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Abstract

As uilities, power marketers and even end use customers are becoming painfully aware,
deregulated electricity markets contain high levels of physical and financial uncertainty. From
recent blackouts in California to severe summer price spikes in New England, market
participants are faced with intolerable risk exposure. The thesis seeks to capture the
distinguishing features which differentiates electricity from other traded commodities. Of
particular interest are the unique temporal and spatial dynamics of electricity prices, constrained
by the near non-storability of electric power, and the scarcity and nonlinear properties of the
transmission system.

Valuing and hedging uncertainties in traded assets generally relies on the use of futures and
derivatives contracts. In attempting to model the dynamic interaction between the spot, and
forward markets however, it is found that traditional arbitrage and convenience yield arguments
are not applicable. The lack of ability to store the underlying commodity creates a situation
where electricity at every time instance represents its own distinct product. Similarly the
constraints on the transmission system create potentially thousands of locational price
differentials inside a given region. Faced with the prospect of modeling uncertainty over months
or years, and spanning large geographic areas, this problem quickly becomes untraceable.

To limit the dimensionality of the market, a bid based model is introduced. This model
reduces market uncertainty to a set of fundamental drivers, consisting of well understood
physical and economic processes, centered on a set of demand and supply states. These
underlying processes capture the temporal link which determines the term structure of electricity
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prices. Furthermore, the fundamental drivers of electricity prices are separated based on whether
they create temporary or lasting shocks to the system.

The bid based model is applied to a number of decision problems facing participants in
competitive power markets. It is shown how an energy service provider (ESP), can efficiently
capture both price and quantity risk associated with serving customers under standard offer
contracts, and how this risk can be managed through dynamic futures trading strategies. On the
supply side, the model is applied to valuing generation assets with unit commitment type
constraints, under uncertain fuel prices.

The bid based model is also extended to account for special aspects of electricity price
dynamics. The use of explicit supply and demand states, allows us to superimpose the network
flow constraints directly onto the price model. The model is applied to the problem of valuing
flexible transmission rights, a type of contract issued by the system operator or transmission
owner which essentially amounts to a locational spread option. The multi market version of the
bid based model suggests that the price spread between two locations in the network has a very
specific structure not recognized by traditional spread option valuation methods. Specifically it
points to the presence of a dead-band region over which the price spread is exactly zero. Such
nonlinear effects have tremendous impact in the valuation and replication of locational power
derivatives.

In the final section of the thesis long term price trends in deregulated electricity markets are
analyzed. A stochastic model for demand growth drives future uncertainty, and investors respond
by adding new capacity based on price feedback. Effects of delays in the supply response,
through information lag or construction time, on price dynamics are illustrated through
simulations. The model is extended to account for physical reliability problem resulting from a
lack of generation capacity. It is shown how inappropriate intervention by regulators, through the
use of price caps, can result in a critical decrease in the markets reserve margin.

Thesis Advisor: Marija D. Ilic
Title: Senior Research Scientist
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Chapter 1 Introduction
The purpose of the thesis is to build a framework to solve physical and financial commitment

decisions contingent on electricity, in a deregulated market environment. The set of problems
include valuing investment opportunities in physical assets, valuing and hedging obligations to
serve customers, and the pricing of electricity dependent derivative contracts. Electricity
markets suffer from a severe case of over-dimensionality. Due to the lack of economic storage
of the commodity, each time interval of delivery can be considered a separate product.
Furthermore, the scarcity and complexity of the transmission system leads to significant
locational variations in price. The combination of the temporal and spatial properties of
electricity poses significant barriers to market liquidity, and makes it exceedingly hard for
market participants to solve valuation and risk management related optimization problems.

A key step in overcoming the curse of dimensionality problem, is the development of
effective dynamic models of the uncertainty in the underlying asset price. Model based valuation
and hedging formulation take advantage of the distinct relationships in the market in order to
reduce the complexity of the space of possible future price combinations. This approach allows
the user to form dynamic replicating portfolios, and leads to computationally efficient
implementations of various optimization problems. The tradeoff is that if the relationships
specified in the model do not hold, then the user may drastically underestimate its risk exposure.
This additional component, known as model risk, is important to keep in mind when reading this
thesis.

There are many approaches to building financial models. Specifically we distinguish between
statistical models, based on regressions or best fits between different data sets, and fundamental
models, consisting of postulates and data, together with a means of drawing dynamical
inferences from them [1]. Choosing an approach is contingent on the nature of the traded asset,
as well as the availability of market data. Statistical models generally require a rich history of
market prices for calibration and testing purposes. Fundamental modeling works best when there
are strong physical or economic relationships embedded in the market, which can be translated
into model constraints.

Electricity is a natural candidate for the fundamental modeling approach. Markets are still
emerging, so there is little price history available. Furthermore, constantly changing regulatory
structures invalidate much of the existing historical data. On the other hand, the demand and
supply of electricity are governed by a set of exogenous drivers, including weather patterns,
economic growth, and fuel cost. In addition, the transmission of electricity is governed by
Kirchhoff's current and Voltage laws, describing the relationship between power injections at
various nodes, and the flow on the transmission lines. One of the main contributions of the
thesis is constructing a stochastic model for electricity price, founded on the fundamental drivers
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and constraints outlined above, and applying them to temporal and locational optimization
problems under uncertainties.

Inter-temporal uncertainty in storable commodity markets is a well researched area in finance.
Of specific interest is the correlation between the spot price and the price of forward contracts
with varying maturity dates, also known as the term structure of the market. The ability to store a
commodity provides a natural link between the spot and forward price. If the forward price
increases, a producer may sell forward contracts, remove his product from the spot market, and
put his production output in storage to deliver against the forward contracts. This creates a
supply deficit on the spot market, driving prices up until they are back in equilibrium with the
forward market. Similarly, if forward prices drop, market participants will empty their storage
facilities onto the spot market, purchase forward contracts, and refill the storage facilities at a
later date by taking delivery on the forward contracts. This creates a downward pressure on the
spot price, again pushing it back into balance with the forward price. The most important lesson
from the simple qualitative examples described above, is that markets for storable commodities
have strong inter-temporal links, governed by spot and forward price signals. Arbitrage
arguments impose bounds on sustainable relative price levels in the market. The lower the cost
of storage, the tighter the bounds, and the stronger the inter-temporal price correlation. In
Chapter 2, we introduce examples of stochastic models for storable commodities as well as
stocks (which have zero storage cost), which are currently used in the marketplace. It is
interesting to note that these models all use spot price as a state variable. This makes sense,
since inter-temporal production and storage decisions are directed by price signals. Additional
states can include the convenience yield, describing a market preference on the time of
consumption of the commodity.

It is tempting to simply adapt the existing models for commodity prices to electricity markets,
with minor cosmetic changes. Indeed many power marketers still use versions of oil and gas
models for their electricity operation. The problem is that the underlying assumptions behind
these models, based on storage arguments, do not hold for electricity. Electric power cannot be
simply purchased, stored and resold at a later date in response to price signals from the spot and
forward markets. It has been argued, that the ability to store the fuel used to produce electricity
(oil, gas, coal and water), is equivalent to the ability to store the commodity itself. This approach
is incomplete, since it does not take into account constraints on the rate at which the fuel can be
converted into electricity. In fact observations of actual intra-day price behavior indicate that
market participants are to a large extent unable to execute temporal arbitrage to a significant
extent, even on short time scales. As a result the inter-temporal link between spot and forward
markets, or spot prices in different time periods, is no longer governed by a set of price signals as
was the case for storable commodities. This does not mean that electricity markets do not have a
well defined term structure. It does indicate however that the key to understanding the term
structure is not to be found in price centered arguments.
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One of the contributions of this thesis is to construct a dynamic model for the uncertainty in
electricity prices, by relating the price changes to a set of underlying physical and financial
processes. The underlying states relate directly to the demand and supply processes in the
market, and spot and forward prices are modeled as outputs of these processes. While seemingly
a modest transformation, the change in the set of state variables has tremendous implications,
such as:

1. We are better able to explain the complex term structure of electricity prices. The model
illustrates how each fundamental input contributes to the inter-temporal correlation of
electricity prices. Furthermore we are able to capture the complex, multi-timescale
seasonality prevalent in electricity markets.

2. New sources of information become available in the calibration of the price process. One
can explicitly use the regional demand history to calibrate the model, providing a longer
and more stable source of data for the emerging industry.

3. The model links the price of electricity to other traded commodities and contracts such as
fuel (oil, gas, and coal), and weather derivatives (rainfall and temperature). This provides
new opportunities for hedging electricity risk, or creating cross commodity arbitrage
portfolios.

4. There is potential to use the model in combination with economic game theory to price
derivative contracts in emerging markets with no price history.

5. The models naturally couple price and quantity risk, providing an efficient method for
hedging fixed priced commitments to serve customers (standard offer contracts).

The second aspect of electricity which makes it a unique commodity, is its complex
transportation structure. Electric power is transmitted over a meshed network of transmission
lines, and cannot be controlled to follow point to point paths. The non-linear relationship
between power injections at the nodes, and the flows on the lines, are governed by Kirchhoff's
voltage and current laws. As a result of this physical phenomenon, the locational pricing of
electricity is more involved than that of most other commodities. The spot prices at neighboring
markets can diverge drastically if the connecting line is congested. This is of particular concern
to generators and loads who have signed commitments to deliver power across frequently
congested interfaces. This has led to the emergence of a number of physical and financial
transmission contracts, to be used by market participants to hedge locational risk. There still
however does not exist a consistent method of pricing of these contracts. Specifically, there
seems to be no clear relationship between the price of the inter-nodal transmission contract, and
the forward and options contract prices at the respective nodes. One approach is to use
traditional spread option models. These models generally assume that the two underlying assets
each evolve as random walk processes, and that any interaction can be captured by estimating the
correlation between the Wiener processes. In the thesis we question the applicability of
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traditional models in describing the stochastic properties of price spreads between electricity spot
price at different network locations.

Using a model based on supply and demand states, one can explicitly incorporate the network
flow constraints. The resulting probability distribution of the price spread is in stark contrast to
what is implied by traditional approaches. This has tremendous implications on the transmission
rights and locational price derivatives. The model also extend to allow for market based analysis
of hypothetical expansions to the transmission grid, allowing transmission companies to estimate
the value of new investments.

The final section of the thesis covers the dynamics of new investment in generation capacity.
It is shown how the time delay in information from the spot market to the investment decision,
and further in the installation process of new power plants, can lead to periods of over and under
capacity. We further analyze the relationship between price trends and the physical reliability of
the market. Specifically we address the dangers related to excessive government intervention in
order to curb price spikes.
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Chapter 2 Overview of Valuation and Hedging Theory

This thesis will address a number of decision problems faced by the participants in
competitive power markets. The set of problem formulations can best be summed up as
commitment problems, since they involve some form of physical or financial commitment from
the firm in question. They include investment into physical assets, agreements to deliver
electricity to customers over a specified period, bilateral financial agreements, and numerous
exchange traded derivatives based on electricity prices.

In this chapter we show how such decision problems can be treated as instances of a general
optimization formulation. We begin by examining the existing literature in finance covering
investment and valuation procedures, starting with the process by which an individual firm
values a given commitment option. Next we address how multiple firms with different objectives
interact through centralized markets, leading to the concept of a market valuation. Finally we
see how, under rigorous market assumptions, the two forms of valuation can converge. The
theoretical basis from the convergence is dictated by arbitrage pricing theory (APT). We analyze
APT in a static and dynamic framework, illustrating its applications in equity, interest rates and
commodity markets.

2.1 Valuing a Commitment Option

The traditional approach to valuing a commitment option, is the net present value (NPV) rule.
To calculate the net present value of a commitment (C), one first characterizes the distribution of
the payoff xVt for every time t over the horizon of the commitment [to, T]. The payoff
incorporates any cost and revenue associated with the commitment, and can be positive or
negative at any point in time. The net present value is calculated by integrating the payoff,
adjusted by a discount rate 8, over the horizon of the commitment.

NPVt (C)= fe-(to)Et {4t }dt
to

Where E{.} is the expected value operator, which is necessary since future payoffs are
generally uncertain.

The NPV rule states that if the net present value is positive, then the firm should enter into the
commitment, assuming there are no other commitment options available. If there are multiple
options, the firm should choose the one with the highest NPV. To use the NPV criteria one must
overcome two challenges. The first is to estimate the expected value of future payoffs. The
second challenge lies in determining the appropriate discount rate 5. The discount rate contains
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information about the time value of money, or the opportunity cost of any capital which is tied
up in the commitment and cannot be spent elsewhere. This cost would generally be set equal to
the firms cost of raising new capital, for example by issuing bonds. For the remainder of the
thesis, unless stated otherwise, we are going to assume that this component of the discount rate is
equal to zero. As long as the cost of capital is deterministic, this assumption can be made
without loss of generality.

The discount rate must also reflect the level of risk in the investment. Assuming the firm is
risk averse, the discount rate will increase with the level of uncertainty associated with future
payoffs. A commitment option with lower expected cash flows, may be preferable to an option
with higher expected cash flows, if the risk level is significantly lower. Intuitively this argument
is easy to understand. Quantifying a firms risk preference is more difficult. One possibility is to
equate the level of risk with the variance of the cash flow. This puts a greater requirement on the
modeling of future cash flows, since the firm needs to estimate variances in addition to expected
values. Furthermore, a firm needs to consider the risk associated with the cumulative cash flow,
not just the instantaneous variance at each point in time. To calculate the variance of the sum of
the cash flows, the firm needs to estimate the covariance matrix of all the future cash flows.

T
tot 

t
t=to

var( =YX cov(WyV)
i=t, j=to

The firm can then define its risk preference by stating its utility (U) in terms of the tradeoff
between the expectation and variance of the return on a commitment. An example of this is the
mean variance utility function,

Ut (vot)= Et{ t}-r*vart{ }.tot

For a given commitment option, the r parameter of the mean variance formulation can be
mapped uniquely to the discount rate 8 in the NPV formulation. However, two projects with the
same variance on the total payoff may end up with different discount rates depending on the
timing of the cash flows.

A second formulation which is popular among decision makers is the value at risk (VAR)
criterion. VAR estimates the amount of the firms capital which is at risk of being lost during a
given time interval. Capital is defined to be 'at risk', if the probability of a loss is greater than a
threshold set by management. For a threshold probability X, we can define the value at risk as,

16



Prob(Vtot -VAR)= X

The value at risk formulation generally provides a hard constraint in optimization problems.
For instance, a decision maker may wish to optimize the expected payoff from a set of possible
commitment opportunities with associated payoffs Ni , given that it cannot exceed a maximum
VAR.

Maxi (E{ })
s.t. Pr ob(Vtot -VAR)! X

This technique provides a probability estimate of the worst case scenario, which makes it
intuitive for managers to use. However it is computationally harder to apply since we need
higher order information about the joint probability distribution of the payoff. Specifically the
value at risk is very sensitive to high impact low probability events, which create 'fat tails' in the
distribution of payoffs.

The above discussion indicates that the analysis leading up to a decision rule for the firm can
be broken into two parts. First, the firm must estimate the stochastic properties of future payoffs

associated with the commitment. Second, the firm must characterize its own risk preference in
relation to the proposed investment. Once these have been established, the firm can attempt to
solve the optimization problem and arrive at a decision rule. This process is outlined in Figure
2-1.

Cash Flow Firm's Utility 01 Optimal
Model Function Decision Rule

Figure 2-1: The Firm's Decision Process

The process described in Figure 2-1 covers a wide range of applications. We will now focus
on a subset of these where the commitment is based on an asset traded in an organized market
place. The market functions so that for each instance in time it sets a price for the traded asset.
It is further assumed that the uncertainty in the cash flow from the commitment is only
dependent on the uncertainty of future price levels in the market. The decision process can then
be amended as shown in Figure 2-2.
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Market Price Cash Flow Firm's Utility 00 Optimal
Model Model Function Decision Rule

Figure 2-2: Amended Decision Process

As shown, Figure 2-2 makes an implicit assumption about the relationship between the
market price and the firms decision rule. The price model is taken as an exogenous input to the
decision rule, implying that the firm's actions will have no effect on the market. The market
however, is simply a collection of firms, each with its own decision rule. The ability of a firm to
influence the market price is often referred to as the firm's market power. Depending on the
number and size of participants, the decoupling of the market price from the individual decision
process may or may not be prudent. We will discuss this assumption in detail in the chapter on
market modeling approaches. For now we recognize that a more general formulation of the
decision problem would include a feedback loop from the decision rule to the price model as
shown in Figure 2-3.

The existence of a market, and a market price, has a fundamental impact on the way we think
about the commitment problem. It combines the preferences of all participating firms, and
arrives at a single number for the value of an asset. The value assigned to an asset by the market
may be substantially different from that seen by the individual firm. In fact it is the discrepancy
between the way in which different firms value assets which allow markets to exist, and add
value, in the first place. In the following section we examine the information contained in market
prices, and how they can be used by individual decision makers.

Market
Power

Market Price Cash Flow Firm's Utility _0 Optimal
Model Model Function Decision Rule

Figure 2-3: Incorporating Market Power in the Decision Process

2.2 Market based valuation
So far we have assumed that the market assigns a value to the traded asset at any given point

in time. This value, known as the spot price, is the cost of purchasing the asset for immediate
delivery. The spot market however, is only one of several venues available for a firm to trade in
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a given asset. Mature markets generally trade forward contracts as well as numerous options
contracts in addition to the spot. Forward contracts specify the delivery of a given quantity (q) of
the asset for a fixed price (F) at a specific future time (T), known as the maturity of the contract.
The seller of the contract, generally has the option of paying the prevailing spot price at maturity
rather than delivering the actual asset. The payoff for the buyer, or long position, of the a
forward contract at maturity can therefore be written as,

Payoff(forward,long) = q(ST - F).

The cost of purchasing a forward contract at any point in time t, prior to maturity is denoted
by F(t,T). The asset whose spot price determines the payoff of the contract is known as the
underlying asset.

There are numerous variations of options contracts traded on equity and commodity markets.
One the most common is the European call option contract, which gives the buyer the option to
purchase the underlying asset at a fixed strike price (X), at the maturity of the contract. The
payoff for the long position of a European call option is,

Payoff(euro - call, long) = max{0, (q(Sr - X)

The price of purchasing the contract at a time t prior to maturity is denoted by cE(tT).

The payoff, and therefore the value, of the forward and call option contracts are functions of
the spot price of the underlying commodity. We refer to the general category of traded contracts
with this property as derivatives of the underlying asset. It is important to note, that the
commitment for the individual firm, as defined in the previous section, is effectively a
derivatives contract. The payoff from the commitment is a function of future levels of the spot
price. All commitment opportunities discussed in this thesis are effectively derivatives of
electricity market, or the price of affiliated commodities, some with multiple underlying assets.
A key distinction is that some derivatives, such as forward contracts, are publicly traded, while
others are available to only a limited set of investors, at a given point in time. In this section we
address the relationship between traded and non traded contracts. Particular emphasis is put on
the information value of price signals from traded contracts, and to which extent they can be
used to imply the value on non-traded contracts. A distinction has to be made between the value
of a contract to an individual firm, and the market valuation of the contract. The value of a
contract to a firm is contingent on the firms risk preference. The market value of a traded
contract on the other hand is uniquely defined by its current price.
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All Commitment Options

Traded Contracts

Underlying
Asset Price)

Figure 2-4: Space of Possible Commitment Options

First we examine the relationship between various traded contracts, and the underlying asset's
price. Consider first the relationship between the spot and forward prices.

2.2.1 Spot Forward Relationships in a Risk Neutral World

By studying the historical behavior of the spot market, one might arrive at a reasonable model
of the stochastic properties of future spot prices. Assume that at time t, a firm uses all available
historical information about the spot market to estimate the distribution of the spot price at some
future time T. Next the firm observes a forward price F(t,T). We assume that participants in the
forward market are rational. That is, they will purchase or sell a forward contract only if it
increases their total utility. For the sake of discussion, we assume that all participants have risk
preferences which can be characterized by the mean variance formulation, so that each individual
firm j, has a utility U defined by the properties of the total cash flow NA.

U (VT)= Et{ I }-ri * var,{ i}

Furthermore, assume that all cash flows are the result from trades on the forward market, and
all cash flows occur at time T. If the utility function of all participants were independent of risk,
that is, the r parameter were zero for all firms, then the utility from owning a long position in the
forward contract is given by,

U (lon )= E {ST - F(t, T)} = Et {S}-F(t, T).

Similarly, the utility from owning a short position in the forward contract is given by,

Ui short) F(t, T) - E t{S}.
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Furthermore, since the expectation operator is linear, the marginal change in utility from
purchasing or selling a forward contract is independent on the other contracts held by the firm,
even if they are dependent on the spot price Sr. Assuming a rational market in which market
participants will not engage in trades with a negative utility, the only possible forward price at
which trades could occur, is given by,

F(t, T) = Et{ST}.

2.2.2 Information Content in Forward Markets

The above statement regarding the price of a forward contract in a risk neutral environment,
makes a subtle but powerful assumption about the role of information in markets. The
expression Et{ST }, states that we are taking the expectation of the spot price at time T, given a
set of information available at time t. This assumes that the same set of information is available
to all market participants, or equivalently, that all information in the market is public. We can
relax this assumption by indexing the expectation operator to each firm j, E {ST}, allowing for
private information to be held by a subset of market participants. The question then arises to
which extent the resulting forward price reflects the presence of private information. A firm
which holds confidential information that the spot price will be higher than anticipated may trade
in sufficient quantities to raise the forward price. But will the forward price reflect the entire
price increase anticipated by the private information, or will it be a weighted average of the
public an private valuation? These types of questions regarding the informational content of
forward markets are still unresolved in the finance community. We bring them up here since the
role of information flow will be crucial in developing and calibrating models for the spot and
forward prices in later chapters.

2.2.3 Spot Forward Relationship when Firms are Risk Averse

We now reconsider the pricing of a forward contract assuming that firms are risk averse, so
that the r parameter in the mean-variance formulation is greater than zero. This initially leads to a
contradiction. Consider two firms with risk averse parameters ri and r2 respectively. If both
firms are rational, the following set of constraints must hold in order for the two firms to enter
into a forward contract, with firm 1 taking the long position:

U' =Et{ST}- F(t, T) - r var{ST} > 0

U2 =F(t, T)- E{ST}-r var{ST} 0
r,r 2  0 .

There is no set of risk premium 9 which will satisfy this criteria. Does this mean that forward
markets cannot exist if all market participants are risk averse? What we have neglected is that
when the variance of the return is incorporated in the utility measure, the incremental change in
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the utility is no longer independent of the firms other trades. Specifically, if a firm has an
existing obligation with payoffs which are negatively correlated to the spot price at time T, then
entering into the long position in a forward contract will tend to reduce the overall variance of
the firm's returns. The forward contract then takes on the function of a hedge, offsetting the risk
from and underlying position. In commodity markets, a major function of forward markets is to
hedge the positions of producers and consumers of the commodity. Producers have physical
assets which make them naturally long in the commodity (with payoffs positively correlated to
the spot price), while consumers are naturally short (with payoffs negatively correlated to the
spot price). When a producer sells a forward contract to a consumer, both parties decrease the
overall variance of their future cash flows, and it is therefore possible to find a set of forward
prices for which both sides increase their expected utility.

The above example illustrates an important aspect of derivative pricing. When risk premiums
are nonzero, the firm must consider its entire portfolio of existing obligations when valuing a
new contract. Furthermore, it should consider any combination of available derivative contracts.
This not only makes it challenging for the firm to model its decision problems, it also makes it
extremely difficult to speculate on the relative prices on spot and forward markets. To determine
the price of forward contracts from a bottom up perspective, one would need knowledge of each
firms risk preference, as well as all other contracts held by the firm at any given time. Modeling
derivative price from this perspective is clearly a gigantic task, even if the necessary information
were to be available. There are other approaches to characterizing the relationship between
various traded contracts. One approach centers on building portfolios out of available contracts
so that the uncertainties cancel each other out, leaving the holder with a guaranteed return. The
existence of such portfolios limits the combination of prices which rational firms would tolerate
in the market place. In the next section we review the theory behind this approach, known as
arbitrage pricing theory.

2.2.4 Arbitrage Pricing Theory

Arbitrage pricing theory (APT) [2] is based on the assumption that a market cannot sustain
price levels which allow market participants to construct portfolios giving them the possibility of
a positive return with no risk of loss and no initial investment. Such trades are known as pure
arbitrage opportunities. This assumption imposes constraints on the manner in which prices
evolve in the market. We adapt the following definition of arbitrage. Consider a market with n
tradable assets, each with price xi(t). A portfolio H is build by purchasing and selling these
contracts. The value of the portfolio is given by:

n

i=1
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where wi represents the quantity of asset i in the portfolio. wi(t)'s can be negative if the market

allows short-selling. Since future asset values are uncertain, the value of the portfolio at t>to is a
random variable.
We define an arbitrage opportunity as follows. Arbitrage exists if at time to we can construct a

portfolio [ with the following properties:

FI(to)=0
and for some t > to
Prob(H(t) <0) =0

Prob(1i(t)> 0)> 0

This means that we can construct a portfolio with zero cost, which has zero probability of
decreasing in value and a strictly positive probability of increasing in value. Since the portfolio
has zero initial cost, any market participant can purchase an unlimited amount of the portfolio,
and enjoy a risk free guaranteed profit. The theory is that as arbiters start to take advantage of
this opportunity, they will create an upward price pressure on assets with positive weights in the
arbitrage portfolio, and downward price pressure on assets with negative weights. Prices will
then reach a new equilibrium where the arbitrage opportunity no longer exists.

2.2.5 Application of Arbitrage Pricing Theory in Valuing Forward Contracts

The creation of arbitrage portfolios is inherently linked to the temporal properties of the
underlying asset. Of particular importance is the ability of the investor to store the asset.

We apply arbitrage pricing theory to three types of assets; equity, storable commodities and

electricity, to illustrate how the characteristics of the underlying asset changes the constraints
imposed on the relative prices of spot and forward contracts.

2.2.5.1 The price of a forward contract on a stock

Assume the current price of the stock, which pays no dividends, is St and the risk free interest
rate is r, continuously compounded. The price of a forward contract on the stock (F(t,T)) with
delivery date T must then be er(T)-St. To see why this is true consider the following cases:
1. If F(t,T)> er(Tt)St, the investor should sell one forward contract, borrow St dollars at the risk

free rate (assuming this is possible), and buy one unit of stock. The net cash flow at time t is
zero. At time T, the investor delivers the stock against the forward contract, receives F(t,T)
dollars as payment for the forward, and er(Tt)St dollars to pay off his debt. The net cash flow
at time T is F(t,T)-er(-(St>O. This is a pure arbitrage opportunity, which cannot be sustained
in an efficient market, and therefore sets the upper limit to the forward price.

2. If F(t,T)< er(T-t)St, the investor should buy on forward contract, short-sell one stock, and lend

St at the risk free rate. The net cash flow at time t is zero. At time T, the investor pays F(t,T)
and receives deliver of the stock from the forward contract. He uses this stock to repay his
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short-selling obligation. He also recovers er(T-t)St from the money lend. The net cash flow is
er(T-1)St-F(t,T)>O . This is again a pure arbitrage opportunity, setting the lower limit for the
forward price.

In this case the upper and lower limits on the forward price are identical, and therefore, in an
efficient market where participants can borrow and lend at the risk free rate, the forward price
must be given by: F(t,T)=e'(T-t)St. This illustrates two important points. First, under no-arbitrage
conditions, the forward price of a stock is a deterministic function of the spot price and the time
to maturity (T-t). Second, there is a smooth convergence of the spot and forward prices at
maturity.

2.2.5.2 The price of a forward contract on a storable commodity

Assume the current unit price of the commodity is St, the present value of the total cost of
storage incurred during the length of the futures contract is U, and the risk free interest rate is r.
The lower bound on the futures price for delivery at time T is F(t,T)>(St+U)eTt. If this does not
hold, an investor can receive a risk-free profit by borrowing St+U at the risk free rate, purchase
the commodity and pay off the storage cost, and short a forward contract in the commodity. The
cash-flow at time t is zero, and the cash-flow at time T is F(t,T)-(St+U)er(T-t)>O. This is known as
cash and carry arbitrage.
Payoff at each time step from cash and carry arbitrage:

t T

Buy commodity to be delivered -St 0
against forward contract.
Sell forward contract 0 F(t,T)
Pay storage cost -U 0
Borrow now, repay at maturity St+U -(St+U)er(T-t)

Total Cash Flow 0 F(t,T) -(S,+U)er(T-t)>0

Table 2-1: Cash and Carry Arbitrage

Cash and carry arbitrage establishes an upper bound on the forward price of the commodity.
The bound converges to the spot price as we reach maturity (T=t), and hence if the forward price
is lower than the spot price then the two prices must converge at maturity.

2.2.6 Model Based Pricing and Dynamic Replication

Much of the work in finance in the last thirty years is a direct outgrowth of a set of seminal
papers published by Fisher Black, Myron Scholes and Robert Merton in the early seventies (see
[2],[4]). In their work, Black and Scholes proposed that stock prices (S) could be modeled as a
simple stochastic process known as geometric Brownian motion,
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dS = gSdt+ TSdz

where dz is a, non-differentiable, continuous time Wiener process. Next they considered a

derivative f, contingent on S. By applying Ito's lemma, it can be shown that the price of the
derivative contract must follow the following stochastic process,

df S+ + Ia 2 S2  t+ afuSdz.
as at 2 S 2  as

Next they recognized that since the same random input (dz) was driving both stochastic
processes, an investor could hold a combination of the stock and derivative so that the random
components cancel each other out perfectly. Specifically, the risk neutral portfolio is formed by
purchasing one derivative contract, and short selling af/S contracts of the stock. The process
describing the change in value (or return) of the portfolio (1I) is then given by,

af af 1 af2S2d17=-f+-S= S 2
aS aS 2 S2

This equation does not contain any random terms. If the portfolio return is deterministic,
Black and Scholes argued, the return must be equal to that of a risk free loan, i.e. the risk free
interest rate. Equating the return of the portfolio to that from lending money at the risk free rate,

d1 I = r]fIdt

led to the Black-Scholes-Merton differential equation,

f ~3f 1 2 2 ;-- +rS +- 2S dt=rf
at aS 2 as 2

The price of the derivative can be found by solving this differential equation for a set of given
boundary conditions, specific to that derivative. A European call option with strike price X and
maturity date T, for example, will have the boundary condition given by,

fT = max(ST - X).

Another use of the above relationships is to find a portfolio of stocks and bonds (assumed to
be a risk free loan), which perfectly replicate the payoff of the derivative. This is known as a
replicating portfolio. The replicating portfolio for a derivative f, is given by holding af/aS stock
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contracts, and f-(S*af/aS) dollar worth of risk free bonds. The ratio of the stocks to derivatives
contracts is known as the delta of the derivative,

A af

Another interpretation of the same line of reasoning, is that if an investor can always
eliminate the financial risk associated with holding a risky derivative by creating a replicating
portfolio, then speculators will be unable to charge a premium for taking on this risk. As a result
the market will be risk neutral. That is, the value of each derivative will be equal to the expected
value of the discounted cash flow. This leads to a complementary approach to valuing
derivatives known as risk neutral pricing.

Risk neutral pricing can be interpreted as the price which would prevail if market participants
were ambivalent towards risk, or, if the risk was spread out over so many participants that its
effect on each individual firm becames negligible. This is a much stronger assumption than that
of no arbitrage. Investors are generally risk averse, and there are only a limited number of market
participants holding any given asset. There are, however, assumptions under which the two
pricing schemes converge, as in the case presented above. In general, if a perfect replicating
portfolio can be formed, then risk neutral and arbitrage pricing will produce the same result.

2.2.7 Limits to Arbitrage Pricing Arguments

While APT provides a convincing argument why physical and financial forward prices must
be equal at all times, actual observations in the market place show that the two market can
diverge at times. The reasons for this inconsistency can be found in the assumptions underlying
the arbitrage argument. The following points illustrate how market realities deviate from the
theory:

1. Moving Equilibrium: Arbitrage pricing theory is based on an equilibrium argument. It
states that in a market with active arbitruers, a set of prices which allow for risk-free profit with
zero investment is not sustainable. As traders execute the arbitrage, they gradually alter the
relative prices until the system settles into an arbitrage free state. Markets in general, and
electricity markets in particular, are continuously evolving dynamic systems. The effect is
similar to that of a feedback control system driving the states of a system towards a continuously
changing control input. Unless the input signal evolves at a significantly slower rate, the states
will never settle to their equilibrium value.

In the case of electricity markets, the validity of the equilibrium argument will depend on two
factors:

1. The rate at which new information about the future expected value of the spot price enters
into the market. Changes in traders' perception of the future is the driving input into the futures
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market. Information which would cause traders to change their perception would include updates
on future weather/load conditions, or news of a generator or transmission line outage.

2. The volume and rate at which contracts are trading in the market. This represents the
magnitude and speed of the feedback response, or the rate at which the market can react the new
information. This is also known as a market's liquidity.

We address this issue in more detail as we introduce our dynamic model for the evolution of
the spot price.

2. Uniqueness of Prices: Unlike the spot market, the forward markets do not have a unique
clearing price. The price quoted by the exchange is a weighted average of all trades in the last
day. However there is no guarantee that the trader can find a counter-party willing to trade at
exactly this average price at the time the arbitrage is executed. There generally is a gap between
the highest price the market is willing to buy, and the lowest price the market is willing to sell at.
This is known as the bid-ask spread. The magnitude of the bid-ask spread is dependant on the
liquidity of the market.

3. Transaction Costs: Exchanges are generally for profit enterprises. They make a profit by
charging a small fee for every contract which is executed on the exchange. The loss incurred by
the trader due to such fees is known as a transaction cost. In electricity markets, exchanges
generally charge a fixed fee per MWh of power covered in the contract. In order to execute an
arbitrage, the guaranteed profit must be greater than the total transaction cost incurred. The
magnitude of the transaction cost is relatively minor. Nordpool for example charges
approximately one cent per MW traded in a futures contract.

2.2.8 Spot forward dynamics for storable commodities

The effects of cash and carry arbitrage can also be interpreted as a dynamic relationship
between spot and forward prices. Assume that at time t we observe a forward price F(t,T), which
violates the upper bound imposed by APT. We would expect the following behavior in the
market.

1. In the spot market, demand will increase, as arbitreurs rush to buy the commodity in
order to store it. This puts upward pressure on the spot market price.

2. On the forward market, the same arbitreurs sell forward contracts in order to execute the
arbitrage, creating downward pressure on the forward price.

Now consider the reverse condition, when forward prices drop below spot market levels. In
this case, no pure arbitrage strategy is present, since it may not be possible to short sell a physical
commodity on the spot market. However, consider the position of a market participant who is
currently holding an inventory of the commodity. For this person, the optimal strategy will be to
sell the inventory today, and purchase cheap forward contracts which can be used to restore the
inventory at a later date. If there is significant inventory in the market, this will put downward
pressure on the spot price, and upward pressure on the forward price.
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One can question whether the bounds set by APT under realistic market conditions. This is
especially true for commodities with thin forward markets and high transaction cost. However,
whether or not the bounds are quantitatively accurate, the qualitative interaction between spot
and forward prices can certainly be observed.

1. An increase/decrease in the forward price will put upward/downward pressure on the
spot price.

2. A spike/drop in the spot price will put upward/downward pressure on the forward
price.

Consider the following scenario. Tomorrow OPEC announces that it will reduce its annual
production of oil by 50%. Based on these news, the forward price of oil increases sharply. Next,
arbitreurs recognize the disparity between spot and forward prices, igniting a buying spree on the
spot market. This causes an immediate spike in the spot price of oil. The above scenario
illustrates an interesting characteristic of storable commodities markets. The relationship
between the state of physical production and consumption on one hand, and the spot market price
on the other, is non-causal. In other words, a future drop in production leads to a spike in today's
spot price. Note however that the relationship between the spot price and the information flow is
still causal. That is, the spot market will only react when the drop in future production becomes
known to market participants.

The need to model the dynamic relationship between the spot and forward prices in storable
commodities has led to the notion of convenience yield (y) (see [2], [5], and [6]) which is
defined as:

F(t, T) = (S, + U)e(r-)(T-t)

The convenience yield represents the premium the market is willing to pay in order to
physically hold the commodity today, rather than a promise for delivery at time T. We can model
y as a deterministic parameter, or a stochastic state of the system depending on the market.
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Chapter 3 Overview of the Competitive Electricity Industry

3.1 Description of Market Participants
After the deregulation of the utilities industry, a number of new market participants appeared

in place of the old vertically integrated utilities. In this section five categories of market
participants are introduced, covering the most crucial functions relating to the whole sale
electricity markets; generation companies, load serving entities, power marketers, exchanges and
market makers, and independent system operators. These categories are not mutually exclusive.
Large generation companies often serve as load serving entities, and may also fill power
marketing functions. Independent system operators and power exchanges on the other hand, tend
not to have other interests or investments in the market, since this would lead to conflicts of
interest.

Generation Companies (GenCos): In the deregulated market place, generation companies
refers to any firm which owns physical generation assets. These firms vary from large
deregulated subsidiaries to the old utilities, to single plant independent power producers (IPP's).
In this thesis we will treat generation companies, as well as load serving entities and power
marketers, as for profit entities, whose objective is to maximize its profit.

Load Serving Entities (LSEs): As of today there are no functioning retail markets for
electricity. End users are supplied either through bilateral agreements, or out of the whole sale
market. Since buying electricity whole sale involves significant transaction costs, customers are
generally served by intermediaries known as load serving entities, or energy service providers.
LSEs serve as aggregators, taking on large a number of residential, commercial and/or industrial
customers. The function of the load serving entities includes estimating the aggregate demand of
their customers, and entering bids to the wholesale market in order to secure delivery for the
estimated load.

Power Marketers: With deregulation came a significant increase in the financial risk of both
generation companies and load serving entities. Many firms were not equipped to handle the risk
management aspect of their electricity supply or delivery operation. This led to the emergence of
a new class of market participants known as power marketers. There are two fundamental
components to the firm's operation, a marketing and a trading section. The marketing section
will approach GenCos, LSEs, or even large end users directly, offering to take on part of their
electricity risk exposure at a premium. If an agreement can be worked out, the marketers will
pass on the acquired risk to the trading section, which is responsible for hedging the power
marketers risk exposure. The reason a power marketer can get away with charging a premium
for this service is twofold. It generally has an efficient trading operation, allowing it to minimize
transaction costs, and, more important, it has a good understanding of the source and correlation
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of the risk in the various contracts it takes on, allowing them to effectively hedge out most of the
uncertainty through futures and options trading.

Exchanges and Market Makers: In the regulated industry, utilities generally supplied
electricity to a clearly defined geographic area, using a set of native generators to fulfill the
demand requirement. As a result there was little incentive to enter into contracts with
neighboring utilities, unless there was a critical power shortage. Deregulation has dramatically
increased the number of transactions between different market participants. Generation
companies will supply their energy to the highest bidder, independent of the location, and load
serving entities are willing to import power if it will reduce the cost of serving their customers.
To accommodate this increase in market activity, a number of exchanges have emerged for the
electricity industry. Exchanges match buyers and sellers of electricity, and charge a small
transaction fee for their service. The exchanges differ in the time frame of delivery (short term
spot markets vs. longer term forward markets), and in trading in physical or financial
commitments. A description of the types of market available for market participants is provided
in the next section.

3.2 Independent System Operators (ISOs):
The market entities described so far are generally for profit companies, looking to take

advantage of the opportunities provided by the competitive marketplace. Electricity markets
however, are delicate physical networks, which can easily break down if pushed beyond its
operating limits. To ensure the physical safety of the grid, regulators have encouraged the
formation of independent system operators. An ISO is a non profit entity, which acts as a
supervisor of the physical transactions registered between power suppliers and customers. The
two main functions of the system operator are to balance power, and manage congestion on the
grid. The power balancing problem is an inherent result of the non-storability of electricity,
forcing the system operator to maintain a constant stand-by reserve of spinning power capacity,
so that a sudden loss of generation on the system does not lead to a drastic drop in frequency.
The congestion management problem results from the nonlinear relationship between power
injections and flows, forcing the system operator to implement complex pricing systems to
prevent the overloading of transmission lines (see chapter on multi market modeling).

3.3 Electricity Markets
There are three fundamental markets available for trading electricity. The spot market (day

ahead), the physical forward or bilateral market, and the financial futures market. In addition,
there are a number of standard as well as over the counter options contracts traded, either
through exchanges or on a purely bilateral basis. Before attempting to develop models that
describe the pricing of these various contracts, we need to understand the manner in which
electricity is traded.
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3.3.1 The Spot Market

Spot power is traded under a number of different market structures in the United States,
ranging from power pools, to power exchanges, to independent system operators. The common
ground among these markets is that they all involve a centralized auction mechanism to allocate
which generating units should be used to meet the demand. In these section we will describe the
rules governing the California Power Exchange (CalPX). While somewhat different in structure
than its east-coast counterparts, the CalPX still serves as a good example to understand the
decision process facing producers in the deregulated marketplace.

A producer wishing to sell power through the CalPX submits a bid curve to the exchange. The
bid curve describes the willingness of the producer to deliver power as a function of market
price. For example a producer may be willing to supply a total of 50MW if the price is $20/MW,
and may offer to supply a total of 100MW if price increases to $30/MW. Bid curves are supplied
on a day-ahead basis, and a different bid curve may be specified for each of the 24 operating
hours. Specifically, a supplier wishing to produce power tomorrow, must submit all 24 bid
curves by 9am today.

The PX gathers all the bids from power producers, and similar bids from consumers. The bids
are used to compile aggregate supply and demand curves for each hour. The intersection of the
demand and supply curves determines the market clearing price (MCP). All supply bids with
price less than the MCP are accepted, and are paid the clearing price. Similarly all demand bids
with price higher than the MCP are accepted, and are charged the clearing price. This ensures
that demand and supply commitments match perfectly, and also that the PX remains revenue
neutral.
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Figure 3-1: Spot Market Dynamics

3.3.2 The Physical Forward Market

Physical forwards can be traded on an exchange or in a bilateral manner through over the
counter (OTC) transactions. Exchange traded forwards use standardized contracts, with power
being traded in monthly on- and off-peak blocks. The contract specifies a single MW quantity (q)
and a single $/MWh price (F). The short position (seller of the forward contract) is obligated to

physically deliver power at a constant rate q to a location specified in the contract (the HUB).
The contract does not specify the location at which the power is produced or consumed, but
states that the short party is responsible for delivering the power from the generator location to
the HUB, and the long position is responsible to deliver the power from the HUB to the load

location. For both sides this may involve purchasing additional transmission contracts, or

purchasing/selling power through the spot market. Such provisions are not addressed in the
contract, and the relative prices of the spot and transmission market will not affect the price of
the forward contract.

The price of exchange traded physical forwards is quoted daily by the exchange. The
informnation provided includes the high and low prices as well as the volume traded and the

volume of open interest. The exchange quotes prices for every delivery month up to 15 months
into the future. This vector of prices G(t), which constantly evolves as new trades become public,
constitutes the forward curve for electricity.
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Physical forward contracts trade continuously while the exchange is open, until the fourth
business day prior to the first delivery day of the contract. At this point trading terminates, and
any party left with a short position is required to deliver power according to the provisions in the
contract. A trader can avoid this by 'booking out' his position, purchasing a long position which
exactly offsets his short position for the same delivery month.

3.3.3 The Financial Futures Market

Financial futures contracts for electricity are traded on exchanges such as the New York
Mercantile Exchange (NYMEX) and the Chicago Board of Trade (CBOT). Financial contracts
are similar to exchange traded physical contract in structure. The main difference is that the
parties entering into the contract have no intention of physically producing or consuming the
power, but rather use it as a financial hedge against other positions in the market. The financial
futures contracts are therefore settled by the exchange of cash rather than power. In general the
payoff function for a party holding the long position in a forward contract is given by:

payoff(long) = S, - F(t, T),

where ST is the spot price at the maturity T, and F(t,T) is the price of the futures contract at
the time t it was entered into. The problem which occurs with electricity is that the delivery
period for the futures contract is one month, while the underlying spot process is updated on a
day ahead basis. As a result, when the futures contract matures on the 4'th business day prior to
the first day of the delivery period, the spot prices for hours in the delivery month are not yet
known. Hence the contract cannot be settled financially at this time. To circumvent this problem,
exchanges have taken on two different approaches, ex-post settling and ex-ante settling.

Ex-post settling: In this approach, the futures contract is settled gradually during the delivery
month. If two parties have entered into a futures contract for q MWs of on-peak power at a price
F, then for every day for the duration of the delivery period, the following process determines the
cash flow:

1. The on-peak price of power for the day is calculated by averaging the hourly price of the
16 on-peak hours from the day-ahead spot market. We denote this price as Speak

2. The long position (buyer of contract) will pay the difference between the Speak and F
times the quantity of the contract, times the number of on-peak hours (16). If this quantity
is negative then the cash flow will be from the short position to the long position.
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The total cash flow for the long position over the duration of the delivery month is given by:

CF_,, , = 16q(S "ek - F)

where n is the total number of days in the delivery period.

Ex-ante settling: In this case, the futures contract is settled financially at its expiration date,
i.e. on the 4'th day prior to the beginning of the delivery period. Since the day-ahead spot price is
not yet known for the delivery month, the price of a physical forward contract for the same
delivery period and location is used in place of the day-ahead spot. This effectively is a change in
the underlying commodity from which the futures contract's value is derived. The contract goes
from being a derivative on the spot price to a derivative on the physical forward price. The
payoff function for the long position at maturity T is given by:

CFane= Yq(G(T,T)-F)
i=1

where q is the quantity of the contract in MWs, G(T,T) is the price of a physical forward on the
last day of trading, and F is the price at which the futures contract was purchased.

Both the day-ahead spot and physical forward are based on the same commodity, electricity
delivered at a specific grid location. However there is no simple mapping between the ex-post
average spot price and the ex-ante physical forward price. This is a very crucial point to
understand in electricity markets. While the settling procedure differs form market to market, the
dominant trend seems to be in the direction of ex-post settling, as seen in California and
Nordpool. Unless otherwise specified we will from here on assume that financial forwards settle
ex-post.

3.3.4 The Derivatives Markets

A number of options and other derivative contracts are traded in the electricity marketplace.
They can generally be grouped into three categories, temporal, locational, and inter-commodity
derivatives. Temporal derivatives are the most common, and are used to hedge against future
movements in the spot price of power at a given location. They include simple call and put
options, as well as more sophisticated swing options and look-back (reference) options.
Locational derivatives are generally used to hedge against the risk of volatile price spreads
between the power production and delivery locations. These types of derivatives are closely
linked to the trade of physical and financial transmission rights and will be addressed in detail in
Chapter 9. Inter-commodity derivatives are contracts based on the price differential between
electricity and another commodity. The spark spread for example is the spread between gas and
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electricity prices at a given conversion factor (reference "spark spreads are hot", NYMEX
definition of Spark Spread). The emergence of such contracts are direct result of the significant
dependence of electricity demand and supply on other commodities. The marginal cost of a gas
fired generator for example is directly proportional to the gas price. Similarly, the strong
correlation between electricity demand and temperature has resulted in a significant interest of
power marketers in the emerging weather derivatives markets. We will return to the interaction
between electricity and other commodity and derivatives markets in the modeling section of the
paper.

3.3.5 Assets and non-standard contracts

In addition to options contracts, market participants need to be able to hedge returns from a
number of assets and bilateral contracts. These problems can be considered as extensions of the
derivative pricing problem. For example we can view a generator a physical option to convert
gas to electricity at a given efficiency rate. The financial equivalent of owning a generator would
then be to hold a spread option between gas and electricity. In reality there are physical
constraints on the generator which makes the payoff more complex, but the point is that we
assign a value to a physical asset by modeling it as a single, or portfolio, of options contracts.
We address this problem further in the section on dynamic replication.
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Chapter 4 Arbitrage Pricing and the Temporal Relationship of
Electricity Prices

The key issue in relating electricity spot and forward prices is storability. The lack of
economic storage opportunities for electricity makes it impossible to form a cash and carry type
arbitrage portfolio. As a result we cannot impose any arbitrage free bounds on the relative levels
of spot and forward prices. It does not end there however. There is no limit on how far the prices
of two forward contracts with different delivery months can diverge, since no arbitrage portfolio
can be created to exploit the price differential. The story gets worse when we address the spot
market. For a given year there are 8760 delivery hours, each with a unique price. There is no
constraint on the relative price of spot power from one hour to the next. Relying purely on
arbitrage theory, the number of random variables needed to define the spot and forward markets
for one year would therefore be, 8772. To use the forward market with a hedge we would need to
estimate the entries into the 8772 by 8772 covariance matrix. Electricity markets suffers from a
severe case of the curse of dimensionality. To circumvent this problem we must rely on effective
modeling solutions. In the next chapter a detailed model for the spot market will be presented,
describing the temporal correlation of prices as a function of fundamental drives. Before going
through this process however, we examine the relationship governing the spot and forward
markets in the context of non-storability.

As stated earlier, temporal arbitrage is not possible in electricity markets due to the lack of
storage. As a result, the dynamic relationship between the spot and forward price described
above does not hold for electricity. A good example is the case of scheduled unit outages. If it
were announced today that a major nuclear plant in New England would be out of commission
for the month of July, this would cause an immediate increase in today's price of a forward
contract with delivery in July. However it would have no effect on the current spot price. We can
therefore state that electricity spot prices are causal in the state of production and consumption of
electricity. This will have a tremendous impact on how we model electricity spot and forward
prices.

Without the ability to execute an arbitrage between the spot and forward markets, APT is
useless in predicting the relationship between the two markets. Instead we have to address the
forces underlying the demand and supply in forward markets. One approach is to assume that the
market as a whole is liquid enough that every participant holds a small fraction of the total risk.
As a result the market effectively behaves in a risk neutral manner, even if the individual
participants are risk averse, allowing us to pose the relationship,

F(t, T) = E,{Sr 1.
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The risk neutral formulation is the basis for most risk management and option pricing theories
in commodities markets. The problem with this assumption is that electricity markets are
relatively illiquid, with a small number of participants. In light of this we here propose a more
general model allowing for the existence of a risk premium in the market. We model the forward
price as a function of the spot price, the variance of the spot price, and a random disturbance (zF),

F(t,T) = (I(E,(ST),var, (ST),Z F)

The exact structure of the forward risk premium is likely to vary from market to market.

4.1 Is Electricity Really Non-storable?

A common source of criticism to the arguments presented above is that electricity really is a
storable commodity. After all, the oil, gas and water, which enter into the production of
electricity, can all be stored. Therefore a strategy similar to cash and carry arbitrage can be
carried out by storing the fuel in times of low electricity prices, and using it to generate
electricity when prices are higher. To address these arguments we separate the case of hydro-
electric power from the others for reasons that will soon be apparent to the reader.

4.1.1 Storage strategies in oil and gas plants

Consider the owner of a gas fired generator, who purchases the fuel for the plant on the gas
spot market, and sells the output on the electricity spot market. We assume that the generator is
unable to exercise market power, that is he takes fuel and electricity prices to be exogenous
variables. In our setup, there are two time periods, a current time t and a future time T. For these
periods we define the following variables:

Se The spot price of electricity $/MW.

Sg The spot price of gas ($/Btu).

MC = aS9 The marginal cost of production for the plant ($/MW).

q The capacity of the plant (MW).

Fe (t, T) The forward price of electricity at time t for delivery at time
T.

F9 (t, T) The forward price of gas at time t for delivery at time T.

U The cost of storing gas form t until T ($/Btu).

Table 4-1

The storage argument
initial prices:

will be some variation of the following. Consider the following set of
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aSg >Se

F e (t, T) > aF 9 (t,T )

F9K (t, T) > Stg + U

The first condition states that it is uneconomical to run the plant in the first period based on
the gas price. The second condition states that based on the forward price of gas and electricity, it
will be economical to run the plant in the second period. Now consider the case of a generator
with no gas storage ability. Its cash flows for the two periods are given in the table below.

t T

Plant idle in period t 0 0
Buy a*q gas forwards, 0 - aqF9 (t, T)

for physical delivery
Sell q electricity 0 qFe (t, T)

forwards, for physical
delivery

Produce electricity for 0 0
delivery against forward

Total cash flow 0 q(Fe (t,T)- aF (t -T))

Table 4-2: Cash flow with no storage option

Next consider the cash flow from the same generator with the option to store gas.

t T

Plant idle in period t 0 0
Buy a*q Btu of gas on -aqSg 0

the spot at t.

Store gas -aqU 0
Sell q electricity 0 qFe (t, T)

forwards, for physical
delivery

Produce electricity for 0 0
delivery against forward

Total cash flow - aq(S7 +U) qFe (t,T)

Table 4-3: Cash flow with storage option

Assuming a zero discount rate, we have arrived at the following total cash flows:

No Storage With Storage
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q{ (t,T) - aFg (t - T) )I q (F e(t, T) -aStg)

Table 4-4: Cash flow comparison

Under the third condition on our price levels, the revenue with storage will be higher.

It seems that the owner of the plant has been able to carry out a temporal arbitrage in the

electricity market using gas storage. However, if we take a closer look, the strategy is really

nothing more that cash and carry arbitrage on the gas market. The condition which must hold in

order for the strategy above to be successful,

F9 (t,T ) > S9 + U

is exactly the same constraint which we previously stated could not exist in an arbitrage free gas

market. Furthermore the increase in profit with the storage strategy is exactly the same as the

profit from a separate gas arbitrage deal of the same magnitude. Furthermore, the optimal

production strategy for the electricity generator will be the same regardless of whether there is

fuel storage capability or not. Assuming the fuel and electricity spot markets evolve at the same

rate, the owner of the plant will always have the option of purchasing additional fuel, or reselling

unused fuel on the spot market. There are temporal aspects to operation of these generators,
relating to minimum and maximum run times and maximum ramp rates. These lead to the so

called unit commitment problem in the production decision problem [7]. It is, however, not

possible to exploit or circumvent these constraints through fuel storage.

4.1.2 Storage strategies in hydroelectric dams

Hydroelectric plants are different from gas or oil fired in that their fuel is not a traded

commodity. The water flowing into the reservoir does not have an explicit cost, but using the

water does represent an opportunity cost to the operator since there is only a limited supply. The

operation of a hydroelectric plant is therefore naturally a temporal resource allocation problem

under uncertainty. Solving this problem requires advanced dynamic programming techniques.

Some hydro plants are equipped with the ability to act as loads and pump water back up into

the reservoir. This setup is known as a pump storage device. It gives the operator the ability to

purchase power when the price is low, and produce when the price is high. This process is by

many considered to be the equivalent of storing electricity. The inefficiency, or loss of power, in

the pump cycle is the equivalent of storage cost. While it is true that the opportunity to capture

the difference between high and low price swings adds a temporal component to the electricity

production, it is important to differentiate between pump storage and the pure storage of

electricity. To illustrate this difference, consider the following example. Note that we use a
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number of unrealistic simplifications. The purpose is to illustrate the qualitative difference
between pump storage and pure storage, rather than provide quantitative results.

We start out with a hydroelectric plant with a maximum output rating of 10MW. The water
level in the reservoir is sufficient to produce 10MWh of energy (we will call this quantity
I Op.u.). The time scope we are interested in is the next three hours. There will be no new inflow
of water during these three hours, and we are not concerned with the amount of water left in the
reservoir after this period. Furthermore we take the electricity spot price over these three hours to
be known deterministic values, $10, $20, and $30 respectively. Each scenario has a different
storage option.

In scenario I, the operator has at his disposal a pumping device which can replace water in
the reservoir. The speed of the pump is such that it can replace enough water in one hour to allow
the generator to run at full speed for one hour. Furthermore we assume the pump is lossless, that
is it will require 1 OMWh of electricity to run the pump for one hour, exactly equal to the amount
which can be generated by this quantity of water. The electricity used in running the pump can
be purchased from the spot market. The optimal strategy for operating the plant, and the
associated cash flows in each hour, are illustrated in the table below.

Hour hl h2 h3 Total
Activity run pump run run generator

generator
Cash Flow -$100 $200 $300 $400
Reservoir 20p.u. IOp.u. Op.u.
level at end
of hour.

Table 4-5 Pump Storage Operation

In scenario II we assume the owner has access to a hypothetical pure storage device. In this
case a giant battery which can store up to 10MWh of energy. The battery can be charged and
discharged at a rate of 10MW. The optimal strategy running the same hydro plant with this
storage option is given below.

Hour hl h2 h3 Total
Activity charge no activity run generator,

battery discharge battery

Cash Flow -$100 $0 $600 $500
Reservoir IOp.u. lOp.u. Op.u

level at end of
hour.
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Battery level 1OMWh 1OMWh OMWh
at end of hour

Table 4-6: Operation of Perfect Storage Device

We see that the owner of the plant is able to make more money with a pure storage device,
than with pump storage. This is directly due to the capacity constraint of the generator. No
matter how much water is stored in the reservoir, the turbine can only produce power at a rate of
10MW. The pure storage devise however, is able to discharge in parallel with the turbine, thus
capturing a larger share of the high price hour. This effect is predominant in electricity markets.
Prices are extremely sensitive to the ratio of instantaneous demand and the instantaneous total
generation capacity. Therefore, while hydro storage introduces a new inter-temporal component
to the electricity price process, it does not add additional capacity, and therefore does not offer
the pure arbitrage opportunities available in storable commodities.

4.2 Arbitrage and the Relationship Between Physical and Financial
Contracts for Electricity

One measure of the usefulness of financial markets, is the ability of market participants to use
financial contracts to hedge physical obligations. In the context of arbitrage, we can ask a similar
question. Can a contract for physical delivery of power be perfectly replicated using financial
futures or derivates contracts. Generally this type of replication is a simple exercise, but the
special structure of the electricity forward contracts, specifically the difference in the length of
the delivery period between the spot and forward markets, makes the replication process
somewhat complex.

4.2.1 Application of Arbitrage Pricing Theory in the Relative Pricing of Physical Forward
and Financial Futures Contracts on Electricity

We address the relative prices of physical forward and financial futures contracts with ex-post
settling, in the framework of arbitrage pricing as defined in the previous section. We allow for
the contract to be traded on different exchanges, but assume that there is reasonable price
transparency and liquidity in the market. The validity of these assumptions are addressed at the
end of the section.

Recall that the notation for the price of a physical forward contract signed at time t for
delivery at time T, is denoted by G(t,T). The equivalent notation for a financial futures contract
is F(t,T). We now consider possible relative price levels of the physical and financial markets,
and test their consistency with the absence of arbitrage assumption.

First consider the event where at a time t, we observe a set of contracts for delivery month T
satisfying the relationship,

F(t, T) > G(t, T)
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A trader can then implement the following strategy.
At time t:

1. Purchase q MW of physical forward contracts.
2. Sell q MW of financial futures contracts.

At time T:
1. For each hour in the delivery period, submit a sell bid of q MW of power into the day

ahead spot market at zero price. The power needed to deliver from the spot market is
received from the physical forward contract.

The cash flow from this strategy in each time period is shown in the table. Note that all cash
flows from forward contracts are realized at the end of the contract.

t T

buy physical 0 NqF(t, T)
sell financial 0 N

NqF(t, T) - qS

sell spot 0 N
SqSj

Total 0 Nq(F(t, T) - G(t, T))> 0

Table 4-7: Arbitrage in Electricity Forward Markets

This strategy provides a guaranteed profit with zero investment, and therefore it is an
arbitrage opportunity which cannot be sustained.

Now consider the case,

F(t,T) < G(t, T)

The trader adopts the following strategy.
At time t:

1. Purchase q MW of financial futures contracts.
2. Sell q MW of physical forward contracts.

At time T:
1. For every hour in the delivery period, submit a buy bid for q MW to the day-ahead spot

market at the market maximum price (we later discuss what happens if the spot market
fails to clear). The electricity purchased in the spot market is used to deliver against the
obligation from the physical forward contract.

The cash flows in each time period is given by:

t T
sell physical 0 - NqF(t, T)
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buy financial 0 qS - NqF(t,T)

sell spot 0N
~qS

Total 0 Nq(G(t, T) - F(t, T))> 0

Table 4-8: Arbitrage in Electricity Forward Markets

This strategy provides a guaranteed profit with zero investment, and therefore it is an
arbitrage opportunity which cannot be sustained.

The strategies presented above show that in a market free of arbitrage opportunities, the price
of a financial forward cannot deviate from the price of a physical forward, in ether a positive or

negative direction. This condition must hold true not just at maturity, but during the entire
lifetime of the contracts. We thus arrive at the first constraint for electricity derivatives in an
arbitrage free marketplace:

G(t,T) = F(t,T) V t,T

Based on this constraint we will from now on use physical and financial forward contracts
interchangeably.
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Chapter 5 Building a price model for electricity
In previous chapters we have outlined the dynamic constraints which restrict the evolution of

market price, based on arbitrage theory, replication strategies, market agents utility function, and
physical constraints on production and storage. In this section we attempt to build a price model
for the electricity industry. Based on the lessons learned from other industries, we will use the
following criteria in evaluating the effectiveness of the model:

1. The model must reflect reality in a dynamic and probabilistic setting. This includes
properly reflecting the probability distributions and covariance matrices of future
electricity prices.

2. The model must have a form conducive to solving the stochastic optimization problems
facing the electricity industry, including valuating generation assets, hedging long term
contracts, and managing locational risk. This involves addressing the unique properties of
how electricity is produced, transmitted and consumed. Specifically it must address the
inter-temporal relationships of prices for a non-storable commodity, the locational price
differences in complex transmission networks, and the inter-commodity dynamics of
electricity, fuel and emissions rights markets, which influence the cost of production for
generators. Designing the model so that it can easily be expanded in the temporal, special
and inter-commodity domain is therefore crucial to its performance.

3. The complexity and form of the model must be limited so that it can be used as an input
to standard optimization algorithms such as dynamic programming. This constraint is
often in direct conflict with (1) and (2), which tend to add complexity in order to better
reflect reality.

4. The model must be structured so that it can be consistently calibrated from available data.
If a trader or investor can not trust that the parameters of the model reflects his current
knowledge of the market he will have little confidence in the decision rule generated by
any optimization technique. This requirement is particularly crucial in new markets such
as electricity, where price history is limited, and market structure as well as regulatory
guidelines are constantly evolving.

5.1 Structure of Model
Several times in the thesis we have touched on the question of how best to deal with the

dimensionality of price dynamics in the electricity markets. This includes defining dynamic and
stochastic relationship between different time periods, different locations in the network,
different markets (spot, forward, derivatives), and different commodities (electricity, oil, gas).
We found that on the basis of arbitrage pricing theory, we cannot impose constraints on the
temporal relationship of prices. This is a direct result of the non-storability of electricity.
Similarly, it is not possible to create pure arbitrage strategies between electricity and fuel
markets, or between electricity prices at different locations in the network, except in degenerate
cases. From a strictly theoretical point of view, we could therefore conclude that each spot,

44



forward and derivative contract, for each delivery period, at every location in the network,
should be modeled as a separate state of a dynamic process. This modeling approach however is
highly impractical. The dimension of the state space would be so high that we would be unable
to solve even the simplest optimization problems, not to speak of defining consistent methods of
estimating model parameters. The focus in this section of the thesis therefore is on finding a
reasonable compromise: A model which preserves the unique characteristics of electricity
production, consumption and transmission, while limiting complexity. To achieve this goal, we
have identified a set of fundamental drivers. These are external processes, physical as well as
financial, which have significant impact on the dynamics of electricity prices, and whose effects
on the supply and demand for electricity are reasonably well understood.

In characterizing the interaction between spot, forward and derivatives markets, we have
taken the approach of modeling forward and derivative prices as outputs of the basic spot market
process. We recognize that this approach, in contrast to equity or storable commodities markets,
is not backed by a theoretical arbitrage argument. We therefore need to allow more leeway in
terms of the presence of risk premium, and market specific risk, than is common in other
markets.

Finally we recognize that because of the unique temporal constraints on supply and demand in
electricity markets, the problem lends itself naturally to time scale separation arguments.
Specifically we address three time scales:

* Fast deviations, resulting mainly from temperature driven load fluctuations, and strategic
bidding or unit outages on the supply side. These processes are generally mean reverting
with fast time constants.

* Medium term deviations, including fuel price changes and aggregate rain fall (hydro
reservoir levels), which revert slower or not at all.

* Long term deviations, mainly demand growth and new generation investment. This times
scale differentiates itself mainly because it includes price feedback with substantial
delays. This leads to dynamic behavior not generally addressed in financial models.

Figure 5-1 illustrates the full blown flow of physical and financial signals in the model. As we
proceed to model the dynamics of the system, we identify how the interplay between the
components can be broken down based on the time scale at which the interaction occurs. This
allows us to derive simpler versions of the models for use in specific applications. For example, a
user interested in developing day ahead bidding strategies or short term price hedging strategies
need not be concerned with load growth and investment dynamics. It is crucial however to start
with the full scale version of the model in order to understand the inter-temporal dynamics, and
thus have a solid basis for any separation or model reduction arguments.

45



Import/
Export

Fast load
weather - fluctuations -. ad

GNP * Load Growth

Spot Price Futures
Model Price Model

Fuel Price
Rain Fall

Unit Outages Mod
Emissions
Rights

Investment

Innovation

Figure 5 -1: Dynamic Relationships in Electricity Markets

kh- Asset
PValuation

Derivative
Pricing

5.2 Modeling Approaches
In this section we outline a number of approaches which have been used to model price

processes in electricity markets. Each approach has its own distinct set of advantages and
disadvantages. All of them represent valid approaches to understanding the evolution of prices
in the market, and the choice of model is inherently related to the specific purpose of the user.

5.2.1 Quantitative (Statistical) Modeling of Electricity Prices [51,[8],[81,[10]

Objectives: To characterize the stochastic properties of commodity prices over time,
specifically, to attempt to derive the variance and covariance of commodities prices. With this
information the user is then able to price a broad category of financial derivatives, as well as to
perform basic risk management functions.

Characteristics: The models used in quantitative modeling are usually generic in nature. The
user attempts to find the lowest order model possible to accurately describe the stochastic
properties of the commodity.

Advantages: Since the model is generic, the user does not require an in depth understanding
of the economic or physical relationships involving the production and trading of the commodity.
Calibration schemes are also standardized and can be duplicated across multiple commodities.

Disadvantages: This category of models is calibrated using historical spot and forward
market data, and when available, using implied volatilities from historical models. It requires the
availability of a significant amount of price history data. In case of electricity, changes in the
regulatory environment have made historic prices invalid for calibration purposes, leaving the
user with an inadequate set of training data for the models.
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5.2.2 Production (Cost) Based Modeling of Electricity Prices

Objectives: To model future electricity prices based on detailed models of the cost structure
of individual products. This information is used to create a cost-based supply curve. Combined
with estimates of future demand, this can be used to generate price estimates.

Advantages: Marginal cost information is generally available for all producers in a region.
The creation of a supply function is therefore a relatively straightforward exercise. Furthermore,
the cost can be linked to underlying fuel prices by using heat rate estimates on the unit. This
allows the user to model the interaction of fuel and electricity prices.

Disadvantages: Cost based modeling ignores the strategic bidding practices of market
participants. The effect of market power is likely to raise prices above cost-based levels. The
cost-based models can therefore rarely be calibrated to correspond to actual observed prices in
the market.

5.2.3 Economic Equilibrium Models of Electricity Prices [111,[12],[131,[14]

Characteristics: As means of incorporating strategic bidding into cost-based models, theories
such as Cournot pricing are applied to the generation stack. At a given load level one can then
solve for an equilibrium markup of bids above cost based levels. This markup will generally
increase as a function of market concentration.

Advantages: By applying game theory type models it is possible to explain why prices rise
above cost-based levels. This approach is useful in predicting expected price levels in markets
with no price history, but known supply costs and market concentration.

Disadvantages: These models produce equilibrium price levels. However, electricity markets
are constantly evolving, driven by stochastic demand and supply, and therefore never settle to
equilibrium levels. In applications such as risk management, understanding the dynamic
behavior of prices is crucial. In this case economic equilibrium models offer little insight.

5.2.4 Agent-based Modeling of Electricity Prices [151,[16]

Characteristics: Agent-based models attempt to capture the strategic behavior of investors
(agents) on the marketplace. To approximate the dynamics of the market, participants are
separated into groups, each with their own objective function. Based on the objective function
and observation of current price levels, a decision rule is defined for each group. These rules can
be highly nonlinear in nature. Finally the system is simulated under various inputs.

Advantages: In contrast to cost-based and equilibrium models, agent-based models address
the effect of market power both on the overall price markup, and the inter-temporal dynamics of
price. The variety of dynamic behavior, which can be captured with a relatively small number of
strategies, is impressive. The approach, for example, allows the user to study the impact of
factors, such as collusion, on the overall system price.

Disadvantages: While agent based modeling is useful for studying the qualitative behavior of
markets, it is much more challenging to get relevant quantitative results. To do so, one would
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need a consistent method of calibrating the parameters of the decision processes based on
historical data. This seems like an overwhelmingly difficult task.

5.2.5 Experimental Modeling of Electricity Prices [17]

Characteristics: In the experimental modeling approach, a group of people are gathered and
assigned assets and obligations in the market place. They then simulate the behavior of the
market by submitting bids, which are used to clear the market.

Advantages: The organizer of the experiment has full control over the parameters and can
change factors such as market concentration or number of participants in order to observe the
effects on the spot price.

Disadvantages: Experimental modeling is extremely difficult to map into a real marketplace.
To get reliable results, one would need to convince actual marketers to participate in the process,
and even then it is questionable if they would betray their actual trading strategies.

5.2.6 Fundamental Modeling of Electricity Prices [18],[191,[20]

Objectives: Determining the stochastic properties of commodities prices.
Characteristics: In the fundamental modeling approach, price dynamics are described by

modeling the impact of important physical and economic factors on the commodity price. The
model seeks to capture basic physical and economic relationships present in the production and
trading of the commodity. By explicitly adding these constraints, one can increase the
complexity of the model while decreasing the requirements on the available training data.

Advantages: By relaying the dynamics of the commodity price to the fundamental drivers,
we gain a new set of training data. If the fundamental inputs are directly observable, we can use
historical inputs in order to calibrate the model parameters. In the case of electricity this can be a
crucial difference. Currently there is only 1-2 years of relevant electricity price history available
(depending on location). However, if we choose temperature (a major determinant of electricity
demand) as a fundamental driver, we have decades worth of historical measurements available.

Disadvantages: In creating the fundamental model we make specific assumptions about
economic relationships in the marketplace. The price projections generated by the models are
therefore very sensitive to violations of these assumptions. Thus there exists a significant
modeling risk in the application of the fundamental approach.
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Chapter 6 Bid-based Stochastic Model for Electricity Prices

In this chapter we develop a new bid-based stochastic model (BSM) of the evolution of prices
on electricity spot markets [19]. We assume that the spot market operates as a double auction,
similar to the rules of the California Power Exchange. The model can be modified to account for
variations in the auction procedure.

We design the model to be applicable to hedging, speculation or investment decisions in
electricity markets. As such, it focuses on quantifying the uncertainty of future price movements.
We have used fundamental modeling approach, where the fundamental drivers are load and
supply shifts. The model captures the most critical characteristics of demand (load) and supply as
outlined below in electricity market.

6.1 Load Characteristics
1. Load Elasticity: We assume electricity demand to be completely inelastic (i.e.

independent of market clearing price). This may appear to be a strong assumption, but in
the current state of deregulation, few end users actually observe real time price
movements.

2. Seasonality: Seasonality is a major driver for electricity demand. We observe seasonality
over the daily, weekly, and yearly cycles.

3. Mean reversion: One can observe temporary spikes in electricity demand, often induced
by extreme weather conditions. However, these spikes are not sustainable and demand
reverts back to normal levels within a few days.

4. Stochastic growth: Growth in electricity demand is driven in part by trends in the overall
economy. The growth is therefore hard to predict over longer time horizons, and must be
considered stochastic.

6.2 Supply Characteristics
1. Supply Elasticity: In contrast to load, electricity producers are price responsive. The

supply characteristic is mainly a function of generation technology, as operating cost can
vary significantly with the type of generator used. Market power and strategic bidding
also have an impact on the shape of the supply bid function.

2. Stochastic Availability of Generation: Due to unexpected equipment failure or because
of planned maintenance, generators are taken offline from time to time. The effect of
such sudden jumps in the availability of supply on the market-clearing price can be
significant.

3. Uncertain fuel cost: Changes in the price of fuels such as oil and gas will affect the way
generators bid into the market.

4. Unit Commitment: Nonlinear characteristics in the generator cost functions, such as
startup costs and minimum run times, result in intra-day supply bid curve shifts.
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5. Import/Export: Producers and consumers bidding into the market from outside its
geographic limits can cause significant price shifts.

6. Inter-Market: Prices on related markets such as markets for capacity and ancillary
services, represent opportunity costs for power suppliers. Hence there is a strong
interaction between prices on these markets and price in the energy market.

6.3 Price as a Function of Load and Supply
In our model we characterize spot price as a function of two variables; L representing load

shifts, and b representing supply shifts. These variables can be interpreted as follows.
Load: We assume load bids are inelastic. Therefore Lk is selected to represent the market

clearing volume of the exchange for hour k.
Supply: In contrast to load, supply bids have significant price elasticity. The elasticity (or the

inverse of the slope of the supply curve) varies significantly with the clearing quantity. In
general, supply will be highly elastic at low demand levels, and gradually become more inelastic
as demand increases.

California Marginal Cost of Supply
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Figure 6-1 Marginal Cost Stack for California

We can explain this characteristic of electricity supply in two ways. First we examine the cost
structure of the underlying generators. Figure 6-1 shows the 'stack' for California, created by
ordering the generators from lowest to highest marginal cost. As seen in the figure the cost
function is relatively flat for low demand levels, when the load is served mainly by hydro and
nuclear plants. In the medium range we see a slight cost increase as efficient fossil plants are
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utilized. In the high demand range, inefficient peaking plants are dispatched, and the operating

cost escalates significantly.
Another approach is to view the supply bids from a game-theoretic perspective. At low

demand levels there is a high ratio of available generation capacity to electricity demand. Hence

the market will be competitive and highly price responsive. As load approaches the total installed

capacity of the market, the few non-committed generators have a high degree of market power,
and can withhold their capacity to push prices upward. In-depth analysis of market power and

strategic bidding in power markets can be found in [15] and [16].
The next figure shows a plot of the supply curves submitted to the California Power Exchange

during a 24-hour period.
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Figure 6-2 Aggregate bid curves into the CalPX over a 24h period.

When comparing the cumulative bid curves submitted at different hours we find that the basic
shape of the bid curve is preserved over time. This allows us to reduce the complexity of the

supply model. We fix the shape of the bid curve and model its temporal shifts as a stochastic

process. Specifically we chose an exponential function to approximate the shape. Price in hour k

can then be written as,

Sk= e ak+bk
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where a is a fixed parameter characterizing the slope of the bid curve, q is the market clearing
quantity in hour k, and bk denotes the position (or shift) of the curve. Next we add the constraint
that demand bids are inelastic. The market clearing quantity qk must then always be equal to the
system load Lk. We can now write market clearing price in terms of our two fundamental drivers,
load and supply:

Sk -eaLk+bk

This approach reduces the complexity of the problem by constraining the number of free
variables on the supply side. The downside of this assumption is that we risk misrepresenting the
shape of the supply curve in certain regions. There are three major parts of the supply curve,
lower, middle, and upper. The result of fitting each of them with an exponential is shown in
Figure 6-3. Since we are concerned with the price range, corresponding to the actual (market
clearing) load at that hour, we have selected the second exponential (denoted as exp2), which
best approximates the middle part of the bid curve.
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Figure. 6-3 Exponential fitting of the aggregate hourly supply curve

31000

The next step is to postulate stochastic models for the evolution of the fundamental drivers.
In order to keep track of the variables and parameters evolving at different time scales we use the
following notation:

Subscript Meaning Superscript Meaning
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d evolves at daily rate L Belongs to load process
m evolves at monthly rate b Belongs to supply shift process

none constants 6L Applies to load mean process 61

8b Applies to supply mean process 6b

Table 6-1: Notation for bid based price model

The following section will outline the models used and the reason for choosing that specific
form. In later sections we present step-by-step descriptions on how model parameters were
calibrated based on historical market data.

6.4 Stochastic Load Model

We listed the four characteristics of electricity demand which we wanted to capture in our
model; lack of price elasticity, seasonality, mean reversion, and stochastic growth. The elasticity
assumption is already implicit in our formula for market clearing price Pk. The challenge is to
incorporate the remaining criteria without making the model too complex for calibration and
simulation purposes.

6.4.1 Modeling Demand Seasonality

The three types of seasonality in electricity demand are daily, weekly and yearly patterns
Figure 6-4 shows demand in New England for a sample week in May, starting with Monday.
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Figure 6-4: Load diagram for a week in May, New England

We see that there is a regularly recurring pattern within the weekdays (daily seasonality) and
that the weekend consumption pattern is significantly different (weekly seasonality). From here

on we will simplify our task by eliminating the weekends and modeling only the weekday loads.
This allows us to ignore the weekly seasonality. This simplification is taken directly from the
forward markets, which trade weekdays and weekends as separate contracts.

Addressing the daily seasonality is more challenging. We have chosen to denote the daily load
as a [24xl] vector Ld, where each component represents an hourly load. This vector is defined as
the sum of a deterministic and a stochastic component.

La =M R L dLd MIl

The deterministic component smL is a [24x12] vector that represents the typical or average
monthly load pattern for the day. This component evolves on a monthly time scale, since the
typical load pattern for January is significantly different form the typical pattern for August.
Figure 6-5 shows a plot of average 24-hour load patterns for each month in New England.
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Fig. 6-5: Average monthly patterns of daily load, smL, New England

6.4.2 Modeling Load Uncertainty

The stochastic component r of the daily load pattern is needed to explain any deviation in

actual observed load from the pattern given by pm. In order to achieve this, the vector r would

have to contain 24 random variables. However in observing actual load patterns, one finds that

there is a strong correlation between deviations in consecutive hours.
Intuitively, one could argue that if unusually hot weather causes demand to increase in hour

14, it is very likely to also cause higher demand in hours 15 and 16. To capture this

mathematically, we applied principal component analysis (PCA) to the data, see [21],[22], and

[23]. Principal Component Analysis (PCA) is a method that enables us to describe a set of

observations of n variables, which would normally require n dimensional representation, with a

reduced set of j variables, j n. In other words, PCA addresses the issue of how to characterize a

probabilistic space of n dimensions using a reduced set of j basis functions.

Although some information will be lost in this process, PCA enables us to minimize this

information loss by choosing the new basis as the best approximation by minimizing the variance

of the error. In the original data set, groups of variables often move in the same direction,

indicating that more than one variable is describing the same driver. Therefore, a group of
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variables can be replaced with a single new variable. At the same time, we retain the maximum
information (variance) of original observations.

PCA generates a set of new variables, called Principal Components (PC). Each principal
component is a linear combination of the original variables (the old basis). All PCs are
orthogonal to each other, forming a new orthogonal basis, so there is no redundant information.
A rough explanation of the theory supporting principal components and their derivation is
provided as an Appendix.

The output of the PCA algorithm is a set of principal components vL and associated weights
wi so that the best approximation of the load vector Ld in the new basis is given by:

I

Ld =A +Xw1 LL

i=1

In this report we will use a single principal component, a monthly [24x1] vector VLm to
describe load behavior, reducing the load equation to:

Ld =Am+ wvL

where gm and vm are deterministic parameters and wd is a daily stochastic process.
The choice of the number of principal components used is a tradeoff between accuracy and

complexity. For short-term decision, making such as day-ahead bidding, a single PC may not
provide a rich enough sample space. However, when applying the price process to hedging and
valuation decisions over months or years, a small basis prevents the problem from blowing up in
computational complexity.

Next we need to address how the stochastic component wd evolves over time. The model we
propose is a two factor mean reverting model:

eL eL =-L +LJY. .L
ed+1 -d d- ed~mzd

,L 3 4LKCL +a Ld Lb
d+1 d Zd

where,
ed = Wd L5

6.4.3 Mean Reversion

We can interpret the states edL and 8 dL in terms of the temporal characteristics of load. The
state edL models short term deviations in load, such as those caused by sudden heat waves. These
events are generally temporary, and load gradually reverts back to normal levels. The process for
edL is therefore chosen to be mean reverting. The parameter a determines the speed of reversion.
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Figure 6-6 illustrates how the short-term spikes in load quickly revert to the long-term mean. For

clarity, here the mean is being modeled as a monthly rather than a daily process. This time scale

separation between the states is a method, which further simplifies the application of the model,
and its advantages and disadvantages are described in the calibration section.

6.4.4 Stochastic Growth

As eL reverts to zero, the weight wL reverts to 8L, or the "normal" load level. However since

the power system is never at equilibrium, the normal load level is in itself a stochastic process.

The 8L process characterizes the stochastic growth of load over time. This growth could be

positive or negative for any given period of time, and there can be significant uncertainty to the

rate of growth, captured in the long-term volatility parameter &P. The long-term growth of load

in New England is illustrated in Figure 6-7.
The effects of the structure of the stochastic process on the mean and variance of future load

is explored in detail in the section on simulation.
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Figure 6-6 Reversion of the load weights wdL to long-term mean 8mL, year 1998
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Figure 6-7 Load weights WdL, and long-term mean 6 mL, New England

6.5 Stochastic Supply Process

Recall our underlying price model as a function of load and supply states Lk and bk,

Sk -eaL+bk

This implies that the aggregate supply bid curve is an exponential function of fixed shape
(given by a), which shifts over time.

Let us consider the input drivers, which could cause the supply curve to shift:
1. Fuel price: An increase in fuel prices would force suppliers to increase their bids into the

spot market in order to remain profitable. An increase in the fuel price would therefore be
accompanied by a positive shift in bk.

2. Unit Outages and Scheduled Maintenance: The withdrawal of a generation unit from the
market, whether through an unexpected failure or a scheduled maintenance, causes a significant
shifts in the supply bid function. The size and duration of these shifts, as well as the frequency of
their occurrence, is technology dependent.

3. Gaming and Strategic Bidding: It has been shown that generators with significant market
share may increase their profits by unexpectedly removing part of their generation assets from
the market, forcing up price and increasing the payoff for the remaining units [36]. Such an event
can be characterized by a positive shift in bk.
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4. Unit Commitment Decisions: While generators are often modeled as having well behaved
quadratic cost functions, in reality there are significant non-standard costs and constraints
associated with starting up and shutting down a generator. Translating such constraints into bids
will cause generators, even though they may have no market power, to deviate from a marginal
cost-bidding scheme.

We now attempt to translate the impact of these drivers into a stochastic process for the
supply process. As with the load we characterize supply by a [24x1] daily vector bd containing
hourly supply levels. This daily vector is then decomposed into its deterministic and random
components:

b =A ,b + rd

6.5.1 Seasonality of Supply

Although less pronounced than the load, the supply process does exhibit seasonality over
multiple time scales. The most pronounced are monthly and intra-day seasonality.
1. On a monthly time scale, we see the scheduling of maintenance. In a practice that has carried

over from the regulated industry, units are regularly scheduled for maintenance during the
off-peak seasons (mainly fall and spring), when demand spikes are unlikely. From the
modeling perspective this creates a repeating twelve-month pattern of supply bid shifts.

The fuel markets feeding the generators also experience seasonality on this time scale,
mainly due to seasonal demand on oil and gas. Seasonal fuel prices therefore create a second

pattern of supply shifts. The aggregate effect of these repeating yearly patterns is captured by
the deterministic shifts in the monthly parameter gm.

2. The second type of seasonality experienced in the supply process is intra-day, where we
observe repeating 24-hour patterns of supply curve shifts. This type of seasonality is mainly
contributed to unit commitment decisions done by the suppliers. The operator of the unit will
estimate a day ahead of time the hours during which it will be profitable to run the unit,
based on the startup/shutdown constraint of the generator. Once this decision is made he may
choose not to submit bids into the remaining hours, so as to not risk being scheduled and
incurring a substantial startup cost. The result is a repeated pattern of shifts illustrated in .
This behavior is captured by the daily shape of the vector gmb.

6.5.2 Modeling Supply Uncertainty

In modeling the random component of the daily supply vector we again apply principal
component analysis, using a first order approximation (one PCA vector),

bd =9b + WbvhV
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The shape of the principal component, Fig and , is strongly related to the unit commitment

decision of the generators.
The process defining the evolution of the weights is similar to that used for the load process:

e b _=- b eb + b Zb

ed+, -e -a ed +md

where,
b Wb _5

ed =Wd 3

The mean reverting component edb reflects the transient characteristics of the supply process.

This includes short-term fuel price spikes and short-term gaming. These effects are temporary

and die out at a rate governed by a. The reversion of supply to its long-term mean is illustrated

in Figure 6-8:
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Figure 1-8 Reversion of supply weights wd' to long-term mean Sm

The non-reverting component 6d b models the long-term availability of generation. This will

include any new installed or retired capacity on the market.

6.5.3 Modeling Unit Outages

So far our supply model has included smooth changes in the behavior of the supply bid curve,
which can be characterized by an Ito process. However, there exist a set of high impact, low
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probability events that cannot be approximated trough random walk type models. One such event
is the unexpected failure of a major generator in the market. There are a number of unknowns
associated with this event:

1.
2.
3.

The probability of an outage in a given day.
The impact of the outage on market price.
The duration of the outage.

4.
The answers to all three of these questions generally depend on the type of generation

technology.

In our model we address these problems by adding a new factor to the supply process:

1. The probability of an outage occurring in a given day is modeled as a random incidence
process, specifically a Bernoulli process. The probability of the outage occurring in a
given day is independent of all other time intervals. This is denoted by the variable 70,
where n' = 0 under normal conditions, and n' = 1 when there is an outage in a plant of

technology i.
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Fig. 6-9 Daily shape V for a 400 MW base load plant and a 200 MW peaking plant
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2. The impact of the outage on market clearing price will depend on the capacity of the unit,
and its characteristic operating schedule. An outage in a plant, which is scheduled to
deliver at full capacity, results in a positive shift in bd, equal to the capacity of the plant.
If however the plant was not scheduled to deliver (ie. bid in above market clearing price)
then there is no effect on the price. The probability of a plant being selected to produce in
a given hour generally depends on its cost structure, and therefore on its technology. We
incorporate this effect by assigning a [24x1] vector NIm1 to each technology i. The vector
denotes the capacity of the unit as well as the likelihood of the unit being scheduled in a
given hour. Figure 6-9 denotes the daily shape of V for two types generation
technologies, a 400 MW base load plant, and a 200 MW peaking plant.

3. The outage duration is modeled as a deterministic minimum outage time plus a stochastic
Bernoulli component. By combining this process with the random arrival time of the
outage (described in (1)), we can characterize the process for the state 71id as a Markov
chain, as illustrated in Figure 6-10. Here the numbers next to the arrows designate the
probability of a state transition for a given day. The probability of going from normal
operation to an outage for each day is given by kout. The probability of the unit returning
on-line after the minimum outage period is given by kin. For the case shown the
minimum outage time is four days.

1 1 1

I I III IV
? = 1

? =0
?out

Figure 6-10: Modeling of outage duration for the state l d as a Markov chain

6.5.4 Modeling Scheduled Maintenance

Scheduled maintenance can be modeled in the same manner as unit outages. The only
difference is that the nd becomes a deterministic rather than a stochastic state variable.

6.6 Summary of the Bid-based Stochastic Price Model

The following is a compact summary of the mathematical model underlying the Bid-based
Stochastic Model.
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Spot Price Model:
Hourly price: Ph - eaLh +bh

Daily 24-hour vector of prices: Pd = eaLd+bd

Load Model:

Ld - fL ,
L AL L L L

ed+ -e =-a d md

3 L t5L = 3 KL + L8
d-I1 d + Zd

where,
L =WL ,Led = d d

Supply Model:
b - = -beb ++wb b z

eb -eb =ab eb +Yb zb

ed+l-ed d edcmzd

45 b -45 = +6 bb z b ,
d+1 d + Zd

where,

ej =b --b8b
ad =Wd s

andtd is Markov process with parameters X,0. and Xj, as described in the previous section.
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6.7 Calibration of the Bid-based Stochastic Model

Calibration of the Bid-based Stochastic Model (BSM) consisted of several steps. It used
historical data on aggregate hourly market clearing load in the system and on market clearing
price, as determined at the New England power system electricity market for the particular hour.
The load history encompassed 18 years of hourly load data (1980-1998), whereas supply data
(hourly market clearing price) were only available for the 14-month period between May 1998-
June 2000. Both fundamental processes were independently calibrated using respective data.

Calibration of BSM is a two-part process, as shown in the flowchart in Figure 6-11. In the
first part, data is gathered from the sources, filtered and reformatted. This is mainly done by hand
using spreadsheet program, or simple filtering programs designed in Matlab. Particular steps
differ between load and supply process models, as the models play different roles in the BSM.

Read data

Data Formatting
" Filter out weekends
" Determine supply curve shape

Write calibrated parameters

Figure 6-11: Flowchart of the UVM calibration

The second part consisted of model calibration to data, prepared in the first part. It was to a
great extent uniform in both models, although they were calibrated independently and separately.
In this step, seasonality in load and supply models was taken into account, and the parameters of
the both models were calculated using Principal Component Analysis and Linear Regression.
The general flowchart is presented in Figure 6-12.
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Read data

Data initialization:
Filter out weekends

For month = 1 to 12 compute:

Monthly load average for each hour:

Am = I Xd
YD d=1

1.1.1.1.1.1.2 Principal Component
Analysis

Compute:
* First Principal Components Vm

Compute series of long-term weight averages:

BSM

34 -35 = C + zY6d+1 d + Zd

TBSM

lDD,, d-lw

1.1.1.1.1.1.1 Linear Regression
Analysis

Compute:
" Mean reversion rate a
" Monthly volatility of the weights am

" Long term drift parameter K

* Volatility of the weights' means Y

Write calibrated parameters

Figure 6-12 Flowchart of the BSM calibration
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6.7.1 Calibration of outage parameters

The model of supply process in its original form facilitates description of outages. Although

more flexible, it would make calibration harder since it would require actual data on generator

outages along with price data. Another possibility would be to assume information on outages
from the jumps present in supply bidcurves. Information on outages could then be inferred by
measuring the skewness of probability density function from lognormal distribution of the bids.

For the purpose of calibration, the supply process bd was in our case modeled in a simpler

form without outages. It was therefore possible to postulate the evolution of the daily error for

both fundamental processes, Ld and bd in the following fashion:

ed+l -e =-a ed +Uzd

By substituting the wd and 8d parameters into the equation, we can get evolution of the daily

weights:

ed+l -ed =Wd+l - 6 d+1 Wd +6d =a(Sd Wd + aZd

The daily weights therefore emerge as a result of the mean reversion to the daily mean, long

term drift of the mean K, and the two independent stochastic processes with their respective
volatilities a and a .

Wd+1 Wd a(3d Wd)+ +Zd + a Zd

wd+l=(a)wd+x45d +K+Cy Zd+U) Zd

6.8 Application of PCA to BSM

6.8.1 Load side

We wanted to calibrate the Bid-based Stochastic Model using the New England load data, of
which we had 18 years to our disposal. With a help of a Matlab-based computer program, we

have calculated the matrices v and p. Using the PC Analysis, our goal was to reduce the order of
v from [12 x n x 24] to [12 x j x 24], where n=24 and j = 1. Load was modeled as

iL=pL Li c Li

The monthly average daily shape of load, p.L for 24 hours and 12 months for New England is

shown in Figure 6-5, and the principal components in Figure 6-13. Time series of daily load
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weights wdL reverting to the long-term mean SmL for New England for the years 1980-98 can be

examined in Figure 6-14.
As expected, the load data of a particular hour in single month were highly correlated, so by

using only the first PC we were able to account for over 90% of the variance. The variance (in

%) explained per month by the first PC is shown in Tab. 1.

Tab. 1: Variance of load explained by the first PC for different months

Month 1 2 3 4 5 6 7 8 9 10 11 12 Avg.

Var (%) 92.78 1 95.12 94.60 93.37 94.13 96.33 96.75 96.46 93.91 94.27 93.06 93.36 94.51
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Figure 6-13. Principal Components of load vmL for New England
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Figure 6-14: Load weights of the 1. PC, wdL, and monthly average 8mL, New England
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Figure 6-15. Average monthly pattern of supply shift sLmb, New England
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6.8.2 Supply side

At the supply side model, we wanted to model the evolution of the bidcurve shift factor b that
appears in the price model equation.

Pd =eaL+bd

Similarly to our derivations for load, we wanted to apply PC decomposition to obtain the
following expression for b

b = + w'?", d=I...n, m=1...12 (2)
i=1bd b

The monthly average shape of hourly shift of price curve, tmb for 24 hours and 12 months for
New England is shown in Figure 6-15. The full set of principal components is shown in Figure 6-
16, and the interplay between the first two PC-s in Figure 6-17.
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Figure 6-16 Principal Components of supply shift vm , New England
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To calibrate the supply side of the BSM using the New England supply data, the problem was
that we only had 14 months of hourly b available. To use a full-size PC Analysis, the number of
instances in data (in our case workdays in a month) should be at least equal the number of
original variables, in our case the number of hours analyzed. Since on average there are only
about 22 workdays in a month, we would require at least two instances of each month, raising
the required number of months to 24.

To extend the available amount of data, three approaches were investigated.
1. Duplicating the missing months to obtain 24 months worth of data. Since data are result of

two distinct stochastic processes, this would significantly alter data beyond usability,
introducing a deterministic pattern.

2. Treating the entire year as composed of 12 equal months, thus introducing a single set of j
principal components. As the PC analysis is used to model deviation from the monthly daily
load pattern gm, this approach would have adverse effects on the amount of information
retained by the model. The investigated timescales for load pattern p and principal
component matrix v is outlined in Tab. 2.

Tab. 2: Effects of different modeling timescale

A v Result

1 yearly yearly Some of the effects
2 monthly yearly cancel each other out

3 monthly monthly OK
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First two Principal Components (24) of Deviations from Daily Supply Shape, Nub
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Figure 6-17 First two PCs of deviation from lmb for 24 hours for December

3. Treating every month separately, but using reduced number of variables to calculate PCs.
In our case, only 12 odd hours were used as original variables, reducing the order of PC
matrix v to [12 x j x 12]. For the reduced order of the problem, data on single month (at
least 20 days) were sufficient. After the matrix v was calculated and the number of
retained PCs determined, vm for the missing 12 even hours were interpolated. The
interpolation of values of PCs is acceptable since price shifts between hours always occur
continuously, i.e. there are no stochastic jumps between hours. Tab. 3 presents the amount
of variance explained by the first five PCs.

Tab. 3 Variance of supply (in %) explained by the first four PCs for different months

Month 1 2 3 4 5 6 7 8 9 10 11 12 Avg

PC

1 50.12 36.08 64.98 63.50 49.18 45.68 64.29 51.57 52.10 86.92 59.47 53.99 52.22

2 19.58 19.90 21.37 11.96 42.25 28.22 14.71 24.98 13.21 8.00 12.13 23.16 18.57

3 12.30 18.66 4.30 9.32 4.09 11.44 9.17 13.41 11.75 1.74 10.65 9.56 9.18

4 6.99 8.72 3.31 8.34 1.32 4.74 5.64 3.41 7.21 1.31 5.04 4.07 4.93
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Here, the choice of only one PC is less obvious than in the load data. An average amount of
variance explained by each of 12 original variables is 8.33 %, so according to guidelines
(Appendix A) we should have in some months considered using two or even three PCs.
However, we have decided to use one PC since on average, the variance explained by it was
52.22%. Considering many assumptions we had made with regards to modeling of supply
function, the error made by omitting other PC was not crucial and was therefore acceptable.

6.9 Estimation of the parameters of the BSM

The Bid-based Stochastic Model can be expressed in the state space as:

xt+ = Ax, +Bu, +Q?,

y, = Cx, +Du, +Rc

It can be shown that the model is controllable and observable. The parameters of the BSM
could be jointly estimated using standard estimation techniques, such as either Extended Kalman
Filter or the Maximum Likelihood Estimation method in conjunction with Iterative Kalman
Filter, as outlined in the Appendix B.

The problem of joint estimation of system and noise parameters has been solved in the
literature for simpler problems, see [8],[24],[25] and [26]. However, there are significant
differences between our problem and others. Some of the approaches were using a simpler two-
factor model or assumed risk-neutrality, which does not hold true in electricity markets. Others
were describing price directly without relying on underlying fundamental processes of load and
supply, so they could use additional data on forward prices. Since in our case forward markets on
load or supply shift do not exist, we could not use this kind of additional information.

The standard estimation techniques usually assume known covariance matrices of the
stochastic processes in the model, i.e. process noise covariance matrix Q and measurement noise
covariance matrix R. Alternatively, other techniques for estimation of noise covariances require
complete knowledge of other system parameters. Since among the unknown BSM parameters
there were also the stochastic process variances a and T5, the elements of the matrices Q and R,
the standard estimation techniques failed to converge.

The parameters had to be estimated separately in several consecutive steps, in which the
parameters were estimated independently. Since the load and the supply processes are described
in a similar way in the model, their parameters (XL KF, a', & and b, K b Tb can be
estimated separately and in the same way.

Estimation of the Bid-based Stochastic Model parameters can therefore be summarized in
three successive phases.

1. Long-term drift of the mean K is estimated using linear least squares fit. After K is
determined, data is de-trended, i.e. the long-term drift is eliminated.
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2. Calculation of mean reversion factor: Factor x, determining the mean reversion speed
of the weight process can be estimated using linear regression over de-trended data.

3. Estimation of process volatilities: Using the estimated oc, the remaining parameters of
the model in state space form Y and a can be estimated using the adaptive Kalman Filter
and the technique for identification of the variance-covariance matrices of the process
and measurement noise Q and R, [30].

6.9.1 Calculation of mean reversion factor in the BSM

The evolution of weights can be calculated in the following way:
=(I-a)wO +a8 +c zO+1c+c33

After assuming the initial values of (8o = 0) and the linear trend already eliminated from the
data in the previous step (K = 0), the following sequence of equations unfolds.

W2= (1-a)w1 +a 3 +cz, +a z

=(1-a)w+a80 +az,+a& z' +a'z'

=(1-a)w,+ a z,+ aa3 -z' + az

k--1

Wk+l = ( -a)w, +yZ , a , z' +z6
j=0

The last equation could be rewritten as

Wk+l = (I - a)wk + Ak

k-1

Ak =UZ +a5 al z1 +z

(j=0

Since the part of the equation, denoted as Ak, is influenced solely by zero-mean processes z
and z8, it is a zero-mean process.

Ak ~ N(0,1)

It is then possible to estimate c using Linear Regression over the time series vectors of
weights Wd. The vector Wd+1 is shifted in time for a day ahead compared to Wd. The operator 0
denotes least-squares fit of the two vectors [27].

a =1-(wd+1w d)

Although Ak is a zero-mean process, its variance is a cumulative sum of the variances of the
underlying stochastic processes. The variance therefore grows rapidly with the number of
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samples considered in the regression procedure. Using the full set of samples (some 4500)

rendered very unreliable estimates of a. It turned out that a more reliable estimate could be

obtained using between 1500 and 50 samples.
The development of estimates of aL for the load process is shown in Figure 6-18 and for

supply process, a , in 6-19. As the number of samples used in estimation decreases, the value of
a converges to its actual value. The two curves show evolution of the estimate when using data
from the beginning or from the end of the series.

A summary of the estimated parameters of the Bid-based Stochastic Model for both load and
supply processes are shown in Tab. 4.

Tab. 4: Estimated parameters of the BSM

Load process Supply process

a 0.3 0.75
K 4 -1.7e-3
a 1.13484e-4

-- --r - -- - ------- -- . .

OA1- 4

U 0-25

'oo -~

% 5W 10,00 1500 2000 2500 3000 3500 40'00 4500 5W
Number or cOse"ImNS conhJidetr

Figure 6-18 Estimation of a'L as a function of number of samples considered
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6.0The Time-scale Separated Bid-based Stochastic Model BM vle rmtediyBd

6.10. Inroucio

based Stochastic Model as we introduce the assumption of time-scale separation between the

fast, short-term and slow, long-term processes. The assumption significantly reduces complexity
of the model and therefore the computational burden necessary in potential model applications.

The TBSM postulates time scale separated development of the daily weights in load and

supply curve shifts. In this model, the daily weightswd revert to the monthly mean 8m, yet both

states of the model evolve on a different time scales. We define a daily error of the weight ed as

the difference between daily principal component weights wd and their long-term mean 8m.

where

ed., -e= =-a ed+a, MZd

4,5M+-_,5 = x+aYz"

ii M
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Typically, m >> d, with m denoting monthly and d denoting daily values. As the properties of
both models differ substantially, the values of their parameters differ significantly as well, Tab.
4.

The assumption on time-scale separation was introduced to facilitate simpler calibration of the
model. As a trade-off, several issues with the Time-scale Separated Bid-based Stochastic Model
arise.

1. Time scale separation is not genuine: the time constant of the monthly process Tm is not
sufficiently larger than the one of the daily process Td to warrant the separation
assumption.

2. The weight process does not fully revert to the mean within one month, so it is
misleading to compute the long-term mean as an average of the weights over a month.

8 , = I T . dM TIXWdT,

Because of this, the long-term mean in the TBSM is larger than the actual mean, 6 TBSM >

5 BSM. Since the weights in the TBSM revert to a larger mean, the speed of mean reversion
(TBSM BSM is necessarily greater than the actual one.

3. The jumps in the 6 TBsM are critical and unacceptable for Unit Commitment under physical
constraints.

6.10.2 Calibration of TBSM

Although load and supply processes describe different physical phenomena, the BSM
postulates a similar structure for both of them. Calibration of both processes, although performed
separately, therefore follows the same pattern.

From the time series of daily principal component weights wd, the parameters of the model,
which govern mean reversion of the wd, u, and long-term drift of the mean 8rm, i, needed to be
determined. The following steps describe the procedure.

1. We construct a [Dx 1] time series vector of principal components weights wd, w.

W=[wd], d =L..D

2. For every year and for every month within the current year, a mean of wd, 8m, was
calculated. D is the total number of days in the data, while Dm is their number in the
current month.
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=5 1 Dm,= Wd, m=l..12
Dm d=1 (3)

D = D,
m=1

The [1 2x 1] vector of monthly means 5* could then be defined as

d*=[3m], m=1..12

We could also define a [Dx 1] vector 5, defined as a daily time series of 6m.

d=[8md], d=1..DM m=1..12

3. The mean reversion of the daily weights Wd to the pertaining monthly mean 5m is
described as

Wd+l Wd= a (6,-Wd)+amZd (4)

where the change in weights is determined by the mean reversion part and the stochastic
component, amzd. The stochastic process Zd is normally distributed with a zero mean and
standard deviation of one.

Zd = N(0,1) (5)

The mean of the stochastic process is zero and is not affected by the process volatility
measure, am. Coefficient x could therefore be determined using linear regression as the
slope b of the "best fitting" regression line to satisfy the least-squares criterion [27].

y'= a +bx
D

1(d -)dY

b = d=I
D

Y(xd 4Y
d=1

The regression is performed over the time series vectors of weights w and monthly means
S. A shift of the vector Wd for a day ahead is denoted as wd+1.

X =Xd I(Wd+ -Wd

Y=[YdI=(dm-wd) (6)

a=b
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4. Using cx, a vector of estimated weights W'd+1 was obtained:

W'd,1 = ad,, +(I -a)w d (7)

5. The difference between the estimated W'd+1 and Wd+1 was the contribution of the
stochastic component of the process, amZd. It was therefore possible to calculate the
monthly volatility measure 73 m of the process by subtracting the estimated values of W'd+1

from the actual values Wd+1 and calculating standard deviation of the parts of the time
series vectors, belonging to a particular month:

-, = StDev(we'" -w'i/), m=L..12

StDev(x) = J xi x8
D- 1 DI,1

6. The parameters of the weight mean process 8m have been determined using linear
regression. The drift parameter x has been calculated as a mean difference of time shifted
time series of the monthly means 8.

? = dk+ -dk

? = [c], d -=L.D

KC = ((dki- -dk)01)

7. With the help of K, a [Dxl] vector of estimated weight means Sd+1 was calculated:

d'd+ =iK +dd (9)

8. Similar to monthly volatility in w, the volatility measure (T of the mean process was
calculated by subtracting the estimated values of 8 'd+1 from the actual values Sd+1 and
computing the standard deviation:

.3 = StDev(dsl - d'/,l) (10)

After applying the algorithm to both processes, the 1 st principal component's weights of load
wdL and of supply curve shift wdb, a set of parameters of BSM was obtained, presented in Tab. 5,
Tab. 6 and Tab. 7.

Tab. 5: Calibrated parameters of the Load in TBSM

ccL LGm L
Load 0.0204105 75.4766 2023.60
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Tab. 6: Monthly calibrated parameters of the Supply in TBSM

a jc (18G3

Supply 1.13484e-4 0.0318440 -0.0536667 0.413067

Tab. 7: Monthly calibrated parameters of the TBSM

Month Load volatility measure amL Supply volatility measure (m 1b

1 876.755 0.200464

2 674.219 0.081697
3 477.651 0.350756
4 468.729 0.375337
5 831.078 0.384563
6 679.871 0.324813
7 1092.886 0.364438

8 748.013 0.104237
9 1030.650 0.177193
10 371.965 0.409969
11 779.300 0.134920
12 862.887 0.225309

A comparison of the calibrated parameters between the two versions of the model, BSM and
TBSM, is shown in Tab. 8. The variances nmL and Gmbin TBSM are 12-month averages.

Tab. 8: Comparison of estimated parameters in the TBSM and BSM

Load process Supply process
TBSM BSM TBSM BSM

(X 0.0204 0.3 0.0318 0.75

1C 75 4 1 -0.0537 -. 7e-3

a ~1. 13484e-4

An important difference between the TBSM and BSM is also the speed of reversion to mean,
(x. In case of BSM load process, (xL is about ten times larger than in TBSM, whereas the factor is
about 20 times bigger in case of supply process ab. In the BSM, the long-term mean process 8

evolves daily. Although the weight process Wd responds to stochastic influences in load and
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supply processes, it reverts to the long-term mean faster than in the case of TBSM where the
mean evolves monthly.
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6.11 Simulations

The BSM postulates the market-clearing price as an exponential of the two fundamental

processes, load and supply.
Sk =e aLk+bk

Both processes - supply and load - can be described in a similar way as a [24xl] vector X
using generic formulation.

Xd +Y d
i=1

Wd+l -WdUa(4d Wd)UmZd

=I5 ~ 35z
d+1 dK d d

By calibrating the model to historical data of load and supply data, we obtain the values of

parameters that determine the evolution of the load and supply processes on:
* the monthly timescale: the [24x12] matrix of average monthly 24-hour daily profile sm

and
* within a day on the hourly timescale: the [24x12] matrix of monthly principal

components vm.

These parameters are independent of the type of model we use for calculation of daily

weights.
At the same time, we obtain the parameters that govern the evolution of the daily weights wd;

mean reversion speed x, long term drift -K, a [24x1] vector of daily weight volatilities Om and
long-term mean 5 d volatility a.

Using simulation it is possible to investigate the properties of the two fundamental processes -
load and supply, which drive the price in both models. The simulation also enables us to
illustrate their influence on the price.

For the purpose of simulation and demonstration of the properties of the model only, the BSM
volatility measures a and T were approximated using the known parameters of the TBSM. Since
these values don't represent true estimates, they were annotated as a' and a'.

* The daily weight process wd evolves on the same timescale in both TBSM and BSM
models, so their volatility measures should be roughly the same,

aTBSM = aBSM-

* The long-term mean on the other hand develops much faster, and its volatility should
therefore be much smaller, divided by a square root of the time constant factor. Assuming
that there are about 25 working days in a month, the daily volatility should be about 5-
times smaller,
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'D VM - ", T ~ 25 days

The simulations were performed using either the Bid-based Stochastic Model or Time-scale

Separated Volatility Model, calibrated to the short-term market-clearing price. The simulations

investigated the impact of different parameters for both load and supply processes on the output

of the model. The following properties were investigated:

1. Evolution of the average daily short-term market price (spot price) of electricity, as

influenced by the average monthly 24-hour profiles, gmL and limb, and monthly principal

components VmL and Vmb.

2. Expected value and Standard Deviation of the daily weights wL and wb, driven by the

daily process parameters, (x, Y, am and ed.

3. Development of daily averaged hourly price.

The results are briefly discussed and shown in the following sections.

The parameters used in simulation are given in Tab. 9. In addition to the calibrated ones, the

parameters d and o' were approximated to demonstrate properties of the BSM and are presented

in the shaded cells of the table.

Tab. 9: Parameters of the BSM, used in simulations

Load process Supply process

a 0.3 0.75

IC 4 -1.7e-3

a 1. 13484e-4

6.11.1 Deterministic price and monthly parameters

The monthly average spot price in the actual data to which the model was calibrated is shown

in . There are relatively big differences among certain months, describing a year with unusually

high summer prices. The summer of 1999 was very hot and the prices were higher than the

historical levels. Since only a limited amount (14 months) of price data was available, the

influence of a single month in calibration of supply process was stronger than in load process

calibration, where almost 20 years of data was available and the influence of excessive months

are less prominent.
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Figure 6-20 Monthly average of the spot price, New England, May '99-June '00

In Figure 6-21, the seasonal evolution of the average daily short-term spot price of electricity
is shown, as influenced by the average monthly 24-hour profiles, .mL and gmb, and monthly
principal components vmL and VMb. The price as generated by the model exhibits similar
properties as the actual average monthly price in Figure 6-20. The main difference could be
observed during the summer months, where the influence of load process dampens the excessive
shift in supply curve toward higher prices, as dictated by supply process.

6.11.2 Daily weight process properties

The stochastic properties of the model on the other hand can be illustrated without
interference of monthly mean values by examining the daily weight processes wL and wb. They

L L6 b bare driven by four stochastic processes Zk , Zk , Zk and Zk and governed by the daily process

parameters, a, K, am and ad. Interplay of the short-term w process variances, amL and amb, and
long-term 8 process variances c' and ab in the Bid-based Stochastic Model is schematically
shown in Figure . The short-term variances of the mean reverting process, which are bounded,
dominate in the short run. As time progresses, the dominance of the long term variances prevails.

83



40 1

35-

30

25

20 ._. ...

15

10
10 30 0 90 120 150 180 210 24D 270 300 330 350 390

Day

Figure 6-21: Simulated average monthly price

Similar conclusions can be drawn from Figure 6-23, where the evolution of the mean value of
wL and its volatility boundaries are shown. The standard deviation of the process is not uniform

over the months, what is the consequence of interplay between two volatility measures, GmL and

c'8. At the same time, the volatilities of electricity price differ from one month to another.
During the periods of peak load, prices tend to be much more volatile than in spring or fall,
which is reflected in the model output.

The mean grows steadily according to the long-term growth parameter i'. The weights were

simulated for a two-year period with a 10.000 simulation runs.

The mean of the supply process weight, wb, and its volatility boundaries are shown in Fi. The

mean slowly drifts downwards, and the monthly shapes in standard deviation are more

pronounced than in load process in Figure 6-23.
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Figure 6-23: Daily weights WnL : mean value and standard deviation
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Figure 6-24: Daily weights wmb : mean value and standard deviation
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6-25. Here, w L is scaled with the factor of the exponential shape a. The volatility boundaries of

the supply process wb are much broader indicating the dominant source of uncertainty in the

forecasted price of electricity is the volatility of the supply process.

6.11.3 Daily price using BSM

Using the BSM it is possible to generate hourly spot price Srand its volatility. Because the

intra-day dynamics that can be found both in hourly development of load and hourly clearing of

market in supply, it is important to have the model that is able to capture the hourly price

dynamics. On the other hand, it is sometimes also necessary to neglect the hourly dynamics and

deal with daily prices, as it is the case in certain applications such as forward contracts.

In the Stochastic Model the price evolves as a sequence of daily, 24-hour vectors of prices.

S= -- eaLd+bd

Sd = [Pdhl] h =1..24
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The daily price would therefore be calculated as a daily average of the vector Sd.

1 24

24 h=I

In the simulation, we have examined the development of the average price Sd during the
course of one year. The mean and the standard deviation of prices were calculated in 10.000
simulation runs.

Figure 6-26 displays the mean value of electricity price and the volatility measure (in our case
standard deviation) boundaries. Both prices and standard deviations exhibit strong monthly traits.

The standard deviations, when presented alone in Figure 6-27 show corresponding monthly
diversity but generally agree with each other and with the observations on volatility in daily
weights.

6.11.4 Daily price using TBSM

The Time-Scale Separated Bid-based Stochastic Model properties have been investigated in
the same way as the properties of the Bid-based Stochastic Model. Using the parameters from
Tab. 4, the average daily price Sd was simulated for the period of one year with 10.000 runs.

The mean value of Sd is shown in Figure 6-28 together with the standard deviation as
volatility boundaries. The overall shape still reacts noticeably to changes in months, while the
overall impression is that the volatility is somewhat larger than in BSM. The same conclusion
could be drawn from analysis of standard deviation in Figure 6-29.
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6.12 Concluding Remarks

A wide range of literature has evolved on the modeling of electricity markets, and the
associated price dynamics. Here we have briefly reviewed a number of approaches; quantitative,
cost based, economic equilibrium, agent based, and experimental, all with their own advantages
and drawbacks. The modeling approach used is generally dependent on the type of problem
addressed. A marketer may use one type of model for optimizing the short term bidding of
assets, another for hedging in the forward markets, yet a third model for evaluating investment
decisions. Ultimately, the user would like all of these models to reflect the best current estimate
of the future. However, given the range of modeling approaches, it is often hard to check
whether the models used are consistent with each other.

The bid-based model presented in this report is intended as a fundamental model for
electricity price dynamics, and is to be used in a wide range of applications. The emphasis was
placed on incorporating the unique characteristics of electricity prices, including seasonality on
multiple time scales, lack of load elasticity, stochastic supply outages, strong mean reversion,
and stochastic growth of load and supply.

The second emphasis was reducing the computational complexity of the model. This was
achieved by applying techniques such as principal component analysis, which reduced the
dimensionality of the model drastically, with a minimal loss in performance.

A timescale-separated version of the model was calibrated on real market data (New
England). The lack of price data on the market makes the calibration on the supply side of the
model tentative, but as more data becomes available, the parameter estimates will become firm.
The scheme for calibrating the original version of the model is outlined, but its implementation is
left to future research.
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Chapter 7 Optimal Futures Market Strategies for Energy Service
Providers

The previous chapter focused on developing a stochastic model for the dynamics of electricity
prices. Here we show how the bid based model can be applied to help market participants
optimize their decision making under uncertainty. This chapter will address the problems facing
energy service providers. In Chapter 8 we address the supply side of the market.

7.1 Hedging Risk For Energy Service Providers
With the deregulation of the electric utilities came a significant increase in the financial risk to
the companies serving the end users, known as load serving entities (LSE) or energy service
providers (ESP). The risk faced by the energy service provider can be traced back to the
physical and economic interactions between the ESP and its customers. The physical
configuration of the distribution network does not generally allow for any differentiation in the
service provided to different customers, in terms of power quality or reliability. Economically,
the ESP is limited by its contracts to serve retail customers, typically known as standard offer
contracts, which are structured to shield the customers from any fluctuation from the whole sale
price of electricity. The financial risk from the whole sale market must therefore be absorbed by
the ESP. In this chapter we break down the sources of this risk, and propose a methodology for
the ESP to hedge its customer portfolio using a dynamic futures trading strategy.

The key to effective risk management for load serving entities is to understand the temporal
dynamics of the uncertainty in the market price (price risk), and in the customer demand
(quantity risk), as well as the correlation between the two. The cash flow for a load serving
entity is defined over a given delivery period, as a function of uncertain future price and demand
levels. Next we impose dynamic constraints on the price and load levels using the bid based
model developed in the previous chapter. The risk preference of the firm is characterized using a
mean-variance formulation. The trading strategy consists of a decision rule determining the
quantity of forward contracts to purchase or sell at given times prior to the delivery period, as a
function of observed price and demand levels. In this thesis two cases are examined. In the
static hedging formulation, the ESP is allowed to trade a single time prior to the delivery period.
The decision problem in this case becomes a nonlinear programming formulation, and is solved
through simulation. Next we extend the problem to the dynamic hedging case, where the firm is
allowed to trade at fixed intervals prior to the delivery period. To pose this problem one must
extend the price model to incorporate uncertainty in the dynamics of the forward price. The
problem suffers from a case of the curse of dimensionality. The computational complexity
grows quickly as a function of the number of delivery periods, the number of hedging intervals,
and the number of state variables in the underlying spot, forward and load models. We examine
properties of the models which could allow for simplifying assumptions, as well as a possible
reformulation of the objective function, reducing the computational intensity of the problem.
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7.2 The Physical and Economic Interaction of Energy Service Providers and
their Customers

Many of the problems inherent in the physical and economic interaction of ESPs with their
customers can be traced back to a paradigm developed by society with regard to the industry
during decades of strict regulation. Electricity is considered by many as a common utility, even
a social right, rather than a commodity. Implicit in this viewpoint is that the providers of
electricity should not be free to withhold their product, or lower the quality of their service,
merely for economic reasons. The old regulatory structure did little to discourage such an
attitude. Since returns for the utilities were essentially cost based, there was no such thing as a
bad customer, or a bad investment. The objective of the utilities during this period is best
described by the phrase 'keeping the lights on'. Whatever the cost of ensuring that the light did
indeed stay on, the firm could be certain to recover its expenditures.

In the deregulated environment, the idea that the customer has a 'right' to electricity does not
corresponds to the objectives of the energy service providers. Energy service providers are profit
driven entities, with an obligation to their share holders to extract the maximum profit possible
from the provision of electricity to retail customers. In some instances, this may entail, not
serving a customer, if the cost of providing the service exceeds the willingness of the customer to
pay. This is were the historical role of utilities catches up with the deregulation process. Since
customers were traditionally considered to have a right to service, and furthermore all customers
had the right to the same service (at least at the retail level), the distribution infrastructure was
not built to accommodate customer segregation of any type. The two major deficiencies in the
current distribution system are metering and interruptability of customers.

1. Metering: Electricity meters generally record only the aggregate consumption of
electricity by the customers. Furthermore, in most areas the meters are not connected
to the ESP thorough modems or other communication devices, but must be read
manually. As a result, the only information available to the ESP is the monthly
aggregate consumption by each customer. As described in the previous chapter,
electricity exhibits significant daily and weekly price cycles. As a result, the cost of
serving two customers who use the same number of KWh's a week, but have different
patterns of consumption, may differ significantly. In order to measure the real cost of
serving a customer, the ESP needs to measure the users power profile, that is the
typical rate of consumption for each hour of the day. This information can be used in
order to provide a fair price of service, in which customers do not cross-subsidize each
other.

2. Interruptability: The non-storability of electric power requires that a delicate balance
between the rate of production and consumption is upheld at all times. At certain
times, either due to unusually high demand levels, or due to the unexpected loss of
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generation resources, there may not be sufficient generation available to meet the
instantaneous load. In such cases, the system must shed load in order to avoid a
system breakdown. Currently there are no means for the energy service provider to
curtail selected customers who may be willing to offer such a service in return for
reduced rates [33]. Instead they have to rely on area wide rolling blackouts (as
experienced recently in California). Such ad hoc measures are clearly damaging to the
overall social welfare since they do not distinguish between how different customers
value the reliability of the service.

The lack of installed technology to handle metering and selective interruptability currently
prevent the ESPs from providing differentiated services to various groups of customers. This has
effectively prevented the establishment of a competitive retail market for electricity [34]. It
leaves the energy service providers holding inflexible standard offer contracts with significant
price and quantity risk. In fact one could argue that, since they offer identical services, the only
area in which ESPs can compete with each other is in the ability to manage this risk.

7.3 Problem Formulation
We consider the situation where an energy service provider has obligated itself to serve a

group of customers at a fixed rate. The length of the contract is generally several years, and the
service provider has no means of 'opting out' of the contract. Furthermore, the contract is
structured in such a manner that the customers may consume as much or as little power as they
want at any time without additional penalties. This setup is similar to the current standard offer
contracts being offered to retail electricity customers. Furthermore we impose the constraint that
the ESP owns no generating assets but purchases all power from the spot market. This exposure
to the spot market leaves the ESP with significant financial risk. To mitigate this risk it can
purchase financial futures contracts on electricity through the commodities exchange. We will
here address the problem of how to generate an optimal trading strategy for the LSE in the
futures market.

7.4 Modeling
We will now generate mathematical models necessary to pose the hedging problem for the

energy service provider [36]. The general components of the problem were outlined in Chapter 2,
they include modeling the price (and quantity) uncertainty, incorporating this uncertainty into
and overall cash flow model, and optimizing with respect to the firms risk preference.
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Figure 7-1

The variables and parameters of the model are defined in Table 7-1.

Optimal
Strategy

R Fixed rate for customer (standard offer) ($/MW)

Sd Spot price in day d.
Id Total amount consumed in day d (MW)
Fti,T Price of a forward contract for delivery in month starting at T, as

seen at the time of purchase t ($/MWh)

qtiT Total quantity of forward contracts purchased for delivery month
starting at T (MW/h) at time of purchase ti.

M total number of delivery days in a month
N number of months in the delivery period
T Starting day of delivery period
to Starting day of hedging period
K Number of rebalancing intervals in the hedging period

Table 7-1 Variables and parameters in the ESP problem formulation

The time period during which the ESP has committed to serving its customers is broken down
into N delivery periods, each spanning one month. This is done in order to accommodate the
structure of the futures market. Recall that each traded futures contract requires delivery for one
month. We will furthermore make the simplification of using a single load and price variable per
day. In reality there are 24 hourly spot prices in a given day. At the end of the chapter we
discuss how the modeling approach can be extended, using principal component theory, to
account for intra-day variations
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7.4.1 Cash Flow Model

We begin by modeling the cash flow for the LSE before any purchases in the forward market,
which we call the unhedged cash flow (Pu). The total TP is given by

N M(m+1)

TU~ ld(R -Sd)
m=1 d=Mm+1

For simplicity we will here consider the case where the hedging period is a single month. The
cash flow function then becomes:

T+M

pU = ld(R -Sd)
d=T

Next we consider the cash flow incurred from a portfolio of forward contracts qtj,T. This is the
cash flow of the hedge (TpH).

HT+M H

pH T(S -F )

d=T[I j-iT

The index t represents the time at which the forward contracts are purchased or sold. In
contrast to the spot market, which clears at discrete daily intervals, the forward market trades in
real time. For computational purposes however, we will restrict trading to discrete intervals tj.
Each tj represents a hedging interval. Changing the number of futures contracts held from one
interval to the next is known as rebalancing the portfolio, or rolling over the hedge. Since a
forward contract FtT cannot be purchased after the starting date of the delivery month (T), we
include the constraint t: T. The timeline of the hedging process is shown in Figure 7-2.

to tl t2  tH-I T T+M

hedging period delivery period

Figure 7-2: Time line for dynamic hedging problem

The hedging period [to,T] is divided into H hedging intervals of equal length. The number of
hedging intervals used will generally depend on the transaction cost and liquidity in the forward
market. The total cash flow for the hedged LSE (T) can be expressed by,
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_T+M[ H

T1= [i(R -Sd) qT (Sd -Ft T)
d=T _j=0I

Not that the forward contracts have no cash flow prior to the delivery period (they are not pre-
paid), so that all cash flow occurs during the delivery period. P is therefore equal to the net
profit of the ESP with respect to the load serving contract.

7.4.2 Price and Demand Models

The load level, as well as the spot and forward prices at any future date, are random variables
in the cash flow formulation. To characterize the distribution of these variables we apply the bid
based stochastic mode developed in the previous chapter. Since future values of the forward
price occur as explicit terms in the cash flow, we must extend the price model to incorporate the
dynamics of the forward price.

7.4.2.1 Bid Based Model

The model for the spot price is identical to the one developed in Chapter 6, except that we are
applying a daily rather than an hourly model, and are ignoring the unit outage component.

Spot Price Model:

Sd- eaLd+bd

Load Model:

Ld =A +wL,

eL e = -aLLed+le=d d LLd

35L 8LK=IL +cL5L
d+1 d _

where,

L L

ed =Wd -45

Supply Model:

bd J +w .

eb e -a + b bb
ed+l d a d~ mZ
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45 b _5b =Kb + Yb(5 b(5
d+1 d d0Z~

where,

ej =w! -S3.

7.4.2.2 Forward Price Model

We model the forward price as the expectation of the average spot price over the delivery
period of the contracts. In addition we allow for the presence of a seasonal risk premium . The
risk premium can be positive or negative depending on the market, and furthermore is allowed to
be seasonal in the maturity date of the contract.

F(t, T) = e'(Tt)E, - }
We model the risk premium of the forward risk premium so that there it grows linearly with

the log of the average spot price. This makes sense since log of the spot price corresponds to the
sum of the load and supply states. Recall from our discussion of the properties of the bid based
model, that the long term component of the load and supply states (corresponding to the 8
processes) has a variance which grows linearly in time. In essence the model proposes that the
market assigns a premium to forward contract in proportion to the variance of the underlying
asset. While this makes intuitive sense, there is not yet sufficient data available to properly test
this assumption. A more general model may assign a stochastic process to the risk premium.

7.4.2.3 Demand Model

One of the challenges of the load serving problem is to understand the correlation between the
price and the demand for electricity. While demand is not generally price elastic, that is
consumers do not adjust their behavior based on the market price (or even observe it for that
matter). However since short term demand deviations are mainly temperature driven, the same
inputs which drive the total market load is likely to also effect the customers served by the ESP.
The bid based model explicitly captures the effect of market demand fluctuations on the spot
price. What remains to be modeled is the relationship between the system load and the ESP
customer demand. In this chapter we will assume the ESP serves a rough cross section of the
demand in the market, and will model the ESP demand (la) as a fraction of the total load (LA),

plus a noise term,

'd Ld +Yd.
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7.4.2.4 Model Properties

The model can be characterized in state space format, where the state vector is given by ,

xT = w w b

the control variables,

Ud = [qd,T

a vector of disturbances,

=T [ ,d & ,b Z
ZdZd' Zm' Zd,1

a vector of output variables,

y =[Sd ld Fd,T

and a vector of time varying parameters,

,T = [p Lb L,b a L,b a L,b,l 0 .SL,b

The state dynamics are linear, while the output variables are nonlinear function of the states.
We can write the model in compact form,

Xd+l =Axd + Bud + Qzd

Yd =f(Xd'Zdlom)*

7.4.3 Modeling the Firms Risk Preference

So far we have defined the cash flow function and the dynamic constraints on the underlying
stochastic variables. Now we must define the firm's risk preference, in order to arrive at an
objective function for the optimization problem. The mean-variance formulation defines a firms
utility in terms of a linear tradeoff between the expected value and variance of the payoff,

Ud (') = Ed I}- r * var, f}.
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7.4.4 Summary of the ESP Hedging Problem

The firm needs to develop a decision rule, or policy, for the quantity of forward contracts to
purchase at each hedging interval (qtj), in order to maximize its objective function,

maxq J,

to Et{T}-r*var{T}.

The cash flow P is defined as,

T+M H

T = I U (R - Sd) q PT q,, (Sd - Ftjr ),
d=T Ij=0

and subject to the dynamic constraints,

Xd+I = Axd + Bud +Qzd

Yd =f(Xd'Zd9,m)

for the set of state and output variables defined above.

7.5 Efficient Reformulation of Cost Function
The optimization problem defined above, seems suitable for a dynamic programming (DP)

solution algorithm [40],[41]. There is a set of well defined dynamic state equations, coupled
with a cost function based on expected future payoffs. When attempting to fit the problem into
the standard dynamic programming form however, we run into several problems. First, the
policy (or control) of the firm is defined over the hedging interval [t., T]. The payoff or cost
function on the other hand, is defined over a non-overlapping delivery interval [T, T+N]. The
DP algorithm however requires that the incremental cost at each stage, gk(xk, uk), be defined,
allowing us two write the objective function as a sum of the cost incurred at each stage,

J,(xo)= E gNN(xN)+Jkxkk(xk)w]}
t"

To transform the problem into one with an additive cost function, we create a value function
Vt, which measure the expected cash flow during the delivery period, as seen from each step in
the hedging period,

V,§ = E,,{0},
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or in expanded form,

T+M T

V =E{TI 1d(RSd)+JqtTs F;J}
V,, = ,i ja(R a Tq:, (Sd - Ftjr )

d=T j=0

Next the mean variance formulation is superimposed upon the new value function. Vo represents
the initial expected return of the unhedged portfolio. The objective of the hedging strategy is to
maximize the expected value of the portfolio while minimizing the risk (or variance) of the
return. We define a mean variance objective function as,

maxq,., J=E {VT -V -rVar{VT-V .

The new objective function differs from the old in that it does not optimize over the variance
of the actual cash flow. Instead we attempt to maximize the risk adjusted value of the expected
cash flow up to the end of the hedging period.

Based on the stochastic models described in the previous section, we can describe the properties
of the model and the value function Vd. The model is Markov, meaning that all information of
future outputs is contained in the current values of the state. As a result the value function Vd is
also Markov. Furthermore Vd is a martingale process,

Ed(V) = Vd

The proof for this is a simple application of iterated expectations.
Using these characteristics of the value function, we can now rewrite the objective function of
the hedging problem,

J = E{VT - V-rVar{VT -Vol

7.6 Solution Approaches
With the reformulated cost function, the problem would seem to fit into a dynamic

programming framework. This however is not the case. The penalty on the variance of the value
makes the problem impossible to solve through backward iteration. Specifically, it can be shown
that the Bellman Equation is violated [38], thus invalidating the dynamic programming approach.
There have been results, however, illustrating that variance penalized Markov decision problems
can be solved through nonlinear programming. Methods presented in [37],[38],[39] and [42]
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present such techniques for a variety of interpretations of variability. The discussion is generally
in terms of infinite horizon problems, but can be generalized to the finite horizon case.

7.7 The End State Problem
Under the objective function defined above, the firm optimally manages the change in the

value function Vt up to the final stage in the hedging period (t-T). In reality however the firm is
concerned with the uncertainty of the cash flow occurring over the delivery interval [T, T+N].
Assume that the firm has executed an optimal policy over the hedging interval. At time T, the
firm then holds a portfolio of forward contracts defined by q=4[qto qti ... qT-1]. Conditional on the

q vector, the ESP can then solve a single stage decision problem with respect to the original
optimization problem to find the optimum number of forward contracts to buy or sell in the last
stage,

maxqT JT = ET }- r * var{fT}

T+M H

T = 1: 1d ( R - S,) + 1 q, PT (Sd - Fiz IT
d=T Ij=0

The end state problem has several features which makes it easier to solve than the original
problem.

* The problem is a single stage decision problem.
* All forward price, past and current, are known, so Ft,T are deterministic variables.
* Since we are at the beginning of the delivery month, the long term states of the price

and load models (6 L,b), which evolve at a monthly rate, can be assumed known
constants. This reduces the underlying dynamic constraints from a fourth to second
order model.

The end state problem becomes a nonlinear programming problem with dynamic constraints.
Using the reduced order of the model as suggested above, the problem can be solved through
brute force simulation. The two components of the objective function, the mean and variance of
the cash flow, can be characterized separately as a function of the decision variable qr. The
expected return is simply a linear function of q, with a slope determined by the risk premium,

IT+N
E{ }=qr Fr, -E t Sd +K,

N T

where K is a constant. The variance of the cash flow as a function of the decision variable is
quadratic skewed by the summation, as shown for the sample plot below.
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Figure 7-3: Cash flow variance as a function of the number of future contracts held.

7.7.1 Static Optimization Over Multiple Delivery Periods

In the above discussion we have limited the problem to a single delivery month. In reality the
ESP is likely to have customers signed up form multiple years, corresponding to dozens of

delivery periods. This adds significant computational complexity to the optimization problem.
While we will not here attempt to solve the general multi delivery period problem, we illustrate

some of its properties by considering the end state problem with two delivery periods. This can

be thought of as a simple hedging strategy for an ESP who does not trust the dynamic forward

price models. The optimization takes place over in a single stage, so that the relevant forward

prices are observable. Furthermore, since the formulation is static in the decision process, the
constraints on the objective function can be loosened. In this case we use the value at risk

formnulation in order to illustrate a different approach to risk management. Value at risk

emphasizes the probability of the firm suffering a critical loss over the deliver period. Figure (),
shows the probability of such a loss as a function of the quantity of forward contracts bought or

sold in each of the two delivery periods (qi and q2),
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Figure 7-4: Probability of a Critical Loss as a Function of Future Portfolio

Next a constraint is imposed on the maximum allowable probability of the critical loss. This

divides the space of possible futures portfolios into an admissible and an inadmissible region, as

shown in Figure 7-5.

Figure 7-5: Admissible region for futures trading under VAR

The above figures were generated by brute force simulation of a range of possible future

portfolios. Such an approach would be extremely time consuming for greater numbers of

delivery periods. However the convex form of the convergence region lends some hope that
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more efficient search techniques can be used in order to arrive at an optimal trading portfolio
under the value at risk assumption.

7.8 Thoughts on the Complexity of the ESP Hedging Problem
Under realistic circumstances, the energy service provider hedging problem quickly escalates

in dimensionality, and simultaneously in the computational complexity of the solution. The
dimensionality of the problem is governed by:

1. The number of states/sources of uncertainty in the underlying dynamic constraints.
2. The number of times the futures portfolio is rebalanced.
3. The number of months in the delivery period.

Each of these factor represents a challenge to overcome in order to arrive at an efficient
formulation of the problem. Further research is needed to arrive at ready for use algorithms.
We here provide some thoughts on possible approaches for reducing the impact of the sources
of complexity.

As implied in the discussion of the end state sub-problem, the multiple time scales contained
in the bid based model, can be exploited in order to reduce the order of the model. The load
and supply states each have a fast component (w) evolving on a daily time scale, and a slow
component (5), evolving on a monthly scale. When dealing with uncertainty in the near term
(within the next month), the long term component can be assumed constant. When addressing
an uncertainty projected several months into the future, the short term uncertainty can be
assumed to have reverted back to the long term mean, and thus ignored. In each case the
fourth order model is reduced to a second order model. The cutoff between short and long
term is dependent on the mean reversion rate of the demand and supply processes, and can be
best understood by examining the implied term structure of the model. For further discussion
on efficient implementation of the hedging algorithms, see [43].

In determining the proper structure of the hedging period, the user has to consider two
questions. How far in advance does one need to start hedging the cash flow at delivery, and
how often must the portfolio be rebalanced? The first question is limited by the forward
market, which currently only trades fifteen months in to the future. The second part is
constrained by transaction costs, as well as the computational complexity of the DP problem.
Given a fixed number of times the user can rebalance the portfolio over a long hedging
period, it may useful to adopt a nonlinear function for the length of each rebalancing period.
For a mean revering process, the further away in time the user is projecting the uncertainty,
the less new information will enter over a given time interval. Consequently, the further away
from the delivery period, the less likely it is that the portfolio has deviated form its optimal
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value. Further research is needed in finding an optimal function for the length of the hedging
interval as a function of time to delivery.
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Chapter 8 Valuing Generation Assets

8.1 Introduction
As the electric utility industry becomes more competitive, the question of how to value

generation assets becomes critical. This problem is typically approached by defining the
generator in terms of its efficiency (heat rate), in converting fuel to electricity. Based on this
rating, the valuation is performed by modeling the generator as a spread option between the price
of the fuel used and the price of electricity [44]. The payoff from such an option is given by,

CF =max{P -C(P ),O

where Pk is the price of electricity and C is the cost marginal cost of production as a function

of fuel price Pk.

The problem with this formulation is that it ignores several important constraints involved in
the operation of the unit, such as start-up and shut down costs, minimum run time, and maximum
ramp rate [45]. These constraints have a significant effect on how units are bid into, and
dispatched by, a spot market operator, and therefore on the owners cash flow. By ignoring the
unit commitment constraints, one is likely to undervalue plants with significant flexibility (such
as micro turbines and fuel cells) while overvaluing large inflexible fossil plants.

The reason why the unit commitment problem is often ignored in the valuation of a power
plant can be linked to computational complexity. In general the operator of the unit has to solve a
complex dynamic programming problem to arrive at the optimal unit commitment decision for
the generator [7]. This is a computationally intensive problem with polynomial growth over the
time horizon over which the optimization is carried out. Therefore while it is feasible to solve the
unit commitment decision for a day ahead bidding problem [45], it is extremely challenging to
extend this notion to a multi-year valuation problem.

In this chapter, we propose a new method for valuing generation assets with unit commitment
constraints, using a principal component based model for spot price described in details in [19].
The effectiveness of the principal component representation comes from being able to determine
the hourly prices within each day. This is qualitatively different from using a single daily spot
price, which does not recognize intra-day price variations. By applying principal components, we
are able to define the today's net profit from the generation asset as a function only of today's
and yesterday's average spot price. By storing the mapping from the state of the spot price to the
cash flow of the generator in a lookup table, we are able to simulate generator profits over
multiyear periods with minimal computational complexity [46].

Next we introduce a stochastic model for the fuel price. This adds a third dimension to our
lookup table, but still allows us to simulate the cash flow for the generator with a computational
time growing linearly with the length of the valuation period.
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The principal component based model is applied next to the problem of hedging generation
assets. By defining the daily cash flows from the unit as a derivate of fuel and electricity prices,
we can derive optimal strategies for trading in fuel and electricity forward markets in order to
manage generation risk.

8.2 A Principal Component Based Price Model for Electricity Spot Markets

The price model used is a simplified version of the bid based price model introduced in [19].
We define a daily [24*1] price vector Pd", whose elements are the 24 hourly electricity prices.

Next we define the log of the price vector to be the sum of a deterministic and stochastic
component. The deterministic component is composed of a monthly vector p m, which captures

the seasonal characteristics of the electricity spot price. The stochastic component is modeled as
the product of the principal component vector vm, and a daily stochastic scalar weight Wd. The
principal component captures the shape of daily price variations from the seasonal mean p ',

while the weight describe the magnitude of the deviation as well as its correlation over time. The
log of the vector of spot market prices can be written as:

ln(P) = g + wevm

Next we model the process describing the evolution of the weights w' . We choose a two-

factor discrete time mean reverting process. This captures important features of electricity
markets such as short-term mean reversion and long term stochastic growth. For an in-depth
discussion of modeling electricity prices, please see [19].

e e -e e =-ae(e')+ s z'd+I

d e de =e+ de de
d+i1 _di + m d

where,

ee =w e-d*.

The form of the price process postulates that hourly spot prices will be log-normally
distributed. Furthermore prices inside of a day are perfectly correlated, since they are a function
of a single daily random variable wd. This reduction in complexity is made possible by choosing
the principal component in an intelligent manner.

8.2.1 Formulating the Unit Commitment Decision

To calculate cash flow in a one-day period, firstly a generator solves a unit commitment
problem in order to determine when a unit is turned on or off optimally. The one-day cash flow
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is the expected sum of profits from operating in each hour. Let CFd (x) be cash flow at the day

24-1

CFd(xo) = maxE{ P kq-ck(q)}
k=

Rewrite this optimization in a Dynamic Programming (DP) framework, adopted from [7] as
the following:

CFd ) JO(xO)=max E{ k Rd~kk <O)S)+(-Uk)-(C I( TXk

JN(XN)O

Reward-to-go in hour k:

S(xk) (q -ck(q ,Pd)-I(xk <O)S)+(l-uk)-(cf +(xk > 0 ))k+ (xk+
Uk

X, ={max(l, x +1) uk =1

mi( 1, s xx k )1 k=

Il >1-1(-te a x k -<

qmin !! k ! max

I('TRUE') =

I('FALSE') =0

The optimal policy is applied to obtain the maximum expected profits. The above problem is
a full-blown version in which there are multiple sources of uncertainties. The first one is from
electricity spot prices, and the second one is from fuel prices.

8.2.2 Approximation of Price Model Used in Unit Commitment

When solving the unit commitment bidding problem, we use an approximate version of the
price process. In the full-blown model we can write next days weight as a function of today's
states:

w "e = ( -ae ) We+ a e de e+ e*+ e s z s de
= d CJVd+~ I d d Zd+ Zd.

We here assume that a << 1, and s >> S de. We only use this assumption when formulating
the day ahead bidding strategies. With this assumption we can write the weight process as:
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w -W e+ ?e+ SeZe.
de+1=w +d + Zd

This effectively states that in the very short term (day ahead) we can ignore the mean
reversion as well as the long term volatility. It should be noted that we only use this assumption
to arrive at a bidding strategy. When simulating future spot price for valuation purposes we use
the full blown version of the price model.

Therefore, we can simplify the above unit-commitment by assuming that

1) q, -- ..max 5

2) in a one-day period, f is given Vk,

3) ae = 0, during a one-day period,
V' w +Se ze

Wd+1 - w + s mzd

Therefore,

Jk(Xk5 Wd.a ea,) =maxE ju u(p q -ck (q)-(xk <)S)+(l-uk)-(cf +I(xk >O)T)
Uk d d] k d

+ ,k+w (xk+1, Wd-1 , a e }
and,

CFd Wd ,ae) = J0 ( Wd_ ,ae)

8.3 Creating a Lookup Table of Cash flows

We have shown how to calculate cash flow and a on/off policy for a generator in a given day
d. This cash flow is an expected cash flow, given _d =wdl. Wdi is a sample value of d5,

which is continuously normally distributed with (wd- + ? ) mean and standard deviation s *

To create a lookup table mapping a pair (w dj W d_,j ) to a cash flow, we generate Wcij given

wd-j; and apply the optimal policy P(wdI_,i) to determine the cash flow in the d period with

wd-, or P . Therefore, in period d, we have

CFd (~ dLi 5dj)
23

= X{u )(P" ) -q - c(q)-I(x <O)S)+(l-u w )) (cf + I(xk < 0)T)},Vj
k=O

Repeating this process using w d-1,i for other i, one obtains a cash flow matrix which an

element (ij) is a cash flow associating with both w d and . This matrix captures possible

cash flows in a given month m with a simplified price process of each day d.
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CFdOVI, V) CFd ,9I2) -- CFdV ',VN)

CFM CF(NC ,N))

_C~aN 1)---CFJ N' N _

For each month m, a cash flow matrix can be calculated by using in the same method. Note
that each cash flow matrix is obtained by assuming a constant fuel price P'k for all k and d

within each month m.

{CF1,CF 2 , ... ,CF 12 I P =f}

8.3.1 Incorporating Stochastic Fuel Prices

Next we propose a model which will allow us to include stochastic fuel prices. We here
assume that we are dealing with a gas-fired plant, but the model is equally applicable to oil or
coal. Since gas is a storable commodity, it experiences less short-term volatility, and very little
intra-day volatility. We will therefore make the following assumptions.

1. There is only as single daily gas price P'k.

2. In the unit commitment decision, the day ahead gas price is assumed to be forecasted
with near-perfect accuracy (i.e. assumed to be deterministic).

3.
Next we postulate a model for the daily gas price. The log of the price is written as the sum of

a deterministic seasonal and a stochastic component.
ln(P J) = p + w e

Note that we do not need to apply the principal component approach since the price is a
scalar. The stochastic component is described by a two factor mean reverting model.

efa -ed d-fe)+ s Zd

d' 1- df = ?'+ s dfzf

where,

ef =wf-df

To apply this model we first need to expand the lookup table to include gas price as a third
dimension. Note that the assumption that unit commitment takes the day ahead gas price as
deterministic allows us to add only one rather than two dimensions to the lookup table.
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We now generate simulated paths for future w's for electricity and gas. The lookup table
converts this into paths of future cash flows.

To capture the dynamic of fuel prices which is assumed to vary on a monthly basis, we create
a set of cash flow matrices with different fuel prices, obtaining

{CF1, CF 2, ... , CF12 |P =f?}

{CF1, CF2, ... , CF12 I Pf e - ?f

Note that we can generate N samples of w of fuel prices to create an (N x N x N) cash flow

matrix for each month m. This matrix completely captures uncertainty due to both electricity and
fuel prices.

8.4 Linking Simulated Prices to the Lookup Table to Generate Simulated
Cash Flows

Once the lookup table has been created, we can use the full blown price model to generate
simulated weights. The lookup table is then used to generate a path of cash flows from a path of
weights. The simulation time is linear in the length of the valuation period. Furthermore we are
not restricted to the proposed model for generating weights. The lookup table can be linked to
any stochastic model which produces weights for the principal components.

8.4.1 Generation Asset Valuation

Value of a generator V is an expected sum of discounted cash flows during the period of
valuation.

V=E{ (r)d -CFd (w d
d=O

Where r is a discounted factor, in which 0 < r < 1, and D is a period of valuation (such as a
15-year period or a 15*365-day period).

There are two valuation methods that we consider here:
1) A Monte Carlo Simulation Method

a) M paths of (we, w d) are generated.
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b) For each path i of [We, W]i, each cash flow is obtained by choosing a cash flow

associated with each pair of [W ,w ]i from the lookup table. The value of a generator if

w e and w follow path i is the sum of discounted cash flows.

V = (r)d -CF' (w *e, wf)
d=O

c) Value of a generator is equal to

v = { . } 1 { (J(r) CFd(w, w"))}

2) A Multinomial Tree Method

Instead of using Monte Carlo simulation, we can use a multinomial tree method. The
simplest version of the tree method is a binomial tree one. A binomial tree can be used in the
case one source of uncertainty exists. For example, if gas prices are known at any time d, the
only uncertainty in generation asset valuation comes from electricity prices. Each node on a
tree associated with a day d. At the end of each day d, we either goes up with probability p

to be w~'2Q or goes down with probability 1-p to be w"'-'. Hence, at each node a cash flow

associated with we, (we,,+' or w J-') conditioned on the previous node w i is simply

obtained from the lookup table. We expand the tree from a single node on day 0 to 2N nodes
on day N. The value at each node i on day d Vd is the expected sum of discounted cash flows

of the next adjacent nodes, plus the cash flow associated with we" incurred at that node.

Vd = CFdwd-,wd)+r(p -CFd I 1- p)- CF'),j = {i-1, i+1}
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Figure 8-1. A Binomial-Tree Representation

For a case of more than one sources of uncertainty, two additional branches will be added to
capture each additional source of uncertainty. This will make the problem become more
complex since nodes grow exponentially with time. A Monte Carlo approach might be more
applicable to deal with more than one sources of uncertainty.

8.5 Concluding Remarks
As shown in this chapter, the day-ahead process of deciding on an optimal commitment strategy
for generation assets with unit commitment constraints under uncertain fuel prices, is an
extremely complex problem. While in theory one can value a unit by simply extending this
commitment decision for a multiyear period, by simulating a range of possible fuel and
electricity price paths, this approach is extremely computationally demanding. The use of
principal component theory in price modeling recognized that there are dominant patterns in the
hourly price deviations within a day. These patterns can be exploited to reduce the number of
random variables in the unit commitment decision, and greatly reduce the computational
complexity of the problem. We have illustrated how we can characterize the day ahead bidding
strategy of a generator as a function of three states, representing electricity and fuel prices. This
leads to the creation of a lookup table which effectively stores all information relating to the unit
commitment problem. Ones this lookup table is created, the problem of valuing the generator is
trivial, since all we have to do is to generate simulated price paths for fuel and electricity prices.
The approach is extremely computationally efficient and allows us to simulate the value of
generation assets over multi-year period.

The contribution here is in presenting a computationally feasible valuation method, which will
allow users to differentiate between technologies based on flexibility as well as fuel efficiency.
The authors believe that this will have significant impact on the investment choice in the new
industry both on a whole-sale and distribution level.
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8.6 Figures
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Figure 8-2. Principal Component Representation of a Typical Daily Price of Electricity
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Figure 8-3. A Typical 24 Hour Basis for Representing Daily Price of Electricity (Hour 1).
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Figure 8-4 A Typical 24 Hour Basis for Representing Daily Price of Electricity (Hour 23).
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Figure 8-5Average versus actual spot price patterns
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Chapter 9 Modeling Locational Price Differences

9.1 Introduction
In this chapter we will address the question of how market participants can quantify and

hedge locational price risk. The work draws on results from the finance, economics and
engineering community, attempting to find a middle ground that allows us to solve the unique
problems facing the electricity industry. This includes developing methods for valuing newly
emerging transmission dependent derivative contracts. Furthermore we examine the relationship
of these new contracts with existing forward and option contracts on locational spot prices. We
extend this analysis to include the valuation of investment opportunities in transmission assets,
thus allowing a for-profit transmission provider to arrive at a market based valuation of a
potential investment, based on observed forward and derivative prices.

9.2 Locational Pricing and Markets for Transmission

9.2.1 Modeling and pricing flows in electric power networks

What differentiates electricity from other network based industries such as
telecommunications or transportation systems, are the complex physical constraints which
govern the flow of power in transmission networks. Electricity cannot be sent point to point
along a specified path. The flows are a nonlinear function of injections at the network nodes, and
are governed by Kirchoff's current and voltage laws. To compute actual flows system operators
apply the power flow methodology. In the regulated industry, utilities applied an optimal power
flow (OPF) methodology, which combined power flow with the cost functions of their
generation assets and arrived at least cost production schedules [47],[48]. With the creation of
competitive power markets, the decision process of how much each generator should produce
has moved from a centralized OPF problem to a decentralized auction scheme. Each producer
decides how he wishes to bid his generation assets based on his own local objective function.
The amount of power generated in each location then becomes a direct function of the market
price of electricity in that area. The role of the independent system operator (ISO) is to determine
a set of locational prices, such that the resulting injections of power by the generators does not
violate the physical constraints of the transmission lines. Specifically, if the power flow from
location A to location B in the network exceeds the capacity limit of the line, the system operator
will want to raise the price at B and lower the price at A. This will presumably increase the local
injection of power at node B, and decrease the injection at A, resulting in a decrease of the flow
of power from A to B. This process is known as congestion management. Mapping this approach
to a large scale network with non-linear relationships between flows and injections is a
challenging task. There are currently two main congestion management methods commonly used
in power systems: nodal and zonal pricing methods [49],[52],[53]. A third method, proposed
in[55],[54], is a generalization of zonal pricing method and is based on congestion clusters.
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9.2.2 Contracts for Transmission

Depending on the region, a number of different contracts on transmission are available to

market participants to hedge their locational price risk. We will not describe each contract type in

depth, but focus on two critical components, which differentiate these contracts from one

another. First we differentiate between physical transmission contracts, which assign a right to

physically use the transmission grid, and financial contracts that result in a cash flow dependent

on locational prices. Next we differentiate between contracts where the holder is obligated to use

the transmission capacity (or receive or pay the difference between the locational price), and the

case in which the holder has the option to use the capacity. It will be demonstrated that the

difference in optionality has a considerable effect on the value of the transmission right. From

here on we will refer to the types of contracts with no optionality as fixed transmission rights,
while contracts with optimality are referred to as flexible transmission rights. How existing

transmission contracts fall with respect to these criteria is outlined in table 1.

Contract execution obligation
Type of contract

Flexible o tional) Firm (mandato )

Physical PR
Ownership of transm. line

Financial Spread option FTR

Table 9-1: Properties of Transmission Contracts

9.2.3 Valuing Transmission Rights

As transmission rights are being issued, either through auctions, or bilateral secondary

markets, there is little consensus on how these rights should be valued. Consider the following

possible approaches to valuing a transmission contract.

1. A supplier about to enter into a bilateral contract with a consumer, may value a firm

transmission right in the following way. If the price specified by the bilateral contract is

larger than the cost of the transmission right, combined with the cost of generating the power,
then the supplier should accept the bilateral contract, and purchase the transmission right.

This is a naive valuation method, since it assumes that the supplier has to either purchase the

transmission right or withdraw from the bilateral agreement with the consumer.

2. Spot market for electricity provides generators with a second option to supply their customers.

In addition to the previous example where suppliers have to purchase the right to transmit

the power from their plant location to the customer, they can sell the power locally on the

spot market, and purchase power from the spot market at the customer location. This
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suggests that market participants ought to value transmission rights by projecting future spot
price differentials and determine which delivery method is the most economical.

3. Assuming that an energy service provider always has the option to supply its load through the
spot market, the value of a transmission right, either physical or financial, can be viewed as a
derivative of locational spot prices. By switching the paradigm of the discussion into the field
of financial derivates, we can start to address a number of new questions. What is the relative
value of a transmission right contract, and a set of forward contracts at the respective end
points? How is the stochastic evolution of transmission contract prices related to changes in
forward market prices? Is it possible to replicate a transmission right with a portfolio of
forward and options contracts?

In this paper we will attempt to answer these questions by posing dynamic constraints on the
interaction of physical and financial processes on the network. A key assumption in this
approach is that financial and physical rights are interchangeable on the network. In the
following section we investigate this assumption in terms of the risk exposure of market
participants.

9.2.3.1 Physical vs. Financial Risk

Participants in competitive power markets face two types of uncertainty, physical and
financial. Physical risk refers to the possibility of having service to a customer interrupted.
Financial risk is derived form uncertainty in future prices, and refers to the resulting variance of
the market participant's profit.

In markets for transmission, the line between physical and financial rights is necessarily
blurred. To better understand why this is true, consider the following example, where our world
consists of two electricity markets (or two zones of the same market) connected by a
transmission line. 1 supplier in market 1 has entered into a contract to supply physical power to a
consumer in market 2. To enable this transaction, the supplier has also purchased a physical
transmission right from 1 to 2. The transmission right however may be curtailed by the system
operator under certain circumstances, such as a physical failure of the transmission line. Would
such a curtailment represent a physical or financial risk to the parties in the bilateral contract?
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Market 1 Market 2

supplier c(ustomner

Inter-tie

Figure 9-1 Example of two markets

A curtailment of the transmission right does not absolve the supplier from his obligation to
serve the customer, but it makes it impossible for him to transmit his locally generated power to
the load. This problem can be circumvented if the supplier sells his power in market 1 and
purchases an equivalent amount of power in market 2. The physical risk of curtailment has then
been transformed into a financial risk from the price spread between the two markets. However,
there is an inherent assumption that there is power available to be bought in market 2 at any
price. This may not be the case, especially if the region is heavily dependent on imports coming
through the downed transmission line. If power is not available, the load in the bilateral contract
cannot be served and the transmission right curtailment represents a physical risk.

In this paper we will address primarily the question of how to manage financial locational risk
in electricity markets. The assumption is that there is a secondary market for reliability, which
addresses the problem of having sufficient reserves available to deal with contingencies. The
authors recognize that in the current state of power markets in the United States, the question of
reliability remains as a major unresolved issue. Another motivation for considering the problem
form a financial perspective, is that even a physical failure to deliver is generally associated with
a financial penalty. We can view this penalty as a default spot price, allowing us to transform
physical risk into financial risk as seen from the suppliers' viewpoint.

9.3 Modeling Transmission Rights as a Derivative on Spot Prices

In this paper we will attempt to value three different types of assets. Fixed transmission rights,
flexible transmission rights, and the ownership of a transmission line. Each of these assets can be
thought of as a derivative of the locational spot price at the end nodes. Consider the setup
described in figureo. We proceed to calculate the value of each asset at maturity, i.e. at the
actual time of use of the transmission asset, financially or physically. We find that in each case,
this value is a function of the underlying spread between the spot prices SI and S2. In each case it
is assumed that the transmission right held is in the direction 2 to 1, and the quantity is q MW.
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The value of the fixed transmission right is simply the difference in the locational spot values
at the time of maturity, and can thus be positive or negative,

Vfixed =q(S - S2 )

The owner of the flexible transmission right will only exercise the contract if the price
differential is positive. The payoff is therefore given by,

Vflex = max{O,q(S -S 2)1.

The owner of the transmission line is assumed to collect all congestion rents, allowing him to
profit irrespective of transmission line ownership:

V "'" = q+1 - .2

Identifying these relationships, allows us to start to address the issue of the relative values of
the above assets. Specifically we see that the payoff functions are linearly dependent, so that any
two can be used to perfectly replicate the third. For example, by selling a fixed transmission right
and purchasing two flexible transmission rights, one can guarantee the exact same payoff as from
the physical ownership of the transmission line, independent of the price spread at maturity.

The analysis above focused only on the value of the transmission rights at maturity. In order
to use these contracts as part of hedging or speculation portfolios however, the investor needs to
be able to project the future values of the contract, and understand the dynamics of contract
prices over time. To address this issue we need to postulate stochastic models for the underlying
spot prices. We begin by reviewing the current state of the art modeling techniques.
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9.4 Overview of existing price models

The set of models used in pricing derivatives and managing financial risk, are commonly
referred to as volatility models. The purpose of these models are twofold, to characterize the
probability distribution of future spot prices, and to estimate the correlation between future prices
at different points in time. The most well known application of volatility modes is the Black-
Sholes option valuation formula, originally derived to value derivatives on equity. The basis for
Black-Sholes is the assumption that the price of a stock S, can be characterized by a random
walk process known as Geometric Brownian Motion (GBM),

dS = pSdt + aSdz ,

where z(t) is a continuous time wiener process. For commodity markets, a variation of GMB
is often used, based on the Omstein-Uhlenbeck stochastic process,

dS= (M-lnS)Sdt+adz .

This process, also known as the mean revering process, captures a property of commodity
prices in which they tend to revert back to equilibrium levels after temporary shocks.

The models presented above can be extended to address derivative on the spread between two
markets. The common approach is to model the spot price in each market as a separate Ito
process. In the case of commodities, each spot price Si is characterized by a mean-reverting
process. The interaction between the markets is characterized by the correlation p, between the
wiener processes driving each spot process.

dS' =K (pM -lnS')S'dt+&adz'

dS2 =K2 (2 -lnS 2 )S 2 dt+2dz2

dz dz2 = pdt

This approach was taken by Deng, Johnson and Sogomonian [44], in order to price locational
spread options in electricity markets.

A number of questions arise however in the implementation of this modeling approach in
electricity markets. Can the interaction between electricity prices at different locations really be
captured through a simple correlation parameter? Will the correlation between markets remain
constant over time, and if not, how does it vary in response to changes in market structure,
expansion of the transmission grid, addition of new capacity, and growth in the demand. In this
paper we will take a closer look at the dynamics of the uncertainties, which drive locational price
differences. To do this we introduce a new type of volatility model, the bid-based model. The
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main deviation from the above-mentioned approaches is that we model price as an output form a
process with distinct supply and demand states. As will be shown, this allows for a link between
the physical and financial processes in the marketplace, and a better understanding of what
determines the correlation between locational prices.

9.5 Interactions between neighboring markets

We use the Bid-based Stochastic Model to simulate the behavior of prices in a multi-market
scenario. We estimate the value of a transmission right between two spot markets by modeling a
joint evolution of loads and electricity prices in the adjacent markets, connected by a tie-line of
fixed maximum capacity Fmax 2 [18],[19].

Scheduled transmission flows occur when there is cross-bidding between markets, that is,
when loads or suppliers in one market decide that they are better off purchasing or selling their
power in the neighboring spot market. A positive flow from market i to market j can be caused
by two types of actions:

" Supply cross-bidding: Suppliers in market i decide to bid their power into market j. This
causes b' to increase and b to decrease.

" Load cross-bidding: Loads in market j decide to bid their demand into market i. This causes
Li to decrease and L to increase.

The net effect on price of the two actions is equivalent. Without loss of generality we decide
to interpret all flows as the effect of load cross-bidding. To incorporate this behavior into the
model, we introduce a new variable q , representing the actual quantity bid into market i at time
d. The variable Ld is interpreted as the native load of the market, which is physically located
inside the market's borders. Price in market i is a function of the total load and supply bid into
this market,

d = eaib, L=1.2

The relationship between q and L for the two-market example can be written as,

I 1 12
qd =L +Fd

2 L2 1 2
qd =L -F

where Fd12 is the flow from market 1 to market 2, which can be positive or negative. The
power has to be balanced between the markets
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I+q 2=L +L

and the tie-line flow Fd'2 is bounded by Fdmax

Fd = q' - L = L_-q <Fma

The quantity of load, which cross-bids into the neighboring market, is calculated by assuming
that market agents are rational. If there exists a price differential between the markets, load in the
expensive market will submit bids into the cheaper market. The magnitude of the cross bidding is
limited by the capacity of the transmission line. Thus load bids will keep shifting from the
expensive to the cheap market until one of the following occurs:

1. The prices equalize, thus removing any incentive for further cross-bidding.
2. The transmission line becomes congested, preventing the native loads from being supplied

from the other market beyond certain level.

The first case corresponds to the following mathematical condition,

SI =s2

alqI +b' = a2q +b2

The flow necessary to reach price equality Fj2, as a function of native load and supply states, is

given by,

?i2 1 2 aL_ +bd -(aL+b)].
a +a

The transmission constraint F max limits the flow both ways.

12F1
-Fm "" d F - Fma"

The actual flow between the markets Fd 2, accounting for the limits, can therefore be written
as,

F = maxmin(j2 ,F m a-Fma .

Prices in two markets connected by transmission line, SdI and Sd2, are always equal, until the
transmission flow reaches the maximum capacity. At this point prices will diverge, and the
dynamics of the two markets will decouple.
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9.6 Valuing a Transmission Right

A flexible transmission right of x MW between market 1 and market 2 is interpreted as the
right, but not the obligation, to transmit up to x MW of power from market 1 to market 2 in any
day d. Furthermore we assume the transmission right to be firm, so it can not be curtailed under
no circumstances. The expected daily profit from owning the flexible transmission right can
therefore be expressed as:

Cd = E maxPd2 - Pd,

The value of a transmission right between market 1 and 2 thus is equivalent to the value of a
spread option between the two markets.

9.7 Simulation based valuation

Tab. 10: BSM parameters, used in simulations; equal in both markets

cc KGm Gm a

Load 0.3 50 500 2000 0.00015

Supply 0.3 0.05 0.0005 0.25

Tab. 11: Monthly BSM parameters, used in simulations

9m

Market Market
1 2

Load 13000 20000

Supply 1.7 1.7

We estimate the value (in $/MWh) of owning a flexible transmission right for one day, thirty
days from today. To better illustrate the qualitative effects of moving to a multi-market
environment, we have ignored the dynamics of the mean-process 5 in the single-market bid
based price model, forcing long term means of both processes to be zero, 8L= 6 bi = o, i = 1,2 for
all time. The parameters and initial states for the demand and supply processes in both markets
are given tables 2 and 3 respectively. It should also be noted that we assume to random walk
processes driving the load and supply processes in each region to be uncorrelated.
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We simulated the behavior of the two market model for various values of the maximum

transmission capacity, varying from 0 to 3500. For each scenario, the model was then run 10.000

times for a 3 1-day period. The plots show the correlation between locational prices and the value

of the flexible transmission right on the 31 'st day.
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As the size of the transmission line increases, the correlation between the locational prices
increases. Consequently the probability of the prices diverging is reduced, so that the value of the
spread option, and the transmission right, decreases.

9.8 Dynamic Hedging
A simulation based approach allows the user to estimate the expected cash flow from a

contract, and the associated risk, or variance, of the cash flow. In addition, traders also need to
understand the relationship between the contract price, and the current value of the underlying
state variables. This knowledge allows the user to cancel out risk between a variety of contracts,
as long as the risk is derived from a limited number of underlying sources. A well known
example is the case of delta hedging. As shown is section 4, the Black Scholes model assumes
that all uncertainty effecting the price of a stock can be modeled as originating from a single
Wiener process. By Ito's lemma, all derivatives of the stock price will follow Ito processes
driven by the same Wiener process as the stock price. This result allows the trader to hold a
combination of the derivative and underlying stock so that the uncertainty cancels itself out
exactly. The ratio of the stock (S) to the derivative (g) required to eliminate the uncertainty is
known as the delta of the derivative, given by,

asS

The delta hedge will only cancel out the uncertainty for a given stock price S. Since the stock
price evolves continually, the value of delta will also constantly change. To perfectly eliminate
risk, a trader would therefore need to constantly rebalance his portfolio. The process of
rebalancing in response to changes in the underlying asset price, is known as dynamic hedging.
The effectiveness of a dynamic hedging strategy depends in large part on the accuracy of the
underlying model. Furthermore, due to transaction costs and other real market constraints, a
continuous replication strategy cannot be implemented. Instead traders must rely on approximate
strategies where the portfolio is rebalanced at discrete time steps. In this case, one must analyze
the robustness of the linearization in (), as spot prices diverge from the initial measure.

9.8.1 Dynamic Hedging and the bid based model.

In the case of electricity, uncertainty in the spot price process cannot be well described
through a single random input. As discussed in the presentation of the bid based model, there are
a number of factors influencing the bid behavior of suppliers and consumers. The model
describes four sources of uncertainty, a long and short term process for demand and supply
respectively. In the case of two markets linked by a transmission line, the joint dynamics is
governed by four state variables (demand and supply states in each area), with eight associated
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random inputs. This approach may seem overly detailed. Why not apply a reduced order model
of the regional price, as proposed by Deng et al.. The reason lies in the asymmetrical effect of the
transmission line flow on the distribution of the price spread between the markets. To illustrate
this effect, consider the two market environment as described in the simulated example in section
5, with a transmission line of capacity 3,500MW. We are interested in the sensitivity of the price
spread to a change in one of the underlying states, L or b. Figure 9-6 shows a plot of the price

spread as a function of L, as the other three states (L2, b1 , and b2), are kept constant at the initial
values given in tab. 3. The figure illustrates an interesting property of the sensitivity of the price
spread to demand changes in region 1. The plot separates into three distinct regions. In the
middle region, the transmission line is uncongested, and the price spread therefore is zero. In this
case, the two areas act as a single market, with a single price. We refer to this region as the 'dead
band', since the price spread is insensitive to changes in the underlying states. The left region
represents the case when the transmission line is congested in the direction of 2->I. In this case
the markets decouple. The flow on the transmission line is fixed at its maximum value, so that
changes in the state variables of one market does not get transmitted through changes in the flow
to the neighboring market. The uncertainty in the spot price in each region is governed by the
uncertainty in the local load and supply variables. However the price spread (S1-S2) is always
negative. Conversely, the right hand region of the plot shows the behavior of the price spread
when the line is congested from market 1 to 2. In this case the price spread is strictly positive. A
similar type of behavior can be observed when plotting price as a function of the supply state.
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Figure 9-6

9.8.2 Implications on the valuation of a spread option

An important implication of the property displayed in Figure 9-6 is the asymmetry of the
distribution of the price spread. Recall the price based approach to modeling spread options. This
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model implies that the future spot prices in each region are lognormally distributed random

variables. As a result, the probability of the two prices being exactly equal is infinitesimal.

Furthermore, if the prices were equal for a given instance, there would be a non-zero, though not

necessarily equal, probability of the spread being positive or negative in the next instance. This is

a qualitatively different behavior than what we would expect to see according to the bid based

model. Consider again the case where we allow only the load in area 1 to vary, keeping all other

states fixed. The stochastic process governing load dictates that future load levels are normally

distributed random variables.

Figure 9-7

Figure 9-7 shows two normal distribution superimposed on the plot of the sensitivity of price

spread to changes in L1. The two distributions, high load and low load, represent the projected

distributions of load on a high demand and low demand respectively. The mean of the

distributions are 13,000 MW and 23,000MW, and the standard deviation in both cases is

2,000MW. The figure illustrates an interesting condition. Each load distribution covers two

regions of the graph, but the probability of ending up in the third region is nearly zero. In other

words, a load change during a high demand period could cause the transmission line to move

from uncongested to congested in the 1-+2 direction. However, it is extremely unlikely that a

load change would be large enough to cause congestion in the 2-+1 direction. Conversely, during

a low demand period, the transmission line will be either uncongested or congested in the 2-+1
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direction, but is unlikely to be congested in the 1 -2 direction. Combining this result with the
link between the direction of congestion and the sign of the price spread, gives an interesting
result outlined in the table below.

Expected Load Probability Probability S2>S' Probability
Level (L') Sl>S2  

_ 5=2

15,000 MW 2*10- .5 .5

25,000 MW .5 3*1012 .5

If one attempt to find a set of parameter for the traditional spot price model, which produces a
similar set of probabilities for the price spread, one would find this impossible. The bid based
dictates a qualitatively different behavior of the price spread.

9.8.3 Replicating a flexible transmission right under the bid based price model

Closely related to dynamic hedging, is the dynamic replication problem. In replicating a
derivative, we create a portfolio of contracts which have the same payoff. Dynamic replication is
the practice of creating a dynamically changing portfolio which matches the value of a derivative
over time. Dynamic replication has a significant impact on the pricing of derivatives contracts. If
a derivative can be perfectly replicated, then one can create a portfolio with exactly zero payoff
by purchasing the derivative and selling the replicating portfolio. If the price of the replicating
portfolio differs from that of the derivative, this represents an arbitrage opportunity.

In this section we attempt to replicate a flexible transmission right, or equivalently a
locational spread option. The option is purchased at time t, and matures at time T. The price of
the option is C1 2(t,T), and its payoff at maturity is given by,

payoff = max(0, S' - S2)

The nature of the price spread lends itself nicely to this problem. Consider three states of the
transmission line.

1. State 1. The line is congested in the direction 1->2. In this case S2>S1

2. State 2. The line is uncongested. In this case SI=S2

3. State 3. The line is congested in the direction 2-+A. In this case SI>S2
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Next consider the following set of replicating portfolios.

1. Portfolio 1. Purchase a forward contract in market 1, sell forward contract in area 2.

2. Portfolio 2. do nothing.

Now consider the payoff at maturity from the call option, as well as the two replicating

portfolios, under each of the three transmission line states, (assuming the forward contracts are
prepaid).

State 1 State 2 State 3
Call option Max(O, SI-S 2)=O Max(O, SI-S2)=O Max(O, SI-S2)=

SI-S2>0

Portfolio 1 SI-S 2 <0 SI-S2=0 SI-S 2>0

Portfolio 2 0 0 0

The table shows that the call option has the same cash flow as portfolio 1 in states 2 and 3.
The option has the same cash flow as portfolio 2 in states 1 and 2. Combining this with the
probability distributions displayed in Figure 9-7, we find that in many cases a very simple
replication strategy will due. For the high demand period, the transmission line is very likely to
be in state 2 or 3, so portfolio 1 provides a good replication. For the low demand period, the
transmission line is likely to be in state 1 or 2, therefore the payoff from the spread option is zero
and the replicating portfolio is empty.

9.9 Generalization of the model to 3 node example

Market 9 Market 2
L, F12 L2

G, G2

F13 Market 3 F23

L3
q3
G3

Figure 9-8 A three market example
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Power flows in a three-market example are in contrast to the two-market example calculated
using optimal power flow, based only on flow of active power between generators and loads
(DC-OPF). Generation in each of the markets is dispatched in a non-linear manner according to a
composite generation cost function using constrained optimization. As in the two-market
example, we interpret all flows as the effect of load cross-bidding, denoting L' as native load of
each market and q as the actual quantity bid into market i at time d. Price in market i is a
function of the total load and supply bid into this market. The relationship between q and L can
be expressed as

3

j=1

where Fdi is the flow from market i to market j. Due to conservation of energy, the total
amount of generation in the system matches the total native load,

3 3

XG'Y, Lj
i=1 j=1

while the power balance equation postulates that the amount of native load equals the amount
of bid-in load.

3 3

Ld =qk
j=1 k=1

In the case of perfectly constrained network, flows on transmission lines equal
Fd =0, G = L', i =1. .3. Otherwise, total generation of the system is allocated to the

individual markets according to minimum cost criterion, with a cost function J,

3 3

J= (ai(G' -EL' +b, = aiqi, +bA )
i=1 =

Constrained optimization takes into account transmission limits of the lines Fmax .

9.9.1.1 Simulation of the Three-Market Model

To investigate the value of a transmission right in a three-market setting (in $/MWh), we have
again looked at the time frame of one day, thirty days from today. The dynamics of all three
markets has been modeled according to the bid-based stochastic price model. The respective
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parameters for the load and supply process in all three markets were identical, except for the
mean-value of the load in market 3, gL. To create a price differential, 9L was set 1,000 MW
higher than in the other markets to 14,000 MW.

I = P = 13.000MW

L = 14.000MW

The algorithm for calculation of native generation and prices in each of the three markets for a
3 1-day period is shown in Figure 9-9. Using the respective daily loads, the DC OPF is used to
compute native generation G, i = 1..3, according to the cost function J and transmission
constraints FmaxU. From native generation G, load L1 and supply curve shift b, market i price P is
then calculated. This algorithm is ran in a loop where the transmission capacity Fmax1i of all three
lines is gradually increased in 6 steps from 0 MW to 3,750 MW. The plots in show loads and
prices for the period of 30 days.

As the transmission capacity is gradually increased, Figure 9-10, the flows on the lines
increase as well, yet the effects of congestion are eminent on the first four graphs. At the same
time, correlation in prices among markets increases as the lines become less congested, Figure 9-
10.
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k = k + 1

Price for market i: Si = ea G +b

k kmax

Fa,,k+I = Fm, +F

Prices for different transm. constraints Pi

Figure 9-9
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Chapter 10 Investment Dynamics and Long Term Price Trends
in Competitive Electricity Markets

10.1 Introduction
Our attention is often drawn to competitive power markets in times of crisis. Electricity

markets experienced unprecedented levels of price volatility. Each time prices spike there are
those who call for regulatory intervention to protect customers and keep large suppliers from
exploiting shortages. Most recently, the power crisis in California resulted in both financial
losses for the load serving utilities, and the physical loss of power for some of their customers.
This resulted in a public revaluation of the success of deregulation in lowering the cost of
electricity for the consumer, as well as in the more basic premise of keeping the lights on.

This chapter addresses the question of price trends in competitive electricity markets, both in
terms of economic efficiency and physical reliability. The key to successful deregulation does
not lie in the daily operation of the system. Short term optimality is always easier to achieve in a
regulated, centralized industry. The goal of deregulation should be to provide the right incentives
for new investment, and the development of new innovative technologies. This evolution occurs
at a longer time scale, and with its own dynamic constraints. In order to successfully transition to
a deregulated environment, the regulators must recognize the nature of the decentralized decision
process which governs investment. This includes modeling the effect of price signals on
investment, and understanding the impact of delays in information on the price dynamics as well
as the physical power balance on the system. Only if these relationships are fully understood,
should a regulator attempt to intervene into the marketplace.

10.2 A Long Term Model For Electricity Prices

The model characterizes spot price as a function of two state variables; L representing the
total market load, and b representing the current state of supply. In this paper we will focus on
the long term dynamics of the electricity prices. A more detailed discussion of the model
presented in this section, which captures short term deviations in prices, can be found in [18].
The demand for electricity is assumed to be inelastic, while the basic shape of the aggregate
supply curve is characterized by an exponential function, with a stochastic shift parameter b.
The average price in a month m can then be written as

S =e aL +b.

where a is a fixed parameter characterizing the shape of the bid curve.
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10.2.1 Stochastic Demand Process

Demand for a given month is modeled a the sum of a deterministic component R, and a
stochastic component 6.

L = +

where mL captures the seasonal behavior of load. The state 8mL represents the long term
uncertainty in load, which grows stochastically with a drift K, and volatility Y.

8 L _(5L =KL+CLZL

10.3 Modeling Investment Dynamics

Having developed a model for the stochastic growth of demand in the market, one can now
address the question of how new generation capacity is added to the system in response to the
load growth. It is assumed that the decision process for investing generation assets is
decentralized. Each investor makes decisions in order to maximize his own utility, and there is
no higher level entity coordinating investment behavior in the market place. For an in depth
analysis of investment decisions under uncertainty, see [6]. The rate of investment will not be
governed by projections of overall demand and supply mismatches, as was the case in the
regulated industry. Instead, investors react to price signals from the market in making their
decisions. While price signals are inherently linked to the demand and supply levels, this change
from a physical to a financial investment signal has profound effects on the dynamics of
investment, and ultimately on the physical reliability of the system.
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10.3.1 Backward Looking Investment

In the first model, it is assumed that the investor observes a moving average of the last 12
months of spot prices, Sav. He compares this value to the index, I, of the available technology to
invest in. I reflects the marginal cost of running the new unit, as well as the installation cost. If
the average spot price rises above the index value, one starts to observe new investment in the
market. The greater the differential between S and I, the higher the rate of investment, this
difference is referred to as the investment signal. The parameter G determines the rate of
investment in response to an investment signal. G can be thought of as reflecting the availability
of capital in the market. Finally negative investment, that is the removal of capacity from the
system in response to low prices, is not allowed. The model for new investment then looks like,

k+- d' = max(O, G(SV -k ))+ s bz'

1 12

Sk = - S .12 j=

The model is backward looking because the investment decision reflects the previous 12
months of spot prices. In a market where investment decisions are made based on historical spot
prices, there is an inherent delay between increased spot price levels and increased investment.
Due to this delay, investors will continue to inject capital after spot prices have declined below
critical levels. In a market with growing demand, this results in cyclical swings of high and low
spot price periods, as investors alternately overshoot and undershoot their optimal investment
levels. This effect is lost in standard economic equilibrium models, where it is assumed that
suppliers are able to immediately take advantage of price increases. Another critical element in
investment dynamics, is the delay between the time that a decision to invest is made, and the
time that the new generation plant is actually connected to the power grid. This delay has two
components. The first is the time it takes for the plant to be licensed by the regulators. The
system operator goes trough an extensive study on the effects of each new plant on the network,
and approval can take over a year. Next there is the production and installation time of the actual
generator. Put together these delays can block the markets ability to correct for generation
deficiencies, further accentuating the cyclical price behavior observed above. This delay is
accounted for by introducing the parameter t in the dynamic equations governing investment,

d b - d', = max(0, G(S ' -I,_ ))+ S lzb
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The longer the delay, the greater the tendency for extreme price spikes followed by periods of
suppressed price levels. The interaction between spot price levels and the investment decision,
including the delays, is depicted in figurel.

spot -+Di- investment - D2 0 new capacity
price decision 2added

Figure 10-1

Figure 2 shows a simulated comparison of behavior of market behavior without delays, and
with a six month delay period, over a 100 month period. The parameters used in the simulation
are provided in Table 10-1. It should be noted that these simulations are provided to gain a
qualitative understanding of market behavior, rather than quantitative predictions.

Load L= 2 00 &100
x=100

Supply b=. 0.=. 0 1  G=.003
other a=5*104 1=150 _=06

Table 10-1
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10.3.2 Forward Looking Investment

Two sources of delays in the investment dynamics have been identified. A delay from the
price signal to the investment decision, and a delay from the investment decision to the
installation of the plant. Both of these delays could be negated if investors were able to project
future price trends. A long term price estimator would allow investors to base their decisions on
projected future revenues, rather than historical data. This would have a stabilizing effect on the
market, and eliminate much of the cyclical price behavior.

-+ estimator I -

spot -+D +investment -+D - new capacity
price D decision D added

Figure 10-3

The challenge in the estimation problem lies in the fact that it requires the user to model the
decision process of all other investors. The problem may be tractable in the case where there is
sufficient historical data available to estimate the cumulative investment rate in response to
market price (the G parameter in our model). However in the early stages of a market, such as
the current situation in the United States, one would be forced to arrive at this parameter by
deriving likely competitor strategies. This would be a very complex game theoretic problem,
where the outcome will depend on how sophisticated market participants are in their decision
process.

10.3.2.1 The Role of Futures Markets

In the context of forward looking investment, futures markets play an important role as an
information provider. It is questionable whether futures prices truly reflect the expected value of
future spot prices, but the prices do reflect information which is not present in historical spot
prices. For instance, power marketers keep a close watch on the permit requests and
manufacturing orders for new generators. This gives the marker an estimate of the amount of
new generation capacity is likely to be added in a given area in the near future. The information
is incorporated in the marketers futures trading strategy. If a region has a current generation
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shortage, and accordingly high spot prices, but there is an abundance of new turbines in the
manufacturing or permitting stages, the futures prices will tend to be depressed. If investors
observe the futures market, and if the new generation capacity in progress is accurately reflected
in the futures prices, it will prevent over- and under-investment, thus stabilizing the spot price
dynamics. There are two critical properties which futures markets must satisfy in order to
effectively govern investment dynamics.

* Liquidity: The volume traded on futures markets is not necessarily proportional to the
total load on the system. Instead it reflects market participants desire to hedge their
positions, or to speculate on future spot price levels. In order for the futures price to be a
useful signal to investors, it has to be credible. That is, one must be able to buy and sell
power in significant volume at or near the price quoted in the exchange. This in turn
requires that there exists a large number of participants who actively trade in the market.

* Duration: The duration of a market refers to the longest time to maturity of all contracts
currently trading in the market. If a market has a duration of 12 months, then a contract
which matures April 1, 2002, will start to trade on April 1 2001.To understand the
importance of the forward market duration, consider the position of an investor who is
contemplating financing a new power plant. The plant is estimated to take one year to be
build and permitted. The investor is willing to undertake the project, if he is expected to
recover his initial capital investment in five years. To solve the decision problem, the
investor must project the cash flow from the plant, and therefore the spot price levels, six
years into the future. A futures market with a duration of a year or less has a limited value
since he expects no cash flow until the plant is finished. A market with a duration of three
or five years however, would allow the investor to not only make a market based estimate
of future cash flows, but also lock in some of these revenues by selling futures contracts.

The two objectives, liquidity and duration, can be contradictory. By increasing the duration of
the market, one increases the number of different contracts traded simultaneously, since each
delivery month is a separate contract. This makes it more difficult to find two counter parties
willing to trade at the same contract at the same time. Currently, the two main exchanges,
NYMEX and CBOT, trade contracts up to fifteen months prior to delivery. This is not a
sufficient time horizon for an investor seeking to value or hedge a new plant. At the same time,
the exchanges are experiencing a lack of liquidity even for near term contracts.

We will not attempt to simulate the impact of forward markets here, since it would require us
to make unfounded assumptions about traders strategies. There are a few points which need to
be studied carefully as more data becomes available from the futures exchanges.

1. To which extent do forward prices contain information which cannot be derived from
historical spot prices?
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2. Do investors depend heavily on futures price signals in making their investment

decisions, or do they tend to wait until price changes appear in the spot markets?
3. Does the presence of a liquid futures market have a stabilizing effect on the spot market,

eliminating periods of extreme over and under capacity?

10.4 A dynamic notion of reliability

When capital investment fails to keep up with load growth, there are two measurable effects
in the market. The first is an increase in the spot price, as discussed in the previous section. The
second effect is a reduction in the available generation reserve R, defined as the amount of
unused generation available in the market as a fraction of the total load,

Rk = Ck-Lk (6)

where C is the total capacity of all available generation assets. In a market with little or no
demand elasticity, retaining a generation reserve is the only means of avoiding customer
curtailments or blackouts as a result of unexpected load spikes or generation outages. The
Federal Energy Regulatory Committee (FERC), sets guidelines for how much generation reserve
each region should retain. It is the job of the independent system operators (ISOs) to enforce
these reserve requirements. The system operator will do this by contracting generators to be in a

stand by mode. The compensation paid to these generators is determined through auctions

similar to the electricity spot market. The problem is that if there is not enough total generation
capacity in the market, the ISO will be unable to purchase reserve generation at any price.
Furthermore the ISO is not allowed to build or own generation assets. The system operator is
therefore unable to guarantee that the system meets the reserve margin. The reliability of the
system can only be ensured by the addition of new generators, and investment into these plants is
determined by for profit market participants. The reliability of competitive electricity markets is
therefore directly coupled to the spot market price dynamics.

To illustrate the link between reliability and spot price dynamics, the model is further

amended. Starting with a total capacity equal to the initial load, plus a reserve margin X,

C =(1+X)L0 .

Every time there is new investment in generation, reflected in the supply state 6 b, there is an
associated increase in the total available capacity C,

C, = co + - | ,5Ckk 0
a
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recognizing that a 100MW increase in L is perfectly offset by a (1 /a)* 100MW increase in b.

10.5 Effects of Government Policy

In periods of high price levels, consumer advocates can put pressure on the government to
impose price caps on the market. The argument is that suppliers are taking advantage of the
generation shortage in order to drive up prices, either by withholding their generation or bidding
it in at inflated price levels. The issue of 'fair' pricing of electricity will not be addressed here.
Instead we will try to answer the question of weather price caps are an effective means of
reducing price levels in the long term. To do this the market is simulated under two conditions.
The first is without a price cap, as shown above. In the second case, a price cap is introduced,
leading to the condition,

Sk = min(cap, eaLk-bk)

where 'cap' is the $/MWh price cap imposed by the regulator.

From the simulation it is clear that while the cap eliminates periods of high prices, it also
raises price levels during the low price cycles. This result is easy to understand if one goes back
and examines the signal which drives new investment,

Sav -i.

By reducing price levels when supply is scarce, the regulator reduces the rate of new
investment into generation. As a result prices drop of at a slower rate, causing higher future spot
prices. In the case described, the average power price is higher in the case where price caps are
imposed.
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Spot Price Comparison Under Price Caps

Figure 10-4

Figure 10-5

10.5.1 Comments on Simulation Results

The simulation demonstrates that reserve market levels tend to be lower in cases where a price
cap is imposed by the regulators. When the price caps is near the critical investment level I, one
starts to observe negative reserve levels. In these instances the system operator must order the
curtailment of some customers, possibly through rolling blackouts, in order to prevent the
collapse of the entire system. The simulation illustrates a trap which the regulator must avoid. By
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imposing price caps, the regulator succeeds in eliminating price spikes from the market. At the
same time, the investment rate starts to drop off, thereby increasing price levels on the low end
of the price cycle. The net effect is a flattening out of the price trend, which may actually raise
the average price of electricity of a multiyear period. At this point its is tempting for the regulator
to force down the average price by further reducing the level of the price cap. This is a
dangerous move, because it decouples the spot price level from the economic reality of supply
and demand. The scarcity of supply is not translated into high prices, and therefore the economic
signal to investors to build new plants is blocked. Eventually the physics will catch up with the
economics, as the available generation will no longer be able to meet demand, resulting in
curtailments. The critical price level (Scritical) at which point investment will no longer keep up
with demand growth is given by,

G(S"' -I) = aic.

If the price cap is set below Sctical, then investment cannot keep up with load growth, and the
system is invariably headed towards blackouts.

The implications of the results in this paper must not be interpreted as rejecting all forms of
regulatory intervention in general, and price caps in particular. There may be instances where it
is necessary for the government to set temporary limits to the price in a market to prohibit
suppliers from exploiting shortages. What the model illustrates is that the regulator must be very
careful in setting these limits. Price caps must be set higher rather then lower, to ensure that the
economic feedback is not blocked, and that market forces are allowed to bring the system back to
stable price levels. Once price caps have been put in place at a too low level, they become
increasingly difficult to remove, as the generation shortage worsens.

10.6 Concluding Remarks

The paper addresses the interplay between spot price levels and investment into new
generation capacity in competitive electricity markets. The problem was addressed from the
viewpoint of economic efficiency as well as the physical reliability of the system. Special
emphasis was placed on the dynamic properties of the investment process. It was shown that
delays caused by backward looking investment, as well as licensing and construction time of the
asset, leads to periods of over and under investment. This in turn leads to a cyclical long term
price behavior, driven by a stochastic growth in demand, which does not settle to an equilibrium
level. The structure of the problem indicates that the presence of liquid forward markets could
reduce the information delay, and help stabilize the system. This assumes however that forward
markets contain information which is not reflected in historical spot prices, or that is otherwise
part of the public knowledge. Further research into the effect of forward markets on information
flow could involve simulations of bottom up, agent based models, to determine the extent to
which locally held information is reflected in the forward price. While it may not be possible to
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accurately calibrate such models to the market, they would provide important qualitative insights
into optimal decision rules for investors, as well as intelligent market designs for the deregulated
electricity industry.

In the final part of the paper, the dynamics of spot price and new investment was linked to the
physical reliability of the system. Periods of under-investment not only lead to higher price
levels, but also reduce the reserve margin of available generation, and could lead to generation
deficiency and blackouts. The first reaction of regulators to periods of high prices, is often to try
to force price levels back down through the use of price caps. Price caps however, inhibit the
economic feedback which would allow the market to readjust itself. Imposing the caps will
reduce the rate of new investment, leading to a slower recovery from the price hike. If the
regulator continues to force the issue by reducing the cap levels, the lack of new investment will
eventually lead to an erosion of the reserve margin, leading to load curtailments and blackouts on
the system. The results presented in this paper indicate that regulators have to be cautious in the
use of price caps. They must respect the unique characteristics of electricity as a commodity;
non-storability, inelasticity of demand, and a highly constrained transmission system. These
characteristics lead to an uncommonly strong link between market price signals, and physical
stability. Any attempt to block the true economic signals from the market could therefore prove
disastrous.
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Chapter 11 Conclusion and Suggestions for Further Research

In the thesis we attempted to introduce a new modeling framework through which to address the
uncertainty facing participants in competitive electricity markets. The lack of economic storage
of electricity leads a decoupling of prices over time, creating a situation where the dimension of
the uncertainty grows linearly with the time horizon of interest. Similarly, each node in the
network represents a new special dimension for the market participants to consider. The
escalating dimensionality of the power pricing problem threatens to render all standard
approaches to financial decision making useless. Arbitrage and replicating portfolios cannot be
constructed, over time or space, thus providing no guidance to the temporal or special correlation
of electricity prices. To overcome this problem we introduced a model where the spot price of
electricity is the output of a set of demand and supply processes. By switching the underlying
states from price based to a quantity, or bid based, one can capture the temporal information
contained in the physical and economic processes governing the demand and supply of
electricity. These processes include temperature, economic growth, fuel prices, and unexpected
plant failures. Joining these processes together, we build the term structure of electricity prices
from its basic components. This approach has several advantages. Since competitive electricity
markets are a relatively new phenomenon, there is a very limited amount of historical data
available for the spot market. Furthermore, the market structure and regulatory rules are
constantly evolving, so that much of the existing data is outdated. In contrast, physical processes
such as temperature changes are not affected by deregulation. Indeed, given the lack of price
transparency for the end consumer, the entire demand process remains largely unaffected by the
regulatory changes. This allows us to draw on decades of demand and/or temperature data in
calibrating the model.

In applying the bid based model to a series of decision problems facing market participants, we
found that the switch to price as an output rather than a state variable had several advantages. In
the load serving problem, it was possible to reduce the complexity of the dynamic constraints by
capturing the quantity risk of the ESP as a state in the price process. When addressing the issue
of locational price spreads, we were able to incorporate the network flow constraints explicitly
into the price model, thus projecting the nonlinear behavior of power flow onto the resulting
price distributions. Finally, in examining the long term behavior of electricity prices, we were
able to use the bid based model to illustrate the delays in the feedback effects from the stochastic
demand growth, to the investment in new capacity. This delay has tremendous effects on price
dynamics, as well as on the physical reliability of the system.

The models introduced in this thesis are mainly a tool for communicating the advantage of an
alternative set of state variables in the price modeling process for non-storable commodities.
Due to the limits on available data, rigorous testing against a general set of model formulations
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was not possible. As the markets mature, they should provide increase information regarding
optimal choices of model structure. In addition, the emergence of new technologies for load
management on a retail level, is likely to generate more elasticity in the overall market demand
for electricity. As a result, further development of the model is required to cope with alternate
shapes of the demand and supply curves.

When addressing the decision problems facing market participants, the focus in this thesis
was on posing the dynamic optimization formulation, and identifying the factors which
contributed to the complexity of the solution. Significant work is needed in this area in order to
implement the actual optimization in an efficient manner.

Throughout the thesis we have considered the problem of replicating non-traded obligations
with publicly traded contracts. As electricity forward and derivatives markets become more
liquid, one can begin to ask the question of what are a reasonable set of spanning contracts, that
is, a set of contracts which can be used to dynamically replicate most over the counter and non-
traded obligations. As indicated in the chapter on electricity spot and forward dynamics, strict
arbitrage theory would require thousands of contracts in the spanning portfolio, given the
temporal decoupling of electricity prices. However, based on the results form the bid based
model, one might argue that limited number of contracts could be used to approximate any
derivative based on both temporal and special uncertainty. The problem becomes even more
interesting when taking into account the possibility of a joint trading strategy in electricity and
related commodities. The bid based model can be extended to explicitly incorporate fuel prices
as well as temperature levels. This would theoretically allow a user to form a replicating
portfolio for electricity using oil and gas contracts, as well as weather derivatives, based on
heating and cooling degree days. It further suggests that a savvy marketer may be able to take
advantage of previously unrecognized model based arbitrage between the different commodities.

Though not part of the original scope of the thesis, we found that the modeling presented lend
some insight into the impact of market structure and government intervention on the physical and
economic prosperity of the system. As shown in the chapter on long term price dynamics, the
futures market serves a role, not only as a tool for hedgers and speculators, but as a medium for
the transfer of information. The analysis suggests that the presence of a transparent futures
market may be crucial for the physical and financial stability of the system, by preventing
unnecessary delays in future investment. A comparative study of the reliability levels in regions
with and without futures exchanges, could provide some interesting insights into the validity of
this claim.
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Appendix A: Derivation of Principal Components

Using the Principal Component Analysis (PCA), it is possible to reduce the dimensionality of
the problem by defining the new orthogonal basis. PCA generates a new orthogonal set of j
variables, j n, where n is the number of the original variables in the observation set. They are
called Principal Components (PC). The new variables are selected so that those describing the
same driver can be replaced with a single new variable. Each principal component is a linear
combination of the original variables. Because PCs are orthogonal to each other, there is no
redundant information.

The first PC is a single axis in space. When each observation is projected on that axis, the
resulting values form observations of a new variable, the variance of which is the maximum
among all possible choices for the first axis. The second PC is orthogonal to the first, and the
second variable's variance is again maximal among all possible choices for this axis. As more
and more PCs are selected, they contain less and less variance. A simple two-dimensional
example is shown of Fig. A. 1, where vector X can be written as in (4), j = n = 2.

X = aly + a2Y 2 +. + any, = bv, +b2v 2 +...+bv (11)

The total number of PCs is usually equal to the number of original variables n. However, the
first m PCs usually account for most of the variance in the original observations, j n. Sum of
variances of the new variables equals sum of variances in the new variables.

n n

var(v) = var(y) (12)
i=1 i=I

/\/

Fig. A. 1: A two dimensional example of PC derivation for vector X

154



The iterative procedure of principal component derivation can be summarized in the
following steps:

1. Find the largest PC: maximize the variance of bT ?1 = b v, +...+ bv,:

max var(b x)= bTCb, s.t. bT b =jb2 =1

where b1 is the vector of weights of the first principal component vi and C is the covariance
matrix of x. The condition of b b = 1 is necessary for the unique solution to exist; otherwise the
weights could become arbitrarily big, leading to infinite variance.

bi =[bA2 .. bin] T

S=[vII,v 12 ,---,v 1 ,] T

2. Repeat the process for the subsequent PCs, until number of PCs = rank(C).
3. Determine, how many PCs are necessary to describe the process adequately. Form the

reduced-order principal component [j x n] matrix v*, where only the first m PCs are retained. A
detailed description of the routine can be found in [22].

The eigenvalue Xj, associated with i-th PC corresponds to the equivalent number of variables
this PC represents. A PC with an eigenvalue of ki = 3.9 describes as much variance as on average
3.9 original variables. By dividing the eigenvalue with the total number of PCs, j, we can obtain
a total percentage on variance explained by each PC.

When all n PC have been determined, it is necessary to determine j, how many PCs are
necessary to describe the data accurately enough. The three most common measures are:

1. Retain all PCs that represent more variance than original variables on average (its Xi < 1).
2. Scree test. The incremental plot of variance accounted for by every PC is called scree plot.

The number of points before leveling-off of the curve is the number of PCs retained.
3. Total variance of the data accounted for by the retained PCs. Some authors propose to

retain as many PCs as to account for about 90% of the variance [23], while others propose less
stringent criteria, depending on the reasons for performing the PCA [21].
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Appendix B: Joint parameter estimation using MLE and KF

Unknown parameters of the stochastic model can be estimated using Maximum Likelihood
Estimation (MLE) coupled with Kalman Filter (KF) state estimator. The iterative procedure
estimates parameters of the model as to minimize the likelihood function and then computes the
resulting system response using Kalman Filter. In the appendix we derive Kalman Filter and
outline the MLE procedure.

Derivation of Kalman Filter

A Discrete Kalman Filter is a technique for estimation of states of a stochastic system [1]. It
consists of a set of mathematical equations and provides an efficient recursive solution of the
least-squares method. It addresses the problem of estimation of states x of a process, described
by stochastic difference equations

X,1 = Ax, +Bu, +H,?,
where A is the system matrix, relating the system state xt at time t to the next state xt.+at time

t+1 in the absence of the controlling input. B is the matrix relating the input ut to the state xt. The
measured noisy system output at time t yt is

yt =CXt +e,
The random variables qt and Ct represent process and measurement noise. They are assumed

to be independent of each other and with normal probability distributions.
?, = N(O,Q)

E, = N(O, R)

To write the BSM in the state space form, the system state xt, the process noise 11, the input ut
and output y signals, the system matrices A, B, C and I', and noise covariance matrices Q and R
take the following values.

Xt _ Wt k _ ~~ [ t Uk

[-Kl [ as 1
A =[a ] B= C=[1,0] G=

0, I 0_ ,a R

0,1
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11.1.1 Kalman Filter

Let's define +,It as our a-priori estimate of state vector at step t+1, and xt+,t+, our a-posteriori

estimate of state vector at t+I, given measurement zt 1. We can then define a-priori and a-
posteriori estimate errors et+it and et/t as

et+/t =X-t Xt+1/t

et/t X t t/it

An estimate of the a-priori estimate error covariance is therefore Pt+ut, while of a-posteriori
estimate error covariance being Pt/t.

P,,+, = E (et,Iye,,I,

P= E[e 1 e T/

The algorithm of Kalman filter computes the equation that produces the optimal a-posteriori
estimate x,,/,, as a linear combination of the a-priori estimate it+,/t and a weighted difference

between an actual measurement zt and predicted measurement C £t+1t When they agree

completely, the residual YIt is zero.

t+1/t+1 t+1/t ~*'t+1 tl- +

The factor K in the equation is called Kalman gain and is chosen in such a way as to minimize
the a-posteriori covariance Pt/t.

11.1.2 KF Algorithm

The Kalman filter algorithm is iterative procedure, that estimates process states as new
measurements become available in each time step. Using initial estimates of system state xo/o and
a-posteriori error covariance Po/o, it computes the optimal a-posteriori estimate xItl and the

pertaining Kalman gain K. The procedure is described below:

1. Select initial estimates: xo/o PO/O

2. Compute time update (prediction) equations:

i,+y, = Ai, + Bu, a-priori estimate of state vector x

P,,y, = APIA T +GQG a-priori error covariance matrix

3. Compute measurement update (correction) equations:

Kt+1 = P,+11T +C [C,+Py,+ 1c Kalman gain

Yt+1 = Y+Iv - Ci,11 , residual: measurement innovation

t,=, +K a-posteriori estimate of state vector x

Ptyl,1 =[I - K ,C]P,,y, a-posteriori error covariance estimate

4. Repeat 2 and 3 for all t E [1,...T]
The procedure is schematically shown in Fig. B. 1.
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11.2 Maximum Likelihood Estimation of model parameters

The idea behind Maximum Likelihood Estimation is to compute the optimal parameters of the
model by iteratively modifying them to minimize a likelihood function [24], [25], [26].

Initial

estimation

Measurement Update ("Correct")

Time Update ("Predict") 1. Compute the Kalman Gain

1. Project the state ahead K =P C C C
t+1/t =At/t + But 2. Update estimate with measurement yt+1

2. Project the error covariance ahead , = +K ,+1 - CX )
Pt+1 = AP,,tA T+GQG1T1t1=X+1t 

t1k +1
+ /P~~A +3. Update the error covariance

P,,,l,,, = [I - Kt+1C1P,+1

Fig. B. 1 Kalman filter operation flowchart.

After constructing the model representation in the state space and setting up the KF
procedure, we construct a vector of unknown parameters 0 that contains the unknown parameters
of the model.

Using the covariance of the innovation process Nt+11t, obtained by the Kalman filter,
N,/ = CP C

Nt+1t =C t+1tC

we can construct a log likelihood function J.
1 T-1J=logL = T-1 [ N- 1  + log(det(N,,11 ))]

t=,

The procedure iteratively updates the parameter vector 0 according to the equation

?'*m- = ? -p'M'(

where M(a) is a Hessian matrix of the log likelihood function

M 2J(a)
aa7aa

1
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The procedure is schematically presented in Fig. B.2.
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Initial values: 00, p0 xtit,

0

Kalman Filter
- obtain J

Unconstrained optimization
- obtain M, aJ/a0

Maximum likelihood update of 0

?+1 -?_
9IAi+1i < 5

Optimal parameter vector

Fig. B.2 Maximum Likelihood estimation flowchart
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