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Abstract

The aircraft situational display to industry (ASDI) is a commercially available data
feed providing real-time information about the nation's air-traffic. This paper dis-
cusses a system capable of archiving the data in a database. Extra care was given to
ensure to system robustness, enabling survival and recovery after the failure of any
independent component. Scalability of the system was also crucial to the design, re-
sulting in a database specifically designed to handle the tremendous amounts of data
written over time. Particularly, the system needs to handle the archival of 60,000
flights per day, comprising 7.5 Mbytes of data. Instead of simply copying the feed
into the database, a summarized record of each flight is constructed from numerous
messages received from the feed over the lifetime of the flight. The creation of such
flight summaries required a complex process to detect errors and ambiguities. The
feed could not be treated as a "black box" that generated perfect information, but
instead required careful analysis and modeling through a finite state machine. The
resulting archival system is capable of resolving ambiguities and infer missing data
from contextual information.
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Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

We have designed and implemented of an application that archives air traffic data

from the aircraft situation display to industry (ASDI). Such a system poses numerous

challenges that need to be addressed to make the system both useful and dependable.

First, the system must be designed to handle large amounts of continuously streaming

ASDI data. The storage of this information must be accounted for and measures

must be taken to ensure its quick and easy access. Another difficulty arises from the

fact that the real time information sent by the ASDI feed does not always translate

easily into historical records. Ambiguities and missing data need to be accounted

for to provide a more meaningful record of the nation's traffic. Lastly, the archival

system must have safeguards that ensures continuous operation so that no data is

lost. Redundancy must be part of the system design to protect against failure.

Our archival system that was built provides a flight-based history of the ASDI

feed, summarizing all data about a flight in a single record. We employ a commercial

database system as our foundation to provide a high level of performance and scala-

bility for large amounts of data. Our archival system contains a number of modular

components that can fail independently without the loss of any information. We

studied the ASDI feed and built a finite state machine to model the different combi-

nations of flight states and flight transitions that can be observed from the stream of

information in the feed. Our finite state machine repairs inconsistent ASDI records,

bringing consistency to the database. The archived data that results from this system
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provides a valuable source of information that can be viewed on its own or used in

other applications for presentation, analysis and data-mining.
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Chapter 2

Motivation

Currently, the demand for air travel in the United States is facing increased demand

and loads. According to the Federal Aviation Administration (FAA), the total system

delays during 1994-97 were about 175,000 within the eight-month January-August

period of each year. In 1998, this jumped to 221,701, and the data for 1999 show

265,226 delays for the same period. This represents a 50% rise in air travel delays.

[2, 90] To make matters worse, air travel demand is projected to increase through the

next decade. The FAA predicts that the 50.9 million flights this year will grow 25%

to 63.9 million by 2010. [2, 90] Bottlenecks caused by airports nearing their capacities

are of increasing concern in the air traffic control community. According to Dornheim

[2, 90], "One major airline's study of the worst 10 days over the last 10 years showed

that five of them occurred this spring."

As the system becomes more congested due to larger numbers of people traveling

by airplane, it becomes more important to solve air traffic control problems. Dornheim

[2, 91] explains, "One airline found that a 1-hour late aircraft affects an average of

3.27 other flights in the daytime, and 1.2 other flights toward the end of the day. It's

the 1-hour or more late flights that cause the most damage, and these long delays

are showing a disturbing rise." It is hoped that the analysis of historical data will

offer new insights on how to alleviate this problem. Using the data collected by the

archival system, applications can be developed that use analyze the data to make

predictions ahead of time and clearing bottlenecks before they occur. The data can
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offer insight into airport congestion, route usage and flight delays, providing the

needed information to fix traffic problems.
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Chapter 3

Existing Technology

3.1 The ASDI Feed

The ASDI feed provides continuous real-time air traffic data from the National Airspace

System (NAS). The feed is sent to interested vendors via point-to-point links from

the Volpe Center in Cambridge, Massachusetts, a cooperative project between the

Federal Aviation Administration (FAA) and the Air Transport Association (ATA).

The ASDI data originates from the FAA's Enhanced Traffic Management System

(ETMS), supplying data about the United States and Canadian airspaces. Besides

transmitting all NAS messages, ETMS processes flight data, producing additional

messages that are sent over the feed. The ASDI server, situated at the Volpe Center,

receives ETMS data and is responsible for the filtering of sensitive information that

is deemed inappropriate for public use. Particularly, the Drug Enforcement Agency,

military, and other government flights are considered restricted and information about

them is not sent out for security purposes.

The filtering mechanism also removes certain types and parts of messages from the

data stream for various security concerns. The data is then passed through a firewall

to vendors and clients. The data arrives at MIT through a 128 kb/sec ISDN line. At

the current time, the ASDI feed does not take up the full bandwidth of the line. In

fact, less than half of the bandwidth is actually used. However, the FAA has plans to

increase the amount of information sent over the feed, sending more frequent position
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Figure 3-1: The path of the ASDI Data Stream
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NAS ETMS Server Firewall
Data Data + (Filters - P Vendor

Data)

Vendor

updates on each plane, necessitating full use of the ISDN bandwidth. A summary of

the data flow through this feed is shown in Figure 3-1.

The data sent through the ASDI feed consists of ASCII based messages. Various

message types are defined, each representing a different "flight event", producing a

different message formatting for each type of data record. Additionally, each message

transmitted through the ASDI feed is framed with information that is common to all.

Particularly, each message has a unique sequence number, a time stamp and a facility

identifier (denoting the origin of the message). Two types of messages are sent over

the data feed, original messages from the NAS tracking system and ETMS generated

messages. The NAS messages include those for aircraft arrivals, departures, flight plan

information, cancellations, flight plan amendments, position updates, and boundary

crossings. The ETMS generated messages incorporate additional calculations based

upon the NAS messages. For example, ETMS messages offer more detailed route

information resolving airways and fixes into latitude and longitude coordinates. Be-

cause the data in the ETMS data can be calculated from the NAS messages, it is not

archived by the system to reduce storage requirements. Thus, the archival system

is only concerned with the seven NAS messages whose contents are summarized in

table 3.1.
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Table 3.1: ASDI Messages and Contents

Message Type Description Data in Message
AF Flight Plan Aircraft Identifier, Origin, Destination,

Amendment Amendment Data
AZ Arrival An- Aircraft Identifier, Origin, Destination,

nouncement Arrival Time
DZ Departure An- Aircraft Identifier, Origin, Destination,

nouncement Departure Time, Estimated Arrival Time
FZ Flight Plan Aircraft Identifier, Assigned Speed, As-

signed Altitude, Route, Aircraft Type,
Proposed Departure Time

RZ Cancellation Aircraft Identifier, Origin, Destination
TZ Position Update Aircraft Identifier, Altitude, Coordinates

(latitude/longitude)
UZ Flight Plan Up- Aircraft Identifier, Speed, Altitude,

date Boundary Crossing Time, Aircraft Type

3.2 Other ASDI Applications

Before building the archival system, other applications using the ASDI feed were ex-

amined. Dimension International's FlightExplorer [4] and thetrip.com's FlightTracker

[3] were examined as sample applications that currently allow a user to access the

ASDI data aircraft data. Both offer presentation of real time data, with limited

amounts of historical data. In general, the applications only store information per-

taining to airborne flights. Once a flight is completed, the applications remove all

information about the flight from memory. For the most part, the same information

can be obtained from either program, although their respective presentation style

and interfaces are different. Using the applications, the positions, speed, altitude,

and plane type can be found for any flight.

FlightExplorer presents a zoomable geographic map, containing the locations of

all aircraft. The positions of the planes are continuously updated, giving the user

a sense of airplane movement, density and positions. FlightExplorer also contains

selection features that allow the user to limit the displayed planes to a given set of

search criteria. The program provides a broad set of querying fields, ranging from
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destination, altitudes and plane types (i.e. 747's). The professional version of this

software also incorporates weather information, overlaying weather patterns on the

map alongside the planes.

In comparison, FlightTracker has a much less involved interface. The user enters

a flight or airport for which he would like information. The program responds to

the query by mapping out the airplane's position on a map, providing all relevant

information about the flight in an accompanying window. The interface provided by

FlightExplorer clearly makes more information available to the user. The visualiza-

tion of all flights at once provides the user with a sense of how many planes are in the

air and the air traffic density, information that is not as easily available with Flight-

Tracker. The querying provided by FlightExplorer is broader, giving the user more

flexibility in limiting the planes in which he is interested. Apparently, no existing

applications offer ASDI data on flights that have already landed. In this way, the

archiving system is the first of its kind, giving a complete historical account of IFR

air traffic.
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Chapter 4

System Requirements

A number of requirements were imposed on the design of the ASDI archival system:

1) The system has to be robust and facilitate redundancy. It was noted

that a system archiving the nation's air traffic must be in continuous operation.

Any down-time would result in a loss of irreplaceable historical data. Since the

data collected by the system would ultimately be used for research and analysis, it

was important to prevent gaps in the historic record to provide a reliable source of

information. To ensure this, it was important for the system to have the ability

to recover easily when one of its components fails. Additionally, the system would

need to continue running during outages using fallback processes that would continue

recording data until full recovery was attained.

2) The system has to be scalable. A large amount of data will be collected

by the system and it will continuously grow. This property poses two distinct chal-

lenges. First, the system needs an efficient and scalable method for storage of the

data. The information stored by the system needs to be streamlined and compressed.

Additionally, a strategy is needed to manage the physical storage of the system so

new data can always be written. A second challenge posed by the large amount of

data is assuring quick access to individual records. It is important that the system

be designed to be usable. Queries need to be computed quickly so the system does

not become bogged down by the size of its historical database.
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3) The system needs to convert data presented in a real time format

to a historical format. The ASDI feed is an event based real time feed. Data

pertaining to a specific flight is thus fragmented into many smaller messages detailing

a "flight event" (e.g. departure, position update, arrival). Users and applications

that access the historical data would prefer a consolidated version of the data, one

in which it was unnecessary to piece a flight's information together from individual

messages. Additionally, it is undesirable to save the ASDI feed in the real time format

since messages often repeat information, wasting valuable storage space. These two

factors made it necessary to design a system that consolidates fragmented real time

information into compact historical flight records.

4) The system has to function with an ASDI stream of unknown relia-

bility and sometimes uncertain behavior. At the start of the project, it was

unknown whether the ASDI feed sent out complete and correct data, and indeed it

was safer not to assume so. Thus, it was necessary for the system to deal with the

presence of unexpected data, and the absence of expected data when constructing the

history of a flight from the real-time messages. Without such measures, the system

would lose data in situations it could not handle. Of course, the flip side of this

requirement must be also considered. Feed data that was incomprehensible and did

not give adequate information about a flight should not be saved. A balance had to

be found where the system was neither too rigid nor too flexible in its interpretation

of the data feed.

5) Message consolidation and entry into storage has to occur at least

as fast as the data rate. The ASDI feed continuously delivers new messages to the

system. Any system seeking to archive the data needs to work at least as fast as the

speed at which data arrives. If this was not the case, the system would eventually

break from the backlog of stored messages. Note that this requirement pertains to

the average data and processing rates. It would be acceptable for the system to fall

behind in processing if it was able to catch up at some later time.

6) The system has to infer contextual information and make calculations

not given explicitly by the data feed. All information needed for an accurate
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historical record is not contained explicitly within the feed. Some information had

to be inferred by the system and added to the historical record. It was important

that inferred information be carefully generated so as not to introduce errors into the

historical data.
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Chapter 5

System Design

5.1 Overview

The ASDI archival system can be broken up into 4 main modules: data input, the Ac-

tiveAir table, the flight writer, and the flight database. The data input module deals

with the incoming data to the system. It retrieves messages from the ASDI feed and

parses it for use by the system. The activeair table is responsible for the conversion

of the real time data into a historical format. The table collects all information about

active flights, compacting it into a single historical record. The flight writer module

is responsible for the entry of completed historical records into the database. The

flight database module serves as the storage unit for the flight data. The relationship

between the various modules is illustrated in figure 5-1.

All code was written in Java version 1.2, allowing the software to run on any

platform. Interaction with the database was carried out with the JDBC. The entire

system was designed to run on a minimum of two machines, a dedicated database

server, and at least one machine running the ASDISaver module. The ASDISaver

machine requirements are rather small. The ASDISaver application was successfully

run on a Pentium 120 processor with 96 MB of RAM.
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Figure 5-1: Module Interaction and Data Flow
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5.2 Data Input Module

By far the simplest component, the data input module is responsible for retrieving

data from the ASDI feed, making it available for the rest of the system. Data is

obtained from a server connected to the ISDN line that allows client connections for

the retrieval of data. The server implements the necessary security to ensure that

unauthorized users do not obtain access to the raw ASDI feed.

In making its connection to the ASDI server, the data module implements a timer

that times out the connection if no data is received within a sixty second time period.

The timing out of the connection is used to alert the ASDISaver of a dead connection

so it can attempt to reconnect. (See section 5.5.2)

Once data is obtained from the ASDI feed, it is parsed. Each text-based message

is converted into a data structure in memory that allows for easy access of the message

fields. Some message fields are sent in an encoded format using a smaller character set.

The parser carries out the necessary decoding so the fields are easily understood. The

parsing of each message is specific to the message type, since each contains different

fields, and formats representing different types of information often generated by

different systems.

The entire data module was designed to work as an independent component that

can be reused by other applications that require the use of the ASDI feed. Indeed,

the module performs an important task that is necessary by most applications that

attempt to read data from the ASDI feed. The module abstracts the process of

accessing the text-based data feed, returning a Java representation of each message.

Although simple in operation and complexity, the module still comprises a fair amount

of coding that embodies the necessary knowledge on how to parse and decode the

various messages that are sent over the feed.
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5.3 Database

5.3.1 Hardware Design and Structure

The most important component of the system, the database serves as long term

storage for the air traffic information collected from the feed. The system uses an

Oracle 8i v8.1.5 database running on Red Hat Linux v6.2. Oracle was installed on a

dedicated server, containing dual Pentium Pro 200 processors and 256 megabytes of

RAM. Two hard drives were installed in the machine. A 3 gigabyte hard drive serves

as the machine's main operating storage. This drive contains the operating system,

Oracle software, and the system tablespace definitions for the database. The system

tablespace provides Oracle with information about the data structures that store the

data. A second 17 gigabyte hard drive was installed solely for the storage of air

traffic data. All operations accessing the data use the system tablespace definitions

to locate and access the data. By separating the system data and the air traffic data

on two separate disks, database operations can concurrently use both disk drives and

processors all at the same time.

5.3.2 Data Model

The ASDI feed sends over 2 million messages over a typical day, providing informa-

tion about over 50,000 flights. These messages are event oriented, announcing flight

information pertaining to specific real time events (i.e., departures, arrival, position

updates). Although this format works well for real time applications, it is not optimal

for historical analysis. Users of historical data would most likely be interested in a

flight's full history, which is spread out over multiple messages. Thus, the database

uses a flight oriented data model, storing the full data for each flight in a table row, in-

stead of storing each individual message in a row. This format gives users a clear and

concise history of an entire flight, without having to piece together multiple messages.

Storing the data in flight records introduces a number of other benefits as well,

helping reduce the database size and making it more manageable. A series of related
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messages contain redundant information since some flight information is repeated

across many of these messages. Fields such as flight number, departure point, desti-

nation, and aircraft type are transmitted multiple times over the course of a flight.

Storing the ASDI feed by flight reduces the overall number of rows in the table from

2 million rows to 50,000 rows per day. The reduced number of rows allows faster

querying and more efficient usage of physical storage space. Lastly, the flight format

reduces the number of write operations necessary by the archival system. Writing

each message to the database would expend a good portion of the database's time.

The performance of other database operations, such as queries from users and ap-

plications would suffer as a result. Writing the full history of a flight out at once

significantly reduces the burden on the database.

The downside of not using a message based data model comes from having to

convert the original feed into flight records. The system requires a module that

tracks ASDI messages and generates the individual flights. (See section 5.4) Although

conceptually simple, the process of linking together messages is technically complex

and many problems arise. This conversion adds extra failure points into the system,

and opens up the possibility for error in the stored data. Although such errors can

be avoided entirely by storing the data by messages instead, doing so simply shifts

the burden to the user who is forced to combine messages together himself, who in

turn can make the same mistakes.

All flight rows are stored in a single table, named FlightTable. The columns of

FlightTable are described in table 5.1. Many of the table rows allow null values.

In these cases, a value is not always available for insertion, and space is conserved

by using a null rather than a "filler" value. Note that every column requires an

aircraft identifier, origin, destination, departure time, and arrival time. The not null

constraint on these columns ensures a minimal means of identification for every flight.

Three other not null columns, proposedfirst, deptimevalid, and actualdeptime valid,

help describe the ASDI messages that generated the row, giving an indication of the

reliability of the data. (See section 5.4.8)

The expected sizes were calculated from a week of data. The database uses a 7 bit
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Table 5.1: FlightTable Columns

Column Name Description Type Allows Size, mean
Null +/- sd

(Bytes)
aircraftid The flight number or tail varchar2(11) no 7

number
deppoint Departure point varchar2(12) no 4
dest Destination varchar2(12) no 4
origdest Original destination, if it varchar2(12) yes 4

changed in the air

originaldeptime The planned original depar- date yes 7
ture time

actualdeptime The time the plane actually date no 7
departed

deptimevalid Departure message received number(1) no 1
for flight

etafromdep Eta at the time of departure date yes 7
arrtime Arrival time date no 7
arrtimevalid Arrival message received for number(1) no 1

flight
numberaircraft Number of aircraft number(2) yes 1
heavyindicator Heavy indicator varchar2(1) yes 1
aircrafttype Aircraft type varchar2(4) yes 4
equipmentqualifie Equipment Qualifier varchar2(1) yes 1
assignedspeed Assigned Speed varchar2(4) yes 4
assignedaltitude Assigned Altitude varchar2(7) yes 7
highspeed Highest observed speed number(4) yes 4
highaltitude Highest altitude observed number(4) yes 4
avgspeed Average observed speed number(4) yes 4
avgaltitude Average observed altitude number(4) yes 4
proposedfirst Whether proposed flight number(1) no 1

plan received for flight
route Route varchar2(4000) yes 33
timeentered Time record written to date no 7

database.
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ASCII character set for all of the varchar2 columns (textual data), thus each character

takes up only one byte. The varchar2 and number columns vary in size taking up

only the amount of space used by the data, up to the maximum specified in its type

definition. The route column in particular takes advantage of this characteristic,

allowing values up to 4000 bytes in size while averaging only 32 bytes. The extra

space allows for the entry of more sophisticated route information that is available

over the feed. The larger column size makes it easier for this information to be

included in the future, if desired. The aircraftid, origin, and destination allow more

characters than expected to conform with the ASDI feed specifications that allow

larger but seldom seen values.

5.3.3 Improving Query Performance

Even after converting messages to full flight records, we estimate that 2.5 gigabytes

will be required for a year of database records. It is crucial that measures be taken

to ensure that the database's size does not negatively affect the speed of performed

operations on the FlightTable. This problem is addressed through table partitioning

and indexing.

Table Partitioning

The first measure we take to manage the size of the database is the partitioning of

the FlightTable. Partitioning is a tool used to split a table up into smaller pieces.

In this case, the FlightTable is partitioned by range using the actual departure time

column as the partition key. The table contains a partition for every month, with all

planes departing within a given month appearing in the partition. Partitioning offers

additional functionality as well, allowing the user to query and manipulate data on

specific partitions. Additionally, each partition can be manipulated as a whole, being

added or deleted to the greater table as a unit, allowing for the easy movement of

table data.

The greatest benefits come from the transparency of the underlying partition
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structure when performing table-level operations, however. Table inserts automati-

cally place new rows in the correct partition based upon the key. Similarly, queries on

the table automatically search appropriate partitions, returning results more quickly

than if it considered the full table. Thus, any query limiting the departure date can

efficiently trim its search space using the partitions. For example,

select * from flighttable where actualdeptime > '20000101 000000';

automatically chops off any partitions before January 1, 2000, returning all the

columns for any flight after that date and avoiding the lengthy process of exam-

ining the actualdeptime field for each row in the table (or index if one exists.) In

effect, limiting on the partition key simply determines the time frame of the query.

This fact makes it a good idea to include the departure time whenever possible to cut

back on the amount of time it takes to return results. For example,

select avg(avgspeed) from flighttable where aircrafttype - 'B74 7';

requires searching on all partitions for the average of the average trip speed for all

Boeing 747's. However, the same model of plane probably exhibits little variation in

its average speed every month. Thus, a faster query giving a similar result would be,

select avg(avgspeed) from flighttable where aircrafttype = 'B74 7' and actualdeptime >

'20000101 000000' and actualdeptime < '20000102 000000';

which limits the results to data collected over a one month period of time. A special

case arises for queries that deal with one of the other three time columns (original

departure time, estimated time of arrival at departure, arrival time). These queries

should always include a clause limiting the actual departure time since it is already

implied elsewhere in the statement. For example:

select * from flighttable where arrtime > '20000101 000000';-

returns all the columns for any flight which arrived after January 1, 2000. Any plane

arriving after this date could not have departed too long before this date. Thus,

select * from flighttable where arrtime > '20000101 000000' and actualdeptime >

'19991231 000000';

should return the same data as the previous query since any plane landing after Jan-

uary 1, 2000 would have departed by December 31, 1999. The second query has
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the advantage of utilizing the partitioning key, and users and applications should

always include the actual departure time in all queries that limit the results on any

of the time columns. Queries containing the estimated time of arrival column should

similarly search for flights departing one day previous, while original departure time

queries should search for flights departing one day after.

Table Indexing

A second tool for improving query performance in the FlightTable is the use of in-

dices. An index is a data structure stored in the database that gives quick access

to information in the table. An index is associated with a key that is related to

the columns of the underlying table. Queries can use the index as a lookup table,

quickly locating rows containing the column value using the index key. Use of an

index involves a tradeoff though, taking up memory to store the data structure and

decreasing performance for inserts, updates and deletes which now have to modify the

index as well when the underlying table is modified. Thus, indices were only created

on columns that had high-anticipated use as a restricting condition in queries.

With this tradeoff in mind, five indices were created on the FlightTable. They are

described in table 5.2. The five indexes were created to allow quick independent access

for queries based on five attributes, flight time, origin, destination, flight number/tail

number, and plane type. Although only the actual departure time is indexed, users

can still take advantage of the FlightTime for one of the other three "time" column

with the same procedure used to take advantage of the table-partitioning key. (see

section 5.3.3) A clause restricting the actual departure time can always be added

to any statement considering any of the other three times. All of the indexes have

complex keys, made up of more than one column. The additional key columns further

order the index, providing an ordering of rows that have equivalent values for the first

key column. For example, two flights with the same destination would both be found

under its destination in the FlightDest index, with the earlier flight appearing first

due to the secondary key. The FlightTime index contains four columns in its key.

This is related to the unique constraint on the index and is discussed further in
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Table 5.2: FlightTable Indices

Index Name Index Keys (in order of precedence) Attributes
FlightTime actualdeptime, aircraftid, deppoint, unique, local

dest
FlightDest dest, actualdeptime local
FlightDepPoint deppoint, actualdeptime local
Flightld aircraftid, actualdeptime local
FlightType aircrafttype, actualdeptime local

section 5.3.5. Lastly, all the indices are local, meaning a separate index is built for

each table partition. Oracle does not allow global indexes that use a different column

than the partition key. As a result, Oracle needs to search through the indices of all

appropriate partitions when retrieving results.

5.3.4 Physical Storage and Scalability

The database size also poses challenges for physical storage. Since the feed is contin-

uously running, the database is always in a state of growth. Although a large hard

drive can store a few years worth of data, a plan is needed to prevent the system from

reaching its capacity and breaking.

After collecting data for a few weeks, the observed average size of a table row

can be approximated at 125 bytes of data. (See table 5.1). Using an upper bound

of 60,000 flights per day, a month's worth of data would take up 213,125,000 bytes

of disk space, approximately 2.5 gigabytes per year. This figure does not include

the overhead used by Oracle. Even with generous allowances for this overhead, the

17-gigabyte hard drive used by the database can still hold a few years worth of data.

One long-term option for the system is the installation of additional hard drives when

current storage becomes full. Since memory devices are becoming cheaper and larger,

future disks would be able to hold a larger amount of data, requiring less frequent

replacement. It is conceivably possible that there will be space for hundreds of years

of data in the time it takes for the system to fill up only a few hard drives.

A second means of ensuring scalability is by transferring data to a cheaper storage
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device, such as a CD. The database is already divided into partitions, providing an

easy way to divide the database into pieces. Taking up a little more than 200 MB,

a month's worth of data can easily fit onto a CD even after overhead is taken into

account. Once copied to the CD, table partitions can be deleted from the hard drive

if desired, freeing up space for future data. The same partition can also be added

back from the CD at a later point if the data is needed. The option also offers two

additional benefits as a side effect. First, the CD's provide a means of backup for

the database. If the database is ever lost, it can be rebuilt from the CD's. Second,

the CD's give an easy means of distribution of the ASDI data. Parties interested in

this can be given a copy of the appropriate CD's. Thus, it would seem desirable to

transfer data onto CD's regardless of whether or not the first option of adding new

hard drives is used.

5.3.5 Flight Uniqueness

It is important that each flight get entered into the database a single time as a

unique row. If this were not the case, there would be ambiguity with multiple rows

describing the same flight. Additionally, disk space would be wasted by the duplicate

rows, increasing the burden on both query performance and physical storage. Clearly,

some measure needs to be taken to ensure the uniqueness of each flight. The database

contains two distinct methods of ensuring uniqueness.

The common method of guaranteeing uniqueness in a relational database is through

a column constraint. Once in place, an attempt to insert a non-unique row results in

an error message and abortion of the operation. Oracle allows table columns to be

specified as unique ensuring that each row contains a different value. The uniqueness

constraint can be placed on combinations of columns as well, ensuring that the data

contained in the full combination is different, allowing a value in an individual col-

umn to be repeated. Oracle maintains the uniqueness constraint through an index,

hence the unique attribute of the FlightTime index (see section 5.3.3). The Flight-

Time index contains four columns as its key. Of these four, at least one must be

different between any two rows stored in the table. Note that it is necessary to use
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multiple columns for uniqueness since any one column cannot identify a flight on its

own. A particular flight with the same flight number or tail number can fly the same

route repeatedly over time, creating numerous records in the database. Similarly,

multiple planes with different flight number can depart at the same time. However,

a particular flight can only make a single departure at a time, providing the means

to fully identify a flight. Note that the key also includes the departure point and

origin. These two additional columns are included for the query performance role of

the index and are not needed for the uniqueness constraint.

The initial system design called for the storage of rows containing only perfect

data. Under this assumption, flights for which data is missing would be excluded from

the database. A later redesign relaxed this requirement, allowing estimates to be used

in places where data was missing. (See section 5.4 for further details). Because rows

are no longer perfect, it is possible that multiple independent data writers would

attempt to write different information for the same flight into the database. The

previous constraint ensured that multiple parties writing to the database had the

exact same data about each flight, which is now no longer the case. One writer

may have received data that the other one did not, or it is possible that the two

made different estimates. This is not a trivial case to consider, and there is a good

chance of this situation occurring since the system was specifically designed to allow

multiple writers for the sake of redundancy. (See section 5.5.2) This situation creates

two problems. First, if multiple writers have different values for the departure time,

the unique key would be bypassed and the table would end up containing multiple

rows for the same flight. Second, the unique constraint favors the writer who writes

first. Although a subsequent writer may have genuine data or better estimates for

some columns, its insert operation could possibly be aborted by the unique constraint

simply because a row already exists.

Clearly, the database needs a more intelligent insertion process that can better

identify flights. The process would also need the ability to update already existing

rows, combining information from multiple sources when necessary. To do this, a

stored procedure, enterNewFlight was written and entered into Oracle. Instead of
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performing inserts into the table directly, the stored procedure is called instead with

new data and ensures the uniqueness of each flight, intelligently combining new data

with existing rows.

The enterNewFlight procedure goes through a multiple tiered process when de-

termining whether a flight exists. The procedure starts by counting the number of

flights in the database with the same aircraft identifier, departure point and destina-

tion that took off 12 hours before and after the departure time of the new flight. It

is assumed that any previous estimates made about this flight would fall within this

range. If no matching flight exists in this window, it is presumed safe to enter this

record into the database. Next, the procedure checks if there are any flights in the

database that have the exact same information as the new flight. If a row with the

same data exists, the procedure immediately exits, doing nothing with the new flight

record.

These first two steps take care of the most common cases and allow the procedure

to act efficiently in its computations. Most aircraft do not fly between the same origin

and destination within a twenty four hour span. Thus, most new flights would be

inserted in this first step of the procedure, without having to go through additional

computation. Only flights making the same trip in a twenty four hour time span would

need to go beyond this step to ensure that they are distinct. The second step deals

with cases when the information from two sources is exactly alike. Despite the concern

for differences, most of the time multiple data writers read from the exact same feed

and attempt to write identical flight records. This second step immediately halts

computation for this common case, identifying this most common type of duplicate.

The rest of the procedure now deals with the two less common cases, the insertion

of a flight between two points that was made more than once in a twenty four hour

time span, and the case when writers have different information that needs to be

combined (or ignored) to form a single record. The enterNewFlight procedure first

retrieves all flights in the twenty four hour window with the same aircraft identifier,

origin and destination. It then examines each one to determine whether the new

flight overlaps the time that the pre-existing flight was in the air. If no overlap is
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found, the procedure concludes that the flight is different than the one already in the

database and that the trip was simply made more than once in the same twenty four

hour period. In this case, the flight record is inserted into the database as normal.

If an overlap is found though, the procedure updates the existing database row with

pertinent information from the new flight data. Specifically, it checks whether the

new data contains genuine times, replacing any estimates that were previously placed

in the database. If both records have estimated data, it uses the better estimate,

entering the later arrival and departure times. (The error made in the estimate

makes the times earlier than they should be. See section 5.4.8) Finally, if the old

row was missing flight plan information prior to takeoff, the fields are filled in with

information from the new flight record if available.

Although the procedure does a good job of matching new flights to pre-existing

flights, it is still theoretically possible for two rows to be inserted describing the same

flight. This case is best exhibited by an example. Let writer-1 track flight 123 from

1:00 until 2:00, after which it stops receiving any information about the flight. Writer-

1 will then send a record to the database with its estimate that the flight occurred

between 1:00 and 2:00. Let writer-2 receive information about the same flight 123,

starting at 3:00 and ending at 5:00. The enterNewFlight procedure would treat the

record submitted by writer-2 incorrectly, as a different flight than the one submitted

by writer-1.

This error is indicative of a tradeoff that had to be made. The system database

needs to balance the possibility of duplicate entries for the same flight with the pos-

sibility of accidentally combining two distinct flights into one record. In this case,

the system prefers to err on the side of duplicate flights. Whereas information is

lost when two distinct flights are combined, the user still has the ability to interpret

duplicate records on his own when they are put into the database. Additionally, the

occurrence of an aircraft making multiple trips between two close cities is common.

Regular shuttle flights often repeat a trip of short duration numerous times in a day.

Extra care had to be taken to avoid merging two adjacent flights. The probability of

getting duplicate flights is still relatively small though since it would require writers
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to come on and off-line in a specific unusual order. Since the writers are not expected

to go down very often, it is unlikely that flights would be duplicated in the database

too often.

5.4 ActiveAirModule

5.4.1 Finite State Machine

The main purpose of the ActiveAir module is to collect messages over the life span of

a flight, piecing them together into a single record. Because the feed is meant to be a

tool for real time analysis, the sequence of messages received for a given flight does not

always translate easily when forming historical records. It was necessary to develop

procedures for dealing with varying ASDI feed behaviors. An organized process had

to be developed to track the history of a flight, using the real-time glimpses that were

conveyed over the ASDI feed and filling in gaps of a flight's history.

The different messages received about a flight convey information about the state

of an airplane. The state is an important indicator for the flight, affecting the module's

treatment of future incoming messages. To facilitate this, a finite state machine

(FSM) was constructed, defining possible plane states and transitions. Upon the

arrival of a new message, a transition is inputted into the state machine, which then

returns the new state of the plane. The FSM also alerts the ActiveAir module of

illegal transitions, identifying unexpected behaviors in the feed that could indicate

missing messages. The FSM is implemented as a stand-alone sub module, which can

be used separately from the ActiveAir module.

The state machine uses six unique plane states, pending, in-air, cancelled, cancelled-

in-air, completed, and unknown. The pending state represents a flight that has not

taken off yet, for which a proposed flight plan has been received. The in-air state cor-

responds to flights that are currently flying. The cancelled state represents flights that

are cancelled while the plane is still on the ground before takeoff while the cancelled-

in-air state corresponds to flights cancelled after takeoff in mid-flight. The completed
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state is used for flights that land at their destination. The unknown state is a special

state, used to initialize new flights and deal with the first transition, representing the

starting point of the FSM.

It was necessary to distinguish between the two types of cancellations to handle

the feed behavior of cancellations immediately followed by reinstatements with a new

flight plan. As an alternative to sending amendment (AF) messages to change the

flight plan, a sequence of cancellation (RZ) and flight plan (FZ) messages can be sent

instead. Upon reinstatement of the cancelled flight, it is necessary to return the plane

to the same state it was in prior to cancellation. The use of two distinct cancellation

states allows the FSM to distinguish between cancellations occurring before and after

departure, returning the plane to the correct state upon reinstatement. The cancelled-

in-air state also has an important role in sending stale records to the database in

conjunction with garbage collection. (See section 5.4.6) Whereas flights that are left

in the cancelled state are deleted entirely since they never occurred, flights that are

cancelled-in-air are placed into the database since the flight actually did take place

and was simply removed from the tracking system at some point in mid-flight.

The state machine recognizes five transitions, update, takeoff, position-update,

cancellation, and landing. An update represents the arrival of a message updating

the flight plan of the plane. On the other hand, position-updates correspond to

messages conveying the actual position and speed of the plane. Takeoff, landing

and cancellation transitions represent a flights departure, arrival and cancellation,

respectively.

Every message type sent over the ASDI feed is paired with one of the transitions.

Upon the arrival of each message, the implied transition is taken in the flights FSM

to realize the flight's new state. Flight plan (FZ) and amendment (AF) messages

correspond to update transitions. Position update (TZ) and boundary crossing (UZ)

messages corresponds to the position-update transition. Note that besides announcing

a boundary crossing, the UZ message also contains flight plan information similar to

the data contained in FZ messages. However, UZ (and TZ) messages can only be

received while the plane is in the air while FZ and AF messages may be received in-
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air or on the ground. Thus, the UZ message is classified as a position update. As their

names suggest, departure (DZ), arrival (AZ), and cancellation (RZ) messages refer to

takeoff, landing and cancellation transitions respectively. Also, FZ and AF messages

may trigger a takeoff transition, as well. Both of these messages allow the time field

to correspond to a departure time. When this is detected, the takeoff transition is

inputted into the finite state machine.

The transitions allowed by the FSM are listed in table 5.3. Normally, a plane

would start in the pending state after the first flight plan message is received in a

FZ. Additional flight plan updates may be received prior to takeoff, until the takeoff

transition moves the plane into the in-air state. Once in the air, the plane can

undergo both update and position-update transitions as needed. A landing transition

then eventually completes the flight. Additionally, it would be considered normal for

flights to enter the cancelled and cancelled-in-air states with a cancellation transition

and then become reinstated with a new update transition. The normal path a flight

takes through the FSM is exhibited in figure 5-2. Although most flights follow this

pattern, unfortunately a significant number exhibit degenerate behavior, forcing the

inclusion of additional transitions, described in the next section.

5.4.2 Explanation of Non-Obvious Transitions

The typical flight history described above only accounts for 9 of the 21 listed tran-

sitions. The other 12 transitions allow for special cases that arise within the feed.

The ActiveAir module was built to compensate for missing or ambiguous data that

may occur during normal operation. These additional transitions are allowed to oc-

cur since it is possible to fill in any gaps that are caused by the ambiguity. The

conjectured cause of these transitions and the method that they are dealt with are

discussed in turn.

Unknown, Takeoff, In-air. This transition is caused by a missing flight plan

(FZ) message that announces the flight before takeoff. A small number of flights

are not announced before takeoff yet are fully tracked afterwards. It is possible that

an error prevented the FZ from being sent over the feed, or not enough time was
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Table 5.3: Finite State Machine Transitions

Initial State Transition New State
Unknown Update Pending
Unknown Takeoff In-air
Unknown Position-update In-air
Pending Update Pending
Pending Cancellation Cancelled
Pending Takeoff In-air
Pending Position-update In-air
Pending Landing Completed
Cancelled Update Pending
Cancelled Cancellation Cancelled
Cancelled Takeoff In-air
Cancelled Position-update In-air
Cancelled Landing Completed
Cancelled-in-air Update In-air
Cancelled-in-air Position-update In-air
Cancelled-in-air Cancellation Cancelled-in-air
Cancelled-in-air Landing Completed
In-air Cancellation Cancelled-in-air
In-air Update In-air
In-air Position-update In-air
In-air Landing Completed
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Figure 5-2: "Normal" flight transitions

11,2
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Transition Key 5 5 1
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3 = TakeoffIn-Air
4 = Landing
5 = Cancellation

available before departure to send one out. Messages that do not receive a flight plan

before takeoff are flagged as such in the database. (See section 5.4.8) A later FZ or

boundary crossing (UZ) message is used to fill in the missing flight plan fields.

Unknown, Position-update, In-air. Similar to the previous case, both flight

plan (FZ) and departure (DZ) messages were not received. Although flights entering

US and Canadian airspace are usually announced with a DZ (which announces their

airspace entry time, not their departure), often times they are not and position up-

dates become the first messages received. Note that a new flight record will be created

and put into the unknown state upon the arrival of boundary crossing (UZ) messages,

with position update (TZ) messages simply being ignored. (See section 5.4.5) The

missing flight plan information is filled in with the UZ message. The missing depar-

ture time is recorded as the time of the first received message instead, and is flagged

in the database as such.

Pending, Position-update, In-air. Here, a departure message was missing

despite the arrival of a flight plan (FZ) proposal. The departure message may not

have arrived over the feed due to an error, or the lack of a departure in US or Canadian

37



airspace in the case of an international flight. The departure time is recorded as the

time given in the prior flight plan proposal, and the time is flagged in the database

as an estimate.

Pending, Landing, Completed. A number of flights seem to skip right to

their landing after their initial flight plan proposal. These flights tend to be short in

duration and it is possible that messages are not sent out during the span of their

flight. Again, the missing departure time is filled in with the estimated time from the

flight plan. Additionally, in-air flight statistics such as average and high speeds and

altitudes are not recorded due to the lack of data.

Cancelled, Cancellation, Cancelled; Cancelled-in-air, Cancellation, Cancelled-

in-air. Both of these transitions are the result of duplicate cancellation messages.

Often times, flights traveling between US and Canada receive a cancellation message

from authorities in both countries. No data is lost through this transition, and the

plane simply remains in the same state that it was in previous to the message.

Cancelled, Take-off, In-air. This transition is caused by a missing flight plan

message that reinstates the flight. In this case, tracking occurs as normal, ignoring

the fact that the cancellation message was received.

Cancelled, Position-update, In-air. Here, a flight plan message and a depar-

ture message both were not received. The departure time given in the original flight

plan is used, and again the previous cancellation is ignored.

Cancelled, Landing, Completed. In this case, all messages from the time of

cancellation until arrival were not received. The flight record is built from the original

flight plan and the arrival message.

Cancelled-in-air, Position-update, In-air. The flight was never reinstated af-

ter cancellation. Flight tracking occurs as normal, ignoring the previous cancellation.

Cancelled-in-air, Landing, Completed. No new messages were sent out from

the time of the flight's cancellation until its arrival. The flight record is built with

the information that was available, prior to cancellation.
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5.4.3 Illegal Transitions

Although the finite state machine is flexible in getting around errors, a number of

illegal transitions are still possible. Upon the occurrence of an illegal transition, an

error message is written to the error log. One illegal transition represents a special

case since it occurs on a regular basis. It is not written to the error log, but is instead

handled to reflect an expected behavior:

In-air, Take-off. This message results from a duplicate departure message.

Flights that travel between the US and Canada are tracked by authorities in both

countries, who both send out a departure message. The second departure message

signals the time of flight activation and not the actual departure time. To deal with

this problem, the finite state machine does not allow departure transitions once the

flight is in the air, resulting in the second departure message being ignored.

5.4.4 Flight Resolution Algorithms

The first challenge in constructing flight records out of individual messages comes in

determining the flight corresponding to a message. At first, this may appear simple,

since flights have an aircraft identifier with each message. Unfortunately, an aircraft

identifier alone is not sufficient for resolving all messages. The first difficulty arises

with multiple legged flights. Airlines commonly use the same flight number for flights

that make a stop over in an intermediary city. Since flights are announced in advance

of takeoff with flight plan announcements, a future flight leg can be tracked within

the system at the same time as a current flight leg. A similar problem can be found

with general aviation flights, in cases where an aircraft is making multiple flights in a

short time span. Again, the system needs the ability to track multiple flights which

all share the same aircraft identifier.

To solve this problem, flight resolution uses aircraft identifier, origin, and des-

tination to form a unique identifier. Multiple legged flights plans are immediately

differentiated with the use of this key. Note that the unique identifier differs from

the unique key used in the database, which also includes the departure time. This is
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because the differing temporal contexts of the database and ActiveAir module. With

a time horizon of only a few hours, the ActiveAir table keeps track of flights within

a relatively small time horizon. Unlike the database, flights with the same aircraft

id, origin and destination are not repeated in this smaller time frame, making these

three fields sufficient for matching messages.

Although aircraft id, origin, and destination give a means of resolving most flight

messages, it cannot be used to match TZ messages, representing position updates.

The most frequent message sent out over the ASDI feed, TZ messages do not contain

the origin and destination within its body. The first observation that helps get around

this obstacle is that TZ messages can only be sent out for planes that are in the air.

If a flight has multiple legs under the same aircraft identifier, it is impossible for

more than one leg to be in the air at a time. Thus, TZ messages can be resolved by

matching the aircraft identifier in a message with the corresponding flight record that

is currently in the air.

Unfortunately, a number of problems make resolution of TZ messages more com-

plicated. The problems arise from the non-uniqueness of in-air flights having the same

flight number. Although it is physically impossible for multiple legs of a flight to be

in the air at once, errors in the ASDI feed and reporting do allow for this occurrence.

Many flights are not transmitted with a full flight number. For example, some air-

lines transmit all flight identifiers over the feed using only the last three digits of the

four digit flight number. Quite frequently, two flights sharing the last three digits of

their flight number may be in the air at the same time. Thus, TZ messages for both

flights would be sent out over the feed using the identical aircraft identifier. Another

source of multiple active flights with the same identifier comes from missing messages

in the feed. It is not uncommon for messages to be left out from the data stream.

Particularly, a missing arrival message would incorrectly leave a completed flight in

the air. If that same flight then departs to a new destination, more than one plane

with the same flight identifier will be in the air at once. In this case, the TZ message

should be associated with the later flight, since the older flight is no longer valid and

is simply waiting for garbage collection to remove the record. (See section 5.4.6) Note
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that these problems are all be solved with the use of the origin and destination, so

they are not an issue for any messages except TZ's which require special treatment

for these cases.

To help resolve TZ messages, the algorithm makes use of the computer identifier

that is transmitted with the aircraft id. The computer identifier field is a device

that allows the FAA systems to identify aircraft messages without the numerous

difficulties that were encountered by the archival system. It would seem appropriate

to just use the computer identifier from the beginning for all messages, avoiding

the algorithms described here. Unfortunately, the utility it brings to the originating

systems is not mirrored in the interpretation of the ASDI feed due to a number of

inconsistencies. First, the computer identifier is not transmitted in all message types.

Arrival (AZ) and boundary crossing (UZ) messages in particular do not transmit the

computer identifier, necessitating the origin and destination for matching. A second

problem arises from computer identifier disparity between different facilities. The

ASDI feed combines data from a large number of monitoring facilities in both Canada

and the United States. Some facilities do not transmit the computer identifier in their

messages, while other times, different facilities may sometimes send out different

computer identifiers for the same flight. Although it is not a perfect key that should

be relied upon as the primary source of matching, the computer identifier is still

useful as a backup. Since it is usually included in TZ messages, it serves as a good

backup for matching these messages when there are multiple in-air flights with the

same aircraft id.

Note that the algorithm assumes that a flight record already exists for the message

in question. The process of creating new flight records is discussed in section 5.4.5.

The full algorithm is summarized as follows:

if message is not TZ

match message with flight having same aircraft id, origin and destination

else (if message is a TZ)

if only one in-air flight with same aircraft id

match message with in-air flight with same aircraft id
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else (if more than one in-air flight with same aircraft id)

if message contains computer identifier

if only one in-air flight with same aircraft identifier and computer identifier

match message with in-air flight with same computer identifier and aircraft id

else (if more than one in-air flight with same aircraft identifier and computer identifier)

match message with latest in-air flight with same computer identifier and aircraft id

else (if message does not contain computer identifier)

match message with latest in-air flight with same aircraft id

5.4.5 Flight Creation

Obviously, not all messages can be matched to preexisting flights. Each flight must

have a first message that begins its record. In general, a new flight record is created

when certain messages are unable to be matched with any previous records. Par-

ticularly, a new flight record is created upon receiving departure (DZ), flight plan

(FZ), and boundary crossing (UZ) messages. Limiting flight record creation to these

particular messages determines the nature of the records inserted into the database.

A balance had to be found between maximizing the number of flights recorded and

the quality of the data written.

For a vast majority of flights, the first message received is the flight plan announce-

ment (FZ). Thus, it is clearly necessary to create new flight records upon the arrival

of these FZ message. However, restricting flight record creation to just FZ messages

can result in the loss of meaningful information. Particularly, creating a new flight

upon receipt of a takeoff (DZ) or boundary-crossing (UZ) message produces a flight

record based on a partial history of the flight that is meaningful enough to store in

the database. Although it is possible to create a new flight record for every message

type, doing so would result in many meaningless records. For example, sometimes

the only messages received about a flight are position updates (TZ). A flight record

based on the information contained in TZ messages alone would be practically empty,
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serving little value in the database. Similarly, creating a new flight record based on

an arrival (AZ) message would produce a sparse record since the AZ message itself

contains minimal data and no future messages will be received for a completed flight.

In both cases, it is better to ignore the message, only creating new records upon more

informative messages that come earlier in the life-cycle of the flight. A different line

of reasoning motivated the decision not to produce new flight records for cancellation

(RZ) and amendment (AF) messages. Both types of messages only have meaning in

the context of previously received messages. An AF message is sent to change previ-

ously received data. Such a message simply does not make sense unless a preexisting

flight record already exists. Similarly, an RZ message simply voids a previous flight.

If no flight record exits, there is no flight record for the message to cancel and there

is no point in creating a new flight record.

5.4.6 Flight Deletion and Garbage Collection

The first and most common method in which a flight record is removed form memory

occurs when the flight is completed. The only message that completes a flight is an

arrival (AZ) message. Whenever an AZ message is received, the corresponding record

is updated with the contents of the message, and then removed from the flight table

of tracked flights and stored elsewhere until the ASDISaver module transfers it to the

database.

The second method in which flights can be deleted is through a garbage collection

process that removes stale flights from the flight table of tracked flights. This process

should not be confused with the standard Java garbage collection process although

both have the same purpose, to clear memory that would otherwise be wasted. Often

times, due to the unpredictability of the ASDI feed, a flight record gets created and

is never completed. This can be due to an error where flight messages fail to be sent

over the feed or a more allowable case of flights traveling outside US and Canadian

airspace where contact is lost with the plane. For whatever reason, the system is left

with a flight record in memory for which no new messages are sent.

The stale flights create a problem in two respects. First, these stale flight records
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take up memory resources. Given enough time, the stale flights would pile up, ex-

hausting the memory of the system, causing it to fail. Second, the system would be

unable to properly deal with a new flight possessing the same aircraft id, origin and

destination. This would actually be a frequent problem since airlines commonly run

the same flight on a routine basis. Without removing such stale flights, a message

for a new flight may be incorrectly matched to an old flight record that had been left

around in memory.

To solve the problem, the ActiveAir module includes a separate thread that checks

the age of the currently active flights and deletes those that are determined to be too

old. A flight record is old when too much time has elapsed since the arrival of the

last message for that flight. The thread itself is assigned a lower priority than the

main thread that processes the ASDI feed and enters the new data into flight records.

Thus, garbage collection occurs during periods of time in which no new data is sent

through the feed. Even during peak traffic, ample time is still available for the garbage

collection thread to run in between messages. The garbage collector simply iterates

through each of the flights stored in the table of tracked flights, checking the time of

the last received messages.

Flights are considered to be stale at different times depending on its flight state.

This is because each state implies a different expected frequency of arriving messages.

The amounts of time until a flight is considered old is given in table 5.4. Flights that

are pending are allowed a large amount of time since it is possible for flights to be

announced up to 12 hours in advance. [1, 21] From the time of its initial proposal,

it is possible that no other messages will be received about the flight until it takes

off, so it is important to give the flight record ample time before deletion. Once a

plane takes off, however, position update (TZ) messages are sent out every one to

five minutes. (ASDI Functional Description 19) Thus, a flight record for an in-air

plane can be considered old in much less time when no new messages are received.

Flights that are cancelled also allow an hour of time before removal. Sometimes, the

ASDI feed contains cancellation (RZ) messages immediately followed by flight plan

(FZ) messages for the same flight. Such a sequence is sent out as an alternative to
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Table 5.4: Flight State Expiration Times

State Time Until Old
Unknown 10 minutes
Pending 16 hours
Cancelled 1 hour
Cancelled In Air 1 hour
In Air 1 hour
Completed 10 minutes

amendment (AF) messages for changing flight information. The one-hour window

allows cancelled flights the opportunity to be reinstated in this manner. The shortest

amount of time is allotted for flights in the completed and unknown states. Flights in

these states should never actually be in the active flight table, since completed flights

are removed immediately after landing as previously described and the unknown state

is used only when initializing the state of new flight records.

Once a flight record is determined to be stale, it is either deleted outright, or it is

inserted into the database. Only the in-air and cancelled-in-air flights that are garbage

collected are inserted into the database. In-air flights may have flown outside of US

and Canadian airspace and are simply not being tracked anymore. Alternatively, it

is possible that such flights landed and no arrival (AZ) message was sent out for it

over the ASDI feed. For the cancelled-in-air flights, the aircraft may have simply

been removed from the flight tracking system after takeoff. Enough information is

known about such a flight to warrant its insertion into the database. At the time of

removal, the arrival time is estimated to be the time of the last received message, and

the arrival time validation flag variable is set to "database estimate", which indicates

that the arrival time is not genuine but is the time at which contact was lost. (See

section 5.4.8) Flights in all other states are deleted from memory, since they do not

represent a valid flight. Stale pending flights are assumed to have never occurred and

are deleted. Similarly, cancelled flights were never carried out and are deleted as well.
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5.4.7 Data Structures

Two important data structures are used to store and manipulate the flight records, a

table of tracked flights, and a queue of finished flights. Newly created flight records are

originally stored in the table of tracked flights where it then undergoes the appropriate

updates as additional messages are received. Once a flight is completed or garbage

collected, the flight record is moved to the queue of finished flights until it is entered

into the database.

Tracked flights are held in a hash table that uses the flight identifier as a key.

Each key maps to a Java Vector object containing the flight records of all tracked

flights with the same flight identifier. Since each key may map to more than one

flight record, it is often necessary to provide additional parameters such as origin

and destination, computer identifier, and flight state. A linear search is carried out

for all flight records in the Vector to find which ones meet the additional qualifiers.

Usually, there will be only one flight record for a given flight identifier. In the less

frequent case, there should only be two or three records matching the key, keeping the

linear search extremely small. The data structure was designed to efficiently carry

out the flight resolution algorithms (see section 5.4.4) that require multiple keys for

the different modes of access. The data structure takes advantage of the fact that

there will never be a large number of flight records with the same flight identifier,

allowing a negligible linear search rather then creating a more complicated multiple

key hash table.

The table of tracked flights maintains the combination of flight identifier, origin

and destination as a unique key. Upon every insert and update to the origin and des-

tination fields of a flight, the records of all flights with the same identifier are checked

to ensure that there is only one with the given origin and destination, throwing an

exception if this is not the case. Thus, the data structure ensures that only one record

can be returned whenever a flight is retrieved in the flight resolution algorithm based

upon these three parameters. In contrast, it is possible for more than one record

to have the same flight identifier, computer identifier pair. Thus, uniqueness is not
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guaranteed by the data structure in this case, and the flight resolution algorithm

chooses the matching flight for which a message was last received, as consistent with

the flight matching algorithm.

The second important data structure used is the queue of finished flights. A

finished flight is stored in this data structure until the ASDISaver module removes

it and sends it into the database. The queue was designed to distinguish between

two levels of priority, flights that were completed (received an arrival message), and

flights that were garbage collected. A Java Vector object is maintained for each level

of priority, and flights records enter and exit using a first-in first-out ordering. The

data structure gives multiple modes of access, allowing for the removal of a flight

with a specific priority level. Thus, an outside module, such as the ASDISaver can

decide on its own database transfer policy. For example, the ASDISaver's policy of

always removing completed flights before removing a garbage-collected flight is easily

implemented using this data structure. (See section 5.5.1)

5.4.8 Updating the Flight Records

Flight records are constantly updated with the information received in ASDI mes-

sages. A description of the data stored by the flight record data structure is given in

table 5.5.

Most of the fields of a flight record are straight forward, closely reflecting the data

fields outlined in the ASDI message specification. Note that the record also holds

information about the flights current and previous position, altitude and speeds.

Although this data is not stored in the database, the ActiveAir module was designed

as a reusable module that can be used in real-time applications as well as historical

ones. The variables firstTime, lastTime, timeAltitude, timeSpeed, avgAltValid, and

avgSpeedValid are used for the computation of average speed and altitude and are

discussed separately in section 5.4.9. Each flight record also contains the aircraft's

current state as determined by the finite state machine.

47



Table 5.5: Flight Record Fields

Field Type Description
aircraftld String The aircraft identifier
cid String The computer identifier
depPoint String The departure point
originalDest String The original destination
currDest String The current destination
aircraftType String The type of aircraft
heavy String The heavy indicator
numberAircraft int Number of planes in flight
equipQual String The equipment qualifier
assignedSpeed String The assigned speed
assignedAlt String The assigned altitude
route String The route
currAlt String The current altitude
currPos String The current position
highAlt String The highest altitude
highSpeed String The high speed
lastAlt String The previously recorded altitude
lastPos String The previously recorded position
currSpeed String The current speed
lastSpeed String The previously recorded speed
firstTime Date The timestamp of the first position update
lastTime Date The timestamp of the position update last received
timeAlttiude float The timealtitude used to compute average
timeSpeed float The timespeed used to compute average
etaFromDep Date The estimated time of arrival calculated at departure
arrTime Date The time of arrival
firstDepTime Date The first proposed departure time
actualDepTime Date The actual departure time
avgAltValid boolean Validates the average altitude
avgSpeedValid boolean Validates the average speed
departValid int Describes departure time
arriveValid int Describes arriveValid
proposedFirst int Whether proposed flight plan received before takeoff
planeState FlightState State of flight
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Departure, Arrival and Flight Plan Descriptors

Each flight record contains three special fields, departValid, arriveValid, and pro-

posedFirst that describe the other data fields, giving information about its origins.

As mentioned, the ASDI feed does not always behave as expected and messages may

not arrive that signal a change in the flight state. These three variable help describe

the messages that were received, specifying the source and accuracy of other data

fields.

The proposedFirst variable keeps track of whether or not a proposed flight plan was

received before takeoff. The route, aircraft type, heavy indicator, equipment qualifier,

assigned speed and assigned altitude are all sent within a flight plan. Usually, this

information is transmitted and stored before departure. Although this information is

sometimes repeated after takeoff, the route field is often not the same, starting from

the airplane's current location, instead of the origin airport. Additionally, the assigned

speed and altitude are replaced by the airplane's requested speed and altitude. Thus,

there are elements of the flight plan that can only be attained in a message before

departure. Unfortunately, not all flights in the ASDI feed are announced with their

flight plan before departure. A good number are first tracked starting with the takeoff,

and some are tracked starting mid-flight. Rather then ignore the post-takeoff flight

plans of these flights, the proposedFirst variable flag is set to zero (from one) to

indicate that some of the fields did not originate from a proposed flight plan, and

that the route, assigned altitude and assigned speed may convey slightly different

information. (The variable is saved as an integer rather than a boolean value for

compatibility with the Oracle database which does not have boolean variables.)

The departValid and arriveValid tags describe the actual departure time and ar-

rival time fields, respectively. The two fields describe the source of their respective

times, allowing four integer values corresponding to valid (0), asdi-estimate (1), db-

estimate (2), and cancelled-estimate (3). Valid indicates that the time is the actual

departure/arrival time, sent through a departure (DZ) or arrival (AZ) message, re-

spectively. ASDI-estimate indicates that the time is an estimated arrival or departure
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time sent out over the ASDI feed. Both DZ and AZ messages can qualify their in-

cluded time as actual, or as an estimate. In addition, this value is used for flights for

which a DZ message was not received at all, which instead uses the estimated depar-

ture time sent in the body of the proposed flight plan. The third value, db-estimate,

is used when the ASDI feed fails to give any time whatsoever. For departure times,

this occurs when no flight plan or departure message is sent out prior to the plane

being in the air. In this case, the departure time is saved as the time of the first

received in-air message, providing the latest time that the plane could have departed.

For arrival times, this value is used when no AZ message is received for an in-air

flight, and the garbage collector ends up removing it. In this case, the arrival time

is saved as the time of the last received message, providing the earliest time that

the plane could have landed. Finally, the arriveValid variable allows a fourth value,

cancelled-estimate. Like db-estimate, this value is used for flights for which messages

stopped arriving mid-flight. However, this value further qualifies the flight as being

cancelled mid-flight. Again, the garbage collector fills in the arrival time with the

time stamp of the last received message.

Updating Contexts

When updating the fields of each flight record, the ActiveAir module uses both the

message type and plane state for contextual interpretation. It is possible for a message

field to appear in more than one type of message. The same data field may also be

valid for multiple states of the plane, offering different meaning when it is in each one.

It is important that different behaviors be carried out, depending upon the context of

the message. The first context used is the message type. A different method handles

the updating of each of the different types of messages. An alternative would have

been to use one standard method that handled ever message types, producing different

behaviors on the field level. However, doing so would produce a uniform behavior

that is not always appropriate for all types of messages. For example, amendment

(AF) messages use the same fields as a flight plan (FZ) message to describe the flight

identifier. However, an amendment containing a change to a flight identifier must
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also change the hash key in the table of tracked flights, while a new flight plan simply

needs to produce a new flight. Another important use of the message content is in the

proper handling of flight state. Many of the message types have an effect on the state

of the plane, causing it to change state, regardless of the individual fields contained

within. The arrival of a cancellation (RZ), departure (DZ) and arrival (AZ) messages

changes the state of the plane besides updating the fields. The second context used in

updating flight records is the plane state. The plane state is used for two important

purposes, to provide further context for messages that can occur at any time in the

flights history, and to provide a mode of error checking. Some messages such as

amendments, cancellations and flight plans can occur prior to takeoff as well as in the

air. Some fields need to be handled differently depending on the state of the plane.

For example, the route, which can be transmitted in both FZ and AF messages

is only updated prior to takeoff since once the plane is in the air the route starts

from the plane's current position rather than the originating airport. In its error

checking mode, the plane state helps detect the occurrence of duplicate messages.

For the case of duplicate departure messages, the plane state determines that the

second message, which provides less accurate information (see section 5.4.3), should

be ignored. By checking the plane state, it is possible to learn that a departure was

already recorded for the flight and the record should not be erroneously updated to

reflect the information in the second departure message.

5.4.9 ASDI Field Processing

Many of the data fields transmitted over the ASDI feed require additional compu-

tation before they are stored in the database. Some fields simply require additional

parsing to break the it into separate components. A few fields need more compli-

cated processing, however, requiring both calculation and the addition of contextual

information not sent over the feed.
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Time Processing

Since it describes air traffic in real time, the ASDI feed sends all departure and arrival

fields with hour and minutes information only in UTC time. Clearly, a historical

database would need more detailed information, requiring a full date to distinguish

between flights. Thus, the ActiveAir module augments each time field with the date,

based upon the current date and time. However, it is not correct to simply attach the

current system date (after adjusting to UTC time) onto each time that passes through

the feed. Although in most cases a time coming through the feed refers to the current

day, this is not the case for times near 00:00 UTC time. A proposed departure time

may be sent out in the closing hour of one day, announcing the departure after 00:00

UTC on the next day. Similarly, actual departure and arrival times may refer to events

from the previous days in the opening hour after 00:00 UTC. Thus, it is necessary

to use a more complicated algorithm to assign dates, which can be accomplished by

assigning the closest date to the time in question. First, the algorithm hypothetically

assigns the time to the current day, the previous day and the next day. It then takes

the difference between each of the three times and the current time, accepting the date

that generates the smallest absolute difference. For example, at 23:00 UTC on May 15

2000, a message is sent over the feed announcing a 1:00 UTC arrival. 'The algorithm

would try 1:00 UTC on May 14, 15 and 16. It will take the absolute difference

between each of these and the current time of 23:00 UTC, discovering a difference of

46 hours for May 14, 22 hours for May 15, and 2 hours for May 16. Thus, it will

assign May 16, 2000 1:00 UTC as the date. One item to note is that the algorithm

always examines all three dates, even though it would seem that proposed times only

refer to the current or future day and actual times only refer to the current or past

day. However, this is not always the case and proposed times may sometimes refer to

times that have already passed and actual times may refer to times in the future. Lag

time in the transmission of records and a lack of synchronization between computers

in the air traffic network may result in these unexpected occurrences. Fortunately,

by checking all three dates, the "best" time is assured to be assigned.
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Speed and Altitude Processing

The database stores the average and high speeds and altitudes recorded by each

plane. These four pieces of data are not transmitted over the feed but are in fact

calculated from the individual speed and altitude fields that are transmitted in the

position update (TZ) messages. The calculation of the high speed is trivial with the

ActiveAir module simply recording the highest speed and altitude that appears in

any TZ message. The calculation of average speed and altitude is more complicated.

Although the following description refers to speed, both use the same method of

computation.

The average speed stored by the system is computed over the time period begin-

ning with the first TZ for the flight, and ending with the last TZ. For every pair of

consecutive TZ messages, a simple average is taken between the two speeds supplied.

This average speed is then multiplied by the amount of time separating the two TZ

messages, giving a speed-time product. This product is then added to a running sum

that includes the products of every previous consecutive pair of TZ messages. At the

end of the flight, this sum is divided by the total time, giving the average speed for

the flight. The resulting average is time weighted, compensating for non-uniformity

in the inter-arrival times of TZ messages.

This method of computing the flight's average speed contains a few sources of

error. First, the averages do not take into consideration the time between takeoff

and the first TZ message, and the time between the last TZ message and landing.

Fortunately, these time periods are expected to be small and would not have a large

effect on the resulting averages. Second, the times associated with each speed and

altitude are non-exact. The calculation uses the time stamp sent with the TZ message

that represents the time the message was generated. Thus, a delay exists between the

recorded speed and altitude and the time the message is generated by an FAA facility.

Fortunately, this delay is expected to be small and any changes occurring within this

time period would be insignificant. A third source of error is the assumption that

the plane undergoes constant acceleration and change in elevation between any pair
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of consecutive TZ messages. If this assumption was grossly untrue than the simple

average of the speeds or altitude would not reflect the planes true position and speed

in the corresponding time period.

Although the altitude and speeds transmitted in the TZ messages are in valid

formats, there are times when the values are missing or are not helpful in the calcu-

lation. For example, an altitude may contain an "on-top clearance" designator which

specifies that an exact altitude is not given and the plane can be anywhere above the

given altitude. In cases where data is missing from the messages or is unusable, the

calculation is not performed and the avgAltitudeValid (or avgSpeedValid) boolean

flag is set to false. When writing the data to the database, a false value indicates

that the average calculation was not possible and the field should be left blank in

the database. Some of the other designators that are sent over the feed do not have

meaning that affect the calculation and they can be ignored. For example, a C follow-

ing the altitude specifies that the plane is out of the range it was supposed to be in.

Although interesting, this designator has no affect on the actual average altitude. A

special case is the transmission of block altitudes, in which the plane can be between

two given altitudes. In this case, high altitudes are recorded using the maximum al-

titude in the block and average altitude calculations use the average of the two block

boundaries.

Airport name standardization

Another area requiring special processing is the origin and destination airport iden-

tifiers. Unfortunately, different transmitting facilities may use different identifiers for

the same airport. The origin and destination of a single flight can be referred to

differently in messages sent out by different facilities. This problem usually arises

with flights traveling between the United States and Canada. Since the origin and

destination are used as keys to match messages to flight records, (see section 5.4.4)

it is important that the ActiveAir module convert all airport identifiers to a single

standard. Doing so also improves the data stored in the database since queries would

only need to refer to the standard identifier rather than trying all possibilities for
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an airport. Clearly, some function is necessary to convert all airport identifiers to a

standard.

Fortunately, it is possible to standardize the airport identifiers without having

to store a full listing of the different identifiers for all the world's airports. Airport

identifiers are transmitted either in a three-letter IATA format, or a four-letter ICAO

format. All airport identifiers outside the United States and Canada are transmitted

with the four letter ICAO codes. The problem arises in the transmission of flights

inside the US and Canada. Canadian facilities transmit these flights using the four

letter ICAO code while US facilities use the three letter code. Fortunately, IATA

and ICAO codes for US and Canadian airports have the property that their IATA

code is the ICAO code minus the first letter. For example, Logan Airport in Boston

is identified as KBOS in ICAO and BOS in IATA. Note that this property does not

hold in general, airports outside the US and Canada do not have corresponding codes.

Furthermore, all US and Canadian airport codes are easily distinguished from other

ICAO codes since all US airports begin with a "K" and all Canadian airports begin

with a "C".

In the database, all Canadian and US airports are referred to by their three letter

IATA code. Any four-letter ICAO identifier beginning with a "C" or "K" is converted

to its corresponding IATA code by simply removing its first letter. Since all other

airports are always transmitted in the same format, they can be left alone. Thus,

standard formatting can be attained without having to store any additional knowledge

about code conversion in memory, referring to all US and Canadian airports by its

IATA and all other airports with its ICAO designator.

5.5 ASDISaver

The ASDISaver module is the center of the archival system. This module handles

all communication and interaction with the other three modules, retrieving parsed

data from the feed, sending it to the ActiveAir module for tracking and flight record

formation, before finally sending finished flight records to the database. Since the
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module interacts with a continuously running feed, it is important that it carry out

its job efficiently, performing its various tasks as necessary in concurrent operation.

As the core of the working system, the ASDISaver module provides ample points

of failure, which require it to be robust when handling the loss of any of the other

modules.

5.5.1 Interaction with ActiveAir module

The ASDISaver runs an ActiveAir module to handle the process of converting event

messages to full flight records. Every message retrieved by the ASDISaver is im-

mediately passed to the ActiveAir module for processing. After processing the new

message, the ASDISaver module checks if the ActiveAir module has any flights that

were finished and ready to be placed into the database. If finished flights exist, one

record is removed from the ActiveAir module and sent into the database. The loop

then processes the next message, always removing at most one flight for every message

received.

The queue of finished flights made available by the ActiveAir module contains two

types of finished flights. The first type is flights that are verifiably completed, meaning

that an arrival (AZ) message was received for them. The second type is flights for

which messages stopped coming and were removed through garbage collection. When

removing flights from the queue, the ActiveAir module offers the ability to specify

which type of flight to remove. Thus it is up to the ASDISaver to decide on a policy

for removing flights.

As a rule, the ASDISaver attempts to enter a flight into the database as soon

it is completed. This policy ensures that the database is as up to date as possible

and minimizes the chance that a flight record is lost before it is entered. For flights

receiving an AZ message, this policy would dictate that the flight be entered into

database as soon as the message arrives. For timed-out flights, immediate entry does

not seem as large as a priority since its actual completion time is uncertain. Still,

these timed-out flights should not be allowed to wait around too long.

Thus, the ASDISaver achieves its desired behavior by always removing verifiably
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completed flights from the queue before timed-out flights. Thus, every AZ message

will result in the addition of a completed flight on the queue that gets immediately

removed for entry by the ASDISaver. There will be at most one flight on the queue of

completed flights, since they will always be removed immediately after it is entered.

On the other hand, many timed-out flights can be on the queue at the same time.

The ASDISaver removes these flight records after the arrival of any messages except

AZ's. The queue of timed-out messages should never grow too long, however, since

AZ messages only make up a small minority of the total messages. There are more

than enough messages sent out over the feed to trigger the removal of all the queued

flights, ensuring that they do not get stuck on the queue.

5.5.2 System Robustness

With many different pieces interacting together, it was important to build redundancy

into the ASDISaver to prevent data loss. Because a system failure results in the loss

of irreplaceable flight data, it is important that measures are taken to ensure the

continuous operation of the system, providing a backup plan in case a piece of the

system breaks down. As the focal point of the entire system, the design of the

ASDISaver accounts for outages of the ASDI feed, database, and itself.

Database Outages

One possible failure point in the system would be the unavailability of the database.

Since the database resides on a separate machine, the possibility exists for it to fail

independently from the ASDISaver module. Although message collection and flight

tracking can continue, the ASDISaver would be unable to store the finished flight

records in the database as normal. As a solution, the ASDISaver was designed to

store these finished flight records locally, until the time that the database becomes

available again. Once the database comes back on-line, the saved flight records, as

well as all new flights records, are sent to the database. The writing of the saved local

flight records is carried out with the same methods used to save new flight records.
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That way, if the database goes down again during the recovery efforts, the saved

records would be "re-saved" locally instead of being lost.

The status of the database is determined by the results of each database write. An

attempt is made to send every flight record to the database. The JDBC driver either

gives confirmation of a successful transaction, or returns an error message. The error

message can indicate the unavailability of the database, signaling to the ASDISaver

that records should be stored locally. Similarly, a successful transaction signals to

the ASDISaver that the database is running, prompting it to dump any saved local

messages, and send future records directly to the database.

The ASDISaver module provides two ways of storing flight records, in the system

memory and in a file stored locally by the system. The choice of storage is selected

by the user upon startup of the ASDISaver along with a file name if this option is

chosen. The flight records are stored as SQL statements using the same lines of code

that would have placed the record into the database. Upon the reawakening of the

database, the SQL statements are simply sent back to the database in the format in

which they were stored.

Storing flight records in a file has a number of benefits over storage in memory.

First, the file provides a more permanent record of the flight. Whereas a shutdown

of the ASDISaver would result in the loss of all flights stored in memory, records

stored in the file would still exist. As an extra safeguard against losing flights in

memory, the file is flushed and saved with the addition of each new record to ensure

that nothing is left in the memory buffer. Thus, file storage offers more protection

against data loss. Second, an ASDISaver using file storage can continue to act as a

backup much longer than a backup process using memory storage. Since Java does

not swap out its memory, it is possible to exhaust the system's resources with flight

records, causing the ASDISaver to breakdown. Saving records to a file allows more

records to be saved, allowing the system to survive a database outage for a longer

period of time. A third benefit is that the file affords more flexibility in data recovery.

If desired, the file can be installed manually into the database, without the system

having to recover the data on its own. It is easy to do this, since the file is made up
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of SQL statements that can easily be executed in the database.

With these benefits, it would seem that the memory option would have no purpose.

The option was included for two reasons. First, it is faster and more efficient to

save messages to memory. This option would be preferable if redundancy was not

considered a priority and lost data was not considered to be important. Second,

the memory option allows easy portability between different systems. Whereas the

file option requires the creation and storage of an operating system specific file, the

memory option can be run on any platform without any further considerations.

ASDISaver Outages

The possibility of a failure of the ASDISaver also exists. When this occurs, the

database may still be operational. However, flight data from the feed would have

no way of being tracked and entered into the database. This problem has a simple

solution, namely the operation of multiple ASDISaver feeds all connected to the same

database. The running of multiple ASDISavers is aided by the implementation of the

system in Java since it can be easily run on different platforms. By running the system

on separate independent machines, a loss of any one ASDISaver would not stop the

flow of information into the database. Since the ASDISaver instances all connect

to the same feed, the data that each receives should be alike. Allowing multiple

ASDISavers requires that the database have some mechanism to ensure that a flight

is not entered twice. Additionally, by turning on the different ASDISavers at different

times, it is possible for two ASDISavers to have different information about the same

flight. Thus, the database must also be able to resolve cases where two ASDISavers

attempt to write different information for the same flight. (See section 5.3.5)

ASDI Feed Outage

A third point of failure is the loss of the incoming ASDI feed data. Outages in the

ASDI feed can be caused in many different ways, fitting into two general groups. One

type is an error in the Volpe systems that send out and produce the feed. There is

nothing that the ASDISaver can do about this type of failure since this is the only
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source for the ASDI data. Fortunately, the Volpe center runs a robust server with its

own redundancy to help ensure that data is always sent over the feed. A second type

of failure occurs in the transmission between Volpe and the ASDISaver. This problem

can be accounted for by setting up multiple pathways to the ASDI feed, running a

separate ASDISaver on each line. Thus, if one ASDISaver loses the incoming data,

the other ones would still be able to continue operation.

Once the feed is lost, the ASDISaver also puts in efforts to recover. After detecting

the absence of data for a minute, the ASDISaver assumes that its data feed has died.

This is a valid assumption since heartbeat (HB) messages are sent over the feed every

ten seconds to provide a signal that the line is still running. Thus, the absence of

data can never be interpreted as there being no airplanes in the air, however, unlikely

that may seem. After determining that the feed is down, the ASDISaver attempts

to restore its connection every ten seconds, attempting to open a new connection to

the server each time. Thus, the ASDISaver is capable of picking up where it left off,

using the data already stored in the ActiveAir table. When the data begins flowing

again, the ASDISaver does not need to start from scratch. Hopefully, any data that

was lost in the down time would be picked up by another running ASDISaver. The

ability to recover is particularly beneficial in the case of brief outages where the loss

of a small amount of data is not serious.

5.5.3 Handling Database Writes and Concurrency

One of the major design challenges posed by this module was ensuring the smooth

and steady operation of processing incoming data and writing finished records all at

once. Since the feed is continuously active, the module needs to ensure that database

writes do not stall the processing of incoming data. Similarly, the module must also

ensure that database writes do not pile up if too much time is given to processing

incoming data. To alleviate this problem, the system creates a new thread for each

completed database record. Each of these threads is in charged of writing the record

to the database, dying upon completion. Creating new threads in this way helps

alleviate the bottlenecks in the module. The delay from the write operation is due
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to the time it takes for the record to travel to the database, the time it takes for the

database to write the record to memory, and the time it takes for the confirmation

message to be travel back over the network to the ASDISaver. Since none of these

tasks require the use of the ASDISaver's processor, the thread responsible for writing

the record is mostly inactive and is able to continue with message retrieval and flight

tracking.

Note also that a new thread is created for each flight record, instead of just

creating one thread to take care of all database writes. Although such a "writing

thread" would be inactive most of the time, it would force records to pile up in a

queue, sending records off one at a time. By performing each write in a separate

thread, each record can be dispatched immediately, allowing the database to operate

its own queue and work at its own pace.

As discussed previously, when the database is down, flight records are saved locally,

either in memory or in a file. The same thread that attempts to write a flight record to

the database is responsible for saving the record locally. Since multiple writer threads

can be active at the same time, it is possible that they would attempt to access the

file or data structure in memory concurrently, causing unexpected side effects. To

ensure atomicity of the operation, the file and data structure are synchronized so only

one thread can access it at a time.

A similar issue is encountered when recovering local messages and sending them

to the database. While accessing the data structure in local memory or the file, it

is possible that the database can go down again, requiring the ASDISaver to save

a flight record at the same time that it is attempting to remove and recover an old

message. An infinite loop would be created where a given flight record is removed

from the front, only to immediately be placed at the end of data structure or file. To

deal with this concurrency issue, the file or data structure is locked when the recovery

process is begun. The name of the file is immediately changed, or the data structure

is moved to a new reference. Now, the original file and the data structure using the

original reference are empty. The lock can then be removed with restoration of the

saved flight records commencing on the identical copies that were just created. If the
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database does go down, the flight record would be saved in the empty file or data

structure, without the danger of conflicting with the recovery process.
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Chapter 6

Conclusion

The ASDI archival system that was built successfully meets all requirements initially

outlined, providing a robust flight-based method of storing the ASDI feed. The sys-

tem demonstrates a practical method of providing redundancy to a database writing

process that can be applied to other systems that must continuously archive infor-

mation. In converting the message based ASDI feed to historical records, valuable

observations were made about the nature of the ASDI feed, providing insight into how

it reports information about a flight over time. Indeed, the ASDI feed does not re-

port each flight in the same way, allowing a flight's history to be transmitted through

many different sequences of messages. Clearly, such observations would prove useful

to other individuals interested in the behavior of the ASDI feed.

The system provides a useful tool for individuals interested in air traffic and

aviation in general. The database offers numerous possibilities for applications that

analyze and display the historical data. It is possible for the data to have an impact

in the research of air traffic control and congestion, helping to alleviate the current

problems facing the nation's transportation network.
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