
Collaborative Transcoding of Web Content
for Wireless Browsers

by

DAVID MICHAEL SIRKIN

S.M. (Management) 1992, Massachusetts Institute of Technology

B.A.S. (C.S.E.) 1985, University of Pennsylvania

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September, 2000

© David Michael Sirkin, 2000. All Rights Reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly
paper and electronic copies of this thesis document in whole or in part.

Author
Department of #crical rngteering and Computer Science

September 1, 2000

Certified by
Philip Greenspun

Res(hSff i 9 ntist, Lab y fo omputer Science
euSupervisor

Accepted by
_______ Arthur C. Smith

A~RKER MASSACHUSETTS INSTITUTE Chairman, Committee on Graduate Students
OF TECHNOLOGY Department of Electrical Engineering and Computer Science

OCT 2 3 2000

LIBRARIES

Collaborative Transcoding of Web Content
for Wireless Browsers

by

DAVID MICHAEL SIRKIN

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

ABSTRACT

Mobile device browsers require their own transport protocols, scripting and markup languages,
creating obstacles to interoperability with current Web services. The current approaches to the
problem have (1) service providers creating mobile versions of their services, or (2) gateways
automatically transcoding markup. But not all developers will migrate their services, and
automated transcoders can fail to return relevant content where HTML is not well-formed or
pages are especially long. When transcoding is successful, small mobile displays often require
that users search through dozens of screens to find desired information.

To address these shortcomings, a collaborative service was developed to guide users in selecting
elements from Web content to serve as bookmarks to their mobile browsers. Specific research
questions were whether and when bookmarks were better suited mobile users' information needs
and would be used in preference to the alternatives. A user study was untertaken to compare
gateway and collaborative approaches, considering setup effort, access effort, and page relevance.
As the time to select elements decreases, subjects were more inclined to use bookmarks rather
than an automated transcoder. Most indicated that the ability to access specific information
quickly when needed outweighed the additional setup effort. This became more important as page
length increased. The service was launched on the public Internet as part of the study. User
feedback led to the addition of a well-received feature to bookmark native mobile sites.

Thesis Supervisor: Philip Greenspun
Title: Research Scientist, Laboratory for Computer Science

Acknowledgements

Particular thanks are owed to Andrew Grumet for contributing the idea for the bookmark service,
and to Philip Greenspun for encouraging the usability study with real-world users. Their expert
insight and advice over the duration of the project have made the service possible and the writeup
sound. Thanks also to the user study subjects and public Internet users worldwide for their time
and interest and responses to a lot of questions.

Table of Contents

1 Introduction..7

Web and Mobile Applications
Web and Mobile Interoperability

2 A WAP Bookmark Service..................................

Goals
Design
Details
Functions

3 Usability Analysis ...

User Study
Public Launch

4 Conclusions and Future Work..............................

4.1 Building a Community
4.2 Continuing Development

5 References .. 38

6 Appendices: Bookmark Service Functions....................

Create and Manage Bookmarks
Share and Copy Public Bookmarks
Serve Content to WAP Browsers

1.1
1.2

2.1
2.2
2.3
2.3

3.1
3.2

7
9

.11

11
11
13
16

.26

26
32

.. 34

34
35

A
B
C

.. 40

41
96

110

Web servers and clients communicate using HTML and IP............ 8

WAP servers and clients communicate using WML and WAP 8

Automated transcoder resides on a WAP gateway 12

Bookmark service resides between WAP gateway and server 13

Page flow for bookmark service users 16

Web home page view of bookmark service 17

WAP home deck view of bookmark service 17

Advanced interface composition view 20

Friendly interface composition view............................. 23

Mean time to compose regular expressions 28

Responses for anticipated bookmark service use 30

r2 correlation coefficient values based on prior experience 28

r2 correlation coefficient values based on the interface used 29

List of Figures

1

2

3

4

5

6

7

8

9

10

11

List of Tables

1

2

1 Introduction

1.1 Mobile and Web Applications

Designing applications to interact with mobile and wired Internet users is one of the great

challenges facing Web publishers and service developers today. Compared to the wired Internet,

mobile networks are expensive, slow, and unstable [01]. Compared to desktop computers, mobile

devices have limited and non-standard keypads, displays, processing power, and memory capacity

[02]. Until 1997, the few wireless communication companies connecting to the Internet had to

develop proprietary browsers, protocols, markup, and scripting languages to operate reliably

within these constraints. Phone.com championed the Handheld Device Markup Language

(HDML) operating through its UP.Browser, and Palm Computing developed Web Clippings

accessed through Palm Query Applications (PQAs).

But between 1998 and 2000, service providers and device manufacturers have been working with

the World Wide Web Consortium to establish industry-wide standards. Founded by Nokia,

Ericsson, Motorola, and Phone.com, the WAP Forum recently introduced the Wireless

Application Protocol (WAP). WAP defines a set of protocols in transport, session, and application

layers similar in concept to the wired Internet but optimized for mobile networks and devices [03].

The Wireless Markup Language (WML), an Extensible Markup Language (XML) application

with a public Document Type Definition (DTD) [04], is designed for use over narrow-band

networks by devices with limited input and computational facilities. WML content is organized

using card and deck metaphors. A card represents any single user interaction, such as a screen of

text, a choice menu, or a text-entry field. Users navigate through a series of cards, review the

contents of each, make a choice or enter any requested information, then move on to the next card.

7

Cards are grouped locally into decks. A deck is similar to a Web page in that it is the file

transmitted to a client and is identified by its Uniform Resource Locator (URL).

Servers on the wired Internet reach clients on mobile networks by connecting through WAP

Gateways that reside between the networks. A server passes WML or WMLScript documents to a

gateway, that (1) converts from HTTP to the WAP protocol stack, (2) compiles the documents into

the bytecode mobile browsers can read, then (3) forwards that code on to a client [05]. The process

is then run in reverse for mobile clients to reach Internet servers. Figures 1 and 2 compare the

paths for information flow for wired and mobile networks.

Request Web
Server

HTML Pag C

Public Internet

Figure 1: A Web server and client communicate using HTML and Internet Protocols. A Server
connects directly to a desktop computer over the wired public Internet. Alternatively, it may connect
through a firewall or proxy that resides between the public Internet and private wired intranet. The
server and desktop computer rely on the same data format for requests and responses.

Request Request WAP

I Gateway Server

888 Byt code WML Deck Content
E00!ntn

Private Wireless Network Public Internet

Figure 2: A WAP server and client communicate using WML and Wireless Application Protocols. A
Server connects directly to a WAP gateway that resides between the wired public Internet and private
wireless network. The gateway transforms requests and responses between the textual WML stored on
the server and the compiled WML received by the device.

Unfortunately, since mobile browsers are designed to understand only wireless standards, they are

unable to access Web content directly. Increases in wireless bandwidth may eventually lead both

network architectures to converge [06], but the information appropriate for mobile use will still

differ from that for desktop use. Differences in input and display are part of the reason. But more

8

importantly, mobile users are more likely to require task-specific information for immediate use

than to browse around for something that might be relevant.

1.2 Mobile and Web Interoperability

To serve both mobile and desktop users, application providers have three options:

- build versions of their services to serve mobile browsers directly;

* build versions of their services to generate a device-independent language, which is then

translated into the native formats of requesting browsers;

* serve existing content as is and rely on downstream processing to transcode Web to

wireless markup.

The first approach allows developers to take advantage of unique wireless network capabilities

such as telephony interface and geographic positioning. Unfortunately, it also requires them to

create, debug, and maintain duplicate sets of functionally similar code. Changes in data

manipulation or presentation may require similar changes in both sets, depending on the

modularity of the service.

Unless their services are already designed for device-independence, the second approach requires

developers to modify their current services to generate XML, then apply Extensible Stylesheet

Language (XSL) stylesheets to translate that to the appropriate markup. While the approach is the

WAP Forum's recommended long-term solution, few publishers will adopt it until they have a

sufficient mobile user base. As of July 2000, less than one percent of Web services have been

modified to support mobile access [07].

For the third approach, WAP gateways are a natural location to transcode, as they already

transform the textual WML stored on servers to the compiled WML received by devices [08].

Automated transcoding has the advantage of requiring little if any additional development effort

by application providers, or access effort by users. But in practice it requires the original content

to be well-formed, which is often not the case [09].

9

Nevertheless, companies such as Spyglass [10], Puma Technology [11], Digital Paths [12] and

Avant Go [13] have already released products to implement this solution. Their code resides on a

WAP gateway and acts as a proxy to convert HTML automatically to wireless device languages

like HDML or WML. But not all Web content is well-suited to mobile viewing, even after

successfully translating markup and accounting for scripts and images. A server cannot know

what information on a particular page any mobile user wants, so it tries to deliver it all. Owing to

memory constraints, WAP devices have compiled deck limits of approximately two to eight

kilobytes [05]. As a result, most Web pages will be divided among multiple cards spread across

several decks, and served separately. More than 50 cards per deck is not uncommon. Users then

must try to find desired information buried in a deck. Sometimes that information is clipped,

because the translated page exceeded the deck limit.

Oracle [14] and IBM [15] offer suites of middleware to perform the same task but in a different

way. Adapters extract content from Web pages to translate to an intermediate device-independent

format like XML. Transformers then translate the XML to any of several mobile formats. The

intermediate format allows the use of one adapter per source and one transformer per device. But

these suites are designed for application providers to select content from already-existing Web

pages that they will make available to all mobile users. So the same problem occurs as with

gateway transcoders, that mobile users with different information needs have to receive the entire

(translated) Web page content.

Gateway and middleware transcoding may address the Web-to-mobile transmission problem, but

they do not address the Web-to-mobile information problem. Mobile users know their own

information needs better than automated or predefined transcoders. The questions addressed in

this thesis are (1) whether we can design a service to lever this knowledge in advance in a way that

makes the subsequent mobile experience more personal and precise, and (2) which users

accessing what type of content benefit most from its use, when compared with the other

approaches.

10

2 A WAP Bookmark Service

2.1 Goals

The new service should allow users to view Web page content they cannot access directly from

their mobile browsers. The mobile view of that content should be more compact and relevant than

automated transcoders can provide. So control over which elements are selected from the content

should reside with the users. That is, users with different information needs should be able to

select different elements from the same page. We do not want to save page content directly, only

the means to retrieve certain elements at a later time, mapped to the right user and returned using

a language mobile browsers understand. Since URLs below the top-level at many sites can be

quite long, addresses should be entered using a desktop Web browser rather than a mobile device

keypad.

2.2 Design

Users first create bookmarks using their desktop Web browser. Each bookmark pairs a target Web

page address with a regular expression. The expression is used to match single or multiple

occurrences of a text pattern within the page. Matching a single occurrence would be used on a

page that contained, for example, a stock quote or weather forecast; matching multiple

occurrences would be used on a page that contained a number of news headlines. Users then

access these bookmarks as a select list using their mobile device browser.

Bookmarks are created by entering an address and composing a regular expression, or by copying

an already existing bookmark. A larger store of bookmarks makes it more likely that one will

already exist to suit a particular user's needs. Sharing bookmarks though a public exchange lets

11

users make the most of that resource. So users can view their personal menus by requesting

bookmarks that only they own; or they can view public summaries by requesting all public

bookmarks or only those under one host or owned by another user. But even if no public

bookmark exactly matches a user's needs, another may be found that is related in some way. For

example, it may apply the desired regular expression but to a different page. In that case, the

original address can be edited and the new bookmark saved back into that user's personal menu.

Allowing bookmark authors to note details about a bookmark's components, operation, or use

may further encourage collaborative learning about how to edit existing bookmarks or compose

new regular expressions.

WAP device design encourages the use of remote resources. To conserve onboard memory, many

mobile browsers do not store bookmarks (or home pages or cookies). Instead, they are stored on

the service provider's local WAP server [16], which identifies the device uniquely and supplies the

appropriate files during requests. But when users roam on another network or switch providers,

they can lose these files [17]. Transcoders that reside on WAP gateways only serve users on the

home network, so roaming users can lose the ability to access the Web. The bookmark service

solves this problem by having users store their bookmarks on a server at MIT's Laboratory for

Computer Science, which they can access from any network or through any gateway. Persistent

storage on the server is achieved using a Relational Database Management System (RDBMS).

Figures 3 and 4 compare the paths for information flow for automated gateway transcoders and

the bookmark service.

Request Request Web

Gateway Server

Transcoder
DOE Bytecode HTML Page ontent
:00V

Private Wireless Network Public Internet

Figure 3: The automated transcoder resides on a WAP gateway. Requests from a client to the gateway
are received, decompiled and forwarded on to a Web server as in Figure 2. Responses from the Web
server to the gateway are first translated from HTML to WML by the transcoder. Then the gateway
compiles and forwards the result to the client.

12

Request Request Bkmk Request Web
Gateway Server Server

S Bytecode WML Deck Bkmks HTML Pag Content

Private Wireless Network Public Internet

Figure 4: The bookmark service resides between the WAP gateway and content server. Requests from a
client are processed by a gateway as before, but specify the bookmark to serve rather the page to return.
The bookmark server issues page requests to a Web server. Responses are matched against the
bookmark's regular expression, capturing selected HTML elements. Then the server forwards the result
to the gateway as WML as in Figure 2.

2.2 Details

Development Environment

The bookmark service is composed of scripts that generate Web pages or WAP decks, and process

user input and database information. It uses the AOLServer Tcl 8.3 API connected to an Oracle 8i

RDBMS, and is built as an extension to the open-source ArsDigita Community System (ACS)

toolkit. The ACS is a Web software system for building and managing online communities and

collaboratively contributed content [18]. The service relies on existing ACS modules that handle

user management functions such as registration, group membership and permissions, and site

management tools such as request processing and server monitoring.

Security

The service allows users to upload and evaluate custom-defined regular expressions on its server.

Doing so requires the use of the built-in Tcl procedure eval, which presents a potential security

risk. In particular, an exec procedure included within the expression may be able to invoke

arbitrary Unix programs. We can address the problem by taking two precautions. The first is to

run the Web server as an unprivileged user in a chroot () environment. Then scripts running on

the server will only be able to view files or execute the limited selection of programs under the

server's root directory. But this does not prevent users from including exec commands. So rather

than have users upload an entire regular expression while creating bookmarks, the second

precaution only allows them to compose and submit the match pattern. A script then builds the

full expression evaluating the user-supplied input as a string only. Steps that do so include (1)

13

wrapping the match pattern in braces to force its literal interpretation, and (2) escaping brackets

that would result in a Tcl procedure call.

Schema Mapping

Bookmarks are represented by rows in the wapbookmarks table. Since different bookmarks may

refer to the same page but apply different regular expressions (and the reverse), neither of these

represents a unique identity. Each bookmark uses an integer derived from an Oracle sequence as a

primary key. Here is the table definition:

create table wap-bookmarks (
-- Identify this particular bookmark.

bookmark id integer primary key,

bookmark-title varchar(500),

ownerid integer not null references users(userid),

completeurl

hosturl

theregexp

matchvars

multiple_p

sortkey

hidden-p

private-p

precedingtext

following-text

onelinedescrip

detaileddescrip

metakeywords

metadescrip

Want to view public bookmarks by host and owner.

varchar(1000) not null,

varchar(500) not null,

Where theregexp is null, bookmark is a WAP deck.

varchar(4000),

Space-separated list of match vars to return.

varchar(1000),

Match a single or multiple occurrences on page.

char (1) default 'f ' check (multiple-p in ('t' , 'f')),

For querying and presenting bookmarks in menu.

integer not null,

Bookmarks can be hidden from view on mobile device.

char (1) def ault 'f ' check (hiddenp in (t' , 'f ')) ,

char (1) def ault 'f ' check (privatep in (' t ' , ' f ')) ,

Additional owner-supplied text for generated page.

varchar(1000),

varchar(1000),

User description, also for searching bookmarks.

varchar(1000),

varchar(4000),

Meta-tag description, for searching bookmarks.

varchar(4000),

varchar(4000),

Track when bookmark was created and last modified.

14

creationdate date not null default sysdate,

modificationdate date,

-- Track when page was last alive and regexp worked.

lastcheckdate date,

lastlivedate date,

last regexpdate date

The first few attributes are those required to serve bookmarks: (1) the target Web page address, (2)

the regular expression to apply, (3) which match variables to return, and (4) whether to match one

or all occurrences in the page. The remaining attributes are used to view and manage bookmarks.

The owner's identity refers to a unique key in the ACS user information table. The sort key,

hidden and private flags, and preceding and following text permit custom menu view settings.

One-line, detailed, and meta-tag descriptions allow users to better understand public bookmarks

and find them through keyword searches. And dates are stored for the last time bookmarks were

checked, hosts were reached, and regular expressions matched.

Because users can copy each other's bookmarks, there will be duplicate information in the table.

An alternative representation would avoid this by using two tables: one to store the attributes

required for serving a bookmark, and another to map users and their view and management

settings to the first. When users copy a bookmark, they just reference a row in the attributes table.

But the advantage of the approach is also its drawback. When a page's layout changes, only the

original author has to update the attributes row, rather than all users who reference it. However, all

bookmarks that reference that row are subject to the changes made by the original author.

Transactions

Creating a bookmark inserts a new row in the database. Copying a public bookmark into a

personal menu also inserts a row in the database, having the same attributes as the original except

for the primary key and owner. Users should be able to modify or delete bookmarks that reside in

their own menu, but not in someone else's. So all updates must be constrained by first confirming

the bookmark's owner.

15

2.3 Functions

In keeping with the design goal of streamlining the mobile experience, selecting page elements

takes place beforehand using a desktop Web browser. Retrieving the elements then only requires

following a link on the mobile display. Visitors to the site are directed to Web or WAP functions

based on their connection's request headers. These lines are included with most HTTP requests to

provide the server with information about the client. The bookmark service first checks the user

agent and accept fields for the client's browser type and accepted document types, then makes the

redirect decision. Figure 5 shows the page flow for the Web and WAP site functions.

Visitor's Client rWAP Mbile Su ary MobileTas

PWeb

Personal Summary Public Summary Group Summnary

Check Links New HTML New WML Serc Host Owner

Hide Order view

DB Update Edit HTML Copy Edit WML

S Page or Deck Q Form Sequence Task

Figure 5: Page flow for bookmark service users. Users are directed to the appropriate area of the site for

their client type. Web users create new bookmarks, view or edit their existing bookmarks, check the

reference status of their existing bookmarks, or view and copy other users' bookmarks. They can also

set the order of bookmarks in the list or hide them from the mobile view. Database inserts or updates are

redirected back to the personal summary. WAP users view their current bookmarks in the designated

order and apply individual bookmarks.

Once at the appropriate part of the site, users first see their personal bookmark summary. Figures

6 and 7 show this summary view using Web and WAP browsers.

16

Welcome to the WAP Bookmark Service
Your Workspace WAP Bookmark Home

[New Bookmark for HTML WML Page I Check Links I View Public Bookmarks]

WAP Bookmarks for David M Sirkin Actions

Slashdot Current technology news headlines from Slashdot.org. hide / edit

Weather Boston local forecast from the National Weather Service. hide / edit

Cisco Real-time quote for Cisco's stock price from Nasdaq.com. hide / edit

Google Search engine translates HTML in search results to WML. view / edit

Italicized bookmarks are hidden from view on your mobile device.

sirkin@mit.edu

Figure 6: Web home page view of bookmark service. Users select bookmarks from the list, change the
order they appear or hide them from their mobile view. Users follow links from here to Web forms to
create new bookmarks for Web or native WAP pages, edit existing bookmarks, check the status of
bookmark references and expressions, and view summaries of public bookmarks.

Figure 7: WAP home deck view of bookmark service. Users select bookmarks from the list, view the
results on the following card, then update the view of that card or return home to select another
bookmark. The Slashdot bookmark is highlighted to be selected by pressing a soft key or entering the
bookmark number. The Google bookmark is absent, as it was indicated as hidden from the mobile view
in Figure 6.

Create and Manage Bookmarks

Most Web pages that users want to bookmark include periodically updated content. These pages

are usually generated by programs that insert elements of timely information into otherwise

unchanging page markup. These elements are what bookmark service users need to view when

mobile. Regular expressions indicate which elements to capture from a page by anchoring them

between unchanging page markup. But while regular expressions are powerful commands, we do

not want to limit the potential user base to programmers with experience composing them.

17

Welcome to the WAP

Bookmark Service

Select a bookmark:

1 Slashdot

2 Weather

3 Cisco

Back Reload

The service therefore provides two interfaces for creating bookmarks: advanced and friendly. The

advanced interface has users compose components of the regular expression, while the friendly

interface has users indicate the type of content to match. Both interfaces follow the same basic

process: (1) select a target Web page and fetch its contents, (2) build a regular expression using

user-provided input for a match pattern, (3) apply that expression to the page and display the

results, and (4) iterate until the results match the user's intent. Where the two interfaces differ is

what input they require and how they use that input to build the expression.

The advanced interface takes the more direct approach by having users compose the match pattern

into a Web form. Patterns of this sort are most often built by selecting out a section of page

markup that includes the desired text string. Replacing target elements within the string with

meta-character sub-patterns such as ([A<]+) or (.+?) instructs the regular expression to capture

whatever matches those locations in the string. The first sub-pattern matches any text from the

preceding character to the first < encountered, which often indicates the next markup tag. It is the

better choice when the target elements are surrounded by markup. The second sub-pattern

matches any text from the preceding character to the following character. It is the better choice

when the target elements include markup. The workflow help text provided for the advanced

interface is as follows:

The advanced interface works on most pages, since you compose the
regular expression yourself. You can only have one match pattern per
bookmark, but that pattern can include many sub-patterns. You can then
select which of the sub-patterns to view on your mobile browser.

1. View the source and find the text to select out

Leave spaces and line feeds as they appear in the markup
You may have to scroll to the side as well as up or down

2. Copy a block of markup around the text and paste it into the form

Select a large enough block to identify the target text
But smaller blocks may be required for multiple matches

3. Replace the targeted text with sub-patterns ([^<]+) or (.+?)

Use the first if the text is followed by a markup tag
Use the second if the text itself includes markup tags

4. Indicate whether to match single or multiple occurrences

5. View the results and iterate until you are satisfied

18

Say for example we are camera shopping and want a bookmark to return the recent classified ads

on photo.net. The first step is to set the target page address to http://www.photo.net/gc/domain-

top?domainid=2 and look at the source. There we find that all of the ads have the following form,

where number and item and price are different for each entry:

item and price

We would paste the string into the Web form and replace the number and item and price

elements with sub-patterns. One possible match pattern would be:

([A<]+)

The line feeds are considered part of the match pattern, and are used to differentiate the recent ads

from other unordered list items in the page having line feeds at different places. The script then

takes over by counting the parenthesis-enclosed meta-characters within the user-submitted pattern

as the number of match variables. The regular expression is assembled by enclosing the pattern

within braces, and appending the variable containing the page content followed by the match

variables. In this case, the resulting regular expression would be:

regexp {

([^<]+)
} $urltext match var_1 var_2

The expression is then evaluated and the results are displayed back to the same Web form. If the

user has opted to match all occurrences within the page, the first match is removed and the

expression is re-evaluated on the revised page. These two steps repeat until no more matches are

found, when as before the results are displayed to the same Web form. In this way, users receive

immediate feedback on how their bookmarks work, and the pattern can be continually revised.

Users then select which of the returned match variables to place into the mobile view and which to

ignore. For the classified ads bookmark, the number element would probably be ignored. Then

after soliciting any other text to appear in the bookmark, and any brief or detailed descriptions, the

19

script inserts the new bookmark into the database. Figure 8 shows the advanced interface

composition view.

Figure 8: Advanced interface composition view. Users enter a match pattern into the form and select
how many occurrences of that pattern to match against the original page. If the pattern includes more
than one parenthesis-enclosed sub-pattern, the script counts them and applies each as a match variable.
The form then allows the user to select which of the match variables to place into the mobile display and
which to ignore.

The friendly interface generates the match pattern rather than having users compose it directly.

Here users enter a text string that they wish to match against the page into the Web form. Strings

of this sort are typically just copied from the browser window and pasted into the form. The

workflow help text provided for the friendly interface is as follows:

20

Specify "MIT Homepage"
Your Workspace: WAP Bookmark Home : New Bookmark: Specify

Confirm URL
The bookmark title and target page:

o MIT Homepage
o http://web.mit.edu/ (source)

Match Pattern
Enter a match pattern for the page. We will then build the expression.

Match E One E All Occurrences (20 Max)

View Result

The Returned String
Continue to modify the text until match variables capture your intent.

Match D Var 1 E Var 2

1: 000101
2: Nikon F5, Instructions and Box $1,850.00

1: 000102

2: Hasselblaad 500CM and 80 Planar Lens $2,500.00

1: 000103

2: Wisner Field Camera and 150 Nikon Lens $1.500.00

Select Match Vars

sirkin@mit.edu

The friendly interface works best on simple pages where the text you

want to select does not include hidden characters like . You can

only have one match pattern per bookmark, but you can choose to match

all occurrences of that pattern. You can then have several bookmarks,

where each matches different elements, for any page.

1. View the page and find the text to select out

2. Copy the text from the page and paste it into the form

3. Indicate the selectivity to apply to building the expression

The most selective option will return at most one match

Less selective options result in smaller match patterns

4. Indicate the sub-pattern to apply to building the expression

Tag works most often; it selects text to the next markup tag

Text works when the selected text itself includes markup tags

5. Indicate whether to match single or multiple occurrences

6. View the results and iterate until you are satisfied

For the classified ads bookmark, one possible string to match would be the first ad appearing on

the page, shown as the first match in Figure 8:

Nikon F5, Instructions and Box $1,850.00

The script applies the user-provided string in a manner similar to how a user working with the

advanced interface would. It finds the string's location in the page, selects out a section of page

markup surrounding it, and replaces the original string in that selection with the meta-character

sub-patterns to capture the match. Users can select which of the two default sub-patterns to use.

The script then continues with the remaining steps as it would with the advanced interface.

The first problem with building the match pattern this way is that we cannot always locate the

user-provided string. Text as it appears on a browser window is not formatted exactly as in its

markup. One apparent space may actually be several spaces or a line feed or a tag. The string

entered into the form will not include any tags and may have line feeds in different places,

depending on the width of the user's browser window. There are two ways to resolve the problem.

The first method is to just ask the user to select the string from the source window rather than the

browser window. But the idea behind the friendly interface is to help the user avoid searching

through the markup. So the second method attempts to account for space, line feed and tag

21

discrepancies. It replaces every space or line feed in the string with meta-characters that represent:

"find a space or line feed here," so the string to match would become:

Nikon[\n]+F5, [\n]+Instructions[\n]+and[\n]+Box[\n]+$1,850.00

Then as the string is matched against the page to find its location, the earlier discrepancies

become matches. In cases where tags are contained within the string itself, users can select the

second meta-character sub-pattern, which will select all characters including the tags up to the

next part of the match pattern. Any captured markup is then stripped from the result when

returned.

The second problem is that we have to determine how much markup to select around the string. If

the selection is too small, the expression may match too much of the page. Surrounding markup

consisting of say, only and tags, would match all unordered list items in the page.

While in some cases this will be what the user intends, but in others like the classified ads page it

will not. Alternatively, if the selection is too large, the expression will match too little of the page.

That is, it will only match that one location rather than all occurrences that would be similar if the

pattern were less selective. So the script makes an initial guess at how much markup to select and

iterates matching the pattern against the page, doubling the size of the guess each time, until only

one match is found. Users can indicate on the form how selective the final match pattern should

be. The most selective option represents the pattern that matched the page just once. Each

successively less selective option represents a pattern that includes half the surrounding markup

of the preceding, more selective option. The current form includes three selectivity options, so

there are four times more characters in the most selective option than in the least. Since the

smallest HTML tag is three characters, a reasonable initial guess is four times that, or twelve

characters.

For the classified ads bookmark, the initial guess is too selective. The match pattern that results

from selecting twelve characters around the string contains the number element, which is unique

for each item:

id=number">

[^<]+)

</ a>

22

As a result, the expression will only match that one occurrence in the page, where we were trying

to match all similar occurrences. But the user can opt for a less selective match pattern. The least

selective option only selects three characters around the string (counting line feeds), so the match

pattern that results is exactly the right size to match all occurrences:

[^<+)

Figure 9 shows the friendly interface composition view.

Figure 9: Friendly interface composition view. Users enter a string of text from the original page into
the form and select (1) which meta-character sub-pattern to apply, (2) how selective the script should be
in building the match pattern, and (3) how many occurrences of that pattern to match against the page. If
the form cannot return the user's desired elements, she may transfer the current script-built match
pattern to the advanced interface for further editing.

23

Specify "MIT Homepage"
Your Workspace: WAP Bookmark Home : New Bookmark: Specify

Confirm URL
The bookmark title and target page:

o MIT Homepage
o http://web.mit.edu/ (source)

String to Match
Enter a string to match from the page. We will then build the expression.

Apply E Text l Tag Sub-Pattern

Nikon FS, Instructions and Box $1,850.00

Least l K] El Most Selective

Match El One F All Occurrences (20 Max)

View Result

The Returned String
Continue to modify the text until match variables capture your intent.

o Nikon F5, Instructions and Box $1,850.00

o Hasselblaad 500CM and 80 Planar Lens $2,500.00

o Wisner Field Camera and 150 Nikon Lens $1,500.00

Select Matches

o Transfer to advanced interface.

sirkin@nit.edu

Having users enter a single string from the page rather than the full match pattern, regular

expressions will only have one match variable. As a result, they cannot use the friendly interface

to capture several different types of elements from more complex pages. But in those cases it does

provide an initial match pattern that can be revised using the advanced interface.

Users can edit any part of a bookmark as well. But without the original string to match used in the

friendly interface to compose the regular expression, a friendly interface to edit the expression

makes little sense. The user could just as easily create a new bookmark from scratch. So only the

advanced interface is provided to modify the match pattern of existing bookmarks.

Since Web page locations and layouts change periodically, references may become stale and

regular expressions may no longer match. The service allows users to check their bookmarks,

view target pages for what may have changed, and offers them the option to edit or delete those

bookmarks that no longer function as originally intended. Appendix A includes the code for

viewing and customizing a personal menu, creating and editing bookmarks, and checking

bookmark status.

Share and Copy Public Bookmarks

Several summary views enable users to share and copy public bookmarks by helping them find

bookmarks that suit their needs. Views can be ordered by recency or popularity, or grouped by

host or owner. Ordered views bring new or frequently copied bookmarks to the top of the list. But

other bookmarks may suffer from a positive feedback network externality where the same few are

copied frequently, making them even more recent and popular, so they remain at the top of the list.

Alternatively, grouped views allow users to find bookmarks based on a common Web page

address or owner. Users can find all the different bookmarks for one page in the same place. If

users know or find someone else with common interests, all of that user's bookmarks will also be

in the same place. For users looking for particular bookmarks, there is a form to search the

database for keywords appearing in bookmark titles, owner names, and owner-provided or meta-

tag descriptions. Appendix B includes the code for the public summary views, and for searching

and copying bookmarks.

24

Serve Content to WAP Browsers

Once a bookmark is in the database, serving it to the mobile browser is relatively straightforward.

Users view bookmarks in their personal menu as options in a WML form select list. Since some

browsers don't display more than ten options in one list, bookmarks falling after the tenth on any

card are placed onto the following card. Choosing a bookmark invokes a script to apply the

regular expression to the target page once or multiple times, removing the match each time as

described earlier. The match variables indicated to be placed in the view are retrieved, inserted

into a WML deck template, and returned using the appropriate WAP MIME types. Appendix C

includes the code for serving bookmarks to mobile devices.

25

3 Usability Analysis

3.1 User Study

Procedure

The study design focused on regular expression composition and revision. Six subjects were

monitored while creating bookmarks for three different Web pages using both interfaces, for a

total of 36 observations. To reduce variability, subjects bookmarked the same pages as each other

and selected the same elements from those pages irrespective of the interface used.

Subjects were selected to represent a range of prior experience composing regular expressions.

They selected themselves into one of three groups representing a lot, some, or minimal prior

experience. Target Web pages and elements were chosen to represent a range of difficulty using

both interfaces and to create realistic and useful bookmarks. The elements to capture were the

following:

- all of the news headlines from Slashdot's home page at http://www.slashdot.org;

" the last sale price for Cisco stock from Nasdaq's real-time quotes page at http://

quotes.nasdaq-amex.com/quote.dll?symbol=csco&symbolx=&page=multi&mode=stock;

- the current regional forecast from the National Weather Service's Boston Office page at

http://www.nws.noaa.gov/er/box/shtml/xm15.shtml.

The quantitative measure was the time to compose an expression so that it returned the specified

page elements. Additional observations included how many steps subjects required to generate

26

their first results, how many times they had to revise the match pattern until the expression worked

properly, and how common difficulties or successes influenced their composition time.

New bookmarks were viewed on a mobile device and users compared the results to the same Web

pages accessed through a gateway transcoder. The benchmark transcoder was Google's WAP

Search at http://wap.google.com, a search engine that translates Web content to WML for

presenting search results and for visiting Web pages reached by following the links to these results

[19]. Alternatively, some users compared bookmark results to the same information accessed

through native WAP services, such as Yahoo's stock quotes and weather.

Subjects were then asked how frequently they would use the bookmark service in preference to a

transcoder, if composing expressions were to take fewer than 2, 2 to 5, 5 to 10, 10 to 20, or greater

than 20 minutes. Responses indicated how sensitive users were to the setup effort required to

create bookmarks. The actual times to compose expressions were then compared with the

responses that indicate sensitivity to see if they were within similar ranges.

Results

Figure 10 presents aggregated results of the mean time to compose regular expressions for

subjects using each interface, grouped by their level of prior experience. Right away we see that

the friendly interface produces significantly shorter composition times than the advanced interface

for subjects of every type. But there are other important features in the figure. First, the amount of

time it takes to compose a regular expression using the friendly interface is relatively stable across

all subjects. This makes sense, since the process of selecting and pasting a string to match is

roughly the same for anyone working with that interface. Second, the amount of time it takes to

compose a regular expression using the advanced interface increases as subjects have less

experience doing so. This also makes sense, since the process of searching the page source, then

entering and revising a match pattern to return specific elements requires some amount of skill.

Taking these results together, the friendly interface provides more benefit to increasingly less

experienced subjects, exactly what it was designed to do.

27

Fm: Friendly Interface Adv: Advanced Interface

10.00
10 -

o 8 - 7.67

0~

o 6 5.50
U
2 4.00

4 3.00
3.0

S 2

0
Frn Adv Frn Adv Frn Adv

A Lot Some Minimal

Experience with Regular Expressions

Figure 10: Mean time to compose regular expressions for subjects using friendly and advanced
interfaces grouped by their level of prior experience. The difference between composition times is not
statistically significant for subjects with a lot of experience, but is for those with some or minimal
experience.

To confirm the significance of this conclusion, we can calculate the r2 correlation coefficient

values for the set of observed times. The r2 indicates how different the mean values are for

different subject groups, holding other factors constant. Increasing the difference between means

or decreasing the variance in observations increases the r2. Our study includes two categorical

variables: the subject's prior experience and the interface used; and one quantitative variable: the

composition time. So a more specific interpretation is as follows: knowing the subject's prior

experience improves the prediction of that subject's composition time by r2 percent over the best

prediction without knowing it. Likewise, knowing the interface used improves the prediction in

the same way. Tables 1 and 2 show the coefficient values for both cases.

A Lot Some None

0.13 0.57 0.71

Table 1: r2 correlation coefficient values for the time to create bookmarks based on subjects' prior

experience composing regular expressions. Responses are compared across both interfaces used holding

the prior experience group constant.

28

So for subjects with a lot of experience, knowing which interface they used accounts for only a

small percent of the difference in mean composition time. Variation in observed times accounts

for the rest. Expert users therefore cannot really expect the friendly interface to provide reliably

quicker times. But for subjects with decreasing experience, the interface accounts for increasingly

more of the difference in composition time. These users can reasonably expect the friendly

interface to improve their times. But it is important to note that this expectation only holds for

comparing bookmarks that select the same page elements. Since the advanced interface allows

users to compose more complex regular expressions, such as those containing more than one

match variable, a direct comparison may not always be possible.

Friendly Advanced

0.37 0.56

Table 2: r2 correlation coefficient values for the time to create bookmarks based on the interface
subjects used. Responses are compared across all prior experience groups holding the interface used
constant.

For subjects using the friendly or advanced interface, knowing their level of experience accounts

for a moderate percent of the difference in mean composition times. These two values do not

differ from each other as much as one might initially think. After all, Figure 10 shows that the

mean times using the friendly interface are quite close, so the r2 should be small. Likewise, the

mean times using the advanced interface are not that close, so the r2 should be large. But recall

that r2 also varies inversely with the variance, which accounts for the difference. For all subjects,

selecting and pasting a string to match with the friendly interface produces a low variance of 1.14

minutes 2. But the experimental nature of composing a match pattern from scratch with the

advanced interface produces a relatively high variance of 16.31 minutes 2.

Understanding how users compose regular expressions is only half of the story. We also want to

know how well creating bookmarks through the Web and accessing them when mobile compares

with the alternative means of viewing the same Web content. Figure 11 presents the responses to

how frequently subjects expected to use the bookmark service in preference to a transcoder, after

having created their bookmarks and viewed the same content using both means.

29

Experience with Regular Expressions

E A Lot Q Some z Minimal

Always EQ E 0

SOften *Q *Q, o EQ U

S Some Z Oz:\ Oz\ U z
cl

Never

< 02 02-05 05-10 10-20 > 20

Minutes to Compose

Figure 11: Responses for anticipated use of bookmark service depending on composition time. Users
with a lot of experience expect to use the service regularly, with weak dependence on the time to
compose regular expressions. Similarly, users with minimal experience expect to use it sometimes, with
weak dependence on the time. Users with some experience are the most sensitive to composition time,
and will likely switch to an alternative means to access Web content if setup effort is too great.

There is a trend along the diagonal, where subjects are more inclined to use the service as the time

to compose expressions decreases. But as before, there are other important features in the data.

Responses by user type do not strictly follow this trend. Subjects with a lot of experience and

those with little experience had similar replies: that their choice to use the bookmark service over

a transcoder depended more on the ability to access specific information when needed than on

how much setup effort was required to create bookmarks. The difference between their responses

is that 80 percent of experienced subjects would use the service often or always, while a similar

percentage of inexperienced subjects would only use it sometimes. Subjects with some experience

were the most sensitive to bookmark composition time, and therefore have the most influence the

trend in the figure. 40 percent of them would rely on the service often or always if it took fewer

than five minutes to compose bookmarks. Alternatively, 40 percent would use the service only

sometimes or never if it took more than ten minutes. But when questioned further, nearly all

subjects indicated that their responses would shift further toward favoring the bookmark service

as the number of cards or decks returned by the automated transcoder increased. Since the number

30

of cards and decks depend on the length of the original Web content, longer pages bias subjects

toward the bookmark service.

For the friendly interface, the mean composition times for subjects of all experience levels fall

into the range anticipated regular service use. But for the advanced interface, times for subjects

with less experience fall into the range of infrequent use. Since subjects with some experience

were the most sensitive to composition time, they are the most likely to discontinue using the

service if their first few bookmarks are of complex pages, or require the advanced interface.

Observations

Most users followed similar processes to create bookmarks using each interface. In almost all

cases, the time to compose bookmarks decreased after the first few were completed. The decrease

occurred for both interfaces, but more so for the advanced interface, where the number of steps to

get first results declined by a third on average. The number of times expressions were revised after

these first results increased slightly on average for most users as well. But combined with their

shorter overall times, this suggests a growing familiarity and willingness to experiment with the

interface.

Some bookmarks though, could only be composed by transferring from the friendly to the

advanced interface; for example, pages with content that is updated every minute or second. A

string copied from the browser might not match into its page location because the content had

changed between the time it was copied and the time the expression was evaluated. So the original

string was no longer in the page. The remedy was to redesign the service to cache target pages for

several minutes while users composed or edited match patterns. Their regular expressions could

then be matched against the unchanging cached versions. This had the further benefit of reducing

the number of GET requests to the content server.

But caching aggravates another problem: literal string matching. That is, composing a match

pattern that inadvertently matches unchanging elements in the page. Section or table headings are

typical examples. The problem does not prevent bookmarks from functioning, it just returns more

information than may be required. More troublesome though, is the opposite: composing a match

31

pattern that mistakes updated elements in the page for being unchanging. Table contents that

appear to be headings are the most frequently encountered examples. On the user study weather

page, the indicated timeframe for the current forecast (morning, afternoon, or evening) changed

three times a day, but was included in a couple of subjects' match patterns as an unchanging

element. In these cases, bookmarks may work fine on the current page but not when the page is

updated later on. Unfortunately, the bookmark service has little way to know at composition time

which elements are unchanging and which are not, especially if the page does not update for

hours or days. Instead, users can check their bookmark reference status more frequently after

creating new bookmarks. Doing so will help them identify literal string matches, but still not at

composition time.

3.2 Public Launch

The bookmark service was launched on the public Internet at http://sirkin.lcs.arsdigita.com

simultaneously with start of the user study. The site was introduced by posting its goals,

description, and address to WAP service announce and developer groups. At the time, about a

dozen public bookmarks were made available for users to copy and to help acquaint them with

how the service works.

Visitors began registering right away, but for two weeks only a few copied any bookmarks and

even fewer created new ones. The bookmark service's goals were compelling enough to bring

potential users to the site, but not sufficiently so to get them involved and bring them back.

Perhaps the design using regular expressions was overly technical. But even if creating

bookmarks was perceived as intimidating, copying them should have been straightforward

enough-particularly for the initial set of users, who were primarily WAP developers.

Several possible explanations for the lack of copying presented themselves. First, there may have

been insufficient breadth in the original set of public bookmarks to pique users' interest. As a

remedy, more varied bookmarks were placed into the set, but little changed over the following two

weeks. Second, users may not have been made well aware of the public bookmark exchange and

that copying was even possible. So their default personal menu view was modified to highlight the

five most recently posted bookmarks with pointers to the public summary views, but again little

32

changed. Third, a network effect may have been the strongest influence on activity and there were

as yet too few users and bookmarks for the feedback to build strength. This explanation has some

support. Once the number of users reached about thirty, the percentage of new bookmarks copied

relative to those created from scratch steadily began to increase, and the trend has continued.

Copies now account for about half of newly posted Web page bookmarks. But the nearly fifty

current users are still likely too few to confirm any of these hypotheses.

A number of users suggested that the service should allow them to bookmark native WAP sites in

addition to selected Web page elements. The feature was readily integrated into the existing

procedure for creating new bookmarks. Native site bookmarks are stored in the same table as the

Web page bookmarks, but can be differentiated by having null entries in the regular expression

column. Once the feature was added, an update was posted to the same discussion groups as the

earlier announcements. Within a few days, current users returned and new users registered and

began to bookmark native sites. Within two weeks of the feature's launch, native bookmarks

accounted for nearly half of all bookmarks (both new and copied) in the system.

Modifying the existing forms and writing a few scripts to enable native bookmarks took two

hours. Alternatively, modifying the friendly interface to permit users to enter text from the

browser view rather than the source view took three days. While we definitely want the interface

to work that way, its doing so is somewhat transparent to users. It isn't a feature that can be

advertised and then expected to bring in new users. So here is the first important insight: user

value is not necessarily correlated with developer effort. The return-for-effort of some features

can be extremely high, and for others can be rather low. It is better to build easier features first,

especially if they have a lot of potential value. And the second important insight: launching and

testing with real-world users is a critical step to building a more robust and useful service.

33

4 Conclusions and Future Work

4.1 Building a Community

User study subjects and public Internet users sorted themselves into two groups for accessing Web

content when mobile:

" setup-sensitive: the more time that was required to create bookmarks, the less likely they

were to use the service. At the same time, the less experience they had composing regular

expressions, the less likely they were to use the service.

- setup-insensitive: the choice between using the bookmark service or an automated

transcoder depended more on their need for specific elements of information than on the

up-front effort required to create bookmarks.

The bookmark service should suit the needs of users in both groups, except for those who are both

setup-sensitive and have only some or minimal experience with regular expressions. These users

will be more satisfied using automated transcoders, except where the original content is especially

long and they have no means other than the bookmark service for viewing desired information.

The two features initially designed to serve these users are (1) having a less-powerful but more

friendly composition interface, and (2) sharing bookmarks that are already in the system.

Monitoring site activity such as the frequency of use for each interface and the number of

bookmarks copied over time suggests that the second is the more powerful and often used feature.

For new and varied bookmarks to be shared, they first have to be created and saved into the

system. One approach is to have regular expression experts create a large library of bookmarks.

34

But a library would not strengthen the collaborative network effect, which relies on a continually

increasing store of new bookmarks. So the challenge is to encourage users, especially those with

less regular expression experience, to contribute the new bookmarks.

Several alternatives can be implemented, ranging from an enhanced user guide to a new interface

design, although the latter requires some HTML parsing, which the current interfaces avoid.

1. Provide a tutorial of example regular expressions being applied to several types of Web

page. Working through examples can quickly acquaint users with the process of creating

regular expressions. Recall that user study subject composition times decreased after

having created only a few bookmarks.

2. Provide a dictionary of pre-defined match patterns to be applied to different target pages.

Since updated content is often included in lists or tables, two of these might strip away all

content except text between unordered list items, or between table definition entries. Lists

and tables are sometimes nested, so the patterns would have to ignore any outer levels. The

pre-defined patterns may only work on simpler pages, but they provide a bridge between

the tutorial and the current interfaces.

3. Provide the means to select out Web page structural components rather than text elements.

That is, a new interface would present the user with tag-delimeted page blocks, shown as

they are in the original page, but wrapped within a Web form that allows users to select

which ones to return to the mobile browser. Example page blocks might be paragraphs,

tables, ordered and unordered lists, and images. Knowing the block types selected and

their occurrence in the page, the interface could build a match pattern wrapped by the

appropriate markup.

4.2 Continuing Development

Because it was designed as an ArsDigita Community System module, the bookmark service lends

itself well to integration with other ACS services. For example, the collaborative areas of the site

could be expanded to include a discussion forum or chat room, or users could opt to be emailed

when new bookmarks of a specific type are posted.

35

Promising areas for further development include having the service manage bookmarks more

autonomously, and increasing the variety of clients it can serve by applying multiple templates.

Checking the status of bookmark references and regular expressions can be made into a scheduled

procedure, performed during off-peak hours on a daily or weekly schedule. The procedure can

also be made smarter. In addition to just confirming that regular expressions match the page, it can

analyze their results as well. For example, if an expression is supposed to match multiple

occurrences within a page but the check finds only one, the bookmark can be marked as possibly

broken. Alternatively, the match itself can be examined to make certain it is not null and contains

at least some printable characters. Also, since regular expressions may match pages initially but

not after the content is updated-what we earlier called literal string matching-the procedure

can check newer bookmarks more frequently than it might otherwise and notify the owner if any

of these problems are encountered. One indication of literal string matching is where bookmarks

fail to match but only periodically. In this case, the number of recent failures could be counted and

matched against the number of checks over the same period; where the result is lower, a literal

match has been found.

While the system is designed to place selected Web page elements into WML deck templates,

placing those elements into XML, HDML or other templates should be relatively straightforward.

After all, most of the system's complexity is directed toward creating and managing bookmarks.

To do so, each template could be stored as a row in a bookmark-templates table. Then when a

bookmark is applied, the required template would be fetched from the database, filled with the

captured Web page elements, and served using the appropriate MIME types. The decision

regarding which template to apply could be based either on an option set by the user or by the

connection's characteristics. In the first case, each bookmark in the user's personal menu view

would include a select list of the available templates. The selected value would be stored as an

additional column in the wap_bookmarks table. In the second case, the script that serves

bookmarks would read the user-agent or accept headers much as it does now, then select the

template.

36

Another take on using multiple templates is for the bookmark service to serve results to desktop

computers using an HTML template. A regular expression could be designed to capture all of the

text in a target page, but eliminate any images. The result would resemble a Lynx browser.

37

5 References

[01] T. Kamada, "Compact HTML for Small Information Appliances," World Wide Web
Consortium, W3C Note, 9 Feb. 1998. Available http://www.w3.org/TR/1998/NOTE-
compactHTML-19980209

[02] T. Kamada, T. Asada, M. Ishikawa and S. Matsui, "HTML 4.0 Guidelines for Mobile
Access," World Wide Web Consortium, W3C Note, 15 Mar. 1999. Available http:/
www.w3c.org/TR/NOTE-html4O-mobile

[03] Wireless Application Protocol Forum, "Wireless Application Protocol Wireless Markup
Language Specification, Version 1.3," WAP-191-WML, 19 Feb. 2000. Available http://
www1.wapforum.org/tech/terms.asp?doc=WAP-191-WML-20000219-a.pdf

[04] Wireless Application Protocol Forum, "Wireless Markup Language Document Type
Definition, Version 1.1," 1999. Available http://www.wapforum.org/DTD/wml_1. .xml

[05] E. Lyngaas et al., "The Wireless FAQ," Online Document, 31 Jul. 2000, (Cited 1 Aug.
2000). Available http://www.allnetdevices.com/faq

[06] S. Pemberton et al., "XHTML 1.0: The Extensible HyperText Markup Language-A
Reformulation of HTML 4.0 in XML 1.0," World Wide Web Consortium, W3C
Recommendation, 26 Jan. 2000. Available http://www.w3.org/TR/WD-html-in-xml

[07] Info-Communications Development Authority of Singapore, "Infocomm Technology
Roadmap (Broadband Access and Mobile Wireless)," July 2000 Release. Available http://
www.ida.gov.sg/Website/IDAContent.nsf/vSubCat/Technology+Developmentlnfocomm+
Technology+Roadmap

[08] Nokia Internet Communications, "Nokia WAP Server 1.1," Product Data Sheet, May
2000. Available http://www.nokia.com/corporate/wap/gateway-case4.html

[09] T. Powell, "Wireless Web: The Final Frontier?," ITWorld.com, 17 Apr. 2000. Available
http://mithras.itworld.com/articles/columns/f-net-powell-0417.html

38

[10] OpenTV, Inc., "Spyglass Prism from OpenTV: Content Delivery and Transformation
Platform," Product Data Sheet, 2000. Available http://www.opentv.com/docs/prism30.pdf

[11] A. Fox, "Information Delivery Infrastructure in the Mobile Wireless Age," ProxiNet Corp.
White Paper, 1999. Available http://www.proxinet.com/papers/idimwa.pdf

[12] J. Cummisky, J. Purdy and T. Nozick, "Digital Paths; Delivering Internet Content to the
Palm of Your Hand," Digital Paths White Paper, 1 Mar. 2000. Available http://
www.digitalpaths.com/wp

[13] AvantGo, Inc., "AvantGo Channel Development Guide," Development Guide, 2000.
Available http://avantgo.com/developer/reference/AvantGoChannelDevelopment.pdf

[14] Oracle Corp., "Exchanging Data via XML: Source to XML, XML to Target," Online
document, Feb. 2000 (Cited 1 Aug. 2000). Available http://technet.oracle.com/tech/xml/
info/htdocs/portaltogo/ptgpaper/ptgquote.htm

[15] T. Fielden, "Transcoding Publisher Reformats Data," InfoWorld.Com, 29 May 2000. http:/
/www.infoworld.con/articles/mt/xml/00/05/29/000529mttrans.xml

[16] Phone.com, Inc., "UP.Link WAP Enhanced Services," Product Data Sheet, 2000.
Available http://www.phone.com/pub/UPLinkWAPES.pdf

[17] Phone.com, Inc., "Interoperability and Compliance Testing," White Paper, Mar. 2000.
Available http://www.phone.com/pub/IOTWP_0400.pdf

[18] P. Greenspun, Philip and Alex's Guide to Web Publishing. San Francisco, CA: Morgan
Kaufmann Publishers, Inc., 1999. Available http://www.arsdigita.com/books/panda

[19] Google, Inc., "Google Goes Mobile With Industry's First Comprehensive Wireless Search
Engine," Online document, 27 Apr. 2000 (Cited 1 Aug 2000). Available http://
www.google.com/pressrel/pressrelease20.html

39

6 Appendices: Bookmark Service Functions

Appendices are organized by site function as described in Chapter 2. Where a task such as

creating a new bookmark requires several Web forms to complete, its scripts are numbered

sequentially. The highest numbered script in any sequence performs the actual database insert or

update. Script sequences are included under one section heading. The service's top-level page is

listed here, as it naturally falls outside any of the other functions.

Redirect to Web or WAP Function

/www/wap/bookmark/index.tcl

By sirkin@mit.edu on 07/02/00

Top-level page for the WAP Bookmark System. Redirects the server based

on the user-agent type. Note that WWW pages use MIME type of text/html

whereas WML pages use text/vnd.wap.wml.

To serve all WAP documents, the /home/aol30/*.ini file should include:

[ns/mimetypes]

.wml=text/vnd.wap.wml

.wmlc=application/vnd.wap.wmlc

.wmls=text/vnd.wap.wmlscript

.wmlsc=application/vnd.wap.wmlscriptc

wbmp=image/vnd.wap.wbmp

Absolute redirects seem reliable, so use adreturnredirect.

switch [utilguess-doctype] {
wml {

adreturnredirect "wap-home"

}
default {

adreturnredirect "www-home"

}
}

40

A: Create and Manage Bookmarks

Users view their personal menu summary, change their custom view settings, create and edit

bookmarks, and check their bookmark status in the Web portion of the site. swap allows users to

change the order of bookmarks in their personal menu, and toggle-hide allows them to hide or

unhide bookmarks from view on their mobile device. The new and edit sequences of pages are

for HTML page bookmarks, while the wap-new and wap-edit sequences are for WML deck

bookmarks. Users can link to delete bookmarks from either of the edit pages. links-check

confirms reference HTTP status, first using a HEAD request and if that fails, using a GET. The

regular expression is applied to the returned document. If either the second status request or the

expression fails, the bookmark is potentially broken and the user can link to view, to see the

bookmark in more detail, or to links-delete, where it can be removed.

Personal Menu Summary View

/www/wap/bookmark/www-home.tcl
By sirkin@mit.edu on 07/10/00

Front page viewed from Web browser. Presents a list of user's bookmarks

with links to view, edit, or hide from the mobile device. Also provides

links to create new HTML or WML bookmarks, check link status, or view a

public summary of other users' bookmarks.

admayberedirectfor-registration

set user-id [adverifyand-getuserid]

An optional splash at the page top showing the five most recent bookmarks.

if { 0 } (

set nnew 5

set sqlquery-new

select *

from (select max (bookmark id) as bookmark id,

max (bookmark-title) as bookmarktitle

from wapbookmarks

where private-p = 'f'

group by completeurl, theregexp

order by bookmark id desc)

where rownum <= $nnew"

dbforeach $sql querynew

lappend newlist "

$bookmarktitle"

}

set new_text"

41

5 most recently posted bookmarks: [join $new_list ", ".

<p>11

} else {

set newtext

}

set name [db_string

select firstnames ' lastname

from users where userid = $userid"I

set title "Welcome to the [adparameter SystemName wap-bm]"

set page "
[wbmheader $title]

<h2>$title</h2>

[adcontextbarws "WAP Bookmark Home"]

<hr>

<table cellpadding=O cellspacing=O border=O width=100%>

<tr>

<td align=left width=100%>

\[New Bookmark for WML HTML Page

Check Links I
View Public Bookmarks \]

</td>

<td align=left nowrap>

User Guide

</td>

</tr>

</table>

<p>
$newtext

<table cellpadding=2 cellspacing=O border=O width=100%>

<tr bgcolor=#dddddd>
<td align=left>

</td>

<td align=left width=100% nowrap>

WAP Bookmarks for $name

</td>

<td align=right nowrap>

Actions

</td>

</tr>

</table>

<table cellpadding=2 cellspacing=O border=O width=100%>"

Link check dates have to be in full format otherwise checks made at different

times on the same day will read as being the same check. Also since WML pages

have no the regexp field, use that to provide a link to view the page or not.

Where value in the-regexp is null, the bookmark references a native WAP site.

set sqlquery-own "

42

select bookmarkid,

bookmarktitle,

nvl (one linedescrip, ' ') as oneline,
hiddenp,

to-char(last_check date, 'YY-MM-DD HH24:MI:SS') as check date,

to-char(lastlivedate, 'YY-MM-DD HH24:MI:SS') as livedate,

to-char(lastregexpdate, 'YY-MM-DD HH24:MI:SS') as regexp-date,

decode (theregexp, null, 't', 'f') as wap_p

from wap-bookmarks

where ownerid = $user-id

order by sort-key"

set flgp "f"

dbforeach $sqlquery-own f

if { $hidden-p == "t" }
set em-opn "<i>"

set em-cls "</i>"

set unhid "view"

} else {

set em-opn

set emcls

set unhid "hide"

}

set flgspace " "

if { $wap-p == "t" } {

set editlink "wap-edit"

if { $live_date != $check_date } {
set flg-p "t"

set flgspace ""

}
} else {

set edit-link "edit"

if { $regexp-date != $check-date

set flg-p "t"

set flg-space ""

}

append page

<tr bgcolor=#eeeeee>

<td align=center>

$flg space

</td>

<td align=right nowrap>

</td>

<td align=left nowrap>

43

$emnopn$bookmarktitle$emrcls

</td>
<td align=left width=100% nowrap>

$em-opn$oneline$em_cls

</td>

<td align=right nowrap>

$em-opn$unhid$em-cls /

$em-opn edit$emrcls

</td>

</tr>"

} ifnorows {
append page

You have no private bookmarks stored in the database.

Try copying a public bookmark

or read the user-guide."

append page

</table>

<p>
Italicized bookmarks are hidden from view on your mobile device."

if { $flg-p == "t" {
append page

Flagged bookmarks did not respond properly when last checked."

I

append page

[wbmfooter]"

ns return 200 text/html $page

Swap Bookmark Order

/www/wap/bookmark/swap.tcl

By sirkin@mit.edu on 07/18/00

Swaps the position, in the personal view summary, of the current bookmark and

the one that immediately precedes or follows it, depending on which direction

(up or down) the user has selected.

ad mayberedirectforregistration

set userid [ad-verify-and-get-user-id]

44

ad-page_variables {

bookmarkid

swap

}

The target value is the smallest sort-key greater than the current sortkey

if moving down in the list, or the largest sortkey smaller than the current

sortkey if moving up in the list.

if ($swap == "up" } (

set max_min "max"

set lt-gt "<"

} else {

set max-min "min"

set lt-gt ">"

}

set currentkey [db-string

select sortkey

from wap_bookmarks

where bookmarkid = $bookmarkid

and ownerid = $userid"]

set swap-key [db_string "

select $max-min (sortkey)

from wapbookmarks

where sortkey $lt_gt $current_key

and ownerid = $user-id"]

if { ![emptystring-p $swap-key] }
set sql-update_swap-key

update wapbookmarks

set sortkey = $currentkey

where sortkey = $swapkey

and ownerid = $userid"

set sqlupdate-currentkey

update wap-bookmarks

set sortkey = $swap-key

where bookmarkid = $bookmark-id

and ownerid = $user-id"

Use a transaction to avoid having two bookmarks with same sortkey.

db transaction {

dbdml $sql-update-swap-key

dbdml $sql-update-currentkey

I }

ad returnredirect "

45

Hide or Unhide Bookmark

/www/wap/bookmark/toggle-hide.tcl
By sirkin@mit.edu on 07/18/00

Hides or unhides bookmarks from view on mobile browser. This might be done

when user doesn't want to scroll through several screens of bookmarks, but

also doesn't want to remove them from his personal menu permanently.

ad maybe-redirect for-registration

set userid [adverifyand getuserid]

ad-pagevariables {
bookmarkid

}

Set hiddenp = 't' if its current value is 'f' and vice-versa.

set sqlupdate

update wap-bookmarks

set hiddenp = decode (hiddenp, 't', 'f', 'f', 't')

where bookmark-id = $bookmarkid
and ownerid = $userid"

if { [catch {db-dml $sqlupdate} errmsg] } {
adreturnerror "Database Update Failed" "There was an error

making this update into the database. The error message was:

<p><blockquote><pre>$errmsg</pre></blockquote>"

return

}

adreturnredirect

View Bookmark

/www/wap/bookmark/view.tcl
By sirkin@mit.edu on 07/14/00

Main page for viewing individual bookmark. May be called from several other

scripts, so track the returnurl. May be used to display Web page or native

WAP site bookmarks, so check whether theregexp exists or is null to decide

whether to apply the regexp to the page and display the results or not.

ad maybe-redirectforregistration

set userid [ad verifyand-getuserid]

ad-page-variables {

bookmark id

{host-url {}}

(vieweduser-id {}}

{return-url {}}

(regexp view (f}}
{deviceview (f}}

46

Where value in theregexp is null, the bookmark references a native WAP site.

set sql-query "

select

from
where

and

bookmarktitle,

completejurl,

theregexp,

matchvars,

multiple-p,

owner-id,

precedingtext,

following text,

detaileddescrip,

decode (theregexp, null, 't', 'f') as wap-p

wap_bookmarks

bookmark_id = $bookmarkid
(ownerid = $userid or private-p = 'f')"

if ([catch {db_lrow $sqlquery} errmsg] } {

adreturnerror "Database Select Failed" "There was an error

making this select from the database. The error message was:

<p><blockquote><pre>$errmsg</pre></blockquote>"

return

}

Build a custom context bar since view can be called from www-home or either

public-view or group-view. The second two require two more backlink choices.

set choices [list "Your Workspace"

"WAP Bookmark Home"]

if ![emptystringp $return url] } {

if { ![empty-string-p $hostIurl] } {
lappend choices "Public Bookmarks"

"One Host"

} else {
if { ![emptystringp $vieweduser_id] } {

lappend choices "Public Bookmarks"

"One User"

} else {
lappend choices "Public Bookmarks"

}
}

lappend choices "View Bookmark"

set contextbar [join $choices " : "]

The max number of iterations through page if all occurrences is selected.

set nmaxmatch 20

set title "View \"$bookmark_title\""

47

}

set page "

[wbmheader $title]

<h2>$title</h2>

$contextbar

<hr>

<h3>Target Page URL</h3>

\"$bookmarktitle\"

$completeurl

(source)

"1

Show the owner of this bookmark a link to edit it, but use the right link

depending on whether it is a Web page or WAP site bookmark. Show everyone

else a link to copy it, sending along the newbookmarkid.

if { $ownerid $user-id

if { $wap-p "t" } {

set edt-cpy_link "

Edit Bookmark"

} else {

set edt-cpylink

Edit Bookmark"

}
} else {

set newbookmarkid [db_string

select wapbookmarkidsequence.nextval from dual"]

set edt-cpy-link "

Copy Bookmark"

}

set edt-cpytext

$edt-cpy-link

"I

if { $wap-p == "f" } {

Default to not showing the regexp, but provide the option to do so.

if { $regexp view == "t" } {

set regexpvars "regexpview=f"

set regexptext "Hide"

append page "

<h3>Expression to Apply</h3>

<blockquote>

<pre>[ns-quotehtml "$the-regexp"1</pre>

</blockquote>"

48

} else {

set regexp-vars "regexp-view=t"

set regexp-text "Show"

}

append page

<a href=view?[exporturl _vars bookmarkid hosturl vieweduserid

returnurl deviceview]&$regexp-vars>$regexptext Expression

"1

if { [catch {nshttpget $complete-url} url_text] } {
append page "

Unable to reach host for further info. Try using View Bookmark link once more.

$edtcpy-text

[wbmnfooter]"

nsreturn 200 text/html $page

return

} else {
if { ![eval $theregexp] }

append page "
The regexp didn't match the page. Confirm the full expression:

<blockquote>
<pre>[ns-quotehtml "$theregexp"]</pre>

</blockquote>

Pages change frequently. You may have to edit the bookmark or create a new one.

$edtcpy-text
[wbm footer]"

nsreturn 200 text/html $page

return

}
}

Default to showing results in a list, but provide the option to view

them within a textarea, to simulate the results on a mobile display.

if { $deviceview "t" } {
set bullet "o"

} else {

set bullet "

"

}

if { ![empty-stringp $preceding-text] } {

append string

$preceding-text"

}

regexp {regexp .*{(.*)} \$urltext} $the-regexp match pattern

Patterns may begin with -text, which would cause the regexp or regsub

match to fail. In that case, use -- to indicate the end of switches.

49

if ([string first "-" $pattern] == 0 } {
set sw "--

} else {

set sw

}

This regsub destructively matches the full page text, removing the match.

set nmatch 1

set mult-regsub "regsub $sw{$pattern} \$url text {\l} urltext"

Execute the following code once if not multiple-p. Otherwise, loop until

we find all matches in the urltext or reach a max number of iterations.

while { [eval $multregsub] && $multiple-p == "t" &&

$n-match <= $n_maxmatch 11 $nmatch 1 } {

foreach var $match-vars {
append string "

$bullet [nsstriphtml [set $var]]"

}
incr nmatch

eval $the-regexp

}

if { ![empty-string-p $following-text] } {
append string

$following_text"

}

if { $deviceview "t" } (

set devicevars "deviceview=f"

set device-text "Matching String View"

append page "

<h3>As Viewed on Device</h3>

<form>

<blockquote>

<textarea rows=6 cols=30 wrap>$string</textarea>

</blockquote>

</form>"

} else {
set devicevars "deviceview=t"

set device-text "Device View"

append page "

<h3>The Matching String</h3>

<blockquote>

$string

</blockquote>"

}

append page

50

<a href=view?[export_urlIvars bookmarkid hosturl vieweduserid

return url regexp-view]&$devicevars>$device-text

"1

if { ![emptystringp $detaileddescrip]

append page

<h3>Description</h3>

<blockquote>

$detaileddescrip

</blockquote>"

}

}

append page

$edtcpy-text

[wbm footer]"

nsreturn 200 text/html $page

New HTML Bookmark

/www/wap/bookmark/new.tcl
By sirkin@mit.edu on 07/10/00

First page in a sequence to insert HTML bookmark into the database. Prompts

user for the target page url and bookmark title. A radio-button allows user

to opt for friendly or advanced interface. Since do not know which value is

selected when this page loads, the user is directed to new-2-frn by default.

If the advanced interface is selected, new-2-frn will redirect to new-2-adv.

adjmayberedirectfor-registration

ad-pagevariables {

{bookmarktitle {}}

{complete-url {}}

{interface {frn}}

if ($interface == "frn"

set frnchk "checked"

set advchk

} else {

set frnchk

set advchk "checked"

}

set title "New Bookmark"

set page "

[wbm header $title]

<h2>$title</h2>

[ad contextbar-ws [list "" "WAP Bookmark Home"] "New Bookmark"]

51

<hr>
<form action=new-2-frn>

<h3>Target Page URL</h3>

If you leave the title blank, we will attempt to get it from the page.

Titles with fewer than a dozen characters best fit most displays.

<blockquote>

<table cellpadding=O cellspacing=O border=O>

<tr>

<td>

Title (Optional):

</td>

<td align=left>

<input size=30 name=bookmarktitle value=\"$bookmarktitle\">

</td>

</tr>

<tr>

<td>

Enter the URL:

</td>

<td>

<input size=30 name=complete-url value=\"$completeurl\">

</td>

</tr>

<tr>

<td>

</td>

<td align=left>

Use

<input type=radio name=interface value=frn $frn_chk> Friendly

<input type=radio name=interface value=adv $adv_chk> Advanced

Interface

</td>

</tr>

<tr>

<td>

</td>

<td align=left>

<input type=submit value=\"Create Bookmark\">

</td>

</tr>

</table>

</blockquote>

</form>

[wbmfooter]"

nsreturn 200 text/html $page

/www/wap/bookmark/new-2-adv.tcl

By sirkin@mit.edu on 07/10/00

Second page in a sequence to insert HTML bookmark into the database. Prompts

user for input to build a regexp to apply to the page. Then directs to new-3.

52

The advanced interface has the user enter a match pattern directly into a

form. The regexp is assembled by (1) counting up the parenthesis-enclosed

sub-patterns within the match pattern, (2) appending a var containing the

urltext, and (3) appending the match vars.

ad-mayberedirectforregistration

ad-pagevariables {

{bookmark-title {}}
complete-url

{pattern {}}

{multiplep {f}}

}

Check user-entered url and title. Try to find title in target page if blank.

if { [emptystringp $complete-url] }

adreturn-complaint 1 "

You must enter a URL to add a bookmark."

return

}

set bookmarktitle [string trim $bookmarktitle]

set complete-url [string trim $completeurl]

if { ![regexp {^[^:\"]+://} $completeurl] }

set completeurl "http://$complete_url"

}

if { [emptystringp $bookmark-title] }

if { [catch {ns-httpget $complete-url} url-text] } {
adreturncomplaint 1 "

Unable to detect a title as the host is unreachable."

return

}

regexp -nocase {<title>([^<]*)</title>} $urltext match bookmarktitle

if { [emptystring-p $bookmarktitle] } {
adreturncomplaint 1 "

Unable to detect a title as the host does not provide one."

return

}

if { $multiplep == "f"

set onechk "checked"

set allchk

} else {
set onechk

set all chk "checked"

The max number of iterations through page if all occurrences is selected.

53

set nmaxmatch 20

set title "Specify \"$bookmarktitle\""

set page

[wbmheader $title]

<h2>$title</h2>

[adcontextbarws [list "" "WAP Bookmark Home"] [list "new?[exporturlvars

bookmarktitle complete-url]" "New Bookmark"] "Specify"]

<hr>

<table cellpadding=0 cellspacing=0 border=0 width=100%>

<tr>

<td align=right>

User Guide

</td>

</tr>

</table>

<form action=new-2-adv>

[exportformvars bookmarktitle complete-url]

<h3>Confirm URL</h3>

The bookmark title and target page:

\"$bookmarktitle\"

$completeurl

(source)

<h3>Expression to Apply</h3>

Enter the match pattern for the page. We will build the expression.

You may wish to copy text from the source window to help you compose.

<blockquote>
<table cellpadding=0 cellspacing=0 border=0>

<tr>

<td>

Pattern:

</td>

<td align=left>

<textarea rows=4 cols=30 name=pattern>

[nsgquotehtml $pattern]

</textarea>

</td>

</tr>

<tr>

<td>

</td>

<td align=left>

Match

<input type=radio name=multiple-p value=f $one-chk> One

<input type=radio name=multiple-p value=t $all-chk> All

Occurrences ($nmaxmatch max)

54

</td>

</tr>

<tr>

<td>

</td>

<td align=left>

<input type=submit value=\"View Result\">

</td>

</tr>

</table>

</blockquote>

</form>"

if { [emptystring-p $pattern] } {
append page

[wbm footer]"

nsreturn 200 text/html $page

return

} else {

append page

<h3>The Returned String</h3>"

}

Web forms change a line-feed into a carraige-return line-feed, causing the

regexp match to fail. Eliminate the carraige-return from every such pair.

regsub -all -nocase {\x0d\x0a} $pattern "\x0a" pattern

Count the () within the pattern as the number of match vars.

set n matchvars [regsub -all {\([^\(]*\)} $pattern "" match]

if { $n-matchvars ==0 } {
append page "

You did not enter a sub-pattern to match, try editing your expression.

[wbm footer]"

nsreturn 200 text/html $page

return

}

if ([catch {nshttpget $completeurl) url-text] } {

append page "

Unable to reach host, try using the View Result button once more.

[wbm footer]"

nsreturn 200 text/html $page

return

}

Eliminate any {} the advanced user may have wrapped the pattern with. Do

not do the regsub earlier because the {} would then confusingly disappear
from the form textarea.

regsub {^\{(.*)\}$} $pattern {\l} pattern

55

Patterns may begin with -text, which would cause the regexp or regsub

match to fail. In that case, use -- to indicate the end of switches.

if { [string first "-" $pattern] == 0 } {
set sw

} else {

set sw

}

set theregexp "regexp $sw{$pattern} \$url_text match"

To finish the regexp statement, append the match var names. The subsequent

[eval $theregexp] call will set values for these vars within the script.

for {set i 1} {$i <= $n-matchvars} {incr i} {
append the-regexp " var_$i"

}

if { [catch {set matchp [eval $theregexp]} errmsgl I {
append page "

There is an error in the regular expression match pattern syntax:

<blockquote><pre>$errmsg</pre></blockquote>

[wbmfooter]"

nsreturn 200 text/html $page

return

} else {
if ($matchp == 0 }

append page "

The regexp didn't match the page. Confirm the full expression:

<blockquote><pre>[ns-quotehtml "$theregexp"]</pre></blockquote>

[wbmfooter]"

nsreturn 200 text/html $page

return

}

append page

<form action=new-3>

[exportformvars bookmarktitle complete-url theregexp multiple-p]

<input type=hidden name=returnurl value=[adconn url]>

Continue to modify the regexp until the match vars capture your intent.

Then select the match vars you wish to include in your mobile page.

<blockquote>

<table cellpadding=0 cellspacing=0 border=0>"

if { $n-matchvars > 1 } {

if ($multiplep "t" }

append page

<tr>

<td>"

for {set i 1} {$i <= $n matchvars} {incr i}

append page "

56

<input type=checkbox name=matchvars value=var_$i>

Match Var $i"

}
append page

</td>

</tr>"

}
} else {

append page

<input type=hidden name=matchvars value=var_1>"

}

This regsub destructively matches the full page text, removing the match.

set nmatch 1

set mult-regsub "regsub $sw {$pattern} \$urltext {\1} urltext"

Execute the following code once if not multiplep. Otherwise, loop until

we find all matches in the urltext or reach a max number of iterations.

while { [eval $multregsub] && $multiple-p == "t" &&

$n-match <= $nmaxmatch 11 $nmatch ==1 } {

if { $n-matchvars > 1 && $multiplep == "t"

append page

<tr>

<td>

</td>

</tr>"

for {set i 1} {$i <= $n-match_vars} {incr i}

append page

<tr>

<td>"

if { $n-matchvars > 1 }

if { $multiplep "t" }

append page

$i:"

} else {

append page

<input type=checkbox name=matchvars value=var_$i>"

}
} else {

append page

"

}
append page

[nsstriphtml [set var_$i]]

</td>

</tr>"

}

57

incr nmatch

eval $the-regexp

}

append page

<tr>

<td align=left>

<input type=submit value=\"Select Matches\">

</td>

</tr>

</table>

</blockquote>

</form>

[wbmfooter]"

nsreturn 200 text/html $page

/www/wap/bookmark/new-2-frn.tcl

By sirkin@mit.edu on 07/16/00

Second page in a sequence to insert HTML bookmark into the database. Prompts

user for input to build a regexp to apply to the page. Then directs to new-3.

The friendly interface has the user enter a string to match from the target

page directly into a form. The match pattern is assembled by (1) finding the

string location in the page, (2) selecting out chars surrounding it, and (3)

replacing the original string with ([^<]+) or (.+?), based on user's choice.

The regexp is assembled by (1) counting up the parenthesis-enclosed sub-

patterns within the match pattern, (2) appending a var containing the url_
text, and (3) appending the match vars.

ad-maybe-redirect for-registration

ad-pagevariables {

{bookmarktitle {}}

completeurl

{subptrn {tag}}

{selective (mid})

{text {}}

{pattern {}}

{multiplep {f}}

(interface (frn}}

}

Redirect if the advanced interface option is selected in the preceding page.

if { $interface == "adv" } (

adreturnredirect "new-2-adv?

[exporturlvars bookmarktitle completeurl]"

}

Check user-entered url and title. Try to find title in target page if blank.

58

if { [empty-stringp $completeurl] } {

adreturn-complaint 1 "

You must enter a URL to add a bookmark."

return

}

set bookmarktitle [string trim $bookmark_title]

set complete url [string trim $completeurl]

if { ![regexp {^[^:\"]+://} $complete-url]

set completeurl "http://$completeurl"

}

if { [emptystringp $bookmark-title] } {

if { [catch {ns-httpget $complete-url} url text] } {
adreturncomplaint 1 "

Unable to detect a title as the host is unreachable."

return

I

regexp -nocase {<title>([^<1*)</title>} $urltext match bookmarktitle

if { [emptystringp $bookmarktitle] } {

adreturncomplaint 1 "

Unable to detect a title as the host does not provide one."

return

}
}

if { $subptrn == "tag" } {

set sub-ptrn {([^<]+)}

set tag-chk "checked"

set txtchk

} else {

set sub-ptrn {(.+?)}
set tag-chk

set txtchk "checked"

}

if { $multiplep == "f"

set onechk "checked"

set allchk

} else {

set onechk

set allchk "checked"

}

set lstchk
set midchk

set mst_chk

switch $selective {

"1st" { set lstchk "checked" }
"mid" { set midchk "checked" }

59

"imst" { set mstchk "checked"

}

The max number of iterations through page if match all occurrences selected.

set nmaxmatch 20

set title "Specify \"$bookmarktitle\""

set page "

[wbmheader $title]

<h2>$title</h2>

[adcontextbar_ws [list "" "WAP Bookmark Home"] [list "new?[exporturlvars

complete url bookmarktitle]" "New Bookmark"] "Specify"]

<hr>

<table cellpadding=0 cellspacing=0 border=0 width=100%>

<tr>

<td align=right>

User Guide

</td>

</tr>

</table>

<form action=new-2-frn>

[exportformvars bookmarktitle completeurl]

<h3>Confirm URL</h3>

The bookmark title and target page:

\"$bookmarktitle\"

$completeurl

(source)

<h3>Text to Match</h3>

Enter the match pattern for the page. We will then build the expression.

You may wish to copy text from the source window to help you compose.

<blockquote>

<table cellpadding=0 cellspacing=0 border=0>

<tr>

<td>

</td>

<td align=left>

Apply

<input type=radio name=subptrn value=tag $tagchk> Tag

<input type=radio name=subptrn value=txt $txtchk> Text

Pattern

</td>

</tr>

<tr>

<td>

</td>

60

<td align=left>

Least

<input type=radio name=selective value=lst $lstchk>

<input type=radio name=selective value=mid $midchk>

<input type=radio name=selective value=mst $mstchk>

Most Selective

</td>

</tr>

<tr>

<td>

Enter Text:

</td>

<td align=left>

<textarea rows=4 cols=30 name=text>

[nsquotehtml $text]

</textarea>

</td>

</tr>

<tr>

<td>

</td>

<td align=left>

Match

<input type=radio name=multiple-p value=f $onechk> One

<input type=radio name=multiplep value=t $allchk> All

Occurrences ($n-maxmatch max)

</td>

</tr>

<tr>

<td>

</td>

<td align=left>

<input type=submit value=\"View Result\">

</td>

</tr>

</table>

</blockquote>

</form>"

if { [emptystringp $text] }
append page

[wbm-footer]"

nsreturn 200 text/html $page

return

} else {
append page

<h3>The Returned String</h3>"

}

if { [catch {nshttpget $completeurl} urltext] }

append page "

Unable to reach host, try using the View Result button once more.

[wbmrfooter]"

nsreturn 200 text/html $page

61

return

}

A series of transformations on pasted-in text to match its place in page.

set text [string trim $text]

Web forms change a line-feed into a carraige-return line-feed, causing the
regexp match to fail. Eliminate the carraige-return from every such pair.

regsub -all -nocase {\x0d\xOa} $text "\x0a" text

Escape certain meta-chars in the pasted-in text so that later regexps and
regsubs will treat them as literal text rather than try to interpret them.

set esc {([[\](){}?$*+])}

regsub -all $esc $text {\\\l} text

Spaces and line-feeds as viewed on a Web page do not necessarily occur at
the same place as in that page's source. Regsub any spaces and line-feeds
in the pasted-in text into [\n]+ (that is, either spaces or line-feeds).

set spjlf {[\n]+}
regsub -all $spjlf $text $sp_lf indextext

Find the indices in the Web page for beginning and end of pasted-in text.

set indices ""
regexp -indices $index_text $url text indices

A \\\? is required in the text pattern to match a \? in the ptrnstring.
Re-run the previous esc regsub and splf regsub on the original pattern.

regsub -all $esc $text {\\\1} text
regsub -all $sp-lf $text $sp_lf text

if { [empty-stringp $indices] } f
set frame regexp "regexp {frameset.*</frameset>} \$urltext"
if { [eval $frame-regexp] } {

append page "
It appears that the page you are viewing is built using html frames.

Try opening the frame that includes the target text in its own window.
[wbmfooter]"

nsreturn 200 text/html $page

return

} else {

append page

Unable to find a match in the page, try viewing the source to confirm.

Alternatively, try checking your text for leading or following spaces.
[wbmfooter]"

nsreturn 200 text/html $page
return

62

}

}

set begtext [lindex $indices 01
set end_text [lindex $indices 1]

set done-p "f"

set nmatch 0

set nchars 0

set ncharsincr 12

Build a match pattern by selecting the pasted-in text and its surrounding

n_chars. Regsub the pasted-in text from this string and replace it with a

sub-pattern. Match the resulting ptrn_string against the full page text.

Increment the pattern size by n-chars and match against the full page text,

stopping when the only match is the original pasted-in text. The result is

the most selective pattern size option. Others are half or quarter of that.

Initial n chars is 12, since the smallest HTML tag is 3 chars (say, <p>)

and there is a factor of 4 between the least and most selective options.

while { $donep == "f"} {

if { $n match <= 1 && $n-chars 0

set done-p "t"

if { $selective "mid" }

set nchars [expr $n-chars / 21

} else {

if ($selective == "1st" } {

set n-chars [expr $n-chars / 4]

}
}

} else {

incr nchars $ncharsincr

}

set begptrn [expr $begtext - $n chars]

set end-ptrn [expr $end text + $n chars]

set ptrnstring [string range $urltext $begptrn $endptrn]

Rename ptrn-string to prevent each iteration from accumulating escapes.

regsub -all $esc $ptrn-string {\\\l} esc-ptrn string

regsub $text $esc-ptrn-string $sub-ptrn pattern

Patterns may begin with -text, which would cause the regexp or regsub

match to fail. In that case, use -- to indicate the end of switches.

if { [string first "-" $pattern] ==0 } {

set sw "--

} else {

set sw

}

63

How many times more does the text pattern match the full page text?

set n_match [regsub -all swpattern $url_text {} match]

}

set theregexp "regexp $sw{$pattern} \$urltext match var_1"

if { [catch {set matchp (eval $theregexp]} errmsg] } {
append page "

There is an error in the regular expression match pattern syntax:

<blockquote><pre>$errmsg</pre></blockquote>

[wbmfooter]"

nsreturn 200 text/html $page

return

} else {
if { $match-p == 0 } {

append page "

The regexp didn't match the page. Confirm the full expression:

<blockquote><pre>[nsquotehtml "$the-regexp" </pre></blockquote>

[wbmfooter]"

nsreturn 200 text/html $page

return

}

append page

<form action=new-3>

<input type=hidden name=returnurl value=[adconn url]>

<input type=hidden name=matchvars value=var_1>

[exportformvars bookmarktitle completeurl theregexp multiple-pI

Continue to modify the text until the match vars capture your intent.

<blockquote>

<table cellpadding=0 cellspacing=0 border=0>"

This regsub destructively matches the full page text, removing the match.

set nmatch 1

set multregsub "regsub $sw{$pattern} \$urltext {\1} urltext"

Execute the following code once if not multiplep. Otherwise, loop until

we find all matches in the urltext or reach a max number of iterations.

while { [eval $mult-regsub] && $multiple-p == "t" &&
$nmatch <= $n-max-match 11 $n-match ==1 {

append page

<tr>

<td>

 [nsstriphtml $varl]

</td>

</tr>"

incr nmatch

eval $the-regexp

64

append page

<tr>

<td align=left>

<input type=submit value=\"Select Matches\">

</td>

</tr>

</table>

</blockquote>

</form>

Transfer to <a href=new-2-adv?[export_urlvars complete url bookmark-title

pattern multiplep]>advanced interface.

[wbm footer]"

nsreturn 200 text/html $page

/www/wap/bookmark/new-3.tcl

By sirkin@mit.edu on 07/10/00

Third page in a sequence to insert HTML bookmark into the database. Prompts

user for page text to appear in mobile display (such as header or footer),

one-line and detailed descriptions. Then directs to new-4.

admaybe-redirectforregistration

adpage-variables {
bookmarktitle

complete-url

theregexp

(match_vars -multiple-list}

multiple-p

returnurl

}

if { [emptystring-p $matchvars] } {

adreturncomplaint 1 "You did not select any match vars."

return

}

set bookmark_id [db string

select wap-bookmarkidsequence.nextval from dual"]

set title "Layout \"$bookmarktitle\""

set page "

[wbm header $title]

<h2>$title</h2>

65

}

[adcontext-barws [list "" "WAP Bookmark Home"] [list "new?[exporturlvars

bookmarktitle completeurl]" "New Bookmark"] [list "$returnurl?

[export-urlvars bookmarktitle complete-url multiple-p]" "Specify"] "Layout"]

<hr>"'

if { [catch {ns-httpget $complete-url} urltext] } {
append page "

<h3>Host Unavailable</h3>

Unable to reach host, try using the Select Match Vars button once more.

[wbmfooter]"

nsreturn 200 text/html $page

return

} else {
if { ![eval $the-regexp] }

append page "

<Expression Match Failed</h3>

Unable to match page, try using the Select Match Vars button once more.

[wbmfooter]"

nsreturn 200 text/html $page

return

}

append page

<form action=new-4>

[exportformvars bookmarkid bookmarktitle completeurl the regexp

matchvars multiple-p]

<h3>Additional Text</h3>

Enter any brief additional text to appear on the mobile page.

<blockquote>

<table cellpadding=0 cellspacing=0 border=0>

<tr>

<td>

Preceding text:

</td>

<td align=left>

<input size=30 name=preceding text>

</td>

</tr>"

regexp {regexp {(.*)} \$urltext) $the-regexp match pattern

Patterns may begin with -text, which would cause the regexp or regsub

match to fail. In that case, use -- to indicate the end of switches.

if { [string first "-" $pattern] ==0 {
set sw " "

} else {
set sw

}

This regsub destructively matches the full page text, removing the match.

set nmatch 1

66

set nmaxmatch 20

set mult-regsub "regsub $sw{$pattern} \$url-text {\1} urltext"

Execute the following code once if not multiple-p. Otherwise, loop until

we find all matches in the urltext or reach a max number of iterations.

while { [eval $multregsub] && $multiple-p == "t" &&

$nrmatch <= $nmaxmatch 11 $nmatch 1 } {

foreach var $match-vars

append page

<tr>

<td>

</td>

<td>

 [nsstriphtml [set $var]]

</td>

</tr>"

incr nmatch

eval $theregexp

}

append page

<tr>

<td>

Following text:

</td>

<td align=left>

<input size=30 name=followingtext>

</td>

</tr>

</table>

</blockquote>

<h3>Bookmark Description</h3>

A few words to describe the bookmark and any extended details on its use.

<blockquote>

<table cellpadding=0 cellspacing=0 border=0>

<tr>

<td>

Brief Description:

</td>

<td align=left>

<input size=30 name=onelinedescrip>

</td>

</tr>

<tr>

<td>

Extended Details:

</td>

<td align=left>

<textarea rows=4 cols=30 name=detailed descrip></textarea>

</td>

</tr>

<tr>

67

<td>
</td>
<td align=left>

<input type=submit value=\"Save Bookmark\">

</td>

</table>

</blockquote>

</form>

[wbmfooter]"

nsreturn 200 text/html $page

/www/wap/bookmark/new-4.tcl

By sirkin@mit.edu on 07/10/00

Inserts HTML bookmark, defined in new, new-2 and new-3, into the database.

admaybe-redirectforregistration

set userid [ad-verify-and get-user-id]

ad-pagevariables {

bookmark id

bookmark-title

complete url

theregexp

matchvars

multiplep

preceding-text

following-text

onelinedescrip

detaileddescrip

}

if { [regexp {([^:\"]+://[^/]+)} $complete_url host url] } {
set hosturl "$hosturl/"

} else {

set hosturl

}

set insert

insert into wapbookmarks

(bookmarkid,

bookmarktitle,

host-url,

completeurl,

theregexp,

match vars,

multiplep,

precedingtext,

followingtext,

owner-id,

sortkey,

onelinedescrip,

68

detaileddescrip)

values

($bookmark id,

'$QQbookmarktitle',

'[DoubleApos $hosturl]',

'$QQcompleteurl',

'$QQthe-regexp',

'$QQmatchvars',

'$QQmultiplep',

'$QQpreceding-text',

'$QQfollowingtext',

$user-id,

$bookmarkid,

'$QQonelinedescrip',

'$QQdetaileddescrip')"

Protect against a double-click on the Web form inserting two copies

into the database. The bookmarkid value was generated in new-3.

if { [catch {dbdml $insert} errmsg] } {

if { [dbstring "select count(*) from wap_bookmarks

where bookmarkid = $bookmark id"] == 0 } {

adreturnerror "Database Insert Failed" "There was an error

making this insert into the database. The error message was:

<p><blockquote><pre>$errmsg</pre></blockquote>"

return

}

adreturnredirect

New WML Bookmark

/www/wap/bookmark/wap-new.tcl

By sirkin@mit.edu on 08/02/00

First page in a sequence to insert WML bookmark into the database. Prompts

user for the target deck url and bookmark title. Then directs to wap-new-2.

ad mayberedirectforregistration

ad page variables {

{bookmark title {}}

{complete-url {}}

}

set title "New Bookmark"

set page "

[wbm header $title]

<h2>$title</h2>

[ad contextbar-ws [list "www-home" "WAP Bookmark Home"] "New Bookmark"]

69

<hr>
<form action=wap-new-2>

<h3>Target Page URL</h3>

If you leave the title blank, we will attempt to get it from the page.

Titles with fewer than a dozen characters best fit most displays.

<blockquote>

<table cellpadding=0 cellspacing=0 border=0>

<tr>

<td>

Title (Optional):

</td>

<td align=left>

<input size=30 name=bookmarktitle value=\"$bookmark_title\">

</td>

</tr>

<tr>

<td>

Enter the URL:

</td>

<td>

<input size=30 name=completeurl value=\"$completeurl\">

</td>

</tr>

<tr>

<td>

</td>

<td align=left>

<input type=submit value=\"Create Bookmark\'>

</td>

</tr>

</table>

</blockquote>

</form>

[wbmfooter]"

nsreturn 200 text/html $page

/www/wap/bookmark/wap-new-2.tcl

By sirkin@mit.edu on 08/02/00

Second page in a sequence to insert WML bookmark into the database. Prompts
user for one-line description. Then directs to wap-new-3.

ad maybe redirectfor-registration

adpagevariables {

{bookmarktitle {}}
completeurl

}

Check user-entered url and title. Try to find title in target deck if blank.

70

if { [empty-stringp $completeurl] }

adreturn-complaint 1 "

You must enter a URL to add a bookmark."

return

}

if ![regexp {^[:\]+://} $completeurl] } {
set complete url "http://$complete_url"

}

set bookmarktitle [string trim $bookmarktitle]

set complete-url [string trim $complete-url]

if { [emptystringp $bookmark-title] } {
if { [catch {ns httpget $complete-url} url_text] } {

adreturncomplaint 1 "

Unable to detect a title as the host is unreachable."

return

}

First look for title in WAP card. If unsuccessful, look in Web page.

This may work because WAP sites often have same address as Web pages.

regexp -nocase {<card.+title="([^"]*)"} $urltext match bookmarktitle

if { [emptystringp $bookmarktitle] } {

regexp --nocase {<title>([^<]*)</title>) $urltext match bookmarktitle

if { [empty stringp $bookmark-title] } {
adreturn complaint 1 "

Unable to detect a title as the host does not provide one."

return

}
}

set bookmark_id [db string

select wap-bookmark id sequence.nextval from dual"]

set title "Save \"$bookmarktitle\""

set page "

[wbm header $title]

<h2>$title</h2>

[adcontextbar ws [list "" "WAP Bookmark Home"] [list "wap-new?

[export_urlvars bookmarktitle complete-url]" "New Bookmark"] "Save"]

<hr>

<form action=wap-new-3>

[export formvars bookmarkid bookmarktitle complete-url]

<h3>Confirm URL</h3>

The bookmark title and target page:

\"$bookmark-title\"

71

$complete-url

<h3>Bookmark Description</h3>

A brief sentence to appear alongside the title in your bookmark menu.

<blockquote>

<table cellpadding=0 cellspacing=0 border=0>

<tr>

<td>

Description:

</td>

<td align=left>

<input size=30 name=onelinedescrip>

</td>

</tr>

<tr>

<td>

</td>

<td align=left>

<input type=submit value=\"Save Bookmark\">

</td>

</tr>

</table>

</blockquote>

</form>

[wbmfooter]"

nsreturn 200 text/html $page

/www/wap/bookmark/wap-new-3.tcl

By sirkin@mit.edu on 07/10/00

Inserts WML bookmark, defined in wap-new and wap-new-2, into the database.

ad maybe-redirectfor-registration

set userid [ad-verify-and get-user-id]

ad-page-variables {

bookmark id

bookmark-title

complete url

oneline descrip

}

if { [regexp {([^:\"+://[/1+)} $completeurl host-url] }
set host url "$hosturl/"

} else {

set host url

}

set insert"

72

insert into wap bookmarks

(bookmarkjid,

bookmarktitle,

hosturl,

complete url,

ownerid,

sortkey,

onelinedescrip)

values

($bookmark-id,

'$QQbookmarktitle',

'[DoubleApos $hosturl]',

'$QQcompleteurl',

$userid,

$bookmark-id,

'$QQonelinedescrip')"

Protect against a double-click on the Web form inserting two copies

into the database. The bookmarkid value was generated in wap-new-2.

if ([catch {db-dml $insert} errmsg] } {
if { [dbstring "select count(*) from wapbookmarks

where bookmarkid = $bookmark-id"] == 0 } {

adreturnerror "Database Insert Failed" "There was an error

making this insert into the database. The error message was:

<p><blockquote><pre>$errmsg</pre></blockquote>"

return

}
}

adreturnredirect

Edit HTML Bookmark

/www/wap/bookmark/edit.tcl
By sirkin@mit.edu on 07/12/00

First page in a sequence to update HTML bookmark in the database. Prompts

user for the target page url and bookmark title, and whether bookmark is

public or private. Then directs to edit-2.

adjmaybe-redirectfor-registration

set userid [adverifyand get_user_id]

ad-pagevariables {
bookmark id

}

set sql-query

select bookmarktitle,

complete-url,

private-p

73

from wap-bookmarks

where bookmark-id = $bookmarkid
and ownerid = $userid"

if { [catch {db_1row $sql-query} errmsg] } {
adreturnerror "Database Select Failed" "There was an error

making this select from the database. The error message was:

<p><blockquote><pre>$errmsg</pre></blockquote>"

return

}

if { $privatep == "f" } {

set pubchk "checked"

set prv-chk

} else {
set pubchk

set prvchk "checked"

}

set title "Edit \"$bookmark-title\""

set page "

[wbmheader $title]

<h2>$title</h2>

[adcontextbar_ws [list "" "WAP Bookmark Home"] "Edit Bookmark"]

<hr>

<form action=edit-2>

[exportformvars bookmark id]

<h3>Target Page URL</h3>

<blockquote>

<table cellpadding=O cellspacing=O border=O>

<tr>

<td>

URL:

</td>

<td>

<input size=30 name=completeurl value=$complete_url>

</td>

</tr>

<tr>

<td>

Title:

</td>

<td align=left>

<input size=30 name=bookmarktitle value=\"$bookmarktitle\">

</td>

</tr>

</table>

</blockquote>

<h3>Privacy</h3>

<blockquote>

<table cellpadding=O cellspacing=O border=O>

<tr>

<td>

74

<input type=radio name=privatep value=f $pub chk> Public

<input type=radio name=privatep value=t $prvchk> Private

</td>

</tr>

<tr>

<td>

<input type=submit value=\"Edit Bookmark\">

</td>

</tr>

</table>

</blockquote>

Delete this bookmark

</form>

[wbm footer]"

nsreturn 200 text/html $page

/www/wap/bookmark/edit-2.tcl

By sirkin@mit.edu on 07/12/00

Second page in a sequence to update HTML bookmark in the database. Prompts

user for input to build a regeaxp to apply to the page. Directs to edit-3.

Follows the advanced interface in new-2-adv, where the user enters a match

pattern directly into a form. The regexp and matchvars in the database are

applied first, but user can edit the match pattern, creating a new regexp.

adjmaybe-redirectforregistration

set user_id [adverifyandget_userid]

adpagevariables {
bookmark id

bookmark title

complete url

{pattern {}}

{multiplep {}}

private-p

}

Check user-entered url and title. Try to find title in target page if blank.

if { [emptystringp $completeurl] }

adreturn-complaint 1 "

You must enter a URL to edit a bookmark."

return

}

set bookmarktitle [string trim $bookmarktitle]

set complete url [string trim $completeurl]

75

if { ![regexp {^[^:\"]+://} $complete-url] } {
set complete-url "http://$completeurl"

}

if { [emptystringp $bookmarktitle] } {
if { [catch {ns-httpget $complete-url} url_text] } {

adreturncomplaint 1 "

Unable to detect a title as the host is unreachable."

return

}

First look for title in WAP card. If unsuccessful, look in Web page.

This may work because WAP sites often have same address as Web pages.

regexp -nocase {<title>([A<]*)</title>} $urltext match bookmarktitle

if { [emptystringp $bookmark-title] }

adreturncomplaint 1 "

Unable to detect a title as the host does not provide one."

return

}

The max number of iterations through page if all occurrences is selected.

set nmaxmatch 20

set title "Specify \"$bookmarktitle\""

set page "

[wbmheader $title]

<h2>$title</h2>

[adcontext-barws [list "" "WAP Bookmark Home"] [list "edit?[exporturlvars

bookmarkid]" "Edit Bookmark"] "Specify"]

<hr>

<form action=edit-2>

[exportformvars bookmarkid bookmarktitle completeurl private-p]

<table cellpadding=0 cellspacing=0 border=0 width=100%>

<tr>

<td align=right>

User Guide

</td>

</tr>

</table>

<h3>Confirm URL</h3>

The bookmark title and target page:

\"[string trim $bookmarktitle]\"

$completeurl

(source)

76

"1

set sqlquery

select the-regexp,

matchvars,

multiple-p as dbmultiplep

from wap-bookmarks

where bookmark id = $bookmarkid

and ownerid = $user-id"

if { [catch {db_lrow $sqlgquery} errmsg] } {

adreturnerror "Database Select Failed" "There was an error

making this select from the database. The error message was:

<p><blockquote><pre>$errmsg</pre></blockquote>"

return

}

Extract the pattern for the regexp, and use the multiple-p value from the

db on first viewing the page. Otherwise use the (possibly revised) values

submitted through form.

if { [emptystringp $pattern] } {

regexp {regexp .*{(.*)} \$url-text) $the-regexp match pattern

set multiple-p $db-multiple-p

}

if ($multiplep == "f" } {

set onechk "checked"

set allchk

} else {

set onechk

set allchk "checked"

}

append page

<h3>Expression to Apply</h3>

Edit the match pattern (only) for the page. We will build the expression.

You may wish to copy text from the source window to help you edit.

<blockquote>

<table cellpadding=O cellspacing=O border=O>

<tr>

<td>

Pattern:

</td>

<td align=left>

<textarea rows=4 cols=30 name=pattern>

[nsquotehtml $pattern]

</textarea>

</td>

</tr>
<tr>

<td>

</td>

<td align=left>

77

Match

<input type=radio name=multiplep value=f $onechk> One

<input type=radio name=multiplep value=t $allchk> All

Occurrences ($n-maxmatch max)

</td>

</tr>

<tr>

<td>

</td>

<td align=left>

<input type=submit value=\"View Result\">

</td>

</tr>

</table>

</blockquote>

</form>

if { [empty-stringp $pattern] } {
append page

[wbmfooter]"

nsreturn 200 text/html $page

return

} else (

append page

<h3>The Returned String</h3>"

}

Web forms change a line-feed into a carraige-return line-feed, causing the

regexp match to fail. Eliminate the carraige-return from every such pair.

regsub -all -nocase {\x0d\x0a} $pattern "\x0a" pattern

Count the () within the pattern as the number of match vars.

set nmatch vars [regsub -all {\([^\(]*\)} $pattern "" match]

if { $n-matchvars == 0 }

append page "

You did not enter a sub-pattern to match, try editing your expression.

[wbmfooter]"

nsreturn 200 text/html $page

return

I

if { [catch {ns-httpget $complete-url} urltext] } {
append page "

Unable to reach host, try using the View Result button once more.

[wbmfooter]

nsreturn 200 text/html $page

return

}

Eliminate any {} the advanced user may have wrapped the pattern with. Do

78

not do the regsub earlier because the {} would then confusingly disappear
from the form textarea.

regsub {^\{.*\}$} $pattern {\l} pattern

Patterns may begin with -text, which would cause the regexp or regsub

match to fail. In that case, use -- to indicate the end of switches.

if { [string first "-" $pattern] == 0 } {
set sw

} else {

set sw

}

set theregexp "regexp $sw{$pattern} \$url-text match"

To finish the regexp statement, append the match var names. The subsequent

[eval $theregexp] call will set values for these vars within the script.

for {set i l} {$i <= $n-match-vars} {incr i} {

append theregexp " var_$i"

}

if { [catch {set matchp [eval $theregexp]} errmsg] } {
append page "

There is an error in the regular expression match pattern syntax:

<blockquote><pre>$errmsg</pre></blockquote>

[wbm footer]"

nsreturn 200 text/html $page

return

} else {

if { $match-p == 0
append page "

The regexp didn't match the page. Confirm the full expression:

<blockquote><pre>[nsquotehtml "$theregexp"]</pre></blockquote>

[wbm footer]"

nsreturn 200 text/html $page

return

}

}

append page

Continue to modify the regexp until the matches capture your intent.

Then select the matches you wish to include in your mobile deck.

<form action=edit-3>

[exportformvars bookmarkid bookmarktitle completeurl the-regexp

multiple-p private-p]

<blockquote>

<table cellpadding=0 cellspacing=0 border=0>"

if { $nmatchvars > 1 } {

if { $multiplep "t" }
append page

79

<tr>
<td>"

for {set i 1) {$i <= $n-match_vars} {incr i} {
if { [lsearch $match-vars "var_$i"]

set chk "checked"
} else {

set chk

}
append page

<input type=checkbox name=\"match-vars\" value=\ "var_$i\" $chk>
Match Var $i"

}
append page

</td>

</tr>"

}
} else {

append page
<input type=hidden name=\"matchvars\" value=\"var_1\">"

}

This regsub destructively matches the full page text, removing the match.

set nmatch 1
set multregsub "regsub $sw {$pattern} \$url_text {\1} url_text"

Execute the following code once if not multiple-p. Otherwise, loop until
we find all matches in the urltext or reach a max number of iterations.

while { [eval $mult-regsub] && $multiple-p == "t" &&
$nmatch <= $n-max match 11 $n-match ==1 {

if { $nmatchvars > 1 && $multiple-p == "t" } {
append page

<tr>

<td>

</td>

</tr>"

for {set i 11 {$i <= $n-matchvars} {incr i} {
append page

<tr>

<td>"l

if { $n-matchvars > 1
if { $multiplep "t" }

append page

$i:"
} else {

if { [lsearch $match_vars "var_$i"] -1
set chk "checked"

80

} else {
set chk

}
append page

<input type=checkbox name=matchvars value=var_$i $chk>"

}
} else {

append page

"

}
append page

[nsstriphtml [set var_$i]]

</td>

</tr>"

incr nmatch

eval $theregexp

}

append page

<tr>

<td align=left>

<input type=submit value=\"Select Matches\">

</td>

</tr>

</table>

</blockquote>

</form>

[wbm footer]"

ns return 200 text/html $page

/www/wap/bookmark/edit-3.tcl

By sirkin@mit.edu on 07/12/00

Third page in a sequence to update HTML bookmark in the database. Prompts

user for page text to appear in mobile display (such as header or footer),

one-line and detailed descriptions. Then directs to edit-4.

admaybe-redirectforregistration

set user_id [adverifyand-get_userid]

adpagevariables {

bookmark id

bookmarktitle

complete url

theregexp

(matchvars -multiple-list}

multiple_p

private-p

}

if { [empty string p $matchvars] } {

81

adreturn complaint 1 "You did not select any match vars."

return

}

The max number of iterations through page if all occurrences is selected.

set n max match 20

set title "Layout \"$bookmarktitle\""

set page "

[wbmheader $title]

<h2>$title</h2>

[adcontextbar_ws [list "" "WAP Bookmark Home"] [list "edit?[exporturlvars

bookmarkid]" "Edit Bookmark"] [list "edit-2?[exporturlvars bookmarkid

bookmarktitle complete-url multiple-p privatep]" "Specify"] "Layout"]

<hr>"

set sqlquery

select precedingtext,

followingtext,

onelinedescrip,

detaileddescrip

from wap-bookmarks

where bookmark-id = $bookmarkid

and ownerid = $user-id"

if { [catch {dblrow $sql_query} errmsg } {

adreturnerror "Database Select Failed" "There was an error

making this select from the database. The error message was:

<p><blockquote><pre>$errmsg</pre></blockquote>"

return

I

if { [catch {nshttpget $complete-url} url text] } {

append page "

<h3>Host Unavailable</h3>

Unable to reach host, try using the Select Match Vars button once more.

[wbmfooter]"

nsreturn 200 text/html 200 $page

return

} else {

if { ![eval $theregexp] } f

append page "
<Expression Match Failed</h3>

Unable to match page, try using the Select Match Vars button once more.

[wbmfooter]"

nsreturn 200 text/html 200 $page

return

}

append page

<form action=edit-4>

82

[export_formvars bookmarkid bookmarktitle completeurl the-regexp

matchvars multiple-p privatep]

<h3>Additional Text</h3>

Revise any brief additional text to appear on the mobile page.

<blockquote>

<table cellpadding=O cellspacing=O border=O>

<tr>

<td>

Preceding text:

</td>

<td align=left>

<input size=30 name=preceding-text value=\"$precedingtext\">

</td>

</tr>"?

regexp {regexp {(.*)} \$url-text} $theregexp match pattern

Patterns may begin with -text, which would cause the regexp or regsub

match to fail. In that case, use -- to indicate the end of switches.

if { [string first "-" $pattern] == 0 } {

set sw

} else {

set sw

}

This regsub destructively matches the full page text, removing the match.

set nmatch 1

set mult-regsub "regsub $sw{$pattern} \$url-text {\1} urltext"

Execute the following code once if not multiple-p. Otherwise, loop until

we find all matches in the urltext or reach a max number of iterations.

while { [eval $multregsub] && $multiple-p == "t" &&

$n-match <= $nmaxmatch 11 $nmatch ==1 } {

foreach var $match-vars

append page

<tr>

<td>

</td>

<td>

 [nsstriphtml [set $var]]

</td>

</tr>"1

}
incr nmatch

eval $theregexp

}

append page

<tr>

<td>

83

Following text:

</td>

<td align=left>

<input size=30 name=following-text value=\"$followingtext\">

</td>

</tr>

</table>

</blockquote>

<h3>Bookmark Description</h3>

A few words to describe the bookmark and any extended details on its use.

<blockquote>

<table cellpadding=0 cellspacing=0 border=0>
<tr>

<td>

Brief Description:

</td>

<td align=left>
<input size=30 name=onelinedescrip

value=\"[ns-quotehtml $one_linedescrip]\">

</td>

</tr>

<tr>

<td>

Extended Details:

</td>

<td align=left>

<textarea rows=4 cols=30 name=detaileddescrip>

[ns-quotehtml $detaileddescrip]

</textarea>

</td>

</tr>

<tr>

<td>

</td>

<td align=left>

<input type=submit value=\"Save All Changes\">

</td>

</table>

</blockquote>

</form>

[wbmfooter]"

nsreturn 200 text/html $page

/www/wap/bookmark/edit-4.tcl

By sirkin@mit.edu on 07/12/00

Updates HTML bookmark, defined in edit, edit-2 and edit-3, in the database.

ad mayberedirectfor-registration

set userid [ad verifyand get user id]

adpage variables {

84

bookmarkid

bookmark-title

complete-url

theregexp

matchvars

multiplep

private_p

preceding_text

following-text

onelinedescrip

detaileddescrip

}

if { [regexp {([^:']+://[A/]+)} $completeurl hosturl] } {
set hosturl "$host-url/"

} else {

set hosturl

}

set update

update wapbookmarks

set bookmarktitle = '$QQbookmarktitle',

hosturl = '[DoubleApos $hosturl]',

complete url = '$QQcomplete-url',

theregexp = '$QQthe-regexp',

matchvars = '$QQmatch_vars',

multiplep = '$QQmultiple-p',

privatep = '$QQprivatep',

preceding-text = '$QQprecedingtext',

following-text = '$QQfollowing-text',

onelinedescrip = '$QQoneline descrip',

detaileddescrip = '$QQdetaileddescrip',

modificationdate = sysdate

where bookmarkid = $bookmarkid

and owner id = $user-id"

if { [catch {dbdml $update} errmsg] } {
adreturnerror "Database Update Failed" "There was an error

making this update into the database. The error message was:

<p><blockquote><pre>$errmsg</pre></blockquote>"

return

}

adreturnredirect

Edit WML Bookmark

/www/wap/bookmark/wap-edit.tcl
By sirkin@mit.edu on 08/02/00

First page in a sequence to update WML bookmark in the database. Prompts

user for the target deck url and bookmark title, and whether bookmark is

public or private. Then directs to wap-edit-2.

85

ad-maybe-redirect for-registration
set userid [ad-verifyand-get-userjid]

adpage-variables

bookmarkid

}

set sql-query

select bookmark-title,

completeurl,

private-p,

onelinedescrip

from wapbookmarks

where bookmark-id = $bookmarkid
and ownerid = $user-id"

if { [catch {dbl1row $sqlquery} errmsg] } {
adreturnerror "Database Select Failed" "There was an error
making this select from the database. The error message was:
<p><blockquote><pre>$errmsg</pre></blockquote>"

return

}

if { $privatep == "f" } {
set pubchk "checked"

set prvchk

} else {

set pubchk

set prvchk "checked"

}

set title "Edit \"$bookmarktitle\""

set page "
[wbmheader $title]

<h2>$title</h2>

[adcontextbarws [list "" "WAP Bookmark Home"] "Edit Bookmark"]
<hr>

<form action=wap-edit-2>

[exportformvars bookmark id]

<h3>Target Page URL</h3>

<blockquote>

<table cellpadding=O cellspacing=O border=O>

<tr>
<td>

URL:

</td>
<td>

<input size=30 name=complete-url value=$complete_url>

</td>

</tr>

<tr>

<td>

Title:

86

</td>

<td align=left>

<input size=30 name=bookmarktitle value=\'$bookmarktitle\">

</td>

</tr>

</table>

</blockquote>

<h3>Bookmark Description</h3>

<blockquote>

<table cellpadding=O cellspacing=O border=O>

<tr>

<td>

Text:

</td>

<td>

<input size=30 name=onelinedescrip

value=\"[ns-quotehtml $onejlinedescrip]\">

</td>

</tr>

</table>

</blockquote>

<h3>Privacy</h3>

<blockquote>

<table cellpadding=O cellspacing=O border=O>

<tr>

<td>

<input type=radio name=privatep value=f $pubchk> Public

<input type=radio name=privatep value=t $prvchk> Private

</td>

</tr>

<tr>

<td>

<input type=submit value=\"Edit Bookmark\">

</td>

</tr>

</table>

</blockquote>

Delete this bookmark

</form>

[wbm-footer]"

nsreturn 200 text/html $page

/www/wap/bookmark/wap-edit-2.tcl
By sirkin@mit.edu on 08/02/00

Updates WML bookmark, defined in wap-edit, in the database.

ad maybe_redirectfor-registration

87

set userid [adverify-and-get-user_id]

adpage-variables f

bookmark id

bookmarktitle

completeurl

private-p

oneline-descrip

}

if { [regexp {([^:\"]+://[^/]+)} $completeurl hosturl] }

set hosturl "$host-url/"

} else {

set hosturl

}

set update

update wapbookmarks

set bookmarktitle = '$QQbookmarktitle',

hosturl = '[DoubleApos $hosturl]',

completeurl = '$QQcompleteurl',

privatep = '$QQprivate_p',

onelinedescrip '$QQonelinedescrip',

modificationdate = sysdate

where bookmark-id = $bookmarkid

and ownerid = $userid"

if { [catch {dbdml $update} errmsg] } {

adreturnerror "Database Update Failed" "There was an error

making this update into the database. The error message was:

<p><blockquote><pre>$errmsg</pre></blockquote>"

return

}

adreturnredirect

Delete Bookmark

/www/wap/bookmark/delete.tcl

By sirkin@mit.edu on 07/16/00

First page in sequence to delete bookmark from the database. Checks for

confirmation the user intends to delete. It doesn't matter if it is Web

page or WAP site bookmark, only that the current user owns it.

ad-mayberedirectfor-registration

set userid [ad-verify-and get-user-id]

ad-page-variables {

bookmark-id

}
set ndeletablelinks [db string

select count (*)

88

from wapbookmarks

where bookmarkid = $bookmarkid

and ownerid = $user-id"]

if ($n_deletablelinks == 0 } {
adreturn_complaint 1 "

You do not own this bookmark and cannot delete it."

return

I

set bookmarktitle [db-string

select bookmarktitle

from wapbookmarks

where bookmarkid = $bookmarkid

and ownerid = $user-id"]

set title "Delete \"$bookmark-title\""

set page "

[wbm header $title]

<h2>$title</h2>

[ad contextbar-ws [list "" "WAP Bookmark Home"] [list "edit?[exporturlvars

bookmarkid]" "Edit Bookmark"] "Delete"]

<hr>

<form action=delete-2>

[exportformvars bookmarkid]

<h3>Confirm Action</h3>

Are you certain you want to delete \"$bookmarktitle\"?

<blockquote>

<table cellpadding=0 cellspacing=0 border=0>

<tr>

<td>

<input type=submit value=\"Confirm Delete\">

</td>

</tr>

</table>

</blockquote>

</form>

[wbm footer]"

ns return 200 text/html $page

/www/wap/bookmark/delete-2.tcl

By sirkin@mit.edu on 07/16/00

Deletes bookmark confirmed in delete from the database.

ad maybe-redirectfor-registration

set userid [adverify-and-getuser_id]

ad pagevariables {
bookmarkid

}

89

set delete "
delete from wap-bookmarks

where bookmark-id = $bookmarkid
and ownerid = $userid"

if { [catch {dbdml $delete} errmsgl } {
adreturnerror "Database Delete Failed" "There was an error
making this delete from the database. The error message was:
<p><blockquote><pre>$errmsg</pre></blockquote>"

return

}

adreturnredirect

Check Bookmark Status

/www/wap/bookmark/links-check.tcl
By sirkin@mit.edu on 07/14/00

Checks the status of bookmark references and regexps in one user's menu.
Also fetches the page's meta-tag keywords and description. For bookmarks
whose references cannot be reached or regexps don't work, provide a form
checkbox to delete. For those whose regexp doesn't work, also provide a
link to edit the bookmark's regexp.

ad mayberedirectfor-registration

set userid [ad-verifyand-get-user-id]

set title "Check Bookmark Links"

adreturntop-of-page
[wbmheader $title]

<h2>$title</h2>

[adcontextbar_ws [list "" "WAP Bookmark Home"] "Check Bookmark Links"]
<hr>

To delete bookmarks that are not okay, mark select checkboxes and submit.

Please be patient as it take a while for some pages to fully load and check.
<form action=links-delete>

[exportformvars delete_list]
<table cellpadding=2 cellspacing=0 border=0 width=100%>

<tr bgcolor=#dddddd>

<td align=left>

</td>

<td align=left width=100%>
Checked WAP Bookmark Links

</td>

<td align=right nowrap>
Status

</td>

</tr>

</table>"

90

set sql-query "

select bookmark-id,

bookmark-title,

complete url,

theregexp

from wapbookmarks

where ownerid = $user-id

order by sort-key"

set linkslist [db_listoflists $sqlquery]

dbreleaseunusedhandles

set returntext

Return home

"I

if { [llength $linkslist] ==0 } {

nswrite "

You have no bookmarks to check.

</form>

$returntext

[wbmfooter]"

return

}

set ndead 0

foreach link $linkslist {
set metaclause

set live clause

set regexpclause ""

set bookmark-id [lindex $link 0]

set bookmarktitle [lindex $link 1]

set completeurl [lindex $link 2]

set the_regexp [lindex $link 3]

Follow the ACS style for checking HTTP status, first using HEAD as it

is quick, second using GET if the first try fails. Some program-backed

servers return a no status (empty) or 404 to a HEAD but not to a GET.

if { [catch {gethttp-status $complete-url 0} response] } {
set bullet "

<input type=checkbox name=deletelist value=$bookmark id>"

set resulttext "

No response (1st try)"

incr ndead

}

if { $response == 404 11 $response 405 11 $response == 500

[empty-string-p $response] } {

91

if { [catch {gethttpstatus $completeurl 1} response] } {

set bullet "
<input type=checkbox name=deletelist value=$bookmarkid>"

set resulttext "

No response (2nd try)"

incr ndead

}

}

if { $response 200 && $response != 302 } {
set bullet

<input type=checkbox name=deletelist value=$bookmarkid>"

set resulttext "

Page not found ($response)"

incr ndead

} else {

Reached the page content. Now get meta-tags and run regexp.

set descrip

set keywords

regexp -nocase {<meta name="description" content=" ([" 1*) ">}

$urltext match descrip

if { [string length $descrip] > 990 1 {
set descrip "[string range $keywords 0 990]..."

}
regexp -nocase {<meta name="keywords" content=" ([^"]*) ">}

$urltext match keywords

if { [string length $keywords] > 990 } {

set keywords "[string range $keywords 0 990]..."

}
set metaclause ", metadescrip = '[DoubleApos $descrip]'"

append metaclause ", metakeywords = [DoubleApos $keywords]'

if { [empty-stringp $theregexp] } {

set liveclause ", lastlivedate = sysdate"

set bullet "

"

set resulttext

Bookmark okay"

} else {

if { ![catch {nshttpget $completeurl} url-text] } {

set liveclause ", last livedate = sysdate"

if { ![eval $theregexp] }

set bullet "

<input type=checkbox name=deletelist value=$bookmarkid>"

set resulttext "

Regexp failed (edit)"

incr n dead

} else {

set regexpclause ", lastregexp-date = sysdate"

set bullet "

"

set resulttext "

92

Bookmark okay"

}
}

}
}

nswrite

<table cellpadding=2 cellspacing=O border=O width=100%>

<tr bgcolor=#eeeeee>

<td>

</td>

<td align=right>$bullet

</td>

<td align=left width=100%>

$bookmarktitle

</td>

<td align=right nowrap>

$resulttext

</td>

</tr>

</table>"

set update

update wapbookmarks

set lastcheckdate = sysdate$meta clause$liveclause$regexp clause
where bookmarkid = $bookmarkid

and ownerid = $user-id"

db-dml $update

}

if { $ndead > 0 } {
nswrite "

<blockquote>

<table cellpadding=2 cellspacing=0 border=0>

<tr>

<td align=left>

<input type=submit value=\"Delete Marked Links\">

</td>

</tr>

</table>

</blockquote>"

}

nswrite

</form>

$returntext

[wbmfooter]"

93

Delete Bookmarks with Bad Status

/www/wap/bookark/links-delete .tcl
By sirkin@mit.edu on 07/16/00

First page in sequence to delete bookmarks with bad status from the database.

Checks for confirmation the user intends to delete. It doesn't matter if they

are Web page or WAP site bookmarks, only that the current user owns them.

Their bad status was determined in links-check because ither the host was not

reachable or the regexp failed to match the target page.

ad maybe-redirectfor-registration

set userid [ad-verifyand-get-user-id]

ad-page-variables {

{deletelist -multiple-list}

}

if { [emptystringp $deletelist] } {
adreturn-complaint 1 "
You did not select any links to delete."

return

}

set deletablelist [db listoflists

select bookmark-id,

bookmarktitle

from wap-bookmarks

where bookmarkid in ([join $deletelist ", "1)

and ownerid = $userid"]

set ndeletablelinks [llength $deletablelist]

if { $ndeletablelinks == 1 } {
set title "Delete \"[lindex [lindex $deletablelist 0] 1]\""

} else {

set title "Delete Select Bookmarks"

}

set page

[wbmheader "$title"]

<h2>$title</h2>

[adcontextbar_ws [list "" "WAP Bookmark Home"] [list "links-check" "Check

Bookmark Links"] "Delete"]

<hr>

<form action=links-delete-2>

<h3>Confirm Action</h3>

Are you certain you want to delete"

foreach link $deletable_list {
set bookmarkid [lindex $link 0]

set bookmarktitle [lindex $link 1]

lappend linklist

\"$bookmark_title\"

94

<input type=hidden name=deletelist value=$bookmarkid>"

}

set linktext [join $linklist " and "]

append page

$link-text

<blockquote>

<table cellpadding=0 cellspacing=0 border=0>

<tr>

<td>

<input type=submit value=\"Confirm Delete\">

</td>

</tr>

</table>

</blockquote>

</form>

[wbm footer]"

nsreturn 200 text/html $page

/www/wap/bookmark/links-delete-2. tcl
By sirkin@mit.edu on 07/14/00

Deletes bookmarks confirmed in links-delete from the database.

adrmayberedirectforregistration

set userid [ad_verifyand-get_user_id]

adpagevariables {

(deletelist -multiple-list}

}

set delete

delete from wap-bookmarks

where bookmarkid in ([join $deletelist ")

and ownerid = $user id"

if { [catch {db_dml $delete} errmsg] } {

adreturnerror "Database Delete Failed" "There was an error

making this delete from the database. The error message was:

<p><blockquote><pre>$errmsg</pre></blockquote>"

return

}

ad_returnredirect "

95

B: Share and Copy Public Bookmarks

Users view public bookmarks using several summaries, all accessed in the Web portion of the site.

public-view lists all bookmarks ordered by their recency (when they were saved) or their

frequency (how many copies). group-view does not list bookmarks individually, but as they are

grouped, either by host or owner. Following a link on this page takes the user to host-view or

user-view, where bookmarks are listed accordingly.

From public-view, users can search for bookmarks by keywords appearing in their title, host or

complete address, or owner-provided or meta-tag descriptions. From view, users can copy any

public bookmark.

Public Summary View

/www/wap/bookmark/public-view. tcl
By sirkin@mit.edu on 07/30/00

Lists all public bookmarks as links along with their one-line descriptions.

Following a link takes the user to view, where that bookmark can be edited

by the owner or copied into a personal menu view by anyone else.

ad-maybe-redirect for-registration

adpagevariables {

{sort {bookmarkid}}

{numpage {0}}

}

if { $sort == "bookmarkid" } {
set sortmenu "recency <a href=public-view?sort=ncopies&

numpage=$numpage>popularity"

} else (

set sortmenu "<a href=public-view?sort=bookmarkid&

numpage=$numpage>recency I popularity"
}

set links_list [db_listoflists

select count (*) as ncopies,

max (bookmark-id) as bookmark_id,

max (bookmark-title) as bookmarktitle,

nvl (max (onelinedescrip), ' ') as oneline

from wap bookmarks

where private_p = 'f'

group by completeurl, theregexp

order by $sort desc"]

set ntotallinks [llength $links-list]

96

Provide scroll options so not all bookmarks have to be listed on one page.

set nview 10

set min _link [expr $nview * $num_page + 1]

if { $ntotallinks > [expr $min_link + $n-view - 1] } {
set maxlink [expr $minjlink + $nview - 1]

} else {

set maxlink $n-totallinks

}

set numtext "$min-link - $maxlink of $n-total_links"

set prevlink "<a href=public-view?sort=$sort&

numpage=[expr $numpage - l]>"

set morelink "<a href=public-view?sort=$sort&

numpage=[expr $num-page + l]>"

set nummenu " "

if ($n_totallinks > 0 } {
if { $minlink > $n-view } {

append nummenu "$prev link "

}
append numjmenu $numtext

if { $maxlink < $ntotal links } {
append nummenu " $morejlink"

}
}

set title "Public Bookmarks"

set page "

[wbm header $title]

<h2>$title</h2>

[ad contextbar-ws [list "" "WAP Bookmark Home"] "Public Bookmarks"]

<hr>

Sort by $sortmenu

<p>
<table cellpadding=2 cellspacing=0 border=0 width=100%>

<tr bgcolor=#dddddd>

<td align=left>

</td>

<td align=left width=100% nowrap>

Public WAP Bookmarks

</td>

<td align=right nowrap>

$num menu

</td>

</tr>

</table>

<table cellpadding=2 cellspacing=O border=0 width=100%>"

if ($n_totallinks ==0 } {

append page "

97

There are no public bookmarks stored in the database."

} else {
set returnurl [ad conn url]

for {set i $min-link) {$i <= $maxlink} {incr i} {
set link [lindex $linkslist [expr $i - I]]

set ncopies [lindex $link 01

set bookmark-id [lindex $link 1]

set bookmarktitle [lindex $link 2]

set oneline [lindex $link 3]

if { $n-copies > 1 } {
set ntext "($ncopies)"

} else {

set ntext

append page

<tr bgcolor=#eeeeee>

<td>

</td>

<td align=right>

</td>

<td align=left nowrap>

$bookmarktitle $ntext

</td>

<td align=left width=100% nowrap>

$oneline

</td>

</tr>"

append page

</table>

<p>

View public bookmarks grouped by host or user.

<P>
<form action=search>

<table cellpadding=0 cellspacing=0 border=0>

<tr>

<td>

Search for:

<input size=30 name=srchtext>

<input type=submit value=\"Search\">

</td>

</tr>

</table>

</form>

98

[wbmfooter]"

nsreturn 200 text/html $page

Group Summary View

/www/wap/bookmark/group-view.tcl
By sirkin@mit.edu on 07/20/00

Groups public bookmarks by hosturl and ownerid and lists the hosts and

owner names with the number of bookmarks in each group. Users then follow

links in each list to view all of the bookmarks in that group.

ad-mayberedirectfor-registration

ad-pagevariables {
{hostspage {0}}

{userspage {0}}

}

set title "Public Bookmarks"

set page "

[wbm header $title]

<h2>$title</h2>

[adcontextbarws [list "" "WAP Bookmark Home"] "Public Bookmarks"]

<hr>

<h3>View Bookmarks</h3>"

set hosts-list [db-list of-lists

select count (*) as n-bookmarks,

host url

from wap bookmarks

where privatep != 't'

group by hosturl

order by nbookmarks desc"]

set ntotalhosts [llength $hosts_list]

Provide scroll options so not all bookmarks have to be listed on one page.

set n-hostsview 10

set minhost [expr $nhostsview * $hosts-page + 1]

if { $n_total hosts > [expr $min_host + $n-hostsview - 1] } {

set max-host [expr $min-host + $nhostsview - 1]

} else {
set max-host $n-totalhosts

}

set numhosts text "$min_host - $max-host of $n totalhosts"

set prevlink "<a href=group-view?hostspage=[expr $hostspage - I]&

userspage=$userspage>"

99

set morelink "<a href=group-view?hosts-page=[expr $hostspage + 1]&
userspage=$userspage>"

set numhostsmenu " "

if { $min-host > $n_hostsview } {
append numhostsmenu "$prev-link "

}
append numhostsmenu $numhoststext

if { $max-host < $ntotalhosts } {
append numhostsmenu " $morelink"

}

for {set i $minhost} {$i <=$maxhost} {incr i} {
set host [lindex $hostslist [expr $i - 1]]

set nbookmarks [lindex $host 01
set host url [lindex $host 1]

regsub {^http://([^/]*)/?} $host-url {\l} hostname

append hostlist

$hostname ($n-bookmarks)

set userslist [dblistoflists

select count (bookmark id) as nbookmarks,

first names 11 ' ' || lastname as vieweduser name,
ownerid as vieweduserid

from users, wap-bookmarks

where ownerid userid

and privatep 'f'
group by first-names, lastname, owner-id

order by n-bookmarks desc"I

set ntotalusers [llength $users-list]

Provide scroll options so not all bookmarks have to be listed on one page.

set nusersview 10

set minuser [expr $nhostsview * $users-page + 1]

if { $n-totalusers > [expr $min user + $n_usersview - 1] } {
set max-user [expr $minuser + $nusersview - 1]

} else {

set max-user $n_totalusers

}

set numuserstext "$min user - $maxuser of $ntotalusers"

set prevlink "<a href=group-view?hosts_page=$hosts-page&

users-page=[expr $userspage - 1]>"

set morelink "<a href=group-view?hosts_page=$hosts-page&

users-page=[expr $userspage + l1>"

100

set numusers menu " "

if { $minuser > $n users_view } {

append numusersmenu "$prev_link "

}
append numusersmenu $num userstext

if { $maxuser < $n-total users } {

append numusersmenu " $morejlink"

}

for (set i $min user) {$i <=$maxuser) {incr i} {

set user [lindex $users_list [expr $i - 1]]

set nbookmarks [lindex $user 0]

set viewedusername [lindex $user 1]

set vieweduserid [lindex $user 2]

append userlist

$viewedusername ($n_bookmarks)

if { $n_totalhosts == 0 11 $ntotalusers ==0 {

append page "

There are no public bookmarks to view at this time.

} else {

append page

<blockquote>

<table cellpadding=2 cellspacing=0 border=0>

<tr>

<td align=left width=100%>

Grouped by host

</td>

<td align=right nowrap>

$num hostsmenu

</td>

</tr>

<tr>

<td colspan=2>

$host_list

</td>

</tr>

<tr>

<td colspan=2>

</td>

</tr>

<tr>

<td align=left width=100%>

Grouped by user

</td>

<td align=right nowrap>

101

$numusersmenu

</td>

</tr>
<tr>

<td colspan=2>

$user list

</td>

</tr>

</table>

</blockquote>"

}

append page

View public bookmarks listed by name.
[wbmfooter]"

nsreturn 200 text/html $page

Group Summary View by Host

/www/wap/bookmark/host-view.tcl
By sirkin@mit.edu on 07/20/00

One of two target pages from group-view, which only shows bookmark groups,
not individual bookmarks. This script lists bookmarks grouped by host url.

ad maybe redirectfor-registration

ad-page_variables {
hosturl

I

if { ![regsub {^http://([^/1*)/?} $hosturl {\1} viewedhost] } {
set viewedhost

I

set title "Bookmarks for $viewedhost"

set page "
[wbmheader $title]

<h2>$title</h2>

[adcontextbar_ws [list "" "WAP Bookmark Home"] [list "group-view" "Public
Bookmarks"] "One Host"]
<hr>

<table cellpadding=2 cellspacing=0 border=0 width=100%>
<tr bgcolor=#dddddd>

<td align=left>

</td>

<td align=left width=100% nowrap>

Public WAP Bookmarks
</td>

102

</tr>
</table>
<table cellpadding=2 cellspacing=O border=O width=100%>"

set db-query "
select

from
where
and
and
order

firstnames ' lastname as owner-name,

ownerid,

bookmark_id,

bookmarktitle,

nvl (onelinedescrip, ' ') as oneline

users, wap-bookmarks

user id owner id

hosturl = '$QQhost_url'

private-p 'f'
by ownername, sortkey"

set currentname ""
set returnurl [ad conn url]
dbforeach $dbquery (

if { $currentname != $owner_name } {

set currentname $ownername

append page "

<tr bgcolor=#eeeeee>

<td>

</td>

<td colspan=3>

$ownername

</td>

</tr>"1

append page

<tr bgcolor=#eeeeee>

<td>

</td>

<td align=right>

</td>

<td align=left nowrap>

$bookmarktitle

</td>

<td align=left width=100% nowrap>

$one-line

</td>

</tr>"1

} ifnorows {
append page

$viewed-host has no public bookmarks

}
stored in the database."

103

append page

</table>

[wbm-footerl"

nsreturn 200 text/html $page

Group Summary View by User

/www/wap/bookmark/user-view.tcl

By sirkin@mit.edu on 07/20/00

One of two target pages from group-view, which only shows bookmark groups,

not individual bookmarks. This script lists bookmarks grouped by owner id.

ad-mayberedirect for-registration

ad-page-variables {

vieweduserid

}

set viewed-name [dbstring

select first names ' last-name

from users

where user_id = $vieweduser id"I

set title "Bookmarks for $viewedname"

set page "

[wbmheader $title]

<h2>$title</h2>

[adcontextbarws [list "" "WAP Bookmark Home"] [list "group-view" "Public

Bookmarks"] "One User"]

<hr>

Community member page for <a href=/shared/community-member?

userid=$vieweduser id>$viewedname

<P>
<table cellpadding=2 cellspacing=0 border=0 width=100%>

<tr bgcolor=#dddddd>

<td align=left>

</td>

<td align=left width=100% nowrap>

Public WAP Bookmarks

</td>

</tr>

</table>

<table cellpadding=2 cellspacing=0 border=0 width=100%>"

set db-query "

select bookmark id,

bookmarktitle,

nvl (onelinedescrip, ' ') as oneline

from wap bookmarks

104

where ownerid $vieweduserid

and private-p 'f'

order by sort-key"

set returnurl [adconn url]

dbforeach $db-query {

append page "

<tr bgcolor=#eeeeee>

<td>

</td>

<td align=right>

</td>

<td align=left nowrap>

$bookmarktitle

</td>

<td align=left width=100% nowrap>

$one-line

</td>

</tr>"1

} if-norows {
append page

$viewedname has no public bookmarks stored in the database."

}

append page

</table>

[wbm footer]"

nsreturn 200 text/html $page

Search for Bookmark

/www/wap/bookmark/search.tcl
By sirkin@mit.edu on 08/20/00

Search through all public bookmarks for keywords within their titles, host or

complete urls, one-line or detailed descriptions, and meta-tag descriptions.

adjmaybe-redirectfor-registration

set user_id [ad_verify-and-get_userid]

adpagevariables {

srchtext

{num-page (0}}

}

set srch_text [string trim $srch_text]

105

set srch-ptrn "'%[string toupper $QQsrchtext]%'"

set linkslist [dblistoflists "
select max (bookmark-id) as bookmarkjid,

max (bookmark-title) as bookmarktitle,

nvl (max (onelinedescrip), ' ') as oneline

from wap bookmarks

where owner id $userid

and private-p 'f'

and (upper (bookmarktitle) like $srchptrn

or upper (completeurl) like $srchptrn

or upper (onejlinedescrip) like $srchptrn

or upper (detaileddescrip) like $srchptrn

or upper (meta-keywords) like $srchptrn

or upper (meta-descrip) like $srchptrn)

group by complete-url, the_regexp

order by bookmarktitle"]

set ntotallinks [llength $linksjlist

Provide scroll options so not all bookmarks have to be listed on one page.

set nview 10

set minlink [expr $n-view * $numpage + 1]

if { $ntotallinks > [expr $minlink + $n_view - 1] } {
set max-link [expr $min_link + $n-view - 1]

} else {

set max-link $n_totallinks

}

set numtext "$minlink - $max-link of $n_totallinks"

set prevlink "<a href=search?srch text=$srchtext&

num-page=[expr $num-page - l]>"

set morelink "<a href=search?srch-text=$srchtext&

num-page=[expr $num-page + l1>"

set nummenu " "

if { $n-totallinks > 0 } {
if { $min_link > $nview } {

append num-menu "$prev-link "

}
append nummenu $num-text

if { $maxlink < $n-totallinks } {
append num-menu " $morelink"

}

set title "Search for \"$srchtext\""

set page "

[wbmheader $title]

<h2>$title</h2>

106

[adcontextbar-ws [list "" "WAP Bookmark Home"] [list "public-view" "Public

Bookmarks"] "Search"]

<hr>

<P>
<table cellpadding=2 cellspacing=O border=O width=100%>

<tr bgcolor=#dddddd>

<td align=left>

</td>

<td align=left width=100% nowrap>

Matching Public WAP Bookmarks

</td>

<td align=right nowrap>

$num-menu

</td>

</tr>

</table>

<table cellpadding=2 cellspacing=O border=O width=100%>"

if ($n_totallinks == 0 } {

append page "

There are no public bookmarks that matched your search term."

} else {
set return_url [ad_conn url]

for {set i $minlink) {$i <= $max-link) {incr i}

set link [lindex $linkslist [expr $i - 1]]

set bookmark_id [lindex $link 0]

set bookmarktitle [lindex $link 1]

set oneline [lindex $link 2]

append page "

<tr bgcolor=#eeeeee>

<td>

</td>

<td align=right>

</td>

<td align=left nowrap>

$bookmarktitle

</td>

<td align=left width=100% nowrap>

$one-line

</td>

</tr>"

}

append page

</table>

107

[wbmfooter]"

ns-return 200 text/html $page

Copy Public Bookmark

/www/wap/bookmark/copy.tcl

By sirkin@mit.edu on 07/18/00

Inserts a new bookmark in the table with the same attributes as the bookmark

pointed to by bookmarkid, except for newbookmarkid and copying userjid.

ad-maybe-redirect for-registration

set userid [adverifyand-getuser-id]

ad-page-variables {
bookmark id

newbookmark id

}

set sqlquery

select *
from wap-bookmarks

where bookmark-id = $bookmarkid"

if { [catch {dblrow $sqlquery} errmsgl } {
ad return error "Database Select Failed" "There was an error

making this select from the database. The error message was:

<p><blockquote><pre>$errmsg</pre></blockquote>"

return

}

set insert

insert into wapbookmarks

(bookmarkid,

bookmarktitle,

host-url,

completeurl,

theregexp,

matchvars,

multiplep,

private-p,

preceding-text,

following-text,

owner-id,

sort-key,

onelinedescrip,

detaileddescrip,

creationdate)

values

($newbookmarkid,

'[DoubleApos $bookmarktitle],

'[DoubleApos $hosturl]',

108

'[DoubleApos $complete-url]',

'[DoubleApos $the-regexp]',
'[DoubleApos $match-vars]',
'[DoubleApos $multiple-p]',
'[DoubleApos $privatep]',

'[DoubleApos $preceding-text]',
'[DoubleApos $following-text]',

$userid,
$new bookmark-id,

'[DoubleApos $oneline descrip]',
'[DoubleApos $detaileddescrip]',

sysdate)"

Protect against a double-click on the Web form inserting two copies
into the database. The newbookmarkid value was generated in view,

if { [catch {db-dml $insert} errmsg] } {
if { [db-string "select count (*) from wapbookmarks

where bookmarkid = $new bookmark_id"] == 0 } {

adreturnerror "Database Insert Failed" "There was an error
making this insert into the database. The error message was:
<p><blockquote><pre>$errmsg</pre></blockquote>"

return

}
}

ad returnredirect "

109

C: Serve Content to WAP Browsers

Only two scripts are needed for the WAP portion of the site. wap-home displays the personal

bookmark menu summary view for mobile devices. serve actually runs the regular expression

against the target page and returns the matches.

Personal Menu Summary View

/www/wap/bookmark/wap-home.tcl

By sirkin@mit.edu on 07/06/00

Front page viewed from WAP browser. Presents a select list of bookmarks the

user has indicated as currently visible to the device. If more than ten are

visible, the last option is a More..., directing the user to a new card.

wap-maybe-redirect-for-registration

set userid [ad-verify-and-get-userid]

set deck "

<?xml version=\"1.0\"?>

<!DOCTYPE wml PUBLIC \"-//WAPFORUM//DTD WML l.1//EN\"
\"http://www.wapforum.org/DTD/wml_1.l.xml\">

<wml>

<head>

<meta forua=\ "true\" http-equiv=\ "Cache-Control\"

content=\ "max-age=0\"/>

</head>

<card title=\"ACS WAP\" id=\"c-l\">

<p>"1

Where value in the-regexp is null, the bookmark references a native WAP site.

set links_list [db_listoflists

select bookmark id,

bookmarktitle,

complete_url,

decode (theregexp, null, 't', 'f') as wap_p

from wap bookmarks

where owner-id = $userid

and hidden-p = 'f'

order by sortkey" I

set nlinks 0

set ncards 1
set nalllinks [llength $links list]

set deckfooter

</P>

</card>

110

</wml>"

if { $nalllinks ==0 } {
append deck "

No stored bookmarks.

$deck footer"
nsreturn 200 text/vnd.wap.wml $deck

return

} else {
append deck

Select Bookmark:

<select>"

}

foreach link $links-list {
incr n links

set bookmarkid [lindex $link 0]

set bookmarktitle [lindex $link 1]

set completeurl [lindex $link 21

set wapp [lindex $link 3]

If there are 10 links, present them inline. Otherwise require a More...

link in the 10th slot of each card. That is, when nlinks = 10, 19, 28,

37, etc. Find this as (nlinks - 1) == (9 * n-cards) (in real numbers).

if { [expr $nlinks - 1.0] == [expr 9.0 * $ncards] } {
set moreslot-p "t"

} else {

set moreslot-p "f"

}

if { $more slotp && $nalllinks > $n_links} {

incr n cards

append deck

<option onpick=\"#c_$ncards\">More... </option>

</select>

</P>
</card>

<card title=\"ACS WAP\" id=\"c_$ncards\">

<p>
Select Bookmark:

<select>"

}

WML treats $text as a variable, so if a text string includes a $, the

page will fail to load. $$ escapes the substitution to print out a $.

regsub -all {\$} $bookmarktitle "$$" bookmarktitle

If bookmark is a WAP site, link directly to it. Otherwise use serve.

if { $wap p } {
append deck

111

<option onpick=\"$completejurl\">$bookmarktitle</option>"

} else {

append deck

<option onpick=\"serve?bookmarkid=$bookmark-id\">$bookmarktitle</

option>"

}

append deck

</select>

$deckfooter"

nsreturn 200 text/vnd.wap.wml $deck

Serve Bookmark

/www/wap/bookmark/serve.tcl
By sirkin@mit.edu on 07/06/00

Target page viewed from WAP browser. Presents the bookmark selected by the

user in wap-home. Rather straightforward, it matches the regexp against the

target page once or multiple times, removing the match each time. The match

variables indicated by the user are then placed into a list, wrapped with a

WML template, and served.

wapmaybe-redirect forregistration

set userid [ad verify-and-get-user-id]

adpagevariables

bookmarkid

}

Use meta value must-revalidate rather than max-age=0 so the deck will be

forced to reload when navigating to it backward (i.e., during a refresh).

set deck "

<?xml version=\"1.0\"?>

<!DOCTYPE wml PUBLIC \"-//WAPFORUM//DTD WML 1.1//EN\"
\"http://www.wapforum.org/DTD/wml_1.1.xml\">

<wml>

<head>

<meta forua=\"true\" http-equiv=\"Cache-Control\"

content=\"must-revalidate\"/>

</head>

<template>

<do type=\ "accept\" label=\ "Back\">

<prev/>

</do>

<do type=\"accept\" label=\"Reload\">

<go href=\"serve?bookmark_id=$bookmarkid\"/>

</do>

</template>

112

<card title=\"ACS WAP\">

<p>"1

set db-query "

select bookmark_title,

completeurl,

theregexp,

matchvars,

multiple p,

precedingtext,

followingtext

from wapbookmarks

where bookmark_id = $bookmarkid

and ownerid = $user-id"

set deckfooter

</p>
</card>

</wml>"l

if { [catch {db_1row $dbquery} errmsg] }
append deck "

Not your bookmark.

$deck footer"

nsreturn 200 text/vnd.wap.wml $deck

return

}

if { [catch {nshttpget $completeurl 10}

append deck "

Unable to reach host.

$deck footer"

nsreturn 200 text/vnd.wap.wml $deck

return

}

url text] I {

WML treats $text as a variable, so if a text string includes a $, the

page will fail to load. $$ escapes the substitution to print out a $.

regsub -all {\$} $bookmarktitle "$$" bookmarktitle

append deck "

$bookmarktitle

"

if { ![eval $theregexp }

append deck "

Unable to apply bookmark."

} else {

if { ![empty-stringp $preceding-text] } {
regsub -all {\$} $preceding-text "$$" precedingtext

append deck

$precedingtext

"l

113

f

}

regexp {regexp .*{(.*)} \$url-text} $theregexp match pattern

Patterns may begin with -text, which would cause the regexp or regsub

match to fail. In that case, use -- to indicate the end of switches.

if { [string first "-" $pattern] == 0 } {
set sw "--

} else {
set sw

}

set nmatch 1

set nmaxmatch 20

set mult-regsub "regsub $sw{$pattern} \$urltext {\1} urltext"

Execute the following code once if not multiple-p. Otherwise, loop until

we find all matches in the urltext or reach a max number of iterations.

while { [eval $multregsub] && $multiple-p == "t" &&

$n-match <= $nmaxmatch 11 $nmatch ==1 } {

foreach var $match-vars f

Here we want to regsub on each match var, named var_1 etc.

Note that $var references var_l, which points to the text.

regsub -all {\$} [set $var] "$$" var_1

append deck

o [nsstriphtml $var_l]

"

}
incr nmatch

eval $the-regexp

}

if { ![empty-string-p $followingtext] } {
regsub -all {\$} $followingtext "$$" following text

append deck

$following-text"

}

append deck

$deckfooter"

nsreturn 200 text/vnd.wap.wml $deck

114

