
An XML Server for Networked Physical Objects

by

Ashutosh Somani

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical Engineering and Computer Science

and

Master of Engineering in Electrical Engineering and Computer Science BARKER

MASSACHUSETTS INSTITUTEat the OF TECHNOLOGY

Massachusetts Institute of Technology JUL. 11

June 2001 LIBRARIES

© MMI Massachusetts Institute of Technology. All rights reserved.

Author
Department of Electrical Engineering and Computer Science

May 23, 2001

Certified by
Kai-Yeung 'Sunny' Siu

Associate Professor of Mechanical Engineering
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

An XML Server for Networked Physical Objects

by
Ashutosh Somani

Submitted to the
Department of Electrical Engineering and Computer Science

May 23, 2001

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Electrical Engineering and Computer Science

and Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis examines how to return desired portions of Product Markup Language (PML)
files in response to client queries. Information about physical objects will be stored in the
form of PML files that reside on servers scattered across the Internet. The syntax of PML
is based on XML so we make use of XML technologies to implement the PML server.
We use the Simple Access Object Protocol (SOAP) as the communication protocol,
Apache Tomcat Java Servlet Engine as the Internet application server, XML Query
Language (XQL) as the query language, and the Infonyte XQL engine as the query
handler. We also present our implementation for the Tracking Server. A Tracking
Server stores location information about physical objects and resides at a node in the
supply chain. It is implemented using SOAP as the communication protocol, Tomcat as
the Internet Application Server, the MM MySQL JDBC driver as the query handler, and
MySQL as the database. We make use of a Tracking Package that implements the
distributed algorithms necessary to retrieve the tracking information.

Thesis Supervisor: Kai-Yeung Siu
Title: Associate Professor

Acknowledgements

I would like to thank my thesis supervisor, Sunny Siu, for introducing me to the

Auto-ID Center and giving me an opportunity to work there. I thank him for looking out

for my long-term interests and keeping my work in perspective. I am grateful to Ching

Law and Dan Engels for the countless discussions that provided me with invaluable

suggestions and guidance. I could not have done this without them. Ching was my

primary source of assistance, and someone I heavily depended on throughout my

research. I thank Sanjay Sarma for being approachable and someone from whom I could

solicit any type of advice. His general friendliness and sense of humor made him a

pleasure to work with. Thanks to Amar for always being there and offering help in any

shape or form when I needed it throughout my education at MIT. Thanks to all the

brothers of Phi Beta Epsilon for giving me a home away from home. Thanks to Parul,

Sneha, Neesha, Amit, Richa, and all my friends at MIT for providing balance in my life

and making the last four years so memorable. I owe a special thanks to my twin brother,

Paritosh, who has provided me lifelong companionship and has been with me every step

of the way. He has been a perennial source of encouragement and motivation. Lastly, I

would like to thank Mom, Dad, and Anju for their everlasting love and support.

Table of Contents

Chapter 1: Introduction... 6

1.1 Auto-ID Center Technologies ... 6

1.1.1 The Electronic Product Code .. 6

1.1.2 The Object N am ing Service.. 8

1.1.3 The Physical M arkup Language.. 8

1.2 PM L and Tracking Servers ... 9

1.2.1 PM L Server ... 9

1.2.2 Tracking Server .. 11

1.3 Thesis Contributions .. 11

Chapter 2: The Communication Protocol... 14

2.1 Overview of SOA P... 14

2.1.1 Breakdow n of SOA P... 14

2.1.2 Apache SOA P Architecture .. 15

2.2 A lternate Com m unication Protocols ... 16

2.2.1 M essage Passing vs. Request/Response.. 16

2.2.2 Overview of D COM and CORB A ... 17

2.2.3 W eakness of D COM and CORB A ... 18

2.3 A dvantages of SO AP .. 19

2.3.1 H TTP as a Better RPC ... 19

2.3.2 X M L as a Better N DR .. 20

2.3.3 SOAP as a Better Com m unication Protocol ... 21

2.4 SO A P in the PM L Server .. 22

Chapter 3: PM L Server Side.. 25

3.1 Technologies ... 25

3.1.1 Tom cat..25

3.1.2 X M L Query Language (X QL) ... 26

3.1.2.1 Basic Syntax.. 26

3.1.2.2 Justification .. 28

3.1.3 Infonyte X QL Engine... 29

3.1.3.1 Functionality ... 29

3.1.3.2 Justification .. 30

3.2 Processing a Query... 32

3.2.1 PM L File Storage Form at... 32

3.2.2 File Searching Algorithm ... 34

3.3 Possible Query Form ats ... 36

3.3.1 Single ePC ... 36

3.3.2 Ranges.......................... .. 38

3.3.3 Regular Expressions .. 39

3.4 Error H andling...42

Chapter 4: Tracking Server .. 45

4.1 Architecture ... 45

4.1.1 Com m unication Protocol... 46

4.1.2 Server Side 46

4.2 Processing M ethodology ... 47

4.2.1 Data Storage and.F... r........... ... 47

4.2.2 Tracking Package 48

Chapter 5: Conclusions and Future Work... 52

5.1 Challenges.. 52

5.1.1 New Technologies.. 52

5.1.2 Lack of Standards.. 53

5.2 Future W ork .. 54

5.2.1 PM L D atabase... 54

5.2.2 Tracking Server M ethods... 56

5.3 Conclusions... 56

A ppendix A: Building a PM L Server... 59

Appendix B : Building a Client for the PM L Server.. 62

References ... 64

Chapter 1: Introduction

The Internet has established an infrastructure that provides connectivity around

the world. People can access data by searching online through numerous resources or by

connecting with someone thousands of miles away. The next step being pursued in this

growing web of connectivity is the idea of connecting physical objects to the Internet.

The MIT Auto-ID center is designing and implementing the infrastructure to make this

happen. The aim is to develop an open and scalable architecture for embedding

automatic identification technology in physical objects in order to provide access to

information regarding them [1]. This requires two essential components: the technology

that provides for the automatic identification of an object, and the information network

that allows for its information exchange. This thesis discusses the key part of the latter

component, the Physical Mark-up Language (PML) Server.

1.1 Auto-ID Center Technologies

The Auto-ID center has already developed certain technologies to help realize its

vision. These include the Electronic Product Code (ePC), the Object Naming Service

(ONS), and the Physical Markup Language (PML). Additionally, the Auto-ID Center

works with global standards bodies and the Auto-ID industry to help specify how items

will communicate in a standard environment, and to help facilitate the development of the

next generation hardware that will drive the system [2].

1.1.1 The Electronic Product Code

The Electronic Product Code (ePC) is a 96 bit numbering scheme capable of

uniquely identifying every physical object on earth. It is broken down into four

6

partitions: the Header, Manufacturer Code, Product Code, and Serial Code. The current

specification calls for the following partition:

xx .xxxxxxx .xxxxx .xxxxxxxxxx
Header Manufacturer Product Serial Number
8 bits 28 bits 20 bits 40 bits

265 million+ unique IDs 1million+ unique IDs 1 trillion+ unique IDs

The Header is used for version control and specifies how the rest of the ePC is broken up.

Thus, if the specification ever changes and the partition is altered, the system should be

able to transparently adapt. The Manufacturer Code corresponds to the manufacturer of

the product and is needed to identify where information on that particular product can be

found, as the rest of the chapter will describe. The Product Code identifies the unit-

independent characteristics of the product. Finally, the Serial Code provides a unique

identity for every item.

The ePC of an object will be embedded in a Radio Frequency (RF) tag that will be

attached to an object. An RF tag reader can detect any tags within a certain range of the

reader. This system is different from the current bar code system used to identify

products in a couple of few key areas. One disparity is how the bar code system requires

manual labor to properly align a scanner to read a bar code correctly. Another difference

is that unlike the ePC, the numbering scheme in the bar code system can only identify a

class of products (e.g. a certain brand and style of tennis shoes), not each individual

product. Whereas, as the UPC bar code provides a reference to information on a

computer, the ePC will provide reference to information on the Internet. There is not

much more infrastructure required in the case of the bar code because once the bar code

of an item is read, any pertinent information can be looked up on the computer connected

to the bar code scanner. However, since the ePC will make use of the Internet, there

7

needs to be some mechanism to determine where to look for information corresponding

to a particular ePC. This necessitates the use of the Object Naming Service.

1.1.2 The Object Naming Service

The Object Naming Service (ONS) is used to locate information on the Internet

about any physical object that carries an ePC. This is an application layer protocol on top

of the Internet's existing Domain Name Service [1]. Given an ePC, an ONS server

provides an IP address for the server that stores information about that particular ePC.

These servers are called Physical Markup Language (PML) servers because they store

this information in the form of PML files. The next section explains what PML is.

1.1.3 The Physical Markup Language

The Physical Markup Language (PML) is intended to be a general, standard way

of describing the physical world [3]. It will serve as the lingua franca of the entire Auto-

ID system. Software applications, data storage, and analytical tools will all rely on it as a

common standard. Instead of using an entirely new syntax, it uses the extensible Markup

Language (XML). It is just an XML scheme and for the intents and purposes of this

paper, can be treated as XML. It looks like XML and can be queried with XML querying

tools. Information about each tagged object will be stored in the form of a PML file.

Thousands of such files will be stored in each PML server. In order to retrieve

information from a PML file, an XML querying language must be employed.

Figure 1.1 summarizes the entire process of obtaining information about a

product. First a tag reader is used to read the ePC of a product. Next, this ePC is used to

query ONS for the IP address of the particular PML server that stores information about

the product. Finally, a PML server can be queried for the desired information.

8

ONS
PML

Server

PML Server
ePC IP Address

XML based
query 3

Desired Information

Physical Object with Tag Reader
Embedded Tag

Figure 1.1: Overview of System

1.2 PML and Tracking Servers

Information about each product is stored in some type of server. We have already

mentioned the PML Server, which stores most of the information in the form of PML

files. We will also discuss the Tracking Server, one of the first applications of the Auto-

ID Center.

1.2.1 PML Server

The focus of this thesis is on the design and implementation of the PML Server.

Although information about each tagged product is stored in one or more PML files that

reside on the server, the PML server is not just a file server. Due to the amount of

information that may be stored in a PML file, each file can get fairly large. Thus, to

minimize the Internet traffic and make the system more scalable, we make use of a PML

database. Only the desired part of a PML file is sent back to the client. It is more than

just a simple database because since the PML files must be queried through the use of an

XML querying language, there must be some type of query handler that can process the

9

query. At the time of our design, there was no database with a front-end for an XML

querying language. Figure 1.2 provides an overview of the system and the aspects of the

server that are relevant to our discussion: the communication protocol, the Internet

application server, and the engine that processes the client query to return the pertinent

information (the query handler and PML Database).

XML Based Query Inere XMIL Based Query __

Client Communication Protocol Application XML Query

4 _ . Server Handler
Desired Portion of PML File

PML
Figure 1.2: PML Server Architecture Server D

The PML Server will be queried from a variety of locations over the Internet.

Therefore, there is need for a communication protocol to transmit the query from the

client to the server and then return the portion of a PML file that is the query result. The

communication protocol can be viewed as facilitating a remote procedure call. The client

supplies two arguments (a tag and a query), the server processes the two arguments, and

the result is returned.

A PML Server is essentially an Internet application server, the application being

the processing of client queries about PML files that are stored in the server. The queries

that may be given to a PML Server can be broken down into two types: those about a

class of products (class data) and those about an individual object/item (instance data).

Instance data queries place a significantly greater load on the system. There will be much

10

more instance data in each server since they may end up storing information about

millions of individual products while only thousands of types of products. Furthermore,

there may be more than one PML file that stores information about a particular product.

This may become more complex since one file may contain a pointer to another. Thus,

handling instance data queries is a more involved process and absorbs the majority of the

system's resources.

1.2.2 Tracking Server

The Tracking Server is a server for a particular type of instance data. There will

be one at every node in the supply chain. Each server keeps track of where a product is

currently located in the supply chain and where it has been in the past. Since it stores

very limited information about each product, PML files are not used. This makes the

backend of the two servers very different. In fact, there is no need to use an XML

querying language to query the tracking server. There are also very limited types of

queries that a tracking server can expect and the architecture is optimized for handling

only those queries. The Tracking Server is just one example of instance data that is

stored in the Auto-ID system.

1.3 Thesis Contributions

In this thesis, we present the design and implementation for the PML and the

Tracking Server. We implemented simple, flexible solutions and succeeded in building a

proof-of-concept prototype for one portion of the MIT Auto-ID Center system. Our

thesis contributions can be divided up into three main areas: the communication protocol,

the server side for the PML Server, and the server side for the Tracking Server.

11

Communication Protocol

For both servers, we chose the Simple Object Access Protocol (SOAP) as the

communication protocol. There were a couple of alternatives but SOAP is better suited

for the Internet and is more flexible. It is simple and minimizes the infrastructure that

needs to be built. We justify our use of SOAP by providing a detailed discussion of the

alternate communication protocols. We set up a SOAP service for both the PML Server

and the Tracking Server. SOAP was used in conjunction with the Apache Tomcat

Servlet Engine. It was used as the Internet application server. The use of the two

technologies provides clients on the Internet access to the procedures on each of the

servers.

PML Server

The primary contributions of this thesis pertain to the server side processing of the

PML Server. We describe a way to store PML files and return the desired portions in

response to client queries. We describe how the XML Query Language (XQL) and the

Infonyte XQL engine are used to query the PML files and process the queries. Again a

justification for their use is provided. The selection of the two technologies was a joint

decision. We needed an XML based query language that had some type of support to

process the queries. Without a standard for XML query languages at the time of our

implementation, there were very few choices available. However, we found a stable

solution in the form of XQL and the Infonyte engine.

We present a simple and efficient methodology to process a PML Server query.

Each query necessitates a search through multiple files since information may be stored

on any number of files relevant to a particular product. We provide a file searching

algorithm to search all the relevant files. We also support queries for a range of tags or

12

regular expression queries that may match multiple tags. This additional functionality

saves bandwidth by making use of server side processing.

Tracking Server

The Tracking Server stores information about a particular class of instance data.

In order to respond to a client query, however, a Tracking Server may need to query other

Tracking Servers as well. We demonstrate a mechanism to do this. We make use of the

distributed algorithms described in [4] in the form of a Tracking Package. The Tracking

Package specifies data storage and network methods that need to be implemented. The

network methods are implemented using SOAP. We make use of a relational database,

MySQL, and a corresponding JDBC driver, MM MySQL, to implement the data storage

and access methods. In the case of the Tracking Server, there is no need to store the

information in PML files this time since only a very specific type of information is

stored. PML files add an overhead to the system that would be detrimental to the

efficiency. We describe our implementation of two methods that can be called when

querying a Tracking Server: track and locate. The first traces the entire history of a

particular item in the supply chain while the latter provides the current location of an

object. Thus, we implemented a basic Tracking Server that can be extended with

additional functionality once additional methods are implemented in the Tracking

Package.

13

Chapter 2: The Communication Protocol

A key part of the PML Server is the communication protocol responsible for

transporting a client query to the server and returning the result of the processed query

back to client. As mentioned earlier, SOAP was chosen as the communication protocol.

Section 2.1 gives an overview of SOAP, Section 2.2 provides some background

information about some alternate communication protocols, Section 2.3 justifies our use

of SOAP, and Section 2.4 describes how we used SOAP in the PML Server.

2.1 Overview of SOAP

SOAP stands for Simple Object Access Protocol because it is a lightweight

protocol for the exchange of information in a decentralized, distributed environment. It is

intended to provide remote procedure call (RPC) facilities which work across platforms

and languages [5]. The current specification is for HTTP transport of messages encoded

in XML. Although HTTP transport is the only type specified, other types are not

excluded from consideration.

2.1.1 Breakdown of SOAP

SOAP is an XML based protocol that consists of three parts: an envelope, a set of

encoding rules, and an RPC representation [6]. The envelope defines an overall

framework for expressing what is in a message, who should deal with it, and whether it is

optional or mandatory. The set of encoding rules define a serialization mechanism that

can be used to exchange instances of application-defined datatypes. Finally, the SOAP

RPC convention defines a convention that can be used to represent remote procedure

calls and responses. SOAP has no explicit programming model because one of its

primary goals is to make existing programs more accessible to a broader range of users.

14

III- mIlliE III ________________ ~]E i~~ *-.~i:i- - -- --

As a result, SOAP assumes that existing technology will be used as much as possible

instead of inventing new technologies. As mentioned earlier, two existing and widely

deployed protocols are used by SOAP: XML and HTTP. HTTP is SOAP's RPC-style

transport and XML is its encoding scheme. SOAP simply codifies the use of XML as an

HTTP payload [7].

2.1.2 Apache SOAP Architecture

We use the Apache SOAP implementation. Its architectural diagram is shown in

Figure 2.1:

K,

H
Apache SOAP Library XML Parser

SOAP Envelope

-A

Architecture [8]

14

Apache SOAP Listener
(RPCRoter Serviet)

Fl

Intemet Ap ication Server

Server Application

15

Client Application

Remote Services Registry

Apache SOAP Library

XML Parser

Figure 2.1: Apache SOAP

The figure shows that the client side requires a client application, the Apache

SOAP Library, and an XML Parser. The server side requires the Apache SOAP Library,

an XML Parser, and an Internet application server. The Apache SOAP implementation

assumes the use of the Apache Xerces XML Parser, which is why we chose it as our

XML parser. We chose the Apache Tomcat servlet engine as the Internet application

server, but this will be discussed in Chapter 3.

As Figure 2.1 shows, the Apache Listener waits for a client request and once one

comes, it makes sure that the service requested has been registered. If it has, the registry

is examined to find out what to do with the client request (i.e. where to pass the

parameters in the server application). Once the request has been processed, the result is

returned to the client application.

2.2 Alternate Communication Protocols

There were a variety of alternate communication protocols for the PML Server

but we chose SOAP because it is flexible, scalable, and simple. Justification for its use

begins by looking broadly at communication models for building distributed applications.

We then examine the two dominant Object RPC (ORPC) protocols: Microsoft's

Distributed Component Object Model (DCOM) and OMG's Common Object Request

Broker Architecture (CORBA).

2.2.1 Message Passing vs. Request/Response

The two most dominant communication models for building distributed

applications are message passing and request/response. Message passing systems allow

messages to be sent at any time by either party. This necessitates an explicit design style

since an application will be aware that it is communication with external concurrent

16

processes. Request/response protocols restrict communication to request/response pairs,

however, and thus more closely resemble a single-process application. The requesting

process is essentially stalled until it receives the response. This makes request/response

communications a natural fit for RPC applications [7]. SOAP messages are

fundamentally one-way transmissions from a sender to a receiver, but most commonly

combined to implement patterns such as request/response.

2.2.2 Overview of DCOM and CORBA

A DCOM server is a body of code that is capable of serving up objects of a

particular type at runtime. Each DCOM server object can support multiple interfaces,

each representing a different behavior of the object. A DCOM client calls into the

exposed methods of a DCOM server by acquiring a pointer to one of the server object's

interfaces. CORBA relies on a protocol called the Internet Inter-ORB Protocol (IIOP) for

remoting objects. Everything in the CORBA architecture depends on an Object Request

Broker (ORB). The ORB acts as a central Object Bus over which each CORBA object

interacts transparently with other CORBA objects located either locally or remotely. Each

CORBA server object has an interface and exposes a set of methods. To request a

service, a CORBA client acquires an object reference to a CORBA server object. HOP is

just CORBA's version of the General Inter-ORB Protocol (GIOP) [7]. Thus, both

protocols use an object endpoint ID to identify the target object, as well as a method

identifier to determine which method to invoke. Figure 2.2 shows that the request

formats for the two protocols are nearly identical.

There are two key differences between HOP and DCOM relevant to our

discussion: the interface ID and the format of parameter values. One is that with HOP,

the interface ID is implicit since a given CORBA object only implements one interface.

17

I-

DCJUWig /110
Mip ,slWITpR

Figure 2.2: ORPC Requests [7]

The other difference worth noting is the format of parameter values in the payload. In

DCOM, the payload is written in a format called Network Data Representation (NDR)

and in IIOP, the payload is written using Common Data Representation (CDR). There

are differences between the two formats that render them incompatible.

2.2.3 Weakness of DCOM and CORBA

Although they are both solid protocols, the industry has not completely shifted to

either and adopted one. Part of the reason may have to do with cultural issues, but the

technical applicability of both protocols has also been called into question. The

consensus has been that both DCOM and HOP are reasonable protocols for server-to-

server communications, but have been shown to have severe weaknesses for client-to-

server communications, especially when the client machines are scattered across the

Internet [7].

9 They rely on single-vendor solutions to use the protocol to maximum
advantage.

18

" They rely on a closely administered environment.

" They rely on fairly high-tech runtime environments.

" They have severe inabilities to work in Internet scenarios.

2.3 Advantages of SOAP

Next, we examine how SOAP solves some of the problems faced by DCOM and

IIOP.

2.3.1 HTTP as a Better RPC

HTTP is a protocol very similar to an RPC-type protocol. It is widely deployed

and also more likely to function when faced with a firewall than any other

communication protocol available today. Thus, it is considered well suited for the

Internet. HTTP layers its request and response communications over TCP/IP just like

DCOM and CORBA. An HTTP client connects to an HTTP server using TCP. Once a

connection has been established, the client can send the HTTP request message to the

server and expect an HTTP response message once the request has been processed.

HTTP headers are just plain text. This makes problems easy to diagnose by using

packet sniffers or even text-based Internet tools like telnet. This also makes it easily

adaptable to low-tech programming environments popular in Web development. For

instance, the following is a legal HTTP request message:

POST /foobar HTTP/1.1
Host: 18.236.0.18
Content-Type: text/plain
Content-Length: 11

Hello World

The first line contains the HTTP method, the Request-URI (Uniform Resource

Identifier), and the protocol version. GET is the HTTP method used to surf the Web.

19

POST is the most commonly used HTTP method for building applications. The Request-

URI is simply a token used by the HTTP server software to identify the target of the

request. The third and fourth lines of the request specify the size and type of the request

payload.

Upon processing the request, the server is expected to send an HTTP response

back to the client. This must contain a status code indicating the outcome of the request

and may also contain arbitrary payload information. If the server application reverses the

argument string, the response may look something like:

200 OK
Content-Type: text/plain

Content-Length: 11

dlroW olleH

As an RPC protocol, HTTP provides nearly all the functionality of IIOP or

DCOM in terms of framing, connection management, and support for serialized object

references. In conclusion, the major advantages of HTTP are that it is simple enough for

the low-tech programming environments found on the Web, widely deployed, widely

accepted, and works well in an Internet environment.

2.3.2 XML as a Better NDR

One piece missing from HTTP as an RPC protocol is a single standard format for

representing the parameters of an RPC call. This is where SOAP makes use of XML.

XML is a platform-neutral data representation protocol. It allows data to be serialized

into a transmissible form that is easily decoded on any platform. It has the following

advantages over NDR and CDR (the format of the parameter values used in the payload

of DCOM and IIOP):

20

e Encoding and decoding software for it is widely available for nearly every
programming language and platform

" It is text-based and easy to handle from low-tech programming environments

" It is extremely flexible and easily extended.

2.3.3 SOAP as a Better Communication Protocol

SOAP basically codifies the use of XML as an encoding scheme for request and

response parameters using HTTP as a

transport [7]. A SOAP method is just a

HTTP request and response that

complies with the SOAP encoding rules.

Thus, it is an ORPC that takes
Logical Components

advantages of the strengths of HTTP and

jje XML. Figure 2.3 shows how SOAP

maps to the ORPC protocol concept that

SOAP was discussed earlier. One of the major

Figure 2.3: SOAP and ORPC [7] advantages of using existing

technologies (XML and HTTP) instead of inventing new ones is that incompatibilities are

a lot less likely to arise. Furthermore, HTTP is already widespread while XML soon will

be. This bodes well for the likelihood of SOAP becoming a dominant communication

protocol.

From the perspective of the Auto-ID Center, a flexible technology was desired.

We did not want to force our users to use a particular machine in order to be compliant

with our system. SOAP offers this flexibility. Furthermore, it is simple and does not

21

warrant the use of new technologies. This minimizes the necessary new infrastructure,

something very important for a project of the magnitude of the Auto-ID Center.

2.4 SOAP in the PML Server

The PML Server uses SOAP to pass the query from the client to the server and

then the result back to the client. The query consists of two parts: the ePC (or tag) to be

queried in hexadecimal form and the query itself. The client can expect part of a PML

file in return. In summary, the client sends two strings to a PML Server and gets an XML

document back.

To use SOAP, we constructed a SOAP Service which we called 'InfoFetcher' and

registered it to accept two string parameters. Thus, a client can make a call to the PML

Server by adding two string parameters to its request (the ePC and the query) and setting

the proper encoding type so SOAP knows how to serialize the request and response

values. For the client request, each parameter is serialized as a string while the response

is serialized as literal XML. We employed a TCP Tunnel Gui to see what the request

and response looked like at the server side. This is shown in Figure 2.4:

Figure 2.4: TCP Tunnel GUI

22

1 POST /soap/servlet/rpcrouter HTTP/1.0

2 Host: localhost:8888
3 Content-Type: text/xml; charset=utf-8
4 Content-Length: 633

5 SOAPAction: ""

6 <?xml version='1.0' encoding='UTF-8'?>

7 <SOAP-ENV:Envelope xmlns:SOAP-
ENV= http: //schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http: //www.w3. org/1999/XMLSchema-instance"
xmlns: xsd= "http: / /www.w3. org/1999 /XMLSchema >

8 <SOAP-ENV:Body>
9 <nsl:getInfo xmlns:nsl="urn:InfoFetcher" SOAP-

ENV: encodingStyle="http: / /xml. apache. org/xml-soap /literalxml >

10 <tag xsi:type="xsd:string" SOAP-

ENV: encodingStyle= "http: //schemas. xmlsoap. org/soap/encoding/">
11 123456789abcdel234567890
12 </tag>
13 <query xsi:type="xsd:string" SOAP-

ENV:encodingStyle="http: //schemas.xmlsoap.org/soap/encoding/">
14 //weight
15 </query>
16 </nsl:getInfo>
17 </SOAP-ENV:Body>
18 </SOAP-ENV: Envelope>

Figure 2.5: SOAP Message Embedded in HTTP Request

The left hand column is the SOAP Request and this is shown in more detail in

Figure 2.5. The first few lines are the HTTP Request message that was discussed earlier.

The remaining part is the SOAP Envelope. Line 9 tells the method name to be called on

the server side (in this case 'getInfo') along with the encoding type for the response.

Lines 11 and 14 are the parameter values, each of which are enclosed with the proper

XML tags with the parameter names (in this case, 'tag' and 'query') along with their

encoding types.

Similarly, the right hand column of Figure 2.4 is the SOAP Response and is

shown in more detail in Figure 2.6. As before, the first few lines are the HTTP Response

message followed by the SOAP Envelope. Line 10 tells us that this is the response for

the call to the 'getlnfo' method. Line 16 is the actual result of the query, in this case '10'.

23

24

1 HTTP/1.0 200 OK
2 Content-Type: text/xml; charset=utf-8
3 Content-Length: 613
4 Set-Cookie2: JSESSIONID=dv3kfnlykl;Version=1;Discard;Path="/soap"
5 Set-Cookie: JSESSIONID=dv3kfnlykl;Path=/soap
6 Servlet-Engine: Tomcat Web Server/3.2.1 (JSP 1.1; Servlet 2.2; Java

1.3.0; Linux 2.2.14-5.0 i386; java.vendor=Sun Microsystems Inc.)

7 <?xml version='1.0' encoding='UTF-8'?>
8 <SOAP-ENV:Envelope xmlns:SOAP-

ENV="http: //schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

9 <SOAP-ENV:Body>
10 <nsl:getInfoResponse xmlns:nsl="urn:InfoFetcher" SOAP-

ENV:encodingStyle="http: //xml.apache.org/xml-soap/literalxml">
11 <return>
12 <results>
13 <tagresult status="success" tag="123456789abcde1234567890">
14 <xql:result xmlns:xql="http://metalab.unc.edu/xql/">
15 <weight>
16 10
17 </weight>
18 </xql:result>
19 </tagresult>
20 </results>
21 </return>
22 </nsl:getInfoResponse>
23 </SOAP-ENV:Body>
24 </SOAP-ENV:Envelope>

Figure 2.6: SOAP Message Embedded in HTTP Response

Chapter 3: PML Server Side

This chapter details the server side processing of a query in the PML Server. We

first examine the core technologies behind the PML server: the Internet application

server, the XML querying language, and the XML Query Handler. Then we provide a

discussion detailing the methodology used to process a query. This includes which files

are searched in response to a query and what types of queries the system supports.

3.1 Technologies

Three primary technologies are present in the server side architecture. The

Apache Tomcat Java servlet engine is used as the Internet application server. We chose

XQL as the XML querying language and the Infonyte XQL Engine to process the XQL

queries.

3.1.1 Tomcat

Apache Tomcat was chosen as the Internet application server to host the SOAP

Service (discussed in the previous chapter) for the PML Server. Tomcat is a servlet

container with a Java Server Pages (JSP) environment. More specifically, Tomcat is the

Reference Implementation for the Java Servlet 2.2 and Java Server Pages 1.1

Technologies [9]. A servlet container is a runtime shell that manages and invokes on

behalf of users. Servlet containers can be partitioned into three groups: stand-alone

servlet containers, in-process servlet containers, and out-of- process servlet containers. In

our implementation, we use Tomcat as a stand-alone servlet container because all we

need it to do is to host a SOAP service on the Internet. We implemented the PML server

with the latest version available at the time, Tomcat 3.2.

25

By default, Tomcat accepts HTTP connections on port 8080. So if a PML Server

were deployed at some IP address, 18 . 236 . 0 . 18, Tomcat would listen for connections

at http://18.236.0.18: 8080. Since the PML Server methods are embedded in a

SOAP Service, a client request would need to be sent to the default SOAP URL,

http://18.236.0.18:8080/soap/servlet/rpcrouter.

Tomcat is not the only Internet application server that can be used with the

Apache SOAP implementation. Some of the other options include JRun or IBM's

WebLogic. We chose Tomcat because it was the most commonly used out of the three in

conjunction with SOAP. Given that SOAP was a new technology at the time of our

development with very limited documentation, choosing Tomcat was quite beneficial

because we were able to solicit a lot of help from the SOAP community. Tomcat is also

fairly simple and since it was already known to work well with SOAP, it was a logical

choice as our application server.

3.1.2 XML Query Language (XQL)

XQL is an XML querying language that provides an extension to the XML

Stylesheet Language (XSL) pattern language. XSL provides a very simple and

comprehendible way to describe a class of nodes. More detailed information about XSL

can be found in [10]. XQL builds upon the features found in XSL for identifying classes

of nodes by adding such features as Boolean logic and filters. It is a simple and concise

querying language designed specifically for XML documents.

3.1.2.1 Basic Syntax

A full discussion with all the technical details can be found in [11] but here we

just provide an overview of the basic syntax needed to query an XML document using

XQL.

26

* A plain string is assumed to be an element name. Thus the following query would

return all the <product> elements from an XML document:

product

* Hierarchy can be indicated using the child operator ("/"). Paths are always described

top down, however, and the right-most element on the path is always returned (unless

otherwise specified). Thus, the following query returns all the color elements that are

children of car elements:

car / color

* The content of an element can be specified using the "=" operator. The result of the

following query would be all the red cars:

/car/color='red'

* Likewise, the value of an attribute can also be specified using the "=" operator.

Attribute names begin with "@" and are treated as children of the elements to which they

belong. Therefore, this query would return all cars that are Toyotas:

/car/@type=' toyota'

* Whereas the previous query returns type attributes, elements can be also be returned for

the same query by using the filter operator ("[]"). This operator filters the set of nodes to

its left based on the conditions inside the brackets. This query returns all the car elements

that have an attribute called "type" whose value is "toyota":

/car [@type= 'toyota']

* Any number of intervening intervals can be specified using the descendant operator

("//"). The following returns all cars anywhere within product:

product//car

27

e If a descendant operator is found at the beginning of the path, it specifies all nodes

descended from the document. This query would find any car in the document:

//car

This overview of the basic syntax of XQL should be sufficient to get most of the

functionality out of the PML Server. As the above examples show, the syntax is very

simple, straightforward, and logical. Even if a user has no experience with XQL, it is

easy to gain a basic understanding and carry out desired queries to the PML Server.

3.1.2.2 Justification

Unfortunately, there was no standard for XML querying languages at the time of

our implementation and there is still none in place today. Thus, there is no dominant

XML querying language that has emerged. Two of the more popular alternatives are

Quilt and XML-QL. When trying to decide on a querying language to use, our decision

was based more on which could provide the most for the PML Server rather than which

language had the most functionality. We wanted a querying language that had some type

of database support. Given that there is no standard as of yet, very few database vendors

had built in some type of front-end support for an XML querying language at the time of

our decision. We found that XQL did have some support in the form of an XQL Engine

built by Infonyte. This is primarily why we chose it. Our justification is that once a

standard comes out, most database vendors will most likely build a front-end for the

particular XML querying language. We left the architecture of the PML Server flexible

enough so when a standard does emerge, a new querying language/database pair can be

"plugged" into the PML Server and replace the current implementation. Our goal was to

build a prototype of the PML Server so we chose XQL based on which language had the

most support. We did not have a need for a querying language with any more

28

functionality than XQL. This implementation decision is flexible, however, and can be

changed at a later date.

3.1.3 Infonyte XQL Engine

The Infonyte XQL engine is the workhorse of the server. It implements the XQL

Specification published in the W3C-QL '98 proposal "XML Query Language (XQL)"

[12]. As we discussed earlier, the XQL Specification provides a set of query facilities for

XML documents that are sufficient for the needs of the PML Server.

3.1.3.1 Functionality

The Infonyte XQL Engine implements the complete set of operators and functions

described in the XQL Specification. It can process any XQL query for a properly formed

XML document. In addition, proprietary extension operators are provided for variables,

multi document queries, restructuring of query results, full text searches, result

reconstruction, and sequencing. The added functionality makes the Infonyte XQL engine

a comprehensive solution as a query handler. It has support for any required

functionality for the PML Server.

The Infonyte engine does not set up the use of any relational database. Instead we

simply use a flat-file database where all the PML files for a PML server reside in a

particular directory. We built our PML Server on a Unix machine so we chose a

directory in the Unix filesystem. There are then two steps to processing a query. Given a

filename and an XQL query, the XQL engine first parses the specified PML file and

builds a Document Object Model (DOM) representation in its memory. The DOM

represents documents by a logical structure similar to a tree of nodes. The XQL engine

then applies the query and returns the result. By processing the query in this manner, we

are consistent with one of our major design goals. We did not want to use significant

29

bandwidth and send the entire PML file back to the client. By making use of some server

side processing we only need to send back a small portion of the PML file (the result of

the query).

3.1.3.2 Justification

The justification for using XQL as the querying language and the Infonyte XQL

engine as the query handler go hand in hand. We were looking for some type of support

for the XML querying languages and the only feasible solution available at the time was

the Infonyte XQL engine for XQL. Not only did it meet our needs functionally, but it

was also built entirely using Java. Since this was the programming language we planned

to use for our server code, and the one needed to interface with the Apache SOAP

implementation, it fit in very nicely with our system. Furthermore, it has built in

performance optimizations such as automated and transparent indexing on the document

structure of an XML file.

Two other options we considered were Kweelt and Software AG's Tamino

database. Kweelt is a framework to query XML data and among other things, it offers an

evaluation engine for the Quilt XML query language [13]. It offers multiple backends

because its query evaluator does not impose any specific storage for the XML files being

stored, but instead relies on a set of interfaces. This gives a lot of flexibility for the

storage medium, including a relational database (MySQL). While the performance of

Kweelt may eclipse that of the Infonyte XQL Engine, we chose not to use it because

there were too many uncertainties with the querying language. In particular, Kweelt does

not claim to be faithful to the Quilt proposal. Our system could not tolerate such an

uncertainty because we needed a query handler that would work accurately with any one

dominant XML querying language. Although Kweelt did have support for the majority

30

of Quilt queries, there was the danger of building a query handler that would not

recognize some queries supplied by a client. Furthermore, Kweelt was still a work in

progress at the time of our development whereas the Infonyte XQL engine had already

been known to work well with XQL queries.

The reason for not choosing Software AG's Tamino database product was purely

monetary. The Tamino product has many attractive features [14]:

" Built-in native-XML data store for fast database access

" Storage and retrieval of XML data via HTTP and TCP/IP

* Connection to standard Web servers

" Virtual DBMS capability by integrating existing DBMS sources

" Interfacing with XML authoring, schema, and other XML tools

" Customizable server functionality

" Support of read-only databases

" Centralized Web-browser-based administration

" Based on XML standards

However, the cost was far too much to justify. Given that we were just attempting to

build a prototype, the Infonyte XQL engine met our needs for a much cheaper cost.

As we stated earlier, the choice of the XML querying language and the query

handler are not fixed by any means. Our goal was to build a prototype for proof of

concept and with this in mind, we made the best decisions possible under our constraints.

Our architecture is flexible enough so that if a better solution emerges in the future (in

terms of cost or functionality), it can be easily incorporated into the server to replace the

current implementation.

31

3.2 Processing a Query

Thus far, we have provided a discussion on all of the technologies used in our

PML Server: the communication protocol (SOAP), the XML querying language (XQL),

the Internet application server (Tomcat), the query handler (Infonyte XQL engine), and

the PML database (flat-file system on Unix). We will now present the algorithms and

details of how a query is actually processed.

3.2.1 PML File Storage Format

The first point of interest is how the PML files are actually stored. We have

already discussed how we store the files in a particular directory on the server to comply

with the Infonyte XQL engine. The naming scheme used is a hexadecimal string

representation of the 96 bit ePC (or some portion of it) that corresponds to the tag(s) for

which the file stores information. We chose this out of simplicity. We were considering

storing the files using the bit representation itself, but this would have led to extremely

long filenames (96 characters not including file extensions). Furthermore, given the

complexity of the entire system and the number of times that an ePC needs to be passed

around, the most reliable form that the data unit can take is the string [15]. Using a

hexadecimal representation also cuts down the length of the filename to 24 characters,

which is the hexadecimal equivalent of 96 bits. Thus, we have the following partition for

an ePC (where each X corresponds to a character):

XX .XXXXXXX .XXXXX .XXXXXXXXXX
Header Manufacturer Product Serial Number

8 bits 28 bits 20 bits 40 bits

It works out very nicely since the partitions fall on the nibble boundaries.

32

We have yet to discuss how the PML server knows where all the files are being

stored. We expect the user to supply this information in a configuration file. When the

first call is made to a PML Server, it looks in "/etc" directory for a file called

"pmlserver.conf." It parses the file looking for the phrase "PMLFilePath:" at which point

it expects the absolute pathname to the directory in which the PML files reside on the

server. This location is then stored in a local variable so any subsequent calls to the

server do not necessitate this expensive file-read operation. The method to parse the

configuration file and find the pathname to the files is part of the constructor for the

SOAP service in the PML server. This constructor is only called once, when the first

SOAP call to the server is made.

Besides just the hexadecimal string of the ePC, each PML file also has a .pml

extension. This is transparent to the client, however, because whenever a call is made to

the server, it automatically appends a .pml to the tag parameter and then proceeds with

the query. The extensions were handled in this manner so that the ePC can still be passed

around easily in the system without having to worry about the .pml extension that may be

relevant to the PML Server but not other parts like ONS. It should also be noted that the

PML Server assumes that any alphabet characters in the filename are lower case. We had

to pick lower case or upper caser for consistency when the XQL engine searches for a

particular PML file. We chose lower case because the regular expression library we use

(discussed in Section 3.3.3) returns filenames with every alphabet character in lower case

after matching an expression. The PML Server converts any alphabet tags in the tag field

of a query to lower case. This additional step is there in case the client submits a tag with

upper case characters.

33

3.2.2 File Searching Algorithm

There is a nice hierarchy in the structure of the ePC (Manufacturer Code, Product

Code, and Serial Number). This also means that information about a particular product

may be scattered across a number of PML files in a server. It would be extremely

inefficient to store information that pertains to a class of products (such as weight) in

every single PML file for those products. Instead, it is likely that there will be just one

file that will store this information for the entire class of products. The name of this file

would be a subset common to all the ePCs for which it was storing information. A

probable length for this file (without the extension) would be 15 characters. This is the

total length of the Header, Manufacturer Code, and Product Code:

XX .XXXXXXX .XXXXX .XXXXXXXXXX
Header Manufacturer Product Serial Number

15 Characters

Similarly, some piece of information common to all products made by the same

manufacturer (e.g. country of production) would probably be stored in a file of length 9

characters. This is the total length of the Header and Manufacturer Code:

XX .XXXXXXX .XXXXX .XXXXXXXXXX
Header Manufacturer Product Serial Number

9 Characters

A filename does not necessary have to fall on one of the partition borders (9 or 15

characters) and may be any length between 9 and 24 characters. This is because there

may be some subdivisions within the Product Code or the Serial Number.

We now present our algorithm for querying files. As mentioned earlier, a call to a

PML Server requires two arguments: a tag and a query. The PML Server first looks for a

34

filename that matches the tag (with a .pml extension). If the file is found, then it applies

the query. However, if the file is not found or the query result is empty, the next largest

substring of the tag is taken and this process is repeated. The PML Server will keep

taking the largest substring of the tag and attempting to query the matching file (if it

exists) until a non-empty result is returned or a filename equal to some minimum length

is tried. This minimum length tried is derived from the length of the ePC Header and

Manufacturer Code. Under the current specification, this length is 9 characters. Given a

hypothetical tag to query, Figure 3.1 shows which files would be searched and in what

order.

Original tag in query: 123456789abcde1234567890

Files searched on server: 123456789abcde1234567890.pml
123456789abcde123456789.pml
123456789abcde12345678.pml
123456789abcde1234567.pml
123456789abcde123456.pml
123456789abcde12345.pml
123456789abcde1234.pml
123456789abcde123.pml
123456789abcde l.pml
123456789abcde.pml
123456789abcd.pml
123456789abc.pml
123456789ab.pml
123456789a.pml
123456789.pml

Figure 3.1: File Searching Algorithm

There is no need to search for a file less than the length of the Header and

Manufacturer partition because no information about a product would be stored in a file

so broad that it is not even specific to one manufacturer. Information about a particular

manufacturer is the most general type that will be stored by any file. The PML Server

35

has a method to determine the minimum length. When it receives a tag and query, it

strips off the header from the tag (first 2 characters) and examines it to find out the length

of the Manufacturer Code partition. Since the length of the Header will remain constant

at 2 characters, the length of the Manufacturer Code will determine the minimum file

length the PML Server should search.

3.3 Possible Query Formats

We have already stated that one of our goals was to decrease the amount of

network bandwidth our system used by making use of server side processing wherever

possible. The support of multiple query formats helps us achieve this goal. In particular,

we allow a user to submit a range of tags as well as a regular expression. In both cases,

multiple calls to the PML Server are replaced with just one encompassing call. The PML

Server processes all the tags specified and then sends back the cumulative result.

When a tag is submitted to the server, it checks for the "-" character to see if it is a

range and handles it appropriately. If it is not a range, the PML Server tests if the tag

string contains a "?", "*", or a "+" in order to detect whether the string is a regular

expression. If the string does not contain any of the three characters, it is treated as a

single ePC. Otherwise, it is handled as a regular expression. We will now discuss how

the PML Server handles each of the three possibilities (single ePC, range, and regular

expression).

3.3.1 Single ePC

The case of a single ePC is fairly straightforward and is handled using the file

searching algorithm described in Section 3.2.2. We built a client graphical user interface

(GUI) to easily build client calls and view the results. Figure 3.2 shows the case for a

36

II I VJJJL~ -- -

single ePC. The address text box is where the URL for the SOAP service is entered. We

named the SOAP service for the PML Server 'QueryFile' which is why it is specified in

the drop down menu. The ePC is entered in the tag field and the query is entered in its

respective field. The right hand column shows the result of the query. The entire result

is embedded in a <results> element. The first child of the <results element> is the

<tagresult> element and is specific to one tag. The <tagresult> element has two

attributes: status and tag. The status attribute tells whether the query was successful or

not. It shows a value of "success" if the desired information was found on the PML

Server. It shows a value of "error" if the desired information was not found and is also

accompanied by some message explaining the reason why the query failed. This will be

discussed in greater detail in Section 3.4. The tag attribute shows the file in which the

information was found. Our file searching algorithm makes it possible to find

information in a file other than the one actually queried (specifically, some substring of

the original file). The XQL Engine adds the <xql:result> element before returning the

File Help

QueryFile v Address: lhttp://fez.mit.edu:8080/soap/servet

?abcde12345 67890 <results><tagresult status="success"

tag="12345 6789abcdel23 45 67890"><xql:resul

xmlns:xql="http://metalab.unc.edu/xql/"><we
ight>

10

iue ry //weight </weig ht>< /xql: res ult>< /tag res ult></ res u Its

Figure 3.2: Single ePC Query

37

-- ~1

result. It has one attribute, which is just its namespace. In Figure 3.2, the result of the

"/weight" query can be seen embedded in the <weight> element. In this case, it has a

value of "10."

3.3.2 Ranges

A client call can also specify a range of tags to query. This way, instead of

having to query the server n times for each of the n tags in a range, there only needs to be

one call made. Upon receiving a range of tags, the PML Server first checks to see if the

hexadecimal value of the starting tag in the range is less than the hexadecimal value of

the finishing tag in the range. If it is not, an error message is returned. Next, the PML

Server extracts the range of n tags and processes each of the n tags individually. Thus, it

File Helpr

Queryile rAd dre ss: Iht:/e.mit.edu:-8080/ soap /servle~

<results><tagresult status= "success
tag="12345 6789abcde12345 67887"><xql:re
suit
xmlns:xql="http://metalab.unc.edu/xql/"<
weight>

a 4567887-1234567 10

</weight></xql:result> < /tagres ult> <tagre
suit status="success"
ag="12345 6789abcdel2345 67888"><xql:re

suit
xmins: xql="http: //metalab.un c.edu/ xql/ "><

eight>
20

</weight></xql:result>< ftagres ult><tagre
suit status="success"
tag="12345 6789abcdel2345 67889"><xql:re

ticry /weight suit
xmlns:xql="http://metalab.unc.edu/xql/"><
weight>

15

<fweight></xq:resu It> < /tagres ult> <fresul
T>

Figure 3.3: Range of Tags

38

treats this case as if n individual calls to the PML Server were actually made. The results

from each of the individual query are compiled into one XML document and are returned

to the client. Figure 3.3 shows a sample call using a range of tags.

As expected the entire set of results is contained within a single <results>

element. There are three <tagresult> elements, each of which correspond to a tag in the

range. In this case, all three queries were successful and the results can be seen in the

three <weight> elements.

3.3.3 Regular Expressions

The third query format we support besides a single ePC and ranges are regular

expressions. Regular expression matching allows you to test whether a string fits into a

specific syntactic shape [16]. You can also search a string for a substring that fits a

pattern. A regular expression describes a set of strings. The simplest case is one that

describes a particular string; for example, the string 'foo' when regarded as a regular

expression matches 'foo' and nothing else. Nontrivial regular expressions use certain

special constructs so that they can match more than one string. They contain special

characters such as '+', '?', and '*' to specify their syntactic shape.

We use the Regexp package from Apache. It is a 100% Pure Java Regular

Expression package and thus, fits in nicely with the rest of our system components.

There are many regular expression packages available, but we needed one that was built

in Java and had support for the basic types of regular expressions. The full

documentation on constructing regular expressions using the Regexp package is given in

[17]. An overview of how to build some basic regular expressions, enough for efficient

use of the PML Server, will be presented here.

39

PML files are named using basic alphanumeric characters (the hexadecimal

representation of the 96 bit ePC) so there is no need to try to match a certain type of

character. The only important one is the period, which matches any one character. For

example, the regular expression "d.d" would match "dad", "dbd", "dcd", etc. The other

important special characters are those that specify the number of times a character is

matched. These are '?', '*', and '+'. There are two types of closures, greedy closures

and reluctant closures. Table 3.1 summarizes the details:

Greedy Reluctant Explanation

A* A*? Matches A 0 or more times

A+ A+? Matches A 1 or more times

A? A?? Matches A 0 or 1 times

Table 3.1: Greedy and Reluctant Closures

All closure operators (+, *, ?) are greedy by default, meaning that they match as many

elements of the string as possible without causing the overall match to fail. A closure can

be changed to reluctant (non-greedy) by adding a '?'. A reluctant closure will match as

few elements of the string as possible when finding matches.

When a PML Server finds that tag parameter is not a range, but contains a

"+', or a '?', it is treated as a regular expression. In this case, all the files in the PML

Server are matched against the regular expression. Then every file that matches is treated

as an individual tag and processed the same way as a single ePC as described in Section

3.3.1. This is not the same as taking a regular expression, extrapolating every string that

would match it, and treating each of those possible matches as an individual tag in the

query. Although this may be possible to implement if the regular expression only

contained a '?' or a '+', it would be impractical to extrapolate all the possible matches if

40

there was a '*' in the regular expression. Thus, we implemented a compromise. While it

is not a complete solution, it can still be used effectively to save bandwidth and time.

Figure 3.4 shows a sample use in our system. The regular expression matches

three tags and the results are compiled and displayed in the right hand column for each of

the three tags. Just like a range of tags is handled, each result is contained in a

<tagresult> element. Also, the use of a regular expression saves the user from making

three separate PML Server calls. Instead, extra workload taken on by the server makes

the client call much easier.

Quey~ie wAddress: Ihttp-.//fez.mit.edu:8080/soap/servl

<res ults><tagresult status =5u <xccessr
tag ="12345 6789abcde12 345 67888"> <xql:re
sult
xmln s: xql="http: //m etalab.un c. ed u/ xql /"><
weight>

abcde123456788.? 20

</weight></xql: result> < /tagresult><tagre
suit status="success"
ag="12345 6789abcde12345 67887"><xql:re

sult
xmlns:xql="http://metalab.unc.edu/xql/"><

eight>
10

</weight>< /xql: result>< /tagresult><tagre
suit status="success"
tag="12345 6789abcde12345 67889"><xql:re

Ue ry /]weight sult
xm ns: xq I ="http:/ / metal ab. un c. ed u /xq /"> <
weight>

15

</weight></xql:resuIt>< /tag result>< /resu

Figure 3.4: Regular Expression

41

3.4 Error Handling

There are many reasons that a query might fail for a particular tag. It could

involve a problem with SOAP, the PML file may be badly formed, or the desired

information just may not be stored on the server. We investigated some existing error

codes, but found that we would have to devise our own. The primary reason was that we

are not using a relational database and thus most of the error codes for database systems

are not applicable to our system.

The first place that an error might occur in the system is the communication

protocol. Fortunately SOAP already has a fairly exhaustive error code system. An error

message from a SOAP application is carried inside a fault element. The sub elements of

a fault element are shown in Table 3.2 [18].

Sub Element Description

<faultcode> A code identifying the error

<faultstring> The error as a string

<faultfactor> Who caused the error

<detail> Specific error information

Table 3.2: The SOAP Fault Element

The first sub element, faultcode, can take on four values as detailed in Table 3.3 [18].

Error Description

VersionMismatch Invalid namespace for the SOAP Envelope element

MustUnderstand A child element of the Header element, with the
mustUnderstand attribute set to "1", was not understood

Client The message was incorrectly formed or contained incorrect
information

Server There was a problem with the server so the message could not
proceed

Table 3.3: SOAP Fault Codes

42

Ti:i ~ -.

tag abcdel234567890

riuery /]size

<res uIts> <tagresult statu s="error - no
information for query found"
tag="12345 6789abcdel2345 67890"/></result
S>

Call

Figure 3.5: Query Failure

To handle failure messages with anything that may occur in the backend, we

make use of the status attribute in a <tagresult> element. As describe earlier, it has a

value of "error" if the desired information is not found and is also accompanied by an

explanation of why the query failed. Figure 3.5 shows an example of such an error

message with a client call querying for size information that does not exist in any of the

files searched. In this case, the error message returned reads "error - no information for

query found." Similarly there are other specific error messages for various reasons a

query may fail. Table 3.4 summarizes the error cases and messages that we have

implemented.

Error Scenario Error Message in Status Attribute

finish tag for a range comes before the start tag error - badly formed tag request

improper regular expression error - badly formed tag request

no matches for a regular expression error - no matching files found

error - badly formed PML file for
queried PML file is improperly formed "whichever tag was queried"

server cannot find desired data error - no information for query found

Table 3.4: Error Messages

43

The error handling we implemented covers the basic reasons why a query may not

return a result. Additional restrictions on types of queries or possible values for the tag

field can be added easily in this manner by inserting a check in the code and returning the

proper error message.

44

Chapter 4: Tracking Server

The Tracking Server stores a particular type of instance data. Namely, it stores

and delivers information related to the location of a product. If a PML Server is queried

for location information, it will need query a Tracking Server to get the desired data.

Under the Auto-ID system, a Tracking Server will reside at every node in the supply

chain. Thus, there would be one at every manufacturer, distributor, and retailer. Client

queries to a Tracking Server may require recursive calls to other Tracking Servers to

gather the requested information. For instance, a client may request the full history of a

particular tag in the supply chain (i.e. every node that it visited). The implementation of

the distributed algorithms used to handle such tracking queries is described in [19]. We

make use of them as part of a 'Tracking Package,' but will treat it as a black box in this

thesis and not provide any further details. Here, we will be focusing on our

implementation of the Tracking Server only. We first provide a discussion of the

architecture of the Tracking Server and then describe how we use the Tracking Package

in our implementation.

4.1 Architecture

As in the PML Server, there are two major parts to the Tracking Server

architecture: the communication protocol and the server side technologies. Although

SOAP is still used as the communication protocol, we use a relational database (MySQL)

to store the data. Thus, the Structured Query Language (SQL) is used as the querying

language. The query handler is a Java Database Connectivity (JDBC) driver, the MM

MySQL Driver.

45

4.1.1 Communication Protocol

We chose to use SOAP as the communication protocol, just as we used it in the

PML Server. A detailed discussion with an overview of SOAP and justification for its

use is provided in Chapter 2. Using SOAP is an added convenience since the PML

Server and the Tracking Server will need to communicate with each other. This

communication becomes is trivial if both servers are using the same communication

protocol. The likely scenario is for a PML Server to be queried for location information.

Since this type of instance data is stored in the Tracking Server, the PML Server will in

turn make a call to the Tracking Server and upon receiving the desired location data,

return this in a newly constructed XML file. The PML Server will make the call to the

Tracking Server using SOAP.

4.1.2 Server Side

The server side is where the Tracking Server begins to deviate from the PML

Server. Apache Tomcat is still used as the Internet application server since it works well

with SOAP, the communication protocol. Further details and justification for using

Tomcat can be found in Section 3.1.1.

The tracking information is stored in a relational database, MySQL. A relational

database offers a very structured and efficient way to store data. Storing the data in

separate tables rather than putting it all in one storeroom offers speed and flexibility. The

information can be accessed very quickly and efficiently. We chose MySQL because it is

simple, free, and the most widely used open source relational database available. We did

not need a database management system that was too complex or had a great amount of

functionality besides efficient storage and retrieval of data. Furthermore, the

46

connectivity, speed, and security make MySQL well suited for access through the

Internet [20].

Naturally, the language needed to query a MySQL database is SQL. This is the

most standardized language to access databases. As we will discuss in the next section, a

client does not make a call to the Tracking Server with an SQL query. Instead, a client

calls specifies a method corresponding to its desired information. The only parameter

needed by each of these SOAP services is the tag in question.

Since the client does not supply the SQL queries, they are built into the server

side code for each of the methods supported. This requires the use of a JDBC driver. It

allows for connections to a relational database through a Java program (our server side

code). The most commonly used and most stable JDBC driver is the MM MySQL JDBC

driver [21]. Again, we did not require anything too elaborate or with great functionality.

This driver was known to be stable and was more than sufficient.

4.2 Processing Methodology

Now that we have discussed the architecture and the technologies used to

implement the tracking server, we can present how each of the parts are used with one

another. First, we present the details relevant to the data storage. Then we discuss how a

call to the Tracking Server is handled.

4.2.1 Data Storage

We use a relational database with multiple tables to store the location data.

Specifically, the use of the Tracking Package described in [19] necessitates the use of two

tables. One is called 'incoming' and stores information about all tags that have arrived at

the particular node in the supply chain. The other is the 'outgoing' table and stores

47

information about all tags that have left the Tracking Server's node. The structure of

these two tables is nearly identical. Tables 4.1 and 4.2 give the names of each of the five

fields in the tables and what they store.

first last next stock exp

first tag in the last tag in the previous node total number expiration date
range range the tag visited still active in

supply chain

Table 4.1: Incoming Table

first last next stock exp

first tag in the last tag in the next node the total number expiration date
range range tag visited still active in

supply chain
Table 4.2: Outgoing Table

The first two fields are the 96 bit ePC in hexadecimal format. Thus, they are each

24 characters. Since it is likely that shipments of the same product will have sequential

numbering (consecutive ePCs), we lessened storage requirements by storing the entire

range of tags in the group as one record (row) in the table. It would be an unnecessarily

expensive operation to store each tag in the range as an individual record in the table.

The third field, 'next', is a URL for the SOAP service of another Tracking Server in the

supply chain. Depending on the table, this represents either where the tag came from (for

the incoming table) or where it went (for the outgoing table). We use an IP address

instead of a URL because one URL may have multiple IP addresses. Stock is an integer

that cannot exceed the range dictated by the 'first' and 'last' fields. Finally exp is a date

in XXXX-XX-XX (year-month-day) format.

4.2.2 Tracking Package

The Tracking Package implements the distributed algorithm behind each querying

function. Details about it can be found in [19]. In order to use the Tracking Package in

48

the actual implementation of the Tracking Server, we implemented a set of methods

involving database reads, database updates, and calls to other Tracking Server. We

implemented two tracking queries: track and locate. Track returns the full history

of every node a tag has visited starting with its current location. Locate returns the

current location of a tag. Any methods that require access to the local information at a

Tracking Server were implemented using the MM MySQL JDBC driver to query the

local MySQL database. The algorithms in the Tracking Package require calls to other

Tracking Servers if the desired information is not found in the local database. These calls

were implemented using the SOAP communication protocol.

Currently, only the track and locate methods have been implemented but as

other algorithms and methods are developed in the Tracking Package, they can easily be

added to the SOAP service that is deployed on the Tracking Server. This SOAP Service

is called 'TrackFetcher'. Besides the supported track and locate methods, there are

two additional methods it needs to operate. One returns the name of the database in

MySQL that has the 'incoming' and 'outgoing' tables. The other returns the URL of the

local SOAP service. These two pieces of information are needed in order to properly

pass information between Tracking Servers. As in the PML Server, we make use of

configuration files to store the database name and SOAP URL. This allows users to

easily change this information later. Thus, the server looks for a 'trackingserver.conf'

file in the '/etc' directory. It should have the format shown in Figure 4.1.

DatabaseName: trackingserver

SoapServiceUrl: http://18.0.236.18:8080/soap/servlet/rpcrouter

Figure 4.1: Tracking Server Configuration File

49

A Tracking Server with this configuration file would expect the 'incoming' and

'outgoing' tables in the 'trackingserver' database. Furthermore, it would expect its

SOAP service to be deployed at the URL given. The user can easily modify this file if

any of this information changes.

The structure of the Tracking Server is similar to that of the PML Server. Both

use one SOAP service. Whereas the PML Server only has one method that a client can

call in its SOAP Service (to query a file), the Tracking Server has two (this number will

increase as more methods are implemented in the Tracking Package). When a client

makes a call to the PML Server, it specifies its desired information with a tag and a

query. In the case of Tracking Server, a client gains access by specifying a tag and a

method (for the type of tracking information it desires). Figure 4.2 summarizes the

implementation of the Tracking Server.

The diagram shows that the client does not know which database is used on the

Tracking Server. Only the Tracking Package interfaces with the database. This leaves

Tracking Query Tracki Quey

client Communication Protocol Application Tracking
(SOAP) Serr Package

Desired Tracking Inforation -
Desird Tracking InfortionSQL

SQL Query
Handler

(r=a JDBC

Tracking k Dive)

Figure 4.2: Tracking Server Server
Implementation

50

our design flexible in case we want to change it in the future. One point to note in Figure

4.2 is that before the Tracking Package returns the desired tracking information, it may

need to make a SOAP call to another Tracking Server. This may be a recursive process

where the second Tracking Server may need to call a third and so on. Thus, one call to a

Tracking Server may involve calls to many Tracking Servers. The client in Figure 4.2

may be some process making a direct call, a PML Server, or a Tracking Server.

51

Chapter 5: Conclusions and Future Work

In this chapter, we present some of the problems we faced when building the

PML and Tracking Server. Most of the issues we faced were related to the use of

relatively new technologies in implementing the two servers. We will also include a

discussion regarding future work for both servers. Finally, we will present our

conclusions.

5.1 Challenges

Some of the key technologies we used for the PML Server and the Tracking

Server have not been used extensively as they are very new. This posed many challenges

in our implementation. They revolved around a lack of documentation and a lack of

standards.

5.1.1 New Technologies

The communication protocol used for the PML Server and the Tracking Server

(SOAP) and the query handler used for the PML Server (the Infonyte XQL Engine) are

both technologies that have only recently been developed. In fact, both are still actively

being developed.

The greatest challenge in using SOAP was that at the time of our implementation

there was little or no documentation available. Simply installing the software package

took significant effort, let alone trying to use it. There are now numerous well written

tutorials on the Internet describing how to use SOAP, but they were not available until

just recently. Instead of documentation, we were forced to rely on the SOAP user

community mailing list for relevant details. This was challenging because information

retrieval took days and many times there was no answer to our questions. Our original

52

implementation of the PML Server was with Apache SOAP version 2.0. However, when

version 2.1 was released, we upgraded our system. There were some minor compatibility

issues between the two versions that needed to be ironed out. Again, this was one of the

struggles of working with software that was still in development.

The Infonyte XQL Engine was another key element of the PML Server. It too

was going through some major development while we were implementing our solution.

The XQL Engine began as a research project at Darmstadt, but a startup company,

Infonyte, was soon spun off to continue development. This structural change made it

very difficult to get support for the product. The first version we received did not support

the XML parser (Xerces) that SOAP required. We were forced to contact Infonyte and

after some time were fortunate enough to get a version that did support Xerces. We also

wanted to make use of some additional functionality called the Persistent Document

Object Model (PDOM), a caching mechanism for DOM pages. However, the Infonyte

software was going through some major changes so we deemed this feature unstable for

our implementation. It will be discussed in greater detail in Section 5.2.

5.1.2 Lack of Standards

One of the major issues in working with XML related technologies is a lack of

standards. This became an issue when choosing our XML querying language and the

corresponding query handler. Because the W3C (World Wide Web Consortium) has yet

to decide on a standard for an XML querying language, most database vendors have held

off from supporting XML querying languages. This is why we did not have a relational

database but instead had implemented the PML Server with a flat file database. Once

there is a standard, most database vendors will likely build a front end for the chosen

XML querying language.

53

As discussed in Chapter 3, we were forced to choose between XML-QL, Quilt,

and XQL as the XML querying language. At the time, it appeared that XQL was

emerging as the likely standard. This is why we went with XQL and the appropriate

XQL Engine. However, it now appears that Quilt will be chosen as the standard [22].

Thus, the implementation will probably have to be changed. Because there was not a

standard, we were forced to go with our best guess at the time.

5.2 Future Work

The PML and Tracking Server have room for both additional functionality and

performance optimizations. Future work on the PML Server revolves around the PML

database. The Tracking Server only has two tracking methods implemented but others

have been developed. Future work will be to implement these new functions.

5.2.1 PML Database

Currently, a flat file database is used to store information on the PML Server.

Since we use XQL to query the files, we utilize an XQL engine to handle the queries.

This querying language/query handler/database combination will eventually need to be

changed, especially when the W3C makes its decision on a standard XML querying

language.

A performance optimization that can be made without changing the database or

the querying language is to upgrade the Infonyte XQL Engine. Recently, Infonyte

released a new product, the Infonyte DB. This is based on two technologies: the

Persistent Document Object Model (PDOM) engine and the XQL engine. We have

already implemented the PML Server using the XQL engine, but the use of the PDOM

engine would increase performance of the server. The Infonyte PDOM engine allows the

54

storage and retrieval of XML-documents in and from binary database files where each

file represents one document. Documents are parsed once and stored in binary form,

accessible without the overhead of parsing them again. The PDOM engine swaps XML

documents between the main memory and the binary database files transparently for the

application. The engine also has a self-optimizing cache architecture to further increase

performance. This approach scales beyond the limitations of main memory. It offers a

lightweight alternative to heavyweight database management systems.

Upgrading the Infonyte XQL engine would still necessitate the use of XQL as the

querying language. However now that it is looking like Quilt, not XQL, will become the

W3C standard it may be a better idea to change querying languages and use a product

like Kweelt. As discussed in Section 3.1.3, Kweelt is a framework to query XML data

and among other things, it offers an evaluation engine for the Quilt XML query language

[13]. It offers multiple backends because its query evaluator does not impose any

specific storage for the XML files being stored, but instead relies on a set of interfaces.

This gives a lot of flexibility for the storage medium, including a relational database

(MySQL). Kweelt may be a good alternative to Infonyte because not only does it make

use of Quilt, but it also allows the use of a heavyweight DBMS which may be necessary

for the large amount of data stored in PML Servers.

One alternative to completely replacing the Infonyte engine with Kweelt is to use

both technologies. The PML Server would then support two dominant XML querying

languages: XQL and Quilt. Depending on which query was submitted to the PML

Server, the SOAP service would pass the arguments to the appropriate query handler.

This implementation may be ideal if it appears that no standard will emerge for XML

55

querying languages for some time. If a standard is foreseeable, however, implementing

both query handlers may be excessive.

When the W3C releases its standard for XML querying languages, it is likely that

most heavyweight DBMS solutions will begin supporting this querying language. At that

point, the ideal implementation will include the use of a heavyweight database solution.

Ultimately, we do not want the PML database to be a collection of XML text files, even

if the files are cached. We want a PML database that can map the XML logical structure

into an efficient data-structure. Once this is done, the database system can perform

inverse mappings of its datastructure and generate XML documents [1]. Hopefully, one

of the solutions offered by a vendor in the future will satisfy this constraint once an XML

querying language standard is issued.

5.2.2 Tracking Server Methods

The current implementation of the Tracking Server supports two types of client

calls: track and locate. Track returns the full history of a tag and locate returns the

current location of a tag. These are the only two methods supported in the current

implementation because these were the only two methods whose algorithms were

implemented in the Tracking Package. However, in the future there will be other

algorithms implemented in the Tracking Package [4]. It will then be necessary to

implement those methods in the Tracking Server.

5.3 Conclusions

In this thesis, we presented our design and implementation of the PML Server and

the Tracking Server. Information about each tagged object in the Auto-ID system is

stored in the form of one or more PML files in a PML Server. This information may be

56

about a class of products or a unique product. The Tracking Server stores data relevant to

a particular object's location. We had to carefully evaluate and choose an appropriate

communication protocol and server side technologies for each server.

For both servers we chose SOAP as the communication protocol. We found it to

be well suited for use over the Internet, simple, and flexible. Furthermore, since it is built

using existing technologies (XML and HTTP1) instead of inventing new ones,

incompatibilities are less likely to arise. HTTP is already widespread while XML soon

will be. From the perspective of the Auto-ID Center, a flexible technology was desired.

We did not want to force our users to use a particular machine in order to be compliant

with our system. SOAP offers this flexibility. Furthermore, it is simple and does not

warrant the use of new technologies. This minimizes the infrastructure that needs to be

built.

We chose Tomcat as the Internet application server for both the PML Server and

the Tracking Server because it was the most commonly used in conjunction with SOAP.

Given that SOAP was a new technology with very limited documentation, choosing

Tomcat was quite beneficial because we were able to solicit substantial help from the

SOAP community. Since Tomcat was already known to work well with SOAP, it was a

logical choice.

In the PML Server, we chose XQL as the querying language, the Infonyte XQL

engine as the query handler, and a flat file database system. The choice of the querying

language and the query handler went hand in hand. Given that there is no standard for

querying languages, very few databases had front-end support for an XML querying

Although we use HTTP in our implementation, SOAP does not preclude the use of other transport
protocols.

57

language at the time of our decision. We found XQL to be perhaps the only querying

language with some type of support in the form of an XQL engine built by Infonyte. This

is primarily why we chose it. The XQL engine uses only a flat file database. However,

the architecture of the PML Server is flexible enough so that new querying

language/database pair can be easily "plugged" into the PML Server and replace the

current implementation when a standard is released. Our goal was to build a prototype of

the PML Server so we chose technologies that were most widely used with the most

support.

The technologies used in the Tracking Server turned out to be very different from

the PML Server. A relational database, MySQL, is employed to store the data. A more

heavyweight database was desired because there will be an enormous amount of

information stored at each of these servers and there is a lot of overhead with PML files.

Thus, the querying language is SQL. However, this is transparent to the client because it

just needs to call the relevant tracking method and the database queries are built into

these methods. The MM MySQL JDBC driver is utilized as the query handler. Its

stability and common use justified its choice. The Tracking Package described in [19]

was used for the code design and the distributed algorithms necessary to implement the

tracking methods.

We designed and implemented simple, flexible solutions for the PML and

Tracking Server. We succeeded in our primary goal, which was a proof-of-concept of

one part of the Auto-ID infrastructure. We built stable prototypes that can be further

developed and extended to be part of the robust automatic identification system

envisioned by the MIT Auto-ID Center.

58

Appendix A: Building a PML Server

There are six major components to the PML Server:

a) Simple Object Access Protocol (SOAP)

b) Apache Tomcat Java Servlet Engine

c) Infonyte XQL Engine

d) Apache Xerces XML parser

e) Jakarta Regular Expression package

f) PML Soap Service

We will show how to setup the necessary components and build the PML Server from the

bottom up. First we assume, that each of these pieces has been downloaded from the

Web or attained otherwise. For ease of explanation, we will assume that each of the six

components has been placed under a super directory / f oo / PMLServer. Thus,

PMLServer has six directories:

a) soap

b) tomcat

c) infonyte

d) xerces

e) regexp

f) pmlsoapservice

We assume that each of the respective distributions have been renamed to correspond to

these directory names. Next SOAP and Tomcat need to be properly configured. First,

the tomcat. sh file in the / f oo /PMLServer/ tomcat /bin directory needs to be

modified. After line 111, the following line will be seen:

59

CLASSPATH=path-to-xerces/xerces.jar:${CLASSPATH}

The "path-to-xerces" portion needs to be replaced with /foo/PMLServer/xerces so that the

line reads:

CLASSPATH=/foo/PMLServer/xerces/xerces.jar:${CLASSPATH}

Next, the s erver .xml file in the / f oo / PMLServer / tomcat / conf directory

needs to be modified. The easiest way to do this is to add a new context to the file as

follows:

<Context path="/soap" docBase="/foo/PMLServer/soap/webapps/soap"

debug="1" reloadable="true">

All that is left to finish the configuration is to properly set the necessary environment

variables.

The environment variable JAVAHOME needs to point to the root directory of the JDK

hierarchy (the Java interpreter needs to be added to the PATH variable as well).

The environment variable TOMCATHOME should point to the root directory of the

Tomcat hierarchy. In our case it would be / f oo / PMLServer / tomcat.

Lastly, the CLASSPATH variable must include the following items:

" /foo/PMLServer/xerces/xerces.jar

" /foo/PMLServer/tomcat/lib

" /foo/PMLServer/

" /foo/PMLServer/soap/lib/soap.jar

" /foo/PMLServer/infonyte/libs/xqlpdom.jar

* /foo/PMLServer/regexp/Jakarta-regexp.jar

60

The CLASSPATH variable is the one that causes the most trouble so the following points

are important:

a) Xerces needs to be the first item in the classpath

b) the filenames will vary from distribution to distribution so they should be checked

before adding them to the classpath

c) if running version 2.1 of SOAP, the mail.jar and activation.jar files need to be

downloaded from the SUN site and added to the classpath as well

Once the environment variables are set, Tomcat is ready to be started. This can be done

on a UNIX machine by going to the / f oo / PML Server / t omc a t directory and typing

the command:

bin/startup. sh

To stop Tomcat, the following command needs to be typed (in the same directory):

bin/shutdown. sh

All that is left is to deploy the PML SOAP service. This can be done by going to the

/ f oo / PMLServer /pml soap directory and typing:

java org.apache.soap.server.ServiceManagerClient

http://localhost:8080/soap/servlet/rpcrouter deploy

DeploymentDescriptor . xml

The PML Server is now ready to receive client requests.

61

Appendix B: Building a Client for the PML Server

To use the client we built for the PML Server, there are only three components needed:

a) Simple Object Access Protocol (SOAP)

b) Apache Xerces XML Parser

c) PML Client GUI code

First we assume, that each of these pieces has been downloaded from the Web or attained

otherwise. For ease of explanation, we will assume that each of the three components has

been placed under a super directory / f oo/PMLClient. Thus, PMLClient has three

directories:

a) soap

b) xerces

c) pmlclientgui

We assume that each of the respective distributions have been renamed to correspond to

these directory names. Next, the CLASSPATH environment variable needs to be set

properly. It must contain the following elements:

- /foo/PMLClient/xerces/xerces.jar

- /foo/PMLClient/soap/lib/soap.jar

A couple of points to note about environment variables are:

" Xerces needs to be the first item

" It is assumed that a Java interpreter has been added to the PATH variable. It

works best if this interpreter is the same version as the one on the server side.

62

The client GUI is now ready to be deployed. Go to the / f oo / PMLClient / directory

and type:

java pmlclientgui/SoapTest

This should launch the GUI. This GUI itself contains a field for the tag, query, and soap

URL of the desired PML Server.

63

References

[1] Niranjan Kundapur, On Integrating Physical Objects with the Internet, S.M. Thesis,
MIT, 2000.

[2] MIT Auto-ID Center, [http://auto-id.mit.edu].

[3] David Brock, The Physical Markup Language, 2001.

[4] Ching Law, Tagged Object Tracking in Distribution Networks, 2001.

[5] The Computing Sciences Organization at Berkeley Labs, "Soap Info", [http://www-
itg.lbl.gov/-dang/soaplnfo.html].

[6] World Wide Web Consortium, "Simple Object Access Protocol",
[http://www.w3.org/TR/SOAP], 2001.

[7] Don Box "Guide to SOAP," [http://msdn.microsoft.com/msdnmag/issues/0300/
soap/soap.asp], 2000.

[8] Apache SOAP Document, [http://parikhfamily.virtualave.net/soap.htm].

[9] Apache Tomcat Site, [http://jakarta.apache.org/tomcat].

[10] World Wide Web Consortium, "Extensible Stylesheet Language",
[http://www.w3.org/TR/XSL], 2000.

[11] World Wide Web Consortium, "XML Query Language",
[http://www.w3.org/TandS/QL/QL98/pp/xql.html], 1998.

[12] Infonyte.com, "Infonyte XQL Suite", [http://www.infonyte.com].

[13] Penn Database Research Group, "Kweelt", [http://db.cis.upenn.edu/Kweelt/].

[14] Software AG, Inc., "Tamino", [http://www.softwareag.com].

[15] Jocelyn Tait, Data Succession, 2001.

[16] University of Kentucky, "Regular Expression Overview",
[www.uky.edu/ArtsSciences/Classics/regexp.html].

[17] The Jakarta Project, "Jakarta-Regexp 1.2 API",
[http://jakarta.apache.org/regexp/apidocs/].

[18] W3Schools.com, "SOAP Tutorial", [http://www.w3schools.com/soap/].

64

[19] Paritosh Somani, Real Time Tracking in Distribution Networks, M.Eng. thesis, MIT,
2001.

[20] MySQL, [www.mysql.com].

[21] M3ySQL, "MM MySQL JDBC Drivers", [http://www.worldserver.com/mm.mysql].

[22] Sun Microsystems, Inc., MIT Auto-ID Center, "Discussion" March 2001.

65

