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Abstract

In this thesis we develop techniques to emulate the robust characteristics of the hu-
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Chapter 1

Introduction

Speech is arguably the most important mode of human communication. It is a highly

efficient and convenient means for sharing ideas. To a large extent, speech made

possible the development of human civilization because it gave mankind the ability

to proliferate and exchange knowledge easily.

One of the many reasons why speech is such a desirable medium for communication

is its resistance to variation. The ability to understand speech is largely unaffected

by differences across speakers, accents, and dialects. When we speak to a stranger,

chances are we will have no trouble communicating as long as a common language is

used. Speech is also quite resistant to corrupting influences like interference, distor-

tion, and noise. We generally have no problems communicating even in a loud sports

stadium.

Scientists are immensely interested in speech because of its interesting character-

istics and importance to human communication. Many researchers explore models for

speech production and auditory processing to better understand the human speech

generation and recognition processes. Much work has also been invested in uncovering

the perceptual aspects of hearing. All these speech studies have tremendous impact

in our everyday lives through technologies like stereo systems, telephones, and various

multimedia formats and devices. In the last 50 years, scientists have also begun to

focus on the challenge of developing automatic speech recognition (ASR), one of the

most ambitious and exciting technologies to come from speech research.

9



1.1 Automatic Speech Recognition

ASR is concerned with developing machinery to match the capabilities of human

listeners. By working on ASR problems, scientists have gained insights into the

workings of speech production and auditory processing. Researchers also hope to

realize the potential of ASR to revolutionize user interfaces by making devices like

computers much easier to interact with. Instead of using keyboards and mice, people

could communicate naturally with machines directly through speech.

Traditionally, researchers have taken two separate approaches towards the design

of speech recognition machinery. One method, commonly known as the knowledge-

based approach, stresses the use of expert knowledge to guide the design of ASR

systems. ARPA's speech understanding project is an early example of a knowledge-

based approach that relied on expert phonetic, lexical, and syntactic knowledge [12].

These techniques for the most part have been unsuccessful due to the inability to

quantify and exploit expert knowledge effectively. For example, we do not know

how to reliably extract phonemes, the smallest units of speech, even though we have

expert knowledge about cues that indicate various phonetic distinctions. Our limited

knowledge of auditory processing prevents us from building recognizers based purely

on expert knowledge.

A second approach to designing ASR machinery is to view speech as a signal that

can be analyzed using statistical signal analysis techniques. Recognizers that follow

this approach often use methods involving time-frequency analysis techniques [19] and

pattern-matching and language modeling [10]. Such methods are appealing because

of their ability to model uncertainties in our understanding of the speech process.

Their success is evidenced by modern commercial recognizers which use sophisticated

statistical techniques for constrained speech tasks like digit recognition and simple

dictation. Usually, these systems employ hidden Markov models to process a mel-

frequency cepstra representation of the acoustic signal [18, 20].

Although modern statistical ASR systems perform reasonably when used in ideal

quiet conditions, their performance deteriorates rapidly in the presence of noise. A
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recent paper [13] mentions a study on speaker-independent digit recognition which

found the error rate for a carefully tuned ASR system to be less than 2% in quiet

conditions but over 40% in a 0 dB speech-to-noise ratio (SNR) environment. For com-

parison, human listeners perform speaker-independent digit recognition with less than

1% error under both quiet and 0 dB SNR conditions. Unlike today's ASR machinery,

the human auditory system is able to exploit the characteristics of speech that make

it highly resistant to variation and degradation. The sensitivity of modern ASR sys-

tems to noise has motivated great interest in signal representations and recognition

techniques that are more resistant to variabilities in speech and the environment.

Achieving good machine speech recognition under poor listening conditions is

much more than just an interesting academic problem in ASR research. Because it is

often impossible to control the acoustic environment, it is important for ASR systems

to function effectively in quiet as well as noisy environments. Many believe that ASR

systems will not find widespread use until techniques are developed to improve their

robustness to noise.

1.2 Human Speech Recognition

We believe ASR systems stand to gain by emulating the auditory processing that

enables human listeners to recognize corrupted speech. Many researchers agree that

the success of modern statistical recognizers is limited and that future improvements

in ASR will require the greater use of expert speech knowledge [23]. There is great

potential in emulating auditory processing because human listeners are much more

resistant to noise than modern ASR machinery. Emulating auditory processing is also

exciting because it provides the opportunity to develop new models and algorithms

for speech processing.

Auditory physiology and psychoacoustic studies provide valuable insights into

human auditory processing. Early studies by Georg von Bekesy [22] demonstrated

that the human cochlea analyzes acoustic signals by frequency. His experiments

showed that the place of maximum excitation along the cochlea's basilar membrane
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varies according to the frequency of the acoustic stimulus. This observation led to the

"place theory" of hearing which postulates that excitation along the basilar membrane

encodes the frequency content of the acoustic signal. Figure 1-1 illustrates this idea.

The figure shows a vibration envelope along the basilar membrane for an arbitrary

envelope to stapes
amplitude

Slog f
tonotopic axis

Figure 1-1: Tonotopic axis.

sinusoid. Along the horizontal axis is the tonotopic axis which corresponds auditory

nerve activity with the physical place of excitation along the basilar membrane. This

axis is distributed logarithmically. Higher frequency sinusoids cause greater vibrations

towards the stapes (one of the three small bones in the ear) while lower frequencies

generate excitations further away from it. This observation suggests that the cochlea

separates incoming signals into different frequencies for processing.

Psychoacoustic experiments support the conjecture that the ear resolves sounds

into different frequencies. Harvey Fletcher [7] established the important concept of the

critical band, or auditory filtering, in masking experiments where he showed that the

detection of a pure tone in noise depends only on the noise within a certain bandwidth

of the tone. Figure 1-2 demonstrates this idea. The figure on the left depicts an

0

-tone

noIse

frequency critical noise bandwidth
bandwidth bandwidth

Figure 1-2: Critical band concept.

arbitrary pure tone masked by bandlimited noise centered at the frequency of the
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tone. By keeping the power density of the noise constant, the detection threshold of

the signal can be measured as a function of the noise bandwidth as shown on the right.

Initially, as the noise bandwidth is increased, the detection threshold increases. Once

the noise bandwidth exceeds the critical bandwidth, the detection threshold levels off.

Apparently, noise outside the critical bandwidth has no effect on the detection of the

tone. Critical bands are generally narrower for lower frequencies and wider at higher

ones [17]. This effect suggests that the auditory system behaves like a bank of filters

decomposing acoustic signals into different frequency bands for separate processing.

Harvey Fletcher's articulation experiments give further insight into the human

speech recognition process [1, 7]. Fletcher determined the error of articulation, or

recognition ability in the absence of context, to be modeled by the product of the

individual articulation errors in different frequency bands. In other words, good artic-

ulation can be achieved if the SNR within just a single frequency band is satisfactory.

From this we can hypothesize that the auditory system processes information from

each frequency band independently of the others. Degraded speech is recognized by

integrating evidence from the cleaner portions of the spectrum and ignoring bands

corrupted by noise. Fletcher's articulation experiments point to a layered model for

human speech recognition [1]. In this model, processing begins with critical band

filtering of the acoustic waveform. Phonetic features are extracted locally across the

spectrum from bands with high SNR and integrated in the next layer to realize dis-

crete phonemes. These phonemes are then used by additional layers in the recognition

chain to piece together syllables and words.

The work of Miller and Nicely [15] also provides important clues into auditory

processing. In this study, human subjects were asked to identify 16 consonants from

nonsense syllables in noisy bandlimited speech. Miller and Nicely found that their

human subjects were able to recognize basic phonetic distinctions even though entire

phonemes could not be identified. Table 1.2 reproduces one of the confusion matrices

from their experiments. The numbers in the table indicate the frequency of identifying

the consonants in the first column as consonants listed in the first row on the top. As

seen from this example, there are five groups of consonants that are difficult to confuse

13



p t k f 0 s s b d g v z i m n

p 80 43 64 17 14 6 2 1 1 1 1 2
t 71 84 55 5 9 3 8 1 1 2 2 3
k 66 76 107 12 8 9 4 1 1

f 18 12 9 175 48 11 1 7 2 1 2 2
0 19 17 16 104 64 32 7 5 4 5 6 4 5
s 8 5 4 23 39 107 45 4 2 3 1 1 3 2 1
3 1 6 3 4 6 29 195 3 1

b 1 5 4 4 136 10 9 47 16 6 1 5 4
d 8 5 80 45 11 20 20 26 1

9 2 3 63 66 3 19 37 56 3

v 2 2 48 5 5 145 45 12 4
6 31 6 17 86 58 21 5 6 4

z 1 1 1 7 20 27 16 28 94 44 1
1 26 18 3 8 45 129 2

m 1 4 4 1 3 177 46
n 4 1 5 2 7 1 6 47 163

Table 1.1: Confusion matrix for SNR = -6 dB and frequency response 200-6500 Hz
(Table III from Miller and Nicely, 1955 [15])

with one another even under poor listening conditions. Miller and Nicely grouped

these five classes based on articulatory properties, or phonetic features. At higher

SNR levels, the separation among the consonants based on these phonetic features

is even more apparent. The ability to make these distinctions indicates that certain

phonetic features are detected quite early by the auditory system prior to recognizing

entire phonemes, syllables, and words. This result along with Fletcher's human speech

recognition model suggests that the robust detection of certain phonetic distinctions

is fundamental to robust human speech recognition.

1.3 Probabilistic Graphical Models

The facts and properties of the human auditory system that we have discussed are

all potentially useful for emulating auditory processing. A natural question to ask is

how to incorporate this knowledge in speech systems. We certainly cannot build a

system based purely on this knowledge since our understanding of auditory processing

is incomplete. Uncertainties about auditory processing suggest a statistical approach

to emulating the processing in the auditory system.

14



We believe probabilistic graphical models [11] are a natural choice for combining

expert knowledge about human speech processing into statistical models. Probabilis-

tic graphical models, also known as Bayesian networks, provide a formal way for

making probabilistic inferences based on the prior knowledge of the problem. Struc-

turally, these models are graphs composed of nodes and edges. Nodes in the model

represent random variables while edges assert dependencies among the nodes. Since

the laws of probability govern inferences in these models, the output is easy to un-

derstand and interpret.

To specify a probabilistic graphical model, we need to indicate its graphical struc-

ture along with the probability densities for the nodes. For our purposes, we use

the structure of the probabilistic graphical model to formalize hypotheses of auditory

processing. As an example, consider the simple graphical model in Figure 1-3. In this

Z

X1 Z 2 X3 XQ

Figure 1-3: Probabilistic graphical network example.

example, random variables X 1,... , XQ are combined using an OR gate. The basic

processing in this network is to set random variable Z to true if any of the random

variables Xq are true. We use this type of structure in a union model where the Xq

indicate the presence of speech cues from different parts of the spectrum. Once we

select a network structure like the one in this example, we train the model to learn

the probability densities for the nodes in the network. The trained network can then

be used to make inferences on unseen data.
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1.4 Goals

The work in this thesis combines two ideas from the ASR and machine-learning com-

munities. Among ASR researchers, there is a growing consensus that recognition

systems require greater use of expert speech knowledge to improve robustness. In the

machine-learning community, scientists are becoming more appreciative of the abil-

ity of probabilistic graphical models to incorporate expert knowledge into statistical

models. These two realizations motivate our design of automatic methods for the ro-

bust detection of certain phonetic distinctions. We look to include expert knowledge

about the auditory system to construct speech systems that better match human

performance. To do this, we use the structure of probabilistic graphical models to

incorporate knowledge about multiband auditory processing.

We focus on the problem of robustly detecting certain phonetic distinctions be-

cause we believe it to be essential to robust speech recognition. Our automatic meth-

ods are designed for two basic tasks: detection of speech in noise and detection of the

phonetic feature [+/-sonorant]. We first explore models for detecting speech since

robust recognition would not be possible without the ability to reliably differentiate

speech from noise. We then apply these models to the robust detection of the phonetic

feature [+/-sonorant] which distinguishes vowels, semivowels, and nasals (sonorants)

from stops, fricatives, and affricates (obstruents). Sonorants and obstruents form the

first major division of the phonemes.

The type of noise we are concerned with in this study is additive and bandlimited

Gaussian noise. There are however many other types of noises and environmental

effects that may corrupt speech. Interference like background music and multiple

speakers can confound the recognition process. Plus, distortions from reverberations

and reflections may also destroy intelligibility. We do not deal with these cases.

Instead we focus on bandlimited Gaussian noise because it is a good approximation

to a wide variety of corrupting influences. When a signal is decomposed into narrow

frequency bands, the noise within each band is usually well modeled by bandlimited

Gaussian noise.
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Unlike other studies that explore multiband models for robust ASR [4, 16], we do

not build a connected word recognizer. One of the major challenges when working

with multiband models for speech systems is determining how best to unite the in-

formation from the different frequency bands to make a decision. We investigate the

much simpler task of detecting certain phonetic features to focus on this fundamental

problem of integrating meaningful speech cues distributed in frequency. We study

three statistical models, the union, weighted union, and hierarchical models, for com-

bining narrowband cues from across the spectrum. Issues regarding the architecture

and training of these networks are discussed in detail.

1.5 Outline

This thesis is organized as follows. Chapter 2 develops various models for the speech

detection task. We also present experimental evidence comparing our models to the

performance of human listeners. In Chapter 3, we describe modifying our speech

detection models to detect the phonetic feature [+/-sonorant]. After evaluating

these models, we discuss overall conclusions and areas for future work in Chapter 4.

17



Chapter 2

Speech Detection

Perhaps the most basic problem in speech processing is simply to detect the presence

of speech in noise. This is the problem addressed in this chapter.

We begin by describing the speech detection problem as presented in an exper-

iment at AT&T Shannon Laboratory designed to determine the speech detection

abilities of human listeners. This experiment shows the remarkable ability of human

listeners to identify amplitude modulations from speech in noisy bandlimited signals.

The data from this study serves as an upper bound on the performance we expect to

achieve by emulating the auditory system.

We then develop the union, weighted union, and hierarchical models to match

the human speech detection results from the AT&T experiment. These models use

a front-end that decomposes inputs into critical bands and a probabilistic graphical

network back-end to integrate speech cues from across the spectrum. For each model,

we detail its structure and the EM learning algorithm used for training. Evaluations

show that these models come close to matching human speech detection behavior.

2.1 Human Speech Detection

The robust speech recognition ability of human listeners is quite impressive. Despite

noise and other adverse environmental effects, the auditory system is often able to

recognize speech without difficulty. Measuring human speech detection performance

18



is one way of quantifying the resistance of the auditory system to noise.

Miriam Furst and Jont Allen at AT&T Shannon Laboratory measured the speech

detection capabilities of 25 human subjects with normal hearing. Recordings of mono-

syllabic words like "tin" and "pill" articulated by 4 male and 3 female speakers were

played to the human subjects. Three parameters were varied during the experiments.

The speech was filtered into various bandwidths around two different center frequen-

cies and corrupted with additive bandlimited Gaussian noise. If we let fiower and

fupper be the lower and upper passband cutoff frequencies, we may define the first two

parameters, the bandwidth (BW) and center frequency (CF), as follows.

CF = Vfiowerfupper BW log 2 ( uoer (2.1)
fiower/

Bandlimited signals were used because one of the working hypotheses for the ex-

periment was that the auditory system extracts information from narrow frequency

bands. As discussed earlier, psychoacoustic and physiological studies support this

assumption. The third parameter was the speech-to-noise ratio (SNR). For this ex-

periment, the SNR was defined as the ratio of the maximum sample variance of the

bandlimited speech to the maximum sample variance of the noise calculated over 20

ms sections of the signals.

The experiment proceeded as follows. An arbitrary monosyllabic word was filtered

to a particular bandwidth around a selected center frequency. Gaussian noise with

the same bandwidth and center frequency was also generated. The listener was then

presented with either the bandlimited signal degraded by the additive noise or just the

bandlimited noise and asked to determine whether the signal contained speech. By

varying the SNR through repeated trials, the speech detection ability of the subject

was determined. What the experiment basically measured was the ability of human

listeners to detect amplitude modulations from bandlimited speech embedded in ad-

ditive noise. Figure 2-1 gives an example of one of the speech waveforms used. The

signal shown on the left is the word "Bill" spoken by a male speaker. In the middle is

the signal after being filtered to 40 Hz bandwidth around 1000 Hz center frequency.
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"Bill" "Bill" at CF=1000Hz BW=40Hz "Bill" 4dB

E E

0 0. 1<. . . . .

SNR at CF=1000Hz BW=40Hz

0 0.5 1 1.5 0 0 5 1 1 '5 0 0.5 1 1.
Time (Seconds) Time (Seconds) Time (Seconds)

Figure 2-1: The word "Bill" filtered and corrupted by noise.

On the right is the filtered signal corrupted with additive noise to 4 dB SNR. We see

that even at 4 dB SNR, the speech signal is evident as larger spikes embedded in the

noise.

Given a fixed bandwidth and center frequency, the listener's ability to identify

noisy speech can be modeled as a function of the SNR. This function traces out a

psychometric curve as shown in Figure 2-2. The vertical axis corresponds to the per-

100-

di
0
0

0)
CL

50 SNR (dB)

Figure 2-2: Psychometric curve.

centage of correct responses given by the human listener. SNR is measured along the

abscissa. With an equal presentation of bandlimited noise and bandlimited noise plus

speech, the worst possible performance is 50% correct. This result may be obtained
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by either perpetually declaring the signal to contain speech or always stating that

the signal is noise. Perfect performance corresponds to always correctly identifying

signals as either speech plus noise or just noise. The 75% correct level is the detection

threshold. For a particular bandwidth and center frequency, the detection threshold

specifies the SNR at which the human listener is just able to distinguish signals con-

taining speech from those that contain only noise. Although the psychometric curve

in Figure 2-2 is highly idealized, it illustrates some important properties. First, we

see that at low SNR levels, the percentage of correct responses drops to 50%. This is

reasonable since under poor listening conditions, human listeners will have difficulty

concluding that the signal is anything other than noise. At high SNR levels, the curve

tends towards 100%. This is also expected since it is much easier to detect amplitude

modulations from speech as the SNR improves.

The aggregate data from the experiment is illustrated in Figure 2-3. It depicts

detection thresholds for various bandwidths around the center frequencies 650 Hz

and 1000 Hz. For example, the figure shows that the detection threshold for a speech

signal with center frequency 1000 Hz and bandwidth 0.057 octaves (approximately

40 Hz) is roughly 4 to 5 dB SNR. We also see that a signal with center frequency 650

Hz and bandwidth 0.138 octaves (approximately 62 Hz) has a detection threshold

of 3 dB SNR. Each data point resulted from a series of experiments with a fixed

bandwidth and center frequency where the SNR of the bandlimited speech was altered

to determine the detection threshold. Using different words and different speakers did

not affect these results.

Two important results stand out from Figure 2-3. The first is that detection

threshold improves with increasing speech bandwidth. This is not surprising since

more information is conveyed when the speech bandwidth is increased. The second

observation is that the detection threshold varies depending on the speech center

frequency. We will use the data collected from this experiment as a benchmark for

the automatic speech detection methods we develop in this chapter.
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Figure 2-3: Human speech detection performance.

2.2 Speech Detection in a Narrowband

We first try to emulate the human speech detection capabilities for a single narrow-

band signal with bandwidth 40 Hz around 1000 Hz center frequency. Working on this

simpler problem allows us to motivate a multiband approach to the speech detection

problem. Figure 2-4 illustrates our narrowband model for speech detection.

Half-Wave
Input Critical Band Rectification, Measurements Linear

Signal Filter Compression, of SNR Discriminant Decision
Smoothing

Figure 2-4: Schematic of narrowband model.

The front-end signal processing for the model begins by filtering the acoustic sig-

nal into the desired 40 Hz band centered around 1000 Hz. This filter can be thought

of as simulating one of the critical bands in the human cochlea. After filtering, non-

linearities are applied. These nonlinearities include half-wave rectification to imitate

the unidirectional response of hair cells along the basilar membrane and cube-rooting

to simulate the compressive behavior of auditory filters. We then smooth the signal
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envelope to emphasize peaks and blur minor variations. The samples of the smoothed

signal are obtained from the energy of the original waveform within a sliding window.

Figure 2-5 illustrates our nonlinearities on a noisy sine wave. From left to right, we

Noisy Sine Half-Wave Rectification Cube-Root Compression Smoothing

Figure 2-5: Noisy sine wave processed by half-wave rectification, cube-root compres-
sion, and smoothing.

see the signal successively processed by half-wave rectification, cube-root compression,

and smoothing. The end result of this processing is to remove the minor fluctuations

in the signal and emphasize the peaks.

After the nonlinearities, three types of SNR measurements are computed to detect

amplitude modulations in the signal. These are the crest factor, the coefficient of

variation, and the logarithm of the ratio of the nth to (100 - n)th percentile values.

The crest factor is defined as max x(t) /rms[x(t)] and is generally used to measure

whether a signal has large peaks and deep valleys. We expect signals with higher

SNR to exhibit larger crest factors. For example, the additive noise in Figure 2-1

(the difference between the 4 dB SNR signal and the clean bandlimited "Bill" signal)

would have a smaller crest factor than the 4 dB SNR signal because its maximum

amplitude is smaller. The coefficient of variation is the ratio of the standard deviation

of the signal to the mean and is used to measure the dispersion of data about the

mean. Again, we expect a signal with high SNR to be positively correlated with the

coefficient of variation. Referring to Figure 2-1, the 4 dB SNR signal would have a

greater coefficient of variation than the additive noise since the peaks from the speech

signal give it greater variance. The logarithm of the ratio of the nth to (100 - n)th

percentile values also gives an estimate of the SNR for the signal. Values of n used

include 95, 90, 80, and 75. The 4 dB signal in Figure 2-1 also has a larger value
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for this measure than the noise signal because of the large peaks from the speech

waveform.

These measurements are then fed to a linear discriminant for processing. We

append a value of unity to the measurement vector to include a bias term. The

output of the discriminant is the scalar a(w -m) where a(x) = 1/[1 + exp(-x)] is the

sigmoid activation, w is a column vector of weights, and m is the column vector of

measurements for the input signal. Note that the output ranges between 0 and 1. We

interpret this result as our estimation of how likely the input signal contains speech.

A value of unity means the system is certain that the input contains speech whereas

a value of zero indicates that the input is just noise.

To train the weights for the linear discriminant, we maximize the log-likelihood

function. Let binary random variable Y indicate the presence of speech in the input

signal. Then Pr[Y = 11m] = a(w -m). If we have a collection of measurements M =

{mi,... , MN} and the corresponding target labels Y = {Y 1 , .. . , YN} specifying

the desired output of the linear discriminant associated with the measurements, the

logarithm of the likelihood function is then:

l(Y w, M) = Yi ln(u(w - mi)) + (1 - Yi) ln(1 - cr(w -mi)) (2.2)

The optimal weight vector for the linear discriminant is the vector w that maximizes

l(Y w, M). We solve for this optimal weight vector using Newton's method [2] by

computing the following quantities:

d N

d l(Ylw, M) = Z(Yi - cr(w - mi))mi (2.3)
dw

N

l(Y w, M) = Z (w - mi)[u(w -mi) - 1]mimT (2.4)

Then, for the jth iteration of Newton's method, we obtain a new weight vector
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estimate w(41 as follows:

w(j) = w(j ( d 2 l(YIw(j1),M) d l(Yjw(i1),.AM) (2.5)dW2 ) dw

The dimensionality of our measurement vector is small enough such that the matrix

inversions required for Newton's method are quite manageable. Newton's method

gives fast quadratic convergence to the weight vector that maximizes the log-likelihood

function.

The data we used to train the linear discriminant consists of a subset of the

words used in the AT&T speech detection experiments. These words are shown in

Table 2.2. We computed SNR measurements for each of these words after they were

corrupted by various amounts of additive noise and processed by the critical band

filter and the nonlinearities. Specifically, we created speech signals at 30 dB, 5 dB,

and 3 dB SNR. We also included a Gaussian noise signal. The 30 dB SNR signal and

the noise signal serve as prototypical examples of clean speech and noise. For clean

speech, we expect the linear discriminant to output unity and for the noise we expect

an output of zero. Accordingly, these were the target labels we associated with the

measurements for these two signals. The 3 dB and 5 dB SNR signals straddle the

detection threshold. By setting the target label for the 3 dB SNR signal to zero and

the 5 dB SNR signal to unity we induce the linear discriminant to learn a decision

boundary that approximately separates signals with SNR greater than 4 dB from

those with lesser SNR. Training a linear discriminant in this fashion causes it to

behave similarly to human listeners. Given an equal presentation of noise and speech

plus noise at various SNR levels, the performance of the linear discriminant traces

out a psychometric curve like the one in Figure 2-2. A total of 14 different words

were used to generate 560 examples for training.

We evaluated the capabilities of the narrowband model by testing whether it

matches the 4 to 5 dB SNR detection performance of human listeners for 40 Hz

bandwidth signals centered at 1000 Hz. The speech we used for this evaluation came

from the AT&T speech detection experiment. As shown in Table 2.2, we used several

25



Training Testing

tin, berg, pill, knock, bill din, jock, dope,
Words jog, tote, kame, pan, perch piss, half,

bah, lace, tonne, do mood, dad
Examples 560 1400

(CF, BW) in Hz (1000, 40) (1000, 40)

Table 2.1: Training and testing data for narrowband model.

different words for testing to ensure that our models are able to reliably distinguish

noise from noisy speech across various words. A total of 1400 examples were used for

this test. Half the signals were noise while the other half contained speech at SNR

levels of 14, 10, 6, 4, 2, 0, -2, -4, -8, and -12 dB.

Our evaluation revealed the psychometric curve in Figure 2-6 for the narrowband

model. Human performance is also plotted for reference. From the figure, we see that
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Figure 2-6: Narrowband model and human performance for 40 Hz bandwidth 1000
Hz center frequency and 62 Hz bandwidth 650 Hz center frequency signals.

the narrowband model has an approximate detection threshold of about 5 dB for 1000

Hz center frequency signals with 40 Hz bandwidth. A similar experiment measured

the detection threshold of a narrowband model trained to detect speech in 650 Hz

center frequency signals with 62 Hz bandwidth. This model achieved a detection

threshold of about 3 dB SNR. Both these results match the detection thresholds for
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human listeners. From this evidence, it appears that this model is a good one for

detecting speech in narrowband signals.

We consider whether this narrowband model is sufficient for achieving good speech

detection thresholds for wideband signals as well. To test this, we used our 40 Hz

bandwidth 1000 Hz center frequency narrowband model to detect speech in wideband

signals. The wideband signals we tested were centered at 1000 Hz with bandwidths

of 100, 160, 220, and 280 Hz. For each bandwidth, we tested using 1400 examples

with an equal presentation of signals with and without speech. The result of this

evaluation is shown in Figure 2-7. The figure illustrates that as the bandwidth is

100
-e- 40 Hz BW

+ 100 Hz BW
- x- 160 Hz BW
-A- 220 Hz BW

S280 Hz BW E

50
-5 0 5 10 15

SNR (dB)

Figure 2-7: Narrowband model performance for various bandwidths around 1000 Hz
center frequency.

increased, the detection threshold actually increases for the narrowband model trained

on the 40 Hz bandwidth 1000 Hz center frequency task. This behavior is in direct

contrast to the behavior of human listeners since Figure 2-3 shows that the detection

threshold for human listeners drops as the bandwidth increases. We conclude that

using measurements from a single narrowband signal is insufficient to emulate the

speech detection capabilities of humans.
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2.3 Union Model

To better match the speech detection capabilities of human listeners, we will need

to analyze more than just a single critical band for the presence of speech. We

develop the union model for the purpose of processing and integrating information

from several critical bands to detect speech in noise. The union model considered in

this section closely mirrors the work by Saul et al [21]. A similar union model was

proposed by Ming and Smith [16].

To examine more than just one critical band, we consider a model that is composed

of several narrowband models that work in parallel to analyze different narrowband

components of the spectrum. A statistical network then integrates the output from

each narrowband model to reach a global decision. This in essence is the union model.

A schematic of the model is shown in Figure 2-8. The first component of the model

Half-Wave
Input Cochlear Rectification, Measurements Union

Signal Filterbank Compression, of SNR Network Decision
Smoothing

Figure 2-8: Schematic of union model.

is a cochlear filterbank which filters the signal into 32 overlapping bands to simulate

the critical band decomposition of signals in the human cochlea. We use critical band

filters with center frequencies that are evenly spaced on a logarithmic scale from 300

Hz to 1300 Hz with a constant bandwidth of 0.15 octaves. This range of frequencies

adequately covers the spectrum of the signals used in the AT&T speech detection

experiments. Next, we half-wave rectify and cube-root each of the 32 narrowband

signals. This is followed by computation of SNR measurements for each channel.

These measurements are then used by a probabilistic graphical model, the union

network, to determine whether the input signal contains speech.

Like the narrowband model, the union network first processes the SNR measure-

ments from each subband with a linear discriminant. Each linear discriminant gives
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a measure of how likely it is for each of the subbands to contain speech. We integrate

these individual decisions by taking their union to decide whether the input signal

contains speech. In other words, if we treat the outputs of the linear discriminants

as binary indications of whether speech is present in a particular subband, then what

the network does is to combine these decisions using an OR gate. If any one of the

subbands has measurements indicating the presence of high SNR, the union model

declares the input to contain speech.

The motivation for the union strategy comes from Fletcher's articulation experi-

ments. Fletcher found that the overall articulation error can be modeled by the prod-

uct of the individual articulation errors from different frequency bands. As pointed

out in Chapter 1, this type of processing suggests the auditory system analyzes each

frequency band independently and integrates information from the cleaner bands

while ignoring the corrupted ones. Our model duplicates this product-of-errors pro-

cessing. Since the union network detects speech if any of the bands has high SNR,

the error is just the probability that none of the bands detect speech. This is simply

the product of the probabilities of not detecting speech in each band. By modeling

this processing, we hope to emulate the auditory system's ability to detect degraded

speech.

The statistical model for the union network is shown in Figure 2-9. Nodes within

the network represent binary random variables while the edges assert dependencies

among them. The vector mq represents SNR measurements from the qth band.

Z
or

Fi 2 U 3 n 32

Figure 2-9: Union network.
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This measurement is processed by a linear discriminant whose output is the binary

random variable Xq which indicates whether the subband has high SNR. A value of

unity means the linear discriminant believes the subband has high SNR whereas a

value of zero implies that only noise is present. Binary random variable Z represents

the overall decision of the network. A value of unity means that speech is present in

the input signal while a value of zero indicates otherwise. The probabilities of Xq and

Z are defined below where Q represents the number of subbands in the network.

Pr[Xq= almq] = o-(Wq - mq) if a = 1 (2.6)
1--(w sme) if a=

Pr[Z = 1jX 1 ,... ,XQ]= 1 if some Xq=1 (2.7)
0 otherwise

The final decision of the network is Equation 2.7 which is an estimation of the prob-

ability of whether speech is present in the input signal given the evidence from the

SNR measurements. Both these inferences involve propagating information from the

bottom of the network to the top. Other types of inferences can be calculated as well.

For example, we can quickly deduce that Pr[Xq = 01Z = 0, i 1 , ... , mQ] = 1 from

the OR structure of the network. Another posterior probability that is useful is the

following quantity which we use in the next section to estimate the parameters of the

network.

Pr[Xq = 1|Z = 1, Mi, . .. , MQ]

Pr[Z = 1jX, = 1,mi, ... , mQ] Pr[Xi = 11m i ,... , mQ]

Pr[Z = 1mi,.... , mQ] (2.8)

-(wq mq)

1 - JJQj(1 - U-(Wq - Mq))

The fact that the union network is a probabilistic graphical network allows us to make

such inferences in a principled way using Bayes' rule and other laws of probability.
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2.3.1 Learning Algorithm

The parameters in the union network that require training are the weights of the

linear discriminants. We can use maximum-likelihood estimation to determine the

weights that are most likely to produce the observed data. Assume our model has

Q subbands with weights W = {Wq} where q = 1 ... Q. Furthermore, suppose we

observe N examples Z = {Zj} with measurements M = {mq,y} for the qth band and

jth observation where q = 1... Q and j = 1... N. Then the likelihood function is as

defined in below.

N

L(Z W, M) = f Pr[Z|W, M] (2.9)
j=1

Each term in this product can be derived from Equations 2.6 and 2.7. The weights W

that maximize this equation are the weights that optimize the integrated decision of

the network. Maximizing Equation 2.9 is difficult because we need to choose weights

for our narrowband detectors that depend in a highly nonlinear way on wideband

observations Z, that specify whether speech is present in the input.

To make maximizing the likelihood function more tractable, we exploit the struc-

ture of the network to derive an Expectation-Maximization (EM) algorithm [6]. This

iterative algorithm decomposes the problem of maximizing the likelihood function

into two main steps. During the first phase, we calculate the posterior probabilities

Pr[Xq,j JZj, W, M] for the jth example. In the second phase, we use these posterior

probabilities as targets to train the linear discriminant weights in the qth band. We

then update the probability densities in the network based on these new parameters

in a bottom-up fashion using Equations 2.6 and 2.7. These two steps are repeated for

each iteration of the algorithm. The EM algorithm insures monotonic convergence to

a local maximum of the likelihood function [6]. Empirical evidence for this is shown

in Figure 2-10 which depicts the log-likelihood function for the first one hundred it-

erations of the EM algorithm. Details of the algorithm are presented in Appendix

A.

It is important to note that the EM algorithm is not guaranteed to produce the op-
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Figure 2-10: Monotonic convergence of the log-likelihood function for the union net-
work EM algorithm.

timal weights /V that maximize the likelihood for the union network. It only promises

to find weights W corresponding to a local maximum of the likelihood function. Since

the union network's likelihood function is highly nonlinear with respect to IN, the

EM algorithm can easily get stuck at a local maximum. An example of a possible

local maximum is a set of weights that detect speech using only n subbands where

n < Q. We might obtain this result if we initialize the linear discriminant weights in

certain bands to be very large negative values so that the output from these subbands

is always close to zero. To help the EM algorithm find the global maximum of the

likelihood function, we need to carefully select a starting point for it to begin its work.

We choose to initialize the weights of the linear discriminants in the union model to

the weight vector used in the narrowband model. This is a reasonable choice since

these weights work very well for detecting speech in narrowband signals.

The EM algorithm for this union network solves a version of the multiple-instance

learning problem [14]. In multiple-instance learning, a collection of examples is given

a positive label if at least one of the instances is positive. Otherwise, the collection

is labeled negatively. This ambiguous labeling is inherent when we train the union

network since labels only indicate whether speech is present but fail to specify which

subbands are responsible for detecting speech cues. Our EM algorithm solves this
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tin, berg, pill, knock, bill din, jock, dope,
Words jog, tote, kame, pan, perch piss, half,

bah, lace, tonne, do mood, dad

Examples 5600 14000
(1000, 40), (1000, 100), (1000, 40), (1000, 100),

(1000, 200), (1000, 340), (1000, 200), (1000, 340),
(CF, BW) (1000, 400), (1000, 600), (1000, 400), (1000, 600),

in Hz (650, 60), (650, 120), (650, 60), (650, 120),
(650, 220), (650, 390) (650, 220), (650, 390)

Table 2.2: Training and testing data for speech detection task.

multiple-instance learning problem by inferring labels for the subbands.

2.3.2 Evaluation

We evaluated the union network by training and testing it against the data from

the AT&T speech detection experiments. Our training data consisted of 14 different

words. We trained the network to detect speech at two center frequencies and a variety

of bandwidths as shown in Table 2.3.2. As before, when we trained the network to

match a particular detection threshold t, we presented a signal with 30 dB SNR and

a noise signal to serve as prototypical clean and noisy examples. We also produced a

signal with SNR (t - 1) and (t +1) with labels zero and unity respectively to motivate

the union network to match the detection threshold. A total of 5600 training examples

were used.

For testing, we used seven different words. These words were presented at SNR

levels of 14, 10, 6, 4, 2, 0, -2, -4, -8, and -12 dB under two center frequencies and

several different bandwidths (Table 2.3.2). We compare the union model detection

thresholds to human performance in Figure 2-11. By using information from multiple

critical bands, we see that the union network is able to lower its detection threshold

as the speech bandwidth increases. On average, the detection thresholds are all about

1 to 2 dB higher for the union network compared to human performance.
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Figure 2-11: Union model and human speech detection comparison.

2.4 Weighted Union Model

In the union network, speech is detected if any of the subbands contain speech ev-

idence. This processing explicitly gives equal weight to all the local decisions from

the 32 linear discriminants. However, some bands may be more informative than

others for detecting speech and should be weighted more heavily. For example, the

lower frequencies of the spectrum often contain more speech information than the

higher frequencies. It may also be undesirable to declare speech to be present when

just one of the subbands has speech evidence. In some cases, it might be better to

detect speech if two or more subbands contain speech cues. This strategy may be

appropriate to lower the false positive rate of declaring the presence of speech when

speech is actually not present in the input signal.

We construct a weighted union model to address these issues and improve the

speech detection performance of the union model. The weighted union model is a

generalization of the union model. It is shown in Figure 2-12. Instead of using

a union network to process SNR measurements from the 32 subbands, this model

uses a weighted union network. All other processing in the weighted union model is

identical to the union model.

The weighted union network resembles the union network except for the weights it
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Half-Wave

Input Cochlear Rectification, Measurements Weighted
Signal Filterbank Compression, of SNR Union Decision

Figure 2-12: Schematic of weighted union model.

gives to the local decisions of the 32 linear discriminants. This weighting enables the

network to favor the decisions of some bands more heavily than others. It can also

restrain the network from declaring speech to be present if just one band contains

speech evidence. As an example, suppose we weight the decision of each band by a

value slightly less than 0.5. Then, if only one of the detectors in the subbands detects

speech and outputs unity while the other bands output zero, the overall likelihood

of detecting speech will be below 0.5 and thus the network declares speech to be

absent in the input. However, if two subbands detect speech, then the overall output

will be greater than 0.5 and the network will declare the input to contain speech.

The weighted union network degenerates to the union network when we weight the

decision of each band by unity.

The statistical model for the weighted union network is shown in Figure 2-13.

As before, we use a probabilistic graphical network whose nodes are binary random

variables and whose edges specify dependencies among the nodes. Again, vector mq

represents SNR measurements from the qth band, binary random variable Xq indicates

whether subband q has high SNR, and binary random variable Z specifies the overall

decision of the network. The network weights each of the Xq using binary random

variable Bq which specifies whether the information from Xq should be considered.

Random variable Yq gives the weighted result of whether subband q contains speech

cues. This weighting is performed using an AND operator on Xq together with Bq.

We use an AND operator since Yq should only be true if Xq is true and Bq indicates

that the information in Xq should be used. We define these relationships below where
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Figure 2-13: Weighted union network.

Q represents the number of subbands in the network.

Pr[Xq = almq = -(wq " mq)

1 - o-(wq - mq)

Pr[Bq a] =
bq

1 - bq

if a =-1

if C = 0

if a =1

if a= 0

Pr[Yq = 11Xq, Bq]

10

Pr[Z = 11Y 1,..

if Xq =-1 and Bq =-1

otherwise

if some Yq = 1

otherwise

As was the case in the union network, a variety of inferences may be made in this

probabilistic graphical network. From the AND operation, we see that Pr[Xq =

36

(2.10)

(2.11)

(2.12)

(2.13),YQ] 1
0



l|Yq 1] = 1 and Pr[Bq = 1|Yq 1] 1. The OR operation also specifies that

Pr[Yq = 1Z = 01 = 1. A host of other inferences may be made as well.

2.4.1 Learning Algorithm

Training the weighted union network is similar to training the union network. We

need to determine weight vectors for each of the linear discriminants. In addition, we

need to specify the weighting Pr[Bq] = bq as well.

To select the linear discriminant weights and the subbands weights Pr[Bq], we

maximize the likelihood function. We assume our model has Q subbands with weights

W {wq} and B {bq} where q = 1... Q. Let us also observe N examples

Z = {Zj} with measurements M = {mq,j} for the qth band and jth observation

where q = 1 . . . Q and j = 1 ... N. Then the likelihood function is as defined in

below.

N

L(ZIW, B, M) = J Pr[ZI1 B, M] (2.14)
j= 1

The weights W and B that maximize this equation are the weights that optimize the

integrated decision of the network. Maximizing this equation is difficult because it is

not obvious how to choose weights for our narrowband detectors given the wideband

observations Zj that specify whether speech is present in the input.

We again maximize the likelihood function by exploiting the structure of the net-

work to derive an EM algorithm. The EM algorithm allows us to maximize the

likelihood function by specifying the posterior probability Pr[Xq,j IZj, WI, B, M] for

training the linear discriminant in the qth band and by specifying the posterior prob-

ability Pr[BqI Zj, IN, B, M] for choosing the weighting in the qth band. The first phase

of our EM algorithm is to calculate these posterior probabilities for the jth example.

In the second phase of the algorithm, we use these posterior probabilities as targets

for training the linear discriminant and subband weights in the qth band. We then

update the probabilities in the network based on these new weights according to Equa-

tions 2.10, 2.11, 2.12, 2.13 before repeating these steps for another iteration of the
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algorithm. Like the EM algorithm introduced for the union network, this algorithm

guarantees monotonic convergence to a local maximum of the likelihood function as

seen in Figure 2-14. Using the EM algorithm to infer training labels for the linear dis-

criminants and the subband weights solves a version of the multiple-instance learning

problem. We present further details of this EM algorithm in Appendix B.

0
0

0

0 50 100
Iterations

Figure 2-14: Monotonic convergence of the log-likelihood function for the weighted
union EM algorithm.

As was the case for the union network, we need to carefully select an initializa-

tion of the parameters in the network to help the EM algorithm avoid local max-

imums in the likelihood function. Again, we decide to use the weight vector from

the narrowband model to initialize the weights of the 32 linear discriminants. For

Pr[Bq = 1] = bq, we choose to set bq = 0.5 for all q = 1...32. Recall that when

these weights are unity, the network is identical to the union network. Initializing

Pr[Bi = 1] = 0.5 favors a strategy where speech is detected if two or more sub-

bands contain speech evidence. Our evaluation will determine whether this behavior

is more favorable than the union strategy where speech is detected if just one subband

contains speech cues.
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2.4.2 Evaluation

We trained and evaluated the weighed union network using the same training and

testing procedures used for the union network (Table 2.3.2). The results are shown

in Figure 2-15.
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Figure 2-15: Weighted union model, union model, and human speech detection com-

parison.

By weighting the decisions of each band, the weighted union network is able to

match the speech detection thresholds for human listeners much better than the union

network. It is interesting to note that the optimal weights Pr[Bj = 1] selected by the

EM algorithm remain clustered around their initial value of 0.5. The improved results

obtained using this weighting suggest that it is better to declare an input to contain

speech if two or more subbands contain speech evidence.

2.5 Hierarchical Network

Both the union and weighted union networks detect the presence of speech using

independent detectors in different parts of the spectrum. This type of processing is

suggested by Fletcher's articulation experiments and pro duct-of- errors rule for the

articulation error. Results from the weighted union experiment however hint at an

alternative approach to the detection of speech embedded in noise. In the weighted

39



union experiment, we determined that better results are obtained if we declare an

input to contain speech only if two or more bands detect speech cues. Since the

bandlimited signals we presented to the network were contiguous in frequency, we

expect the bands that contain speech evidence to be adjacent to one another. This

suggests that informative speech cues often span several neighboring frequency bands.

To take advantage of this, we need to process information from combinations of

adjacent subbands.

We propose the hierarchical model to improve upon the performance of the union

and weighted union models by considering combinations of adjacent critical bands as

possible sources of informative speech cues. Subbands in this model are first analyzed

in a pairwise manner. The result of this processing is propagated up for subsequent

pairwise examinations until a global decision is made. This analysis resembles pro-

cessing a binary hierarchy from the leaves up to the root node. We use this hierarchical

combination strategy because the hierarchical structure of a binary tree is a partic-

ularly efficient way of performing pairwise analyses of the leaves. In our case, the

leaves are the critical bands that we would like to analyze both individually and in

combination for speech cues.

Figure 2-16 shows a block diagram of the hierarchical model. This figure is quite

Half-Wave
Input Cochlear Rectification, Hierarchical Measurements Hierarchical Decision

Signal Filterbank Compression, Combination of SNR Network
Smoothing

Figure 2-16: Schematic of hierarchical model.

similar to the union model except for the hierarchical combination of the subbands

and the use of the hierarchical network. The union model is just a special case of the

hierarchical model that ignores all the subband combinations and only considers the

individual narrowband measurements themselves.

Like the union and weighted union models, the hierarchical model first decom-
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poses the input signal into 32 critical bands with center frequencies evenly spaced

on a logarithmic scale from 300 to 1300 Hz with a constant bandwidth of 0.15 oc-

taves. The outputs from these 32 bands are then half-wave rectified, compressed, and

smoothed. Next, all 32 bands are hierarchically combined. This combination strat-

egy is illustrated in Figure 2-17. Streams si, ... , s 32 correspond to the outputs of the

S1,32

S1,8

S1 4

S1 2  S3 4  S3132

S 1  S2 S3  S 4  S 3 1 S 32

Figure 2-17: Hierarchical combination.

original 32 bands. These streams are combined pairwise to form s1,2, s3,4, ... ,31,32

which are in turn combined to form s,4 . , S29,32. This procedure continues until

S1,32 is produced forming a total of 63 streams. Our method for constructing stream

sij is to average streams si, s , . . . , sj. By averaging narrowband signals, we hope

to create new waveforms that may be useful for speech detection. These combined

signals have greater bandwidth allowing the network to look for speech cues that

span multiple critical bands. Once the 63 streams are formed, SNR measurements

are computed for each stream. We compute the same SNR measures used for the

narrowband, union, and weighted union models.

The hierarchical network processes the 63 sets of SNR measurements to determine

whether the input signal contains speech. As its name indicates, this network pro-

cesses these SNR measurements in a hierarchical manner. The network first analyzes

measurements from the original 32 streams si, ... , s32 in a pairwise manner. Sup-
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pose the network looks at streams si and si+1. Like the union network, if either signal

contains speech evidence, the network declares that the input signal contains speech.

However, if neither has speech cues, the network examines stream si,j+1 to determine

whether speech evidence is present. This strategy of examining pairs of streams, and

their combination if necessary, is the basic type of processing the hierarchical network

performs.

The statistical model for the hierarchical network is a probabilistic graphical net-

work like the union and weighted union networks. The edges of the network indi-

cate dependencies among binary random variables. A small hierarchical network is

shown in Figure 2-18. In this figure, vectors m1,... , m 4 represent measurements

Z1,

x, X2 X3 X4

M1, m2 mM3m4

Figure 2-18: Small hierarchical network.

from streams i,... , S4 and M 1 ,2 , M 3 ,4 , rM1 ,4 are measurements from the combined

streams S1,2, 83,4, S1,4 respectively. The actual hierarchical network we use for our ex-

periments is much bigger however. It analyzes measurements mi, ... , M 3 2 from the

original 32 streams Si, ... , s32 as well as the measurements from the 31 additional

streams formed from hierarchical combinations. Such a large network is unwieldy so

we instead illustrate the network using Figure 2-18.

To decide whether speech is present in the input signal, the hierarchical network

first checks whether measurements from the original streams indicate the presence

of speech. Binary random variable Xi specifies whether stream si contains speech
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evidence. If any of the variables X1, X2 , X3 , X4 are true, the network will decide

that the input contains speech. If not, measurements from the combined streams,

M 1 ,2 and M 3,4 are examined. If either set of measurements exhibits speech evidence,

the network declares the input to contain speech. Else, the network bases the final

decision on its analysis of the measurements M1,4 from stream s1,4. We characterize

these relationships mathematically as follows.

Pr[Xi = almi o-(wi -mi) if a= 1 (2.15)
1 - o-(w. -m) if a = 0

Pr [Y, = 1Xi, X3, mij] if Xi = 1 or X = 1 (2.16)
-(wij -mi,) otherwise

Pr[Z1 ,4 = 1|Y1, 2, Y3,4,Y3,4 = 1 (2.17)
o-(Wl,4 - M1,4) otherwise

These rules allow us to make a variety of inferences in the network. For example, if

we know that speech is not present in the signal, then it must be the case that none of

the binary random variables detect speech cues. Other useful inferences that we can

calculate include posterior probabilities such as Pr[Y 1,2 = a, X 1 = 0, X2 = 01Z 1,4 = #]

where a and 3 are either 0 or 1.

2.5.1 Learning Algorithm

We select the weights for the linear discriminants in the hierarchical network by using

maximum-likelihood estimation. Assume our model has weights W = {w 1 , . . . ,

w 1 ,2, w 3 4 , w 1 ,4 } and that we observe examples Z 1,4 = {Z(1, 4),I} with measurements
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M. Then the likelihood function is as defined in below.

N

I2(Zi,4L IN, A4) = fJ Pr[Z(1,4),lW, A4] (2.18)
1=1

The weights IN that maximize this equation are the weights that optimize the inte-

grated decision of the network. Maximizing this likelihood function with respect to

IN is difficult because these weights depend on the observations Z( 1 ,4) in a highly

nonlinear way.

We maximize the likelihood function by exploiting the structure of the hierarchical

network to develop an EM algorithm. Like the EM algorithms developed for the

union and weighted union networks, this EM algorithm allows us to maximize the

likelihood function by specifying certain posterior probabilities to use as target values

for training the linear discriminants. Each iteration of the algorithm proceeds in

two phases. In the first phase, we calculate these posterior probabilities. In the

second phase, we train the linear discriminants using these posterior probabilities as

target values. We then update the probability densities in the network according

to Equations 2.15, 2.16, 2.17 before calculating another iteration of the algorithm.

The hierarchical structure of this network allows us to develop an efficient recursive

procedure that performs these two steps. Monotonic convergence to a local maximum

of the likelihood function is shown in Figure 2-19 and is guaranteed by a general EM

convergence theorem [6]. This EM algorithm for the hierarchical network solves a

version of the multiple-instance learning problem by inferring training labels for the

linear discriminants in the network. Appendix C details the development of this

algorithm.

To avoid local maximums in the likelihood function, we initialize the weight vectors

of the linear discriminants for streams si, ... , S32 to the weight vector from the nar-

rowband model like before. For the other combined streams sij, we set their weights

to the zero vector and their bias terms to a negative value. Setting the weights in

this way causes these linear discriminants to initially ignore the speech evidence from

the combined streams. This initialization models our strategy to analyze combined
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Figure 2-19: Monotonic convergence of the log-likelihood function for the hierarchical
network EM algorithm.

streams for speech cues only when the original 32 subbands lack speech evidence. One

of the disadvantages of working with the hierarchical network is that it is more prone

to getting stuck at local maximums than the union or weighted union networks. This

is because the hierarchical network has about twice as many parameters as the other

two networks. It has 63 sets of linear discriminant weights whereas the union and

weighted union networks only have 32.

2.5.2 Evaluation

We trained and evaluated the hierarchical network in the same way we trained and

evaluated the union and weighted union networks. Table 2.3.2 outlines the data used

for both training and testing.

The results of the evaluation are shown in Figure 2-20. We see that considering

combinations of hierarchically combined subbands as possible sources for speech cues

gives a modest improvement over the union model. Though the hierarchical model

has lower detection thresholds than the union model, the weighted union model still

does slightly better especially for the 1000 Hz center frequency case.
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Figure 2-20: Hierarchical model, weighted union model, union model, and human
speech detection comparison.

2.6 Discussion

We developed the union, weighted union, and hierarchical models to match human

speech detection performance shown in Figure 2-3. Each of these models differs pri-

marily in the probabilistic graphical model used to integrate speech cues from differ-

ent frequency bands. The network for the union model declares the input to contain

speech if it finds narrowband speech evidence in any of the subbands. The network

for the weighted union model is more flexible and can be trained to require multiple

subbands to contain speech evidence before declaring the presence of speech. Finally,

we developed the hierarchical model whose statistical network analyzes combinations

of streams for speech cues and integrates this evidence in a hierarchical manner.

Our evaluation of the three models shown in Figure 2-20 would indicate that the

weighted union model is best for matching human speech detection. However, this

evaluation is only for 650 Hz and 1000 Hz center frequencies so the performance of

these models may not completely generalize for speech with different center frequen-

cies and bandwidths. Since we only have measurements of human speech detection

performance from the AT&T experiments, we do not have the data to test whether

our models match human performance at other center frequencies and bandwidths.
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What our results do tell us is that the union, weighted union, and hierarchical net-

works are able to behave similarly to human listeners. In particular, these models

improve their detection thresholds as the speech bandwidth is increased. By em-

ulating the multiband processing of the auditory system, these models are able to

come close to matching human speech detection performance for bandlimited speech

centered at 650 and 1000 Hz.

47



Chapter 3

Sonorant Detection

It is important for speech recognition systems to function effectively under poor lis-

tening conditions because the acoustic environment is often impossible to control.

Although there has been much research in developing robust ASR techniques, mod-

ern recognizers are still unable to cope with speech corrupted by moderate amounts

of noise. Human listeners, on the other hand, can recognize noisy speech with relative

ease even when deprived of linguistic context and other aids [7, 15]. ASR systems

stand to gain by emulating the processing that enables human listeners to recognize

noisy speech.

Psychoacoustic experiments tell us that the robust detection of basic phonetic

features is fundamental to robust human speech recognition. As seen in the work of

Miller and Nicely [15], human listeners are able to identify nonsense syllables even

when the signal has been filtered and corrupted with noise. More remarkably, the

study found that despite poor listening conditions, certain sets of phonemes are dif-

ficult to confuse with other groups. These results motivate our study of automatic

methods for the robust detection of the phonetic feature [+/-sonorant] which parti-

tions phonemes into two groups: sonorants and obstruents. Like the phonetic groups

studied by Miller and Nicely, the sonorant versus obstruent distinction is very resis-

tant to noise and filtering [5]. This chapter details our multiband models for detecting

the feature [+/-sonorant] under a variety of acoustic conditions.
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3.1 Sonorants and Obstruents

Phonemes are basic phonetic units that correspond to different sounds in language.

These building blocks are the smallest elements of language capable of conveying

meaning. For example, changing the phoneme /b/ in bee to /f/ results in the new

word fee. There are about four dozen different phonemes used in the English language.

We are concerned with detecting the phonetic feature [+/-sonorant] which distin-

guishes sonorant phonemes from obstruents. In articulatory terms, sonorants consist

of those phonemes that are spoken without obstructing the airflow through the vocal

tract. This group includes vowels, nasals, and approximants. Obstruent phonemes

on the other hand are produced with at least partial obstruction of the airflow. These

include stops, fricatives, and affricates. Sonorants and obstruent are illustrated in Ta-

ble 3.1. For our purposes, we will treat stops, fricatives, affricates, pauses in speech,

iy (beet) ih (bit) eh (bet)
ey (bait) ae (bat) aa (bott)
aw (bout) ay (bite) ah (but)

ao (bought) oy (boy) ow (boat) vowels

uh (book) uw (boot) ux (toot)
er (bird) ax (about) ix (debit)

[+sonorant] axr (butter) ax-h (suspect)
m (mom) n (noon) ng (sing)
em (bottom) en (button) eng (washington) nasals

nx (winner)
1 (lay) r (ray) w (way)

y (yacht) hh (hay) hv (ahead) approximants

el (bottle)

b (bee) d (day) g (gay)

p (pea) t (tea) k (key) stops
dx (muddy) q (bat)

[-sonorant] jh (joke) ch (choke) affricates
s (sea) sh (she) z (zone)
zh (azure) f (fin) th (thin) fricatives

v (van) dh (then)

Table 3.1: Sonorants and obstruents.

and anything that is not a sonorant as [-sonorant]. We will also interchangeably

refer to obstruent phonemes as [-sonorant] and vice versa.

Detecting the phonetic feature [+/-sonorant] requires that we capitalize on char-
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acteristics that distinguish obstruents from sonorants. Sonorant phonemes are articu-

lated by periodic vibration of the vocal cords. Since the airstream is unobstructed for

sonorants, the pitch of the speaker, or the fundamental frequency, should be evident in

these signals. Periodicity (if any) in obstruents is generally muddied or destroyed by

the partial or total obstruction of the airflow through the vocal tract. We expect only

the strong periodicity cues in sonorants to weather corrupting influences in speech.

Periodicity in sonorants is difficult to conceal because the energy in these signals is

concentrated at the harmonics. It takes more white noise to inundate sonorants than

it does for signals with energy spread more evenly across the spectrum. Consequently,

portions of speech containing sonorants tend to have higher SNR as well as greater

periodicity. As an example, consider the phonetic transcription of the utterance,

"CALCIUM MAKEs BONES AND TEETH STRONG" in Figure 3-1. Sonorant regions,

Calcium makes bones and teeth strong.

I+ , I- I+ I- I+ I- I+ I- I+ I- I+ I-

kae I s iy ihm ey ks bow n z ixn t iy th s tr ao ng

Figure 3-1: Phonetic transcription of "CALCIUM MAKES BONEs AND TEETH

STRONG".

marked by a "+" sign, generally have greater energy than obstruent segments. In

noise, we can expect sonorants to have higher SNR than obstruents. We use the

presence of high SNR along with periodicity cues as heuristics for detecting sonorants

in speech.

3.2 Multiband Models for Sonorant Detection

To explore the robust detection of the phonetic feature [+/-sonorant], we use our

multiband models from the speech detection task. We use these models for three rea-

sons. First, as demonstrated in the previous chapter, these multiband models closely
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match the behavior of human listeners at identifying speech under noisy bandlimited

conditions. This is important because the ability to robustly identify sonorants from

obstruents requires the capability to distinguish portions of acoustic waveforms that

contain speech from those that do not. For example, portions of speech that are

silences, pauses, or noise should always be labeled as [-sonorant]. We also apply our

multiband speech detection models to sonorant detection because they emulate the

processing in the peripheral auditory. It is a good idea to emulate auditory process-

ing when constructing robust automatic methods for detecting sonorants since the

recognition capabilities of human listeners is superior to modern ASR systems. The

third reason to pursue robust sonorant detection using our multiband models is mo-

tivated by the work of Saul et al [211. This study showed the success of a multiband

union model in detecting the phonetic feature [+/-sonorant]. On this task, a union

type model outperformed a mel-frequency cepstra Gaussian mixture model under a

host of bandlimited noisy test conditions. Since most state-of-the-art recognizers use

a mel-frequency cepstra representation for processing speech, this result shows that

current recognizers may benefit greatly from a multiband approach to extracting pho-

netic features for speech processing. We hope to improve on the union model results

in [21] by examining the sonorant detection capabilities of the weighted union and

hierarchical models.

In this section, we discuss adapting our multiband models from the speech detec-

tion task to the task of detecting the phonetic feature [+/-sonorant]. We detail the

front-end signal processing for our models, the measurements we extract to detect

sonorants, and the statistical networks used.

3.2.1 Front-End Signal Processing

A schematic of our general model for sonorant detection is shown in Figure 3-2. The

front-end signal processing for this sonorant detection model is similar to the front-end

processing used for speech detection. We pass the input through a cochlear filterbank,

apply nonlinearities, and extract measurements from each band. These measurement

are then fed to a statistical network back-end which decides whether or not the input
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Figure 3-2: Components of sonorant detection model.

is a sonorant.

The front-end signal processing aids the detection of sonorants by emphasizing

periodicity cues and regions of speech with high SNR. The first stage of processing

consists of a cochlear filterbank which resolves the input signal into 32 overlapping

critical bands. This simulates the multiband decomposition of acoustic signals in the

auditory system. We use critical band filters with center frequencies that are evenly

spaced on a logarithmic scale from 225 Hz to 3625 Hz with a constant bandwidth of

0.15 octaves. The input waveforms we use for the sonorant detection task are sampled

at 8 kHz so the filterbank adequately covers the available spectrum.

Once the input is resolved into 32 critical bands, nonlinearities are applied. Each

subband is half-wave rectified to imitate the unidirectional response of hair cells along

the basilar membrane and then cube-rooted to simulate the compressive behavior of

auditory filters. These two processes also serve to emphasize periodicity cues in the

subbands. Should any of the bands have energy at two or more adjacent harmonics,

these operations create intermodulation distortions [9] which concentrate energy at

frequencies corresponding to the sums and differences of various integer multiples

of the speaker's pitch. This processing aids the detection of sonorants since the

pitch of the speaker should be more evident in sonorants than obstruents. Our final

operation is to smooth the 32 streams by the linear process of downsampling to 1

kHz. Downsampling preserves the signal envelope and greatly reduces the amount of

data we need to process. It also retains the energy concentrated near the speaker's

pitch which may range anywhere from 50 to 300 Hz for speech.

We illustrate the effects of these nonlinearities with an example. The spectrogram
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Figure 3-3: Spectrograms illustrating the effects of nonlinear processing.

on the left in Figure 3-3 shows two sinusoids sampled at 8 kHz with frequency 1800 and

2000 Hz. If we imagine these two signals as adjacent harmonics in a particular critical

band, then what our nonlinearities do is to extract a 200 Hz signal which corresponds

to a multiple of the pitch. We first create energy at 200 Hz through intermodulation

distortions produced by half-wave rectification and cube-root compression as seen in

the middle spectrogram. Finally, the spectrogram on the right shows the result of

downsampling the signal. This final signal captures energy at 200 Hz (and also at

400 Hz) as desired.

For each of the 32 streams of data from the nonlinear processing, we compute

20 measurements for every contiguous, non-overlapping 16ms frame. With a 1 kHz

sampling rate, this corresponds to partitioning the streams from each band into frames

with 16 discrete samples. The first measure we compute is a local estimate of the

SNR. This is calculated by taking the logarithm of the ratio of the current frame

energy to the minimum energy of the neighboring twenty frames. We define the

energy of a frame as the sum of the squares of the 16 samples. To deal with regions

of silence, a small positive offset is added to the denominator of the ratio. The next

four measurements are periodicity statistics derived from an autocorrelation sequence.

Longer 64 ms frames are used to compute this sequence in order to include multiple

pitch periods for deep male voices. We compute the autocorrelation sequence a[n]

using the technique advocated by Boersma in [3]. Let x[n] with mean yJ be the

signal we would like to calculate the autocorrelation of. Assume it is nonzero from
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n = 0 .. . M. We can then define the following quantities.

1 1 27rn
w[n] = - - - cos , for O<n<M y[n] = (x[n] - t)w[n]

2 2 (M)

E = 0 y[k]y[k -n] - Z w[k]w[k - n]
z [n] = k=v[n] =_E =

Z o y[k]y[k] Z w[k]w[k]

Note that w[n] is just the Hanning window. The signals z[n] and v[n] are the normal-

ized autocorrelations of the zero mean signal and the Hanning window, respectively.

These autocorrelations may be efficiently calculated using fast discrete Fourier trans-

form techniques. The autocorrelation sequence a[n] we would like to calculate is just

a[n] = z[n]/v[n]. As shown in [3], a[n] is much more robust for periodicity detection

than the traditional autocorrelation sequence. From the sequence a[n], we extract

the maximum peak, the minimum valley, the average of the peaks, and the average

of the valleys as our periodicity measures. All four measures give an estimate of the

periodicity of the signal. For example, larger peaks indicate greater periodicity as do

deep valleys. The remaining 15 measures are computed by including all pairwise mul-

tiplications of the five measures described above. This augmentation of the feature

space improved the sonorant detection abilities of our models.

3.2.2 Statistical Networks

We use probabilistic graphical networks to integrate the SNR and periodicity mea-

sures from the various bands. Recall that measurements are computed for every 16

ms frame of input speech. Our networks must use these multiband measurements to

decide which frames are derived from sonorant sounds and which are not. Given a

critical band decompositions of the acoustic waveform, our models infer whether the

wideband signal is a sonorant by employing hidden variables to represent meaningful

cues across the speech spectrum. These hidden variables distributed across frequency

are integrated to reach a global decision. This multiband approach to sonorant de-

tection fits the multiple-instance learning paradigm [14] just like the speech detection

task in Chapter 2. We examine the performance of four different probabilistic graph-
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ical networks for the sonorant detection task.

The first network we consider is the union network described in Chapter 2. For

the sonorant detection task, we regard the 32 linear discriminants in the network

as sonorant cue detectors. These detectors work in parallel on measurements from

individual bands to find sonorant cues. If any of the bands contain sonorant evidence,

the network as a whole declares the input frame to be [+sonorant]. This strategy

allows the network to ignore bands corrupted by noise and integrate information

from the cleaner portions of the spectrum.

We also examine the performance of the weighted union network on the sonorant

detection task. This variant of the union network also independently detects sonorant

cues from across the spectrum. However, it is able to weight the decisions of the linear

discriminants to favor some bands over others. A result of this weighting is that the

network no longer is restrained to declare the input to be a sonorant if just a single

band contains sonorant evidence. Instead, it can learn a weighting that requires

multiple bands to register sonorant cues before asserting the input to be a sonorant.

The structure and EM learning algorithm for the weighted union network is described

in Chapter 2.

The third network we evaluate is the hierarchical network. It is a probabilistic

graphical network that considers hierarchically combined subbands as possible sources

for sonorant cues. Specifically, the hierarchical model combines the original 32 bands

to form an additional 31 streams of data. To produce intermodulation distortions

in these 31 new data streams, we square them. These combined streams have wider

bandwidth enabling the network to look for sonorant cues that span multiple critical

bands. Often, these wider bands contain sonorant cues that are not evident in indi-

vidual critical bands. For example, suppose a particular subband captures only one

harmonic of speech. With a single harmonic, the nonlinearities in the front-end are

unable to produce intermodulation distortions at integer multiples of the fundamental

frequency preventing the detection of useful periodicity cues. However, if we average

this band with an adjacent band that also contains a single harmonic, we create a two

harmonic signal which we square to emphasize frequencies at integer multiples of the
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speaker's pitch. Examining combined subbands is an improvement over the union and

weighted union networks since these networks only analyze the original 32 subbands

independently of one another. The hierarchical network gains this advantage at the

cost of doubling the computation needed for the union and weighted union networks.

A schematic of the hierarchical model is shown in Figure 3-4. This model differs from

Half-Wave Maueet
Input Cochlear Rectification, Hierarchical ierarchical -k Decision

Signal Filterbank Compression, Combination and Periodicity Network
Smoothing

Figure 3-4: Schematic of hierarchical model.

Figure 3-2 in that signals need to be hierarchically combined after the nonlinearities

are applied. The hierarchical combination strategy and other details about the model

are detailed in Chapter 2.

Our final statistical network is a linear discriminant. Given measurements m and

a weight vector w, the output of the network is u-(w-m) where u(x) = 1/[1+exp(-x)].

Like the hierarchical network, the linear discriminant takes measurements from all

63 streams to detect the phonetic feature [+/-sonorant]. The difference between

the two models is that the linear discriminant uses no prior information to integrate

sonorant cues from across the spectrum. It processes data from all the streams to

detect sonorants whereas the hierarchical network registers the presence of a sonorant

if just one of its streams has sonorant evidence. Since there are 63 streams each with

20 measurements, the linear discriminant has a total of 1260 parameters. We add

one extra parameter to accommodate a bias term. Training the linear discriminant

is more computationally difficult than training the hierarchical network. It is hard

to train a linear discriminant with over a thousand parameters using fast techniques

like Newton's method because of the expensive matrix operations required. Gradient

descent procedures are more feasible but they require substantially longer run-times

for convergence. The EM algorithm on the other hand is able to separate the training
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for the hierarchical network into several small logistic regressions each with about 20

weights. This decomposition allowed us to train the hierarchical network significantly

faster than the large linear discriminant.

3.3 Experiments

Our task is to evaluate the [+/-sonorant] detection abilities of the union, weighted

union, hierarchical, and linear discriminant models. We know that human listeners

maintain the ability to identify sonorants even under poor listening conditions. Miller

and Nicely's work [15] also illustrates that human listeners can make basic phonetic

distinctions when speech is bandlimited and corrupted by noise. Since we are inter-

ested in emulating the robust detection abilities of the auditory system, we would

like our models to reliably detect sonorants under both quiet and noisy bandlimited

conditions.

We evaluated our models using the standard TIMIT speech corpus [8]. This data

set contains phonetic transcriptions that are manually aligned with the speech wave-

forms. We used speech from the first dialect region for training and testing purposes.

The training set consisted of 304 sentences with a total of 56077 frames of speech. The

testing set contained 88 sentences with 17203 speech frames. Recall that each frame

of speech is 16 ms in duration. Frames were labeled as sonorants if the majority of the

samples spanned by the frame came from a sonorant phoneme. Otherwise, they were

labeled as obstruents. We treat vowels, nasals, and approximants as [+sonorant] and

stops, fricatives, affricates, and regions of silence as [-sonorant] with three exceptions.

Like in the sonorant detection evaluation in Saul et al, the flapped /d/ ("ladder") was

treated as [+sonorant] and the voiceless /h/ ("hay") and devoiced schwa ("suspect")

were treated as [-sonorant]. About fifty percent of the frames were sonorants.

To have our models detect sonorants under a variety of quiet and noisy conditions,

we present training data consisting of both clean and 0 dB SNR wideband speech.

The clean speech gives prototypical examples of uncorrupted sonorants and obstruents

while the 0 dB SNR signal provides examples of degraded speech. Training using
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the clean speech examples is straightforward since we have wideband labels from the

phonetic transcriptions that specify which frames of speech are [+sonorantl and which

are not. For noisy speech, training is not as straightforward. When noise is added

to an obstruent frame, the frame remains an obstruent. Unfortunately, when noise is

added to a sonorant frame, it may no longer be recognizable even by human listeners.

For these noisy sonorant examples, we do not have any labels indicating whether

they should be detected as sonorants. To deal with this missing label problem, we

recall that human listeners are able to identify basic phonetic distinctions under noisy

conditions. It is thus reasonable to assume that at least some sonorant cues from a

sonorant phoneme survive when noise is added. We can use this idea to train on

noisy speech by requiring at least one frame within a noisy sonorant phoneme to

exhibit sonorant cues. Let 1 be a binary random variable indicating whether a noisy

phoneme with contiguous frames k through 1 is a sonorant. Then this idea can be

formalized as follows.

Pr[1 = 1 M, Zk, ... , Zi] = 1 - 1( - Pr[Zi = 1 Mi]) (3.1)
i=k

Binary random variable Zi indicates whether frame i contains sonorant evidence.

This random variable represents the decision made by a statistical model based on

the collection of measurements Mi for the ith frame. Equation 3.1 collects these

decisions across the frames of a single phoneme and sets D = 1 if at least one of these

frames contains sonorant cues. The utility of Equation 3.1 comes from the ease of

computing posterior probabilities to derive target labels for noisy frames of speech.

The target probability for the ith noisy sonorant frame is just the posterior probability

of Zi given 4) = 1. Similarly, the target probability for the ith noisy obstruent frame

is just the posterior probability of Zi given 4D = 0 which is always identically zero.

These posterior probabilities enable us to assign labels to noisy frames of speech that

are consistent with our assumption that sonorant evidence survives in at least some

frames when noise is added to a sonorant phoneme.
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3.3.1 Examples

We illustrate the [+/-sonorant] detection task with a few examples using the utter-

ance "CALCIUM MAKES BONEs AND TEETH STRONG". For each of these exam-

ples, human listeners generally have no problem recognizing the corrupted or filtered

speech. Figure 3-5 shows the performance of the linear discriminant, union, weighted

union, and hierarchical models under quiet conditions. Time is measured across the

Calcium makes bones and teeth strong.

- I 1- 1+ - 1+ 1- 1+ - 1+ 1- 1+

I I I I I I I

Hierarchical Network

0

. .. Weighted Union Network

Union Network

Tce

Figure 3-5: Top: Clean speech with TIMIT [+i/- sonorant] segmentation for clean

speech. Remaining diagrams show Pr[+i-sonorant] for hierarchical, weighted union,
union, and linear discriminant models.

horizontal axis in 16 ms increments. For each of these 16 ms frames, the models

output Pr[+sonorant] as an estimate of how likely the frame is a sonorant. The wave-

forms in the figure show the time evolution of Pr[+sonorant] for each model processing

the input waveform shown in the top figure. Vertical lines indicate the manual [+/-

sonorant] segmentation for clean speech. Sections marked with a "+" correspond to

frames from sonorant phonemes. Those regions with a "-" indicate non-sonorant

sounds. Of the four models, the linear discriminant has the best performance on this

clean speech example. In areas marked by "-",iits output is consistently near zero.
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For sections with a "+I", it has values close to unity. The other models also behave

reasonably well. They generally give values above 0.5 for sonorant frames and output

values less than 0.5 for obstruents and regions of silence. The union and weighted

union models however seem a bit more prone to making errors in [-sonorant] regions

than the hierarchical and linear discriminant models.

The next two examples illustrate how the models perform under noise. Figure 3-6

shows the behavior of the models when 0 dB white noise corrupts the input. Under

Calcium makes bones and teeth strong.

- I+ 1- 1- 1+ 1- 1+ 1- 1+ 1- 1+ 1-

I I I I I I I I I I I

Hierarchical Network

Weighted Union Network
11

0

Union Network

1~

Linear Discriminant

TH ~ H~ H- =- k I

0 ^
Time .A L A K AY'J IX A A

Figure 3-6: Top: Speech with 0 dB white noise with TIMIT [+/- sonorant] segmen-
tation for clean speech. Remaining diagrams show Pr[+tsonorant] for hierarchical,
weighted union, union, and linear discriminant models.

these noisy conditions, all four models fail to detect a large number of the sonorant

frames. This is expected since we trained our models to detect just one or more

sonorant frames within a noisy sonorant phoneme to account for the destruction of

speech cues by noise. We see that the hierarchical model misses the fewest sonorant

frames while the weighted union model misses the most. The linear discriminant

again does pretty well while the union model erroneously declares the presence of

sonorants in a few [-sonorant] regions. Figure 3-7 shows the outputs of our models

on speech corrupted with 1 to 2 kHz noise. Both the hierarchical model and linear
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Time

Figure 3-7: Top: Speech corrupted with 1-2 kHz noise with TIMIT [+/- sonorant]
segmentation for clean speech. Remaining diagrams show Pr[+sonorant] for hierar-
chical, weighted union, union, and linear discriminant models.

discriminant are quite resistant to this bandlimited noise. In fact, the responses of

all four models are similar to their behavior on clean speech. Apparently the models

tolerate this type of bandlimited noise quite well.

In Figure 3-8, we see how the models respond to bandlimited speech from 1 to 4

kHz. The union, weighted union, and hierarchical models are able to integrate cues

from across the spectrum and do a good job of detecting sonorant frames. How-

ever, the linear discriminant seems to ignore sonorant cues from 1 to 4 kHz since it

misses every sonorant frame. We conclude that its good performance on the previous

examples is the result of exclusively examining speech evidence below 1 kHz.

To illustrate the multiband processing in our models, we examine sonorant activity

from different subbands. Figure 3-9 shows the detection of sonorants in the critical

bands of the union model. The numbers on the left of the diagram show the center

frequencies of each critical band filter. Each waveform represents Pr[Xi = 1 mi]

across time where random variable Xi indicates whether subband i contains sonorant

cues as defined in Equation 2.6. On the left, we see the sonorant activity in each
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Figure 3-8: Top: Clean speech bandlimited to 1-4 kHz with TIMIT [+/- sonorant]
segmentation for clean speech. Remaining diagrams show Pr[+sonorant] for hierar-
chical, weighted union, union, and linear discriminant models.

band when the input is clean speech. The figure on the right illustrates sonorant

activity on speech corrupted with 1 to 2 kHz noise. Notice that bands in the vicinity

of 1 to 2 kHz have their sonorant cues destroyed by noise. The union model is only

able to decide on the presence of sonorants based on the uncorrupted bands. For the

weighted union network, the sonorant detection activity in subbands is similar except

the output from band i is multiplied by the scalar Pr[Bi = 1].

Figure 3-10 shows the sonorant detection activity for the various streams of the

hierarchical model on clean speech. Each plot represents the detection of sonorant

cues in particular streams. The original 32 subbands along with their center fre-

quencies are shown in the left column. Columns on the right correspond to sonorant

detection in the combined streams si,. For this clean speech example, the original

32 bands and the combined streams all have sonorant cues that are easy to detect.

Figure 3-11 shows the sonorant detection for speech corrupted with 1 to 2 kHz noise.

Although noise destroys most of the speech cues from 1 to 2 kHz, the hierarchically

combined streams yield a few sonorant cues for these frequencies despite the fact that
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and speech corrupted with 1-2 kHz noise.
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sonorant evidence is not detected in streams s17,... , s26. The advantage of the hier-

archical network is its ability to analyze hierarchically combined streams for sonorant

evidence. As evidenced in our examples, this ability allows the hierarchical model to

do a good job of detecting sonorants under clean, noisy, and bandlimited conditions.

3.3.2 Results

We systematically evaluated the hierarchical, weighted union, union, and linear dis-

criminant models under several acoustic conditions. These test conditions included

clean speech, bandlimited speech, and speech corrupted by 0 dB white noise and 0 dB

bandlimited Gaussian noise. We bandlimited signals to frequencies from 0 to 1 kHz,

1 to 2 kHz, 2 to 3 kHz, 3 to 4 kHz, and 1 to 4 kHz. Figure 3-12 shows the error rates

80- hierarchical network
weighted union network

60 - Frame Error Rate union network
60- linear discriminant

40-

20-

CLN WHI N01 N12 N23 N34 801 B12 B23 B34 B14

20 1 1 1
hierarchical network

15 False Positive Rate 
weighted union network

[ linear discriminant

10-

5-

0
CLN WHI N01 N12 N23 N34 BO1 B12 B23 B34 B14

Figure 3-12: Error rates for [+/- sonorant] detection. Test conditions: clean (CLN),
white noise (WHI), bandlimited noise (Nfif 2), and bandlimited speech (Bfif 2) with

passband fi to f2 kHz.

for the four models under the test conditions. The frame error rates give the per-

centage of incorrectly labeled frames by the models. A sonorant frame is incorrectly

labeled if Pr[+sonorant] is less than 0.5 and an obstruent or silence frame is wrong

66



if Pr[+sonorant] is greater than 0.5. Given our sample size of 17203 test examples,

it is reasonable to assume that differences in error rates have an approximate normal

distribution. Using this assumption, we conclude that differences greater than 1.4%

are significant at the 99% level.

The hierarchical model consistently had very low frame error rates in our evalua-

tion. For clean speech, white noise, and bandlimited noise conditions, it had signif-

icantly lower error rates than the other multiband models. It also performed better

than the linear discriminant except for a few cases where both had similar perfor-

mance. Under bandlimited speech conditions, the hierarchical model also fared well.

Its performance was comparable to the union network but generally much better

than the weighted union and linear discriminant models. Note that the linear dis-

criminant performs very poorly on bandlimited speech. Apparently it only analyzes

the lower frequencies for sonorant cues. Whenever speech below 1 kHz was removed

or corrupted with noise, the error rates for the linear discriminant would increase

considerably.

We also computed the false positive rates for the various models. The false posi-

tive rate is the percentage of incorrect labelings in obstruent frames. This is a useful

measure since it estimates the sensitivity of the models to noise and filtering in frames

that should be insensitive to these effects. Given that only half the testing examples

are obstruents, error differences greater than 2% are significant at the 99% level. The

hierarchical model again performs well under this measure. It generally has lower false

positive rates than the other multiband models especially for clean speech and ban-

dlimited noise. The lowest false positive rates belong to the linear discriminant. Its

reluctance to identify frames as sonorants is especially noticeable in the bandlimited

speech cases.

This evaluation shows the advantages of the hierarchical model. By examining

combinations of streams, the hierarchical model is better able to detect sonorants

than the other multiband models. This is evident since the hierarchical model gen-

erally has lower frame error rates and lower false positive rates than the union and

weighted union models. The hierarchical model also does well integrating sonorant
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cues from across the spectrum. Comparing it to the linear discriminant shows that

although both examine the same data, the hierarchical model performs much bet-

ter on bandlimited speech. Apparently, the linear discriminant only concentrates on

sonorant cues under 1 kHz while the hierarchical model is able to effectively look for

sonorant cues in higher frequencies as well. By examining combinations of streams

and integrating the results in a hierarchical manner, the hierarchical model has good

overall performance under a variety noise and bandlimited conditions.
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Chapter 4

Conclusions

We argued in Chapter 1 that the robust identification of phonetic features is essential

to robust human speech recognition. To study this fundamental problem of robust

phonetic detection, we first developed multiband models to find speech embedded in

noise. We constructed the union, weighted union, and hierarchical models to match

human speech detection performance as measured in an experiment at AT&T Shan-

non Laboratory. Our models use a cochlear filterbank, auditory nonlinearities, and a

measurement extractor coupled with a probabilistic graphical network to detect and

integrate speech evidence distributed in frequency. EM algorithms were developed

to train the networks. Evaluations showed that our multiband models come close to

matching human speech detection thresholds.

We then applied our multiband models to the task of distinguishing sonorants from

obstruents, a phonetic distinction resistant to many corrupting influences in speech.

As shown in Saul et al [21], a union type network is good at sonorant detection

under a variety of noisy and bandlimited conditions. In our evaluations, we found

that the hierarchical model has even better sonorant detection abilities. Unlike the

union and weighted union models which independently analyze subbands for speech

evidence, the hierarchical model is able to look across frequency bands for speech

cues. Its hierarchical structure also enables the use of a recursive EM algorithm that

efficiently trains the network to integrate sonorant cues from across the spectrum.

This is in contrast to the linear discriminant model which was difficult to train and
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failed to capitalize on high frequency speech evidence. Our experiments illustrate

that the hierarchical model is robust to many types of noise and filtering by virtue of

its hierarchical structure and its analysis of combined streams for meaningful speech

cues.

We conclude by discussing some possible directions for this work. First, the front-

end signal processing for our models requires further study. For example, more re-

search certainly needs to be done to develop principled ways of selecting filterbanks

for multiband models that emulate auditory processing. Intuitively, we would like

critical band filters that are wide enough to capture phonetic cues yet narrow enough

to avoid noise in large parts of the spectrum. In our models, we arbitrarily used filters

with a constant bandwidth of 0.15 octaves because this choice yielded good results.

A better understanding of human auditory processing should give us greater insight

into this problem.

It is also worthwhile to explore how to improve sonorant detection within sub-

bands. We mentioned earlier that augmenting our feature space to include pairwise

multiplications of existing measurements improved our sonorant detection results.

This suggests that our original measurements from each subband lack important

sonorant information. By including more measurements, we may hope to capture

sonorant cues missing from our original feature set. Another approach to improving

subband sonorant detection is to use detectors that are more sophisticated than linear

discriminants. More flexible classifiers may learn decision boundaries that are supe-

rior to the hyperplanes used by linear discriminants. Improving sonorant detection

in subbands should certainly lead to better overall results.

Another challenge is to incorporate temporal processing into our multiband mod-

els. Our current models detect sonorants independently of decisions made in adjacent

frames. However, we know a priori that if the previous frame is a sonorant (obstru-

ent), then chances are that the next frame is also a sonorant (obstruent). Modeling

this sort of temporal correlation should smooth the outputs of our models shown in

Figures 3-5, 3-6, 3-7, 3-8 and reduce the error rates. We might also consider using dy-

namic programming in conjunction with our models to segment speech into sonorant
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and obstruent regions. A system capable of this segmentation would be very useful

for many speech processing and recognition applications.

More work could also be done developing better ways of combining signals from

different frequency bands. One alternative to the hierarchical model's strategy of av-

eraging adjacent bands is to only combine signals with similar periodicity. A network

with this ability may be able to process waveforms with different pitches separately

and deal with periodic forms of noise. Combination strategies might also be developed

to optimize certain measures of SNR or periodicity.

Finally, in addition to multiband speech and sonorant detection, our models are

also applicable to other multiple-instance learning problems. For example, consider

the problem of detecting pictures containing waterfalls [14]. A modified hierarchical

model might attack this problem by decomposing candidate pictures into a collection

of small sub-images and analyzing each for evidence suggesting the presence of wa-

terfalls. If necessary, the model may then examine combinations of these sub-images

as well. The combination strategy in this case might be to concatenate sub-images

to form larger sub-images of the original picture. With this type of processing, a

hierarchical network would be able to solve the problem of distinguishing pictures

with waterfalls from those that do not. It would be instructive to apply our prob-

abilistic graphical models to such problems to see how they compare against other

multiple-instance learning algorithms.
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Appendix A

Union EM Algorithm

Equation 2.9 gives the likelihood function we would like to maximize in order to derive

the weights W that optimize the integrated decision of the union network. We can

make maximizing this likelihood function more tractable by introducing hidden vari-

ables and by using an EM algorithm. The hidden variables we introduce correspond

to the random variables in Figure 2-9. We define XA1 = {X1,, X 2 = {X2,j},

XQ = f{XQ,j} where binary random variable Xqj indicates whether the jth example

in the qth band contains evidence for the phenomenon we are trying to detect. Using

this notation, we specify a new likelihood function as shown in Equation A.1.

N

L(Z, X1, ... , XQ , .M) = H Pr[ZjlX1,3 , ... , XQJ] - Pr[X1,3 wi, m1 ,j]
j=1

-Pr[X2 ,jIw 2, m 2 ,j] . . .Pr[XQ,j lwQ, mQ,] (A.1)

This expression is referred to as the complete-data likelihood. The conditional prob-

abilities in this expression are given by Equations 2.6 and 2.7.

To find the weights that maximize the likelihood function, the EM algorithm

specifies that we choose W to maximize the expected value of the logarithm of the

complete-data likelihood given the observations Z and the weights from the previous
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iteration.

W(k) = argmax E [In L(Z, X 1 ,... , XQ W, M) Z, W(k- 1), M]
W

N Q

= argmax E E{ln Pr[Xq,j Iwq, mqj] Zj, WC-1), }
I j=1 q=1 (A.2)

N Q
= argmax E Pr[Xq,j = 11Zj, W( k -1), Ml ln(o7(Wq - M,))

j=1 q=1

+ Pr[Xq,j = 01ZV, W(k- 1), 4] ln(1 - U(wq -mq,j))

This algorithm insures monotonic convergence to a local maximum of the likelihood

function [6].

Maximizing Equation A.2 can be achieved by maximizing each term individually.

To maximize each term, we hope to select a weight vector such that a(wq mqj), the

output of the linear discriminant in the qth band, is equal to the posterior probability

Pr[Xq,j = 1|ZyQW(k-1), M]. We calculate these posterior probabilities using Bayes'

rule.

(k-1)

Pr[Xq,j = 1|Z - 1, V(k-1) , M] = (W -mqj) (A.3)
1 3 _(1 - O(( k - m )

Pr[Xq,j = Z= 0, W -(k1), M] = 1 (A.4)

These posterior probabilities in effect are the target labels we use to train the linear

discriminant weights in each subband. Thus, our EM algorithm prescribes a means

for maximizing the likelihood function with respect to W by decomposing the problem

into several linear discriminant training problems.
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Appendix B

Weighted Union EM Algorithm

We would like to maximize the likelihood function (Equation 2.14) to derive weights

W and B that optimize the integrated decision of the weighted union network. To

do this, we introduce hidden variables into our model and use an EM algorithm

to make maximizing the likelihood function more tractable. The hidden variables

we introduce correspond to the binary random variables shown in Figure 2-13. We

define X1 ={X1 ,j}, X 2 = {X 2,j}, . - -, X = {XQ } where binary random variable

Xqj indicates whether the jth example in the qth band contains evidence for the

phenomenon we are trying to detect. We also define Y1 = {Y 1,3}, Y2 = {Y2,j I - -,

YQ = {YQ,3} similarly. Then the complete-data likelihood function is as follows.

'C(Z, Y1, . .. , Yg, X1, . .. , XQ, B1, . .. , BQ IW, B,7 M)

N Q (B.1)

= J Pr[ZjY1,3, . . ., YQJ] ] Pr[Yq,j IXqj, Bq] - Pr[Xq,jIwq, mq,j] -Pr[Bqlbq]
j=1 q=1

The conditional probabilities in this expression are given by Equations 2.10, 2.11,

2.12, 2.13.

To select the weights that maximize the likelihood function, the EM algorithm

specifies that we choose W and B to maximize the expected value of the logarithm

of the complete-data likelihood given the observations Z and the weights from the
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previous iteration.

argmax E [InL(Z, Y1, ... , YQ, X1, . .. , XQ, B1, . .. , BQIW, B, MA) Z, W(k-1), A41
WB

N Q
argmax E E Pr[Xq,j = 11|Z, W(k-1), B(k-1), A] ln(o(wq -mq,j))

IN j=1 q=1

+ Pr[Xq,j = 0Zj, VW(k- 1), j 3 (k-1), A] ln(1- O(Wq - mqj))

+ Pr[Bq = iZj, W(k- 1) B(k-1) M] ln(bq)

+ Pr[Bq = OlZ, W Bk(k-1) B(-1) A] ln(1 - bq)

(B.2)

Like in the case of the union network learning algorithm, this EM procedure guaran-

tees monotonic convergence to a local maximum of the likelihood function [6].

We maximize Equation B.2 by maximizing each individual term. Maximizing each

term requires that the outputs of the linear discriminants and subband weights match

certain posterior probabilities in Equation B.2. As an example, to maximize the first

term we would like U(wq - mqj), the output of the linear discriminant analyzing

subband q, to equal the posterior probability Pr[Xq,j = IIZj, W(k-1), B(k-1), A]. The

posterior probabilities in Equation B.2 can be calculated using Bayes' rule. First, we

define the following.

xq,j = Pr[Xq,j = ll2q,j] = O-(w k-1) . mqj), bq= Pr[Bq =1] = b(k-1)

Q

Yq,j = X1q,j bq, z = 1 - 11(1 - xq,j)
q=1
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Then,

Pr[Xq,j = I Z= 1, W(-1I), B -(k1, .M] -Xq'j(1 - bq) Xq,) + Xq,jbq (B.3)
Yq,j Z

Pr[Xq,j = 0Z= 0, W(k-1), B(k- 1), I] - (B.4)
Yq,j(B4

Pr[Bq = 1Zj = 1, V(k- 1 ), B(k- 1) I -] bq(1 - Xq,j) x q,jbi ) + xq,jbi (B.5)
Yq,y Zi ZJ

Pr[Bq = 0Zj = 0, W(k-1), B(k-1), ] -1 - bq (B.6)
Yq,j

We use posterior probabilities B.3 and B.4 as targets to train the weight vector for

the linear discriminant in subband q. The posterior probabilities B.5 and B.6 are

used to determine the weighting Pr[Bq = 1] for the qth band. By selecting W and

B according to these posterior probabilities, we maximize the likelihood function in

Equation 2.14.
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Appendix C

Hierarchical EM Algorithm

We maximize the likelihood function (Equation 2.18) to derive weights W that opti-

mize the integrated decision of the hierarchical network. To make this maximization

easier, we introduce hidden variables into our network and use the EM algorithm. The

hidden variables we introduce correspond to the binary random variables in Figure

2-18. We define X1 = {X(i),}, AX2 = {X( 2),i}, .. . , X 4 = {X(4),i} where binary random

variable X(j),i indicates whether stream si for the lth example contains evidence for the

feature we are trying to identify. We also define Y1 ,2 = {Y(1, 2 ),i}, Y( 3 ,4) = fy(3,4),1},

Z(1,4) = {Z(1, 4),I} similarly to represent whether random variables Y(p,q),I and Z(r,s),l

contain the cues we are looking for in lth example. Using this notation, we represent

the complete-data likelihood function as follows.

N

L(Z 1,4, Y1,2, Y3,4, X1 , X2, X3, 4 , M4 ) = 7 Pr[Z(1, 4 ),l Y( 1,2),I, Y(3 ,4),1, wi,4, M(1, 4),i

-Pr[Y(1,2),l I X(1),I , X(2),I, W1,2, iM (1,2),11] Pr[Y(3,4),l I X(3),1, X(4),1, W3,4, 7M (3,4),Il

-Pr[X(1),, 1wi, m(j),j] - Pr[X(2),l IW2, 7M(2),l) - Pr[X(3),l IW3, 7M(3),11 Pr[X(4),l IW4, 7M(4),11

(C.1)

The conditional probabilities in this expression are given by Equations 2.15, 2.16,

2.17.

To select weights that maximize the likelihood function, the EM algorithm spec-
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ifies that we choose W/V to maximize the expected value of the complete-data log-

likelihood given the observations 1,4 and the weights from the previous iteration.

W(k) = argmax E [ln L(Z1,4 , 3 1,2, Y 3,4 , X 1, X 2, X3, X 4 1W, A) Z, W(k-1) IA]
w

N

- argmax Pr[X(l),l = 1IZ(1, 4 ),, VV(k-1), A] ln(u(w * m(1),l))

+ Pr[X(1),l OjZ(1, 4 ),l, V(k-1), A] ln(1 - a(wi - m(j),j h

+

+ Pr[X(4 ),l = 1|Z(1, 4 ),I, I(k-1), .A] ln(or(w 4 -M(4),l

+ Pr[X(4),l OIZ(1,4),,, V(k- 1), M] ln(1 - u(w 4 - M(4),lh

+ Pr[Y(1, 2),l 1, X(1),l 0, X(2),l = 01Z(1, 4),l, V(k-1), Ad] ln(cx(w 1,2 - m(1, 2),l ))

+ Pr[Y(1, 2),I 0, X(1),= 0, X(2),l = 01Z(1,4),l, V(k- 1) Ad1] In(1 - - m(1, 2),l))

+ Pr[Y(3 ,4 ),l 1, X(3),= 0, X(4),l 01Z(1,4),l, WV(k 1) .A] ln(u(w 3 ,4 - M(3 ,4),I))

+ Pr[Y(3 ,4 ),l = 0, X(3 ),l 0, X(4 ),l = 1 Z(1 ,4 ),l, V(k- 1), .A] ln(1 - o(W3,4 - M(3,4),l h

+ Pr[Z(1, 4),l

+ Pr[Z(1, 4 ),I

= 1, Y( 1 ,2),l = 0, Y(3 ,4),I

= 0, Y(1 ,2),l = 0, Y(3,4 ),l

= 0|Z(1,4 ),, }V(k-1), Ad] ln(cr(w1 ,4 - m(1,4 ), ))

- 0|Z(1,4 ),, V(k-1), M] ln(1 - 9(W ,4 - M(1, 4 ),i))

(C.2)

By a general convergence theorem [6], we know that this algorithm converges mono-

tonically to a local maximum of the likelihood function.

We can maximize Equation C.2 by maximizing each term individually. To maxi-

mize each term, we hope to select weight vectors such that the outputs of the linear

discriminants match the posterior probabilities in Equation C.2. For example, for

the first term in the equation, we would like the output of the linear discriminant

u(wi - m(j),l) to match the posterior probability Pr[X(l), = 1Z(1,4 ),, W(k1), Ad].

These posterior probabilities can be computed using Bayes' rule. First, let us define
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the following.

x(j),I = Pr[IX(i), - 1m rf(A),i] = (w-3) - n(i),)

y(ij),j = Pr[1Y(i'j),l = 11|X(i),, X(j),i, IM(i'A),l) =I - (1 - X(j),l) (1 - X(j),l)

+ r(w -0-M(ij),l)( ~ (i),l)( - U~),l)

Z(i,j),l = Pr[Z(ij,),l = 1Y(ip),l, (Pj) m(ij),l] 1 - (1 - (ip),I)(I - Y(p,j),)

+cT(w~il - m(ij),)(1 - Y(i,p),l)(1 - Y(pj),1)

We can then express the posterior probabilities in Equation C.2 as follows.

Pr[X(j),l= 11Z(1,4),1 = ,VV(k-l), i] - X(i),l (C.3)
z(1,4),l

Pr[X(i),l O IZ(1,4), = 0, W(k-1), M] = 1 (C.4)

Pr [Y(i,j), = 1, X(i),l = 0, X(j),1 = 01Z(1, 4),l = 1, }(k-1), M]

w * m(i,),l)(1 - X(i),l)(1 - X( 3),i) (C.5)

z(1,4),l

Pr[Y(i,j),, = 0, X(2 ),i = 0, X(j),i = 0 Z(1,4 ),l = 0, V(k- 1), M] = 1 (C.6)

Pr[Z(1,4),l = 1, Y(1, 2),l = 0, Y(3,4 ),l = 01Z(1,4),l = 1, (k-1), M]

OrW(k -1) .(C.7)(,4 m(1, 4 ),)(1 - (1,2),l) - Y(3,4),l)

z(1,4),l

Pr[Z(1,4),l = 0, Y(1, 2),l = 0, Y(3 ,4),l = 01 Z(1,4),l = 0, -V(k1), M] = 1 (C.8)

These equations serve as training labels for our linear discriminants. Equations C.3

and C.4 specify the targets for training the linear discriminant analyzing stream si.

Likewise, C.5 and C.6 give the targets for training the linear discriminant analyzing

stream si, and C.7 and C.8 are the labels for training the linear discriminant process-

ing S1,4. Procedurally, each iteration of this EM algorithm proceeds in two phases.

The first phases computes these posterior probabilities. In the second phase, these

posterior probabilities are used as target values for training the linear discriminants

in the network. The probabilities of the hidden variables in the network are then

updated using Equations 2.15, 2.16, 2.17 before we begin another iteration of the
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algorithm.

Training the hierarchical network in Figure 2-18 is relatively straightforward as

outlined in this section. However, dealing with the larger hierarchical model used

for processing 32 subbands and 31 hierarchically combined streams requires much

more computation. Updating the probabilities of the hidden variables in the larger

network is straightforward using equations similar to 2.15, 2.16, 2.17 but calculating

the posterior probabilities is more complicated. To make this computation easier,

we can exploit the structure of the network. Notice that computing the posterior

probabilities in C.3 through C.8 requires only local information. For example, if the

network in Figure 2-18 were only a small part of a larger hierarchy with training label

Z1 for the lth observation, we can calculate posterior probabilities as follows.

Pr[Y(1,2), = 1, X(1),1 = 0, X(2),l = OZ,= 1, W(k- 1), M]

Pr[Y(1,2), = 1, X(I),i = 0, X(2),l = i Z(1,4),l = 1, VV(k-, M] (C.9)

-Pr[Z(1,4),l = 11Z, = 1, W(k-1), M]

Pr[Y(1,2), = 0, X(1),1 = 0, X(2),) = 0 Zi = 0, V(k- 1 ), A] 1 (C.10)

These equations show that posterior probabilities for the internal hidden variables can

be found using posterior probabilities calculated from the hidden variables in the next

level up. Thus, we can determine all the posterior probabilities needed by computing

posterior probabilities in a recursive manner resembling a pre-order traversal of the

network. This recursive EM algorithm allows us to efficiently train the network to

select weights W that maximize the likelihood function.
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