
Nli ACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 3 1 2002

LIBRARIES

Design and Development of a High-Performance,

Low-Cost Robotics Platform for Research and BARKER

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2001 La n

@Max Bajracharya, MMI. All rights reserved.

The author hereby grants to MIT permission to reproduce and

distribute publicly paper and electronic copies of this thesis document
in whole or in part.

Author

Department of Electrical Engineering and Computer Science

May 10, 2001

Certified by..
V Lynn Andrea Stein

Associate Professor of Computer Science
Tesis S.,upervisor

Accepted by --ti - . . .- - . . .- -*' ". .

Arthur C. Smith

Chairman, Department Committee on Graduate Students

Education

by

Max Bajracharya

MITLibraries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.2800
Email: docs@mit.edu
http://Iibraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

The images contained in this document are of
the best quality available.

Design and Development of a High-Performance, Low-Cost

Robotics Platform for Research and Education

by

Max Bajracharya

Submitted to the Department of Electrical Engineering and Computer Science
on May 10, 2001, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

We have developed a high-performance, low-cost autonomous robot controller plat-
form targeted towards students and researchers. The platform exhibits more capabil-
ities than existing platforms for a similar cost while remaining accessible to a diverse
group of users. To motivate the design of intelligent robot navigation and localization,
we have also built an environment to simulate real world conditions while simplifying
mechanical constraints, and an example robot that can interact with the environment.
In addition, we ran a month-long course to test the platform. The design decisions
and tradeoffs in the platform, environment, and robots, as well as their motivation,
capabilities, and potential applications are included in this paper.

Thesis Supervisor: Lynn Andrea Stein
Title: Associate Professor of Computer Science

2

Acknowledgments

The design of the platform, environment, and robot was done jointly with Edwin

Olson; I would like to acknowledge his contributions to the project. While the project

was done jointly, the thesis documents were written independently and reflect different

perspectives on the work. I recommend Olson's thesis [12] in addition to this one.

We would like to acknowledge the sponsors of our autonomous robotics contest

who helped by donating parts and money to make it possible: Hitachi Semiconductor,

PADS/Innoveda, Maxim, MIT EE/CS department, Acroname, ISSI, and National

Semiconductor.

We would also like to thank the students who took part in the month-long contest

for their help in testing and suggesting modifications to the platform.

Dissemination of this work has been supported by National Science Foundation

CISE Educational Innovation Grant No. 99-79859 to Professor Lynn Andrea Stein.

Any opinions, findings, conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the views of the National

Science Foundation.

3

Contents

1 Introduction 9

1.1 Motivation . 9

1.2 Purpose 10

1.3 Organization . 11

2 Controller Platform 12

2.1 Requirements . 12

2.2 Existing Platforms . 13

2.3 Controller Board . 16

2.3.1 Microcontroller . 16

2.3.2 Peripherals . 17

2.3.3 Communication . 20

2.3.4 LC D . 20

2.3.5 Power . 21

2.3.6 C ost . 22

2.4 Development Environment 22

2.4.1 Development Tools . 22

2.4.2 Runtime Environment . 23

3 The Environment 25

3.1 Requirements . 25

3.2 Physical Constraints . 26

3.3 Target and Navigation Beacons . 26

4

3 .4 G o a ls .

4 The

4.1

4.2

4.3

4.4

4.5

4.6

Robots

Requirements . . .

Locomotion

Chassis

Batteries

Sensors

High Level Control

4.6.1 Behavior . .

4.6.2 Localization

4.6.3 Navigation .

5 Results

5.1 Coursework

5.2 Future Work

5.2.1 Platform Fixes

5.2.2 Platform Enhancements . . .

5.2.3 Environment Generalizations

5.2.4 Robot Enhancements

6 Conclusion

A Platform Specifications

B Schematics/Layout

B.1 Annotated Platform Schematics . . .

B.1.1 Power

B.1.2 Controller

B.1.3 Serial I/O

B.1.4 DRAM

B.1.5 Analog Input

5

27

29

29

29

33

33

35

35

35

37

38

41

41

42

42

42

43

43

44

46

47

. 47

. 47

. 47

. 48

. 48

. 48

B.1.6 Digital I/O . 49

B.1.7 Motor Drivers . 49

B.2 Annotated Platform Layout . 57

B.3 IR Beacon Schematics . 57

B.4 IR Beacon Layout . 57

C Programming Process 63

C.1 Development Environment . 63

C.1.1 Compiling a Program . 63

C.1.2 Programming the Board and Running gdb 63

D Discharge Rates for Battery Types 65

6

List of Figures

2-1 The Handy Board (4.25 x 3.15 in.)

2-2 The LEGO Mindstorms RCX (2.5 x 3.5 in.)

2-3 The BASIC Stamp2 (14 Pin DIP package)

2-4 The Compaq RoboSkiff (approx. 5.0 x 4.0 in.) . . .

2-5 The iRobot RWI Family of Robots

2-6 Controller board block diagram

2-7 Controller board photograph

3-1 Photograph of a possible environment configuration

3-2 Photograph of a beacon transmitter/receiver board

4-1 Photograph of example robots

4-2 Position/time graph of control system

4-3 Discharge of NiMH battery pack (powering controller board)

4-4 Photograph of NiMH battery pack used

4-5 Graph of IR range sensor data

4-6 IR range sensor attached to position controlled servo motor .

4-7 A example map created by a robot: a grid of one inch resolution, with

the robot taking a path around a target surrounded by a 4 ft. square

of walls; the dark points represent the robot's path, while the lighter

points are the obstacles it detects .

B -1 P ow er .

B-2 C ontroller .

7

. 14

. 1 5

. 15

. 1 5

. 1 6

. 17

. 18

. 26

. 27

31

32

34

34

36

37

40

50

51

B-3 Digital I/O 52

B-4 DRAM. 53

B-5 Serial I/O . 54

B-6 Analog I/O . 55

B-7 Motor Drivers 56

B-8 Controller Board Layout (top) . 58

B-9 Controller Board Layout (bottom) . 59

B-10 IR Beacon Schematic . 60

B-11 IR Beacon Layout (top) . 61

B-12 IR Beacon Layout (bottom) . 62

D-1 Alkaline discharge characteristics . 66

D-2 NiCad discharge characteristics . 67

D-3 Lithium-Ion discharge characteristics 67

D-4 NiMH discharge characteristics . 68

D-5 Lead acid discharge characteristics 68

8

Chapter 1

Introduction

1.1 Motivation

As technology is improving, both the capabilities and roles of autonomous mobile

robots are expanding. Lower power but more powerful processors, better batteries,

and better sensors are making intelligent autonomous robots feasible. Smaller, faster

processors are making the simultaneous control of actuators, collection of sensor data,

and execution of AI algorithms possible in real-time on an embedded system. New

battery technology is providing lighter batteries with better discharge characteristics,

allowing robots to run longer and power more sensors. And new sensor technology is

allowing cheaper and better range and imaging sensors.

Consequently, robots have the potential to be practical for exploring and interact-

ing with hazardous environments as well as being useful in the home and workplace.

Robots are becoming popular for exploring planets, handling hazardous waste, fight-

ing fires, discovering mines, scouting hostile territory, mowing lawns, and delivering

office mail. Additionally, artificial intelligence and autonomous robots are becom-

ing more widely accepted in society. Robot competitions like MIT's Autonomous

Lego Robotics Contest, 6.270, are expanding and catching on at many other univer-

sities. As a result, research and education in robotics and artificial intelligence for

autonomous systems is becoming more prevalent.

Unfortunately, few tools exist for either students or researchers to quickly and

9

cheaply prototype a mobile robot and test algorithms on it. For the most part, inex-

pensive controller boards and kits like the Handy Board [11], Mindstorms Lego Kit

[2], BASIC Stamp [6], and others lack the capabilities to intelligently control a robot

consisting of many actuators and sensors, while more capable, pre-built robot plat-

forms like iRobot/RWI's ATRV [8] and other such research robots are a substantial

investment for students and researchers.

1.2 Purpose

The lack of an inexpensive controller board capable of controlling a sophisticated

robot has resulted in an empty niche for robot platforms. Students and researchers

who are interested in prototyping and controlling a sophisticated robot have few

options (these options are reviewed in 2.2). Consequently, the goal of this thesis is

to:

1. Develop a cost-effective, simple, yet powerful robotics platform for research and

education.

2. Design an environment to motivate development of intelligent autonomous robots.

3. Suggest example robots which can navigate and interact with the environment.

The platform, consisting of a controller board and its development and runtime

environment, will be aimed at building a robot capable of navigating a mechanically

simple yet conceptually difficult environment with sensors just short of vision or

complex imaging devices. This is a reasonable approximation to a home or office-like

environment, while still providing a strong conceptual similarity to an unknown planet

or environment. The suggested robots focus mainly on localization using odometry

supplemented with triangulation and mapping methods, and navigation based path

finding to a target and obstacle avoidance.

10 1

1.3 Organization

This document begins by describing the requirements for a capable, yet low-cost

robotics platform, and then delves into the details of the platform, discussing the

controller board, development environment, and runtime environment. The environ-

ment created to motivate the development of example robots and also used in a course

using the platform is then discussed. And finally, some example robots built which

can interact with the environment are explained. To support the material, a course

taught using the platform is also discussed, along with future work.

11

Chapter 2

Controller Platform

2.1 Requirements

Our goal in designing a robot platform was to design a controller board and develop-

ment and runtime environment which was simple and inexpensive while being capable

and robust. The platform must be able to support relatively high current, high torque

DC motors, quadrature phase encoders, position controlled servo motors, and a large

number of analog and digital sensors. The kernel should provide multi-threading sup-

port as well as an interface to the basic hardware peripherals. And the development

toolchain should be accessible and easy to use.

In order to keep the board simple and inexpensive, the number of components

should be relatively small. An undergraduate electrical engineer should be able to

understand the board design, modify it as needed, and use it as a reference for a similar

microcontroller board. The board should also be affordable to a student, constraining

it to cost below several hundred dollars. However, the board should also provide

enough capability for a graduate student or researcher to develop sophisticated control

systems and navigation algorithms. It should also support a standard programming

language and inexpensive development environment.

12

2.2 Existing Platforms

By far the most successful robot controller board which exists is the Handy Board [11].

Designed by Fred Martin and Randy Sargent at the MIT Media Lab, it has been used

as the robot controller for 6.270, MIT's Autonomous Lego Robot Competition and

has become a favorite among hobbyists. Unlike most other platforms, it is available

from several robotics suppliers, is used by many other university courses, and is well

documented, both by its designers and third-parties on the web. The board is based

on a Motorola 68HC11 controller, but only runs at 1 MIPS and only has 32K of

memory. With mainly through-hole and socketed parts and using Interactive C (an

interpreted language), the Handy Board caters to a hobbyist's needs, but does not

provide adequate processing power or memory for many real-time navigation and

mapping algorithms.

Another simple, hobbyist board is the BASIC Stamp [6], which is based on a

PIC microcontroller. It is extremely simple and can be programmed in interpreted

BASIC. However, at best, it can only run at 10,000 instructions per second and can

only hold up to 4,000 instructions. The Stamp also only provides digital I/O; it does

not have any on-board peripherals like motor drivers or A/D converter.

The LEGO MINDSTORMS kit controller board, the RCX [2] is designed more

for young children, but still provides a good set of peripherals and simple sensor

interfaces. It is based on a Hitachi H8 microcontroller. However, because connectors

are designed to interface directly to LEGO bricks and custom LEGO motors and

sensors, it does not generalize beyond LEGO robots. It also does not provide the

processing power or memory to develop sophisticated algorithms.

Khepra [1] is an small, inexpensive, modular robotics kit for education. It is based

on a Motorola 68331 processor, but is designed mainly to be controlled by an external

host. The robot itself only has 256K of RAM, which prevents it from doing much

on-board processing (maintaining a map for instance). It also has a specific form

factor, with motors and sensors. So, motors, sensors, and mechanical design cannot

be chosen for different environments or conditions.

13

Figure 2-1: The Handy Board (4.25 x 3.15 in.)

The Palm Pilot Robot Kit [3] is another option available. It is a kit which can

be interfaced to a Palm Pilot which acts as the controller. While the Palm pro-

vides adequate processing power, it runs its own operating system, making real-time

processing difficult. It is also limited to a serial connection to an external interface

board, which is used to control motors and processor sensor input. The kit, without

the Palm Pilot, also costs approximately the same as our platform.

On the more expensive end of the spectrum, the Compaq Personal Server with

the additional Robot Controller Card [5] provides sufficient processing power and

memory, but is probably prohibitively expensive and overly complex. The Compaq

Personal Server uses a StrongArm SA110 CPU, running at 206 MHz, which has no

on-board peripherals, and requires external modules, including the Robot Controller

Card, which adds motor drivers and sensor I/O. The Server runs Linux and can be

programmed in Java; but this adds a large amount of unnecessary overhead to a real-

time embedded system and requires more complex drivers to be written. The main

bus is PCI which further complicates the board.

Beyond controller boards, pre-built robots [8] with on-board computers can also

be bought. While these platforms provide a simple solution to test algorithms, the

robots are very specific and limited to the environment for which they are built. They

are also generally beyond the budget of a student.

14

MASSES

ZI :

:i~r' ..'R

Figure 2-2: The LEGO Mindstorms RCX (2.5 x 3.5 in.)

Figure 2-3: The BASIC Stamp2 (14 Pin DIP package)

Figure 2-4: The Compaq RoboSkiff (approx. 5.0 x 4.0 in.)

15

~wi

Figure 2-5: The iRobot RWI Family of Robots

2.3 Controller Board

We designed our controller board to be a compromise between the expensive, complex

platforms and the simpler, cheaper, more accessible ones. To this end, it is intended to

provide solid CPU performance, a large memory capacity, and a rich set of peripherals

with a simple interface.

2.3.1 Microcontroller

The defining component of the board is the microcontroller. It determines the capabil-

ities of the platform as well as what peripherals need to and can be added externally.

After looking at several microcontrollers, ranging from extremely simple, small con-

trollers like Microchip's PICs (generally 16MHz) to higher-end processors with very

few peripherals, like a StrongARM processor (200MHz), we eventually decided on

the Hitachi SuperH (SH) series [4] as the best compromise. The SH controllers are

more powerful than the Hitachi H8 series (8-bit, 8MHz) and the standard Motorola

68HC11 (8-bit, 2MHz) or Intel 8051 (8-bit, 12MHz), but still easier to work with and

have more on-board peripherals than a high-end processor. The controller we decided

on was the SH-2, 7044. It has a high speed 32-bit RISC core (30 MIPS at 30MHz)

and a rich set of on-board peripherals. It also has an on-board DRAM controller,

making memory interface easier, and a 5V TTL bus with a simple SRAM-like inter-

16

72-

(DIP a d A aIbg Mix A _tg D
mome a0Y

Digital/5 /Vl\ 2HO
PLD Htach I SH-2 / RAM

LC D Kor RS-232 /a\
DC DlM r cla gepp \4V-23

Figure 2-6: Controller board block diagram

face, making interfacing to external components easy as well. The SH-2 has 256K of

on-chip FLASH for storing programs data, and 4K of extremely fast SRAM, which

can be used as a cache if external memory is used.

2.3.2 Peripherals

Memory

Because the Hitachi SH-2 processor provides an integrated DRAM controller, external

DRAM can be added easily. The other option to add more memory to the controller

board would be external SRAM, which, although much faster, increases the cost of

the board substantially. We have added 2 MB of external DRAM to the controller,

balancing the cost of memory with the flexibility in designing control algorithms. 2

MB of memory should be enough room to store a substantial program while still

providing adequate space for a low resolution map of the environment. This amount

of memory may be inadequate for image processing, but this is justified by the fact

that the board is not designed to directly support a vision sensor.

The external DRAM is simple to interface to largely because the SH-2 does not

support an MMU (memory management unit), and consequently cannot support

virtual memory. This is an advantage since it keeps the platform simple and reduces

any overhead that might be introduced by virtual memory.

17

Figure 2-7: Controller board photograph

18

Sensor Interfaces

Most sensors (short of imaging sensors) used in robotics either provide a digital

(on/off) signal, an analog signal, or a varying period or duty cycle pulse. These

might include touch sensors, analog IR range finders, sonar sensors, or encoder in-

puts. The SH-2 supports all of these sensors by providing digital I/O ports, an A/D,

and a multifunction timer unit.

Digital I/O

Although the SH-2 allows direct digital input and output, we have added a CPLD

(complex programmable logic device) through which the digital I/O is mapped. Using

the CPLD to provide memory mapped digital I/O greatly increases the number of

ports that are possible as well as provides the ability to add useful logic to the

controller board.

Analog Inputs

To digitize analog signals, the SH-2 provides a mid-speed 10-bit analog to digital

converter with a built in 8-to-1 multiplexer. However, because we anticipated that

more than eight analog inputs would be necessary, we have added an extra external

16-to-1 analog multiplexer which feeds one of the eight SH-2 analog inputs. The

platform then supports seven fast analog inputs and sixteen slower ones. Inputs

going directly to the SH-2 can be digitized in approximately 10 us, while those going

through the external MUX require the additional 250 ns of switching time on the

MUX.

Timer Inputs

The SH-2 also conveniently provides a multifunction timer unit which supports input

capture and compare modes. As a result, reading sensors which provide a variable

pulse width signal, like many sonar sensors, is simple. The SH-2 also supports quadra-

ture phase encoder decoding, which makes reading a directional encoder signal from

19

a motor easy as well.

Motor Interfaces

DC Motors

The SH-2's timer unit is also used to provide PWM (pulse width modulated) signals

to a motor driver, which can then drive DC motors. A PWM signal, of constant

period but variable duty cycle, can provide a signal of 16-bit resolution (0-100% duty

cycle). With an extra direction pin, the signal can be sent to a motor driver (full

H-bridge) which can then allow an external, high current line to supply power to the

motors. The controller board has two, two-channel motor drivers, which support 2

amps. of nominal current per channel. So a total of four high current motors can be

driven by the board. Extra PWM channels are headered, however, so with additional

external motor drivers, more DC motors can be used.

Servo Motors

The PWM signal generated by the SH-2 can also be used to control a position con-

trolled servo motor. These self-contained motors, generally providing 180 degrees

of rotation, are controlled by a variable length pulse, where the motor position is

proportional to the pulse length.

2.3.3 Communication

To communicate with an external host, such as a PC, or other device, the SH-2

provides a UART (universal asynchronous receiver/transmitter) supporting two RS-

232 (serial) channels. However, since the signal level is TTL level and RS-232 requires

+/-12V, an external charge pump was required, and so was added externally.

2.3.4 LCD

To provide debugging feedback or status information, we have added a 2 line, 16

character LCD (liquid crystal display). The LCD has an integrated controller which

20

provides a simple bus interface, rather than requiring the CPU to control the display.

However, because the LCD bus interface, whose maximum operating frequency is 1

MHz, is substantially slower than the SH-2's 30 MHz bus speed, the control is buffered

through the added CPLD. The SH-2 can enact fast bus transactions with the CPLD

which can then buffer and re-time the LCD signals. This prevents the CPU from

having to waste the cycles waiting to slow down the signals.

2.3.5 Power

In most cases, the controller board will be powered by a battery pack. However,

this battery pack will also probably power the motors and actuators of the robot.

Although an alternative to using a single power supply for both the controller and

actuators is to use separate supplies, using a single supply simplifies the overall robot

design and reduces the space required. But having a single supply means that it is

subject to large current draws from the actuators and will tend to be of a higher

voltage than required by the controller board.

Most DC motors which would be practical for a robot operate at a 12-24V range.

However, the controller board operates at 5V. To provide both voltages, the power

supply, generally a battery pack, provides 12-24V directly to the motors while the con-

troller board regulates this voltage down to 5V. This allows the motors to draw large

currents directly from the supply. However, to provide a constant, non-fluctuating

supply to the control board, the board must do substantial filtering.

To provide regulated power to the controller, we considered both a linear regulator

and switching regulator. Although a linear regulator tends to be simpler, because it

regulates power by dissipating power through a variable resistor, regulating a high

voltage down to a low one is very inefficient; all of the excess power is dissipated in

heat. A better solution is a switching regulator, which tends to be more efficient,

even with large differences between input and output. However, because a switching

regulator does not generate as smooth an output as a linear regulator, more external

components are required to filter it, and consequently leads to a more complicated

design. The first revision of the design used a linear regulator, while the second revi-

21

sion used a switcher to increase efficiency. However, because the switching regulator

could not handle current transients well enough, the third revision will consist of two

regulators. A switching regulator will regulate the supply to the main components

on the board, while a linear supply will regulate the supply to the sensors and servo

motors.

The board currently draws about 300 mA with all the on-board peripherals run-

ning (A/D, timers, etc. as well as LCD).

2.3.6 Cost

The controller board costs approximately $300, including the components and fabri-

cation and assembly. The main components on the board (MCU, memory, CPLD)

are most of the cost of the components, and so the cost can be reduced by removing

the optional Altera CPLD. The fabrication and assembly also adds substantially to

the cost, but can be reduced by running large quantities of boards.

2.4 Development Environment

2.4.1 Development Tools

Since the Hitachi SH-2 microcontroller is already supported by the GNU C/C++

compiler (gcc) and the GNU development tools are free and generally well supported,

we decided that they would be appropriate. The only other options for most micro-

processors is to either write directly in assembly or to purchase a higher level language

compiler from the manufacturer, which tends to be expensive. We had no difficulties

in building the cross compilers, assemblers, and linkers to generate SH-2 assembly in

x86 Linux machines.

The simplest way to program the controller once the machine code is generated is

to reprogram the on-board FLASH memory. This involves a bootstrapping program

distributed by Hitachi which interfaces to a simple boot-loader in the SH-2 ROM.

However, because the controller's on-board FLASH is only rated for several hundreds

22

of reprogramming cycles, a user could easily consume those cycles with an iterative

development process.

So, as an alternative to reprogramming the FLASH on every development it-

eration, a gdb (GNU debugger) stub can be loaded into FLASH which can then

interactively load code to DRAM and run it. The gdb stub only needs to be loaded

once, and allows a user to interactively debug code remotely from a host PC (x86

Linux machine in our case) via a serial connection. Although the user code needs to

be loaded into DRAM every time the board is reset, it prevents the need to repro-

gram the on-board FLASH constantly. Of course, when a final program is developed,

this can be programmed into FLASH, replacing the gdb stub, and will run on the

controller boot-up.

2.4.2 Runtime Environment

Standard library functions, like malloc and printf, are available to users by statically

linking to either GNU libc (http://www.gnu.org/software/libc/) or Cygnus newlib

(http://sources.redhat.com/newlib/) libraries. While both packages provide similar

capabilities, the Cygnus newlib library is targeted to smaller, embedded systems. As

a result, we used the Cygnus package for our development.

Kernel

However, neither library package provides threading utilities, which are necessary to

implement a robot capable of simultaneously reading sensors, controlling actuators,

and implementing navigation algorithms. Threads allow a user to modularize the

control of input, output, and algorithms used at a higher level. Although using a

previously developed real-time kernel was a possibility, we did not want the extra

complexity and learning time involved with these kernels. As a result, we have added

our own simple kernel which supports multi-threading. It uses the standard posix

threads interface and was written largely by Edwin Olson [12]. The implementation

uses a multilevel priority scheme to schedule tasks.

23

Multithreading in programs is handled by a simple scheduler, which simply main-

tains a list of tasks and an associated priority. Each task is given a certain time

period to execute before the context is switched. Tasks can also sleep for some time

period or yield control back to the scheduler, which will then execute another task,

if one is available.

Drivers

To make using the platform easier, we also implemented several drivers for standard

hardware that might be used. The drivers simply provide a convenient way to control

the hardware devices. These include setting power and direction to DC motors,

setting an angle of rotation for position controlled servo motors, reading specific

analog sensors and converting range to inches, and writing to an LCD.

24

Chapter 3

The Environment

3.1 Requirements

Our goal in developing an environment for autonomous robots to interact with was

to motivate the use of our platform and the design of intelligent robots. The environ-

ment is designed to simulate the real world while simplifying many of the mechanical

problems that might be encountered. It exhibits the conceptual challenges that a plan-

etary rover or an office robot may have without the mechanical ones. For instance,

the environment has a completely flat, hard floor surface, reducing the importance

of a good motor control system and making encoder odometry much more reliable.

But on the other hand, the environment is entirely reconfigurable, with obstacles

and targets being placed randomly on the field. This forces autonomous robots to

intelligently navigate the environment.

This environment is significantly more difficult than many other robot competition

or exhibition playing fields. As a result, it also prevents robots from being scripted

to execute tasks and requires them to analyze their environment and react to it.

Robots that participate in MIT's 6.270 Lego Robotics Contest or Trinity College's Fire

Fighting Contest have prior knowledge of the layout of the environment. However, our

environment simulates a situation where a robot is placed in an unknown environment,

like a planet or home. The environment is targeted towards students and researchers

who are developing algorithms for autonomous robot navigation and localization.

25

Figure 3-1: Photograph of a possible environment configuration

3.2 Physical Constraints

Physically, the environment is made up of walls, obstacles, and targets. All walls and

obstacles are specified to be a fixed height, but can be of any shape. An entire playing

field is enclosed by walls in any configuration, but of approximately 100 square feet.

Any number of targets, transmitting infrared, can be placed in random locations on

the field. When running an actual robotics contest on the playing field, we guaranteed

that there was a two foot wide path to every target.

3.3 Target and Navigation Beacons

Target beacons are specified to broadcast a 4-bit ID at a height of 12 inches. They

are also surrounded by 5 inch square wall, 4 inches high. Navigation beacons also

transmit a 4-bit ID at 12 inches, but are guaranteed to be behind a wall or inside

an obstacle. All beacons emit a 40 KHz infrared modulated signal in all directions

which can be received by a directional receiver from a maximum of approximately

12 feet. Beacons transmit an 8-bit packet, with a start sequence, four bits of data,

26

Figure 3-2: Photograph of a beacon transmitter/receiver board

and a parity check. The bits are transmitted as an on or off 40 KHz signal. To

avoid collisions between multiple beacons, each of the beacons simply transmits at

a random time (based on its ID). Although a better implementation would have all

beacons listening for others to transmit and backing off to avoid collisions, with only

16 total beacons, a random transmit time works sufficiently well.

Physically, the IR beacons consist of six infrared LEDs, being driven by a tran-

sistor, controlled by a 20 MHz, PIC16F84 microcontroller. Each beacon also has a

directional receiver to detect other beacons. The beacon's ID is set using a 4-position

DIP switch. There are several optional visible LEDs to visually inspect correct trans-

mission and reception by the beacon. The beacon can be interfaced to through a 5-bit

bus: four data bits, and a strobe line, which inverts every time new data is available.

3.4 Goals

The goal of robots in this environment is to start at a home position and find and

bring as many targets as possible to this home position. The home position is defined

27

as within some radius (in our contest, we used 18 inches) from where the robot is

turned on. This requires the robots to determine the location of targets, find a path

to each target avoiding obstacles and walls, grab the target, and then return home

and release the target.

28

Chapter 4

The Robots

4.1 Requirements

To provide an example application of the controller board, we developed an au-

tonomous robot capable of acting in the environment we defined. However, while

the goal of the robot was to interact with the specified environment, we also required

it to be capable of functioning in a reasonable real-world environment. We tried to

makes the example robot simple enough to serve as an example for learning about

robot control as well as a sample research platform for concepts like mapping, path

planning, and learning.

4.2 Locomotion

The specified environment of the robot tends to promote a wheeled design. Because

the surface is flat and hard, a wheeled design is practical and simplifies the over-

all mechanics and basic navigation of the robot. Although a legged implementation

provides a very flexible approach to dealing with a rugged environment, it also in-

troduces many complications, including navigation, balance, and general locomotion.

Estimating position with a legged robot is much harder than with wheeled one, which

can make use of its wheel encoders.

A differential steering mechanism was used mainly for mechanical and control

29

simplicity. This method uses two drive wheels which can be controlled independently,

allowing for the robot to travel, straight, in arcs, or turn in place. However, it

trades off some generality and robustness for its simplicity. It is not as general as a

synchro drive, where three or four wheels which can be rotated into any orientation

are used. A synchro drive robot can move to any direction instantaneously without

changing position, giving it a complete two degrees of freedom in motion. However

the implementation of a synchro drive is much more mechanically complicated, with

an extra motor required for each wheel. A more robust solution than a two wheeled

differential steering robot is one that uses tank-like treads or four wheels. While this

makes the robot more stable, it makes turning more difficult. The robot is more likely

to be able to overcome small obstacle by staying in contact with the ground longer,

but must slip on the ground to turn. Another four wheeled implementation would

be to use the front two wheels to steer while driving two wheels (much like a car).

However, this greatly limits the freedom of movement of the robot, only allowing it

to turn in arcs and forcing it back up and steer around close objects.

Low Level Motor Control

The robot we built uses a differential drive system with two wheels and a caster.

It consists of two DC motors mounted opposite each other on a Plexiglas base (the

chassis is discussed in section 4.3). The goal of the motor control system was to

provide linear motion and turning. A more complex system could provide the ability

to turn while driving (making arcs) however to simplify the high level control as

well as the low level control system, this was not implemented. The motor control

system supports both velocity and position control on each wheel, as well as maintains

position information based on odometry (see section 4.6). This must all be done in a

single thread because each method requires information from the motor encoders.

The simplest control system designed for the drive wheels was a velocity control

system. The speed of each wheel is measured using the 6400 counts/rev. encoder

(200 line encoder, but with two channels, and looking at both rising and falling edges)

on the motor and time measured by the microcontroller. The motor is driven with a

30

Figure 4-1: Photograph of example robots

31

Figure 4-2: Position/time graph of control system

PWM signal with a constant frequency of 1 KHz and varying duty cycle with 16 bits

of resolution. Using the PWM signal to provide a controlled power to the motors and

measuring velocity with the encoders, a standard PID control system to maintain a

given velocity could then be developed.

After characterizing the motors, the control system used only required a propor-

tional (P) and derivative (D) term. While developing a mathematical model of the

motors is easy, determining a model for the entire robot is very difficult. So eventu-

ally, the parameters of the control system needed to be adjusted for the specific robot

built - we found that a large amount of damping was introduced by the robot itself.

Because the parameters needed to be adjusted without a good model, the velocity

control was considerably slower than it should have been, reacting on the order of a

few seconds, rather than less than one second, and had an overshoot of about 30%.

The more important control system to the overall design of the robot was the

position control system, which allows the robot to move each wheel specific distances.

The system uses the motor encoders and wheel circumference to determine distance

traveled and then adjusts the speed of the motor accordingly. Although it should

be built on top of the velocity control system, in this case the reaction time of the

velocity control was too slow and so position control system was made completely

independent. For a specific surface, the best position control system was a very simple

proportional control system; the damping introduced by the robot itself served as the

damping term. The proportional control of this system is very coarse to compensate

for largely varying floor surfaces. Because the reaction of the motors on a hard tile

surface versus a thick carpet is very different, a coarse control system allows reaction

time to be fast but less accurate on all surfaces.

The turning in place mechanism of the robot acts very similarly to the position

control system, however, rather than trying to achieve precise distances on each wheel,

it uses the angle of rotation determined by odometry for feedback. So, for instance,

if one wheel is held fixed, the other wheel will compensate by turning more; the turn

32

is now no longer in place, but the target angle is still achieved.

4.3 Chassis

The robot chassis was kept extremely simple. It is a stiff Plexiglas platform with

the sensors, batteries, motors, and caster wheel mounted on it. The controller board

is mounted on a platform above the motors. The drive motors are mounted in the

middle of the platform, making the robot symmetrical and simplifying the geometry

of turning. The motors used for each drive wheel is a DC motor with an 8:1 gearhead

and 200 line encoder attached to the motor shaft. The wheels are 5.5 inch diameter,

plastic wheels with rubber treads.

4.4 Batteries

The battery pack used for the robot is a set of eight AA nickel metal hydride (NiMH)

batteries. Each battery is a 1.2V, 1300 mAh battery, so the pack is a 9.6V, 1300

mAh pack. While the power source to the controller board can be any DC supply

above approximately 5V, the selection of the battery pack is very important. Size,

weight, cost, safety, voltage, energy density, and voltage drop-off characteristics must

all be considered. Rechargable batteries were a necessity for both convenience and

cost. NiMH batteries were chosen mainly because they have very good characteristics

for a reasonable price. They are commercially available, which means they are cheap,

safe, and are easily recharged. While lead acid and lithium batteries have better

current capacity, they are much harder to use and require special safety circuitry and

custom chargers. Compared to NiCD (nickel cadmium) and alkaline batteries, NiMH

batteries have much better power density and voltage drop-off characteristics. NiMH

batteries tend to keep a constant voltage over usage, and have a sharp drop off, while

NiCD and alkaline batteries drop off more quickly over usage. Appendix E shows the

discharge characteristics of these batteries.

33

11

0.5 1 1.5
time (hours)

2

Figure 4-3: Discharge of NiMH battery pack (powering controller board)

Figure 4-4: Photograph of NiMH battery pack used

34

Battery Voltage (board consumption only)

- -

9

8

7CO)
0

6

5

4

3
0 2.5 3

10

4.5 Sensors

The only sensors used for the robot was an infrared (IR) range finder and the cus-

tom built IR beacon detector. There are, of course, many other options for sensors,

ranging from basic touch switches to imaging devices. However, we were constrained

by practical factors like the ability to control them and their cost. For instance, a

laser range finder, while it would have been an effective sensing tool for the envi-

ronment, was out of the price range for a small robot; and a standard vision based

sensor (CMOS or CCD) would require too much processing for the controller board to

effectively control it (it would need to be done by a dedicated controller). The prac-

tical and useful sensors left include an IR range finders, sonar sensors, bump/whisker

sensors, and our own IR beacon detector.

The IR range finder (Sharp GP2D12 Detector, purchased from www.acroname.com)

works in a similar way as a laser range finder, however with a much lower resolution

and measurement frequency. Placed on a position controlled servo, it can provide a

180 degree pan of the environment in a few seconds. The range finder is useful for a

range of 3-30 inches, however there is a small amount of variation depending on the

material and angle of the object.

The IR beacon detector is simply an IR directional receiver which looks for a

signal from a beacon. Placed on a position controlled servo, it can then determine

an angle to a specific beacon. It can detect a beacon at distances up to 8 feet, but

this also varies on the environmental conditions (such as the amount of sunlight and

reflections from objects).

4.6 High Level Control

4.6.1 Behavior

The goal of the robot is to wander out into the environment, find a target, and

then return this target back to the robot's starting position. There are many ways

that this could be accomplished; the robot designed only implements one way, but

35

IR Range Sensor Data

90
30

120 60

20

150 -- 30

- 10

1 8 0- -. - --- -..--.---. .- - - - - - . -- 0

210 - ' 330

240 300

270

Angle/Distance (inches)

Figure 4-5: Graph of IR range sensor data

36

Figure 4-6: IR range sensor attached to position controlled servo motor

several other techniques (actually implemented by other students) are discussed in

section 5.1. The example robot wanders the environment and updates and maintains

a map of what it sees (within a 15 inch radius). Based on this information, the robot

plans a best path to where it thinks the target is (based on it IR beacon detector

and triangulation). Moving around in the environment updates the map, so the path

needs to be updated regularly. Obstacle avoidance is achieved by path planning rather

with a reactive control system (which would veer away from an obstacle it might be

near and veer towards open space or its target goal).

4.6.2 Localization

Localization (determining the position) of the robot is mainly achieved using encoder

odometry. The distance that each drive wheel travels is integrated to establish a

location and angle in a global coordinate system defined by the starting position of

the robot. While encoder odometry is subject to accumulated error, on a hard surface

over a small area, the error does not introduce too large of a problem. Over around

ten full rotations of the robot, the error in the angle measured was only several degree;

37

over traveling a distance of approximately 10 feet, the error in distance was less than

2 inches. However, the odometry based localization can also be supplemented with

other forms of localization, such as landmark detection or triangulation, to improve

accuracy.

Triangulation based solely on angle to multiple beacons cannot provide a com-

pletely constrained solution to position; it can only provide a line on which the robot

must lie (using the angles in set of linear equations leaves the system under con-

strained by one variable). However, knowing distance to one or more beacons can

resolve this problem, and allows for position to be determined absolutely (distance

constrains the previous solution of a line to a single point). Unfortunately, in such a

small environment and using IR, determining distance is extremely difficult (in a real

system, one might use RF at large distances, so time of flight can be estimated to

provide distance). But, position constrained to a line still allows the error introduced

by odometry to be reduced.

4.6.3 Navigation

Robot navigation can be achieved using the map built by the robot and planning a

path in the map. The map maintains the occupancy of space and the robot's path with

one inch resolution. As the robot moves around the environment, new information

is accumulated and added into the map. To determine a path to a specific target

(x,y) location in the environment, each coordinate in the map is supplemented with

a straight-line distance to the target and the configuration space [10] of the map is

determined. An A* search [13] (using the distance as an under-estimate) can then be

carried out by the robot to determine the best path to the target given its current

knowledge of the state of the environment.

The configuration space of the map could be used to simplify the search procedure.

It essentially enlarges all obstacles in the map based on the geometry of the robot so

that the robot can be represented in the map as a single point, rather than its actual

shape. Calculating the configuration space is efficient because the robot is perfectly

symmetrical; if it were not, a configuration space for specific angles of rotation of the

38

robot would need to be calculated.

Because the map resolution is only one inch, the map size is relatively small, and

consequently, a distance from every coordinate in the map to the target can be cal-

culated quickly. This provides an underestimate to the target from each point which

is guaranteed to be less or equal to the actual distance (an "admissible heuristic").

To determine the best path to a goal, the robot would search the map from its

current location outward, expanding only the best paths (according to the under-

estimate). Paths are considered to be adjacent, non-occupied coordinates in the map

grid (configuration space).

39

Figure 4-7: A example map created by a robot: a grid of one inch resolution, with
the robot taking a path around a target surrounded by a 4 ft. square of walls; the
dark points represent the robot's path, while the lighter points are the obstacles it
detects

40

Chapter 5

Results

5.1 Coursework

To test the platform, we held a month-long course in advanced autonomous robot

design using the platform. However, in addition to providing a thorough test of the

platform, we were interested in what capabilities students would use or need, as well

as the type of algorithms and control systems they would design, and how accessible

and easy to use the platform was. The results of the course allowed us design the

next revision of the platform more effectively.

The course was aimed towards undergraduate students with some experience in

robot design or embedded systems. The students ranged in experience from none

(freshman with no design/engineering course, but basic programming skills) to mod-

erate (seniors with high level design/programming courses, along with some exposure

to robotics and AI). Three teams of between two and four members met every day

for a month to design and build an autonomous robot that could interact in the en-

vironment. Teams mainly used basic velocity and position control systems to move,

odometry to localize, and methods like reactionary control and gradient descent to

navigate. The most successful team used an IR range finder and IR beacon detector

to weight direction of movement, and then turned and moved in the best direction,

and repeated the process.

The platform performed very well during the test course. All the teams learned

41

to program and debug code for the platform quickly, even the ones who had not used

gdb before. The capabilities of the platform were never exceeded (in terms of speed

or memory) and the kernel did not seem to introduce any bugs into the code. The

controller board itself proved to be robust, in that during the month of intense use,

none of the boards broke in any way, nor did any components need to be replaced or

modified. The course did, however, reveal several minor flaws of the board. These

problems included simple things like the position of the reset button and the lack of

dedicated servo motor connectors, to more severe ones like the fact that more than

two servo motors drew enough current in a transient to reset the board.

5.2 Future Work

5.2.1 Platform Fixes

The already planned next revision to the board includes several fixes to the controller

board. Rather than using a single regulated supply to both the controller board and

servo motors, we will provide separately regulated supplies which can be driven from a

single supply or two independent supplies. The servo motor supply will be regulated

through a linear regulator which will be able to deal with the current transients

and, will, consequently, not effect the rest of the controller board. Additionally,

dedicated servo motor drivers will be added, conforming to the standard servo motor

connector. Aesthetically, several minor things need to be changed: the position of

the reset button needs to be relocated to be more accessible and header needs to be

made female to prevent accidental shorting.

5.2.2 Platform Enhancements

The controller board could very easily be enhanced. We plan to upgrade the current

Hitachi 7044 SH2 112-pin TQFP microcontroller to a 7045 SH2 144-pin TQFP. This

new part runs at a substantially higher clock rate (60 MHz, instead of 30 MHz) and

provides many more I/O pins. The Altera CPLD can also be upgraded easily. A

42

larger part will provide more capabilities and more I/O. On the other hand, for cost

reasons, the CPLD could be removed entirely. Other options for the controller board

include using a battery backed SRAM instead of DRAM, which would be faster,

but more expensive. Additionally, an external FLASH could be added to allow a

persistent form of memory for instruction code, rather than using the SH2's on-board

FLASH (which is only programmable hundreds of time; external FLASH could be

bought that can endure thousands of cycles). Eventually, the main components of

the board may be switched to 3.3V parts, which are more readily accessible and

generally cheaper. However, this would require a split power supply, as most sensors

and external components would still require a 5V power supply.

5.2.3 Environment Generalizations

The goal of our environment was to provide a realistic environment without some of

the mechanical problems one might find in the real world. However, the environment

does not provide all of the capabilities the real world might be able to. For instance,

robots do not have a measure of distance to the beacons (navigational or targets) and

so cannot triangulate completely.

5.2.4 Robot Enhancements

The robots designed can always be improved. However for demonstration purposes we

would like to provide a more robust and faster velocity and position control system,

as well as some more refined methods of navigation and mapping. We are considering

adding a cheap CMOS imaging sensor and doing simple image processing to find

obstacles, rather than using an IR beacon detector. While the processor would not

be capable of doing anything as sophisticated as stereo, it would be able to detect

edges or lines in a static image.

43

Chapter 6

Conclusion

We have designed a cost-effective, simple, yet powerful platform capable of controlling

an autonomous robot. In addition, we have developed an environment to simulate

but simplify real world condition, and provided an example robot for this environ-

ment. The platform and environment were tested by students in a month long course

centered around building robots to interact in the environment. During this course,

students were able to quickly prototype a robot as well as develop some sophisticated

control and navigation algorithms.

Another revision of the platform is planned to fix the minor problems revealed

by the course and the example robot will be improved for the next course. However,

overall, the platform performed extremely well. Its capabilities were not outstripped

and the cost was acceptable to the students. The environment provided a conceptually

difficult but mechanically simple problem to motivate intelligent autonomous robots.

The students spent most of their time trying to solve problems like navigation and

localization, and less time designing control systems or deciding on how to grab the

targets.

The platform has many applications in both research and educations, and has

already been accepted by other robotics groups who need a cost-effective controller

board. 6.270, MIT's Autonomous Lego Robotics Contest consisting of 50 teams of

three to four students, will be using the platform next term and we are currently

designing the next revision to accommodate their needs. Several other academic

44

institutions are interested in the platform after [9] was presented at the AAAI Sym-

posium on Robotics and Education. Acroname, a popular robotics kits and parts

distributer has also expressed strong interest in marketing the platform, and will be

making it available to the public in the future.

Overall, the platform's simple interface and standard development environment

make it easy to learn and use. And its low cost but high performance allow both

students and researchers to quickly prototype a mobile robot and implement useful

algorithms.

45

Appendix A

Platform Specifications

1. 30 MHz, 32-bit RISC Microcontroller (Hitachi SH7044)

2. 2MB DRAM (ISSI IS41C16105)

3. 2 Dedicated quadrature phase encoder inputs

4. 4 High current motor drivers (2 Allegro UDN2998W motor drivers (dual H-
bridges))

5. 4 Dedicated servo motor outputs

6. 7 Mid-speed analog inputs (10 us conversion)

7. 16 Low-speed analog inputs (Maxim 306 16-to-1 analog mux)

8. 16 Digital inputs/outputs (dedicated 4 switch dip switch and 2 push buttons)

9. LCD interface

10. On-board reprogrammable logic device (Altera 7000S CPLD)

11. Serial interface (Maxim 202E RS-232 transceiver)

12. Supports a single motor/board power supply (National LM2595 switching power
regulator)

13. Supports GNU toolchain (gcc, gdb, etc.)

14. Real-time kernel providing multi-threading support

46

Appendix B

Schematics/Layout

B.1 Annotated Platform Schematics

These subsections each refer to one page in the attached schematics.

B.1.1 Power

All of the components on the controller board require a power voltage of 5V; however

DC motors like the ones being used are generally run at 12-24V. So the board is

fed with 12V to power the motors and is regulated to 5V to power the board. This

page shows the power connector (supplying the 12V to the board), power switch,

regulator (regulates the power from 12V to 5V), power LED, and power filtering

capacitors. We use a switching power regulator because we found a linear regulator

which dissipates energy through heat was too inefficient (40% efficiency); however,

the switching supply requires many more external components and does not deal with

current transients as well.

B.1.2 Controller

This page shows the Hitachi SH2 (SH7044) microcontroller (MCU) (U3) and some

surrounding circuitry. The jumpers/switch which determine the programming/run

mode of the MCU are in the lower left. There is also a reset circuit (using the

47

DS1233) which prevents the reset button from resetting the chip incorrectly. The

chip (Y1) above the MCU is its clock (crystal oscillator); it provides a 7.237MHz

clock to the chip. The chip, based on its mode (selected by the jumpers) can be run

at this clock speed times 1, 2, or 4. The MCU ups the clock speed by using a phase

locked loop.

The Hitachi SH2 has many on-board peripherals, including an A/D, PWM output,

and counter capture ports. The analog to digital converter (A/D) can discritize an

analog signal between OV and 5V to a 10-bit number. There are 8 A/D inputs,

however the MCU only has one A/D which it uses to convert each signal in series.

The PWM output is a Pulse Width Modulated signal - a pulse signal with a constant

(settable) frequency, and a changeable duty cycle ("width"). The counter capture

port simply counts rising or falling (or both) edges from a pulse signal on the pin.

B.1.3 Serial I/O

The controller board can communicate to a PC or other device using a serial port;

however the standard serial protocol (RS-232) uses a +/-12V signal. Because the

board uses a 5V signal voltage, this needs to be converted to +/-12V. This is done

using a charge pump (MAX203E; a more common part is the MAX202 or MAX232;

these are all made by Maxim). The chip simply converts a 0/5V signal to a -12/+12V

signal.

B.1.4 DRAM

This is the 2MBytes of DRAM that the MCU uses. There is a 16 bit data interface

to the MCU, and consequently, 10 bits of address. The Hitachi MCU has a built in

DRAM controller which manages the RDWR, /RAS, and /CAS lines.

B.1.5 Analog Input

Although the SH2 provides 8 analog input pins, we have added an analog multiplexer

to multiplex 16 more analog signals into one pin on the SH2. Getting the data from

48

these 16 signals will be much slower since the 16 signals must be multiplexed.

B.1.6 Digital I/O

The SH2 MCU is interfaced to an Altera CPLD (Complex Programmable Logic De-

vice) with an 8 bit data bus. The Altera CPLD manages all of the digital I/O, so the

MCU can simply read/write an address to read/set a digital input/output pin. The

CPLD also manages writing to the LCD because of the LCD requires a much slower

timed signal than would be convenient for the MCU to produce. The DIP switches

and momentary push buttons are simply digital I/O pins that are already connected.

B.1.7 Motor Drivers

There are two ways to control the speed of a DC motor: by changing current, or

changing voltage. Changing voltage is easier electronically and generally the standard.

One way to control the voltage to a motor is to provide it a PWM signal. The greater

the duty cycle, the more power that is supplied to motor. As a first approximation,

the speed of a motor can be considered linear with the power supplied. So, the job

of the controller board is to control the 12V battery voltage to the motor. This

is done with an H-bridge, which consists of 4 (fast transitioning) transistors (the 4

transistors allow the motor to be driven in both directions, reversing the polarity

of the power if needed; a half H-bridge, 2 transistors, only allows for unidirectional

control). The transistors are driven by a 5V PWM signal, which then provides 12V

PWM power (drawing as much current from the battery power supply as it needs) to

the motors. The motor drivers are limited to 2 amps per channel (per motor); they

will automatically shut down if they get too hot (thermal shutdown), however there

is no current protection (if the motors draw too much current, the drivers will blow

up). So, the current being drawn by the motors is converted to a voltage by a simple

circuit, which is then sent to the MCU's A/D in order to monitor current.

49

1
REVISION RECORD

LTR ECO NO: APPROVED: DATE:

V_.BAT

Keep clear for heataink Current-Measuring Header

J19-1

n S2 2 VIN FEEDBACK 4.1-

Li

CIS GOF VOUT1

J jr.O LM2595

u IC4

OUTERTntu?
U11

fGNO

H3

HOLE70
H4

-10
HOLE70

H2

HOLE70

H1

HOLE70

L 051 22 C25 C1. 211 I C L23 I C2I1 ou D.1uF O.Iuf 0 laF 0OIuF D.IuF D.lii
TANTALUM CAP. TH

HLMP-17000T-N (DIgIKey) 0
RED

DRAWt:

CHECKED:

DATED

DATED:

QUALITY CONTROL: DATE0:

RELEASED: DATED:

VCC

VCC

A LED

2.4k

COMPANY:

MASLab, MIT
TITLE:

Controller Board: Power

CODE: SIZE:

SCALE:

DRAWINO Na:

SNEET: I DIF 7

Controler Board: Power

6 5

D

4 3 2

C

B

A

U2

ID

C41

C0

to

ID

B

A

ISHEET-
I OF 7

VCC
VCC CLOSE TO CHIP C

PLLCAP Y

D VOD C32 C13 C14 C12 C7 CIO
GND OSC-SMT D.IuF O. lul D.IuF 0.luF 0. - -0u.OliF

KEEP OUT-..

U3

KEEP DUT
VCC R2

_C30 _C2 3
0 OluV 470pFf

VCC TGRO DF

J4-1

.14-2
J4-3 CLK Useful 10 pIns from the SH2. Be Carefull

J4-4 J6-1 - 01
JG-2 ----- -102

NO J6-3 1 03
JA-4 -1:04

15-5 -- - 05

J6-6 --------. 006
jo-7 1--- -- 07
JG-8 -100

JG-9 - - - 09
J6-10 --------. , 10

JG-15 I

J5-15 -16

JG-17 --- - 17

! MD1 .111-19 |11

J.-20 - 20

VCC VCC
0 .

edl VCC 1

PLLCAP

U03

VCC t

-- ANI
AN2
A 3

AN4

A A-N7
- m l

VCC

GNO
OS1233

0.01F RESET LELEO

2.4K

[- LEDi

P - D CLKEXTAL
XTAL

PLLVCC 9500
PLLCAP TXDD
PLLVSS TXDI

RXDI

M1 SCCK

=(FWP) TCLKD/

IMI PEO/TIOCA
PEI/T)OC8

AVCq PE/iocc
PVDANO PE3/TIOCD

PF IVpNl PE4/,TIOCIA
PF2/AN2 PES/TIOCi6
PF3/AN3 PE6/ TIOC2A
PF4/AN4 PE7/TIOC2S
PF5/ANS PEG/TOC3A
PF6/ANG PEI/TIOC30
PF7/AN7 PEID/TIOC3C

PEII/TIOC3D

i0C4

PC P

4 TIC4C

CSA PD 0

PCA P002 2PCI Al PD/

1CZ6 PPO

COA P0' D
PsH7D 034 0

DRAWN:

CHECKED:

TICDO
TO
TXDl

1403
1404

1405

H407
Hog
HOD
Hit
1412
H413
14

1415
Hi16
H417
1418
1420

ILE

DATED:

DATED:

QUALITY CONTROL: DATED:

1
REVISION RECORD

LTA ECO NO: APPROVED: DATE:

I I
odd clock test point

CLK [~~)--

ADR1 E

ADRO3 [

ADR05

AD007 (-D---
ADRO09 [~ -

DATAO D-
DATA02 [D-

DATA04 [-

DATADS C-

SED-

.17-2

J7-4

,17-4

J7-S
01-10

J7-12

J17-14

J7-10

01-18

J7-20

J7-22

J7-24

J7-25

J7-1

J17-3

J7-5

J7-7

J7-9

7-117

J7-13

,17-15

,17-17

J7-19

J7-21

J7-23

J7-25

VCC

ADRO -

AORD4

ADRIO

DATA0i

DATA03
DATAOS
DA TAO7

Daughter Card Attachment
We can't do DM ithout chaning a lot of pin assignment*

CO Is already used by CPLO

These are the quadrature phase decoders (OPO)

j17-1 1401 JHo- - H03

J17-2 H02 VCC J18-2 1404 VCC

J17-3 J116-3

J17-4 J8-4

GND locking header -17

Y:

MASLab, MIT

Controller Board: Controller

CODE: SIZE: DRAWING NO: REV:

SCALE:
SHEET: 2 Of 7

1-A

0

"4

FA

FD

B

A

6 5 4 3 2

Some are already us
(QPDIA)

(OPO16)

(OP02A)

(QP028)

(PWM)

(PWM2)

(PWM3)

(PWM4)

VCC

_.-PRO

I 13-1
J11-1J13-2 M02 J11-2 moo

J13-3 J11-3

VCC VCC

ADA J14-1
.110-2 FWP J14-2 M03

J10-3 14-3

RELEASED: DATED:
SCALE: SHEET: 2 OF 7

6

VCC

Programming HeNader

J115-4

J15-8

J15-8

J15-3

415-9

415-5

415-1
415-2
J15-10

5
VCC

-K I

RIO RI

INK
1K

4 3
VCC

C17 CIS C21
0.0uiF 0.01uF 0.OluF

-I-- I

1K

VCC

t I
R7 R4 Re RB R5 RB
20K 20K 20K 20K 20K 20K

Push Butana

DIP Switch

U

DATTA:07 7 -

LC07w 7 UNI

LCD CE7
LCOWN
LCD.Jt -

4
U4

TOI TCK
TMS TOO

M'NUT /GCLKI
1/OCEI IGLE

I/ONPUITGL
I/O INPUT/OE1
I/O
I/O I/0
I/O I/O
1/O I/O

0/ I/O
I/O 1/O
I/ I/

I/ 0 I/O
I/ IO

I/ I/O
I/O I/O
I1 I/0

I/ I/.a
I/0 I/0
I/ I/O

(/ 0/
I1 I/
I/ I/O
I/O I/
I/O I/O
I/O 0/
I/O I/
I/O I/
I/O I/O
I/O I/O
I/ I/O

I/ Io
I/ I/
I/ I/O

I/O 0/
I/O I/O
I/ I/O
I0 I0
I/ Ia

EPM7128S

LCD Connector
VCC

VCC

LCO-RS

LCDWN [->-

CDCE [-- -- -

LCO.00 E--
LCD.DI E-
LC._D2 ED--
LCD_.3 [0--

LC0.4 {D-

LCOI [-D---

LCOD7 [-

CLK

GNOD

10141013
1012
lol1
1010
log
108
107

.DIP

010
10P3
DIP-
DIPI
DIPO

5 -1

580
800

= SWO

CD SW1

ONP

01113

DRAWN:

CHECKED:

DATED:

DATED:

QUALITY CONTROL: IDATED:

RELEAED:
ATED

48-2
J8-3

JB-4

J4-5
48-8
J8-7

J8-8

J8-9

J4-10

J8-11

48-12
48-13

48-14
.8-1

CODE:

SCALE:

2

SIZE:

1 1
REVISION RECORD

LTR ECO NO: APPROVED: DATE:

1 I- 1 - - --I I - -

VICC

100 (~}-

101 c~-
102 CD-

103 C~-

104 <~}-
105 c~~}----
106 CD--
107 <~}-
108 }-

109 c-----
1010 C~]-
lol CI-

1012 <~}-

1013 <~}--

1014 (~)-

1015 ~ -

43-

J3-

J3-

43-
J3-

43-

J3-

413-
J3-

43-

J3-

J3-

43-
43-
43-
43-

Olgial 1/0

1 43-2
3 43-4
5 .13-1

7 .13-8

9 J3-10

It 43-12
13 43-14

15 J3-111

17 .3-18

19 J3-20

21 43-22
23 43-24

25 J3-26'

27 J3-28

29 J3-30

31 J3-32

33 43-34

- ND

J2-1

42-2
42-3
J2-4

J2-5

42-6

42-7
J2-8

J2-9

J2-10

J2-11

42-12
42-13

J2-14
J2-15

42-18
J2-17

DRAWING NO: REV:

SlEET: 8 07 7

C)

0

B

A

COMPANY: MASLab, MIT

TITLE:

Controller Board: Digital 1/0, CPLD

I SHEET:
6 OF 7

A L

1016 <: ---- J3-

RELE ASED: DA TEO:

us
QATAQ0

AO 1/00 ATAOI
Al 1101 TA92-
A2 /02
A3 IZ03

ADR101101 A4 IZ04
A5 1/05
AS Izoe
A7 IZ07
AS 1/05
Ag

I .1091 Colo
/Oil

RUL Y1 '2
HAS 1/0 13

V014
Volta

DRA,1112MI*
DRAM Me IMb.161, Soj)(ARROW)IS41CI610560K MT4 IMISC -6

3
REVISION RECORD

LTR ECO NO: APPROVED: DATE:

DATACGD:131

DRAWN:

CHECKED:

DATED:

DATED:

DUALITY CONTROL: DATED:

DATED:

COMPANY:

MASLab, MIT
TITLE:

Controller Board: DRAM

CODE: SIZE: DRAWING NO: REV:

RELEASED:

SHEET: 4 OF 7SCALE:

B

A

6 5 4 2 1

vCC

ICI6
ItuF

VCC

I C24

I001D,,F

H
CD

0

H

-o

LAJ

0

6 I5 | 4 I 3 I 2 I1
REVISION RECORD

LTR ECO NO: APPROVED: DATE:

089 Serial Part Comector (Female)

-J23-1

J23-2 RX0

J23-3 TXD

J23-4

J23-8 GND

-- J23-6

J23-7

VCC - J23-8

- J23-9

TI 2 TIIN TIOUT VCC

J20-2 RXD
C -)1 TC2- j20-3 TX

-J. Cl+(V+) J20-4 CHO
MAX203E

COMPANY: MASLab, MIT

TITLE:

DRAWN: DATED: Controller Board: Serial 1/0

CHECKED: DATED: CODE: SIZE: DRAWING NO: REV:

QUALITY CONTROL: DATED:

RELEASED: DATED:
SCALE: SHEET: 3 OF 7

I ______________ J _________ I

U)

DC)

0.
C)
Hj

4 3 2 1
I REVISION RECORD

VCC

cis CI0.=luF 0.1F

ANJN1 CD]---

ANJN2 ~-

ANJN3 C~}---
ANJN4 (~)-

AN.JN5 CJ-*

AN.JN6 ~}-*---

ANJN7 ~-----

ANJNI c-
ANJN9 c--
ANJNIOC~I-

AN.JNII 'J~-
ANJN12C}-

V~VC A

,I V+ A2 ANJADR2,
NC Al AN-ADRI
NC AD AN-ADRO

_NJIS S1 E AN-JN1
ANJN14 614 S2 ANJN2
ANJN13 S13 S3 ANJN3
ANJN12 SII S4 AN.JN4
ANJN11 S S ANIN

A~jk SID ss AN INSAN-1OO SIC S ANDN

A-- D A3 MAX306 _ -

J25-1

J25-3

J25-5

J25-7

J25--

J25-11

J25-13

425-15

J25-17

J25-19

J25-21

25-23

J25-25

J25-2

J25-4

J25-S

J25-8

J25-10

J25-12

J25-14

J25-16

J25-10

125-20

J25-22

125-24

J25-26

I OND

ANI ~-- J24-1 J24-2

AN2 ~}-- J24-3 J24-4

AN3 <:--- J24-5 J24-6
AN4 c- 424-7 J24-8

ANS <:D - J24-9 J24-10

ANS J2----J24-11 324-12

AN7 J24-13 J24-14

J24-15 J24-16

LTR ECO NO: APPROVED: DATE:

VCC

J12-1

J12-2

J12-3

J112-4

J12-5

J12-6

J12-7

J12-8

J12-9

J12-10

J12-11

J12-12

J12-13

-i e

Ji-I

JI-2

31-3

J1-4

11-5

31-7

J1-7

J1-s

DRAWN:

CHECKED:

DATED:

DATED:

QUALITY CONTROL: IDATED:

COMPANY: MASLab, MIT

TITLE:

Controller Board: Analog 1/O

CODE: SIZE: DRAWNG NO:

SHEET: 5 OF 7

6 5

(0

(0

C)

0

H4

B

A
REV:

SCALE:
DATED:RELEASED:

1
REVISION RECORD

LTR ECO NO: APPROVED: DATE:

R14
AN.J13 VEI

1K
Cil

ImV RIB1110RI00.22
GN r.ND

0,,0
R13

ANJN14 VE2
1K

C,
InF R17

C2P
R17
0.22

JGND 2 GNO

RIS
AN-MdIS VE3

1K 1
C34
InF RIO

0.22
jJND GND

RIG
ANJN16 VE4

IC 1
C35 IR20

0.22

_GNO GN

Current sense circuits with low-pass filters

V.JAT

El
K

0.luF 1E
HS-570622

__ MOTORS I, 2
U10

VEI yEA V05 421-1VE2 VES OUT IAMOT1IIR PHASE-A OUT A J21-2A"05 EN.A OUTJB 7MOT2OIR PHASE.J OUT J21-3

J21-4
209.

V-PAT

E2 Locking c

H-722 MOTORS 3.

U7 J22-1
VE3 VEA VesJ2-

MOT..DI rHSA OT2
PHSEA OUTA 2 J22-3

Hia ~EN.) fj69_M74_R P AE_ OUT J2-

15 M EN-9 2995 L 2-

DRAWN:

CHECKED:

DATED:

DATED:

OUALITY CONTROL: IDATED:

RELEASED: DATED:

VCC

I C29

TIF
onnecters for motors

VCC

4

0 IuF

COMPANY: MASLab, MIT

TITLE:

Controller Board: Motor Drivers

CODE:

SCALE:

SIZE DRAWNG NO: REV:

SlEET: 7 OV 7
I _________________ ___________ _____________________________________I__SHEET:____7__OF __7

6 5 4 3 2

D

C

B

A

0

0

B

A

- J.

.. 57 15 . -

00.2

moslabl5routed.pcb - Sun Apr 08 14:36:51 2001

moslabl5routed.pcb - Sun Apr 08 14:37:35 2001

0 000 o.

beacon-1.1.sch-1 - Sun Apr 08 14:31:39 2001

5

0100170LEO

3
U.

4 3

+ +5o

40000

+5w

m~ 00 t ~ :2

LED CTC10LgK~ .
,"410

susI 030 !U

2 1

.ii EcO No: AFPUOVIa o0Tt

D
Niy U w0 Ill

L134Icu~
MTiON~~2

C

Do CD --- -t

+V 02 A1-3

03 41-4

a-,
J4

404

5. SU
J2-1

+&v

OAf T" Tl OL

00

+50

I=

rI:
"' " " H2 M

Sf055M DATM

SWJM CONTR.. OATES

KEMM.O DATES

00 -- C D>- 02 - 3 M

MASLab, MIT

- IR Beacon

ONAWE ft

WALE: SHET: 1 7

6

+sy

I
D

C

03

I m 01 cc to o 0

1 m o t 100 m

B

A

I -y,

I

IS

I-

gs

suit
)

beacon-1.1-routed.pcb - Sun Apr 08 14:34:09 2001

beacon-1.1- routed.pcb - Sun Apr 08 14:34:44 2001

* 0

see

S.

.iiJIi".

Appendix C

Programming Process

C.1 Development Environment

The most useful binaries are:

" sh-hins-gcc (the compiler)

" sh-hins-as (the assembler)

" sh-hms-ld (the linker)

* sh-hms-gdb (the debugger)

C.1.1 Compiling a Program

* Edit main.c, add any files you create to the Makefile

* % make

* Use gdb to download/run the code (see next section)

C.1.2 Programming the Board and Running gdb

1. Connect the serial cable between your PC and controller board

2. (in an xterm) % sh-hms-gdb or (in emacs) meta-x gdb; run: sh-hms-gdb

63

3. (gdb) set remotebaud 115200 or start gdb with the -b 115200 switch

4. (gdb) file main.out

5. Make sure the board is turned on

6. (gdb) target remote /dev/ttySO

7. (gdb) load main.out

8. (gdb) c or continue

Some useful gdb commands:

* help command (get help on a command)

" break f ilename .c: line (set a breakpoint at a line number in a file)

" break function (set a breakpoint at a function)

" c or continue (continue running)

* n or next (step to next instruction; doesn't enter subfunctions)

" s or step (step to next instruction; enters subfunctions)

64

Appendix D

Discharge Rates for Battery Types

note: all plots and information are from [7].

65

Ty -- 1 DU .J..e Ch .r.I..r-.-.. W-.h C9004- d Curr-It at o I OVI '}
I || k

I I I I

1; 1 1 1 1 -, I- 111
f- -- -- r -1 - T1 1 1 I It1 I III

I%. WI II T-
. -

+H**V-4-H--HA4
4 -~--- 4 -~-4.+-I-4-----~.---I4-4-I--I-I--LJ

% N.
.

%

'I

rh 1w,

N

r- " ti tie
M Ium- anr

Figure D-1: Alkaline discharge characteristics

66

N

1%.

IGiui:

IrA'. ____

icc _________

IC

p

1
ft~ .

- . ..i I I i a

W-

, I 1 -_

I

I

I

I I I %.

I

1 2 4

1 .{

1A

1.2

0.8

5 6 .

Dischorge Time (hours)

Figure D-2: NiCad discharge characteristics

Battery: CGR188&
Discharge: 250 mA.

Piasona' Speclalty

Coke

Pnsi d s rT ia I Pr oduvct}

1 ODD 1 50

Discharge Capacity {rnAh)

Figure D-3: Lithium-Ion discharge characteristics

67

Ba1864s : P-50AA Ni-Cd riAttary and
SUJM-3 dry-cePli battery

Discharge : 100rA Terp. :2C

1C d bae dischaD itrage
e

,_rSy-oell ballery
inesrasistafre

Ni-Cd ballery intwmal resst-.1e

1-fl

o0.8

C4
0.6

o04 ci:

cai
CD

0-2

a

6.0

4.0

>3.0

2.5

2.0
0

1-8

1.

1.4

1-2

0.
1800 2000

.4

.2-

.6 - - -

.0 '

A
.8
.2 - - - -.20.26A

; I'.f

.6 -3 too a a

.4-
-8 -N I 1 114IIzz IE

0 1 2 4 6 810 20 4 60 2 4 810 2 40
MDinutite AI (Hdsr) h.

Duration of discharge

Figure D-5: Lead acid discharge characteristics

68

200 400 600 800 1000 1200 1400 1600
Discharge Capacity (mAh)

Figure D-4: NiMH discharge characteristics

-- - - - r - - -- - - - -

Si2e KR17/43i
Charge :CmA X 1.2h
Discharge :0.2CmA
Temperrture: 21'C

1 HHRiSOA HFiR20DA
Nj.C N6-M NI-PolH

)

a,

0

.5

11)
H

1.4

13
12
12
12
11
10
10
9
g

7

Bibliography

[1] Khepera user manual.

[2] Lego mindstorms robotics invention system technical notes.

[3] Palm pilot robot kit: Technical details.

[4] Superh risc engine user's manual: Sh7040 series.

[5] Compaq personal server specification. 1999.

[63 Basic stamp specification. 2000.

[7] Panasonic industrial batteries technical specifications. 2000.

[8] Atrv technical specification. 2001.

[9] Max Bajracharya and Edwin Olson. A low-cost, high-performance robotics plat-

form for education and research. AAAI Symposium on Robotics and Education,

2001.

[10] T. Lozano-Perez. Spatial planning: A configuration space approach. IEEE

Transactions on Computers, C-32(2), 1983.

[11] Fred Martin. The handy board technical reference. 2000.

[12] Edwin B. Olson. Otto: A low-cost robotics platform for research and education.

Master's thesis, MIT, 2001.

[13] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.,

chapter 4. Prentice Hall, 1995.

69

	ADPB521.tmp
	DISCLAIMER

