
Neural Network Models for Zebra Finch

Song Production and Reinforcement Learning

by

Justin Werfel

A.B. Physics
Princeton University, 1999

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2001

© Justin Werfel, MMI. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part.

A u th or ............................................. ........... ..................
Department of Electrical E gineering 4nd Computer Science

August 10, 2001

Certified by...............................H Seung
Hi ebastian Seung

Robert A. Swanson Career Development Assistant Professor in Life Sciences
Thesis Supervisor

Accepted by.................

Chairman, Department Committee
Arthu FC7Smith

on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

NOV 0 1 2001 B

LIBRARIES



2



Neural Network Models for Zebra Finch
Song Production and Reinforcement Learning

by
Justin Werfel

Submitted to the Department of Electrical Engineering and Computer Science
on August 10, 2001, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

The zebra finch is a standard experimental system for studying learning and generation of
temporally extended motor patterns. The first part of this project concerned the evaluation
of simple models for the operation and structure of the network in the motor nucleus RA. A
directed excitatory chain with a global inhibitory network, for which experimental evidence
exists, was found to produce waves of activity similar to those observed in RA; this similarity
included one particularly important feature of the measured activity, synchrony between
the onset of bursting in one neuron and the offset of bursting in another. Other models,
which were simpler and more analytically tractable, were also able to exhibit this feature,
but not for parameter values quantitatively close to those observed.

Another issue of interest concerns how these networks are initially learned by the bird
during song acquisition. The second part of the project concerned the analysis of exem-
plars of REINFORCE algorithms, a general class of algorithms for reinforcement learning in
neural networks, which are on several counts more biologically plausible than standard pre-
scriptions such as backpropagation. The former compared favorably with backpropagation
on tasks involving single input-output pairs, though a noise analysis suggested it should
not perform so well. On tasks involving trajectory learning, REINFORCE algorithms meet
with some success, though the analysis that predicts their success on input-output-pair
tasks fails to explain it for trajectories.

Thesis Supervisor: H. Sebastian Seung
Title: Robert A. Swanson Career Development Assistant Professor in Life Sciences

3



Acknowledgments

Thanks must first and foremost go to my advisor, Sebastian Seung, who introduced me to
this area of research, and provided invaluable help and guidance throughout the course of
the work.

I would also like to thank the other members of the Seung Lab for interesting discussions
and comments, in particular Ben Pearre, who made the computers work when they most
needed to.

This research was supported by a National Defense Science and Engineering Graduate
Fellowship from the U.S. Department of Defense, with additional support from the David
and Lucile Packard Foundation.

4



Contents

1 Introduction 9
1.1 Neurobiology of the zebra finch . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Computational learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Modeling RA 13
2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Forward excitation, reverse inhibition . . . . . . . . . . . . . . . . . 16
2.2.2 Forward excitation, global inhibition . . . . . . . . . . . . . . . . . . 17
2.2.3 Excitation only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Training the network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Network reinforcement learning 27
3.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Noise analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Weight perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 Batch vs. online update . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Comparison of learning curves . . . . . . . . . . . . . . . . . . . . . 34
3.4.3 Noise analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.4 Autoencoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Trajectory learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A Derivations 45
A.1 The basic REINFORCE result . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.2 Eligibility for continuous-valued units with Gaussian noise . . . . . . . . . . 46
A.3 Weight adjustment in the low noise limit . . . . . . . . . . . . . . . . . . . . 46
A.4 Extension to trajectory learning . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.5 Noise analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.6 Weight perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5



6



List of Figures

1-1 Neuroanatomy of the zebra finch song learning and production system . . . 10

2-1 Recordings from nearby neurons in RA during singing . . . . . . . . . . . . 14
2-2 Model network with forward excitation and reverse inhibition . . . . . . . . 16
2-3 Model network with forward excitation and global inhibition . . . . . . . . 18
2-4 Model network with forward excitation only . . . . . . . . . . . . . . . . . . 19
2-5 Forward excitation only, three spikes per burst . . . . . . . . . . . . . . . . 20
2-6 Multiple-state spike trains impossible with identical units . . . . . . . . . . 23
2-7 The synaptic triad, and its use to implement the Perceptron learning rule . 24

3-1 Sketch of the noise concern in stochastic gradient descent . . . . . . . . . . 29
3-2 Learning curves for backpropagation with added noise . . . . . . . . . . . . 33
3-3 Learning curves for training algorithms on digit classification . . . . . . . . 34

3-4 Learning as progress through error space . . . . . . . . . . . . . . . . . . . . 35
3-5 SNR as a function of number of noise sources (I) . . . . . . . . . . . . . . . 37
3-6 SNR as a function of number of noise sources (II) . . . . . . . . . . . . . . . 38
3-7 Learning curves for autoencoding . . . . . . . . . . . . . . . . . . . . . . . . 40
3-8 Time course of trajectory learning . . . . . . . . . . . . . . . . . . . . . . . 42

7



8



Chapter 1

Introduction

In the field of motor learning, one issue of particular interest is that of learning to produce
a prescribed sequence or trajectory. Active areas of research falling under this heading
include legged locomotion, arm movement control, and speech production.

One common experimental system for the investigation of sequence and motor learning
is the zebra finch, Taenopygia guttata. The songs these birds produce are consistent and
reproducible, relatively simple as compared to many other songbirds, but possess a complex
acoustic structure that requires the coordination of the vocal musculature and the memo-
rization of extended temporal sequences of neural activity. Birdsong is of particular interest
as a system which involves elements also present in human speech, but which is simpler and
more experimentally tractable. Song learning and production in the zebra finch has been
relatively well characterized both behaviorally and physiologically.

1.1 Neurobiology of the zebra finch

Like other songbirds, finches memorize their song by listening to the vocalizations of tutor
birds, during a critical sensory period [3, 7, 8]. Birds isolated during this period will produce
only fragmented and simple vocalizations. Later, during a sensorimotor phase, the birds
learn to produce the memorized song, beginning with babbling and gradually learning to
refine their vocalizations to match the desired result. The sensory and sensorimotor phases
overlap for the zebra finch, though for many songbirds they are distinct.

Recordings have been made from several areas of the brain associated with song learning
and production, and the behavior of those areas characterized. These include the premotor
nucleus HVc, whose activity is correlated with individual syllables of the song; RA, which
receives input from HVc and projects to motor areas which in turn project to the syrinx,
the sound-producing organ; and several areas in what is collectively termed the anterior
forebrain pathway (AFP), which receives input from HVc and projects to RA, and which
has been implicated in learning. Figure 1-1 gives a schematic diagram.

The AFP is necessary to young birds for them to learn their song; if it is lesioned
in adult birds, however, the previously-learned song remains intact. If an adult bird is
deafened, so that it no longer receives auditory feedback about the sounds it produces, its
song will gradually degrade over time. However, if the AFP is lesioned in addition to the
deafening, the song remains intact. These results suggest that the AFP carries an error
signal, representing some comparison between the auditory feedback and the memorized
song [3]. Similarly suggestive are recordings showing that neurons in various structures of

9



HVc

RA

Cerebellum 
LA

nXIlts

syrinx

Figure 1-1: Neuroanatomy of the zebra finch song learning and production system. HVc,
nucleus hyperstriatalis ventrale pars caudale. RA, nucleus robustus archistriatalis. AFP,
anterior forebrain pathway, consisting of areas LMAN, lateral portion of the magnocellular
nucleus of the anterior neostriatum; DLM, medial portion of the dorsolateral nucleus of the
thalamus; and Area X. nXJts, tracheosyringeal portion of the hypoglossal nucleus.

the AFP respond very selectively to auditory inputs representing sequences of syllables from
the bird's song, and not to individual syllables, syllables in the wrong order, temporally
reversed inputs, or other such variations; and the response is stronger for the bird's own
song than for those of other individuals of the same species [7, 8].

Zebra finch song is hierarchically structured, with a song consisting of motifs consisting
of syllables consisting of notes; syllables are separated by brief periods of silence [26]. The
activity of HVc neurons is correlated with individual syllables of the bird's song, with firing
rates modulated on the order of threefold from one syllable to another. There appear to
be two separate HVc populations, intermingled in the same area. One primarily responds
to auditory input, and projects to the AFP; the other is associated with voluntary song
production, and projects with strictly excitatory connections to RA.

The behavior of neurons in RA is particularly intriguing. When the bird is not singing,
neurons fire tonically, with independent rates and spike times. Once song begins, RA
neurons go almost completely silent, except for brief periods of intense bursting (~100 Hz).
Each neuron spends about 10% of its time in these bursts, each of which may last from
two or three to a dozen or more spikes [9]. Moreover, the onset or offset of one burst very
often coincides with those of other bursts, to within an interval on the order of 1 ms. The
appearance is that of a sequence of discrete states through which RA passes during song.
Neither the mechanism behind nor the purpose of such a sequence of states is yet fully clear.

1.2 Computational learning

On the basis of a memorized tutor song and auditory feedback, the finch learns to produce
its own song. At least three major open questions about this process may be asked: How
are the neurons within each area connected to produce the observed activity, and just what
computation does that pattern of activity accomplish? Under what sort of learning rule are
those connections established? And how is each area connected to the others, so that the

10



high-level behavior and learning we observe may emerge?
Attempts have been made to construct models addressing these issues [5, 20, 21]; but

so far these have suffered from problems-being sketchy, excessively high-level, and/or
inconsistent with observation-and are ultimately unsatisfying. One serious obstacle is
that important experimental information about the system is yet missing, preventing the
above questions from being answered definitively at present. However, we can try to propose
low-level models that fit with what is currently known and provide possible mechanisms by
which the system might plausibly operate.

Standard frameworks for classification, regression, or trajectory learning, such as the
Perceptron learning rule and backpropagation, suffer from problems of biological realism.
It can be difficult to take a rule that may be simple to write down, and realize it in a
network constructed from neurons as we understand them; or the standard prescription
may require the network to run both forwards and backwards in time, an ability hard to
imagine in living cells. One general framework whose difficulties are less objectionable than
these is the class of REINFORCE algorithms described by Williams [24]. The advantages
of these algorithms include the following: in adjusting its connections to other units, each
unit needs only information that is purely local both spatially and temporally; a single
global reward signal is maximized if each unit acts individually to maximize it; in the case
of trajectory learning, a single accumulator for each unit, keeping a running total of a
given time-varying quantity, suffices to specify the weight update when the reward signal is
ultimately delivered.

Such algorithms are a promising model for biological learning in general, and in partic-
ular might be applied to account for the establishment of connections in RA. In general,
these algorithms are not widely used. One reason for this may be that, when performance is
the only consideration, backpropagation provides an efficient and well-characterized way to
do gradient descent on an error function. REINFORCE algorithms, by contrast, do noisy
gradient descent; and in the paper in which he introduced them, Williams proved only that
they follow the gradient on average, without any statement about the extent of the noise in
their estimates, or if and how the noise can be sufficiently minimized that the algorithm is
useful in practice. The latter part of this document is concerned with investigation of these
issues.

11



12



Chapter 2

Modeling RA

During singing, neurons in RA spend most of their time silent, interspersed with bursts
of rapid firing. The timing of these bursts and the spikes in each burst, with respect to
auditory landmarks in the song, is highly reproducible from one instance of singing to the
next1 , typically to within about 1 millisecond. Bursts usually consist of three to six spikes,
but may range from a single spike to more than a dozen. Figure 2-1 gives an illustration.

Another visually striking feature of the recordings of Figure 2-1 is the extent to which the
onsets and offsets of bursts of firing align with one another, often within a few milliseconds.
The appearance is reminiscent of that of a synfire chain [1, 13, 11], where pools of cells in
turn fire in bursts and then become quiescent as the next pool of cells is activated.

One question that may then be asked is, what kind of neural mechanisms might be
responsible for these sorts of observed and suggested firing patterns? Because of the high
degree of coordination apparent between cells, we assume that the observed behavior arises
from the network structure, and is not strictly a result of purely cellular mechanisms. The
question we ask then becomes, what network architecture and synaptic mechanisms are
necessary to produce bursts in successive cells or groups of cells, each of which then stops
firing as the next cell or group begins?

For instance, assuming something like the synfire chain picture is correct, it is notable
that each cell or pool of cells fires several times before the next begins to do so at all;
and although the former stops firing at that point, the latter has received enough total
excitation that it fires several times despite the lack of ongoing input. This feature suggests
the presence of facilitation, a synaptic mechanism whereby each presynaptic spike has an
increasingly greater postsynaptic effect. The suggestion that only one one cell or group is
active at a time in a local section of the putative chain similarly suggests the operation
of a kind of winner-take-all mechanism, which in turn implies global inhibition. Before
concluding that such mechanisms are necessarily present, however, we should first consider
networks which lack them, in order to see if simpler arrangements are sufficient to produce
firing patterns like the ones observed.

'Because the tempo of singing can vary from one instance of the song to the next, as well as within a
single instance, the multiple instances of the song (and the simultaneous neural recordings) must first be
locally time-warped to align auditory landmarks. Once this procedure has been performed, the coincidences
described above become apparent.

13



80f
34.0

20

0.0

60 - 24.hA

40

II~ ir M~I

--7.0 - 37.0 it ~
~J1ill

4; 2
.1p .0

I~I
- 4.0

2A...

24~.,,,,, I I,
20h-

0

11

0

III

I U~I

5.0x103 1.0x104 1.5x104 2.0x104 2.5x 104

Figure 2-1: Recordings from nearby neurons in RA during singing [9]. Each horizontal line

of tick marks represents spike times for a single cell. A block of consecutive lines of the

same color represents recordings from the same cell over multiple instances of the song. The

x-axis gives time in units of 25 ps. Since the rate of singing can vary from trial to trial as

well as within a single bout of singing, recordings have been time-warped to align auditory

landmarks in the song; the extent of the time-warping is typically within a few percent.

Recordings from 13 separate cells are shown here, with from 1 to 16 instances of song for

each.

14

I I I
W, 1 C

.0



2.1 The model

Our concern is with individual spike timing rather than simply firing rates, though the
detailed dynamics at the level of ion channels are not important; thus we choose an integrate-
and-fire model for cells in the network. Units in this model may correspond to individual
neurons or pools of cells in RA. Take V to be the membrane potential; its update equation
is

dV
C = gL (VL - V) + 9exc(Vexc - V) + ginh(Vinh - V) (2.1)

dt

where C is the membrane capacitance, gL the leak conductance, 9exc and ginh the conduc-
tances associated with excitatory and inhibitory channels, respectively, and VL, Vex,, and

Vinh the potentials toward which V is driven by each of those competing conductances.
When V reaches a value Vthresh, the unit instantaneously fires and V is set to Vreset.

When a cell fires, it opens excitatory or inhibitory channels in those cells connected to
it. We associate with each unit a variable s, which reflects the degree to which channels
in those connected units are open. s jumps discontinuously when a unit fires, and decays
otherwise:

ds
Tsyn d -= s + Lstt - tspike) (2.2)

If we consider V, g, and s as vectors, we can write

9exc = Wexcs, ginh = Winhs (2.3)

where Wexc and Winh are the weight matrices for both types of connections in the network.2

With each W a matrix of dimensionless weights, s has units of conductance. For simplicity,
we choose the Ws in what follows to be binary matrices, so that each pair of units is either
connected with unit strength, or unconnected.

We take as biophysically realistic parameter values the following: C = 1 nF, gL =

0.025pS, VL = -70 mV, Vxc = 0 mV, Vinh = -70 mV, Vhresh = -52 mV, Vreset = -59
mV, Tsyn = 100 Ins, A, = 9.5 nS [25]. We further assume all units and connection strengths
are identical, for the purposes of the model; variations in these could help to account for
observed features like different numbers of spikes per burst among different cells.

2.2 Simulations

Before we consider any specialized synaptic mechanisms, let us first ask whether the network
structure alone can account for these sequences of bursts. We use the simplest possible
model synapses and look at different arrangements of excitatory and inhibitory connections
in the network.

2This arrangement allows violations of the empirical Dale's Law, which states that the outgoing connec-

tions for a given neuron are either all excitatory or all inhibitory. For instance, we could choose the Ws such
that unit A excites unit B but inhibits C. However, this difficulty can be overcome by inserting auxiliary

units; in this example, we disconnect A from C, have A excite a new unit D, and have D in turn inhibit C.
We assume that such auxiliary units are implicitly present wherever necessary.

15



A --- 2

B -50

-55

-60

0 50 100 150 200 250 300 350 400 450 500

C 20

0 50 100 150 200 250 300 350 400 450 500
Time (ms)

Figure 2-2: First possibility for an architecture wherein each unit bursts in turn. A: Diagram

of network with forward excitation and reverse inhibition; a wave of activity travels from

left to right. The numeric labels refer to the example given in the text. B, C: Excerpt

from simulation of that network. Each successive color represents the successive unit in the

chain, with the same color representing the same unit for the upper trace (B, membrane

potential V) and the lower one (C, conductivity s). The vertical dashed line just before

200 ms highlights how, when a unit fires, s for that unit increases discontinuously, and the

membrane potential of the succeeding unit begins to increase as a result.

2.2.1 Forward excitation, reverse inhibition

The most obvious structure likely to produce an activity pattern where each unit is active

alone in turn is a chain wherein each unit, excites the one following and inhibits the one

previous (Figure 2-2). In such a case, when unit 1 in the figure begins firing, g,,c will start

increasing for unit 2, driving its potential towards Vth.esh. At some point, perhaps after

several spikes from 1, 2 will reach threshold and begin firing, starting to increase gexc for 3

and simultaneously suppressing 1's activity.

This structure leads to the desired activity pattern very easily. Using the parameter

values given above and equal strength for reverse inhibition and forward excitation, a pattern

immediately emerges where each unit fires twice and then gives way to the next one, as

shown in the figure.

16



2.2.2 Forward excitation, global inhibition

One disadvantage of the network structure of Figure 2-2 is its complexity. It seems improb-
able that such a carefully arranged structure, with opposite types of connections running
neatly in a linear chain in both directions, would actually be found in RA; nor is it clear
how such a structure might be set up by the developing or learning brain in the first place;
nor is there direct experimental evidence for such a meticulously arranged architecture.

What there is experimental evidence for is a network consisting mostly of short-range
excitatory connections, with longer-range fast inhibition [19]. The recordings shown in
Figure 2-1 are taken from the population of excitatory projection neurons, which are much
more common than the inhibitory interneurons and easier to record from. Their processes
have length on the order of 150 pm radius from the cell body, compared with the roughly
500 pm diameter of RA. There is also a smaller population of inhibitory interneurons, with
faster response and with processes of length ~400 pm. It is then plausible to treat this
population as providing fast global inhibition.

We thus extend the model by adding a single inhibitory unit, for which Ty, is one-
third that for the excitatory units. As before, the latter are connected in a unidirectional
excitatory chain; all also connect to the inhibitory unit, which in turn connects back to
all the others. In this case, ginh = /sinh, with sinh subject to the same update equation
given for s above, and incremented each time any excitatory unit fires. Figure 2-3 gives a
diagram.

Again, this architecture gives rise to a qualitatively correct bursting pattern, as shown in
the figure, without need for careful tweaking of parameters. Here each unit's firing provides
to the next unit two injections of increased conductivity, which persists long enough for
that unit to fire twice itself. The inhibition prevents activity from continuing thereafter,
and silences the unit first active, for which conductivity has declined with time, before the
one more recently active, with correspondingly higher conductivity.

2.2.3 Excitation only

We can go on to ask, is even this global inhibition necessary? Can a simple feedforward
excitatory chain maintain the same kind of firing pattern? Sure enough, using the same pa-
rameters named above, the chain produces a burst pattern qualitatively like those described
before, here shown in Figure 2-4.

This case is considerably less robust than those previously discussed. If A, is a few
percent less, for instance, the wave of activity dies out; if it's a few percent more, activity
crescendos, each cell firing more quickly and more often than the one before it. This sensi-
tivity and need for careful parameter tuning suggests that, while a chain without inhibition
has the capability of firing in a wave of activity as observed, the actual mechanism in RA
likely includes some form of inhibition-particularly since evidence for such inhibition has
been observed. However, additional synaptic mechanisms such as facilitation and depres-
sion appear to be unnecessary to explain the recordings made of RA; though, again, just
because they aren't necessary doesn't mean they might not nevertheless be present. It is
also notable that the biophysically motivated choices of parameter values we've been using
are within the range that does give a stable traveling wave of activity.

A greater number of spikes per burst is also possible even without inhibition. Figure 2-
5(A), for instance, shows a run with three spikes per burst. Note, though, that within each
burst, the second interspike interval is 50% longer than the first. Such dramatic slowing of

17



A -.-

B -50

AA

-55

E-60-

-65-

-70
0 50 100 150 200 250 300 350 400 450 500

C 20

CI)

10

0 50 100 150 200 250 300 350 400 450 500

D

C1

0 50 100 150 200 250 300 350 400 450 500
Time (ms)

Figure 2-3: Another possibility for an architecture wherein each unit bursts in turn. A:

Diagram of network with forward excitation and global inhibition; the empty circles repre-

sent excitatory units, the single shaded one inhibitory. B, C, D: Excerpt from simulation

of that network. Each successive color represents the successive unit in the chain, with the

same color representing the same unit for the trace in B (membrane potential V) and that

in C (conductivity s). The trace in D is that of conductance for the global inhibitory unit.

3 = 0.15.

18



A .QQ

B ~50

-55

E-60

-65-

-70
0 50 100 150 200 250 300 350 400 450 500

C 20

0 50 100 150 200 250 300 350 400 450 500
Time (ms)

Figure 2-4: A third possibility for an architecture wherein each unit bursts in turn. A:

Diagram of network with forward excitation only. B, C: Excerpt from simulation of that

network. Each successive color represents the successive unit, with the same color represent-

ing the same unit for the trace in B (membrane potential V) and that in C (conductivity

s).

19



A

-55

E,-60-

-65-

-70
0 50 100 150 200 250 300 350 400 450 500

20

CO 10

0
0 50 100 150 200 250 300 350 400 450 500

B -50

-55

E-60

-65

-70

40

S20

(1

0 50 100 150 200 250 300 350 400 450 5C

0

I0

50 100 150 200 250 300 350 400 450 500
Time (ms)

Figure 2-5: A: Same architecture as in Figure 2-4, with forward excitation only, exhibiting
an activity pattern with three spikes per burst. A, = 7 nS. B: With global inhibition as in
Figure 2-3, and four spikes per burst. A, = 8 nS, # = 0.95. The interspike interval slows
more over the course of a burst in A (15 -+ 21 ms) than in B (8.9 -+ 10.7 -4 13.2 ms),
despite the greater number of spikes per burst in the latter case.

20

I I I I I I I I I



firing is not observed in the recordings of Figure 2-1, suggesting, again, that the biological

system involves inhibition to actively shut off the previously active cell when the next starts

firing, rather than each cell's activity just wearing off with time. Figure 2-5(B) shows a run

with global inhibition and four spikes per burst, where the interspike interval varies less

than 25% from one to the next.

In the simulations above, the interspike intervals are on the order of 20 ms, much longer
than the few milliseconds observed in the recordings of Figure 2-1. However, by reducing the
synaptic time constant from 100 ms to 5 ms [25] (an appropriate choice for burst neurons),
and increasing A, eightfold (which could be achieved, for instance, by linking neurons
together into larger coactive pools), the same qualitative firing patterns remain but with
interspike intervals of a few milliseconds. This constitutes a prediction of the model for
synaptic time constant for cells in RA.

2.3 Analysis

We turn now to a mathematical consideration of the system. For tractability, we simplify
the model further: rather than having a spike affect ion channel conductance, we take it
to provide a stereotyped current pulse in downstream cells, independent of their membrane
potential at the time of firing:

dI
TI W = -I + Ai6(t - tspike) (2.4)

and, much as before,
dV

C = gL(VL -V)+I (2.5)
dt

Between spikes, I oc exp(-t/TI), and

1 2Lt A19LTI
V= -ke-c - - e 9L VL (2-6)

9L 9LTI - C

where k comes from initial conditions on the membrane potential,

k = -gLV(t = 0) + AIgLTI + 9LVL- (2.7)
9LTI - C

Suppose we want each unit in turn to fire twice and then stop, in keeping with the

simulations above. Let the presynaptic neuron fire at to and t1 , leading the postsynaptic

neuron to fire at t2 (to < ti < t 2 ). Then we have 1(ti) = AI(1 + exp(-(ti - to)/TI)) and

V(t 1 ) = 1 A9LTI ee (t1-to) - AI9LTI -(tl-to)/ 1 -LL , (2.8)
9L L9LTI - C 9LTI - C

leading in turn to

V(t 2 ) = Vthresh =

S[(-gLV(t) + I(t1)gLTI + 9LVL e (t2t1) - I(t19LTI e-(t2-t1)/rI _ 9L L-
9L 9LTI - J 9LTI - C I

(2.9)

21



If the wave of activity is to propagate unaltered, the postsynaptic neuron must fire for the
second time at t 2 + (t, - to). This gives a second condition that must be satisfied:

V(t 2 + t1 - to) = Vhresh =

AITeI(l + exp(-(ti - to)/Ir))e-(t2 -t)/rI V y)e (t,-to)(Vreset 9LTI - C -

+ Airi(1 + exp(-(ti - to)/r)) exp(-(ti - to))/TI _(t2 t1 )/rI + VL. (2.10)
g+TI - C

When parameter values have been chosen, equations (2.9) and (2.10) together specify the
intervals ti - to (interspike interval within a burst) and t 2 - ti (interval between end of
one burst and start of the next). Using the values given above (with either TI = 100 ms
or r = 5 ms), however, there are no values for those intervals below 250 ms that satisfy
both equations ((2.9) is satisfied for intervals on the order of 1 ms, and again for some
intervals over 250 ms, but (2.10) is not satisfied for intervals below 250 ms at all). Choices
for parameter values that do give valid intervals do exist; but for these values motivated by
biological realism, it's not possible in this simplified model to maintain a consistent traveling
wave of activity, where each cell fires two spikes separated by the same length of time. The
failure of this simplest burst pattern suggests that bursts consisting of more spikes would
be unlikely to make for a viable consistent traveling wave either.

Another possibility for such a traveling activity pattern is that each presynaptic spike
directly gives rise to a postsynaptic spike, but with a synaptic delay, so that the first
postsynaptic spike doesn't occur until after the last presynaptic spike. Such a case would
give the appearance of a traveling wave of activity like we've been considering, but instead
of N spikes from one unit causing N spikes in the next, the mechanism would be one spike
from one unit causing one spike in the next, N times. However, this possibility can be ruled
out with the following argument: Suppose the interval between spikes in the presynaptic
cell is At. When the effect of the first spike reaches the postsynaptic cell, the excitatory
current into that cell just beforehand is 0. When the effect of the second spike arrives,
some residual current from the first spike will still be present. As a result, the membrane
potential will reach Vhresh more rapidly than it did the first time, so that the postsynaptic
cell's second spike will occur less than At after the first. In this way, the interspike interval
will be increasingly shorter in each successive cell of the chain, and so a consistent traveling
activity pattern is not possible by this mechanism.

Other activity patterns which involve multiple-state spike trains propagated by identical
cells can similarly be ruled out. Figure 2-6 shows two examples. In the first case, different
states in the pattern have different numbers of spikes. However, if three spikes from one unit
give rise to two spikes in the following, identical unit, then those two spikes should hardly
be able to give rise to as many as three again in the next unit thereafter; the activity will
die out. Conversely, if two spikes from one unit result in three spikes in the next, then those
three spikes should be responsible for at least three spikes in the following unit, if not more,
and the activity will likely blow up. In the second example, the timing of spikes varies from
one cell to the next. But again, if the one spike at the start of the presynaptic train gave
rise to the two in quick succession at the start of the postsynaptic train, then the later two
together in the presynaptic train should only result in still greater postsynaptic activity, not
in only a single spike. Such patterns could be achieved if the model were extended such that
not all units in the chain were identical; but that would be an unnecessary complication to
this model, under which none of these consistent traveling activity patterns discussed above

22



A

B

Figure 2-6: Examples of multiple-state activity patterns impossible for identical units to
generate stably. A: Different numbers of spikes per burst. B: Different interspike timing.

can be maintained without inhibition.

2.4 Training the network

We now step back from the specific model presented above and turn to the question of how
the connections in a network like RA might be learned. At the same time, we now move
from spiking to rate-based models, for greater analytical tractability.

One early classic model for learning is the Perceptron [12]. Consider only a single
synapse. Let x be the activity of the presynaptic unit, y the activity of the postsynaptic
unit, W the strength of the connection between them, and t the desired postsynaptic activity
for that input pattern. When the learning rule is formulated as a gradient descent problem,
we have

AW c (t - y)x

This learning rule can be viewed as having a mechanism similar to that of contrastive
Hebbian learning [16]: reinforce the behavior you want the system to exhibit (tx) and
weaken the behavior it's actually exhibiting (-yx), with no net effect if the system is
behaving as desired. Note also that the weight is modified only if the presynaptic unit
is active, which is in keeping with observations of long-term potentiation and long-term
depression (the former of which occurs if the postsynaptic unit is also active, the latter if
it remains silent).

23



A 
B

12

C

t y

Figure 2-7: Left: The synaptic triad of [6]. The plastic synapse is that from A to B; C
is the modulator. Right: An architecture which implements the Perceptron learning rule
using synaptic triads.

How such a learning rule could be implemented biologically is less clear. One possible
mechanism is via the synaptic triads of Dehaene et al. [6], which are also based on obser-
vations of song learning in birds, and can be used to achieve sequence learning. In these
structures, one cell acts as a modulator for the plastic synapse between the other two. Fig-
ure 2-7 illustrates the operation. Neuron A of the triad excites neuron B, but only if the
modulator C has recently been active, so that B acts as a coincidence detector for the other
two. The learning rule is such that the strength of the connection from A to B is modified
only if A and C are both active: strengthened if B is also active, weakened if B is silent.

The presence of three units in each of these structures suggests that the synaptic triad
might serve as a biologically reasonable implementation of the Perceptron learning rule.
However, the functional roles of the units are significantly different in the two formulations.
In the Perceptron, one unit (x) controls whether the synaptic strength is modified, while the
other two, when different, indicate that the synapse should be strengthened or weakened
according to which of the two is more active. By contrast, in the synaptic triad, two units
(A and C) specify that the weight should be changed if both are active, while the third (B)
indicates whether the synapse should be strengthened or weakened. Thus one formulation
cannot be mapped directly onto the other; the architecture must be modified. The Percep-
tron learning rule can be implemented with synaptic triads, but only by complicating the
picture with additional units and connections.

If we add two more units (call them 1 and 2) to provide auxiliary logical values, we can
assemble a structure out of synaptic triads that implements the Perceptron learning rule,
as illustrated in Figure 2-7. Unit 1 effectively gives the value t9 and unit 2 the value ty;
then the network operates as follows. x drives or fails to drive y, depending on the strength
of that connection, which is the one subject to modification. If y and t (which gives the
desired state of y) differ, then either 1 or 2 turns on, according to whether y is incorrectly
quiescent or active; that auxiliary unit forces y into the correct state, and makes the x -+ y
synapse plastic.

24

A B



Such an approach has numerous problems. First of all, we've dramatically complicated
the picture, nearly doubling the number of units, and increasing the number of connections
from two to nine. That architecture itself needs to be set up somehow, with all the other
synaptic connections having the appropriate locations and strengths; to some extent, we've
solved one problem by replacing it with eight others. Dale's Law is again violated, with t
and y each having both excitatory and inhibitory projections; fixing that problem as above
requires the introduction of still more units. Timing issues have been complicated as well,
with x needing to hold its state long enough for a signal to propagate through an extra
set of connections, and all units' activity needing to be carefully timed if all are to be in
the right states at the appropriate times. This structure can be seen as an improvement in
some implementation sense over the original Perceptron learning rule, where the question
was how it could be implemented in a biological setting at all; but any improvement is
marginal at best.

Such considerations helped motivate the next section of this report, which is concerned
with a different approach to training neural networks, based not on supervised learning with
labeled input-output pairs but on reinforcement learning. That approach leads networks to
produce desired outputs in response to input patterns in an in-place manner, not requiring
auxiliary units to mediate the plasticity. Its capacity to handle trajectory learning makes it
a potential candidate for a mechanism by which RA might learn to achieve its characteristic
firing patterns.

25



26



Chapter 3

Network reinforcement learning

With the difficulties associated with the approaches to network training discussed in the
previous chapter, we turn elsewhere for models that might reasonably account for learning
in RA, and more generally, in recurrent neural networks.

Backpropagation is the well-known standard approach for training recurrent networks,
due to its ease of use and well-characterized algorithm, performing explicit gradient descent
on an error function [12]. However, it suffers from problems of biological realism and other
difficulties. An error signal needs to be sent backwards through the same network that
propagates a signal forwards, requiring each synapse to be two-way and multipurpose, and
each unit to be able to recognize and transmit two kinds of signals. While the rule is local
in space, the adjustment to a weight connecting two units depends on the activity of one
unit at one time and the error associated with the other unit at a later time; this temporal
nonlocality requires each unit to have information about the structure of the entire net-
work, so that it can associate the earlier activity with the error signal after the appropriate
propagation delay. This need for global knowledge is problematic for independent compu-
tational units with only local information. Moreover, in the case of trajectory learning,
backpropagation requires that the network actually be run backwards in time. Issues such
as these motivate investigations into alternative algorithms.

One general framework which suffers less from such difficulties is the class of REIN-
FORCE algorithms described by Williams [24]. The advantages of these algorithms include
the following: in adjusting its connections to other units, each unit needs only information
that is purely local, both spatially and temporally; a single global reward signal is maxi-
mized if each unit acts individually to maximize it; and in the case of trajectory learning,
a single accumulator for each unit, keeping a running total of a given quantity, suffices to
specify the update when the reward signal is ultimately delivered.

However, one disadvantage is that REINFORCE performs only noisy gradient descent.
In [24], Williams proved that these algorithms follow the gradient on average, but made no
statement about how great the noise in their estimates is, or if and how the noise can be
sufficiently minimized that the algorithm is useful in practice. We investigate these issues
in this chapter.

3.1 The model

For simplicity, we consider here only networks of one particular type of unit, and the
corresponding REINFORCE algorithm. Once again we consider a rate-based rather than

27



spiking model. Let the units in question have continuous output x(t), with update equation

x(t + 1) = f (Wx(t) + ) (3.1)

where W is the weight matrix; f (u) is the logistic function f(u) = 1/(1 +exp(-u)); and is
a vector of noise on the inputs to the units, chosen once at the time the input is presented,
from a Gaussian distribution with mean 0 and variance a.

The results which follow hold for the class of networks which are given an input by being
initialized in some starting state, and thereafter are allowed to evolve until they reach a
fixed point, which represents their output. The set of units considered to be part of the
input may comprise only a subset of all units in the network, and likewise for the output;
the units not part of the input may be arbitrarily initialized, and the final states of those
not part of the output ignored. Networks which are strictly feedforward and those with
symmetric weight matrices [14] are two subsets of this general class which are guaranteed
always to come to a fixed point. Detailed derivations of the REINFORCE result and the
first two results below are given in the Appendix.

If d is the desired output for the given input vector, then for stochastic gradient descent
on the squared error function E(x) = Id - x12 , the REINFORCE prescription for weight
updates is

AW= (b - E(x)) xT (3.2)

with 7 a small positive constant, and b some baseline scalar or vector independent of . If
b is taken to be the error for the network output in the absence of noise, then it can be
shown that in the low noise limit,

0(E)
AW = -T(E) (3.3)

where the expectation value is over all possible values for the noise . It then follows that

AW - a = -, ( (3.4)

= - (E) 2 (3.5)

< 0 (3.6)

Thus every weight update according to this prescription is within 90 degrees of the negative
gradient, and results in a decreased error (or, more strictly, never an increased one) - a
much stronger statement than simply that the average weight update follows the gradient
downhill.

Notice also that we obtain a similar result if the update is performed only for the weights
of those connections leading out of a single unit:

AWj (E) -7 (E) (3(E)
z i -- ( ( (3.7)Wj i 9Wij 4Wk

-(o KEi (3.8)

< 0 (3.9)

28



Figure 3-1: Sketch of the potential noise concern in stochastic gradient descent. In this
picture, the true gradient (black) points upwards; individual weight adjustments (blue)
given by Eq. (3.2) for different values of are always within 90 degrees of the gradient, and
their average over all values of noise is equal to the gradient. Depending on whether they
are typically close to aligned with the gradient as at left, or close to orthogonal as at right,
the noise represented by the orthogonal component (red) can mask the signal represented
by the parallel component (green).

Thus the error also always decreases when this weight update rule is applied only to the
weights fanning out of any subset of units, from a single unit to all N units in the network.

3.2 Noise analysis

A remaining concern is that the weight update might typically be closer to 90 degrees from
the true gradient than 0 degrees; that is, that the noise represented by adjustments in
directions orthogonal to the gradient will swamp the signal represented by the component
of the update in the direction of the gradient. Figure 3-1 gives a sketch of the potential
problem. Indeed, the following straightforward analysis suggests that the update will in

fact be dominated by this noise. 1

Consider only outputs from a single unit, and write y -q for brevity. We can

apply an arbitrary rotation to Eq. (3.3), multiplying on the left by a rotation matrix R:

AW = s Ty (3.10)

RAW = RN TR-Ry (3.11)

= (N()(N()TRy (since RT = R- 1) (3.12)

This is the same as the original equation in the rotated coordinate system. is drawn from

an isotropic distribution, with any direction equally likely, and its magnitude is effectively
scaled by the arbitrary learning rate 77. Thus we can choose y = [1, 0, 0, 0,.-] without loss

of generality, giving AW = 61[61, 2, - - -]. We can define

U = 2, Vl 12 N1=(( (3-13)

'Note that "noise" in this context represents an entirely different concept than the Gaussian variable (
we add to the inputs of the units in the network.

29

I A i , W., , -- -- W6 -- . - I - --- - -



so that u is the magnitude of the component of the weight update in the direction of
the gradient, and vi are the orthogonal components. We can interpret u2 , the squared
magnitude of the weight update in the desired direction, as a signal, and Ei v?, the squared
magnitude of the rest of the weight update, as a noise term masking that signal. Because i
are N independent Gaussian variables, we have (u2 ) = 0.4, (E V?) = (N - 1) -4 ; this gives,
as a sort of average signal-to-noise ratio, (u 2 )/(Ei V?) = 1/N. A more rigorous analysis,
omitted here for space considerations, can be found in section A.5 of the Appendix.

On this basis alone, we would expect the algorithm to perform badly at training networks
of any moderate size, and to scale up poorly. However, because of the correlations in the
noise, with the same factor 1 appearing in u and every vi, we might hope that another
quantity other than (u 2)/(E, V?) is a more relevant measure of effective signal-to-noise
ratio, and hence that the algorithm's scaling-up behavior is better than the above analysis
suggests. We investigate this issue empirically in section 3.4 below.

3.3 Weight perturbation

The operation of the learning rule described above can be thought of as the following. Given
an input, the network makes a small change to the fixed point which represents its output,
and compares the resulting error E to the error E0 it would have incurred in the absence
of that change. If the error is decreased, it adjusts its weights in such a way that its output
is shifted toward that new value; if the error would be increased, then the network adjusts
itself in the opposite direction in weight space, which (because the change in behavior is
linear in the limit of small adjustments) again leads to a decrease in the error.

Such a procedure immediately suggests the following, simpler algorithm. Make a small
random change to all the weights. If the error decreases as a result, keep the change; if
the error would increase, make the opposite weight change, which in the limit of small
adjustments should again lead to a decrease in the error. This approach is in fact the
basis of a learning rule already used in some applications, termed "weight perturbation";
it is used especially in training networks implemented in analog VLSI, where the resources
required by backpropagation in particular are excessive, and the simplicity of this approach

(computationally and in terms of space and other circuit resources) makes it advantageous
[4, 10].

We formalize the algorithm by giving the units the update equation

x(t + 1) = f ((W + )x(t)) (3.14)

where again the noise is chosen once at the time the input is presented, and held fixed
until the output is produced; the weight update is

AW = r(Eo - E(x)) . (3.15)

This algorithm too, with the noise entering as a perturbation to the weights, gives an update
on average in the direction of the gradient:

E(x) - Eo = Z W()dWij =ij (3.16)

(AWhk) = - a( E)W 0(E 02 (3.17)
ijW 1 ~ 0Wk

30



Moreover, as expected, this update is always within 90 degrees of the true gradient:

AW (E) = Z( (E) 0(E)A W - =(E -77 E(E W( j) aE) (3.18)
9W ij h,k hk ow(3

2

= -7 E W ij (3.19)

< 0 (3.20)

though the stronger statement we have for REINFORCE, that the error also strictly de-
creases when the update is performed only for weights leading out of a subset of units, is
not necessarily true in this case.

As one might expect, this simple algorithm, so similar in concept to the REINFORCE
class, can in fact be shown to be a member of that class; this result is shown in section A.6
of the Appendix. The advantages of weight perturbation over the standard REINFORCE
algorithm include the fact that it is marginally simpler to implement and its operation is
more intuitive. Its disadvantages arise from the fact that it requires the generation of more
noise terms; in particular, since the signal-to-noise ratio scales as 1/n with the number of
noise terms n, as discussed in section 3.2, the performance of weight perturbation can suffer
as a result as network size increases.

3.4 Simulations

We performed benchmark tests to compare the performance of backpropagation with that
of the two variants of REINFORCE. Our first test case was handwritten digit classifica-
tion, using an abridged version of the modified NIST database of labeled handwritten digit
images, with 5000 training examples and 1000 test examples. We used a three-layer feedfor-
ward network, with 784 input units (representing the 28 x 28 image), 49 hidden units, and
10 output units. The desired output d was a 10-element binary vector of which exactly one
component was 1, corresponding to the digit represented by that input. We took o- = 10-2

and 77 = 2 - 10-3. Weights were initialized to random values drawn from a Gaussian dis-
tribution centered at 0 with standard deviation 0.05. Weight updates were scaled in the
REINFORCE runs to be the same magnitude on average as for backpropagation, using the
fact that for standard REINFORCE

(AWiE) = (Uk) = 2 0E (3.21)
k aWki aWij

and likewise for weight perturbation

(AWij) = - 702 (E) (from Eq. (3.17)). (3.22)
aWij

3.4.1 Batch vs. online update

Two schemes for performing weight changes are online update, in which a weight adjustment
is made after consideration of each individual example in the data set; and batch update,
in which the adjustments based on every example in the data set are calculated and added

31



together before any update is actually made. At a given point in weight space, because
the quickest way to reduce error on a single example is rarely the quickest way to reduce
error on the data set as a whole, the individual adjustments of online update are scattered
about the single adjustment of batch update. Thus the use of online update introduces an
additional source of noise into the experiments, one which furthermore can vary according
to the order in which training examples are chosen; and so batch update is more appropriate
for noise comparisons between the different approaches.

However, this sort of network can have a tendency to get stuck in a plateau during
training with backpropagation, with very little improvement for many training epochs. In
a statistical mechanics analysis of such nonlinear two-layer networks, the problem can be
shown to arise from a symmetry in the functional roles of the hidden units, when all are
doing effectively the same thing; in this regime the gradient can be nearly flat. When
the network has been provided with enough training examples, there is ultimately a phase
transition; the permutation symmetry is broken and the hidden units take on different
roles, and error starts to decrease quickly again [17]. We speculate that such a process is
responsible for the observations associated with the constant-error plateaus here.

The length of time it takes a network trained with batch update to break out of that
plateau can be both long and variable. Online update can advance beyond that plateau
more quickly than batch update, presumably because the spread of its adjustments around
the single value available to batch update allows the network to reach areas of weight space
where the gradient is steeper; and it does so after a more consistent and reproducible
interval. Thus online update was used for the experiments first described in this section,
comparing the learning curves of the different approaches.

It is interesting to consider a network trained with batch update, with noise added
to the weight adjustments; if the intrinsic variation of online update speeds the network's
learning time, then simply adding Gaussian noise to batch update could conceivably improve
its performance. Figure 3-2 shows several backpropagation runs with multiplicative noise
of various magnitudes added to the weight updates; the results with additive noise are
qualitatively the same (data not shown). The three error measures are squared error,
defined as Zi(di - X,) 2 , where the sum is over all output units; and training and test error,
defined as the percentage of examples in the respective data sets which were misclassified
by the network, where the classification was determined according to which of the output
units had the largest response.

With batch update, adding multiplicative Gaussian noise with standard deviation up
to 50% of the magnitude of the noiseless weight update does give a marginal improvement
in how quickly the network advances beyond the constant-error plateau to the next stage
of learning. These runs with low or moderate noise closely resemble the runs with online
update, supporting the idea that that the variations in gradient encountered in online update
are what allow it to progress beyond that plateau more rapidly than batch update. When
the noise is made very large (here, 200% of the noiseless update), however, there is an effect;
the network fails to get caught on the constant-error plateau, and improvements in all three
error measures are faster in the early stages of learning. However, at the point where the
presumed symmetry is broken in noiseless or low-noise training and error begins to decrease
rapidly, the high-noise training fails to benefit from the same rapid improvement; instead
its error continues to decrease at about the same low rate as before, and its performance
falls behind that of the lower-noise versions. It is not clear if it would eventually attain the
same low error levels at all, but it fails to do so in a comparable time. With online update,
even noise at the 200% level has no qualitative effect on the learning curves.

32



Squared error
14000

No noise
12000 - 5% noise

- - 50% noise
, 10000 . 200% noise

8000

2 6000

4000

2000

000 2100 10 21

140C

120C

100c

80

600

40C

20C

0

0

0

0

0'

100 102 104

Time (epoch)

Training error (%)

0.8

0.6

0.4

0.2

0
100 102 104

1 -

0.8

0.6

0.4

0.2

00 12 4
10 10 10

Time (epoch)

0

0

0

0

Test error (%)

.8

.6

.4

.2

0
10 10 10

1

0.8

0.6

0.4

0.2

0I
100 102 104

Time (epoch)

Figure 3-2: Learning curves for networks trained with backpropagation, with multiplicative

noise on the weight updates. The matrix of noise terms was of the same dimensions as

the weight update, with entries chosen from a Gaussian distribution with standard devia-

tion equal to the percentage shown of the corresponding entry of the weight update. Top

row, batch update; bottom row, online update; left column, squared error; center column,

training error; right column, test error. Note that the network stays in the constant-error

plateau longer for batch than for online update; and with the latter, the training and test

errors hardly show a plateau at all. These effects are more pronounced in networks with

more hidden units (not shown).

33

4)

0

/



Training error (%6)
14

120

100

C

60C

40O

20

0

T e0-c

)0-

0

0

0

0

0

0

0

0

0.

1 1

.9

.8

-6

.5-

.4-

.2-

01 102
T0-ime (epoch)

0.9

0.8-

0.7-

0.6 I

0.5-

0.4-

0.3-

0.2-

0.1 -

01.
10 ~ 10,

Trime (epoch)

Figure 3-3: Comparison of learning curves for backpropagation (blue, solid), standard RE-

INFORCE (red, dashed), and weight perturbation (pink, dotted) for learning digit classifi-

cation on the abridged MNIST data set, for three error measures: squared (left), training

(center), test (right).

3.4.2 Comparison of learning curves

Figure 3-3 shows the squared error, training error, and test error as a function of time for

all three training algorithms on this data set, using online update.

The REINFORCE algorithm performs nearly as well as does backpropagation, attaining

the same levels on all three error measures, at most a few epochs behind. Weight perturba-

tion appears to learn faster at first, all three error measures decreasing more quickly than for

either of the other two training methods, and it avoids the constant-error plateau. However,
just as with the highest-noise runs with backpropagation and batch update above, weight

propagation fails to show the rapid error decrease of the other methods a few epochs later

when, for the others, the symmetry is broken and the gradient becomes steeper; and none

of its error measures fall to levels comparable to those of the other methods, even when run

for thousands of epochs (not shown).

If we leave out an explicit consideration of time, and examine the course of learning

in terms of how the error measures change in relation to each other, we see in Figure 3-4

that all three algorithms follow essentially the same course through error space. That is,

for a given value of, e.g., training error, all three training algorithms will have nearly the

same values as one another for squared and test error. The most obvious exception is in

the first few data points, where the networks have been randomly initialized to different

locations in error space but quickly converge to the same path. While the path is the same,
however, not all three methods progress along it to the same extent; in particular, weight

perturbation slows or halts at moderate error levels, failing to reach the same low error

levels as the other two in reasonable time.

Weight perturbation compared to the other two methods is thus reminiscent of the noisy

backpropagation run with the highest noise level compared to the lower-noise runs, in section

3.4.1 above. The suggestion is that a similar mechanism is at work; a moderate amount

of noise, as found with REINFORCE, has very little effect on the learning curves, while

34

M= = - - - ;aa , _- -

T1est error (%)
SSquared error



1

0.8

0.7

-0.6-
0

90.5

0.3

0.2
-- Backpropagation

0.1 - - REINFORCE
- Weight perturbation

0.8
1

0.82000
0. 0. 4 . 8.. . 6000 40

0.2 12000 0000
0 14000

Training error (%)

Squared error

Figure 3-4: Learning as progress through error space, discarding explicit consideration of

time, for backpropagation (blue, solid), standard REINFORCE (red, dashed), and weight

perturbation (pink, dotted). The three lines are as close or closer than shown here when

viewed from other angles.

35



a much larger noise level allows the network to bypass the plateau at first but ultimately
prevents it from reaching the same speed and extent of improvement.

But does REINFORCE really have only a moderate level of noise? And is weight pertur-
bation not so noisy that we might be surprised it works at all? In the case of REINFORCE,
there is noise on all units in the hidden and output layers, 59 units in total; hence by the
argument given in section 3.2 above, we expect the SNR to be low enough (on the order of
5%) that such favorable performance compared to REINFORCE is quite surprising. The
performance of weight perturbation is equally surprising; with one noise source per weight,
there are a total of 38965 noise terms, giving an expected SNR on the order of 10- 5 . The
fact that the algorithm is as effective as it is suggests that the noise analysis above may be
flawed or incomplete.

3.4.3 Noise analysis

To investigate the noise issue further, we trained networks with different numbers of hidden
units, using both REINFORCE and weight perturbation, and recorded the components of
the weight update parallel and orthogonal to the gradient (u 2 and Ej v?, respectively, in
the terminology of section 3.2 above). For a fairer noise comparison, we used batch update,
in order to eliminate the extra source of noise due to online update.

The procedure in more detail was as follows: Once every 25 epochs, one training example
was chosen at random. The actual gradient for that example was calculated, and then
sample weight updates were calculated according to the learning rule, for 150 independently
chosen sets of values for . Each weight update was decomposed into parallel and orthogonal
components with respect to the gradient, and the magnitude and squared magnitude of both
components stored, as well as the ratios of the magnitudes and squared magnitudes of the
two components. The 150 values for each of these quantities were averaged together, giving
values for mean and standard deviation for that example; and averaging over multiple
examples, over thousands of epochs, gave overall means that we hope to consider "typical",
along with standard deviations on those means.

As shown in Figure 3-5, the average signal-to-noise ratio, as defined by (u 2)/(Ei V?),
does fall with the number of noise sources n as SNR - n-1 , supporting the analysis of section
3.2; linear regression gives a best-fit line with equation log SNR = -0.98 log n + 0.89. Based
on this result, it remains surprising that REINFORCE should perform as well as it does,
with SNR by this definition so low.

There are multiple quantities that might legitimately be considered to represent signal-
to-noise ratio. We chose (u 2 )/(EZ V?) in section 3.2 because of its analytical tractability; but
a measure arguably one step better is (u 2 / V ?f). Using this formula means that we average
the ratio of the signal and noise quantities over many trials (and that ratio is what we mean
by SNR for a given trial), rather than averaging the two quantities themselves and only
then taking the ratio of those means. Figure 3-6 shows the empirical result using this latter
measure. However, while the variance of the SNR defined this way is significantly lower,
the overall result is the same; the best-fit line has equation log SNR = -1.06 log n + 0.54.

We thus have an explanation for why weight perturbation does more poorly than stan-
dard REINFORCE at training networks of the same size; and we have reason to expect that
these algorithms may encounter serious problems in trying to train much larger networks.
However, we still lack a compelling explanation for why REINFORCE should do nearly
as well as backpropagation on networks of the size tested, when analysis and experiment
suggest that the weight update should be dominated by the component orthogonal to the

36



100

10-1

-2

A 10

V
A

V

0-524

10 102 10 3  10 10"
# of noise sources

Figure 3-5: Average empirical SNR ((u 2 )/(E v,?)) versus number of noise sources. The

left five data points are due to REINFORCE runs, the right six data points to weight

perturbation. The least-squares best-fit line (blue) has slope -0.98 on these logarithmic

axes and y-intercept 100.388.

37



100

10~1

10-2

CV 1-310

10

10

101 102 103 104  105

# of noise sources

Figure 3-6: Empirical average SNR ((u2 / jV?)) versus number of noise sources. The left
three data points are due to REINFORCE runs, the right four to weight perturbation. The
least-squares best-fit line (blue) has slope -1.06 and y-intercept 100.236.

38



true gradient. Even if the error landscape is smooth enough at the scale of the updates
that steps orthogonal to the gradient have no effect on the error, the decreasing relative
size of the parallel component should decrease the effective step size in the direction of the
gradient, and thereby slow the learning curve. One possibility is that the shape of the error
landscape is such that in the regime we consider, even steps orthogonal to the gradient
reduce the error (as is the case, for instance, for descending on the outside of a cone).

A more likely explanation is that u2 / Ej V? is not the most appropriate measure of
signal-to-noise ratio, regardless of how the average is taken. The correlations in u and
the vis, due to the same term 6 appearing in each, gave the first indication that another
quantity might be more relevant. The much smaller variations in the measure of Figure 3-6
as compared to those in that of Figure 3-5, as reflected in the size of the error bars, also
point to the fact that while the parallel and orthogonal components of the weight update
vary considerably from trial to trial, they vary together. Thus we have both theoretical and
experimental reasons to believe that another quantity is the relevant measure of signal-to-
noise ratio that determines the learning performance of the variants of REINFORCE. We
do not pursue this issue further here; but it represents the most immediate direction for
future work.

3.4.4 Autoencoding

As a second test case, we can consider a similar comparison of the three algorithms on
training three-layer feedforward networks on another task, autoencoding. Here the task is
to reconstruct the original input image at an output layer of the same size as the input
layer, after passing through a hidden layer of many fewer units; the network is forced to
encode the most relevant parts of the image at that bottleneck. Using the same data set as
before, we then have 784 units in each of the input and output layers, and choose a hidden
layer of 100 units. Rather than classification, our task is reconstruction, and so the two
relevant error measures are squared error on the training and test sets. Online update is
again used. All other parameters are as above.

One approach, clearly, is to do principal components analysis-to have the h hidden
units represent the eigenvectors of the data set with the h largest eigenvalues-and this
is in fact the approach learned by a network of linear units trained with backpropagation
[15]. But as shown in Figure 3-7, networks trained with REINFORCE seem unable to learn
to perform this task at all well, at least when given anything like a comparable amount
of training time. One possibility is that this failure is due to the much larger number of
units with noise added to their inputs in this case-equal to the number of pixels in the
image in addition to the number of hidden units, here a total of 884-and on this task, that
represents an amount of noise too large for the network to make any significant progress.

Weight perturbation, with its 157684 noise sources in this case, does much worse still, at
first; but interestingly, its error goes on to decrease relatively quickly and its performance
soon surpasses that of REINFORCE, though the error is still huge compared to that of
backpropagation. The reasons behind this improvement are not clear.

It is also conceivable that the error landscape for this network and task is such that
improvement lies primarily along narrow channels in weight space, and little gradient in-
formation is available elsewhere, so that a noisy learning rule that ranged more widely
through weight space would have little success. If this were the case, a reduction in the
amount of noise might improve performance. Or the noise level might simply be too high;
the results proved above about the error strictly decreasing hold only in the low noise limit,

39



Training set

10 1 102

3

2.5

2

1.5

1

0.5

100 10 1

x14

12

10

8

6

100
1 2

10 102
Time (epoch)

2.5

2

1.5

1

0.5

0
10 3

Figure 3-7: Reconstruction (squared) error for

abridged mNIST data set, for backpropagation

x 103

100

~

10 102
Time (epoch)

10
3

I autoencoding of the digit images of the
(blue, solid), REINFORCE (red, dashed),

and weight perturbation (pink, dotted). Left column, training set; right column, test set;

top row, noise with variance o- = 10-2; bottom row, noise with variance c- = 10-5.

40

X 105
14 r---

'I

12

10

8

6

4

2

0
Uc 102

X 105 Test set

0
10 3 10 3

4

2



so that lowering the noise level might be expected to improve performance in any case if
REINFORCE is having trouble. However, as shown in Figure 3-7, reducing the standard
deviation of the noise from 10-2 to 10' has no qualitative effect at all on the learning
curves. Thus other mechanisms may be at work here.

Despite the failure of the two REINFORCE variants on this task, the remarkable perfor-
mance of standard REINFORCE as compared to backpropagation on the moderate-sized
networks considered here, the moderate training success of weight perturbation despite
putative signal-to-noise ratios that should be crippling, and the correlations in the noise
analysis mentioned in section 3.2, all suggest that continued examination of this algorithm
and the mechanisms behind its successes may well prove worthwhile. It is also worth not-
ing that the experiments described above demonstrate the ability of REINFORCE to train
networks considerably larger than those typically trained by REINFORCE or weight per-
turbation in the literature, where networks tend to have on the order of a dozen units at
most [2, 4, 10].

3.5 Trajectory learning

Of course, if we would like to be able to use REINFORCE to help explain how, in the
zebra finch, RA is able to learn its extended temporal firing patterns, we need to consider
the case where the desired output is an entire sequence, not just a single input-output pair.
The REINFORCE algorithm can easily be extended to the trajectory-learning case; and the
basic result still holds, that the weight update is on average in the direction of the gradient
[24]. Unfortunately, the same analysis that gave the results of Equations (3.4)-(3.6) predicts
no such result when the desired output is extended in time, as demonstrated in Appendix
A.

Although we are not necessarily guaranteed the stronger statement, REINFORCE still
has some success in practice at training small networks to learn trajectories. We demonstrate
this fact by using REINFORCE to train a network of two neurons to learn a circular
trajectory.

The update equation is

x(t) = f (Wx(t - 1) + V(t - 1)) (3.23)

where is now allowed to vary with time. The REINFORCE prescription is

AW = r(Eo - E) 1 (t)(x(t))' (3.24)
t

where E = Et Ei(xi(t) - di(t))2 is the squared error for the entire trajectory, delivered to
the network only at the end of the trajectory, and E0 is the squared error for the trajectory
in the absence of noise. The desired trajectory was chosen to be 80 points lying around the
circumference of a circle of radius 0.5 centered at the origin, completing a single loop. The
sigmoidal function was taken to be f(u) = tanh(u), since hyperbolic tangent, unlike the
logistic function, can take on negative values. W was initialized to be the identity matrix.
At the beginning of each trial, the trajectory was initialized at the desired starting point.
We chose o- = 5 -10- 3 and q = 1.

For comparison and proof of feasibility, we also trained the network on the same task

41



8

7

8

5

4

3

2

REINFORCE

100 101 02
Trime (trial)

Figure 3-8: Time course of trajectory learning,
for REINFORCE (left) and weight perturbation

0 10,
Tie (trial)

with squared error learning curves shown

(right). Different colors represent different

runs.

using weight perturbation. Here the update equation was

x(t) = f ((W + (t))x(t - 1)) (3.25)

and the weight adjustment was

(3.26)

The results of both experiments are shown in Figure 3-8. This demonstration with this
toy problem serves as a proof of concept only; we have no strong theoretical result showing
that the error should always decrease after each weight adjustment, as we do for the non-
trajectory case. Note in fact that the error frequently does increase, and that the time to
convergence can be highly variable, for both standard REINFORCE and weight perturba-
tion (on a network this small, we would expect their performance to be comparable).

3.6 Discussion

REINFORCE has a number of attractive features as a model for learning in a system like the
brain, or as a training method for a network without a predetermined architecture. It can
easily be implemented by a physical network of independent processors, be they neurons or
artificial units. Each weight update depends only on purely local quantities, both temporally
and spatially, plus a global reward signal; and there is extensive physiological evidence for
just such a nonspecific reward signal in the brain, in the form of networks of dopaminergic
neurons projecting from the basal ganglia [18]. In the case of trajectory learning, a single
accumulator suffices for each weight (which could be realized as, e.g., a trace of calcium
concentration local to each synapse, reflecting the course of recent activity), to keep a
running total of the quantity equivalent to Et t(xt)T and supply the necessary value for

42

Weight perturbation

AW = r7(Eo - E) E (t).



the weight update when the reward is ultimately delivered.

Reinforcement learning in general is a broad class of training algorithms in which the

network is rewarded or punished according to its behavior in response to some input; on the

basis of that reward alone, the network adjusts itself so as to maximize the expected reward

over time. This approach contrasts with supervised learning, in which training inputs are

presented along with the corresponding desired outputs. The latter approach explicitly tells

the network what is expected of it; the former requires it to vary its strategy, to explore

the available behavior space. In REINFORCE, the noise ( , in the case discussed here) is

directly responsible for that exploration.
The weight-perturbation variant of REINFORCE suffers compared to the version first

introduced because it has more noise sources than in the latter case-generically, N 2 rather

than N for a fully recurrent network of N units-and as shown above, the algorithm's

performance degrades as the number of noise terms increases. With weight perturbation,
variations are explicitly made to each weight, while in the standard version of REINFORCE,
a smaller number of variations are used in a coordinated way to construct the weight update.

The power of the standard algorithm is in the way that the network's wanderings through

weight space are usefully constrained to a much smaller subspace at each step, allowing
more rapid and closer convergence to error minima.

It is notable that in the formulation given here, the standard REINFORCE algorithm

closely resembles the usual Hebbian prescription for synaptic updates, with one significant

substitution. While the Hebbian rule AWij oc xizx associates presynaptic activity with

postsynaptic activity, the REINFORCE rule AWij oc izx associates presynaptic activity

with postsynaptic noise. This represents a formulation for learning not commonly consid-

ered, but one which is successful despite its oddness at first glance. The rule becomes more

familiar if one thinks of the postsynaptic noise as a sort of offset activity; if the noise is

interpreted as representing something like the postsynaptic activity compared to its baseline

level, then the rule becomes Hebbian in appearance.

A clearer intuition about the operation of the REINFORCE algorithm is as follows. If

we explicitly include biases in the update equation, writing x(t+1) = f (Wx(t)+b(t)+(t)),
then we can interpret 6 as noise on the biases b of the units in the network. Each unit i has

access to the global offset reward signal SR = R - R 0 , and has a record of the noise 6i on its

bias that led to that 6R. Suppose first that 6R and 6i are both positive. Then in that trial,
the unit acted more excitable than usual, its threshold effectively lower than the noiseless

value; as far as it can tell, based on the limited information it has available, it should be

more excitable in response to future inputs in order to maximize reward in general. As a

result, it strengthens connections to its presynaptic neighbors (AWij = 6izx, where xj is

always nonnegative), to increase its mean activity in the future. Those neighbors that were

most active in the last trial, and hence would likely contribute most strongly to increased

activity of unit i for similar inputs in the future, have their connections strengthened the

most. Analogous arguments apply when one or both of 6i and 6R are negative. The

interesting thing about the REINFORCE algorithm is that when every neuron behaves in

this locally greedy manner, the global reward on average provably increases.

Another interesting point to consider is the fact that neurons are, to some extent,
intrinsically noisy units; at the subcellular scale, events are discrete and stochastic. It is

possible that evolution never found a way to make cells perfectly reliable, and that life

has simply always had to exist with that limitation. But another possibility is that life

found a way of exploiting that fact-as tends to happen with evolutionary processes-

and made that randomness functional. REINFORCE suggests just such a function. The

43



approach depends critically on the presence of noise, to provide the exploration required by
reinforcement learning; and the noise appears explicitly in the weight update. Thus if the
brain is using something like a REINFORCE approach-and recall that there is evidence

at least for a global reward signal, for the presence of noise, and of course for strictly local

connections-then that suggests that the unreliability of cells in the brain may be a feature

crucial to the operation and success of the learning algorithm, rather than an obstacle that

needs to be overcome.
For these and other reasons, REINFORCE stands out as an algorithm of interest, wor-

thy of further investigation. Future work remaining to be done includes continued analysis
of how REINFORCE manages to avoid being swamped by noise to achieve its success on

training moderate-sized networks; additional investigation of why weight perturbation can

surpass standard REINFORCE on some tasks, such as autoencoding; and better charac-

terization of why REINFORCE succeeds to the degree it does in the trajectory learning

case.

44



Appendix A

Derivations

A.1 The basic REINFORCE result

Williams showed in [24] that the update rule

AWij = ?I(R - bij)eij (A.1)

did gradient ascent on average on the expected value of the reward function R,

(A(W) = rR) (A.2)

where the expectation value is over all possible values for the noise . eij, the character-
istic eligibility, is defined as O(log Prw(s))/0Wij, where Prw(s) is the probability that the
network will follow a certain trajectory s for a given input and weight matrix W. The

argument ran along the following lines:

(R(s)) = ZPrw(s)R(s) (A.3)
S

by definition. Since R(s) is taken to be independent of the weight matrix (which affects the
probability of a given trajectory s occurring, but not the reward that trajectory receives if

it does occur), we have

19 (R) = R(s) W9 Prw(s) (A.4)

a
= R(s)Prw(s)Wi log Prw(s) (A.5)

= (R(s) aW log Prw (s)) (A.6)

(R(s)eij). (A.7)

If we choose R(s) = 1, we obtain

a (1) = 0 = (eij) (A.8)

45



from which we see that (bijeij) = 0 so long as bij and eij are uncorrelated. The result

(A Wij) = (r(R - bij)eij) = ij (A.9)

immediately follows.
Note that maximizing a reward is equivalent to minimizing an error; the error E in the

main body of the text is identical to the negative of the reward R here.

A.2 Eligibility for continuous-valued units with Gaussian noise

For the specific case treated in Chapter 3, we have

Prw(s) = Pr(x(t + 1)Ix(t)) = Pr'( ) = K exp (2 (A.10)

since is a Gaussian-distributed random variable with variance 0r2 ; K is a normalization

constant. Then

logPrw(s) = logK - 2/2U2 (A.11)

ei = a log Prw (s) (A.12)awij
- a (A.13)
U2 Wi j

- j -(i(t + 1)) - W jx(t) (A. 14)
~2 iwj

12= 6Xj (A.15)

The variance a2 is absorbed into the learning rate q.

A.3 Weight adjustment in the low noise limit

In the absence of noise, the network is presented with an input and thereafter reaches
a fixed point x = f (Wx). When the noise is added, the network comes to a new fixed

point, x' = f(Wx' + ). 6x = x' - x is the linear response of the network to the small

perturbation . Expanding to first order and using the operator x to refer to multiplication

of corresponding elements in a vector, we have

'= f (W(x + 6X) +) (A.16)

= f (WX) + f'(Wx) x (Wox + () (A.17)

6X = f'(Wx) x (W6X + ). (A.18)

Taking the derivative of both sides of the fixed-point equation x = f(Wx) with respect to

x gives

1 = f'(WX) a(Wx) (A.19)ax

46



1

f'(Wx) OX

so that defining

we have

D = diag(f -'(x)),

(D - W)6x =

(A.20)

(A.21)

(A.22)

which gives the linear response of the network to the perturbation in terms of its fixed

point:
6x = (D - W) (A.23)

Next, in order to maximize the reward subject to the fixed-point constraint x = f(Wx),
we write the Lagrangian

1(W, x(W), y(W)) = R(x) + y T (Wx - f -1(x))

where y is the vector of Lagrange multipliers, one for each unit in the network.
write for independent variations in x and y

Ox)

6x + (6y)T(Wx - f -'(x)) + yT(W6x - f~1 '(x) x 3x)

6x + (6y)T(Wx - f -'(x)) + yT((W - D)6x).

(A.24)

We can

(A.25)

(A.26)

Setting the derivative of L with respect to y to 0,

= Wx - f -1 (x) = 0,
Oy

(A.27)

enforces the fixed-point constraint.

012
ax

setting

enforces 01/Ox = 0.

d12
dW

5- + (WT - DT)y;

= (DT - WT)-aR/Oax

o01 M ax
- W + BW +9y Ow

Ow
OR
Ow

since at the fixed point of the dynamics, 1 = R.

Written in terms of components,

L = R + Yz f (1 Wijx) - Xi),

47

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)



8R
OR = YiXj,

OR T

W = yx.

Next choose bij
noiseless fixed point

to be RO, the reward the network would receive
X, for all i and j. Then the weight update rule is

for coming to the

AWij =7(R - Ro) izx

~~ ')7(Ek(R'(Xk)) 6 xk)6zxj

= Ek (OR /Xk) [Eh(Dkh - Wkh) (h] $i6j

7 Eh Yhdh6iXj

n6i Eh h Wh

(using (A.23))

(using (A.29))
(using (A.34)).

This is the result given in Equation (3.3).

The main body of the text uses this result to show that AW is always within 90 degrees

of the true gradient OR/OW. Another way to recognize this fact from Equation (A.40) is

to note that BeT 7 is the projection of a vector F onto a unit vector 6. Thus, each column of

the matrix AWij is the projection of the corresponding column of the gradient matrix (all

connections originating at presynaptic unit j) onto the random noise vector , multiplied

by qlI1 2 , and therefore necessarily within 90 degrees of that column of the gradient matrix.

Since each column of AW then has a positive dot product with the corresponding column

of OR/OW, it follows that the dot product of the two complete matrices must likewise be

positive.

A.4 Extension to trajectory learning

The extension to the trajectory case is straightforward. Suppose the reward is a function of

every state the system goes through from time 1 to time t, and let a superscript represent

the time index. may vary as a function of time. We also include an explicit (time-varying)
bias term in the update equation for each unit, x'+' = f(WxS + b), for reasons that will

become clear shortly. Then we can write

,C = R(xi, 7 2, .. I - , t) + (Y 1)T (WX1 + bl + ( -

+(ytl)T(Ws- + bt-1 - f-1())

In this way, can be seen as noise on the biases of the units.
the update equation. We have

Obs = yS

OL _OR 1
ow aw s- x (X

6R = E (OIR' \T8s-EY)

k. Obs S

f - 1 (X2)) + ... (A.41)

(A.42)

Again, aL/oy = 0 enforces

(A.43)

(A.44)

(A.45)

48

so that

or (A.34)

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)



The REINFORCE prescription for trajectory learning is [24]

AWij =2(R - bij) e', (A.46)

so that in the case treated here, we have

AW = q6R (X )T (A.47)
S

= ??E(yr)T rs(Xs)T (A.48)
r,s

Since (yr)T6r is just a scalar, we can write

AWij =771 [gryr]X (A.49)
r,s

OR -= y x (A.50)

AW - OR E=( AW ij .R .ry~yrx'nxs (A.51)Z, ii ,,k,m,r,s k

Unfortunately, in this form we cannot make the same statement as we did in Chapter 3
about this quantity being a sum of squares. While this weight update still does gradient

ascent on the expected reward on average,

(AWij) = 7 7 1(6 r)yrXj (A.52)
r,s k

E EZ ik 6rsyrxj (A.53)
r,s k

= rZy xj (A.54)
S

t9R
= 7 , (A.55)awij,

it is not clear whether every update is within 90 degrees of the true gradient, as it was in
the non-trajectory case.

A.5 Noise analysis

For cleaner notation, consider again only outputs fanning out from a single unit, so that the
second subscript is implied for matrices; and write y = 72. The REINFORCE prescription
for the weight update, derived in (A.40) above, can then be written as

A = 6i : hYh. (A.56)
h

49



Define U11 to be the component of the weight update in the direction of the actual reward
gradient y, and U1 to be the orthogonal component:

U w.AW - - (A.57)

U1  = AW - U11  (A.58)

We then have

IUIII2 (Eiiyi hy002 (A.59)

IU>2 2- (E hYh) Y')(A.60)
h h

(Z(Ehyh) 2 - 2( iyi) + ( hyh)4EY i (A.61)
i h i h i M,

Z (Ehyh) 2 _(, 6,y,)4 (A.62)

It is easy to show that the sum of a set of Gaussian-distributed random variables is
itself a Gaussian-distributed random variable, with mean equal to the sum of the means of
its elements, and variance equal to the sum of the variances. In particular, we can define
z = Ei 6yi, which is thus Gaussian-distributed with mean 0 and variance 0.2 E, y?

When the expectation value over all values of noise is taken, all terms with 6 to an odd
power vanish. We thus obtain

__ (zn)
(IU1112 ) = 2 (A.63)

Ei yZ

= 3Ey? (A.64)

(IUl 12) = j(64)y +,EE(62 j)y - (z4) (A.65)

= 3 y+(n -1)Zyf -3Zy (A.66)
ii i

= (n - 1)E y (A.67)

We can consider (IU1iI 2) to be an average signal and (|U 1I 2 ) to be an average noise;
then (IUiI,2)/(IU I2), one possible measure of a signal-to-noise ratio, scales up as 1/n with
increasing network size. Note that the quantity (1U 11j

2/1U 1L2) would be a better indicator
of average SNR, but simplifying that expression into an illuminating form is not straight-
forward. Section 3.4 looks at both quantities empirically, and finds that both scale as 1/n
with network size, though the variance of the latter across trials is much lower.

Because U1 has mean 0 and U11 has mean y, we might subtract the mean from each
quantity before using it, Ul', = U11 - (U11), UL = U1 - (U 1 ), to consider fluctuations about

the mean. The same approach as above then gives the same result, (IU1j 12 )/(IUk 12) , 1/n.
n is the number of noise sources in the network. Here that quantity is equal to the

number of cells; in the weight perturbation variant of the REINFORCE algorithm described

50



elsewhere, it is equal to the number of weights. For a network of N cells, the latter quantity
scales up as N 2 , helping to account for the significantly better performance of the standard
REINFORCE algorithm as compared to weight perturbation.

A.6 Weight perturbation

In this section we show that the weight perturbation algorithm described in the text actually
does belong to the class of REINFORCE algorithms, rather than just sharing certain surface
characteristics.

Define

Uij~t M (Wij + 6ij (0))Xj M) (A.68)

Then the update equation can be written

Xi(t + 1) = (Z uij(t)) (A.69)
j

The above equation shows that we can write the network trajectory entirely in terms of u;
thus we can write the reward, which is a function only of trajectory, as R(u). The derivation
of section A.1 now applies again, with s replaced everywhere by u; the network evolution
is still Markovian and the components of u at a given time are conditionally independent,
so that log Prw(u) =Et Eij log Prw(uij(t + 1)Iu(t)). In this case,

eij - log Prw (u) (A.70)
aWii

- log Prw (hk(t +1)1U M) (A.71)
aW' t h,ka

= ui 3(t) (.2log )Wi (A.72)
t Wij ( t)

aWi ~ 2o2 (A.73)

1
1 ij(t), (A.74)

giving the update equation for weight perturbation. In the non-trajectory case, where 6 is
fixed with respect to time and R(u) only depends on the final state, the sum over time is
omitted.

51



52



Bibliography

[1] Abeles, M. Corticonics: Neuronal Circuits of the Cerebral Cortex. Cambridge Univer-
sity Press, 1991.

[2] Bartlett, P., and J. Baxter. Hebbian synaptic modifications in spiking neurons that
learn. Technical report, November 27, 1999.

[3] Brainard, M., and A. Doupe. Interruption of a basal ganglia-forebrain circuit prevents
plasticity of learned vocalizations. Nature 404:762-766, 2000.

[4] Cauwenberghs, G. An analog VLSI recurrent neural network learning a continuous-time
trajectory. IEEE Transactions on Neural Networks 7(2):346-361, 1996.

[5] Dave, A. and D. Margoliash. Song replay during sleep and computational rules for
sensorimotor vocal learning. Science 290:812-816, 2000.

[6] Dehaene, S., J.-P. Changeux, and J.-P. Nadal. Neural networks that learn temporal
sequences by selection. PNAS USA 84:2727-2731, 1987.

[7] Doupe, A. Song- and order-selective neurons in the songbird anterior forebrain and
their emergence during vocal development. J. Neurosci. 17(3):1147-1167, 1997.

[8] Doupe, A. and M. Solis. Song- and order-selective neurons develop in the songbird
anterior forebrain during vocal learning. J. Neurobiol. 33(5):694-709, 1997.

[9] Fee, M. Personal communications.

[10] Flower, B. and Jabri, M. Weight perturbation: an optimal architecture and learn-
ing technique for analog VLSI feedforward and recurrent multilayer networks. IEEE
Transactions on Neural Networks 3(1):154-157, 1992.

[11] Hermann, M., J. Hertz, and A. Prugel-Bennett. Analysis of synfire chains. Network
6(3):403-414, 1995.

[12] Hertz, J., A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural Compu-
tation. Addison-Wesley, 1991.

[13] Hertz, J. and A. Priigel-Bennett. Learning short synfire chains by self-organization.
Network: Computation in Neural Systems 7:357-363, 1996.

[14] Hopfield, J. Neural networks and physical systems with emergent collective computa-
tional abilities. Proc. Natl. Acad. Sci. USA, 79(8):2554-8, 1982.

[15] Levine, J., and H. S. Seung. Unpublished result.

53



[16] Movellan, J. R. Contrastive Hebbian learning in the continuous Hopfield model. In D.
Touretzky, J. Elman, T. Sejnowski, and G. Hinton: Connectionist Models: Proceedings
of the 1990 Summer School. Morgan Kaufmann, 1991.

[17] Oh, J.-H., K. Kang, C. Kwon, and Y. Park. Generalization in two-layer neural net-
works. In J.-H. Oh, C. Kwon, and S. Cho: Neural Networks: The Statistical Mechanics
Perspective. World Scientific, 1995.

[18] Schultz, W. Dopamine neurons and their role in reward mechanisms. Curr. Op. Neu-
robiol. 7:191-197, 1997.

[19] Spiro, J., M. B. Dalva, and R. Mooney. Long-range inhibition within the zebra finch
song nucleus RA can coordinate the firing of multiple projection neurons. J. Neurophys.
81(6):3007-3020, 1999.

[20] Troyer, T. and A. Doupe. An associational model of birdsong sensorimotor learning
I. Efference copy and the learning of song syllables. J. Neurophys. 84(3):1204-1223,
2000.

[21] Troyer, T. and A. Doupe. An associational model of birdsong sensorimotor learning II.
Temporal hierarchies and the learning of song sequence. J. Neurophys. 84(3): 1224-
1239, 2000.

[22] Vicario, D. Contributions of syringeal muscles to respiration and vocalization in the
zebra finch. J. Neurobiol. 22(1):63-73, 1991.

[23] Warner, R. The anatomy of the syrinx in passerine birds. J. Zool., Lond. 168:381-393,
1972.

[24] Williams, R. Simple statistical gradient-following algorithnms for connectionist rein-
forcement learning. Machine Learning 8:229-256, 1992.

[25] Xie, X. and H. S. Seung. Spike-based learning rules and stabilization of persistent
neural activity. Advances in Neural Information Processing Systems 12, 2000.

[26] Yu, A. C. and D. Margoliash. Temporal hierarchical control of singing in birds. Science
273:1871-1875, 1996.

54


