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Abstract

In this thesis, I studied the biophysically plausible mechanism for the function of
neural integrator, a premotor area responsible for controlling eye movement. A tran-
sient input to the integrator neurons can cause the persistent change of their neural
activities. The exact mechanism underlying the function of the neural integrator still
remains largely unknown. In this thesis, I used a biophysically realistic recurren-
t neural network to model the integrator function. The spike-based learning rules
are implemented in the network as an internal adaptive mechanism for stabilizing
persistent neural activities.
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Chapter 1

Introduction

In a wide range of areas have been observed the persistent change of the neural

activities after a transient stimuli is presented. Such step change of neural activities

can sustain up to many seconds, and is called persistent neural activity in many

literatures [1, 2, 3]. The persistent neural activity is generally thought to be the

neural basis of the short term memory and carries the information temporarily about

the transient stimuli presented.

The physiology of the short term memory has been intensively studied in sev-

eral areas, such as the prefrontal cortex, the limbic system and the occulomotor

integrator[4, 5, 6]. Extracelluar recordings of the neural activities show that neurons

in these areas are able to maintain a persistent activities in a variety of behavioral

tasks, even though the contents of the short term memory are significantly different

from each other.

The exact mechanism for the neural system to maintain a persistent neural activity

still remains unclear. Recently there has been a booming of interest in this area and

many models have been proposed. The predictions from models have been studied and

tested in the carefully designed experiments. Although some of the predictions have

been observed in the experiments, all models share some aspects of disadvantages.

Later in this chapter, we will review briefly some of the models.

Oculomotor neural integrator serves a good example system for studying the per-

sistent neural activity [2, 7, 1]. A transient saccadic input from command neurons
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will cause an elevated or suppressed discharge of the integrator neural activity. The

step change of this activity can sustain for many seconds and stores a short term

memory of the eye position. It is called integrator in the sense that the transient in-

put is integrated into a persistent step signal. Integration of the saccadic burst input

is only one aspect of the integrator function. In the vestibular-occulo-reflex(VOR),

the integrator is able to integrate the head velocity signals into the position signals.

In this thesis, we study the mechanism of the short term memory in the oculomotor

neural integrator. Although the mechanisms of short term memory are unlikely to be

exactly the same among different systems, they might share some similar principles.

The goal of this thesis is to understand the mechanism of the persistent neural activity

in the oculomotor integrator and gain some insight about the mechanism of short term

memory in general.

1.1 Oculomotor neural integrator

The oculomotor neural integrator stores a short term memory of the eye position.

In the mammals, it has been localized in at least two nuclei of the brain stem -

propositus hypoglossi(PH) and the medial vestibular nucleus (MVN)[8]. These two

nuclei store and maintain the short term memory rather that just acting as a relay

station. This has been shown in several different types of experimental studies: sin-

gle unit recording, micro-stimulation and pharmacological inactivation. It has been

shown that micro-stimulation of the integrator neurons causes the movement of the

eye position and pharmacological inactivation leads to the drift of eye position[9, 10].

In goldfish, the localization of the integrator was first done in Baker's lab [11, 12]. It

has been localized to the Area I of the goldfish brain stem.

The oculomotor neural integrator receives input from several nuclei commanding

different types of eye movements. For example, it receives input from burst neurons for

the saccadic eye movement and vestibular neurons for VOR. The integrator neurons

send the output to the extraocular motor neurons, which act as a plant for controlling

the eye movement.
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It has been observed widely in the experiments that the firing rate of the integrator

neuron is roughly a linear function of the angular eye position. In the saccadic eye

movement, a transient burst neuron input will cause persistent step changes in the

integrator neural activity and hence the movement of the eye position. Because the

close relationship between the integrator neuron activity and the precise eye position,

to keep the eye still the neural activity of the integrator neurons has to be maintained

consistently. The time domain after each saccade is called gaze-holding period. The

mechanism for the neural integrator to hold persistent activity during gaze-holding

period is the subject of this thesis and will be studied intensively in later chapters.

1.2 Mechanism of short term memory

Depending upon which level it is acting on, a model can be basically classified into

two categories - cellular or circuit model. People in cellular modeling argue that the

persistent neural activity is caused by cellular mechanism such as synaptic plasticity or

cell membrane properties [13, 14, 15, 16]. The synaptic facilitation in the retinotectal

synapse has been proposed as the mechanism for neuron in the tectum of frog to keep

a short term memory of the visual images[16]. Other models utilize the properties

of the membrane bistability to store the short term memory. For example, due to

the bistability in spinal motor neuron, stimulation of the proprioceptive afferent can

lead to persistent change in the spinal motor neuron activities, which is proposed as

a short term memory of the posture[15]. Lisman et al proposed a model based on the

bistability of the NMDA receptor to explain the short term memory in the prefrontal

cortex[14].

On the other hand, people in the circuit modeling argue that it is the recurrent

network that is being used to store the short term memory. This idea is first proposed

by Lorente de No[17]. He proposed the reverberations in feedback loops of a recurrent

network as the mechanism of the short term memory.

To model the oculomotor neural integrator, Robinson et al took a circuit ap-

proach and implemented the reverberation in a linear recurrent network model[3, 7].
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Robinson's linear feedback model makes a lot of progress and many predictions from

the model have been observed in the experiments. First, since the model is linear,

it explains well the linear relationship between integrator neural activities and the

eye position. Second, the persistent neural activities degrade with the extent of the

mistuning of the synaptic weights, which has also been observed in experiments by

using pharmacological inactivation techniques. Third, the model predicts that the

relationship between drift velocity and eye position should be linear. This has also

been observed in some mammals.

Despite the great success, the linear feedback model has several unfavorable fea-

tures. First, it uses a continuous variables to describe the neural activities, but real

neurons fire action potentials. Second, the activity of the biophysical neuron is highly

nonlinear. It fires only above certain threshold and saturates at high firing rate. A

linear model ignores these properties. As a result, the linear feedback model predicts

a linear relationship between the drift velocity and eye position. Though it holds in

some experiments in certain animals, recently more precise measurement in goldfish

shows that this relationship is actually nonlinear.

A significant progress has been made recently by Seung et al[1], who build a bio-

physically realistic conductance-based model as the mechanism of short term memory

in the oculomotor neural integrator. The model predicts the linear relationship be-

tween integrator neural activity and eye position and also the degradation of the

persistent neural activity with the mistuning of the synaptic weights just as in linear

feedback model. However, because the model considers the threshold and saturation

nonlinearity, it predicts that the drift velocity should be a nonlinear function of the

eye position, which is consistent with more precise measurement of the drift velocity

in goldfish.
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1.3 Continuous attractor is used to store the ana-

log memory

A hypothesis first proposed by Amit is that the persistent neural activities is identified

as the fixed points of the dynamics system [18]. Different levels of the persistent

activities are corresponded to different fixed points. Whether this hypothesis is valid

is still unclear, although most of the recurrent network models utilize this idea. In

Seung's model, the eye positions are stored approximately as a line attractor, which

is a continuous manifold of the fixed points.

Line attractor is suited for storing the continuous variables such as the eye posi-

tion in the oculomotor integrator, orientation in the visual cortex neurons and head

direction cells in the limbic system. Not all short term memories should be identified

as continuous attractors. For example, the short term memories in the prefrontal

cortex are discrete, and thus are the scattered fixed points in the state space.

The hypothesis for the identification of short term memories as the fixed points

are critical in most of the models we have discussed, which plays an important role

not only in the short term memory model, but also in a variety of other models such

as the Hopfield network which stores the associate memories as the fixed points of

the dynamics systems[19, 20].

1.4 Criticism: precise tuning

For the feedback network to keep persistent activity, the weights of the recurrent

network have to be precisely tuned. This is the case in both Robinson's linear feedback

model and Seung's conductance-based recurrent network model. We will illustrate

this in a linear model TX + x = wx + b. The time constant of this model is T =

T/(1 - w). If T= 100 ms and the integrator time constant T need to be 10 seconds,

the synapse weight w has to be precisely 0.99. A variation of w with 1% will cause

the model to be unstable or with a time constant less than 5 seconds. Thus precisely

tuned model does not seem to be robust.
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Thus for the recurrent network model to work, at least two critical issues have to

be addressed. First, how does the neural network tune itself? Second, if the weights

are mistuned, what kind of adaptive mechanism could be utilized to recover the tuned

values?

We conclude these questions as a learning problem. Next we will show what kind

of information and learning rules could be used in this challenging learning process.

1.5 Learn to tune the synaptic weights

Sensory information such as the visual and proprioceptive feedback could be very

important for the learning process. For example, the mismatch between the desired

eye position and actual one coming from visual feedback could provide important

information for the neural system to change the synaptic weights. Robinson et al

takes this information for the learning of synaptic weights in their linear feedback

network[21].

However, recent experimental results show that rat raised in the dark environment

since born can still learn VOR[22]. Another evidence is the experiment on goldfish

done in Tank's lab. After the integrator is trained to be leaky, the animal is kept in

a dark environment lack of sensory feedback. The preliminary result show that the

animal can still learn to hold still gaze.

These experimental evidences show that besides the sensory feedback there must

exist other internal mechanisms for the neural integator to learn to tune the synaptic

weights such that the persistent neural activity could be maintained. The learning

rule based on the internal information rather than external sensory feedback is the

one we will explore in the later chapters.

The learning rule we will implement is based on spike relationship of the biophys-

ical neurons. The spike based learning rules play an important role in a variety of

neural systems. Recently significant progresses have been made in our understanding

of them.

Hebb probably is the first one who proposed a learning rule based upon the action
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potentials of the neurons. The so called Hebbian learning rule states that the synaptic

weight increases when the pre and post synaptic neurons fire spike simultaneously, or

in simple words: "Neurons firing together wire together" [23].

However, Hebbian learning rule is not the only one that has been observed in

the neural systems. Recently, people have discovered another types of learning rules

depending critically on the temporal differences between pre and post synaptic spikes.

According to this rule, a synapse depresses when a presynaptic spike is followed by a

postsynaptic spike, and potentates when the order is reversed. This type of differential

anti-Hebbian dependence on temporal order has been observed in electrosensory lobe

synapses of the electric fish [24], but is opposite to the differential Hebbian dependence

observed at cortical [25] and hippocampal synapses[26].

If the function relating synaptic change to the temporal difference between presy-

naptic and postsynaptic spikes is antisymmetric, then neural activity at constant

firing rates results in no net change in synaptic strength, provided that the cross-

correlogram of the spike trains is symmetric about zero.

Therefore changes in firing rate are required to induce synaptic plasticity. More

specifically, we will show later that anti-Hebbian learning based on spike times is

equivalent to changing the strength of a synapse by the product of the presynaptic

firing rate and the time derivative of the postsynaptic firing rate, with a minus sign.

In effect, this synaptic learning rule uses a negative feedback signal to reduce

drift in neural activity. We have applied the learning rule to stabilize persistent

neural activity in a recurrent network model of the oculomotor velocity-to-position

integrator. The learning rule is applied during the time intervals between saccadic

burst inputs, reducing the drift in firing rates by tuning the strength of synaptic

feedback continuously.
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Chapter 2

Spiking neurons and recurrent

network model

Spiking neuron in this thesis is described by the integrate-and-fire model. The

integrate-and-fire model is a simplification of the detailed conductance-based model,

however it still keeps some essential biophysical properties. Because of the simplifi-

cation, the integrate-and-fire model could be subjected to many analytical analysis.

In this chapter, we will describe several important properties of the integrate-and-fire

model, such as the relationship between the firing rate and the applied current or

synaptic conductance, which will be used in later chapters.

A recurrent network describes a population of the integrate-and-fire neurons form-

ing synaptic connections from each other. We will show how to reduce the spiking

neural models to the traditional continuous network model by using the method of

averaging under certain conditions. The reduced Wilson-Cowan form network equa-

tions play a critical role in our analysis in later chapters when we study the tuning

and learning problems[27, 28].
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2.1 Integrate-and-fire neuron

2.1.1 Basic definition

The integrate-and-fire model is a simplified description of the biophysical spiking

neuron. When the applied current is over some threshold, the membrane potential

will exponentially increase. After hitting the action potential threshold, a action

potential will be produced and the membrane potential is reset to resting voltage.

The change of the membrane potential can be described by the following dynamic

equation.

dV
Cmd = IL + Isyn + Iapp (2.1)

dt

IL -9L(V - VL) (2.2)

Isyn -gsyn(V - Vsyn) (2.3)

where V is the membrane potential, Cm the capacity, gL the leak conductance and Ysyn

the synaptic conductance. VL and Vsyn are equilibrium potentials of leak conductance

and synaptic conductance respectively.

We will denote the action potential threshold by Vth, and the resting potential by

V. To simplify the model, here we did not consider the refractory time period after

the firing of the action potential.

The parameters used in the model is listed in table (2.1.1)[29].

Cm 0.5 nF

gL 0.025 ps
VL -70 my
V1th -52 my
V -59 mv

Table 2.1: Biophysical parameters of the integrate-and-fire neuron
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2.1.2 Current threshold

The integrate-and-fire model can be reformulated as

dV - -L 9LVL + Isyn + lapp (2.4)
dt Cm Cm

After each action potential, the membrane potential is reset to the resting potential

Vo and will exponentially increase. The solution of this equation after each action

potential is described by:

V =(V- 9LL Isyn + ±aPP)gL/Cmt + 9LVL + Isyn + 'app (2.5)
9L 9L

The equilibrium point of the above solution is (YLVL + Isy + lapp)/9L. For the

potential V to be able to reach the firing threshold, the sum of synaptic and externally

applied current syn + Iapp must be larger than the current threshold:

Ic = YL (Vth - VL)= 0.45nA (2.6)

Also from the solution of V, we can see that the time constant of the action

potential is Tm = Cm/gL = 20ms.

2.1.3 Firing rate of integrate-and-fire neuron

Typically the activity of a neuron is described by the firing rate of action potentials.

In this section, we will calculate the firing rate as a function of the externally applied

current Iapp and as a function of the synaptic conductance gsyn. In both cases, we will

show that when Iapp or gsyn is large enough, the firing rate could be approximated by

a linear function of 'app or Ysyn respectively.

First we will discuss the case when the synaptic current Iyn is zero and a constant

current Iapp larger than the threshold current I is applied. In this case, the neuron
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will fire repetitively with a constant period. The firing rate is determined by:

_Y = (2.7)
Cmln(1 + 9L(th~ O)

Iapp+gL(VL-Vth)

This is a highly nonlinear function. However, when 1app is large, i.e. 'app >>

9L(Vth - V0) - 9L (VL - Vth), the firing can be approximated as a linear function of the

applied current.

1gL{ (L - th)

Cm (Vh - VO) " Cm(Vth - VO) (2.8)

Next we will analyze the firing rate as a function of the synaptic conductance gsyn

when the externally applied current is zero. Again in this case, neuron will fire with

a constant firing rate. By using Eq. (2.5), the rate is determined by the following

equation.

v(gSYn) - gL + 9syn [in - syn)syn + (V0  VL)L (2.9)
Cm Vth - syn)gsyn + (lth - VL)9L

Again, we will consider the case when gsyn is large. In this case the firing rate can

also be approximated as a linear function of gsyn.

V(Ysyn) agsyn + b (2.10)
1

a = (2.11)
S C1n((V - Vsyn)/(Vth - Vsyn))

1 - ( VO -VL th- V)_____Vyn/Vt Vy))

b = gL [( - V /( - Vth ))J1 (2.12)
Cm ln((Vo - Vsyn)/(Vth -syn))

2.2 Recurrent network of spiking neurons

The recurrent network is comprised of a population of integrate-and-fire neurons form-

ing synaptic connections with each other. These synaptic connections contribute the

the synaptic conductance gsyn and thus change the synaptic current. The contribution

of synaptic conductance from presynaptic to postsynaptic neuron is determined by
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two major factors. The first one is the synaptic strength between these two neurons.

The second factor is the activity of the presynaptic neuron, which determines how

many neurotransmitter will be released and thus the channel activity of the postsy-

naptic neuron. We will denote the second variable by s and call it the channel variable

although its direct connection is the concentration of the released neural transmitter.

The variable s is a dynamical variable with close relationship to the presynaptic

membrane potential since the release of neurotransmitter is usually triggered by the

depolarization of the presynaptic neuron. Moreover, the dynamics is also determined

by the type of the ligand-gated channels in the postsynaptic membrane. Thus bio-

physically the channel variable should be determined by both pre and post synaptic

neurons. However, in our model we will simplify the description and assume the

post synaptic channel is gated by some similar channel, for example N-methyl-D-

aspartate(NMDA) receptor[30], and describe the dynamics of the channel variable s

purely by the activity of the presynaptic neuron.

2.2.1 Dynamics of channel variables

In this model, all synapses emanating from neuron i to all its targets are described

by a variable si following the dynamical equations

ds

a

Here, we model the spike trains with the summation of a series of 6 function. tia

is the time of the ath spike of this neuron. Spike timing are defined as the voltage

resetting times of the integrate-and-fire neurons.

The variable si is a characterization of activity of the channels. It is dimensionless

and range from zero to one denoting inactive to complete open respectively. Usually,

si can be thought as the fraction of open channels at the synapse. The dynamics Eq.

( 2.13) of the channel variable si is relatively simple. It says that si will exponentially

decay when this is no spike and increase instantaneously with a constant value when

the spike is coming. Obviously it is a very simple characterization of the biophysical
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channel activities, but still it catches some main points and the simplification helps

a lot in the mathematical analysis of the model.

2.2.2 A population of integrate-and-fire neurons

In a recurrent network with a population of integrate-and-fire neurons, the neurons

form connection with each other through synapses. As we have already mentioned, the

contribution to the synaptic conductance gsyn,i of neuron i from presynaptic neuron

j is determined by the synaptic strength wij and the channel variable sj in the form

of

N

gsyn,i = WijSj (2.14)
j=1

where N is the total number of neurons in the network.

In summary, a recurrent network of integrate-and-fire neurons are characterized

by the following dynamical equations

Cm d = -gL(Vi - VL) - gsyn,i(Vi - syn) (2.15)
dt

9syn,i = ZWLSJ (2.16)

d 3Td +5 s ci a (t -tja) (2.17)
a

These set of equations describing the details of spiking-based recurrent network

will be the one we used in our simulation. However, the spiking neuron model is not

easily suited for mathematical analysis. Next we will take a approximation approach

to reduce them to the network model based on continuous variables.

2.2.3 Reduction of the spike-based network to the rate-based

one

In the above system equations describing the spiking network model, there have

basically two different time scales. One is determined by the dynamical equation of

18



the membrane potential with a time constant Tm = Cm/gL = 20ms. The other one is

determined by the channel variable dynamics with a time constant T.

In the case when the channel variable time constant T is large, for example, T =

100 ~ 150ms, the dynamics of si is relatively slow compared to membrane potential

Vi. Thus we can approximate the right hand side of the channel dynamical Eq. (2.13)

with a time average of the fast variable V. This results in the following approximation:

rd~ + sj a E 6(t - tj,,) (2.18)dt
a

T a o6(t - tja)dt (2.19)

= av'(gsyn, ) (2.20)

The averaging method approximates the spikes trains in the right hand side of

channel dynamics Eq. (2.13) with firing rate of this neuron. As a result we have the

following closed form equation for slowly changing variable si.

dsTd + sj = c (ZWijsj) (2.21)

This equation is the Wilson-Cowan form of neural network. We will denote the

function v(-) by f(.) in later chapters and call it the activation function.

The reduced rate-based network depends critically on the time constant of the

channel variables. If the channel variable is fast, for example the AMPA receptor

with a time constant around 5 ms, the time averaging approximation is not good,

and this method will fail. However, for the fast channel variable dynamics, when the

number of neurons in the network is sufficiently large, spiking models could also be

reduced to the continuous variable based model through the way of spatial mean-field

approximation rather than the temporal time average.
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Chapter 3

Tuned model of oculomotor neural

integrator

In this chapter, we will illustrate how positive feedback could be used in the modeling

of the short term memory. In particular, we will take the oculomotor neural integrator

as an example and show how to tune the weights of the synaptic connections such

that the neural activity could be maintained during the gaze holding period.

As we have already introduced in the first chapter, the oculomotor neural inte-

grator is the brain stem premotor nuclei responsive for controlling eye movement and

maintaining eye position. In the saccadic eye movement which we will mostly dis-

cuss in this chapter, a transient input from the burst command neuron will cause

the step change in the activities of integrator neurons, which could sustain for up to

many seconds. The integrator neurons project to the motor neurons controlling the

extraocular muscle. The integrator neuron is also sometimes called memory neuron

to emphasize that it stores a short term memory of the eye position. We will mix the

use of these two names from now on.

It has been observed that the firing rate of memory neurons is roughly a linear

function of the angular eye position. Thus in the recurrent network model of the

neural integrator, the synaptic connections in the network must have been constrained

in such a way that there is only one degree of freedom in the output of these neurons.

In the state space, the fixed points of the network model should only be parametrized
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by one parameter, i.e. eye position. Considering the analog feature of the eye position,

it is reasonable to argue that the fixed points forming roughly a line in the state

space. This observation together with requirement of the persistent activity after

each saccade are two immediate tests that every oculomotor neural integrator model

has to be examined.

Next we will show the details on how to build the model. We will consider two

cases. First an autapse model with localized synaptic feedback will be considered.

Second, a distributed recurrent network model is described. The autapse model,

though may not biophysically realistic, serves as a good model system for illustrating

several main points we will try to explain.

The method used in the chapter is first presented by Seung in his conductance-

based model[1]. Here we use a simpler integrate-and-fire model as the basic unit and

show how to tune the synaptic weights

3.1 Autapse model

The autapse model is sometimes said to the simplest model possible with feedback.

Fig. (3-1) shows the diagram of the autapse model. The core of the circuit is the mem-

ory neuron, which makes an excitatory autapse onto itself. It also receives synaptic

input from three input neurons: a tonic neuron, an excitatory burst neuron, and an

inhibitory burst neuron.

The memory neuron is modeled by the integrate-and-fire neuron and described by

the following dynamical equations.

dV
Cd = -g(V - V) - gE(V - VE) - 9I(V - VI) (3.1)

T-s as16( ' (3.2)
dt

n

where YE and g, are excitatory and inhibitory synaptic conductances with reversal

potentials of VE = 0 mV, and V = -70 mV respectively. Each spike at time Tn

causes a jump in the synaptic activation s of size as/T, where a, = 1, after which s
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decays exponentially with time constant T = 100 ms until the next spike.

The synaptic conductances of the memory neuron are given by

9E =WS+WsO +W+s+ g 1 =W-s (3.3)

The term Ws is the recurrent excitation from the autapse, where W is the strength

of the autapse. The synaptic activations so, s+, and s- of the tonic, excitatory burst,

and inhibitory burst neurons are governed by equations like (3.1) and (3.2), with a

few differences. Each of these neurons has no synaptic input; its firing pattern is

instead determined by an applied current.

The tonic neuron has an applied current of 0.49075 nA, which makes it fire repeti-

tively at roughly 30 Hz. Its synaptic time constant is ro = 100 ms. For the excitatory

and inhibitory burst neurons the applied current is normally zero, except for brief 50

ms current pulses of 0.95 nA that cause bursts of action potentials. Their synaptic

time constants are T+ = F- = 5 ms. The excitatory and inhibitory burst synapses

have strengths W+ = 0.05 and W_ = 0.028.

The question arising here is how to tune the feedback synaptic strength W such

that the memory neuron can hold persistent activity. With the slow synaptic time

constant, for example for NMDA receptor, the spike-based model could be reduced

into a rate model by using the method of averaging as we have discussed in the last

chapter.

ds + s av(gsyn) (3.4)
dt

Since we only consider the period for the persistent activity, the synaptic con-

ductance gyn can be expressed as the sum of the feedback and tonic input gsyn

Woso + Ws. The fixed point of Eq. (3.4) is

S = aY(gsyn) (3.5)

When the synaptic conductance g8ys is high, function v(-) could be approximated
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by a linear function v(x) = Fix+F2 from the analytical discussion in the last chapter.

Fig. (3-2) show the linear fit of the function v(gsyn).

After taking the linear approximation of the activation function v(gsyn), the fix

point equation could be rewritten as:

s = aF1Ws + aF1(Woso + F2) (3.6)

Recurrent feedback weight W and tonic neuron synaptic weight WO are tuned as

the following.

W (3.7)
aF1

WOF 2  (3.8)
aSO

With the tuned synaptic weights, under linear approximation any s could be a

solution of the fix point Eq. (3.6). All the fixed points will thus form a continuous line

attractor. However, the line attractor only holds when the function v(.) is exactly

linear. With the original nonlinear model, the system could have only finite number

of fixed points. However, with the tuned parameters W and Wo if the linearization

is good enough around certain range of the s, inside this range we would expect that

during the gaze-holding period the drift velocity of s, i.e. ds/dt, would be relatively

small.

Fig. (3-3) shows the results of a tuned autapse model using the method we have

just introduced. The top four panels show the spike trains of the tonic neuron, burst

excitatory neuron and burst inhibitory neuron in panel A, B, C, and D respectively.

The bottom two panels show the firing rate and channel variable s of the memory

neuron during this 6 seconds period. As we can see from either the spike trains or the

firing rate of the memory neuron, with the tuned synaptic weights the neural activity

of the memory neuron is sustained very well during every 1 second gaze-holding

period.
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3.2 Recurrent network model

In the autapse model, we only considered the localized positive feedback. In this

section, a distributed feedback model will be considered and we will show how to

tune these distributed synaptic weights to produce the persistent neural activities.

As being introduced in the last chapter, the spike-based network model could be

reduced to the rate-based recurrent network model described by the dynamics of the

channel variable si by using the method of averaging.

TSi + si = a f (gyf") (3.9)

= ZWys + b (3.10)

where bi is from the tonic neuron input b= Wo,iso,j.

We have mentioned that the firing rate of the memory neurons holds a linear

relationship to the eye position. This means that there is only one degree of freedom in

the activities of memories neurons and is parametrized by the eye position. However,

in the recurrent network the activities of neurons is normally determined by N modes

where N is the total number of neurons. In the linear network, the neuron activity

is one point in the state space spanned by the eigenvectors of the weight matrix W

with the relative weight determined by the corresponding eigenvalues. In the positive

network model we are considering, for the neural activity to be determined mostly by

one mode, we should tune the weight matrix such that only one mode will dominate.

In the Wilson-Cowan form network Eq. (3.9), for simplicity we will choose he

synaptic matrix W to be of the outer product form.

Wij = ig 71(3.11)

The meaning of this weight matrix basically states that the every neuron j influence

the whole population with the same pattern , of interaction, only up to some scale

factor qj.

Matrix W with the out product form will make the tuning process much eas-
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ier, although it may not be biophysically plausible. It is rank 1 matrix and have

only one nonzero eigenvalue. In the following tuning process, only the eigenvector

corresponding to the nonzero eigenvalue will be amplified.

With this outer product form of weight matrix W, the synaptic conductance

becomes

gSyfl = W + b (3.12)

= Zr sj+bj (3.13)
i

=- e + bi (3.14)

where we have defined the variable

e = En sj (3.15)

The vector g~f" = je + bi constitutes a line in the N-dimensional space and the

variable e determines the position on the line. The variable e is sometimes called the

internal representation of the eye position. The motor plant controlling the extraoc-

ular muscle is modeled as

dE
TE t + E = c(L rjsj + 0.12s+ - 0.07s_) (3.16)

where the variable E is the eye position. During the gaze-holding period, the dynamics

becomes

d E
TE + E = ce (3.17)

dt

Thus the eye position E is the low-pass filtering version of the internal representation

variable e.
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The fixed point equations of Eq. (3.9) are

si = af( Wijsj + bi) (3.18)

Substitute this back to the definition of the variable e. We have a close form equation

for the variable e to satisfy.

e = a iif (e + bi) (3.19)

We have discussed in the previous chapter that the activation function f(-) could

be approximated well by a linear function. Next we will take this linear approximation

and show that under this approximation we could tune the synaptic weight such that

any continuous value of e could be end up with the fixed point.

Substituting function f with a linear approximation, we have

e = aE?[F1( e+bi) +F 2] (3.20)

(aF1 Z~hj)e + aZ ?(Fbi + F2) (3.21)
2 2

The synaptic weights are tuned such that the following equations are satisfied.

4 aF (3.22)

7 (Fib + F2) = 0 (3.23)

After following the tuning of synaptic weights, any continuous value of e could be the

fixed point solution under the linear approximation. In the original network model,

under the tuning we will expect that the drift of memory neuron activities would

be relatively small when the synaptic conductances are in the range when the linear

approximation is good.

Another way to estimate the tuning parameters is to solve the following least
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square error optimization problem

min (e - o S if ( je + bi)) 2 de (3.24)

with the range [eo, e1] chosen in the biophysically feasible region. This way, we tune

the weight matrix W directly without resorting to the linear approximation. This

second method is much better when we consider the saturation influence in the dy-

namical equation of the channel variables, in which case the activation function will

appear to be highly nonlinear.

Fig. (3-4) shows that tuned result of the synaptic weight variable and ij for a

network of 50 memory neurons. In the tuning, the vector is taken to be constant

1, the tonic input vector b is uniformly taken from 0 to 0.0087, and the vector 'q is

taken to be the optimal value that minimize Eq. (3.24). Vector 71 and b are listed

in Table (3.2). The optimal value of 17 are also plotted in the top right panel of

Fig. (3-4). In the bottom two panels of Fig. (3-4) we show how good the tuning is.

Shown in the bottom left panel is the relationship between function f( je + bi) and

the variable e weighted by parameter qj for every neuron in the network. As we have

discussed before, the function f( je + bi) is the equilibrium value of the dynamical

channel variable si. Thus this panel basically plots the contribution of every neuron

to the motor neuron plant as a function of the internal eye position variable e. The

summation of the contributions from all neurons in the network is plot in the bottom

right panel, which approximate very well the value e.

After tuning all the synaptic weights, we simulate this 50-neuron network. The

result of the simulation is shown in Fig. (3-5). Plot in the top panel is the spike trains

of these 50 neurons during a period of 10 seconds with 10 different eye positions.

Shown in the middle panel is the firing rate of 10 neurons indicated with different

colors. The bottom panel plots the variable e, which is the internal representation

of the eye position. As we can see from either spikes trains or the firing rates, with

the tuned synaptic weights the memory neurons can fairly well maintain a persistent

neural activities at each gaze-holding period.
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1000*77
0.38100
0.99952
0.78117
0.66314
0.58845
0.55034
0.49099
0.46018

0.43476
0.41312
0.40483
0.37488
0.36346
0.35135
0.35114
0.32996
0.32274
0.31594
0.31082
0.31076
0.29503
0.29243
0.28770
0.29213
0.27837

100*b
0.87000
0.85228
0.83457
0.81685
0.79914
0.78142
0.76371
0.74600
0.72828
0.71057
0.69285
0.67514
0.65742
0.63971
0.62200
0.60428
0.58657
0.56885
0.55114
0.53342
0.51571
0.49800
0.48028
0.46257
0.44485

1000*1 100*b
0.27582 0.42714
0.27247 0.409428
0.27796 0.391714
0.26595 0.374000
0.26383 0.356285
0.26200 0.338571
0.25956 0.320857
0.26510 0.303142
0.25399 0.285428
0.25309 0.267714
0.25120 0.250000
0.25737 0.232285
0.24721 0.214571
0.24621 0.196857
0.24534
0.24390
0.24972

0.23987
0.23977
0.23855
0.24493
0.23580
0.23545
0.23778
0.20415

0.179142
0.161428
0.143714
0.126000
0.108285
0.090571
0.072857
0.055142
0.037428
0.019714
0.002000

Table 3.1: Tuned ij and bo for 50 neurons. Listed in the left table is for first 25
neurons and right for the other 25 neurons.
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Figure 3-1: Circuit diagram for autapse model
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Figure 3-2: Linear approximation of function v(gsyn). In the autapse model we intro-
duced in this chapter, function v(gsyn) is the firing rate of the memory neuron. The
domain for the linear approximation is chosen in a physiologically feasible region for
the firing rate to be between 20 and 120 Hz.
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Figure 3-3: The autapse with tuned synaptic weight. The top four panels show the
spike trains of the tonic neuron, burst excitatory neuron, burst inhibitory neuron and
memory neuron in panel A, B, C, D respectively during a period of 6 seconds. The
bottom two panels show the firing rate and the channel variable s of the memory
neuron. As we can see from this figure, with the tuned synaptic weights the memory
neuron is able to maintain a persistent activity after each saccade. The synaptic
weights are tuned in the following values: Wo = 0.257, W =0.0596.
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Figure 3-4: Tuned synaptic weight for a recurrent network of 50 memory neurons.
The tuned values for vector and rq are plotted in the top two panels. Shown in the
bottom left panel is the relationship between function f( je + bi) and the variable e
weighted by parameter 71i for every neuron in the network. The summation of these
weighted functions is show in the bottom right panel gradually with the increased
number of neurons.
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Figure 3-5: Simulation of the recurrent network with 50 memory neurons. Plot in the
top panel is the spike trains of these 50 neurons during a period of 10 seconds with
10 different eye positions. Shown in the middle panel is the firing rate of 10 neurons
indicated with different colors. The bottom panel plots the variable e, which is the
internal representation of the eye position. As we can see from either spikes trains or
the firing rates, with the tuned synaptic weights the memory neurons can fairly well
maintain a persistent neural activities at each gaze-holding period.
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Chapter 4

Learning the stabilization of

persistent neural activity

4.1 Introduction

Recent experiments have demonstrated types of synaptic plasticity that depend on

the temporal ordering of presynaptic and postsynaptic spiking. At cortical[25] and

hippocampal[26] synapses, long-term potentiation is induced by repeated pairing of

a presynaptic spike and a succeeding postsynaptic spike, while long-term depression

results when the order is reversed. The dependence of the change in synaptic strength

on the difference At = tost - tpre between postsynaptic and presynaptic spike times

has been measured quantitatively. This pairing function, sketched in Fig. (4-1)A,

has positive and negative lobes correspond to potentiation and depression, and a

width of tens of milliseconds. We will refer to synaptic plasticity associated with this

pairing function as differential Hebbian plasticity-Hebbian because the conditions

for potentiation are as predicted by Hebb[23], and differential because it is driven by

the difference between the opposing processes of potentiation and depression.

The pairing function of Fig. (4-1 A) is not characteristic of all synapses. For

example, an opposite temporal dependence has been observed at electrosensory lobe

synapses of electric fish[24]. As shown in Fig. (4-1 B), these synapses depress when

a presynaptic spike is followed by a postsynaptic one, and potentiate when the order
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is reversed. We will refer to this as differential anti-Hebbian plasticity.

According to these experiments, the maximum ranges of the Hebbian and anti-

Hebbian pairing functions are roughly 20 and 40 ms, respectively. This is fairly short,

and seems more compatible with descriptions of neural activity based on spike timing

rather than instantaneous firing rates[31, 32]. In fact, we will show that there are

two limits in which spike-based learning rules can be approximated by rate-based

learning rules. If the pairing range is long, then rate-based learning can be a good

approximation on short time scales. If the pairing range is short, then the rate-

based approximation can be valid when averaged over long times. Such averaging is

relevant when synapses are assumed to learn slowly. In both limits, the rate-based

approximation also requires that spike synchrony be small, or have little effect due

to the shape of the pairing function.

The pairing functions of Fig. (4-1)A and B lead to rate-based learning rules like

those traditionally used in neural networks, except that they depend on temporal

derivatives of firing rates as well as firing rates themselves. We will argue that the

differential anti-Hebbian learning rule of Fig. (4-1B) could be a general mechanism

for tuning the strength of positive feedback in networks that maintain a short-term

memory of an analog variable in persistent neural activity[33]. A number of recurrent

network models have been proposed to explain memory-related neural activity in

motor [34] and prefrontal[35] cortical areas, as well as the head direction system [4] and

oculomotor integrator[3, 36, 1]. All of these models require precise tuning of synaptic

strengths in order to maintain continuously variable levels of persistent activity. We

demonstrate that such tuning can be performed by differential anti-Hebbian learning

in a simple model of persistent activity maintained by an integrate-and-fire neuron

with an excitatory autapse.

4.2 Spike-based learning rule

Pairing functions like those of Fig. (4-1) have been measured using repeated pairing

of a single presynaptic spike with a single postsynaptic spike. Quantitative measure-
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ments of synaptic changes due to more complex patterns of spiking activity have not

yet been done. We will assume a simple model in which the synaptic change due to

arbitrary spike trains is the sum of contributions from all possible pairings of presy-

naptic with postsynaptic spikes. The model is unlikely to be an exact description of

real synapses, but could turn out to be approximately valid.

We will write the spike train of the ith neuron as a series of Dirac delta functions,

si(t) = E 6(t - Ti), where T" is the nth spike time of the ith neuron. The synaptic

weight from neuron j to i at time t is denoted by Wij (t). Then the change in synaptic

weight induced by presynaptic spikes occurring in the time interval [0, T] is modeled

as

Wi (T + T) - Wi ( j) dt3 j dti f (ti - tj )si(ti ) s (t;) (4.1)

Each presynaptic spike is paired with all postsynaptic spikes produced before and

after. Because each presynaptic spike results in induction of plasticity only after a

time delay of T, the arguments T+T and T of Wij on the left hand side of the equation

are shifted relative to the limits T and 0 of the integral on the right hand side. The

length T of the shift is assumed to be greater than the width of the pairing function

f, so that f(T) e 0. With this assumption, Wij at time T + r is only influenced by

spikes that happened before that time, and therefore the learning rule is causal.

There is some subtlety involved in our choice of the limits of integration in Eq.

(4.1). These limits will be important for the numerical simulations to be discussed

later, in which there is an external control signal that gates plasticity on and off. Then

Eq. (4.1) is the change that results when the control signal activates plasticity from

time 0 to T. Another possible definition would have been to place the [0, T] limits

on the integral over the postsynaptic spike, rather than the presynaptic spike. This

alternative leads to some differences in learning behavior, but can still be analyzed

using the methods of this paper.
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4.3 Relation to rate-based learning rules

The learning rule of Eq. (4.1) is driven by correlations between presynaptic and

postsynaptic activities. This dependence can be made explicit by making the change

of variables u = ta - tj in Eq. (4.1), which yields

Wi(T + T) - W (T) = j duf (u)Cij(u) (4.2)

where we have defined the cross-correlation

C j (u) = i dt si (t + u) sj (t) .(4.3)

Often it is also possible to define a cross-correlation between firing rates,

fT
For example, this can be calculated during repeated presentations of a stimulus by

techniques such as the shift predictor. In other situations, it may be possible to define

instantaneous firing rates in some other manner, such as temporal filtering of the spike

train. The "rate correlation" is commonly subtracted from the total correlation to

obtain the "spike correlation" CPike C.. - Crate.

To derive a rate-based approximation to the learning rule (4.2), we rewrite it as

Wij(T + T) - Wij(T) = du f (u)Cj t '(u) + du f (u)Cpike(a) (4.5)

and simply neglect the second term. Shortly we will discuss the conditions under

which this is a good approximation. But first we derive another form for the first

term,

j duf (u)Cjrpe(u) ~ j dt [/3ovi(t) + ,31i> (t)]vj (t) (4.6)
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by defining

f' j duf(u) 31 = j du uf(u) (4.7)

and applying the approximation vi(t + u) ~ vi(t) + ui/j(t), which makes sense when

firing rates vary slowly on the time scale of the pairing function. This result means

that the learning rule is dependent not only on firing rates but also on their time

derivatives.

The pairing functions shown in Fig. (4-1)A and B have both positive and neg-

ative lobes. If the areas under both lobes exactly cancel, then 30 = 0, so that the

dependence on postsynaptic activity is purely on the time derivative of the firing

rate. Hebbian learning corresponds to 31 > 0 (Fig. (4-1 A), while anti-Hebbian learn-

ing leads to /1 < 0 (Fig. (4-1 B)). To summarize, the synaptic changes due to rate

correlations are given by

Wij oc 7jvj (Hebbian) Wi oc -iliv (anti-Hebbian) (4.8)

for slowly varying rates. These formulas imply that a constant postsynaptic firing

rate causes no net change in synaptic strength. Instead, changes in rate are required

to induce synaptic plasticity.

To illustrate this point, Fig. (4-iC) shows the result of applying differential anti-

Hebbian learning to two Poisson spike trains. The rate of the presynaptic spike train

is constant at 50 Hz, while that of the postsynaptic spike train shifts from 50 Hz

to 200 Hz at 1000 ms. While the firing rates are constant, the synaptic strength

fluctuates but remains roughly constant. But the upward shift in firing rate causes a

downward shift in synaptic strength, in accord with the sign of the anti-Hebbian rule

in Eq. (4.8).

The rate-based approximation works well for this example, because the second

term of Eq. (4.5) is not so important. Let us return to the issue of the general

conditions under which this term can be neglected. With Poisson spike trains, the

spike correlations are zero on average, so that the second term of Eq. (4.5) fluctuates
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about zero. There are two conditions under which these fluctuations are small: a

large pairing range or a long time period T of learning. In Fig. (4-1)C we have used

a relatively long pairing range of 100 ms, so that the fluctuations are small even over

short periods of learning. If a short pairing range were used, the fluctuations would

still go to zero as the time period T of learning increased. This sort of averaging is

relevant if the rate of learning is very slow.

In the brain, nonvanishing spike correlations are sometimes observed even after

averaging. In the common case where these correlations are symmetric about zero,

then they will produce little plasticity if the pairing functions are antisymmetric as

in Fig. (4-1)A and B. On the other hand, if the spike correlations are asymmetric,

they could lead to substantial effects[32].

4.4 Effects on recurrent network dynamics

The learning rules of Eq. (4.8) depend on both presynaptic and postsynaptic rates,

like learning rules conventionally used in neural networks. They have the special

feature that they depend on time derivatives, which has computational consequences

for recurrent neural networks of the form

Txi + Xi = Wio-(xj) + bi (4.9)

Such classical neural network equations can be derived from more biophysically re-

alistic models using the method of averaging[37] or a mean field approximation[38].

The firing rate of neuron j is conventionally identified with vP = or(xj).

The cost function

E({xj}; {Wjj}) 1 (4.10)

quantifies the amount of drift in firing rate at the point x1, ... , XN in the state

space of the network. If we consider b; to be a function of xi and Wij defined by (4.9),
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then the gradient of the cost function with respect to Wij is given by

OE/OWij = o-'(x~z~ji/j. (4.11)

Assuming that a is a monotonically increasing function so that U'(x2 ) > 0, it fol-

lows that the Hebbian update of (4.8) increases the cost function, and hence increases

the magnitude of the drift velocity. In contrast, the anti-Hebbian update decreases

the drift velocity. This suggests that the anti-Hebbian update could be useful for

creating fixed points of the network dynamics (4.9).

4.5 Persistent activity in a spiking autapse model

The preceding arguments about drift velocity were based on approximate rate-based

descriptions of learning and network dynamics. It is important to implement spike-

based learning in a spiking network dynamics, to check that our approximations are

valid.

Therefore we have numerically simulated the simple recurrent neural circuit of

integrate-and-fire neurons shown in Fig. (3-1). The core of the circuit is the "memory

neuron," which makes an excitatory autapse onto itself. It also receives synaptic

input from three input neurons: a tonic neuron, an excitatory burst neuron, and an

inhibitory burst neuron. It is known that this circuit can store a short-term memory

of an analog variable in persistent activity, if the strength of the autapse and tonic

synapse are precisely tuned[l. Here we show that this tuning can be accomplished

by the spike-based learning rule of Eq. (4.1), with a differential anti-Hebbian pairing

function like that of Fig. (4-1 B).

The memory neuron is described by the equations

Cm dV -gL(V - VL) - 9E(V - VE) - 1 (V - VI) (4.12)
dt

ds
dt + s = s 6(t - T ) (4.13)
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where V is the membrane potential, Cm = 1 nF is the membrane capacitance, gL

0.025 pS is the leak conductance, and VL = -70 mV is the leak potential. There are

excitatory and inhibitory synaptic conductances gE and gI, with reversal potentials

of VE= 0 mV, and V= -_70 mV. When V reaches the threshold -52 mV, an action

potential is considered to have occurred, and V is reset to -59 mV. Each spike at

time T causes a jump in the synaptic activation s of size a,/T, where a = 1, after

which s decays exponentially with time constant T = 100 ms until the next spike.

The synaptic conductances of the memory neuron are given by

gE = Ws + WsO + W+s+ g, = W-s_ (4.14)

The term Ws is recurrent excitation from the autapse, where W is the strength of

the autapse. The synaptic activations so, s+, and s_ of the tonic, excitatory burst,

and inhibitory burst neurons are governed by equations like (4.12) and (4.13), with

a few differences. Each of these neurons has no synaptic input; its firing pattern is

instead determined by an applied current. The tonic neuron has an applied current

of 0.5203 nA, which makes it fire repetitively at roughly 20 Hz. Its synaptic time

constant isro = 100 ins. For the excitatory and inhibitory burst neurons the applied

current is normally zero, except for brief 100 ms current pulses of 0.95 nA that cause

bursts of action potentials. Their synaptic time constants are T+ = T_ = 5 ms. The

excitatory and inhibitory burst synapses have strengths W+ = 0.1 and W_ = 0.05.

As shown in Fig. (4-2), if the synaptic strengths W and Wo are not tuned, the burst

neurons cause only transient changes in the firing rate of the memory neuron. After

applying the spike-based learning rule (4.1) to tune both W and WO, the memory

neuron is able to maintain persistent activity. During the interburst intervals (from

T after one burst until T before the next), we made synaptic changes using the anti-

Hebbian pairing function f(t) = -A sin(wrt/T) for spike time differences in the range

[-T, T] with A = 1.5 x 10- and T=120 ms. The resulting increase in persistence time

can be seen in Fig. (4-3 A), along with the values of the synaptic weights versus time.

To quantify the performance of the system at maintaining persistent activity, we
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Figure 4-1: (A) Pairing function for differential Hebbian learning. The change in
synaptic strength is plotted versus the time difference between postsynaptic and

presynaptic spikes. (B) Pairing function for differential anti-Hebbian learning. (C)
Differential anti-Hebbian learning is driven by changes in firing rates.

/ untuned

J11
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Figure 4-2: Untuned and tuned autapse activity. The middle three traces are the
membrane potentials of the three input neurons in Fig. (4-2) 2 (spikes are drawn at
the reset times of the integrate-and-fire neurons). If the strengths W and Wo of the
autapse and tonic synapse are not tuned, then the activity of the memory neuron is
not persistent, as shown in the top trace. Once these parameters are tuned, then the
burst inputs cause persistent changes in activity.
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determined the relationship between dv/dt and v using a long sequence of interburst

intervals. If W and WO are fixed at optimally tuned values, there is still a residual drift,

as shown in Fig. (4-3) [1]. But if these parameters are allowed to adapt continuously,

even after good tuning has been achieved, then the residual drift is even smaller in

magnitude. This is because the learning rule tweaks the synaptic weights during each

interburst interval, reducing the drift for that particular firing rate.

Autapse learning is driven by the autocorrelation of the spike train, rather than a

cross-correlation. The peak in the autocorrelogram at zero lag has no effect, since the

pairing function is zero at the origin. Since the autocorrelation is zero for small time

lags, we used a fairly large pairing range in our simulations. In a recurrent network

of many neurons, a shorter pairing range would suffice, as the cross-correlation does

not vanish near zero.

4.6 Discussion

We have shown that differential anti-Hebbian learning can tune a recurrent circuit

to maintain persistent neural activity. This behavior can be understood by reducing

the spike-based learning rule (4.1) to the rate-based learning rules of Eqs. (4.6) and

(4.8). The rate-based approximations are good if two conditions are satisfied. First,

either the width of the pairing function must be large, or the rate of learning must

be slow. Second, spike synchrony must be weak, or have little effect on learning due

to the shape of the pairing function.

The differential anti-Hebbian pairing function results in a learning rule that uses

- as a negative feedback signal to reduce the amount of drift in firing rate, as illus-

trated by our simulations of an integrate-and-fire neuron with an excitatory autapse.

More generally, the learning rule could be relevant for tuning the strength of positive

feedback in networks that maintain a short-term memory of an analog variable in per-

sistent neural activity[33]. For example, the learning rule could be used to improve

the robustness of the oculomotor integrator[3, 36, 1] and head direction system[4] to

mistuning of parameters. In deriving the differential forms of the learning rules in
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Figure 4-3: Tuning the autapse. The persistence time of activity increases as the
weights W and WO are tuned. Each transition is driven by pseudo-random bursts of
input. The update of both tonic and recurrent synaptic weights is also shown.
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systematic relationship between drift dv/dt in firing rate and v, as measured from a
long sequence of inter-burst intervals. If the weights are continuously fine-tuned ('*')
the drift is less than with fixed well-tuned weights ('o').
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(4.8), we assumed that the areas under the positive and negative lobes of the pairing

function are equal, so that the integral defining ,0 vanishes. In reality, this cancel-

lation might not be exact. Then the ratio of 01 and 4% would limit the persistence

time that can be achieved by the learning rule.

Both the oculomotor integrator and the head direction system are also able to

integrate vestibular inputs to produce changes in activity patterns. The problem of

finding generalizations of the present learning rules that train networks to integrate

is still open[33].
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Chapter 5

Learning VOR

5.1 Introduction

The vestibular-occular-refex(VOR) is an important function for the neural system to

keep a still visual image for processing while the head is moving. The neural system

accomplishes this by correspondingly moving the eye to compensate the positional

change of the moving object such that the object could still project to the same

position on the retina.

The VOR involves the close coordination between the vestibular and oculomo-

tor systems. When the head is moving, the peripheral vestibular system inside the

inner ear detects its motion and sends the afferent to the vestibular neurons in the

brain stem. It has been observed that the firing rate of the vestibular neuron is an

affine function of the head velocity. When the head velocity is zero, there is a tonic

background activity in the vestibular neuron with a firing rate ranging from 10-60Hz

(We referred the neuron with tonic activity as the tonic neuron in previous chapters).

When the head is moving, the changed firing rate in the vestibular neuron would be

linearly correlated to the head velocity H. The firing rate of vestibular neuron can

be expressed as

b = 3N + bo (5.1)
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where bo is the background activity when the head velocity is zero. We will define

the variable 6bi = bi - bo,j which will code the head position information for neuron i.

The vestibular neuron sends its input to the integrator neuron, where the head

velocity signal will be integrated into position signal in the integrator. The firing rate

of the integrator neuron will thus code the information about desired eye position

being used to compensate the head movement.

5.2 Learning

In the reduced model after using the method of averaging, the activity of the integrator

neuron is described by the channel variable si.

risi + si f (g ) (5.2)
N

Sf ( Wij s + bi) (5.3)
j=1

were bi = wo,iso,j is the input from the vestibular neuron.

However, the channel variable s. is not a good candidate to describe the activity of

a neuron, which is normally characterized by its firing rate. The synaptic conductance

gi describe the firing rate of the neuron more closely than channel variable si. The

firing rate of neuron i is determined by the function of gi expressed as vi = f(gi).

Since the function f(gi) can be reasonably well approximated by a linear function,

the variable gi is directly related to the firing rate. In the following, we will describe

the dynamics of neuron i by using the variable gi rather than si.

If the time constant r2 = Tj for all j, the dynamical Eq. (5.2) can be converted

into the dynamics of variable gi by taking derivative on both side of the following

equation and substitute §j with Eq. (5.2).

gi = wijsj + bi (5.4)
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The resulted dynamics of gi is described by the following equation.

N

Tji + gi S Wi f (gj) + bi (5.5)

To learn to hold persistent activity during gaze-holding period, we formulate the

following error function to be minimized at each gaze-holding period.

E = 152 (5.6)

The error function E will be large if the drift velocity of the memory neuron firing

rate is high and the minimum of E is reached if and only if the drift velocity of every

neuron is zero.

We view the learning as an optimization problem by minimizing the error function

E through constantly updating the synaptic weights. Let's take the gradient decent

method.

OE
A We - ~ E (5.7)

1
= -- dif (gi) (5.8)

T
1

- Tf'(gi) (5.9)

Since function f(-) is roughly a linear function, the derivative could be approxi-

mated by a constant. So the update rule for the weight Wij ends up with

A Wij ~ - J Zv3 (5.10)

This is the differential anti-Hebbian learning rule expressed in the form of firing

rates. In the autapse model we have discussed in last chapter, we use this rule to

tune the recurrent and tonic weight to stabilize the persistent neural activity during

gaze-holding period.

To learn VOR, we can still follow the above similar idea to derive the learning
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rule. However a different error function has to be formulated. The error function for

learning VOR has to reflect the difference between the velocity difference between the

moving head and eye. We will use the following least square error function.

IN
E = 2 (i - #iobi)2 (5.11)

i=1

In this error function, ji code the information of eye velocity and 6bi code the infor-

mation of head velocity. 3i is the parameter coding the ratio between eye position

and the changed vestibular neuron firing rate 6bi. Thus this error function basically

states the inconsistence between head and eye velocity signals.

To minimize the VOR error function, we will update weight Wij by using the

gradient descend method. The learning rule becomes:

AWi - (fi6bi - ji)vj (5.12)

The equilibrium state of this learning rule is

i= /3#ibi (5.13)

The eye position is controlled by the motor plant dynamics during the gaze-holding

period.

TE dE + E = c g s (5.14)

Usually, the time constant 'rE is large. The output eye position is just the low-pass

filtering of the internal e multiplied with some scale parameter c. Since the TE is

large, from the plant dynamics, the eye position would be described approximately

by

E = c njsj (5.15)

= c(gi - bi)/6 (5.16)
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The eye velocity thus reads

E = c Sy (5.17)

= c(j - i)/ i (5.18)

= -b3d (5.19)

= c H H (5.20)
iWo'i iWo'i

Thus at the equilibrium of learning, the time derivative of the motor neuron firing

rate is the combination of both head velocity and head acceleration signals. In order

to precisely compensate the head movement, the eye velocity signal component of the

motor neuron firing rate derivative should be the same as the head velocity signal.

Thus the parameter /3 has to satisfy the following condition.

iWo i
- (5.21)

A biophysically plausible update rule for parameter /i to precisely satisfy the

above equation is hard to be found, since /i is not a biophysical parameter. The

difficulty also lies in that f3 depends on vestibular neuron synaptic strength Wo,j and

recurrent synaptic strength Wi through j, both of which are adaptively updated

during the learning process.

In the following section, we will concentrate on the VOR learning problem on

the simplified autapse model. We try to solve the above dilemma by adaptively

changing another biophysical parameters - integrator neuron leak conductance gt.

We will show how to adaptive update gL and the simulation results with learning

rules implemented will be presented.
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5.3 VOR learning in autapse model

The learning rule we have implemented in the autapse model for learning VOR is

AW ~ (36vo - 0))v (5.22)

AWO ~ (/36vo - 1))Vo (5.23)

AgL - -(36vo - i))V (5.24)

where vo is the firing rate of vestibular neuron and 6vo is the firing rate after sub-

tracting the background firing rate when the head velocity is zero. The update of the

recurrent synaptic strength W and vestibular neuron synaptic strength Wo follows the

mixture of the differential anti-Hebbian and the Hebbian learning rules, while leak

conductance for the integrator neurons follows the combination of the differential

Hebbian and the Hebbian learning rule.

The leak conductance is closely related to the activity of the neuron. The larger

the leak conductance, the less the firing rate would be. The update rule for leak

conductance utilize the information about the difference d = #6vo - i> to change gL.

If d is positive, this means that the time derivative of integrator neuron firing rate is

too low and thus gL is decreased. In contrast, if d is negative, which means that the

time derivative of integrator neuron firing rate is too hight. As a result, YL will be

increased.

Fig. (5-1) shows the firing rates of the integrator neuron with the sinusoid vestibu-

lar input with not precisely tuned synaptic weights. The applied current to the

vestibular neuron is I, = 0.5 + 0.005sin(27rt/T) nA with the period T = 2 seconds.

The background activity of this vestibular neuron is roughly 33 Hz and the firing rate

fluctuates between 31 and 35 Hz representing the moving of head back and forth.

With the synaptic weights not precisely tuned, the integrator neuron is not able to

precisely integrate the vestibular input. In contrary, Fig. (5-1) shows that the activ-

ity of the integrator neuron decays to zero indicating the sign of weak feedback or

vestibular input strength.

51



With the same initially untuned synaptic weights, but with VOR learning rules

implemented in the autapse model, neuron is able to change the synaptic weights W

and WO and leak conductance constantly such that the integrator is able to integrate

the vestibular input. Fig. (5-2) shows the the results after the learning. The applied

current to the vestibular neuron is the same as in Fig. (5-1). However, this time the

integrator neuron is able to integrate the vestibular neuron input and the drift is very

low.

5.4 Discussion of learning rule on gL

In chapter 1, we derive that when _ayn is large, the firing rate of the neuron f(9syn)
could be approximated as a linear function of gsyn.

1" (gsyn) agsyn+b (5.25)

F1 = 1 (5.26)
Cmln((V Vsyn)/(Vth -Vsyn))

S- ( VO -VL h - )[l((Vo- Vsyn)/(Vth - Vsyn
F2 = 9L V VthV (5.27)

Cmln((V - Vsyn)/(Vth -Vsyn))

For the recurrent feedback weight W and vestibular neuron synaptic weight Wo

to be precisely tuned, their values have to satisfy the following equations:

W = (5.28)
F1

_ F 2
WO- F (5.29)

F1 So

Thus in the precisely tuned autapse, the recurrent weight does not depend on the

leak conductance gL, while the vestibular synaptic weight Wo is linearly related to

9L-

WO ~ te (5.30)

Thus the update of leak conductance gL will correspondingly result in the linear
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Figure 5-1: Firing rate of the autapse during VOR with untuned weights. The applied
current to the vestibular neuron is 'app = 0.5 + 0.005sin(27rt/T) nA with the period
T = 2 seconds. Shown in the figure is the firing rate of vestibular and integrator
neurons during a period of 5 seconds. The vestibular synaptic weight WO = 0.1978
recurrent weight W = 0.0651 and integrator neuron leak conductance YL = 0.025PS.
With the untuned weights, the integrator neuron is leaky and the firing rate decays
to zero.

53



tonic neuron

10 20 30

recurrent neuron
40 50

10 20 30 40 50
time (s)

Figure 5-2: Firing rate of the autapse during VOR with learning implemented. The
applied current to the vestibular neuron is I-pp = 0.5+0.005sin(27rt/T) nA with the
period T = 2 seconds. Shown in the figure is the firing rate of vestibular and integrator
neurons after 100 seconds of learning and still with learning rule implemented during a
period of 50 seconds. At the end of the learning, the vestibular synaptic weight WO =

0.2030, recurrent synaptic weight W = 0.0642 and leak conductance 9L - 0.0249[LS.
This plot shows that the integrator neuron is able to integrate the vestibular input.
The two vertical lines show the anti phase relationship between these two firing rates,
which directly results from the integration of a sinusoid function.
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change in the target tuned Wo weight. As we have seen from the constrained Eq.

(5.21) for parameter /3, changing target tuned WO weight has to be taken in order to

satisfy this equation. The update rule gL is taken here as an indirect way to satisfy

the matching condition between eye and head velocities.

5.5 Discussion

We have shown that the combination of the Hebbian and differential Hebbian learning

rules can be used to tune synaptic weights for learning the VOR. The combination of

the Hebbian and differential Hebbian learning rules is an extension of the learnings

we introduce in the last chapter. It can be derived also from the spike-based learning

rules by choosing an asymmetric pairing function.

To learn the right scale relationship between the head and eye velocity, we adap-

tively update the leak conductance gL in the integrator neuron. Whether this is

biophysically true has to be tested in future experiments.
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Chapter 6

Learning in the recurrent network

In the last two chapters, we have discussed two learning cases: a) Learning to hold

persistent activity during gaze holding period; b) Learning VOR. Both of these two

learning rules are implemented in an autapse model with localized synaptic feedback.

Though the autapse model is very simple and is helpful in illustrating several im-

portant concepts, whether it is a biophysically plausible model remains arguable. It

is critical to check if the learning rules we have discussed could succeed if they are

implemented in a recurrent network model.

In the following, we will implement the anti-Hebbian learning rules to stabilizing

the persistent neural activity during gaze holding period in the recurrent network

model. The network is comprised of three different types of neurons - tonic, burst

excitatory, burst inhibitory and memory neurons. Memory neurons receive the input

from the tonic and burst neurons, and also the positive feedback from other memory

neurons. During every saccade, the burst neuron sends the transient pulse input to

the memory neurons, and in a tuned network will lead to the step change in the

activities of memory neurons. The goal of the learning is that the memory neurons

are able to keep the persistent activity during gaze holding period after each saccade.

We will show the simulation results of two network models, which are the same

except the number of memory neurons. In one network, there are only two memory

neurons. We choose to study this network because its structure and computation are

the simplest among all recurrent networks. The second network is comprised of five
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memory neurons.

6.1 Coupled memory neurons

Fig. (6-1) shows a diagram of the coupled two neuron network. In the reduced rate

model, the channel variables for memory neuron 1 and 2 can be described by the

following two equations.

TS 1 + Si

TS 2 + S2

Sf (W12s2 + bi)

Sf (W 2 1s1 + b2 )

(6.1)

(6.2)

The fixed point equations will be

si =f(W12s2 + bi)

2= f (W 21s1 + b2 )

(6.3)

(6.4)

If we take a linear approximation of the function f(x)

equations becomes

Fix+ F2, the fixed point

s1 = F1W 12s2 + Fib, + F2

S2 = F1 W 21 s1 + Fib2 + F2

(6.5)

(6.6)

Substitute the si, S2 from the other equation, we have

s1 = F W 1 2 W 2 1si + Fib, + F2 + F (F1 b2 + F2 ) (6.7)

s2 = FW 1 2 W 2 1s 2 + Fb 2 + F2 + F1 (F1 b1 + F2 ) (6.8)

If the weights are tuned as the following equation, then the fixed points of si

and S2 becomes a continuous manifold. In phase space, si and s2 will lie in a line
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attractor.

Wo - (6.9)
F, so

W1W1=1 2(6.10)
1

If synaptic weights are tuned precisely this way, the line attractor in phase space

of s, and s2 would be

[W12
S1 = s2 2 (6.11)W21

Next we will show the simulation result in this positively coupled network model.

Two memory neurons receive saccadic input from bust excitatory and burst inhibitory

neurons with synaptic strength of 0.08 for both of them. The initial synaptic weights

from tonic neurons are Wo[0] = 0.06292 and Wo[1] = 0.06145. The mutual positive

feedback for two memory neurons are W[O][1] = 0.08295 and W[1][0] = 0.08870. The

parameters on all neurons otherwise are the same as those in previous chapters.

The network is run for 100 seconds with learning rules implemented. Every 500

ms, the burst neuron will fire for 50 ms and a random saccade will be initiated.

Fig. (6-2) shows the result for the initial 10 seconds when the synaptic weights have

not been tuned to the precise values. Shown in the left two panels are the channel

variables si and S2, while in the right two panels are the firing rates of these two

neurons. After each saccade, the integrator neuron can not hold persistent activities,

but the drift is becoming smaller as the learning continues.

We also plot the result of the last 10 seconds in Fig. (6-3). The same as in Fig.

(6-2), shown the left two panels are channel variables si and S2 and in the right are

firing rates. Compared with Fig. (6-2) the drift during gaze-holding period is much

smaller indicating the learning of stabilization.

In Fig. (6-4) we show the change of the tonic and recurrent weights during the

whole learning period.

We also plot the firing rate of one neuron as a function of the other neuron in the
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state space in Fig. (6-5). Consistent well with Eq. (6.11), it forms a line in the state

space.

6.2 Recurrent network with five memory neurons

We have shown that the learning in the coupled network performs quite well for

stabilizing the persistent neural activity. Next we will implement the learning rule in

a more complicated network with 5 memory neurons.

The network is run for 100 seconds with the learning rules implemented. The

saccade is initiated randomly for every 500 ms. The parameters on the tonic and

burst neurons are the same as those in the coupled neurons. The synaptic weights

for the recurrent and tonic synapses are first calculated using the method of tuning

introduced in Chapter 3, and then corrupted with noise.

Fig. (6-6) shows the simulation results in three panels taken from three different

time period. Shown in each panel is the channel variable of burst excitatory neuron,

burst inhibitory neuron and five memory neurons respectively. The top panel is

taken from the first 10 seconds of simulation. since the weights are not tuned, all

five neurons can not hold persistent neural activity after each saccade. All s quickly

decay to zero.

The result in 10 - 20 seconds are shown in the middle panel. Memory neurons

start to be able to keep persistent activity thought drift is high.

We also taken the simulation result in the last 10 seconds of learning period and

shown it in the last panel of Fig. (6-6). The network's ability to hold persistent

activity during gaze holding period is fairly well at this time domain.

In Fig. (6-4) we show the change of the tonic and recurrent weights during the

whole learning period.
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Figure 6-2: Positively coupled integrator neurons with untuned weights. This figure
shows the result for the initial 10 seconds when the synaptic weights have not been
tuned to the precise values. Shown in the left two panels are the channel variables si
and S2, while in the right two panels are the firing rates of these two neurons. After
each saccade, the integrator neuron can not hold persistent activities, but the drift is
becoming smaller as the learning continues.

61



sI ratel
0.25

0.2

0.15

0.1

0.05

S
2

0.25

0.2

0.15

0.1

0.05

0.4

0.3

0.2

0.1

rate
2

0.4

0.3

0.2

0.1

1 isec

Figure 6-3: Positively coupled integrator neurons with learning. This figure shows
the result for the last 10 seconds of learning. Shown in the left two panels are the
channel variables s, and s2, while in the right two panels are the firing rates of these
two neurons. Compared with Fig. (6-2) the drift during gaze-holding period is much
smaller indicating the learning of stabilization.
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Figure 6-4: The change of synaptic weights during the learning period of 100 seconds.
Shown in the top two panels are the tonic synaptic weights. In the bottom is the
recurrent weights.
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Figure 6-5: The firing rate of one neuron plotted as a function of the firing rate of
the other neuron. In the state space, it forms a line.
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Figure 6-6: Five recurrent integrator neurons with learning. This figure shows the
simulation results in three panels taken from first 10 seconds, 10-20 seconds and the
last 10 seconds respectively. In each panel shown is the channel variable of burst
excitatory neuron, burst inhibitory neuron and five memory neurons respectively.
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Figure 6-7: The synaptic weight during the learning. Shown in the top five panels is
the tonic synaptic weights. In the bottom three panels are three selected recurrent
synaptic weights.
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Chapter 7

Conclusion

In this thesis, we have studied a biophysically plausible mechanism for the function

of the occulomotor neural integrator, a premotor area responsible for controlling the

eye movement. In the saccadic eye movement, a transient input causes a step change

in the activity of the integrator neuron, and the elevated or suppressed activity could

sustain for up to many seconds. This persistent neural activity is said to hold a short

term memory of the eye position. To keep the eye still, the drift in the neural activity

of the integrator neuron during the gaze-holding period has to be very low. In this

thesis, we have proposed a recurrent neural network model for the function of the

neural integrator.

The recurrent neural network is composed of the integrator-and-fire neurons which

are connected with each other. By using the method of averaging, we are able to

reduce this spike-based model into a network model with continuous variables in the

Wilson-Cowan form.

We illustrated on how to tune the synaptic weights of the autapse and the network

model such that the fixed points of the neural dynamics will approximately form a

line attractor in the state space. Throughout the thesis, we have argued that it is this

line attractor that forms the basis of the short term memory at different continuous

values.

The tuned feedback model has been criticized as unrobust because it requires

precise tuning of the synaptic weights. The question on how to tune and adaptively
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control the synaptic weights are addressed in Chapters 4-6. We have proposed a

spike-based learning rule to adaptively tune the synaptic weights.

The spike-based learning rule depends critically on the temporal differences of the

pre and post spikes. According to this rule, a synapse depresses when a presynaptic

spike is followed by a postsynaptic spike, and potentiates when the order is reversed.

We then showed that this spike-based learning rule could be reduced to rate-based

one under certain conditions. We found that this learning rule acts as a gradient

descend method for minimizing the drift of the neural activity during gaze-holding

period.

The spike-based learning rules have been implemented in both an autapse model

with localized feedback and recurrent network model with distributed feedback. The

simulation results of these models have shown that the spike-based differential anti-

Hebbian learning rules are very effective in reducing the drift, which is consistent

with our analysis in the continuous rate model.
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