 4 (k + 1 - i). If that path has weight Wp.q, we

would hope that it continues to contribute a 1/4(k + 1 - i) fraction of its contribution to

the starting solution. This will be true unless it is purged-that is, participates in some

infeasible constraint. This happens if one of the vertices of q ends up with too large an

"incoming value" on the fractional paths ending in it. To bound the probability of this

event, conditioned on rounding x, to one, we analyze the total incoming path-values into

vertices of q. If this value is less than one, then surely no vertex in q overflows. We show
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that the expected value of this total, conditioned on rounding x, to one, is less than half,

and so with probability at least half there is no overflow.

To overcome the conditioning on rounding xP, for each vertex v on q, we partition

paths ending in v into those that share p as a prefix and those that do not. For those that do

share p, the LP constraint for (p, v) guarantees an incoming value of at most x;-' before

scaling, and so 1/4(k + 1 - i) after scaling. For paths not sharing p, the conditioning just

decreases the expected contribution, and the LP constraint for c, v guarantees an expected

total incoming value of at most 1/4(k + 1 - i) (after the scaling). Summing these two

contributions over all k + 1 - i vertices of q yields an expected total incoming value of one

half. E

It follows by induction that the value of the (integer valued) LP optimum in the final

step is no worse than 1/8kk! times the original LP value. We therefore solve the windmill

forest problem with an approximation ratio of 1 and the hypertree problem with a ratio

of 8kk!(k+1)!

We return to proving that the explicit solution x() to the rounded LP, is in fact a feasible

solution retaining 8(k+1I) of the value, in expectation:

For any i > 1, let xi 1 be a solution of the i - ith linear program, and x0() be the

solution of the ith linear program as specified in Theorem 7.2. For uniformity and brevity

of notation, we will include in these solutions also variables substituted as constants from

i. We will show that x() is a feasible solution and that:

E (7.4)

Feasibility of solution

We investigate the LP constraints for every p, v, and show that they are all satisfied:

. For Jp > i and v, write p = r - s where Ir I = i:
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- If i, = 0 or one of the vertices on p overflowed, then all variables in the con-

straint are nulled:

Z(.). 0 < 0 = x()
q

- Otherwise, the constraint is a rescaled version the corresponding constraint in

the (i- -1)th LP, with some of the variables on the left-hand-side possibly nulled:

q

= X rsq.v

q

xi-
1

r-s-qi;
4(k + 1 - i-l

rs

x(i) =-~ir.s~ p

" For p E, purging overflowing nodes guarantees that:

X~i). XW _ X,

q q

* For 1 < IpI < i: the value of x, is already rounded, and so the constant z, appears

in the LP.

- If I,= 1 then using the constraint on c, v, which we already saw is satisfied:

Xpqv >j- Xq.v p
q q

- Iff 0 and IpI < i then this constraint already appeared in the previous

iteration's LP, and since zero-valued variables do not get their values increased
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in the rounding process, it is still true that:

Sxp.,q.v = 0 =xP
q

If 5Xz, = 0 and pj = i then we have just set all x) to zero and the above still

holds.

Expected value of solution

We will show that for every p:

E [4()|x' 1 ]
- i-1

> P .
-8(k + I - i)

For JpJ < i, x(i) = x- 1 and (7.5) holds. For IpJ = i:

E [(')|x'-'] = E (ip|x-1] = x ;-1

and (7.5) holds.

We will denote by x(') the value assigned to x(') before possible purging, i.e. in the

first step of the explicit rounding. All the expectations and probabilities in the following

discussion are implicitly conditioned on x-. We will analyze the expected value for any

p.4q such that JpJ = i:

= Pr (;r = 1)Pr (q is not purgedl., = 1)E X p

= x -1 Pr (q is not purged., = 1) +1 x;

Pr (q is not purged., = 1)xp,-
4(k + 1 - )

= 1 A q is not purged]

(7.6)

To bound the probability of purging q, consider a vertex v E q, and analyze the expected

(7.5)

E [x(.)v]
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value of paths ending in v, before checking for overflow. We will partition all such paths

to paths which have p as a prefix, and paths which do not have p as a prefix. For paths that

have p as a prefix:

5E [4.2.i|z = iJ
[x ")v1..

xi-
1

p.r.v

4(k + 1 - )xi-l

< x(i - 1) 1

4(k + 1 - i-' 4(k + 1 - i)

To bound (7.8) we used the linear program constraint for p, v.

For all other paths, not that conditioning on z, = 1 can only decrease the probability of

their prefix to be chosen in the rounding step:

< S E [x~i)]
s w/o prefix p

< SE[x~)
S

i-1

4(k+ 1-i)

zx i-
1S -V <

4(k +1 - i) -

The last inequality follows from the linear constraint for c, v.

Combining (7.8) and (7.9) we get:

1I
4(kv ± 1 - i)

E x =1 <
2 1

4(k + 1 - i) 2(k + 1 - i)

To show that with reasonable probability non of the vertices in q overflow, we will sum

(7.7)

(7.8)

s E
s w/o prefix p

- i])

(7.9)
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the above over all vertices in q. lp -qJ < k + 1 and JpJ = i and so JqJ < (k + 1 -

E F x ( ) 1;p ~ < k+1-i 1

vq t J -2(k+1-Z) 2

We can now use Markov's inequality to bound the probability of purging q:

Pr (q is not purgedlip = 1) = Pr (no vertex on q overflows Jz = 1)

> Pr Xt 1|V= 2
\ VEq t

Combining (7.6) and (7.10) to prove (7.5):

i-i

E [x.)] = Pr (q is not purged., = 1) p4( .

I xi- Xi_
>- P- = p (7.10)

24(k+1-i) 8(k+1-i)

7.3 Discussion

We presented an integer program for the maximum windmill farm problem, and showed

an iterative rounding algorithm for obtaining an integer solution from a fractional solution,

retianing 8kk1 of the value of the fractional solution. Whether this ratio reflects the

true integrality gap, or can be improved on, is an open question.

7.3.1 Iterative rounding

We suggested re-optimizing the LP after each iteration. But in the proof, a feasible (but

not necessarily optimal) LP solution is explicitly constructed at each step. Thus, it is not

technically necessary to re-solve the LP at each step-one can achieve the approximation

ratio after just a single LP solution.

Note that there is a fundamental difference between the LP re-solving rounding, and
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the explicit rounding for which we prove the approximation ratio: The explicit rounding

takes the optimal fractional solution x , and using only this solution, constructs an integer

solution :. After initially solving the LP, the input to the problem (the weights) are no

longer needed, and ,z is determined solely by x0. It follows that for any fractional solution

to the LP, there exists an integer solution such that for every set of non-negative weights, it

is within -1 of the fractional solution. This is achieved by having E [C] = '.

However, in the iterative LP re-solving method, the weights are used each time the LP is

re-solved. The rounded solution 1 might be different, even though the fractional optimum

x0 is identical. This is, in fact, what we did for the case k = 2, when the values for the third

layer were rounded according to their weights, so as to maximize the weight. For k = 2,

rounding the third level according to the values themselves, disregarding the weights, we

would be able to prove an approximation ratio (for the IP) of only 1/4, instead of the 1/2

we achieved using the weights.

Is is conceivable that a better approximation ratio can be proven also in the general case,

when the LP is properly re-solved at each iteration, using the knowledge of the precise

objective function.
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Conclusions and Discussion

In this thesis, we have presented a graph algorithmic problem, the maximum hypertree

problem, that is equivalent, in a rather strict sense, to the maximum likelihood Markov net-

work problem. Hardness and approximability results on the maximum hypertree problem

extend also to the maximum likelihood Markov network problem,

We believe that the maximum hypertree problem is an interesting and important com-

binatorial optimization problem, worthy of further study and analysis. We show how maxi-

mal hypertrees can be approximated by windmill-farms. We analyze the hardness of finding

maximal windmill-farms, and present an approximation algorithm that achieves a constant

approximation ratio for constant tree-width. But a wide gap remains between our hardness

results for the maximum hypertree problem, and the approximation algorithm we suggest.

As was argued above, the exponential dependence of our algorithm's running time on

the target tree-width k is unavoidable and non-problematic. However, an important open

question is whether, given that we are willing to spend this much time, we can achieve an

approximation factor that is a constant independent of k. We believe that the analysis of

our algorithm's performance can be improved, but that the explicit rounding method will

have an undesirable dependence on the tree-width. A direct analysis of the value of the

iterative linear programs might yield a qualitative better approximation ratio.
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