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Abstract

The real-time monitoring of non-stationary targets for image guided therapy is critical
for accuracy in determining the relative locations of organs. Currently, methods for
obtaining real-time monitoring using image guidance involve expensive intra-operative
equipment, ionizing radiation, or are limited to surface imaging of areas accessible
through videoendoscopic tools. Of all imaging modalities, ultrasound is the most
cost-effective, portable, subsurface-capable, and non-ionizing. However, low contrast
and high speckle noise content have prohibited its widespread use in image-guided
therapy.

We have sought solutions to two key elements involved in the registration of ul-
trasound with CT/MR: feature extraction in ultrasound and accurate multi-modal
registration. A comparison is provided that illustrates substantial improvements in
2-D ultrasound edge detection using phase-based methods as opposed to tradition-
al gradient-based methods. The elastic registration of 3-D CT/MR is accomplished
by defining point correspondences used to compute a dense deformation field, which
maps the atlas image (CT) from its coordinate system into the patient image (MR).
We performed quantitative and qualitative error analysis to determine the accuracy
of the registration. Also, a preliminary investigation into the Iterative Closest Point
Algorithm (ICP) was begun and results are shown for rigid and non-rigid point pat-
terns with the objective of extending the algorithm to register ultrasound edge points
with CT/MR surface points.

Thesis Supervisor: W.E.L. Grimson
Title: Bernard Gordon Professor of Medical Engineering
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Chapter 1

Introduction

1.1 Motivation of Multi-Modal Registration

The development and refinement of medical imaging modalities, which aid in non-

invasively studying the internal structures of the human body, is essential for com-

plementing the human visual system. The future of minimally invasive therapy is

highly dependent on our ability to precisely target and deliver therapy. To succeed,

such therapy must have target-relative information. Conventionally, image-guided

procedures undergo two separate steps - a pre-operative imaging step in which the

target site is identified, and an intra-operative step in which realtime or near-realtime

imaging is used to guide the procedure [18]. Pre-operative imaging is sufficient for im-

age guided procedures in which organs are relatively immobile. However, a realtime,

intra-operative imaging technique is necessary for image guidance in which organs

shift with respect to time such as the pulsating heart and abdominal organs, which

are constantly in motion due to respiration.

Pre-operative imaging is typically performed via Computed Tomography (CT) or

Magnetic Resonance Imaging (MR), although X-ray is sometimes used (e.g., for mam-

mography). Intra-operative imaging can be CT, MR, X-ray, fluoroscopy, visible light

or ultrasound. For some procedures involving only stationary targets, pre-operative

imagery is sufficient. However, real-time monitoring of non-stationary targets for

image-guided therapy is critical for the accurate determination of relative organ lo-
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cations. Currently, methods for obtaining real-time monitoring using image guidance

require expensive intra-operative equipment, expose ionizing radiation to the patient,

or are limited to surface imaging of areas accessible through videoendoscopic tool-

s. For example, the intra-operative MRI, which provides high quality imagery, will

most likely remain available only to research centers and teaching hospitals due to

high cost. In addition, fluoroscopy provides continuous X-ray imaging, which becomes

prohibitive for long procedures due to risks of prolonged exposure to ionizing radi-

ation. And videoendoscopy provides natural target-relative information, yet cannot

be used in solid mass organs.

Of all imaging modalities, ultrasound is the most cost-effective, portable,

subsurface-capable, and non-ionizing. However, its widespread use has been ham-

pered due to its low contrast, high speckle noise content, and to a lesser degree limits

on visibility due to bone structures or air pockets within the line of sight. Due

to inhomogeneous tissue characteristics and its impact on ultrasound propagation,

registration of CT/MR and ultrasound cannot be performed rigidly. We wish to

improve the visualization of intra-operative ultrasound through its registration with

high-resolution CT/MR imagery. CT provides good bone contrast of a medical im-

age while MR provides good soft tissue contrast thus, a pre-operative registration of

these two modalities will provide 'in optimal data set for registration with ultrasound.

Surfaces of the CT/MR registration result can be segmented and points extracted to

match with edge points of ultrasound.

We will demonstrate the ability to register pre-operative CT/MR in a non-realtime

manner, so that in future work point-to-point correspondence to an intra-operative

ultrasound can be obtained. This novel method of improving the visualization of

ultrasound imagery is very inviting due to the overwhelming preference of users for

high contrast CT/MR imagery and the low costs and high accessibility aspects of

ultrasound. This approach enables an intra-operative CT/MR imagery from which

image guidance can be performed, but without incurring the costs and risks associated

with continuous CT/MR imaging.

8



1.2 Thesis Overview

The intent of this thesis was to present a method for the non-realtime registration

of CT, MR, and ultrasound. We realized that the CT/MR and ultrasound regis-

tration problem would be attainable through many carefully planned steps thus, we

pursued a divide-and-conquer approach to our solution. Our proposal for achieving

the registration of CT/MR and ultrasound included the following stages:

" Extract edges from ultrasound to isolate boundaries

" Determine an initial alignment between MR/CT and ultrasound

* Select a set of surface points from MR/CT, and use ICP to match the points

to edges in ultrasound. This result provides an initial correspondence between

the two data sets

" Use polynomial warps to refine the matching, taking the correspondence returned

by ICP as the set of matched points

* Use the final result to warp the entire CT/MR image to ultrasound

As a precursor to CT/MR registration with ultrasound, we decided to provide the

reader with a platform of general ultrasound knowledge in Chapter 2, which would

ideally lead to a greater understanding and appreciation of the benefits of using

ultrasound in registration procedures. The main point that we wanted to relay was

the difficulty in ultrasound feature extraction due to high amounts of speckle noise

content and insufficiency of intensity-based techniques due to ultrasounds' invariant

intensity property.

The first stage of this project was to successfully detect edges in ultrasound images.

Implementing the work of Kovesi [23], who proposed phase-based methods versus

traditional gradient-based methods for feature detection in "noisy" data, we were able

to filter out most of the speckle noise and extract true edges in ultrasound liver data.

Kovesi's work was explored because he constructed low level image measures that had

a response independent of image illumination and/or contrast. In addition, he showed
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how congruency of the local phase over many scales can be used as an illumination

and contrast invariant measure of feature significance of points in images. Although

Kovesi did not explore results on ultrasound data, Mulet-Parada and Noble [31] used

the algorithm on echocardiography images, which inspired our interest to explore the

algorithms' performance on ultrasound liver data in Chapter 3.

Upon detecting ultrasound edges to isolate organ boundaries, an initial alignment

between CT/MR and ultrasound is necessary. After selecting a set of surface points

from the segmented CT/MR data, the Iterative Closest Point Algorithm can be used

to match these points to the ultrasound edges. We computed an initial transformation

from moment information of an ultrasound image and simulated ultrasound image

in Chapter 5. Unfortunately, we did not have corresponding ultrasound data to our

CT/MR prostate data hence, the ultrasound and simulated ultrasound result.

ICP works as follows: it uses an initial transform to find the closest points between

the transformed image and the original image; finds the closest points; computes a

registration; and repeats this process until the mean-square error falls below a defined

threshold value. We have produced point sets to test the ICP algorithm for translation

and rotation computation. In using Rodrigues' formula to estimate rotation, we

looked at the fact that non-linear optimization functions, such as Powell's method,

would have to be used to estimate the rotation parameter for ICP. Instead, we used

small angle approximations and performed vector analysis to produce a linear rotation

and determined the rotation angle that produced the least squares error between the

data-model pairings. ICP results are shown for these simple point patterns. In

addition, we used Chui and Rangarajan's [5] demo, which was intended to compare

ICP to MPM results on simulated and sulcal point sets, to obtain ICP results from

various corresponding points in ultrasound and CT liver data.

The 3-D CT/MR registration of prostate data was achieved by using point corre-

spondences and a polynomial warping algorithm to create a dense deformation field,

which was used to transform the patients' MR data to an atlas CT image. When

corresponding ultrasound data becomes available, we will select a group of surface

points from segmented CT/MR, and use ICP to match these points to the ultrasound

10



data. In future work, the initial correspondence found from ICP will be refined by the

elastic warping algorithm used in the CT/MR registration. In addition to the fact

that automatic correspondence can be found by ICP, the interpretation tree search

method was discussed as another option in Chapter 4. The final analysis will be

to warp the entire MR/CT data set to the ultrasound data. In future work, real-

time registration methods will be investigated and incorporated into our registration

results.

We sought to determine and validate the accuracy of our CT/MR registration

by performing numerous experiments in Chapter 6. We created an error analysis

algorithm in which we placed a set of corresponding points on reserve and used a

separate set of points to compute the registration. The interpolated dense deformation

field was then applied to the reserve points and error analysis was performed. The

parameters which we varied were polynomial order, quantity of point set data, and

type of point distribution. Tabulated and illustrated error and registration results

are provided in Chapter 6 along with error validation results.
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Chapter 2

Imaging Modalities

2.1 Ultrasound Imagery

Most encounters with ultrasound in the non-medical community occur when expec-

tant mothers receive a scan to inquire about the health and/or sex of their unborn

child. Although it may take a medical professional to fully interpret the unintuitive

image, ultrasound provides a preview into life formation that would otherwise not be

possible. There are other ways of producing images of the inner body, but they are

generally either more expensive than ultrasound, or they involve exposure to x-rays

or other harmful radiation. Ultrasound machines are comparatively cheap and are

ccnsidered safe, even for scanning the fetus in utero. They are quick and efficient to

use, and not unpleasant for the person being scanned. Their main drawback is the

speckled nature of the image that has prohibited its widespread use.

2.1.1 Ultrasound Image Generation

Anatomic imaging with ultrasound is accomplished with a pulse-echo technique. Puls-

es of ultrasound are generated by a transducer and sent into the patient, where they

produce echoes at organ boundaries and within tissues. These echoes return to the

transducer, where they are detected and imaged on an instrument. The transducer

both generates the ultrasound pulses and detects the returning echoes. The ultra-
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sound instrument processes the echo information and generates appropriate dots,

which form the ultrasound image on the display. The brightness of each dot corre-

sponds to the echo strength, producing what is known as a gray-scale image. The

location of each dot corresponds to the anatomic location of the echo-generating

structure. The positional information is determined by knowing the direction of the

pulse when it enters the patient and measuring the time for its echo to return to the

transducer. If an echo-generating structure is moving, the echo will have a different

frequency than that of the pulse emitted from the transducer. This is the Doppler

effect, which is put to use in blood flow detection and measurement [25].

There are four principle modes of operation used in ultrasonic procedures and

they are A mode, T-M mode, B mode and Doppler. Those in most common use are

the brightness mode (B mode, B scan, or gray scale) and motion mode (M mode).

The display device used in each case is a cathode ray tube. This tube generates

a sharply focused beam of electrons that produces a spot of light on the phosphor-

coated inner front screen of the tube. The B scan is a brightness image that represents

a cross section of the object through the scanning plane, as if the sound beam cut a

section through the tissue. Each individual image is called a frame. Because several

frames can be acquired and presented in each second of time, this is called a real-time

display. The other common display mode, M mode, is used to show the motion of

cardiac structures. It is a display form that illustrates depth versus time [26].

2.2 2-D vs. 3-D Ultrasound

One of the main drawbacks of ultrasound is the fact that only a two-dimensional slice

is produced at any given time. The main clinical consequence of this two-dimensional

limitation is that it makes it difficult to measure the volumes of structures in the body.

This is a common requirement as volumes are used to assess the progression of disease

or its response to treatment. They are also useful for calculating drug dosage. Current

practice for volume measurement generally involves the use of heuristic formulas.

A number of key dimensions are measured and used to provide a volume estimate
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by combining them with scaling factors learned from previous experience. These

techniques can be incorrect by as much as 50 percent [38].

Prager and Gee's research has focused on developing a more accurate approach

to volume measurement, based on 3-D ultrasound. A commercial 2-D ultrasound

machine can produce images representing a number of slices through the structure of

interest. To find the volume, one should know the relative position and orientation

of the slices in 3-D space. This information can be obtained by attaching a position

sensing device to the ultrasound scanner probe. Prager, et al. used a magnetic

tracking system. The trackers consist of a fixed transmitter with three orthogonal

coils of wire (about a 2 inch cube), and a receiver (about half an inch in diameter),

similarly containing three smaller coils of wire. The transmitter generates harmless

magnetic fields, that are picked up by the receiver and used by the instrument to

calculate their relative position and orientation. The transmitter is mounted in a

fixed location close to the patient and the receiver is rigidly attached to the probe of

the ultrasound machine as shown in Figure 2-1.

Pocei brr

Trasmitter

Figure 2-1: The general configuration of a freehand 3-D ultrasound system, showing

the probe of the 2-D ultrasound machine and the magnetic position sensor; courtesy

of [38]
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The arrangement of a conventional 2-D ultrasound machine with a position sensor

attached to the probe has other uses. If the images, and matching positions, are

recorded fast so that a dense block of data is obtained, it is possible to calculate slices

that cannot be obtained by direct scanning, for example, slices entirely beneath the

skin. Non-planar slices can also be computed to 'flatten out' curved parts of the body

and make certain aspects of the structure easier to understand.

2.2.1 Echo cardiography

One of the greatest advantages of using ultrasound is that the image frame rate typ-

ically ranges between 10 and 50 images per second, depending on the type of probe

and the scanning mode. This allows the imaging of moving tissue and acquisition of

ultrasound to be a few seconds compared to several minutes needed in the case of CT

or MR [17]. One of the most popular applications of 3-D ultrasound is in echocar-

diography. When the acquisition is performed with annular arrays, echocardiography

provides thinner tomographic slices, which reduces the danger of merging adjacent

structures in the direction perpendicular to the scan. While 3-D echography raises

difficult issues, it has attracted much attention because 2-D echocardiography is cur-

rently used to assess heart functions and performances. 2-D images are successfully

used to evaluate the cardiac function and show a wide variety of vascular disorders

or myocardial disease but is far from ideal to understand the 3-D morphology of the

beating heart and the estimation of the heart cavities, particularly the left ventricle,

is far from accurate. Generally volume estimation is derived from the areas of two

cross sections of the ventricle, modeling it by a crude shape such as an ellipsoid. The

shape of a normal ventricle is far more complex, not to mention the diseased heart.

Deriving the exact volume from 3-D echography will largely improve the accuracy of

this important feature.
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2.3 Biological Effects of Ultrasound

In the development of ultrasound imaging, there was a conscious, deliberate effort to

utilize a minimum of ultrasonic energy, to observe clinical evidence of side effects, and

to experimentally determine the parameters of safe exposure. Although knowledge

of these parameters and of biological effects is incomplete, it has been impossible to

substantiate any evidence of harmful effects of diagnostic ultrasound. A wide range

of energy levels are used in many medical and non-medical applications of ultrasound.

Those used in diagnostic ultrasound are at the low end of the spectrum while higher

average intensity levels are used to produce localized deep heating of tissue [26].

The possibility of hazard from exposure to ultrasound depends upon the physical

characteristics of the energy being utilized. To reasonably evaluate the probability

of harmful effects, the effects at different physical parameters and dosage regimens of

ultrasound irradiation must be understood [20].

According to Kremkau [25], it seems reasonable to assume that there is some small

risk in diagnostic ultrasound because ultrasound is a form of energy and has the poten-

tial to produce a biological effect that could constitute risk. Knowledge of the effects

of ultrasound come from several sources including experimental observations in cell

suspensions and cultures, plants, and experimental animals; epidemiologic studies

with humans; and an understanding of interaction mechanisms, such as heating and

cavitation. Information from in vitro and in vivo experimental studies has yielded

no known risks in the use of diagnostic ultrasound. Thermal and mechanical mecha-

nisms have been considered, but do not appear to operate significantly at diagnostic

intensities. Currently, there is no known risk associated with the use of diagnostic

ultrasound. Experimental animal data have helped to define the intensity-exposure

time region in which bioeffects can occur. However, physical and biological differences

between the two situations make it difficult to apply results from one risk assessment

to the other. In the absence of known risk, but recognizing the possibility that bioef-

fects could be occurring that are subtle, of low incidence, or delayed, a conservative

approach to the medical use of ultrasound is recommended by Kremkau.
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2.4 Speckle Noise

Acoustic speckle results from interference effects of scattered sound from the distri-

bution of scatterers in the tissue. Because the ultrasound pulse encounters several

scatterers at any point in its travel, several echoes are generated simultaneously.

These may arrive at the transducer in such a way that they reinforce (constructive

interference) or partially or totally cancel (destructive interference) each other [25].

The result is a dot pattern that represents an interference pattern of the scatterer

distribution scanned as opposed to the direct representation of individual scatterers.

This acoustic speckle is similar to the speckle phenomenon observed when a laser is

shown on a wall.

2.4.1 Filtering

One of the most traditional methods of reducing speckle noise is to apply median

filtering. In median filtering, the gray level of each pixel is replaced by the median of

the gray levels in a neighborhood of that pixel, instead of by the average. In order to

apply median filtering in a neighborhood of a pixel, the pixel values and its neighbors

are sorted, the median is computed and assigned to the pixel value. Unfortunately,

median filtering is not robust enough to satisfactorily reduce the speckle in ultrasound.

Thus, we decided to explore more robust orientable odd and even log-Gabor wavelet

filters for enhancement as introduced by Knutsson and Granlund [21]. Gabor filters

are defined by harmonic functions modulated by a Gaussian distribution. Gabor

filters bear some similarity to Fourier filters, but (by the Gaussian damping terms)

are limited to certain frequency bands. With a judicious choice of frequencies, e.g.

by octaves, a succession of Gabor filters can be assimilated into a wavelet transform,

and do an excellent job in image or information compaction.
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2.5 Magnetic Resonance

Magnetic Resonance Imaging (MRI) is an imaging technique used primarily in med-

ical settings to produce high quality images of the inside of the human body. MRI

is based on the principles of nuclear magnetic resonance (NMR), a spectroscopic

technique used by scientists to obtain microscopic chemical and physical informa-

tion about molecules. MRI started out as a tomographic imaging technique, that is,

it produced an image of the NMR signal in a thin slice through the human body.

MRI has advanced beyond a tomographic imaging technique to a volume imaging

technique [16].

Magnetic Resonance can produce volumetric renderings of anatomical structures

based on the response of their components' atomic nuclei to an external magnetic field.

MR volumes are produced and processing is taken over tissues located in adjacent

transverse slices of anatomy, which are stacked to form a volumetric image. The

in-slice resolution is typically better that the resolution between slices. A range of

dimension is available for various MR acquisitions. For example, high resolution MR

is typically composed of slices containing 256 x 256 pixels (0.9 2 mm 2 ) of area, and

the slices are spaced by 1 mm. Low resolution MR has the same number of pixels as

high resolution MR, but their pixel areas are larger (1.25 2 mm 2 ), and their slices are

separated by 4 mm [36]. Within slices, pixel intensities map the alignment intensity

of hydrogen nuclei (protons) at those locations to an external, uniform magnetic

field. Variations in the imaging technique emphasize different characteristic magnetic

relaxation times (denoted TI and T2) of aligned protons. These properties relate

directly to the proton density of the nuclei, not the tissue density. Thus, MR renders

soft tissue variations very well due to their high hydrogen concentrations and differing

chemical composition. On the other hand, as hard bone is relatively anhydrous, it is

given the same low intensity as air [7].
MR imaging is subject to a number of problems including intensity variations and

geometric distortions. The intensity variations are the product of non-uniformities

in the imaging apparatus and inhomogeneities in the magnetic fields and RF pulses
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used in imaging [37]. Geometric distortions are most pronounced at boundaries be-

tween regions of significantly different magnetic susceptibility (e.g. soft tissue/bone,

tissue/air).

2.6 Computed Tomography

In addition to MR, Computed Tomography (CT) can be used to produce volumetric

images of anatomical structures by the stacking of slices produced from measurements

taken over transverse slices of anatomy [44]. A range of dimension is available for

various CT acquisitions. High resolution CT is typically composed of slices containing

256 x 256 or 512 x 512 pixels of area 0.62 - 0.9 2 mm 2 , with slices spaced by 1.5 mm.

Low resolution CT has slices equal to the same number of pixels, with pixel areas

being 0.65mm 2 , and their slices separated by 4 mm [36].

CT slices are produced by rotating an apparatus around the patient which casts a

plane of x-rays through the patient in a number of different directions. Processing is

then performed such that the CT slice gives a map of the x-ray attenuating properties

of the tissue section at each position. Conventionally, each of these attenuation

coefficients are rescaled by a linear function to produce an intensity called a CT

number. CT intensities differ from those given by fluoroscopy, as CT is processed

with x-rays of energy less than those used in fluoroscopic radiography. This has the

effect that there is less contrast between the attenuation coefficients of bone and soft

tissue. Modern CT imaging does not suffer from any significant geometric distortions,

and is often used as the "gold standard" basis for trying to correct geometric distortion

in MR [7].

2.7 Summary

We deemed a detailed analysis of ultrasound necessary because we hypothesize that

it is ideally the intra-operative modality of choice for real-time registration. With the

notable attributes of ultrasound in it's low visualization state, we recognize that a
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remarkable enhancement of ultrasound could revolutionize the field of image-guided

therapy. Applicable procedures include cardiac surgery as well as numerous surgeries

that are performed in the abdominal area. We realize that this task is far from trivial

and our aim is to use other imaging techniques such as CT and MR to enhance

ultrasound so that it is suitable for various image-guided procedures.
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Chapter 3

Image Features

3.1 Acoustic Feature Detection

Image enhancement results can be achieved through segmentation, which consists of

a partitioning of an image into regions of interest. Regions can be extracted by re-

grouping voxels which form homogeneous areas with respect to a given homogeneity

criterion, or by detecting edges, which are points of transition between two homo-

geneous areas [32]. Because ultrasound boundaries are not clearly detectable due to

high speckle content and low contrast, finding ways to detect edges seemed reason-

able. Edges are described as the sharp intensity changes in a gray-level input image.

Among commonly used edge detectors are the Marr-Hildreth Laplacian of Gaussian,

Canny, Sobel, and Prewitt. Applying any of these operators to the image reduces the

sensory input to an array of edge points, where a 1 in a pixel indicates an edge point,

and all other points are 0 [13]. Figures 3-1 and 3-2 illustrates segmented ultrasound

and CT data. Note that the ultrasound image in this example was enhanced to make

edges easier to detect.

3.2 Invariant Measures in Images

Kovesi [23] defined invariant measures as features that remain constant over a wide

range of viewing conditions. He noted that although some effort has been devoted to
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(a) Ultrasound Image (b) Ultrasound Edges

Figure 3-1: Ultrasound image and its corresponding edge information

(a) CT image (b) CT Edges

Figure 3-2: Segmented surface of CT and it's corresponding edge information
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investigating invariant measures of higher level structures in images, little attention

has been paid to the invariant quantities that may exist in low-level or early vision

tasks such as feature detection or feature matching. The two main properties of

invariant measures are that they must be dimensionless and they must represent some

meaningful and useful quality. Because objects can appear with arbitrary orientation

and spatial magnification along with arbitrary brightness and contrast, the search

for invariant quantities is very important for computer vision. Kovesi sought to

construct low-level image measures that have a response independent of illumination

and/or contrast.

As Kovesi noted, there are many algorithms that involve the minimization of some

energy; often the energy is defined to be the addition of many components which

have different units. For example, energy minimizing splines (snakes) are usually

formulated in terms of the minimization of an energy that is made up of an intensity

gradient term and a spline bending term [19]. These two quantities while meaningful,

are not dimensionless. This means that for energy minimizing splines to be effective,

their parameters have to be tuned carefully for each individual application. The

parameters are used to balance relative importance of individual components of the

overall energy. If say, the overall image contrast was halved one would need to double

the weighting applied to the intensity gradient term to retain the same snake behavior.

If one was to somehow replace the intensity gradient and spline bending terms with

dimensionless quantities that represented, in some way, the closeness of the spline

to the feature and the deformation of the spline, one would be able to use fixed

parameters over wider classes of images [23].

3.3 Gradient-based Feature Detection

The majority of work in the detection of low-level image features has been concentrat-

ed on the identification of step discontinuities in images using gradient-based opera-

tors. One of the most widely used gradient-based detectors used is that of Canny [4]

who developed infinite impulse response (IIR) filters for the detection of edges via
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zero-crossings. Although Canny's edge detector works well on 1-D step edges in the

presence of noise, difficulties arise at 2-D features such as corners and junctions where

the intensity gradient becomes poorly defined. As shown in Figure 3-3, much of the

speckle is still present in the ultrasound image after the Canny Detector is applied.

Thresholding hysteresis was applied with multiple pairs of upper and lower threshold

values.

Original US image

100 200 300 400 500

Upper Threshold of 0.7 and Lower Threshold of 0.4 Upper Threshold of 0.7 and Lower Threshold of 0.5

Figure 3-3: Canny edge results after hysteresis thresholding

Kovesi stressed that a major problem with gradient-based operators is that they

assume edges are step discontinuities. However, as Perona and Malik [35] pointed

out, many image features are represented by a combination of step, delta, roof and

ramp profiles. A second problem with gradient-based edge detectors is that they typ-

ically characterize edge strength by the magnitude of the intensity gradient. Thus,

the perceived strength or significance of an edge is sensitive to illumination and spa-
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tial magnification variations. Any gradient-based edge detector will need to use an

appropriately modified threshold. However, generally one does not know in advance

the level of contrast present in an image or its magnification. The image gradient

values that correspond to significant edges are usually determined empirically. Canny

introduced the idea of thresholding hysteresis which has proved to be a useful heuristic

for maintaining the continuity of threshold edges, though one then has the problem

of determining two threshold levels.

3.4 Local Energy and Phase Congruency

The local energy model of feature perception is not based on the use of local intensity

gradients for feature detection, but rather assumes that features are perceived at

points in an image where the Fourier components are maximally in phase 1 [23]. Step,

line and roof edges, and Mach bands are among the wide range of feature types that

give rise to points of high phase congruency. Investigations into the phenomenon

of Mach bands by Morrone, et al. [29] led to the development of the local energy

model. Mach bands are illusory bright and dark bands that appear on the edges of

trapezoidal intensity gradient ramps, for example, on the edges of shadows. Morrone,

et al. showed that the Fourier components of a signal are maximally in phase, though

not exactly in phase, at the points where we perceive Mach bands. These results

led to their hypothesis that we perceive features in images at points of high phase

congruency.

With phase data demonstrated as being important in the perception of images it

is natural that one should pursue the development of a feature detector that operates

on the basis of phase information. From their work on Mach bands Morrone and

Owens [28] recognized that the local energy model had applications in feature detec-

tion for computer vision. To illustrate how this works, Figure 3-4 shows a simple test

image that contains a variety of features at different contrasts. Figure 3-5(a) shows

'Phase refers to local phase in this document. We are concerned with the local phase of the
signal at some position x.
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the output of a simple gradient-based edge detector (here, the Sobel operator). Note

that the output depends on the relative contrast of the edge, and that the output for

line features is two edges, one on either side of the line. Figure 3-5(b) shows the out-

put of the local energy (or phase congruency) detector. Here we note that the output

is a uniform response, regardless of the type or contrasts of the feature involved.

Figure 3-4: A Simple Test Image; courtesy of Kovesi [24]

(a) The Output of the Sobel Opera-
tor

(b) The Phase Congruency Map

Figure 3-5: Comparison of Sobel Operator and PC; courtesy of Kovesi [24]
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3.4.1 Phase Congruency Definition

Kovesi developed the phase congruency function in 1-D from the Fourier series ex-

pansion of a signal, I at some location, x,

I(x) = An cos(nwx + Ono) (3.1)
n

= A, cos(on(x)), (3.2)
n

where A, represents the amplitude of the nth cosine component, w is a constant

(usually 27r), and #no is the phase offset of the n'h component (the phase offset also

allows sine terms in the series to be represented). The function #n(x) represents the

local phase of the Fourier component at position x.

Morrone, et al. defines the phase congruency function as

Za As cos(q#n(x) - ()PC(x) = max()[o,2 . EnS A . (3.3)

The value of O(x) that maximizes Equation 3.3 is the amplitude weighted mean local

phase angle of all the Fourier terms at the point being considered. Taking the cosine

of the difference between the actual phase angle of a frequency component and this

weighted mean, O(x), generates a quantity approximately equal to one minus half

this difference squared (the Taylor expansion of cos(x) ~ 1 - x2 /2 for small x). Thus

finding where phase congruency is a maximum is approximately equivalent to finding

where the weighted variance of local phase angles, relative to the weighted average

local phase, is minimum.

3.4.2 Phase Congruency via Local Energy

Due to the fact that phase congruency is a non-trivial quantity to calculate, Venkatesh

and Owens [43] set out to show that points of maximum phase congruency can be

calculated equivalently by searching for peaks in the local energy function. The local

energy function is defined for a 1-D luminance profile, I(x), as the modulus of a
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complex number,

E(x) = VF 2(x) + H 2(x), (3.4)

where F(x) is I(x) with the DC Component removed and H(x) is the Hilbert trans-

form of F(x) (a 90 degree phase shift of F(x)). Venkatesh, et al. proved that energy

is equal to phase congruency scaled by the sum of the Fourier amplitudes, that is

E(x) = PC(x) Z An. (3.5)
n

Thus the local energy function is directly proportional to the phase congruency func-

tion, so peaks in local energy will correspond to peaks in phase congruency.

Rather than compute local energy via the Hilbert transform of the original lu-

minance profile one can calculate a measure of local energy by convolving the signal

with a pair of filters in quadrature. This gives two signals, each being a bandpassed

version of the original, and one being a 90 degree phase shift of the other. Odd and

even-symmetric Gabor functions can be used for the quadrature pair of filters. Local

energy is defined by

E(x) = 1(1(x) * Me)2 + (I(x) * Mo) 2 , (3.6)

where M' and M' denote the even and odd symmetric filters in quadrature.

While the use of the local energy function to find peaks in phase congruency is

computationally convenient it does not provide a dimensionless measure of feature

significance as it is weighted by the sum of the Fourier component amplitudes, which

have units lux. Thus, like derivative based feature detectors, local energy suffers

from the problem that we are unable to specify in advance what level of response

corresponds to a significant feature. Despite this, local energy remains a useful mea-

sure in that it responds to a wide range of feature types. Phase congruency, on the

other hand, is a dimensionless quantity. We obtain it by normalizing the local energy

function; dividing energy by the sum of the Fourier amplitudes. Values of phase con-
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gruency vary from a maximum of 1, indicating a very significant feature, down to 0

indicating no significance. This property offers the promise of allowing one to specify

universal feature thresholds, that is, we could set thresholds before an image is seen

and have truly automated feature detection [23].

3.5 Calculating Phase Congruency

One issue we must also consider is that phase congruency as defined in Equation 3.3

does not take into account the spread of frequencies that are congruent at a point.

Significant feature points are presumably ones with high information content; a point

of phase congruency indicates a point of high information content only if we have a

wide range of frequencies present. We do not gain much information from knowing

the phase congruency of a signal which has only one frequency component.

Kovesi constructed a weighting function that devalued phase congruency at loca-

tions where the spread of filter responses is narrow. This spread is given by,

S -1 En An W 3)7
N E + Amax(x) /

where N is the total number of scales considered, Amax(x) is the amplitude of the

filter pair having maximum response at x. In addition, a weighting function is defined

by applying a sigmoid function to the filter response spread value,

W(x) = 1 (3.8)
1 + e-Y(c-S(X))'

where c is the threshold value for which phase congruency values become penalized

and -y is a gain that controls sharpness of the cutoff.

Because phase localization was poor for blurred images, Kovesi introduced a more

sensitive phase deviation function on which to base the calculation of phase congru-

ency,

A(X) = cos(on (x) - q(x)) - I sin(#n(x) - q5(x)) . (3.9)
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3.5.1 Calculating Phase Congruency via Wavelets

Linear phase filters preserve phase information and thus can be used as non-orthogonal

wavelets that are in symmetric/antisymmetric quadrature pairs. Following a similar

approach to Morlet et al. [27], Kovesi used logarithmic Gabor functions as suggested

by Field [9] partly because the filters have a Gaussian transfer function when viewed

on the logarithmic frequency scale. In addition, Log Gabor filters allow arbitrarily

large bandwidth filters to be constructed while still maintaining a zero DC component

in the even-symmetric filter. On the linear frequency scale, the Log Gabor function

has a transfer function of the form

-(log(w/wo ))2

!(w) = e 2(og(-/w )), (3.10)

where wo is the filter's center frequency. To obtain constant shape ratio filters the

term K/wo must also be held constant for varying wo. For example, a '/wo value of

0.75 will result in a filter bandwidth of approximately one octave (difference between

two frequencies) and a value of 0.55 will result in a two-octave bandwidth.

Letting I denote the signal and M, and M denote the even-symmetric (cosine)

and odd-symmetric (sine) wavelets at a scale n, Kovesi showed that we can think of

the responses of each quadrature pair of filters as forming a response vector,

[en(X), On (X)] =[I(X) * Mn, I(X) * Mj-] (3.11)

The amplitude of the transform at a given wavelet scale is given by

An (X) = Ven (X)2 + On(X)2, (3.12)

and the phase is given by

On(X)= arctan 2(en(x), on (x)). (3.13)

At each point x in a signal, we will have an array of these response vectors, one
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vector for each scale of filter. These response vectors form the basis of our localized

representation of the signal, and they can be used in exactly the same way as Fourier

components to calculate phase congruency.

The design of the wavelet filter bank needs to be such that the transfer function

of each filter overlaps sufficiently with its neighbors so that the sum of all the transfer

functions forms a relatively uniform coverage of the spectrum. This is necessary since

phase congruency is of interest only if it occurs over a wide range of frequencies.

The fact that phase congruency becomes undefined if all the Fourier amplitudes are

very small can be addressed by adding a small positive constant, c, to the denominator

of Equation 3.3. Thus,

PC(x) = (x(314)
A, A(x)+ F'

where E(x) is defined in Equation 3.4. The appropriate value of e depends on the

precision with which we are able to perform convolutions and other operations on our

signal; it does not depend on the signal itself. We chose to use 0.0001 as our e value

in the calculations at the end of this chapter.

3.5.2 Extension to 2-D

A logical way to construct 2-D filters in the frequency domain is to use polar-separable

2-D Gaussians. In the radial direction, along the frequency axis, the filters are de-

signed in the same way as the 1-D filters (that is, log Gaussians with geometrically

increasing centered frequencies and bandwidths). In the angular direction, the filters

have Gaussian cross-sections, where the ratio between the standard deviation and

the angular spacing of the filters is some constant. This ensures a fixed length-to-

width ratio of the filters in the spatial domain. Thus, the cross-section of the transfer

function in the angular direction is

()2

G(6)=e 20, (3.15)
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where 00 is the orientation angle of the filter, and ou is the standard deviation of the

Gaussian spreading function in the angular direction. This is set to be some fixed ratio

of the orientation spacing between the filters to ensure even coverage of the spectrum

in all orientations. Kovesi found that a filter orientation spacing of 30 degrees provides

a good compromise between the need to achieve an even spectral coverage while

minimizing the number of orientations. The use of more filter orientations does not

change the quality of the results significantly. The final arrangement of filters results

in a rosette of overlapping polar-separable 2-D Gaussians in the frequency plane.

To combine the data over all the orientations, Kovesi gives the following 2-D phase

congruency equation,

PC2 (X) - >E E. Wo(x) [Ano(x)ADo(x) - ToJ (3.16)
EO E, Ano(x) + E

where o denotes the index over orientations. This equation results from calculating

the energy, E(x), in each orientation, compensating for the influence of noise T,

applying the weighting for frequency spread, and summing over all orientations. This

sum is then normalized by dividing by the sum over all orientations and scales of the

amplitudes of the individual wavelet responses at that location in the image.

3.6 Scale via High-Pass Filtering

As far as phase congruency is concerned, the natural scale parameter to vary is the

size of the window in the image over which we perform the local frequency analysis.

In the context of the use of wavelets to calculate phase congruency, the scale of

analysis is specified by the spatial extent of the largest filter in the wavelet bank. In

this approach, high-pass filtering is used to specify the analysis scale. Low-frequency

components (those having wavelengths larger than the window size) are cut out while

high-frequency components are left intact.

Kovesi proposes that multiscale analysis be done by considering phase congruency

of differing high-passed versions of an image.The high-pass images are constructed
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from the sum of band-passed images, with the sum ranging from the highest frequency

band down to some cutoff frequency. With this approach, no matter what scale we

consider, all features are localized precisely and in a stable manner. There is no drift of

features that occurs with low-pass filtering. All that changes with analysis at different

scales is the relative significance of features. This provides an ideal environment for

the use of coarse-to-fine strategies.

3.7 Phase Congruency and Edge Results in Ultra-

sound Images

A number of parameters could vary in the calculation of phase congruency for edge

extraction in ultrasound liver data. Our choice of parameters for ultrasound organ

boundary detection is provided below. We conducted numerous trials with filter

wavelengths ranging from 3 to 20 pixels, wavelet scales ranging from 3 to 5, and

the fractional measure of frequency spread ranging from 0.4 to 0.6. Based upon our

observations, we decided that the parameters listed below best accomplished our goal

of detecting edges in ultrasound. Kovesi did not test his algorithm on ultrasound

images and Mulet-Prada et al. [31] tested Kovesi's algorithm on echocardiographic

data in the temporal domain. We investigated Kovesi's algorithm and reported on

its robustness to high speckle noise content and low contrast in ultrasound liver data

in a non-realtime manner. Our stages were as follows:

9 We determined an initial filter wavelength of 10 pixels which were analyzed in

multiples of the scaling factor (3) between successive filters

* We analyzed 4 wavelet scales

* Six orientations between 0 and 180 degrees were analyzed in increments of 30

degrees

* The fractional measure of the frequency spread was analyzed at 0.4

33



" The number of standard deviations of the noise energy beyond the mean used

to set the noise threshold was 2

* The ratio of angular interval between filter orientations was 1.2

" The ratio of the standard deviation of the Gaussian describing the log Gabor

filter's transfer function in the frequency domain to the filter center frequency

was set to 0.55

* A factor of 10 was used to control the sharpness in the sigmoid function used

to weight phase congruency and frequency spread

Upon computing the phase congruency at each filter orientation, non-maximal

suppression was applied to the image in order to thin the ridges of the gradient

magnitude by suppressing all values along the line of the gradient that were not peak

values of the ridge. Non-maximal suppression takes a radius as input whose distance

in pixel units are viewed on each side of each pixel when determining whether it

is a local maxima or not. Kovesi suggested using non-maximal suppression values

between 1.2 and 1.5 and we chose a value of 1.3 for our results. Finally, hysteresis

thresholding was applied to the ultrasound image to obtain more prominent organ

boundaries. We opted to provide only the best algorithm results from our analysis of

ultrasound liver data. Figure 3-6 illustrates results of implementing algorithm with

the same parameters used by Kovesi on non-medical data. The parameters remained

as defined above with the exception of a minimum A of 3, scaling factor between

successive filters of 2, and non-maximal suppression of 1.5. We concluded that these

parameters were not optimal for edge detection in our ultrasound liver data due to

an insufficient filter A and over thresholding.

As a result, we investigated various parameter changes in Kovesi's algorithm and

provided our best edge extraction results. The energy computations of the ultrasound

liver data is shown in Figure 3-7. Figures 3-8 and 3-9 provide results of computing

phase congruency and performing non-maximal suppression on the ultrasound image

shown in Figure 3-6. In addition, we provide the mean squared energy values of the
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smallest scale filter at each orientation in Table 3.1. The final edge extraction result

after applying hysteresis thresholding values with an upper limit of 0.25 and lower

limit of 0.075 is shown in Figure 3-10.

We concluded that Kovesi's algorithm provided a substantial improvement for

ultrasound liver data edge detection compared to the Canny detector (Figure 3-3).

The speckle content was sufficiently minimized and organ boundaries that were not

visible using the Canny method became apparent. Almost the entire boundary of

the liver is detected in Figure 3-10 using our defined parameters including the A

of 10. The liver is the large elliptical shaped object in the lower left hand area of

the ultrasound images and it encompasses approximately one quarter of the entire

ultrasound image. We note that small segments of the liver boundary are missing in

the edge results which may have resulted from over thresholding the image at the cost

of reducing speckle noise detection. Furthermore, we show the result of using a A of 8

and threshold values of 0.3 and 0.1 in Figure 3-11, which resulted in failed detection

of a significant part of the liver edge but, an insignificant noise presence. The result

further validates our choice of a A of 10 to obtain a reasonable compromise between

edge detection and reduction of speckle noise.

Mean Energy Squared Values for Orientation Angles
Angle (degrees) 0-30 30-60 60-90 90-120 120-150 150-180
Mean Energy Squared 0.1435 0.1242 0.2161 0.3127 0.2215 0.1246

Table 3.1: Mean Energy squared values recorded with smallest scale filter at each
orientation
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Figure 3-6: Edge results from phase congruency with hysteresis thresholding of an
ultrasound image
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(a) Total energy in ultrasound (b) Energy in ultrasound proportional to
phase congruency

Figure 3-7: Energy calculations in ultrasound
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Figure 3-9: Effects of NMS
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upper threshold of 0.25 and lower threshold of 0.075

Figure 3-10: Ultrasound edges from phase congruency using A = 10

Upper Threshold of 0.3 and Lower Threshold of 0.1
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Figure 3-11: Ultrasound edges from phase congruency using A = 8

38



Chapter 4

Correspondence

4.1 Point Mapping

The point- or landmark-mapping technique is the primary approach currently taken

to match two images whose type of misalignment is unknown. The general method

for point mapping consists of three stages. In the first stage, features in the image are

computed. In the second stage, feature points in the reference image, often referred

to as control points, are corresponded with feature points in the data image. In the

last stage, a spatial mapping, usually two 2-D polynomial functions of a specified

order (one for each coordinate in the registered image) are determined using these

matched feature points. Resampling of one image onto the other is performed by

applying spatial mapping and interpolation. However, there is another group of

point-mapping methods used for images whose misalignment is a small rigid or affine

transformation, but which contain significant amounts of local uncorrected variations.

In this case, the similarity measures between the possible matches become unreliable.

Point-mapping methods can overcome this problem by the use of feedback between the

stages of finding the correspondence between control points and finding the optimal

transformation [12].
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4.1.1 Control Points

Control points can either be extrinsic or intrinsic. Intrinsic control points are markers

in the image which are not relevant to the data itself. In medical imaging, identifiable

structures, called fiducial markers, are placed in known positions in the patients to

act as reference points. Although intrinsic points are preferable, they cannot always

be used. For example, precisely placing markers internally is not always possible

in diagnostic images [40]. Control points that are extrinsic are determined from

the data, either manually or automatically. Manual control points are recognized

by human intervention, such as identifiable landmarks or anatomical structures, and

have several advantages. Features chosen by a medical expert are likely to be uniquely

found in both images and more tolerant of local distortions. Figure 4-1 shows 534

manually chosen corresponding point sets in CT and MR data, which were completed

by Julian Rathert, M.D.

atlas data patient data

20 20

40 -40

60 -60

80* 80

100 100

120 120

20 40 60 80 100 120 20 40 60 80 100 120

Figure 4-1: Manually selected corresponding points in CT/MR

In cases where there is a large amount of data, manual selection is not feasi-

ble. However, a sufficient number must be detected to calculate the transformation.

Therefore, many applications use automatic location of control points. Techniques

for matching automatically determined points combine the matching of features and

the determination of the optimal transformation, which may involve, clustering, re-

laxation, matching of convex hull edges of the two sets, and matching of minimum
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spanning trees [11]. Instead of mapping each point individually, these techniques

map the set of points in one image onto the corresponding set in the second image.

Consequently the matching solution uses the information from all points and their

relative locations which can turn out to be computationally expensive.

4.2 Interpretation Tree Search

Certainly, manual selection of corresponding points can become an impractical task

in clinical applications. In our case, surface points from CT/MR segmentation results

should be matched to edge point extracted from ultrasound. Because correspondence

quantities can reach orders of 100 or more for accurate registration computations,

an automated correspondence procedure is worthy of investigation. In the search for

correspondence between localized model and data features, one central issue is cost

manageability in developing an effective approach to feature-based recognition and

localization. Grimson [13] suggested using geometric constraints to reduce the search

and explore the correspondence space of data-model pairings.

The correspondence space consists of all possible pairings between the data and

model features. To search the entire space for correct interpretations would be both

tedious and inefficient. One way to direct the search is to transform the space into a

tree of interpretations. The tree is started by arbitrarily ordering the data features

and hypothesizing that the first data feature, fi, is in correspondence with the first

model feature, F. This becomes the first point on the first axis of the search space and

subsequently, a node on the tree. Keep in mind that each data feature is compared to

each model feature, F, j = 1, ..., m, which introduces a set of nodes at the same level

of the tree. The set of nodes at this level corresponds to the points along the first axis

of the search space. Each pairing also defines a rough pose for the object. The second

axis of the search space consists of the second data feature f2 to all possible model

features and the tree continues to grow until the last model feature is compared to

each data feature. A node at level n of the interpretation tree describes a partial

n-interpretation, in that nodes lying between the current node and the root of the
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tree identify an assignment of model features to the first n data features. Any leaf of

the tree defines a complete s-interpretation, where s is the number of sensor features.

In an effort to find consistent s-interpretations with as little effort as possible,

constraints had to be determined that would eliminate the search of entire sub-trees,

and hence entire subspaces of the search space without having to explicitly explore

them. The advantage of using a tree is that we can start at the root and test in-

terpretations as we move downward in the tree while in the process terminating the

search when we find an inconsistent node, i.e. for which no rigid transformation will

correctly align the model and data feature.

4.2.1 Consistency

The user has two options in testing for consistency at a node. One could explicitly

solve for the best rigid transformation and test that the model features do in fact get

mapped to their corresponding data features. One of the drawbacks of this method

is that computation of the transformations is relatively expensive. In addition, com-

putation of the transformation would require at least k data-model pairs, where k

depends on the characteristics of the features. This implies that one must wait until

at least k levels of depth before applying any consistency test thus increasing the

amount of work to be done.

The second option for testing consistency is to seek less complete models. The

goal of this method is to seek constraints that can be applied at any node of the tree,

with the property that while no single constraint can uniquely guarantee consisten-

cy, some interpretations can be ruled out. The hope is that if enough independent

constraints can be combined together, their aggregation will prove powerful in deter-

mining consistency constraints.

4.3 Constraints to Reduce the Search

Unary constraints apply to single pairings of a data and model feature. If a unary

constraint applied to such a pairing and determined to be true then that data-model
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pairing may be part of a consistent interpretation. However, a false determination

implies that the pairing cannot possibly be part of the interpretation. Binary con-

straints follow a similar logic and the advantages of binary are that they can be quite

simple, while retaining power to separate consistent from inconsistent interpretations,

and they can be applied at any node in the tree. These observations formulate the

approach to recognition as a problem of constraint satisfaction, or consistent labeling.

A general approach to exploring the tree is to use backtracking depth-first search

as shown in Figure 4-2. The search begins at the root of the tree and continues

downwards along the first branch. At the first node, we check the consistency of that

node by examining the truth value of the unary and available binary constraints of the

model-data pairing. The search continues downward as long as all of the constraints

are satisfied. If a branch is reached in which a constraint does not hold, the remaining

subtree is abandoned and we backtrack to the previous node. The next branch of that

node is explored or if no branches exist, we backtrack again. This process continues

until the entire tree has been explored and all possible interpretations have been

found. The interpretations are subject to additional testing.

1 10

2 9 1 12

3 6 13 14

4 578

Figure 4-2: The darker edges in the diagram indicate on example of a backtracking
search. the numbers on the edges indicate the order in which they are searched;
courtesy of Grimson [13]
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4.4 Model Tests to Verify Hypothesis

Although the interpretation tree search accounts for all of the data features, the inter-

pretation defined by the node need not be a globally consistent one. This is because

unary and binary constraints only allow us to infer that any two of the data-model

pairings of the interpretation are consistent. This implies that we must check each

leaf of the tree reached by the constrained search process to verify the interpretation

at that leaf is globally valid. We can do this by solving for a rigid transformation

mapping points V in model coordinates into points v in sensor coordinates. The

general case is given by

v = sRV + vo (4.1)

where s is the scale factor, R is the rotation matrix, and vo is the translation vector.

An example is shown in Figure 4-3. Least-squares can be used to find the transfor-

mation that minimizes the error between the model and data features.

4.5 Finding Pose to Verify Hypothesis

In the case of alignment techniques, we only explore small dimensional subspaces

of the correspondence space, then switch to a guided exploration of pose space to

verify and refine the poses by searching for additional evidence. We can consider

nodes of correspondence space as hypothesizing an interpretation, which must be

verified to ensure global consistency. To do this, we solve for a rigid transformation as

described in Equation 4.1. One approach is to consider a least squares computation

of the transformation associated with the pose, which is the same as finding the

transformation that minimizes the deviation of the transformed model features from

their matching data features. The resulting transformation is used to project the

model features into the data, and verify that each such transformed feature has a

maximum deviation from its corresponding feature that is less than some predefined

bound.
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F3  F2

F1

Model Data

Figure 4-3: Given the data and model segments, one feasible interpretation associates

fi : F1, f2 : F 2 , f3 : F3 . This is a consistent interpretation since there exists a rigid
coordinate frame transformation that maps each model segment into agreement with
its corresponding data segment; courtesy of Grimson [13]

4.5.1 Least Squares Estimation of Transform Parameters

A common theme in computer vision problems entails finding the similarity trans-

formation parameters (R: rotation, t translation, and s: scaling) that gives the min-

imum value of the mean squared error e2(R, t, s) between two point sets xi and yi;

i = 1, 2, ... , n in m-dimensional space as proposed by Umeyama [42].

e2(R, t, s) = n jIyi - (sRxi+t)|I2 (4.2)
2=1

Arun, et al. [1] and Horn [14] presented a solution to the problem based on the

singular value decomposition (SVD) of a covariance matrix of the data. As Umeyama

pointed out, their solution sometimes failed to give a correct rotation matrix and

gave a reflection instead when the data was severely corrupted thus, he presented a

refinement to Arun's result.
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Umeyama presented a theorem which gives the least squares estimation of sim-

ilarity transformation parameters between two point patterns. The main result of

his paper is shown in the lemma below which gives the least-squares estimation of

rotation parameters.

Lemma 1 Let A and B be m x n matrices and R an m x m rotation matrix, and

UDVT a singular value decomposition of ABT (UUT = VVT = I, D = diag(di), d 1 >

d2 _ ... > dm > 0). Then the minimum value of ||A - RB||2 with respect to R is

min| IA - RB||2 = ||A|| 2 + |IB|| 2 - 2tr(DS) (4.3)
R

where

if det(AB T ) > 0
S = (4.4)

diag(11,, .. . , 1 1) if det(AB T ) < 0.

When rank (ABT > m - 1), the optimum rotation matrix R which achieves the above

minimum value is uniquely determined.

R= USVT (4.5)

where S in Equation 4.5 must be chosen as

S__ dIag(1 .if det(U) det(V) = 1(46)
diag(11,, ... ,1, -1) if det(U) det(V) = -1

when det(AB T ) = 0 (rank(ABT ) = m - 1).

The next step is to find the minimum value E2 of the mean squared error

e2 (R, t, s) = n fyi - (sRxi + t)H2  (4.7)

of the two point sets with respect to the similarity transformation parameters which
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is given as follows:

tr(DS) 2  (4.8)Y Cj2

where a and a 2 are the variances around the mean vectors of X and Y, respectively.

The covariance matrix will be useful and is represented by

EXY = Z (Yi - PY)(X - Px) (4.9)
n

i=1

where pt and py are mean vectors of X and Y and a SVD of Exy is UDVT. Also,

S = I if det(Ey) > 0 (4.10)
diag(1, 1, . .. , 1, -1) if det(Exy) < 0.

When the rank(Exy) > m - 1, the optimum transformation parameters are deter-

mined uniquely as follows:

R = USVT (4.11)

t = yy - sRp,, (4.12)

1
s = tr(DS) (4.13)

where the S in Equation 4.11 must be chosen as in Equation 4.6 when rank(Ey) =

m - 1. This analysis provides a closed form solution of the least squares problem

of the similarity transformation parameter estimation using the SVD of a covariance

matrix of the data.
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4.5.2 Moment-Generating Functions

In medical image analysis, it is important to determine the relative positions of organs

in an image. One method for accomplishing this goal is to find corresponding points of

a particular organ in both modalities and compute an initial alignment using moments

of inertia. Calculating the moments of a figure can be viewed as an alternative to

computing pose versus using a simple Taylor series expansion, which doesn't work

well for figures. Although the Taylor series has jump discontinuities, its Fourier

transform is smooth which can be expanded in a power series. Similar to the Fourier

transform, the moment-generating functions allow one to construct as informative a

figure description as desired by using more coefficients of its expansion.

As stated in Duda and Hart [8], the moment generating function M(u,v) of a

picture function g(x, y) can be defined by

M(u, v) = f eXPux +g(x, y)dxdy (4.14)

If we were to take the (p, q)th partial derivative of M, we would get

9P±qM(U, V) _ 0 f) xPy expux+vyg(x, y)dxdy (4.15)

Note that when u and v are equal to 0, we generate the zeroth order moment

mpq, of the image which corresponds to the area of the figure, moo. In the statistical

case, the function g(x, y) represents the probability density function and moi and inio

would represent the first order moments which are the X and Y values of the mean

of the probability distribution function. In terms of figures, if we divided min and

mio by moo, the area of the figure would be normalized and yield the X and Y values

of the figures' centroid.

A related set of moments are the central moments of the function g(x, y), defined

by

pg= of --Moo y --- g(x,y)dxdy. (4.16)
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The central moments provide for a change of coordinates systems that centers the X

and Y axes at the centroid of the figure. The first central moments of a figure are zero

where the second moments A 2 0, 1 02 , and Iu11 are moments of inertia and are analogous

to the variances and covariance of a bivariate probability function. The eigenvectors

of the matrix of second order central moments are directions about which the figure

has maximum and minimum amounts of inertia. The eigenvalues are the principle

moments whose ratio define the fatness or thinness of a figure. An illustration of

moments is given in Figure 4-4.

ais onentztion

Figure 4-4: The 0 th moment is the area of the object; the 1st moment gives the center
of mass; and the 2nd moments give the axes of orientation; courtesy of Kovesi [22]
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Chapter 5

Image Registration

5.1 Image Registration in Theory

Image registration can be defined as a mapping between two images both spatially

and with respect to intensity. The problem is to find the optimal spatial and in-

tensity transformations so that the images are matched either for the purposes of

determining the parameters of the matching transformation or to expose differences

of interest between the images. Two of the most common general transformations

are rigid and affine. Rigid transformations account for object or sensor movement

in which objects in the images retain their relative shape and size. A rigid-body

transformation is composed of a combination of a rotation, a translation, and scale

change. Affine transformations are more general than rigid and can therefore tolerate

more complicated distortions, such as shear and changes in aspect ratio, while still

maintaining some nice mathematical properties [12]. Given the intrinsic nature of

imagery of non-rigid objects, we concentrate our analysis on methods which are more

likely to be applicable in medical diagnosis.

A standard approach to the registration of two corresponding medical images is

as follows: the images can be reduced to binary images by detecting the edges or

regions of highest contrast using a standard edge detection scheme. This removes

extraneous information and reduces the amount of data to be analyzed [15]. Because

we are interested in extracting non-rigid features in ultrasound, we know that the
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search space, or class of transformations capable of aligning the images, will include

translation, rotation, scaling, and shearing. For each of these operations, a similarity

measure has to be computed between the edges of the ultrasound image to the edges

of the CT/MR image. In integrating the information taken from the two different

sensors, the problem of registration goes far beyond overlaying the two images. For

example, the CT image of a patient's liver contains structural information that will

be used to plan a surgery while the ultrasound image contains unintuitive content

that contains some structural information.

Regarding realtime registration involving ultrasound, researchers have found that

spatial methods ignore temporal continuity, which can potentially be used to improve

the reliability of feature detection. Mulet-Parada and Noble [31] determined that

acoustic image feature detection needs to be robust to speckle noise and attenuation

imaging artifacts. Speckle noise corrupts the data by introducing sharp changes in the

image intensity profile, while attenuation artifacts alter the intensity of equally signif-

icant cardiac structures depending on their orientation with respect to the ultrasound

beam. This implies that measurements based on intensity values are not appropriate

for acoustic feature detection which was validated in Chapter 3 on ultrasound data

results.

5.2 Registration of Free Form Curves and Surfaces

One aspect of our registration goal requires the extraction of surface data from

CT/MR as well as edge data in ultrasound. Our specific interests lie in the abdominal

region, which consists of organs such as the liver that can take on various shapes at

different time instances. The point correspondences used in the registration will come

from organ boundaries, which can take the form of various curves. A study is deemed

necessary to estimate 3-D motion from these point correspondences for registration

of intra-operative ultrasound with pre-operative CT/MR data. Realtime estimates

of such parameters will become useful in future research endeavors. In Zhang's [45]

search to register free form curves and surfaces, curve data was treated in the same
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way as surface data (a set of points). The word shape (S) refers to curves S = C or

surfaces, S S. Curves were represented by chained points and surfaces were point

sets. The points in the first 3-D map are noted by xi(i = 1,... , m) and those in the

second map are noted by x'( = 1,... , n). The objective of the registration is to find

the motion between two frames, i.e., R for rotation and t for translation, such that

the following criterion

1
.F(R, t) = p 2(Rxi + t, S')

A n (5.1)

+ q qjd2 (RTx - RTt, S)
1 1

is minimized, where d(x, S) denotes the distance of the point x to S and pi (resp. qi)

takes value 1 if the point xi (resp. x') can be matched to a point on S' in the second

frame and takes value 0 otherwise.

The criteria were symmetric in the sense that neither of the two frames prevails

over the other. To economize computation, the objective function to be minimized

was

.T(R, t) =pid2(x ,S) (5.2)
i= Pi=1

As a result of using this simplification, Zhang found that the the algorithm using

the symmetric criterion yielded better motion estimates than that using the non-

symmetric one. This was expected since the data in both frames contribute to the

motion estimation and neither of the frames prevails over the other. However, the

execution time using the symmetric criterion was twice as long.

5.2.1 Finding Closest Points

The distance between point x and shape S' was defined as

d(x, S') = min d(x, x') (5.3)
x'ES
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where d(x1, x 2) is the Euclidean distance between the two points x, and x2 . We could

use the following simplification:

d(x, S') min d(x, x ). (5.4)
jEf 1,...,n}

The closest point y in the second frame to a given point x is the one satisfying

d(x, y) < d(x, z), Vz E S'. (5.5)

As stated, the minimum of all distances from a given point to each sample point on

the shape is calculated. This simplified version of the distance and different sampling

of the shape affects the final estimate of the motion. The real closest points should

ideally be used instead of the closest sample points ,however, the efficiency achieved

with the sample points is lost. An easy way to overcome the sampling problem while

maintaining efficiency is to increase the number of sample points through interpola-

tion. However, the increase in required memory and increase in search time become

problems requiring a tradeoff to be found.

5.2.2 Pseudo Point Matching

Problems which may occur due to sensor error or object motion can lead to the

existence of spurious points in both image frames. To combat this problem, con-

straints may be imposed to remove spurious point pairings. One proposal is distance

continuity in a neighborhood which could be useful in discarding false matches. Zhang

exploits two heuristics which were all unary.

The first was the maximum tolerance for distance. If the distance between a point

xi and its closest one yi is greater than the maximum tolerable distance Dmax, then we

set pi = 0, which means that we could not pair a reasonable point in the second frame

with the point xi. As we will see later, Dmax is set robustly during each iteration by

analyzing distance statistics.

The second is orientation consistency. We can estimate the surface normal or
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the curve tangent, both orientation vectors, at each point. The angle between the

orientation vector at point x and its corresponding point y in the second frame cannot

go beyond the rotation angle between the two frames. Thus, the angle between the

orientation vectors at two paired points cannot be greater than a prefixed value, E,
which is the maximum of the rotation angle expected between the two frames. This

constraint is especially useful when the motion is relatively large.

5.2.3 Updating the Matching

We now exploit distance statistics between the point pairings. The idea is that dis-

tances between reasonably paired points should not be very different from each other.

One parameter, D, needs to be set by the user, which indicates when the registration

between two frames is good. The value of D has an impact on the convergence of

the algorithm. If D is smaller than necessary, then more iterations are required for

the algorithm to converge because many good matches will be discarded at the step

of the matching update. On the other hand, if D is much larger than necessary, it

is possible for the algorithm not to converge to the correct solution because possibly

many false matches will not be discarded. Thus, it is usually better to choose a small

value for D.

Let DIax denote the maximum tolerable distance in iteration I. At this point,

each point in the first frame whose distance to its closest point is less than DI-' is

retained, together with its closest point and their distance. Let {x}, {yj}, and {di}

respectively, represent the resulting set of original points, closest points, and their

distances after the pseudo point matching and let N represent the cardinality of the

sets. The mean, p, and sample deviation, o-, of the distances is given by

1N

p= di (5.6)
i=1
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N

o- (di - M)2. (5.7)

Various thresholds are set to determine a range of registration qualities from quite

good to really bad. At that point, the newly set D'a. is used to update the matching

previously recovered: a pairing between xi and yi is removed if their distance di is

greater than D',. The remaining pairs are used to compute the motion between the

two frames.

5.2.4 Computing Motion

Because the number of point pairs, N, will mostly be a large number, it is necessary

to devise a procedure for computing the motion by minimizing the following mean-

squares objective function

-1N
F(R, t) = > jRxi + t - yi|j2 , (5.8)

1=1

which is the direct result of 5.2. The least squares rotation and translation parameters

can also be found using Arun's [1] singular value decomposition method or Horn's [14]

quaternion method.

5.2.5 Iterative Pseudo Point Matching Algorithm

Zhang's [45] iterative pseudo point matching algorithm can be summarized as follows:

* input: Two 2-D frames containing m and n 2-D points, respectively

* output: The optimal motion (or transformation) between the two

frames

* procedure:

1. initialization: DOa is set to 20D, which implies that every point

in the first frame whose distance to its closest point in the second
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frame is bigger than Do,, is discarded from consideration during

the first iteration. The number 20 can be replaced by a larger

value.

2. preprocessing:

(a) Compute the tangent at each point of the two frames (only

for curves)

(b) Build the k-D tree representation of the second frame

3. iteration: until conversion of the computed motion

(a) Find the closest points satisfying the distance and orientation

constraints

(b) Update the recovered matches through statistical analysis of

distances

(c) Compute the motion between the two frames from the up-

dated matches

(d) Apply the motion to all points (and their tangents for curves)

in the first frame

5.3 Iterative Closest Point Algorithm

The ICP procedure stems from a problem that was formalized by Besl [2] in which he

described global and local shape matching metrics for free form curves and surfaces as

well as point sets in an attempt to formalize and unify a key computer vision problem:

Given 3-D data in a sensor coordinate system and given a model shape in a model

coordinate system in a different geometric shape representation, estimate the optimal

rotation and translation that registers the model shape and data shape minimizing

the distance between the shapes and allowing the determination of the equivalence

of the shapes via a mean-square distance metric. A method proposed by Besl and

McKay [3] provides a solution to this free-form surface matching problem as a special

case of a simple, unified approach, which generalizes to n dimensions and provides
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solutions to 1) the point-set matching problem without correspondence and 2) the

free-form curve matching problem. The algorithm requires no extracted features, no

curve or surface derivatives, and no pre-processing of 3-D data, except for the removal

of statistical outliers and can be used with the following representations of geometric

data:

1. point sets

2. line segment sets (polylines)

3. implicit curves: ? (x, y, z) = 0

4. parametric curves:(x(u), y (u), z(u))

5. triangle sets (faceted surfaces)

6. implicit surfaces: g(x, y, z) = 0

7. parametric surfaces: (x(u, v), y(u, v), z(u, v))

We will restrict our discussion and analysis to point sets for our initial registration

interests. The Euclidean distance d(-ri , T) between the two points T = (xi, yi) and

= (x 2 , Y2) is d( 'r, T2) = I - TII = V(x2 - x 1) 2 + (y2 - y1) 2 . Let A be a point

set with Na points denoted J- : A = { at} for i = 1,... , Na. The distance between

the point 7 and the point set A is

d(V, A) = min d(V, -a-') (5.9)
iE{1,.Na}

The closest point - of A satisfies the equality d(-, Uj) - d(V, A).

5.3.1 Corresponding Point Set Registration

A procedure for yielding the least squares rotation and translation is reviewed by

Besl and McKay in which they determined that the quaternion approach to find

the closest point (minimum distance) is better in 2-D and 3-D than the singular
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value decomposition (SVD) method because reflections are not desired. However, the

cross-covariance matrix in SVD of two-point distributions easily generalizes to the n

dimensional case and would be the method of choice for n > 3 in any n-dimensional

applications. The basic solution of Horn is described in [15]. Besl and McKay stressed

the role of the SVD cross-covariance matrix, which is an important relationship not

discussed in Horn's work.

5.3.2 ICP Algorithm Description

The ICP algorithm can be described in terms of an abstract geometric shape X whose

internal representation must be known in order to execute the algorithm. A "data"

shape P is registered to be in best alignment with a "model" shape X. The data must

be decomposed in point set form in preparation for registration if it is not already in

point set form. These points are usually the vertices in a triangle or the endpoints of

a line and if the data comes in curve or surface form, points from a line or triangle

approximation are used. Let Np represent the number of points in the data shape

and N. represent the number of points in the model shape.

The distance metric d between an individual data point V and a model shape X

will be denoted

d( ,X) = min- cxH- -x ||. (5.10)

The closest point in X that yields the minimum distance is denoted V such that

d(V, -y) - d(V, X), where V E X. Computing the closest point is O(Ns) worst

case with expected cost log(N2). When the closest point computation from itoX

is performed for each point in P, that process is worst case O(NNp). Let Y denote

the resulting set of closest points, and let C be the closest point operator:

Y = C(P, X) (5.11)

Given the resultant corresponding point set Y, the least squares registration is com-
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puted as described above:

(-, d) = Q(P, Y). (5.12)

The positions of the data shape point set are then updated via P = V(P).

5.3.3 ICP Algorithm Statement

The ICP Algorithm is stated in [3] as follows:

" The point set P with Np points {t} from the data shape and the model shape

X (with N supporting geometric primitives: points, lines, or triangles) are

given.

* The iteration is started by setting P = P, MT = [1, 0, 0, 0, 0, 0, 0]' (if using

quaternions for rotation) and k = 0. The registration vectors are defined rela-

tive to the initial data set Po so that the final registration represents the com-

plete transformation. Steps 1 through 4 are applied until convergence within a

tolerance T. The computational cost of each operation is given in brackets.

1. Compute the closest points:Y = C(Pk, X) [cost: O(NN) worst case,

O(NplogN,) average].

2. Compute the registration: (e, dk) = Q(PO, Yk) [cost: O(Np)].

3. Apply the registration: Pk+1 = e(PO) [cost: O(Np)].

4. Terminate the registration when the change in mean-square error falls be-

low a preset threshold T > 0 specifying the desired precision of the registra-

tion: dk - dk+1 < T- If a dimensionless threshold is desired, one can replace

T with Trtr(EX), where the square root of the trace of the covariance of

the model shape indicates the rough size of the model shape.

A convergence theorem is stated that is based on two key ideas: 1) least squares reg-

istration generally reduces the average distance between corresponding points during
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each iteration, whereas 2) the closest point determination generically reduces the

distance for each point individually.

1 Theorem

The iterative closest point algorithm always converges monotonically to a local min-

imum with respect to the mean-square distance objective function.

5.3.4 ICP Results on Rigid Data Sets

We tested a simple version of the ICP algorithm on simulated point sets of 2-D

triangles and squares. In this section we demonstrate how ICP can find the closest

points between the two data sets and accurately compute the registration.

In Figures 5-1 and 5-2, we show two point sets that were rotated by 15 and 45

degrees, respectively. The points marked as " * " are the original points and the points

noted by "+ " are the target points after rotation. ICP does converge instantaneously

to its registration result however, a trace from the original to the target points is shown

for visualization of the convergence via iterations, 50 of which were observed in this

case. We used small angle approximations to estimate the rotation for robustness in

anticipated image analysis. Instead of using non-linear optimization methods such as

Powell's method, the rotation was linearized so that the least squares error could be

computed and those values are provided in the respective figures' caption. Figure 5-3

shows the ICP result of a translated point set with additional random noise. Fifty

iterations were initially given as input to the algorithm, but iterations ended when

the norm of the mean square error of the distance between each point was less than

a threshold of 0.1. In this particular case, the registration was completed by the 3 5t"

iteration.

Figure 5-4 shows an example of initial transform computation in which an ultra-

sound image was scaled by 0.5 and shifted in the x and y direction, respectively by

the vector [60, 30]. We allow user input in this particular demonstration in which one

is prompted to select a number of corresponding points in the two upper images and

a transformation is computed and displayed in the lower right-hand corner. In this

example, 6 points were selected and the estimated scale and translation vector were
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0.5 and [64.9, 40.6]. The scale and shift were estimated with standard deviation and

mean values as in the following:

std(v)estimScale = )
std(u)

estimShift = mean(v) - mean(u) x estimScale.

(5.13)

(5.14)

We will continue our investigation into initial transform computation. This initial

transform will provide correspondences between CT/MR surface points and ultra-

sound edge points for refinement of the registration using polynomial warps discussed

in Chapter6.

V (target) points marked by and u points marked by

-1 5 -1 -05 0 0.5

(a) ICP Results: 0=15 degrees

v (target) points marked by +,and u points marked by*
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(b) ICP Results 0error = 0.46 degrees

Figure 5-1: Test of ICP Algorithm with only Rotation
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(a) ICP Results: 0=45 degrees
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Figure 5-2: Test of ICP Algorithm with only Rotation
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Figure 5-3: Test of ICP Algorithm with only Translation
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Figure 5-4: Initial Transform Computation

5.3.5 ICP Results on Non-Rigid Data Sets

Chui and Rangarajan [5] proposed an alternative to ICP called the Mixture Point

Matching Algorithm (MPM), which can solve for both rigid and high-dimensional

(thin-plate spline-based) non-rigid transformations between points sets in the pres-

ence of noise and outliers. The algorithm is similar to the Expectation Maximization

algorithm and jointly solves for feature correspondence as well as geometric trans-

formations. The mixture point matching framework is designed to be general and

can be applied to both rigid and non-rigid point sets. The algorithm is similar to

ICP however, ICP treats the corresponding points as binary rather than probabilistic

variables. We plan to investigate and test MPM's performance on ultrasound and CT

data in future analysis however, we will continue with ICP for results in this thesis.

Using Chui and Rangarajan's demo intended to compare ICP and MPM results

on simulated and sulcal point sets, we tested ICP on various corresponding point sets

in the abdominal area. Figures 5-5 through 5-14 contain corresponding points from

ultrasound and CT along with ICP results (ultrasound (open areas) and CT (closed

areas)) and thin-plate spline warping results, which are located directly below the
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corresponding ultrasound and CT image. A rather detailed discussion on thin-plate

spline warping is given in [6] for further reference.

We concluded from the non-rigid point experiments that ICP did encounter prob-

lems when attempting to find the non-rigid transformation between multi-modal im-

age data. In each of the experiments, ICP did not always find the correct match

between each point in the ultrasound and CT point sets. For instance, Figure 5-14

resulted from numerous ultrasound points determining that a single CT point was the

corresponding point, which did not satisfy our requirement for 1-to-1 point correspon-

dence. This observation calls for a further investigation into ICP, MPM, and possibly

other algorithms that will produce the most accurate correspondence between the

data sets.
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Figure 5-5: 15 corresponding points in ultrasound and CT
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Figure 5-6: Test of ICP algorithm using indicated points
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Figure 5-7: 15 corresponding points in ultrasound and CT
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Figure 5-8: Test of ICP algorithm using indicated points
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Figure 5-10: Test of ICP algorithm using indicated points
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Figure 5-11: 5 corresponding points in ultrasound and CT
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Figure 5-12: Test of ICP algorithm using indicated points
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Figure 5-13: 7 corresponding points in ultrasound and CT
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Figure 5-14: Test of ICP algorithm using indicated points
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5.4 Nonlinear Registration Approach

A common registration approach is to use a reference data set and to compare it with

the patient data by finding a transformation that aligns the reference data set with

the patient. This procedure should be automatic, reliable, repeatable and robust.

The first component of automatic nonlinear registration is to establish a relationship

between the model (atlas or canonical data set) and the patient specific data. The

second component is the actual warping procedure used to establish the transform

between the patient and atlas. A 3-D geometric transformation maps an image from

the coordinate system defined by u,v,w into a new image defined by the coordinate

system (x,y,z).

T : (U, v, w) -+ (x, y, z) (5.15)

where the mapping functions are x = x(u, v, w), y = y(u, v, w), z = z(u, v, w)

The nonlinear registration techniques described in [41] aimed to compute high

order mapping functions using local information and constrain the mapping functions

based on a physical model of elastic materials. The elastic matching involves the

construction of a high-order nonlinear transform describing how the template must

be deformed to maximize the match to the patient scan. The template can be a

normal anatomy atlas (deterministic or probabilistic) or it can be a scan from a

different modality or from the same modality. The matching is usually a two-step

process: 1) determine a global registration between the model and patient scan, thus

accounting for translation, rotation, and scale differences among the corresponding

regions of both data sets and 2) determine a nonlinear transform that maximizes the

similarity of these regions.

Most elastic matching techniques can be defined in the following framework: for

a template data set T (such as an atlas) and a subset data set S (such as an MRI

scan) defined on a rectangular lattice x = (x, y, z)T E Z 3 , a deformation field which

matches data set T to data set S is estimated. A vector describing the deformation

at location x is U = (u, V, w)T = U(u(x), v(x), w(x))T E R 3 . The goal of the elastic
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registration is to compute deformation field U, such that the sum of local similarities

between the subject,S, and template, T, under the deformation field is maximized,

I similarity(S(x), T(x - U(x)))dV (5.16)

subject to some constraint upon the deformation field-the regularization (or "elastic-

ity") constraint,

fD(U)dV. (5.17)

Attempts have been made to use only the surfaces of objects to compute the

transformation between objects. A recently used scheme provided for the compu-

tation of the elastic transformation by an iterative refinement approach [30]. First,

contours of the surface of each object were extracted from a 3-D volume using a

semi-automatic contour model. A surface was formed by triangulating between the

contours of neighboring slices. A combination of Euclidean distance and similarity of

surface orientation described the distance function used to show how well local patches

of the two surfaces matched. Surfaces of the objects were matched by computing a

displacement vector for each triangle vertex on the basis of this distance function. To

capture the interaction between neighboring vertices, a deformation field is computed

by Gaussian smoothing of the displacement vectors. Iterations follow with decreas-

ing stiffness of the surfaces. The transformation is computed by interpolation of the

deformation field over the entire volume.

5.5 Elastic Registration

Nonlinear registration is the technique used to align data that is mismatched in a non-

uniform or nonlinear manner. Such misalignments can be caused by intrinsic shape

differences, such as motion of non-rigid organs in the abdomen, or physical deforma-

tion such as those caused by opening the skull for neurosurgery. In Toga's study [41],

the term matching is used to refer to any process that determines correspondences
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between point sets and warping refers to matching techniques which require defor-

mation field computation between corresponding points. Elastic matching is used to

refer to a subset of the available nonlinear registration techniques that operate by

computing a deformation field through the minimization of a functional consisting of

a term measuring local similarity and a regularization constraint based on a physical

model of an elastic material. Even models that don't have the properties of an elastic

body are used in elastic matching if they make use of the regularization model.

One characteristic of nonlinear registration techniques that poses problems in

clinical settings is computational cost. The computation of higher order nonlinear

transformations can require multiple 3-D (floating point) data sets be held in work-

ing memory while a lengthy nonlinear optimization process is performed. The long

running times on workstations and sometimes even supercomputers are acceptable

for research but not for clinical applications. Thus, a rapid and robust nonlinear reg-

istration algorithm is deemed necessary for applications in image-guided procedures.

5.5.1 Splines

Some registration techniques have been developed that exploit elastic models. Instead

of directly applying piecewise interpolation to compute a transformation that maps

the control points of one image onto another, these methods model the distortion in

the image as the deformation of an elastic material. In other words, the registration

transformation is the result of the deformation of an elastic material with the min-

imal amount of bending and stretching. The amount of bending and stretching is

characterized by the energy state of the elastic material. Nevertheless, the methods

of piecewise interpolation are closely related since the energy minimization needed to

satisfy the constraints of the elastic model can be solved using splines [12].

Piecewise interpolation requires that a spatial mapping transformation for each

coordinate point be specified which interpolates between the matched coordinate

value. Most of the methods evaluated by Franke [10] use the general spline approach

to piecewise interpolation. This requires the selection of a set of basis functions, Bj

and a set of constraints to be satisfied so that solving a set of linear equations will
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specify the interpolation function. The spline surface S(x, y) can be defined as

S(x, y) = E Vi, Bj(x, y) (5.18)
i~j

where Vij are the control points. These local interpolations, which perfectly match

the control points, act as a refinement after a global match has been performed using

the best rigid transformation [33].

5.5.2 Elastic Warping Algorithms

Warping algorithms calculate a 3-D deformation field which can be used to non-

linearly register one image with another image (or atlas). Instead of warping the atlas

into the configuration of a new subject's anatomy, the new subject's anatomy can be

warped into the configuration of the atlas anatomy, removing subject-specific shape

differences. The resultant deformation fields can subsequently be used to transfer

physiologic data from different individuals to a single anatomic template, enabling

functional data from different subjects to be compared and integrated in a context

where confounding effects of anatomical shape differences are factored out [39].
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Chapter 6

Results of CT/MR Elastic Warping

6.1 Registration Error Analysis

A precise quantitative study of registration results is deemed necessary for most clin-

ical applications. Julian Rathert, M.D. manually located 534 point correspondences

in a 3-D CT/MR data set and together with C.F. Westin of Brigham and Women's

Hospital, they used an elastic warping algorithm to register the two modalities. A

sparse deformation field, calculated from the corresponding points, was resampled by

a factor of 8 to reduce computation time. We found that the resampling factor had no

significant effect on the registration results. The elastic transformation was computed

by interpolating the sparse deformation field over the entire volume using polynomi-

als. Additional linear interpolation was applied to produce a dense deformation field

the same size as the atlas image. In this analysis, we sought to explore numerous

variations on polynomial warping methods which included the following: variation of

the number of corresponding points; variation of polynomial order; variation of the

point set distribution; and error verification to measure sensitivity in our computed

registration errors.
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6.1.1 Error Analysis Algorithm Statement

Our algorithm for computing registration errors was as follows:

1. Calculate the dense deformation field from a select group of 3-D point corre-

spondences in CT (Image 1) and MR (Image 2), which we call the original point

sets pl and p2, respectively.

2. Choose a group of corresponding points mutually exclusive from the original

set and call these the reserve point sets p1 , and p2,.

3. For both the original and reserve point sets in MR (p2 and p2,), find the corre-

sponding values in the deformation field. We will call these sampled versions of

the deformation field, def ormorig from the original points and deformre, from

the reserve points.

4. Use def ormorig to transform the original point set pl and def orme, to transfor-

m the reserve point set p 1 , by subtracting deformre, from p2 r and deformorig

from p2. We denote these transformations as p1' and pl'..

5. Measure the Euclidean distance between pl' and p1,, which gives the primary

results relevant to the accuracy of our algorithm. Repeat the process for the

original points for further analysis.

6. Calculate the mean, standard deviation, maximum, and median of the Eu-

clidean distances measured above. Note that all error measurements are in

voxels, however, the voxel dimensions are 0.975 x 0.975 x 1.5 mm for those

interested in metric conversions.

72



Standard Polynomial Information
poly. order 1 2 3 4 5

poly. fit 4 10 20 35 56

Table 6.1: Relationship Between Polynomial Order and Fit

6.2 Investigation of Polynomial Order and Point

Correspondence Quantities

For each of the following experiments, we used 526 of the 534 manually chosen corre-

sponding points. All points which had a 0 coordinate were considered erroneous and

eliminated from the point set because valid pixel values were only in the range from

1 to 128. The displayed CT atlas image is from the 8 0 th slice of the volume while

the MR image is from the 7 9 th slice and the transformed atlas image is from the 79th

slice. Figures 6-1 through 6-4 show CT/MR with the corresponding point pairs used

in the following four experiments. Tables 6.2 through 6.5 contain the quantity and

sampling rates of the original and reserve points. Recall that the deformation field

was calculated from points in the original point set and was applied to a separate

set of reserve points that were not included in the original point set. Using our Er-

ror Analysis Algorithm, we computed the mean (perror), standard deviation (c-error),

maximum (maxerror), and median (mederror) of the Euclidean distances between the

transformed points and their actual location in the image. We observed polynomial

orders 1 through 5 for original point sets consisting of 263, 176, 132, and 106 points

and the respective reserve point sets consisting of 132, 88, 66, and 53 points for each of

the four experiments. Error bars are provided in Figure 6-5 to compliment the tables

for visualization of the errors. Table 6.1 provides the relationship between polynomial

order and the number of polynomials used to fit the points in a distribution.
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Figure 6-1: CT/MR shown with 263 original points (*) and 132 reserve points (o)
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Figure 6-2: CT/MR shown with 176 original points (*) and 88 reserve points (o)
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Original points ( *) & Reserve points ( o )
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Figure 6-3: CT/MR shown with 132 original points (*) and 66 reserve points (o)
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Figure 6-4: CT/MR shown with 106 original points (*) and 53 reserve points (o)
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263 Original Points and 132 Reserve Points
poly. order 1 2 3

Reserve Original Reserve Original Reserve Original

Perror (voxels) 10.706 11.040 9.147 8.932 10.382 10.263
-error (voxels) 4.776 5.599 4.283 4.999 5.322 6.410

maxerror (voxels) 24.040 33.238 27.033 31.615 31.299 39.294
mederror (voxels) 10.797 10.533 8.572 8.001 10.059 8.867
poly. order 4 5

Reserve Original Reserve Original

ierror (voxels) 11.209 11.488 12.527 13.726
c-error (voxels) 6.401 7.852 8.442 10.985
maxerror (voxels) 35.435 45.667 51.149 57.607
mederror (voxels) 9.869 9.691 10.752 10.547

Table 6.2: Experiment 1: Original Sampling Rate of 2; Reserve Sampling Rate of 2

176 Original Points and 88 Reserve Points
poly. order 1 2 3

Reserve Original Reserve Original Reserve Original

[terror (voxels) 10.686 9.654 8.639 8.821 10.963 10.269
c-error (voxels) 6.209 5.219 5.235 4.423 7.055 5.941
maxerror (voxels) 29.603 23.736 27.716 24.147 35.427 32.017
mederror (voxels) 9.720 8.681 7.671 8.013 8.755 9.732
poly. order 4 5

Reserve Original Reserve Original

Perror (voxels) 13.478 11.552 15.545 13.277
merror (voxels) 10.728 7.985 13.983 10.877
maxerror (voxels) 66.706 48.443 66.054 60.576
mederror (voxels) 10.043 9.724 10.567 9.568

Table 6.3: Experiment 2: Original Sampling Rate of 3; Reserve Sampling Rate of 2
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132 Original Points and 66 Reserve Points
poly. order 1 2 3

Reserve Original Reserve Original Reserve Original

Perror (voxels) 9.722 10.635 8.588 8.801 10.460 10.244

Gerror (voxels) 4.788 5.584 4.365 5.037 6.573 6.405
maxerror (voxels) 20.452 30.122 20.874 27.146 39.475 29.442
mederror (voxels) 9.329 10.230 7.672 7.883 9.369 8.572
poly. order 4 5

Reserve Original Reserve Original

[error (voxels) 10.595 12.023 17.731 19.433

-error (voxels) 5.867 8.807 21.413 21.009
maxerror (voxels) 26.495 48.671 144.760 112.643
mederror (voxels) 10.137 10.305 11.167 13.114

Table 6.4: Experiment 3: Original Sampling Rate of 4; Reserve Sampling Rate of 5

106 Original Points and 53 Reserve Points
poly. order 1 2 3

Reserve Original Reserve Original Reserve Original

[error (voxels) 11.371 10.822 9.257 8.934 11.619 10.834

-error (voxels) 6.163 4.694 4.785 4.052 7.602 5.406
maxerror (voxels) 25.666 22.194 22.971 20.571 30.544 23.980
mederror (voxels) 10.923 11.283 8.340 8.774 8.337 10.575
poly. order 4 5

_ Reserve Original Reserve Original

Perror (voxels) 14.080 13.402 26.416 22.842
merror (voxels) 12.629 10.816 50.339 40.068
ma6error (voxels) 62..6 1081 244.690 329.679
mederror (voxels) 9.288 12.308 9.880 13.898

Table 6.5: Experiment 4: Original Sampling Rate of 5; Reserve Sampling Rate of 2
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Figure 6-6: Error maps for original and reserve points in Experiment 3

6.2.1 Results and Conclusions

Because the least error in our calculations stemmed from computing the 2 nd order

polynomial with 66 reserve points and 132 original points (Table 6.4), we decided

to compare those results with a "ground truth" experiment. This "ground truth"

result was used to compare results of computing the deformation field with all 526

corresponding points versus a sample consisting of 132 points. We proceeded with a

2 nd order polynomial calculation of a data set with no sampling, which produced Perror

and (-error values of 9.301 and 4.793 voxels. We provide error maps for Experiment

3, which involved 132 original points and 66 reserve points, to show the difference in

the transformed point location and its actual location as seen in Figure 6-6.

A comparison of the registration results of the two data sets is provided in

Figure 6-7 along with a difference of the images in Figure 6-8. The difference im-

age confirms that the registration results involving 526 original points versus 132

original points are not equivalent as expected from the calculated error results but,

are quite similar. This result implies that fewer points can be used to compute the

deformation field for registration of CT/MR.
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Figure 6-7: Registration results using 132 and 526 points

Error in registration results

Figure 6-8: Difference between registration results using 132 and 526 points
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6.3 Investigation of Clustered Point Set Distribu-

tions

In the following experiments, we aimed to calculate and visualize errors for which

registration was computed from clustered point distributions versus the evenly sam-

pled point distributions evaluated in previous experiments. We analyzed registration

results for various corresponding point clusters throughout the entire volume of CT

and MR images, which both had dimensions of 128 x 128 x 149. For each of the follow-

ing experiments involving the clustered distributions, we used the registration results

from the point set with no sampling to compare with the registration results using

the point clusters. The registration results are provided in the lower left hand corner

of the provided figures while the differences between the CT and MR are provided in

the lower right hand corner of each figure. Note that our error analysis algorithm is

not utilized in these experiments thus, the overlap of the 526 points and the clustered

points does not affect our analysis. We provided errors between the actual and trans-

formed point locations for the non-sampled point set in Table 6.6 and errors for the

clustered distributions were tabulated in Table 6.7. The polynomial order for these

experiments was evaluated at 2.

In the first set of experiments, we divided the entire point set into quadrants

(127 points for Quadrant 1; 124 points for Quadrant 2; 118 points for Quadrant 3;

145 points for Quadrant 4) by defining bounds between 1, 64, and 128 for the entire

128 x 128 x 149 image. These clustered points were used to compute the deforma-

tion field that registered CT/MR. Because corresponding points in the CT and MR

were not congruent with respect to the boundary locations, some residual MR image

points were located outside of the quadrant boundary while the CT image remained

within the defined boundary as shown in Figures 6-9 through 6-12. The figures also

display the registration results of the clustered data sets along with comparisons to

registration that involved no sampling of points.

In the second set of experiments, we sought more realistic examples in which point

correspondences were chosen in a particular region of interest. We chose correspond-
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ing points on the prostate of CT/MR in Figures 6-13 and in the center of the images

in Figure 6-14. Furthermore, we experimented with point clusters along the outer

edges of the CT and MR images. Registration results using points particularly in the

left and right regions of CT and MR are provided in Figure 6-15 while results using

points in the top and bottom regions of the images are shown in Figure 6-16. Each

of the point clusters varied in quantity as indicated in Table 6.8, which also provides

error results for each of the four clustered "region of interest" experiments.

6.3.1 Results and Conclusions

Regarding the experiments involving quadrants of points, the expected results were

produced in which registration accuracy was directly dependent on point distribution

in deformation field calculation. Because the deformation field was based only on

particular points in a respective quadrant or region, we expected accurate registra-

tion only in that particular area. We illustrated in Figures 6-9 through 6-12 that

the algorithm worked to accurately register only particular quadrants in each case.

Further confirmation is provided in Table 6.7 where we present comparable errors to

results in which evenly sampled points were used instead of clusters.

The second set of experiments, containing more realistic chosen point distribu-

tions, further supported the accuracy in our registration algorithm. It important to

note that different point samples were used in each case. In Figure 6-13, 110 cor-

responding points were chosen around the prostate. We observed poor registration

results in this experiments as can be seen in the figure. The registration result was

compressed and was a warped version of the original CT/MR image. We concluded

that using correspondences in an isolated prostate area is a bad choice for registration

purposes.

Compared to the prostrate example, point correspondences in the center of the

images were relatively better. However, as shown in Figure 6-14, the registration is

definitely not acceptable for clinical purposes due to warping in the outer regions of

the registration result. The results are only slightly comparable to the results using

an evenly sampled set of points as seen in the difference image in the lower right
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hand corner of the figure. However, quantitatively the error results in the center are

quite similar to evenly sampled point sets with /-terror values both of approximately 9

voxels.

The last two experiments with outer area point distributions gave the most sat-

isfactory results of all of the experiments involving various point distributions. In

Figure 6-15, the correspondences were all of the points with x-coordinates less than

35 and greater than 100 and all of their relative y-coordinates from 1 to 128. The

difference image (lower right corner) produced more accurate results in the right-hand

side of image compared to the left-hand side. We expect the registration results to

balance out if more correspondences are chosen in the left hand side of the image.

A total of 225 points were used to compute the results for this experiment. We

were pleased with the Perror value of 7.682 voxels, which was lower that any of the

experiments involving evenly sampled points and polynomial order 2 in Tables 6.2

through 6.5.

The lowest Perror of 6.954 voxels was produced from the experiment involving

points chosen from the top and bottom areas of the CT/MR images to compute the

registration. The point quantity was 312 and provided a registration error image

that was the best result from all of the point distribution experiments. Only mi-

nor offsets were apparent when compared to registration results involving 526 points.

The bounds were chosen by defining the x-coordinates to include points ranging from

1 to 128 and the y-coordinates to include points less than 30 and greater than 85.

There were no compressed or asymmetrical registration characteristics as in the pre-

vious experiments involving quadrants or other point distributions. We gather from

these results that the algorithm most accurately computes the registration from the

corresponding points in clusters with a significant horizontal distribution.

Errors without Sampling (voxels)
Perror 0'error maxerror mederror

9.316 4.785 31.243 8.539

Table 6.6: Registration error results from 526 point set
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Figure 6-9: Quadrant 1 Registration Results
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Figure 6-10: Quadrant 2 Registration Results
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Figure 6-11: Quadrant 3 Registration Results
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Figure 6-12: Quadrant 4 Registration Results
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Prostate points of patient image
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Figure 6-13: Prostate Only Registration Results
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Figure 6-14: Center Points Registration Results
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Outer points of patient image
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Figure 6-15: Left/Right Border
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Figure 6-16: Top/Bottom Border Registration Results
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Quadrant 1 Errors (voxels)
Perror 8.328
Uerror 4.747

maxerror 31.663
mederror 7.133
Quadrant 3 Errors (voxels)

[error 10.513
Uerror 4.524

maxerror 25.499
mederror 10.784

Table 6.7: Quadrant

Prost. Errors-110 points
Perror 11.247
Orerror 5.151

maxerror 26.845
mederror 10.823

Lft/Rt Errors-225 points

[terror 7.682
(Terror 4.659

maxerror 28.091
mederror 6.420

Quadrant 2 Errors (voxels)
Perror 9.327
Uerror 4.721

maxerror 26.944
mederror 8.239
Quadrant 4 Errors (voxels)

[terror 9.191
-error 4.928

maxerror 26.845
m ederror 8.270

Point Set Distributions

Center Errors-137 points

[terror 9.156
O-error 4.736

maxerror 31.663
mederror 8.656
Tp/Bot Errors-312 points

[terror 6.954

-error 4.143

maxerror 26.944

mederror 5.966

Table 6.8: Various Point Set Distribution Errors (voxels)

6.4 Error Validation

To validate the error, we decided to measure errors using known deformation fields.

We defined a 64 x 64 x 64 "cube" of random numbers. We then created a random

point set, which we denoted pl. We performed the following operations on p1 to

create the 2 "d point set p2 : rotation by 5 degrees; translation of 5 voxels, and scaled

by 0.5. We then used our algorithm on four experiments using 50,100, 150, and 200

points. The original points were sampled by 2 in each experiment and the reserve

points were chosen as all points not included in the original set. This in effect evenly

divided the number of points between the two point sets. We analyzed results for

polynomial orders 1, 2, and 3. The resulting error calculations are shown in Tables 6.9

through 6.12. We concluded that our error results were accurate because the values

were close to zero as expected, especially given the complexity of the transformation.
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Exact error values of 0 voxels were produced in trials involving only a translated 2nd

point set.

Most importantly, we wanted to validate our error analysis algorithm which pro-

duced the results for the variation in point set quantity and distribution and polyno-

mial order. By showing that minimal errors can be achieved in the simple case using

known deformation fields, we offer support for our registration results of CT/MR. We

have demonstrated that accurate results can be achieved by using clusters of points

versus a point set consisting of evenly sampled correspondences throughout the entire

CT/MR images. Due to the fact that error values are expected to be of the order

of 2 voxels or less, we realize that a different approach must be taken regarding our

registration calculations. We expect the results to improve if we were to use non-

linear interpolation functions in future computations instead of linear interpolation

functions used to compute a dense deformation field in these results.

Error Validation - 50 points (voxels)
poly. order 1 2 3

Reserve Original Reserve Original Reserve Original

Perror 0.600 0.745 0.942 0.829 2.122 2.028
cerror 0.332 0.391 0.530 0.470 0.586 0.658

Table 6.9: Error Validation-25 original points and 25 reserve points

Error Validation - 100 points (voxels)
poly. order 1 2 3

Reserve Original Reserve Original Reserve Original

Perror 0.651 0.794 0.848 0.773 0.871 0.830

Orerror 0.354 0.464 0.518 0.501 0.418 0.439

Table 6.10: Error Validation-50 original points and 50 reserve points
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Error Validation - 150 points (voxels)
poly. order 1 2 3

Reserve Original Reserve Original Reserve Original

Perror 0.809 0.792 0.873 0.898 0.743 0.730
Uerror 0.456 0.452 0.591 0.573 0.348 0.409

Table 6.11: Error Validation-75 original points and 75 reserve points

Error Validation - 200 points (voxels)
poly. order 1 2 3

Reserve Original Reserve Original Reserve Original
Perror 0.788 0.839 0.773 0.769 0.911 0.864
07error 0.536 0.510 0.449 0.456 0.446 0.477

Table 6.12: Error Validation-100 original points and 100 reserve points

6.5 Conclusions

Based upon our calculations, we concluded that the 2nd order polynomial was suf-

ficient for minimizing the error in the registration calculations. Note that for each

experiment involving polynomial orders 1 through 4, the greatest Perror and O-error de-

crease occurred in the transition from order 1 to 2 and greatest increase from order 2

to 3. In a 2nd order polynomial there are three points through which the polynomials

must pass, and we conclude from our error analysis that it is the best polynomial fit

given the particular sparsity of our data. We realize that polynomial order 1 is not

expected to properly fit sparse data while higher order polynomials such as 3 through

5 in our case, produce large errors due to overfitting the data.

It is important to note that the results in Figure 6-7 are quite similar despite the

fact that there are approximately 4 times as fewer points in Figures 6-7(a). This im-

plies that fewer corresponding points can be used to compute an accurate registration.

Also, we showed that a horizontally inclined correspondence distribution produced

the minimum Perror calculation compared to using any of the distributions tested in

this thesis. Investigations into other interpolation functions must be completed before

further conclusions can be drawn.
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6.6 Future Work

We realize that caution must apply when using polynomial interpolators, particularly

with very sparse data points. In some cases the fitting polynomial can introduce wild

variations above or below the actual data points. The fitting polynomial does actually

pass through all the data points, but by forcing it to be of the minimal degree, the

polynomial may become a very poor representation of the data between the given data

points. In these cases it is frequently better to use other techniques, such as a spline

curve through the data points. In this case the data is represented by a succession

of cubic polynomials chosen so that there are no kinks, in the sense that that the

derivative is continuous. In addition, these cubic spline pieces are constrained to be

the straightest pieces possible. Thus these spline curves are what one would get by

threading a reasonably stiff piece of wire (a spline) through all the data points [34].

In addition to investigating different interpolation functions, we would like to ob-

serve results from more randomized point distributions than the clustering presented.

Particularly, we will investigate more cases of horizontal point set distributions with

fewer points than the 312 points for which we provide results. We will investigate

various methods for calculating the deformation field. Ideally, we would like to have

errors that have a perror and o-error of no more than 2 voxels, which would be appro-

priate in clinical applications.

We will return to the problem of feature detection in ultrasound in anticipation

that more prominent edges can be detected for organ boundary isolation. Currently,

we have corresponding CT and ultrasound liver data, but no corresponding MR data.

In addition, we have corresponding CT/MR prostate data but, no corresponding

prostate ultrasound data. Thus far, our plan is to compute an initial alignment

between our CT and ultrasound liver data until we can obtain CT with corresponding

MR data. We will investigate algorithms such as interpretation tree search, ICP, and

Mixture Point Matching (MPM) to determine automatic correspondences to replace

our current manual method. A segmentation algorithm for surface point extraction of

CT/MR is necessary so that we can use ICP, for instance, to match the surface points
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to edge points in ultrasound. This will provide an initial correspondence between the

two data sets. Our polynomial warping algorithm will then be used to refine the

matching, taking the correspondence returned by ICP as the set of matching points.

Finally, we will warp the entire CT/MR data set to the ultrasound for our registration

results which will eventually be extended to real-time.
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