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Abstract
This thesis addresses the problem of source based text classification. In a nut-
shell, this problem involves classifying documents according to "where they came
from" instead of the usual "what they contain". Viewed from a machine learning
perspective, this can be looked upon as a learning problem and can be classified
into two categories: supervised and unsupervised learning. In the former case,
the classifier is presented with known examples of documents and their sources
during the training phase. In the testing phase, the classifier is given a document
whose source is unknown, and the goal of the classifier is to find the most likely
one from the category of known sources. In the latter case, the classifier is just pre-
sented with samples of text, and its goal is to detect regularities in the data set. One
such goal could be a clustering of the documents based on common authorship.

In order to perform these classification tasks, we intend to use compression as
the underlying technique. Compression can be viewed as a predict-encode process
where the prediction of upcoming tokens is done by adaptively building a model
from the text seen so far. This source modelling feature of compression algorithms
allows for classification by purely statistical means.

Thesis Supervisor: Shafi Goldwasser
Title: RSA Professor of Computer Science and Engineering
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Chapter 1

Introduction

The rapid growth of the Internet has led to an explosion of online text. A natural
fallout of this phenomenon has been the problem of efficiently classifying this huge
bank of information. Ideally, we would like to have a situation where any new
piece of text appearing on the Internet gets classified automatically, based on its
contents/language/origins etc. The problem of content based text categorization,
in particular, has received a lot of attention from the machine learning and informa-
tion retrieval communities. Typical approaches extract "features" from documents
and use the feature vectors as input to a machine learning scheme that learns to
classify the documents. The features are usually words and some sort of selection
process is applied to extract the most relevant ones. This vector space model has
been quite successful and forms the basis for most of the keyword based search
engines in use today.

In this thesis, we investigate the related, but nonetheless different, problem of
source based text classification. As the nomenclature suggests, the intention is
to classify documents based on their "source" rather than their content. In other
words, documents are categorized according to "where they came from" instead
of "what they contain". The most obvious application is classification based on
authorship. But the notion could very well be extended to the language of a docu-
ment or its origins. A related problem is that of authorship authentication, where
the objective is to ascertain the authorship of a given piece of text. Although it
seems to run contrary to the anonymity theme of the Internet, this has uses, espe-
cially in e-commerce, where presently there is no way of authenticating testimo-
nials that customers supposedly write about online merchants. Other motivating
applications are detecting digital copyright violations and mirrored copies of simi-
lar documents on the Internet. The problem of copyright detection assumes added
importance in the light of the publishing industry's increasing shift towards "elec-
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tronic books".
Viewed from a machine learning perspective, this classification problem has

two natural variants. The use of predefined categories implies a "supervised learn-
ing" approach to classification, where pre-classified documents - which effectively
define the categories - are used as "training data" to build a model that can be used
for classifying new documents that comprise the "test data". This contrasts with
"unsupervised learning", where there is no training data and clusters of like doc-
uments are sought amongst the test data. We will investigate both variants of the
problem in this thesis.

It would be desirable to have a technique that solves this problem without
trying to "understand" the semantics of the underlying text. In other words, we
would like to capture the "style" of a piece of text in purely statistical terms and
use that for our classification/authentication purposes.

1.1 Text Modelling

Before proceeding with any analysis, one needs to create some kind of a model for
the text in question. This model is just an abstract representation of the text that
tries to capture the nature of the source of the text. It could range from something
as simple as a single parameter (say average word length) to something as com-
plex as probabilistic finite state machines or grammars. Once we have decided on
a suitable model (and a method for its extraction), the problem of source identifi-
cation reduces to a traditional nearest-neigbour classification problem, ie, we just
"compare" the model of the text being tested with the models of pre-classified text
and declare the "closest" match to be the most likely source for the text. But the
devil lies in the details. It is unclear how one could compare anything but the
simplest of models (which capture the text only in terms of numbers). And it is
not surprising that the simplest models also tend to be the crudest. They do not
capture enough nuances of the source, resulting in erroneous classification.

The issue therefore is to come up with a technique that harnesses the informa-
tion inside a model in a way that permits accurate classification.

1.2 Compression for Classification

Text compression techniques have traditionally been distinguished as dictionary-
based versus entropy-based (or statistical). The dictionary-based techniques [38,
39] build up a dictionary of phrases occuring in the text and achieve compression

14



by replacing the subsequent occurences of those phrases by references in the dic-
tionary. The entropy-based methods tend to follow a predict-encode paradigm.
The predictor (or modeller) generates a probability distribution for the upcoming
token (based on the input seen thus far) and the encoder uses this distribution to
encode the actual token encountered. The underlying idea is to encode frequently
occuring tokens with less bits and the rarely occuring ones with more. Some ex-
amples in this vein are Huffman encoding [20] and PPM (Prediction by Partial
Matching) [10].

Viewing compression as a predict-encode operation immediately suggests the
possibility of using compression as an engine for classification. The underlying
idea is to compress the given piece of text using models of the different sources.
The correct source of the text is most likely the one yielding the maximum degree
of compression. This paradigm allows one to use any model of one's liking (as long
as one has a compression method that is able to use that model). Furthermore, it is
likely that the better the model, the better the classification obtained.

1.2.1 Unsupervised classification

The problem of unsupervised classification (or clustering) is important in its own
right. It arises naturally in scenarios where the sources have not been identified
beforehand. A motivating example of the problem comes from the ubiquitous do-
main of Internet search queries. A typical search query on the Internet yields a
large collection of documents. It would be highly desirable to cluster the search
results into a small number of categories, based on some criterion. One such crite-
rion could be common authorship of the documents, in which case, compression
can be used in a natural way for determining the closeness between pairs of doc-
uments. Once the closeness metric has been computed, one can use any of the
standard clustering algorithms to carry out the actual categorization.

1.3 Related Work

Content based text categorization has been investigated by a number of people
using different techniques. Dumais et al [13] have used the Bayes net technique
for this purpose. A decision tree approach using the divide and conquer strategy
has been described in [27]. Ng et al have used neural nets for classification in [301.
Frank et al [17] used compression for this task but concluded that compression
was not the best choice for this application because content is usually determined
by a few important keywords and compression techniques tend to be insensitive
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towards particular words/phrases. The best possible technique seems to be the
one using linear support vector machines [24]. Interestingly, apart from their practical
utility, SVMs happen to be well founded in computational learning theory and are
very open to theoretical understanding and analysis.

Clustering algorithms for clustering results of search queries have been de-
scribed in [12],[25]. One such prototype of a clustering system has been imple-
mented in [1], which uses common content as the clustering criterion. Under this
criterion, two documents are deemed close if they have many common keywords.

Statistical techniques for carrying out authorship attribution have been in vogue
in the social sciences for some time now, although there is no clear consensus on
the best possible method. One of the common techniques is the "QSUM1 method"
[15]. This method works by successively adding up the deviations of sentence
length and "language habits" (traits supposedly invariant for an author such as
use of two and three letter words, and words beginning with a vowel) in a given
sample and plotting them on a graph. The resulting graph is treated as a "finger-
print" for the author's writing style. This technique has been used in a number of
court cases and has received significant public attention. However, a number of in-
dependent investigations have found the technique unreliable [19]. Al techniques
such as neural nets have also been cited as possible candidates for this problem
[37]. A compression based method, similar to ours, has been described in [36].
This paper describes the use of PPM based compression techniques for resolving
the authorship attribution problem for two authors as well as for distinguishing
different languages.

Copy detection mechanisms have emerged as important tools to prevent dig-
ital copyright violation on the Internet. Methods based on watermarks have been
investigated in [9] and [6]. Shivakumar et al [32] propose a detection mechanism
based on hashing "chunks" (the chunks could range from words to sentences) of
documents and counting common chunks as a means to quantify overlap between
documents.

1.4 Organization of the Thesis

We present a brief introduction to compression techniques in Chapter 2 and show
their relevance to our problem. We also present our experimental results for the
supervised classification problem and the related problem of copy detection. In
Chapter 3, we give a brief background on the general problem of clustering and
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present our approach of applying clustering to the unsupervised classification
problem. We also discuss our experimental results for this problem. Finally, in
Chapter 4, we present our conclusions about the usefulness or otherwise of this
idea.
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Chapter 2

Compression for classification

Compression being our underlying technique for text classification, we now present
a brief overview of the information theoretic basis of compression and it's relation-
ship to our problem. The reader already comfortable with the basics of information
theory may wish to skip to Section 2.3, wherein we describe our contribution of us-
ing compression as a means for classification. We discuss the internal mechanism
of two commonly used compression techniques in Section 2.4 and present our ex-
perimental results in Section 2.6.

2.1 Entropy as a Measure of Information Content

The notion of entropy is a pivotal one in information theory. The entropy is a mea-
sure of the uncertainty in a message. It can also be considered a measure of the
"information content" of the message - more probable messages convey less in-
formation than less probable ones. Formally speaking, the information content (or
entropy), I of a message m with probability p(m) is,

1
I(m) = log( ) = -log p(m) (2.1)

p(m)

The information content per symbol is just I(m)/ m

In general, the probability distribution p(m) of the messages generated by a source
is hard to estimate. This is circumvented by using a model M as an approximation
to the actual source. Let pM(m) be the probability of message m under the model
M. The quantity IM(m) = log{ is called the cross-entropy'; the closer it is to
1(m), the better the modelling of the source by M.

'Sometimes just the fraction & is used in which case it's called the perplexity [8]Pml (mn)

19



2.2 Entropy and Compression

The notion of entropy is easily generalized from messages to sources (or the lan-
guages generated by sources). For a source 2 generating messages from a finite
message space, S, its entropy is just the expectation of the individual message en-
tropies,

H(P) - X p(s)logp(s) (2.2)
sGS

where p(s) is the probability of message s and all the probabilities in the distri-
bution P are assumed independent and summing up to 1.

The entropy of an arbitrary source can be defined in a similar fashion. Let S"
denote the set of all strings of length n from an alphabet S. Then the nh order
normalized entropy is defined as 3:

Hn(P) = p(s)log p(s) (2.3)
nSES

The source entropy is then defined as

H(P) = lim Hn (P) (2.4)

In general, it is hard to determine the source entropy of an arbitrary source
just by looking at the output, since it requires looking at extremely long output
sequences. As mentioned earlier, we use a model to estimate this entropy, that is
we actually compute HM(P).

It turns out that the entropy of a source is a lower bound on the average number
of bits per symbol needed to encode a message generated by the source (the funda-
mental source coding theorem [31]). This ties together the notions of entropy and
compression, by setting a target on the best possible compression physically real-
izable. The compression ratio4 actually achieved, provides us with an estimate of
the message cross-entropy. In particular, by comparing the compression results derived
from two competing models for a source, it is straightforward to infer which model
captures the "style" of the source better. This key insight provides us with an easy
way of quantitatively evaluating the closeness of a piece of text to a given source -
it is just the compression ratio of the text using a suitable model of the source.

2Such a source is technically called a zeroth-order or memoryless source.
3This is normalized through division by n so that it represents per symbol entropy.
4The compression ratio is the ratio of compressed message size to original message size and is

usually expressed in bits per character (bpc)
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2.3 Supervised Classification using Compression

Compression algorithms are either adaptive or static, depending on whether or not
they change their behavior according to the input seen so far. The key requirement
for this problem is a compression algorithm operable in both adaptive and static
modes. During the model construction phase, such an algorithm should work
adaptively and output its internal model at the end. During the cross-entropy
computation phase, it should initialize itself with the previously created model,
and use it to compress the text in question. The compression ratio achieved is
an indicator of the "distance" between the text and the source. Once the cross-
entropies with respect to all the candidate sources have been evaluated, a simple
minimum distance classifier can be used to identify the right source. The overall
classification methodology is summarized below.

SUPERVISED CLASSIFICATION

{
Training Phase

FOR each of the candidate sources, Source DO

run compression adaptively on sample texts of Source

save the compression model, Mj

Testing Phase

Input: document D

Output: likely source of the document

FOR each of the candidate sources, Source DO

run compression staticalLy on D using training model Mj

I(D) = get compression ratio (cross-entropy)

return arg min Ij(D)

}

The classification schema outlined above highlights the fact that this method-

ology is not limited to any particular compression technique. It provides the flexi-
bility of choosing the compression method best suited to the domain in question.
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2.4 Compression Techniques

In this section, we give a brief overview of some of the common compression
techniques. As mentioned earlier, compression techniques have traditionally been
classified as dictionary-based ones and entropy-based ones. In Section 2.4.1, we
describe a couple of variants of the basic Lempel-Ziv dictionary based compres-
sion scheme. In Section 2.4.2, we describe the PPM algorithm, a classic example of
an entropy-based compressor.

2.4.1 Lempel-Ziv Algorithms

The Lempel-Ziv algorithms compress by building a dictionary of previously seen
strings. The dictionary is then used to encode these strings. The algorithms, which
can be shown to be perfect in the information-theoretic sense, work as follows.
Given a position in a file, search through the preceding part of the file to find the
longest match to the string starting at the current position, and output some code
that refers to that match. Move the cursor past the match and repeat. The two
main variants of the algorithm were described by Ziv and Lempel in two separate
papers in 1977 and 1978 [38,39], and are usually referred to as LZ77 and LZ78. The
algorithms differ in how far back they search and how they find matches.

The LZ77 algorithm is based on the idea of a sliding window. The algorithm
only looks for matches in a window a fixed distance back from the current posi-
tion. Some commonly used algorithms that use this technique are Gzip, ZIP and
V.42bis (a standard modem protocol). However, the fact that this algorithm is
necessarily adaptive, ie, it uses preceding information from the same document,
makes it undesirable for our application.

The other variant, LZ78, used in the Unix compress utility, meets our require-
ments. A top-level description of the algorithm is given on the next page [29].

The algorithm starts with a dictionary containing one entry for each character.
As the algorithm progresses, it adds new strings to the dictionary such that each
string is only added if a prefix one character shorter is already in the dictionary. For
example, John is only added if Joh had previously appeared in the text sequence.
Furthermore, the prefix string in the text (Joh in this case) gets replaced by its index
in the dictionary. This method allows the decoder to reverse the encoding steps by
building up the same dictionary as the encoder and thus obviates the need for
sending the entire dictionary along with the compressed text. This fact, although
important in practical compression scenarios, is of little consequence to us as we
are interested only in the encoding process.
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LZ78 COMPRESS

str = get input character
WHILE more input DO

c = get input character

IF str+c is in dictionary

str = str+c

ELSE

output the code for str

add str+c to dictionary

str = c

output the code for str

}

LZ78 DECOMPRESS

read old-code

output old-code

WHILE more input DO

read new-code

str = translation of new-code

output str

c = first character in str

add old-code+c to dictionary

old-code = new-code

}

Usage for classification

The dictionary built up by the encoder during the training phase, serves as the
language model for the testing phase. During the testing phase, cross-entropy cal-
culations against this model are done by running the algorithm in a static mode.
The algorithm is initialized with the training dictionary and the line of code high-
lighted above, is suppressed to prevent any modifications to the dictionary. The
compression ratio achieved at the end of the compression run, gives us an estimate
of the desired cross-entropy.

2.4.2 Prediction by Partial Matching

PPM has set the performance standard in lossless compression of text throughout
the past decade. The original algorithm was first published in 1984 by Cleary and
Witten [10], and a series of improvements were described by Moffat, culminating
in a careful implementation, called PPMC, which has become the benchmark ver-
sion [28].

The underlying idea of PPM is to generate a conditional probability for the cur-
rent character by keeping track of the last k characters. In other words, a kVh order
Markov model is used for the prediction of upcoming characters5 . The simplest
way to build such a model is to keep a dictionary for every possible string s of k
characters, and for each string store counts for each character x that follows s. The

5These are also known as k-gram models in the literature
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conditional probability of x in context s, P(xls) is then estimated by C(xjs)/C(s),
where C(xIs) is the number of times x follows s and C(s) is the number of times
s appears. The probability distributions are then used by an Arithmetic Coder to
generate a bit sequence (Arithmetic coding [5] is a generalization of Huffman en-
coding that encodes symbols optimally even when the symbol probabilities are not
powers of 1).

The actual implementation actually maintains contexts of all lengths upto k,
and effectively combines the different distributions into one via the mechanism of
escape events. When faced with a string that is absent in the dictionary of k-sized
contexts, the algorithm tries to match a string of one shorter length. This switching
to a lower-order model is known as an escape event. This process is repeated for
shorter and shorter lengths until a match is found (hence the nomenclature PPM).
In practice, a single trie data structure is used to keep track of the probabilities in
the different context models. Table 2.1 shows the data structure generated on a
sample piece of text.

Table 2.1: An order 2 PPM model after processing the string accbaccacba

Order k =2 Order k =1 Order k =0
Context Next Count Context Next Count Context Next Count

ac b 1 a c 3 - a 4

c 2 b 2
b a 2 c 5

ba c 1
c a 1

ca a 1 b 2

c 2
cb a 2

cc a 1
b 1

It would seem that the higher the value of k, the better the achievable com-
pression. However, the amount of storage required by PPM grows exponentially
with k. This places a practical limit on how large k can be. Furthermore, the larger
the size of a given context, the less frequently it occurs. Consequently, the proba-
bilities derived from the frequency counts are not reliable enough (the sparse data
problem). In practice, it has been observed that order 5 models tend to give the

24



best compression results [341.
The basic idea of PPM can be extended to word based models where words

are treated as individual symbols and the conditional probabilities are calculated
in a similar fashion. The reason for considering these models is the intuition that
writing style is captured better at the sentence level rather than at the word level.

Usage for classification

In our implementation, we modify the basic PPM algorithm slightly Firstly, we
skip the aritmetic coding step since the actual compressed output is not needed.
During the training phase, the program populates the trie data structure with ap-
propriate character frequencies and stores it for subsequent use. This data struc-
ture captures the style of the source in terms of probabilities and serves as the
training model.

The mechanism for the testing phase is similar to that of the LZ78 scheme. The
training model is loaded and the probability (or equivalently the entropy) of each
token in the test document is calculated from the finite context probabilities in the
training model.

It might be worthwhile to add here that the distinction between dictionary-
based and entropy-based algorithms is somewhat contrived. The dictionary-based
schemes can also be looked upon as following a model-encode approach where the
two phases are somewhat merged together. The modeller generates an implicit
probability distribution for upcoming tokens based on phrases in the dictionary
and the replacement of a phrase by its reference corresponds to the encode opera-
tion.

2.5 Utility of Compression Models

At this stage, it might be worthwhile to examine whether it is really meaningful
to model the kinds of "sources" we are interested in by dictionaries or finite or-
der Markov models. Firstly, the probability, pm(s), of a piece of text, sis2 ... sn,

calculated using this approach is nothing but,

n

PM(S) = 11PM(SiISi-kSi-k+1 ... si-1) (2.5)
i=1

This expression brings out one underlying assumption, namely, the locality in hu-
man generated text. This is usually attributed to the attention span of the human
mind while writing a piece of text. What comes next is most likely affected by
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what was written immediately, not far, before. However, sometimes the grammat-
ical constructions of a particular language force "long range" effects. For example,
the form of the verb at the end of a sentence can be affected by the kind of sub-
ject at the beginning - in English, by the plurality of the subject, in Hindi, by the
subject's gender. Such effects will be missed by a finite context model. An appeal-
ing alternative is grammar-based langauge models. Grammar has long been the
representation of language used in linguistics and intuitively such models capture

properties of language that n-gram models cannot. Researchers have proposed dif-
ferent methods for inducing probababilistic grammars6 from text [8, 26]. However,
the current state-of-the-art methods either do not outperform n- gram models or
do so marginally, with a high computational overhead.

The other issue is specific to the authorship attribution problem. The implicit
assumption here is that humans have a subconsciously determined writing style,
which is relatively invariant. Debating the existence or otherwise of subconscious
writing cues is beyond the scope of this work - we choose to accept this as a
worthwhile assumption from common day-to-day experience. The invariance of
the writing style is somewhat harder to defend. Indeed, an author's writing style
might differ markedly over a period of time or over different genres of writing.
While this definitely limits the applicability of our technique, on the plus side, this
deviation might actually offer a way of dating an author's different works or clas-
sifying them into different genres. Indeed, one of the objectives of this thesis is to
experimentally investigate the validity of these assumptions.

2.6 Experimental Results

In this section, we describe our experimental setup and results. Subsection 2.6.1
describes our experiments in the domain of supervised source classification. This
includes the problems of authorship and language identification. Subsection 2.6.2
discusses the copy detection problem.

2.6.1 Supervised Classification

Authorship attribution

For this experiment we started with a corpus of relatively large-sized documents
written by ten authors (see Table B.1 in Appendix B for the list of authors and their
works). The corpus was partitioned into training and testing sets and the training

6Grammars with probabilities attached to each of the rules
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set was used to generate the models. Subsequent compression runs compressed
each document in the testing set with each of the models and the author corre-
sponding to the model with the best compression was ascribed to the document
(since we had a limited number of works for each author, we repeated this process
for different possible partitions of the data set and accumulated the results of each
run into one aggregate result).

We tried out different compression techniques for this experiment. Method
A uses a version of the LZ78 dictionary based algorithm. Method B uses code
from the Text Mining Toolkit [35] and is technically an order 5 character based
PPM technique. Method C makes use of code from the CMU-Cambridge Statistical
Language Modelling Toolkit [21 and is essentially an order 3 word based PPM
technique.

The accuracy for each method was determined by counting the number of cor-
rectly classified documents. These are summarized as percentages in Table 2.2

Table 2.2: Identification accuracy for different compression methods

Method A Method B Method C
73.3% 85.0% 35.0%

The character based PPM technique turns out to be the best performing method
with an accuracy of 85%. When compared with an accuracy rate of 10% for random
guessing, it seems to indicate that this method can extract "style" to a high degree.
The low accuracy rate of the word based PPM technique can be attributed to the
sparsity of training data, since this method treats each word as a symbol.

Table 2.3 illustrates the typical cross-entropies obtained for a sample testcase.
Both the actual author of the testcase and the minimum cross-entropy number are
highlighted. Note that the work is correctly ascribed to its author in this case.

Table 2.3: Cross entropies for the document Hamlet (in bpc)

Austen Defoe Dickens Emerson Kipling S'peare Shaw Twain Wells Wilde

3.263 3.236 3.203 3.237 3.192 2.659 3.132 3.161 3.236 3.060

Table 2.4 illustrates an example of a misclassified work.
It is worthwhile to analyse this example in some detail. In this case, the train-

ing set for Kipling comprised of the following works: Kim, Tales from the Hills and
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Table 2.4: Cross entropies for the document Captains Courageous (in bpc)

Austen Defoe Dickens Emerson Kipling S'peare Shaw Twain Wells Wilde

3.144 3.090 2.869 3.061 2.820 3.338 2.868 2.823 2.789 2.951

American Notes. Both Kim and Talesfrom the Hills have colonial India as a backdrop

and the writing contains many idioms and stylistic elements of Indian origin. On

the contrary, Captains Courageous is a seafaring adventure drama with an Amer-

ican backdrop. Therefore it is not surprising that the cross-entropy numbers for

this work indicate a closer match with H. G. Wells and Mark Twain, the other ex-

ponents of the adventure genre in this collection of authors.

It is also instructive to examine the misclassified documents to see how "close"

they are to being classified correctly. Define a testcase to be of rank i if the testcase's

author ranks ith in its cross-entropy vector. In terms of ranks, the overall accuracy

rate is nothing but the percentage of rank 1 documents. A histogram displaying

the relative percentages of different ranks is shown in Figure 2-1. The histogram

shows that most of the misclassified documents actually had rank 2, implying that

the likelihood of the real author being among the first few minimum values is very

high.

70 -

60-

~50-

20-

0 1 2 3 4 5 7 8 9 10

Figure 2-1: Histogram for different ranks

Dependence on document size

In order to observe the relationship between identification accuracy and document

size, we repeated the experiment for different training and testing set sizes. Fig-
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ure 2-2 shows the variation in accuracy as the training and testing set sizes are

varied.
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< 40-
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Training size (in bytes) 10 102 Test size (in bytes)

Figure 2-2: Variation of accuracy with training and testing set sizes for method B (The
document sizes are plotted on a log scale)

Not surprisingly, the accuracy drops with decrease in training and/or testing

set size. Figures 2-3 and 2-4 show the variation in accuracy with training (testing)

set size for a fixed testing (training) set size. A distinctive feature of these graphs

is the presence of a "threshold" phenomenon. The accuracy remains relatively

stable for a wide range of training (testing) sizes and then falls sharply when the

document size drops below a threshold value. This phenomenon allows for robust

classification over a wide range of testcase sizes, as long as they are above the

threshold value.
Incidentally, there is an interesting anomaly in the data (indicated by a * in

Figure 2-2), which is worth pointing out. Although, accuracy does drop off with

decreasing document sizes, for very low values of training (testing) set sizes, one

observes an increasing accuracy for decreasing testing (training) sizes (Figure 2-

5). This seems to indicate that for small document sizes, the best performance

is achieved when the training and testing set sizes are "matched". We have no
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explanation at this point for why this should be the case.

80- Test size = 100 kB Training size = 400kB

-.. .. 80 -- - -

70 -

70

60-0

50

40Test size = 100 bytes 4

30 30

20- 20- . Training Siz= 1kB

0 05 1 15 2 25 3 35 40 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Training size (in bytes) X 10 Test size (in bytes) X 10

Figure 2-5: Anomalous behavior for small Training/Test sizes

We performed a similar experiment in the somewhat restricted domain of tech-
nical writing. In particular, we looked at technical papers and surveys written
by ten researchers in the field of theoretical computer science. Since most of the
documents were in Postscript format, they were converted into plain text by a pre-
processing utility. Admittedly, this does result in the loss of certain information,
especially regarding figures and special symbols, but we feel this is not too signif-
icant. Table 2.5 shows the identification accuracies for this experiment.

Table 2.5: Identification accuracy in the case of technical documents

Method A Method B Method C
62.5% 75.0% 40%

The slightly lower accuracy results can be attributed to the limited size of train-
ing documents and the fact that many documents had overlapping content because
of the restricted domain of writing.

Language Identification

One would expect the language identification problem to be easier compared to
the author identification one, since the grammar and vocabulary of different lan-
guages, induce radically different distributions on the space of possible sentential
forms. This intuition is indeed borne out in our experiments.
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We used text from ten different languages: Dutch, English, French, German,
Italian, Latin, Portugese, Sanskrit, Spanish and Tamil (For the Indic languages,
Sanskrit and Tamil, we used their transliterated versions in Roman script). The
accuracy rate, not surprisingly, turned out to be 100% for both methods A and B,
while it was 60% for method C.

2.6.2 Copy Detection

As mentioned in Chapter 1, there is a growing need to detect copies of digital con-

tent on the Internet, both from the standpoint of prevention of copyright violations
as well as pruning document searches by weeding out very similar documents. We
propose the following framework for solving this problem. Given a document d,
we define it's self-entropy as the entropy calculated by compressing it with its own
compression model. We expect that the cross-entropies of documents with "mi-
nor" deviations are close to the self-entropy, while those of unrelated documents
are not. The degree of closeness can be specified as a percentage of the self-entropy.

We looked at one example in this vein. We performed a search on "Perl manu-
als" and focussed on three particular results, Perl version 5 manual, Perl version 4
manual and the Perl FAQ. Perl 5 being a major revision of Perl 4, the manuals are
different from each other but still retain similar content in most parts. Treating the
version 5 manual as our reference copy we calculated the self and cross entropy
numbers (we used method A for this as it is well suited for exploiting sequences
of common phrases). Table 2.6 summarizes the results.

Table 2.6: Entropy numbers for the Perl example

Thus, a 10% cutoff for determining copies would be sufficient to classify the
version 4 manual as a copy in this case. In general, the choice of the cutoff would be
determined by the actual self-entropy number and its gap with the cross-entropy of
unrelated documents. This idea could also be used for identifying related threads
in a discussion forum such as a newsgroups; since newer threads tend to contain
quoted text from older ones and hence should have similar entropy numbers.
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2.6.3 The Shakespeare Authorship Controversy

As a diversion, we looked at the controversy surrounding Shakespeare's works.
There is considerable dispute in certain literary circles regarding the identity of
the "real" author of Shakespeare's works. Of the more than eighty Elizabethans
put forward since the eighteenth century as the "true Shakespeare", the ones that
have merited serious consideration are Sir Francis Bacon, Chritopher Marlowe,
William Stanley (6 th Earl of Derby), and Edward de Vere (17th Earl of Oxford). We
focussed on Bacon as a possible contender, since his work was available digitally.
We computed the cross-entropies between Shakespeare's own works and between
Shakespeare's and Bacon's works, the intuition being that if Bacon was indeed the
real author of works attributed to Shakespeare, we would get similar numbers.
The results are shown in Table 2.7.

Table 2.7: Cross entropies of Shakespeare's works with two different training sets

Shakespeare's training set Bacon's training set
2.680 3.195

The gap between these entropy numbers provides evidence, although by no
means conclusive, that Bacon was not the author of these works.
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Chapter 3

Clustering

Classification of documents based on common sourcehood, without any a priori
identification of the sources, is a problem of clustering. It arises naturally when
documents of unknown origin need to be segregated on the basis of their language
or authorship. A mechanism for doing such segregation automatically would be
highly desirable.

The problem of clustering is not unique to our domain; it arises in many ar-
eas [22]. The general clustering problem asks for clusters of "like" data points,
where the likeness between data points is captured via a suitable distance metric.
Although the problem itself is easy to state and understand conceptually, its math-
ematical formulation is not so straightforward. One debatable issue is the quality
measure that should be optimized. We discuss this issue in Section 3.1. Numer-
ous algorithms have been proposed by researchers for the clustering problem. We
present our choice and describe it in detail in Section 3.2. In Section 3.3, we present
our contribution to this problem, wherein we introduce the idea of using com-
pression to determine the likeness between documents. Finally, in Section 3.4, we
describe the results of our experiments.

3.1 Optimization Criteria for Clustering

Researchers have investigated different combinatorial measures of clustering qual-
ity. These include minimum diameter (minimize the largest distance between any
two points in a given cluster), minimum sum (minimize the sum of distances be-
tween points in the same cluster), k-center (minimize the maximum distance from
a point to its nearest cluster center), k-median (minimize the sum of distances from
each point to its nearest cluster center) [7, 14, 21, 23]. There is no a priori reason
to select one metric over the other, the usefulness of a given metric is predicated
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on the particular problem at hand. However, Kannan et al [25] argue that each of
the metrics cited above are easy to fool (Figures 3-1 and 3-2). They propose a new
bicriteria measure of the quality of a clustering which we describe below.

. .
. . * 0

0
. .0 *

A B

Figure 3-1: Minimizing the diameter produces the clustering B while A is clearly more
desirable.

.e . A .. * . . *

9B

Figure 3-2: The inferior clustering B is produced by optimizing the minimum sum, 2-center

or 2-median measures while A again the more suitable one.

3.1.1 Conductance as a Clustering Measure

The clustering problem is mathematically modelled via an edge-weighted com-

plete graph whose vertices need to be partitioned. The weight of an edge ai; rep-
resents the similarity of the vertices i and 1; the higher the weight, the greater the

similarity
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A cluster is just a subgraph of the similarity graph. The quality of a cluster
should be determined by how similar the points within a cluster are. In particular,
if there is a cut of small weight that divides the cluster into two pieces of compa-
rable size then we expect the cluster to have low quality. This suggests the choice
of minimum cut as a clustering metric. However, just the size of the minimum cut
alone is misleading as illustrated in Figure 3-3.

(1) (2)

Figure 3-3: The first subgraph is a lower quality cluster than the second one even though
it has a higher mincut value.

We would like to find a cut whose weight is small relative to the sizes of the
pieces it creates. A quantity that measures the relative cut size is the expansion. The
expansion of a graph is the minimum ratio over all cuts of the graph of the total
weight of edges of the cut to the number of vertices in the smaller part created by
the cut. Formally, we denote the expansion of a cut (S, 5) by:

IP(S) = is'jos aij (3.1)min(ISI,1 |)(|

The expansion of a graph is defined to be the minimum expansion over all the
cuts of the graph. As a first step, we can define the quality of a cluster as the
expansion of the subgraph corresponding to it. The expansion of a clustering is
the minimum expansion of one of the clusters.

However, the measure defined above gives equal importance to all the vertices
of the given graph. This may skew the obtained clusters in an undesirable way.
For example, even if vertex i has very little similarity to all the other vertices in its
cluster (ie, Jj ai1 is small), it will still remain a part of that cluster because the cut
that separates it has high expansion (Figure 3-4).

Therefore, it is prudent to give greater importance to vertices that have many
similar neighbors and lesser importance to ones with few similar neighbors. This

37



C

Figure 3-4: Cut C that separates vertex v from the rest of the cluster has high expansion

because the size of the smaller subset is just 1.

can be done by a direct generalization of the expansion, called the conductance, in

which subsets of vertices are weighted to reflect their importance.

The conductance of a cut (S, 9) in G = (V, E) is denoted by:

(P(S) = -Yiesjgs aij (3.2)
min (a (S), a (9))

where a(S) = a(S, V) = Es Ejev ati. The conductance of a graph is the mini-

mum conductance over all the cuts of the graph;

(P(G) = min 4(S) (3.3)

The definition of conductance needs to be generalized further in order to quantify

the quality of a clustering. For a given cluster C C V and a cut (S, C\S) within C,

where S C C, the conductance of S in C is defined analogously as:

P(SC) = iEsjgc\s aij (3.4)
min(a(S),a(C\S) )

The conductance of a cluster p(C) is then the smallest conductance of cut within

the cluster. The conductance of a clustering is the minimum conductance of its

clusters. This leads to the following optimization problem: given a graph and an

integer k, find a k-clustering of maximum conductance.

3.2 Clustering Algorithms

Clustering algorithms are usually classified as bottom-up (also called agglomera-

tive) or top-down (also called divisive). As the names suggest, the difference lies in
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whether the clusters are built up from individual data points or partitioned down
from the initial single collection. The clustering algorithm terminates when it has
found a clustering with the desired number of clusters. However, in clustering
problems like ours, the number of clusters is not known a priori. A bad choice of k,
the number of desired clusters, can lead to a poor clustering. In particular, if we use
conductance as a measure of clustering quality, and ask for a k-clustering, where k
is less than the "actual" number of clusters, we will end up with low conductance
clusters.

One way to handle this problem is to avoid restricting the number of clusters.
But then the algorithm can simply return each data point as a separate cluster !
This observation motivates the measurement of the quality of a clustering using
two criteria [25]. The first is the minimum conductance of the clusters (called a),
and the second is the fraction of the total weight of edges that are not covered by
the clusters (called e). Intuitively, we'd like to keep the conductance high while si-
multaneously minimizing the weight of edges not present in the clusters. This will
prevent the generation of unnecessary clusters. Formally, let us call a clustering

(C 1 , C2,.. ., C) of V an (a, e)-clustering if:

* The conductance of each Ci is at least a.

" The total weight of inter-cluster edges is at most an e fraction of the total edge
weight.

This leads us to the following bicriteria optimization problem:
Find an (cx, e)-clustering that simultaneously maximises a and minimizes e.

3.2.1 Spectral Clustering

Not surpisingly, this optimization problem is NP-hard. So we need to use approxi-
mation algorithms or heuristics. Spectral partitioning or the use of the eigenvectors
of a graph to induce partitions, is a commonly used heuristic for graph partition-
ing and related problems [11]. This method finds the Fiedler vector1 [16] of the
Laplacian matrix 2, L and partitions the vertices according to whether their value
in this vector is less than or greater than a splitting value s. Popular choices for the
splitting value s are: bisection cut, in which s is the median of {u 2 1 , u2 2 ,... ,U2n;

ratio cut, in which s is the value that gives the best conductance; sign cut, in which
s is equal to 0; and gap cut, in which s is a value in the largest gap in the sorted list
of Fiedler vector components [33].

1The eigenvector, U2= (u21, u22 ,..., U2n) of the second smallest eigenvalue, A22The Laplacian matrix of a graph is derived from its weight matrix: lij = -aij, iii = j aij
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sL'

U 2

Figure 3-5: The vector U2 is the longest vector on SL I Ui (This figure is not entirely ac-
curate since A, 0 for a Laplacian matrix, hence the length of the major axis is actually
oc)

Figure 3-5 shows the geometric intution behind the use of the Fiedler vector. It
turns out that the relaxed version of the minimum expansion cut problem is geo-
metrically equivalent to finding the farthest point, U', on the Laplacian ellipsoid3 ,
SL, subject to the constraint that the components of R' sum up to zero. The axes of
such an ellipsoid are the eigenvectors of L with the lengths of axes inversely pro-
portional to the eigenvalues. Also, the constraint on U' is equivalent to stipulating
that u' be orthogonal to the vector of all ones ,ie, uTe = 0 where e = (1,1,..., 1).
Using the fact that e is the eigenvector of the smallest eigenvalue (A, = 0) for L, it
is not hard to see that U' = ' leads to the optimum value. The various splitting
heuristics are nothing but rounding techniques to get an integral solution from the
relaxed solution.

Kannan et al [25] incorporate this partitioning method into a "one-at-a-time"
spectral algorithm for solving the clustering problem. The algorithm uses a param-
eter a* which is the desired minimum conductance. The objective is to produce a
clustering that minimizes e. The algorithm is summarized on the next page.

Implementing the algorithm with a* =lg gives us the following worst case
guarantee:

Theorem 3.2.1 (Kannan-Vempala-Vetta) If A has a (a, e)-clustering, then SPECTRAL
CLUSTERING will find an (36Io2 10 /elog" )-clustering.

3The ellipsoid generated by the eqn xT Lx- 1
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SPECTRAL CLUSTERING

{
Input: L, the Laplacian similarity matrix for the dataset

Output: clusters of the dataset

compute the Fiedler vector, U2 of L.

find the best ratio cut wrt U2.

IF the conductance of the cut is > a* then

output the cluster.

ELSE

recurse on the induced pieces.

}

The parameter a controls the granularity of the generated clustering, a low
value implies a coarse-grained clustering while a high value implies the opposite.
The right value to choose depends on the particular problem domain and the kind
of clustering desired. In our experiments, we have implemented this algorithm
with c = 0.8.

3.2.2 Evaluating the Quality of a Clustering

In order to evaluate the applicability of this algorithm for our text clustering prob-
lem, we need to come up with a measure that compares a given clustering with the
"ground-truth" clustering. Intuitively, two clusterings are similar if each cluster in
one is similar to some cluster in the other and vice-versa. Given two clusterings
C C1, C2..., Ck and C' C', C',..., C', we can come up with such a quantita-
tive measure as follows. We define the similarity between two clusters Ci and C
by:

|Ci n C11
Sim (Ci, C ) = 2-(.5I Cil + 1C'

This quantity is 1 if and only if Ci and C are identical, otherwise it is < 1. This
measure allows us to find the closest match to a given cluster - it is simply the
cluster which maximises this quantity. This leads us to the following similarity
measure for clusterings C and C':
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Sim(CC')- - maxSim(CC.) + I± max Sim(Ci, C (3.6)

A similar measure has been used in [18], although their measure is not sym-
metric with respect to the two clusterings.

3.3 Compression for Clustering

The key insight we had for solving the source based document clustering problem
was to use compression for generating the similarity metric between documents.
In particular, a lower cross-entropy between two documents suggests greater simi-
larity between their sources and thus the cross-entropy numbers make for a mean-
ingful similarity metric. Figure 3-6 shows a sample matrix of raw cross-entropies.

1 2 3 4 5 6 7 8 9 10 11 12 13

1 - 2.990 3.015 3.245 2.984 2.998 3.055 3.555 3.399 3.499 3.454 3.523 3.381
2 2.913 - 2.955 3.190 2.963 2.970 3.011 3.427 3.327 3.399 3.374 3.403 3.327
3 2.985 2.974 - 3.158 3.029 3.036 3.094 3.546 3.468 3.569 3.531 3.537 3.451
4 2.778 2.767 2.733 - 2.786 2.792 2.869 3.231 3.186 3.318 3.317 3.191 3.235
5 2.891 2.903 2.980 3.150 - 2.913 2.946 3.419 3.342 3.392 3.384 3.429 3.335
6 3.073 3.116 3.121 3.303 3.068 - 3.128 3.591 3.443 3.518 3.563 3.576 3.436

-1 2.898 3.044 3.077 3.330 2.956 3.006 - 3.552 3.344 3.492 3.504 3.551 3.397
_ 3.284 3.290 3.372 3.528 3.284 3.317 3.320 - 2.932 2.958 2.974 2.742 3.017
90 3.112 3.137 3.245 3.360 3.155 3.134 3.174 2.909 - 2.898 2.926 2.926 2.927

10 3.381 3.387 3.451 3.707 3.382 3.390 3.401 3.192 3.096 - 3.108 3.312 3.181
.1i 3.312 3.315 3.409 3.637 3.358 3.390 3.420 3.202 3.020 3.047 - 3.228 3.138

3.073 3.095 3.186 3.290 3.100 3.116 3.147 2.635 2.791 2.866 2.822 - 2.699
13 3.109 3.128 3.187 3.316 3.127 3.134 3.170 2.804 2.895 2.970 2.993 2.734 -

Figure 3-6: Sample matrix of raw cross-entopies. The ground truth clustering is indicated
on the top of the table while the clustering produced by the spectral algorithm is shown
on the left.

Since a lower cross-entropy corresponds to higher similarity, the actual simi-
larity matrix A is generated by setting aij = C - I(i), where C is a constant and
I(i) is the cross-entropy between documents i and j (Section 2.1). This is an ad

hoc choice; one might very well argue for the usage of reciprocals or some other
decreasing function of the cross-entropies. Also, the matrix is made symmetric by
setting aij = (aij + aji). The overall flow of the method is outlined on the next
page.
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DOCUMENT CLUSTERING

{
Phase I

FOR each document Di DO

run compression adaptively on it to generate its model Mi

FOR each document Di DO

FOR each model Mj DO

run compression statically to compute the cross-entropy I(i)

Phase II

generate similarity matrix from cross-entropies

run clustering on the similarity matrix

}

3.4 Experimental Results

3.4.1 Clustering based on Authorship

We performed clustering experiments on randomly generated groupings of doc-
uments in our corpus of classical texts. The clusterings generated by the spec-
tral clustering algorithm were compared with the ground truth using the criterion
mentioned in Subsection 3.2.2.

Table 3.1 tabulates the results of this experiment.

Table 3.1: Clustering quality for different compression methods

Method A Method B Method C
0.69 0.74 0.59

Method B again outperforms the other methods although in this case, one can-
not draw too general a conclusion from the quality numbers since they do not have
as clean an interpretation as the accuracy percentages in the previous chapter.

Figure 3-7 shows the variation of clustering quality with document size. Interestingly,
the curve stays relatively flat even upto document sizes of 500 bytes.
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Figure 3-7: Clustering quality versus document size

3.4.2 Clustering based on Language

We performed clustering on the same set of languages used for the supervised

language classification experiment. Clustering on this dataset yielded a quality

measure of 0.86 for method A and 0.92 for method B.
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Figure 3-8: An example of a bad clustering produced by the spectral algorithm. A shows
the initial bisection cut and B shows the final clustering

This experiment revealed some drawbacks of the spectral clustering technique.
Since the algorithm chooses the cut that minimizes the conductance, it tends to
favor cuts that divide the vertex set into roughly equal portions. This might be
undesirable in a situation such as the one shown in Figure 3-8. In this example,
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there are 3 well-defined clusters but the first cut ends up slicing one of the clus-
ters. The algorithm ends up generating the clustering shown on the right, which is
clearly not the desired one. One could conceivably solve this problem by adding
a post-processing phase to the spectral algorithm that merges clusters as long as
the merged cluster has the minimum desired conductance. It might be worthwhile
to investigate whether this extra processing actually improves the theoretical per-
formance guarantee of the spectral algorithm. In our implementation, we do not
perform this extra computation; instead we use an ad hoc heuristic that chooses one
of the ratio cut or sign cut methods (Section 3.2.1) to find the bisecting cut, based
on the spread of values in the Fiedler eigenvector.

3.4.3 Hierarchial Classification

Supervised classification of a given document takes time that is linear in the num-
ber of categories. This can be a bottleneck if the number of categories is large. A
hierarchial approach can be helpful in such a case; it can potentially reduce the
number of compression runs to a factor logarithmic in the number of categories
(although with an accompanying space overhead). This can be done by clustering
the categories into a hierarchial tree and performing classification by following a
branch of the tree to its leaves. The training set for each node of the tree is obtained
by combining the training sets of all the nodes below it. Figure 3-9 shows the clas-
sification tree for the language identification problem described in the previous
section.

French Italian ortugese Spanish Dutch German Latin Sanskris Tamil

Figure 3-9: Classification tree for languages

The language groupings generated by the clustering algorithm, are interest-
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ing in their own right. Although the first two groups correspond to the well-

studied Italic and Germanic subfamilies in the Indo- European family of languages

[31, the grouping together of Sanskrit and Latin (both Indo-European languages)
with Tamil (a Dravidian language) is somewhat surprising. Such a compression

based technique could actually be used as an aid by linguists trying to discover

similarities and dissimilarities between classes of languages.
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Chapter 4

Conclusions

We have experimented with the idea of using compression as a means to achieve
source based text classification. Among the different compression techniques we
tried, we found character based PPM to be the most effective. The results for the
language identification problem indicate that the method is highly reliable even
for small document sizes. The corresponding results for the author identification
problem show that the method has a high rate of identification accuracy for large
document sizes but it degrades significantly for document sizes below a certain
threshold. Thus, this technique can only be used in application domains with large
enough text corpora. In particular, it cannot be used as is, for our original moti-
vating problem - verifying users by the testimonials they write (although, it can
definitely be used as an adjunct with other means).

In our opinion, the applicability of this technique can be extended to any do-
main where the language of discourse can be modelled by a probabilisitic gener-
ation of symbols from a finite alphabet. An interesting possibility relates to the
domain of musical compositions, which like texts, obey structural constraints that
make probabilistic modelling feasible.

Compression also seems promising for the copy detection problem although
more work needs to be done to evaluate the pros and cons of the technique. In
particular, one needs to evaluate the robustness of this technique in the face of
deliberate changes made to the copied text by a malicious adversary, in order to
fool the compression technique.

In this work, we have mainly focussed on demonstrating a "proof-of-concept".
We have mostly ignored the issues of space and time efficiency For the clustering
problem, the primary bottleneck is the construction of the similarity matrix, requir-
ing e(n 2 ) compression runs. It would be desirable to come up with an algorithm
that achieves good clustering without looking at all the entries in the similarity
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matrix. Drineas et al [121 have proposed a sampling based approach that appears

promising for large clustering problems.
It would be interesting to see whether the entropy numbers themselves can

be estimated by a sampling approach. Alon et al [4] describe a property testing

technique for the membership problem for regular languages, which tests whether

a string is accepted by a finite state automaton or is "far" from any such string,

by looking at only a constant number of places in the string. Extending this idea

to Markov models would be highly desirable as it would enable the estimation of

entropy without examining the entire document.
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Appendix A

Relevant Code and Data

The code and data used for the experiments described in this thesis can be ac-
cessed from http: //supertech.lcs.mit.edu/~nitin/classify. The interested
reader should be able to adapt the code to her needs from the accompanying doc-
umentation.

The compression algorithms described in this thesis are by no means exhaus-
tive. Notable absentees are the Burrows-Wheeler transform and grammar based
compression techniques. The reader interested in trying out other methods for
this problem, can access source code for a variety of compression techniques from
http: //www . dogma.net/DataCompression/SourceCode . shtml.

Gaining access to digital texts can be problematic owing to copyright issues.
A useful starting point for accessing texts in the public domain is the Gutenberg
online library project (http: //www. gutenberg. org).
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Appendix B

List of works

Table B.1: List of authors and their works

51

Author Works

Jane Austen Pride and Prejudice, Emma

Mansfield Park, Sense and Sensibility

Daniel Defoe Robinson Crusoe, From London to Land's End

Moll Flanders, Tour through the Eastern Counties of England
Charles Dickens A Tale of Two Cities, A Christmas Carol

Oliver Twist, Great Expectations

R. W. Emerson Essays I, Essays II,

English Traits, The Conduct of Life

Rudyard Kipling Kim, Plain Tales from the Hills

Captains Courageousi, American Notes

W. Shakespeare Hamlet, The Merchant of Venice
Romeo and Juliet, Sonnets

G. B. Shaw Misalliance, You Never Can Tell

An Unsocial Socialist, Man and Superman
Mark Twain Huckleberry Finn, A Connecticut Yankee in King Arthur's Court

Life on the Mississipi, Following the Equator

H. G. Wells The First Men in the Moon, The War in the Air
The New Machiavelli, Dr. Moreau

Oscar Wilde Lord Arthur Savile's Crime and Other Stories, Essays and Lectures
The Picture of Dorian Gray, An Ideal Husband
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