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Abstract

Dislocation is a line defect in crystalline materials, and a microscopic carrier of plastic
deformation. Because dislocation has both a localized core and a long-range stress
field, linking atomistic and meso scales is often the most challenging step in studying
its dynamics. This Thesis presents theories and simulations of dislocations in Si and
BCC transition metals, with emphasis on the atomistic-mesoscale coupling. Contri-
butions are made in both methods development and mechanistic understanding of
dislocation mobility.

For atomistic studies of defects embedded in a mesoscale surrounding, we have
given rigorous treatments of two types of boundary effects. A method is derived for
quantifying artificial image energies in dislocation simulations with a periodic cell,
in which a longstanding conditional convergence problem in lattice summation is
resolved. We have also developed a systematic approach based on the linear response
theory, which minimizes boundary wave reflections in molecular dynamics simulations
without artificial damping.

* When predictive models are confronted with experiments at the level of mesoscale
kinetics, the challenge is to properly incorporate atomistic details into a coarse-grained
simulation. We have investigated dislocation core and kink mechanisms and obtained
deeper understandings on the shuffle-glide controversy in Si and edge versus screw
dislocations in BCC Mo, with some of these breakthroughs related to a better control
of artificial boundary effects.

The atomistic-mesoscale coupling is then manifested in our formulation of a ki-
netic Monte Carlo description of dislocation glide in Si at the mesoscale, based on kink
mechanisms. As a result, the nature of “weak obstacles” to kink propagation, a long--
standing postulate for interpreting low stress dislocation mobility data, is clarified.
This model is then generalized to incorporate cross slip for modeling screw disloca-
tion motion in a BCC lattice. Lastly, a physically-motivated procedure is derived for
removing the stress singularity in mesoscale dislocation dynamics simulations.

Thesis Supervisor: Sidney Yip
- Title: Professor of Nuclear Engineering
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response function relaxation (dotted line).

~ 5-1 Core structures of shuffle set screw dislocation in Si. The high energy

core atoms are shown in dark color. (a) Core A resides in a hexagonal

iing. (b) Core B resides at the boundary between two hexagonal rings.
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Schematics of kMC model of dislocation in Si. Screw dislocation with
Burgers vector b is dissociated into leading and trailing 30° partials,
with Burgers vector by and by respectively. Elementary kink width is b,
while ink height is & = 4/3/2 b. An embryonic double-kink nucleation
event is shown at position I, and a kink migration event is shown at

position II, both in dashed lines. . . . . . . . .. C i

Theorétical dependence of the kink pair energy Eq; on its width w are
shown as dots. For large width it approaches 2Ej. At finite width
w, By is a superposition of 2E and the kink pair interaction energy
Wins(w). The solid curve illustrates the energy barrier between the
neighboring states. Eemp 1s the barrier for nucleating an embryonic

double-kink, i.e. transition from state w =0tow=1. .. . ... ..

Schematic representation of the Markov process in the space of discrete

kink width w. Transitions are allowed between neighboring states,
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state. We draw dashed arcs between states widely separated to dénofe
a collection of different paths. F(i) and B(i) are the forward and
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a special case when the ratio of the glide stress oy, to the non-glide

stress o, is fixed at —0.16. For comparison, dislocation velocity for a

non-commensurate case (X = 10.5h) and zero non-glide stress is also |

shown as the dashed line. . . ... ... ... ... .. I ,

184

189

189

190

191

193



8-2

8-3

8-4

8-5

A schematic of dislocation motion in BCC metals examined in the kMC
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plane selected by kink pair nucleation. A kink pair nucleation event is
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(a) Peierls stress 7, as a function of loading angle x (see text). (b)
Double kink nucleation energy AH as a function of loading stress
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Chapter 1

Introduction

1.1 Multiscale Modeling of Materials Strengt’h

From ancient metals making to the invention of plastics in the early 20th century,
from silicon based microelectronics today to nano—engineered diamonoid devices of
tomorrow, the technology of processmg and makmg use of new materials continu-
ously 1nﬂuences our everyday life, with our history often marked by the revolutlonary
material of its time. While conventional materials research was largely an experi-
mental science, computer modeling Quickly becomes established‘ as another effective
tool during the past decade. With the contiﬁuous doubling of computing power of
mlcroprocessors in every 18 months over the past 30 years, known as the Moore’s
law, computer modehng and simulations are now playing an increasingly 1mportant
role in scientific research and engineering applications in all disciplines, such as DNA
sequencing, weather forecasting, énd flight simulators. Computational materials sci-
ence, the application of high pérformance computing on materials research, quickly -
emerges as a new discipline of itself. Different from the conventional trial and error
approach in looking for new materials with desired properties, the goal of computa-
tioriél materials science is materials by design. Through numerical niodéling at the
most fundamental level, a computational materials sc}iéntist seeks understanding of
materials behavior in terms of underlying mechanisms, which would then allow ‘him

* to make reliable predictions in a wide range of the parameter space, and to arrive at
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" new material designs with improved performance.

" While simulations can be regarded as “virtual” experiments running in the numer-
ical space inside the computer, they offer a set of unique advantages over conventional
or “real” experiments. Firstly, high performance computing‘is now becoming avail-
able at an increasingly lower cost, with negligible safety concerns and environmental
 effects. As the researcher has ultimate control over the simulation setup, extreme
conditions such as high temperature, high pressure and high strain rate can easily
"‘achie.ved” in computer simulations. From a theoretical point view, the most impor-
tant advantage is perhaps the enormous amount of microscopic information retained
after the simulation, allowing detailed post mortem data analysis to retrieve mech-
anistic understanding on the process of interest. However, this is ’by no means to
say that simulations would eventually replace all the experiments. Aside from some
serious limitations on computer modeling which we will discuss below, the validity
of a prediction from simulations will ultimately be judged by experiments, and its
significance would depend on whether or not it> helps to create a new product which

functions in the “real” world that we live in.

The major limitations of computer simulations in materials research are, in short,
on the length and time scales of the processes that can be studied. For example,
materials models that do not rely on any experimental inputs, thus staying “purely
predictive”, are called ab initio, or first principles, which uses quaﬁtum mechanics
of electrons to describe bonding and interaction between atoms. Unfortunately, the
computational load of these ab initio models are extremely intensive, capable of han- -
dling systems with at most a few hundred atoms to date. While this is sufficient to
determine certain properties such as elastic constants, eIectric conductance or trans-
parency to light for a perfect crystal, most material prbpertiés of interest, such as
mechanical strength, are the result of thé collective behavior of a large number of
atoms, exceeding the capacity of direct ab initio simulations by tens of orders of mag-
nitudé. In a sense, this is the challeﬁge that is met by all frontiers of science of our
century, that is, how does one take the universal laws of “elefnentary” particles —

the triumph of the last century, and start to comprehend the immense cbmplexity
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of real world, such as order arisiﬁg from disordef, and life from non-life [1]. Faster

computers will help, but will definitely not be sufficient, if used blindly.

To describe materials behavior at larger scales, numerical models with different
levels of coarse graining are necessary, such as molecular dynamics simulations in
which atoms interact through a given potential function, and finite element methods
describing the material as a continuum. The time and length scale limit of ﬁret
principles methods would then be eliminated if the theories and models at different
scales can be connected, so that macroscopic materials behaviors can be understood
through fundamental physics. This is the so called multiscale approach [2], and this
Thesis is concerned with applying it towards modeling materials strength against

deformation and failure.

A lot of technelogical breakthroughs, from high temperature turbine blades to
durable biomedical implants, rely on a better understanding on how materials fail and
how to improve their mechanical strength. However understandmg materials strength
in terms of atomic-level interactions is a long—standmg challenge because strength is
sensitively dependent on material microstructures, whose complexity is beyond reach

: of any single theory.’ These microstructures can be the result of bioloé;ical processes,
or be intentionally engineered, or organize themselves automatically as deformation
proceeds. In crystalline materials such as metals, the microstructures are made up of
lattice defects with a whole range of vdimensions, from point defects, diSloca,tiens, grain

boundaries, to Voids, twins and cracks. The complexity of this problem is obvious
since one Will need to study not only the behavior of each type of defect individually,
but also their interactions with each other. Being a daunting task, understanding the
microstructural details seems to be the only approach to achieve reliable predictions.

We intend to illustrate this point by Fig. 1-1, in Which a large discrepancy is shown

between experiments and model predictions on the flow stress of tantalum under
ultrahigh pressure. Because the model was not constructed based on microstructural
effects, but was fitted with low pressure experiments instead, there is no surprise that

it cannot make new predictions beyond the conditions that it was fitted to.

In this Thesis we will focus on a particular microstructural effect, the dynamics of

g .




200

(f
E 1504
-0 I
% 10.0 t |
& U=
% T L T
= 504 m ng v =
ut - L
0.0 T T T T

P (GPa)

Figure 1-1: Ta flow stress as a function of pressure for initial sample thickness of
25um (M) and 50pum (¢). The Steinberg-Guinan [3, 4] lower limit estimate of the flow
stress and the calculated ideal strength of perfect crystal are shown in solid and dash
lines respectively. (Fig. 9 of [5])
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dislocations. Being a line defect in the lattice, dislocation becomes dominant in low
temperature plastic deformation of a pure single crystal, where other defects such as
‘vacancies and cracks can be neglected. While the initial yield stress is controlled by
the lattice resistance to dislocation mofion, the strain hardening behavior is the result -
of mutual dislocation interactions and intersections, which give rise to spontaneous
formation of complex dislocation microstructures that can be either planar, cellular
or fractal, depending on the mode and history of loading. Therefore, even in this
highly idealized situation, where we can allow eurselves to focus on dislocations alone,
to construct a predictive strength model for single crystals still remains‘as a great
challenge to the field of computational materials science. This Thesis is intended to
make contributions at the fundamental levels of this problem, with the objective to

understand the mobility individual dislocations through interatomic interactions.

1.2 Scope of Thesis

This Thesis is focused on tile mobility of single dislocations in semiconductor Si and
BCC transition metals such as Mo, and on how it is affected by temperature and
external stress. Atemistic simulations using empirical potential models are applied
to investigate the underlying atomistic modes, while new methods such as the kinetic
Monte Carlo model are developed to study dislocation motion at mesosca.le Because
dislocation has both a localized core and a long-range stress ﬁeld, we find that linking
atomistic and meso scales is the most critical step in our study. In this Thesis, we
present five contributions in the context of a‘;omietic—rhesoscale coupling, which may
be regarded as advaﬁces in both methods development and mechanistic understanding
of dislocation mobility. |

Generally speaking, atoinistic-mesoscale ceupling can be of two forms for the same
physical problem. This is because in practice the coupli‘ng allows one to eliminate
one scale or the other. If one wants to probe a local defect on the atomistie level,
then the coupling appeers in the form of defect-surrounding interaction or a boundary

. condition. On the other hand, if one is interested in the mesoscale behavior of the
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defect where atomic degrees of freedom are not treated, then the coupling can manifest
in terms of an energy '(or a stress or cutoff parameter) which has to be determined
byb microscopic considerations. For the purpose of this Thesis, we will refer to these
two forms of coupling as types (a) émd (b) respectively. Contributions to atomistic-

mesoscale modeling of dislocation mobility of both types will be presented.

For the problem of simulation of dislocation core in a periodic cell, we derived
a rigorous treatment of summing up image interaction energies (Chapter 4.2) by an
elastic energy argument. As a consequence, a longstanding problem of conditional
convergence of the lattice summation is resolved. This is an example of coupling
of type (a). A second example is the derivation using linear response theory of
a boundary condition for dynamically coupling an atomistic domain to ‘its elastic -

surrounding (Chapter 4.3). In this case, the result is a method for which unphysical

 wave reflections at the boundary are minimized.

Problems of type (b) coupling are inherent in mesoscale simulations whenever
atomistic effects cannot be ignored. In this context, we have investigated atomistic
modes for dislocation motion in Si and BCC Mo (Chapter 5, 6). We ‘calcuylated the
Peierls stress and kink formation and migration energies for shuffle set screw dislo-
cation in Si, which prdvide new evidences on the shuffle-glide controversy in Si, and
raises questions on a previous interpretation based on kink mechanisms. We have
also studied the core structure and Peierls barrier for edge, screw and mixed dislo-
* cations in BCC Mo, and found a much smaller Peierls stress for edge dislocations
than previously reported values. This néw result naturally explains the experimen-
‘tally observed high mobility of edge dislocations, and suggests the inadequacy of the

boundary condition used in the previous investigation.

The atomistic-mesoscale coupling is then most directly seen in our forfnulation of
a kinetic Monte Carlo description of single dislocation motion in terms of displace-
ment of line segments (Chapter 7, 8), where we invoke explicitly the mechanism of
kink nucleation and migration. Therresublt is a method to simulate dislocation ve-
locity in response to applied stress and temperature on the time and length scale

of experiments. "Our model in Si was found to be able to explain a longstanding
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controversial behavior of dislocatibn mobility at low stresses without introducing any
~ad hoc assumptions, by taking in account the coupling between the split partials.
In the study of screw dislocation moving in a BCC lattice, we found that a sim-
‘ple mechanistic treatment of cross slip naturally gives rise to several new mechanisms
leading to super jog (cusp) and debris loop formation, a microstructure that resembles
experimental observations. ‘

The last contribution, a more subtle form of type (b) coupling, is a formulation
of interaction of dislocation nodes (Chapter 9), where we make use of the concept
of local energy to remove the stress singularity in the current elasticity treatment of
dislocation dynamics.

Before presenting these results, we start our discussions With a review of current
experimental knowledge on dislocations in Si and BCC metals in Chapter 2 and 3
resiaectively. The purpose is to provide a general background on the observed prop-
erties of dislocations and their félationship with maéroscopic deformation behaviors.
We hope that by familiarizing ourselves with what is known and more importantly,
what remains unknown from experiments, we can better appreciate‘ the most rele-
vant problems that awaits theoretical understandings. In this sense, Chapter 2 and
3 forms an extended intfoduction to the following Chapters (4 to 9), which contain
our specific contributions. A brief summary is given in Chapter 10, which discusses
the future work directions beyond single dislocation:mobility. More technical details

and extended discussions are given in four Appendixes for interested readers.
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Chapter 2
Experiments on Dislocations in Si

‘The experimental and theoretical study of dislocations in Si has been an active field
of study for 40 years, and is attracting ever more interests of researél_}ers all over the
world. The research in this area is clearly driven by the need for a better understand-
ing of mechaﬁical properties of Si, under various temperature, stress and electrical
conditions, as this material is becoming the base material in the semiconductbr indus-
try. At the same time, two other driv‘ving forces of the research deserve to be pointed
out. First, the relative easiness to grow high purity single crystal'Si with zero dislo-
cation content makes it convenient to measure the properties of a single dislocation,
which can be introduced into the crystal one by one. Consequently, Si becomes the
the ideal test bed material for theory and modeling of dislocations. Second,‘it is
observed that dislocations in Si contain in-gap local states at the core, so that a dis-
location line could conduct electric current and short-cut the micro-electrical circuits.
A primary concern in the semiconductor industry is then to control the dislocatibn
rhobility so that they do not migrate to the sensitive zones of electric circuits [6].

The experiments on dislocations in semiconductors has been reviewed extensively

by Louchet and George (in 19‘83) [7], Alexander (in 1y986) [8],:George and Rabier [9,

10] (in 1987), and Duesbery and Richardson (in 1991) [11]. The purpose of this

~ Chapter is to summarize the experiﬁlent;al results that are,particullarly relevant to
~ this Thesis, with special interests.on new experiments that have not been discussed

in these reviews. It is hoped that through the discussion of the known facts as well
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Figure 2-1: Stress-strain curve. of Si for strain rate ¢ = 1.2x 107 and initial dislocation
density No = 2x10~*em™2. (1) T=800, (2) 850, (3) 900, (4) 950°C. 7.g is the effective
stress where the internal dislocation interaction stresses are subtracted out. (Fig. 1
of[14].) '

- as remaining unresolved issues from experiments, one can form a clear view on where

and hoW theories and modeling at the fundamental scale could make the most impact.
The contents of this Chapter do not follow the chronological order of the experimental
findings, but are organized to reflect a progressively more detailed picture concerning

the dislocation mobility. The following four sections will discuss the macroscopic yield

~ behavior of Si, dislocation core structures, dislocation mobility measurements, and

properties of kinks, respectively.

2.1 Mechanical Response: Yield Stress

Due to the strong covalent bonding between Si atoms, dislocations in Svi are more
difficult to move than those in metals. This leads to the brittleness of Si under normal
temperatures. A very sharp brittle-to-ductile transition (BDT) bccurs in Siat T, ~
873K [12], which is higher than half of its melting temperature 7,, = 1693K [9]. The
cubic elastic constants of Si are Cy; = 161GPa, C13 = 81.6GPa, Cy = 60.3GPa [13].
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Figure 2-2: Lower yield stress as a function of temperature. Data converted to
the same shear strain rate ¢ = 5 x 1075s™'. + compression, Np = 10%cm~2, O
compression Ny = 0, e tension Ny = 10%em™2, A, o compression plus hydrostatic
pressure. (Fig. 25(b) of(8], 1kg/mm? = 9.8MPa.) -

Fig. 2-1 shows typical relationships between resolved shear stress and strain of Si
deformed at different temperatures [14]. The distinctive feature here is the existence
of a stress peak at the onset of yield, which is defined as the upper.yz'eld stress.
The adjacent stress minimum is defined as the lower yield stress. The existence of
the 1ippe'r yield stress is the consequence of the exceptionally low dislocation density
in the Si sample prior to deformation. The dislocation density remains low until
the upper yield stress is reached, at which point a large number of diélocations are

generated via multiplication, providing a rapidﬂrelief of the resolved shear stress.

At larger strains, Si also exhibits different stages of hardening, similar to face-
centered cubic (FCC) metals. After the lower yield stresses, a region of easy glide
and subsequent stage II hardening can be found in Fig. 2-1. Stage III dynamic
recovery has also been reported, and some researchers [15] have even detected further
sfages (IV and V) of hardening and softening in semiconductors in a certainv range of

temperature. Please refer to Alexander [8] for more details.
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Figure 2-3: Lov;er yield stress as a function of temperature for dislocation free Si
samples. (Fig. 2 of [16].)

~ Since the lower yield stress 7, is the minimum stress to deform the material
plastically, it represents a lower bound of the materials strength. It is found in Si

‘that ny depends on temperature T' and strain rate ¢ in the following manner [8],

Q .
nkBT) o (1)

Ty = Ciy€" exp(

where Ciy and n are constants independent of T and ¢, and @) is an effective activation
‘energy. The values of @ and n in yield stress measurements are related with the ¢
and m (m = n — 2) obtained from dislocation mobility measurements (see Section 3).
In Fig. 2-2 7y is plotted as a function of temperatures T' with data converted to the
same shear strain rate of ¢ = 5 x 10~35~1. It is fair to conclude that Eq. (2-1) holds
very well for a wide range of temperatures (400 ~ 1300°C), except for the dislocation

‘free samples at high temperatures.

Recent measurements of lower yield stress of dislocation free Si in high temper-

atures [16], see Fig. 2-3, have shown a transitional behavior at temperatures above
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Figure 2-4: Yield stress of Si (%), GaAs (O,4,A), InP (+, A, x) and InSb (o,) as a
function of temperature. (Fig. 5 of [18].) :

900°C at low strain rates (N 1075s1). Samples with nonzero initial dislocation con-
centration show similar trends, with the transition temperature pushed to higher
values. It has been postulated [16] that this transition is due to the change of self
diffusion mechanism (from vacancy to interstitial) in Si at elevated temperatures, a
topic that has been recently studied by atomistic simulations (17]. It was also noted
that [16] dislocation mobility (see Section 3) also exhibits similar transition at high
temperatures. At the same time, the effect of dislocation-dislocation interactions has
‘also been postulated [10] to account for this transition. Therefore, the explanation

for the high temperature yield stress behavior of Si is still a matter of controversy.

At the same time, recent experiments on the yield stress of semiconductors un-
der high confining preésure suggests that the linear behavior between In 7, and 1/T

may change at the low temperature limit. As shown in Fig. 2-4, the In7, and 1 /T
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curve! turns into a much smaller élope for I11-V semiconductors below a critical tem-
perature [19, 20, 21]. TEM aﬁd slip trace analysis indicate that a different type
of dislocation (from glide to shuffle set) is responsible for the plastic deformation
for semiconductors at low temperature. Recent experiments in Si at room tempera-
ture also shows a similar dislocation microstructure change. Unfortunately, the shear |
stress at such conditions are unknown, so that a direct observation on the transition
of yield stress behavior is not available in Si so far, as shown in Fig. 2-4. Previous
theoretical analysis[22] on double kink nucleations has a,ﬁticipated such a transition
at about 500MPa. But the experimental results show that the transition does not
occur at 500MPa, if it occurs at all. It is clear that more questions remain to be
- answered to reach a complete understanding of this low teﬁlperature transition. The
two types of dislocation core structures in Si, i.e. glide and Shﬁﬂe sets, is discussed

in more detail in the next section.

2.2 Dislocation Core Structure: Shufﬂe-Glide Com-
petition :

The structures of the dislocations are determined, to a large extent, by the structure
and symmetry of the crystal lattice. Fig. 2-5 shows the diamond cubic latticé, of Si
viewed in two different perspectives. The diamond cubic lattice can be considered
as the sﬁper—position_ of two face-centered cubic (FCC) lattices, offset by 7[111] from
each other, as shown in Fig. 2—5(a) The slip systéms of Si are then similar to that
of FCC metals, i.e. they are on (111) planes and in [110] directions. However, the
co-existence of two sub- FCC lattices complicates the situation in Si. As shown in
Fig. 2-5(b), dislocations can glide on two different sets of (111) planes. The closely
spaced set, e.g. between C and b, is called the glide set, while the widely spaced set,
- e.g. between b and B is called the shuffle set. On which set of the (111) planes do

- dislocations in Si exist; or move has been a controversy for some forty years. Although

1At low temperatures, the stress peak at the yield reglon ceases the exist, and the onset of yield
is designated as the critical resolved shear stress 7. :
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Figure 2-5: Diamond cubic structure of Si lattice. The two interlaced FCC lattices
~are shown in white and dark atoms respectively. (a) primitive cell of the diamond
cubic lattice. (b) Glide and shuffle set of (111) planes.
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Figure 2-6: (a) Dislocation pattern in the primary glide plane Si after a few seconds
of deformation at 7' = 520°C and 7 = 392MPa. (b) Weak beam micrograph of a
dissociated loop in Si deformed for 45 min at T = 420°C and 7 = 256MPa. (Fig.2
and 6 of [23], with minor editing.)

it is now widely accepted that diélocations in tetrahedrally bonded semiconductors
are located and move on the glide set, this is perhaps onIy true within a certain stress
(< 1GPa) and temperature range (800 ~ 1100K). Experiments at higher stress and
lower temperature suggests that plastic deformation could be carried by the motion
of dislocations-on shuffle set planes. | |
Because stacking fault can exist on glide set planes, glide set dislocations can dis-
sociate into partial dislocations and lower their elastic energies, while dissociation is
impossible on the shiffle set plane. Therefore, attempts toward resolving the “shuffle-
glide” controvérsy has been focused in det'ermining whether ,o‘r‘not dislocations in Si-
are dissociated. Using the weak beam technique, it is found that almost all disloca-
tions in Si [24, 25] and Ge [26] are dissociated into partials, and afe mobile in the
dissociated form [27, 28]. | |
The dislocation dissociation in Si is clearly illustrated in the observation of widely
separated partial under high external streSs[Zg]; as shown in Fig. 2-6(a). In this
e);perimen’p, the Si sample has been deformed for a few seconds at T = 520°C and

. 7= 392MPa. The dislocation lines are observed to be parallel to three [110] dii”ections,
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which is a general feature in diamond cubic semiconductors. The Peierls barrier for
the glide set planes force the dislocation to become either screw or mixed 60° (the
angle between the dislocation line and the Burgers vector). The arrows in Fig. 2-6(a)
indicate places where the leading partial is well separ.ated from the trailing'partial. At
smaller stress, the dislocation is usually Weakly dissociated, as revealed by the weak
beam method, shown in Fig. 2-6(b). The separation between partials are on the order
of 304, and the measurements of this separation are used to determine the stacking
fault energy of semiconductors. A recent experiment [29] found the stacking fault
energy to be ysr = 55 + 7TmJ/m? = 3.4 + 0.4meV/A? for Si, ysp = 60 & 10mJ/m? =
3.840.6meV/A? for Ge, and ysp = 285+40mJ/m? = 17.842.5meV/A? for diamond. |

Although the dissociation of dislocations in Si is Well established, the “shuffle-
glide” controversy remaéns open.v This is because a partial dislocation can also exist
. in the shuffle set plane [i:’>0], by absorbing a linear chain of point defects into its core. In
other words, a glide pai‘tial cén transform into a shuffle vacancy (S,) or into a shuffle
interstitial (.S;) parfial by climb [31]. This possibility seems to be necessary in order
to explain electron paramagnetic resonance (EPR) [32, 33, 34, 35] measufeﬁ]ents on
deformed Si samples. Plastic deformation of Si within a Certain temperature range
is accompanied by an large increase of the density of parafnagnetic centers, which

are identified as point defects from the symmetry of their signal [32]. As dislocation
| intersecting processes seems to vplay no role in generating these point defects, it was
speculated [36] that a complex interaction between the core of the partial dislocation
and intrinsic point defects is responsible, with the end result of releasing point defects
when the partial starts to move. Although the dislocatioﬁ interactions with intrinsic
point defects have been the subject of recent theoretical studies [37, 38], no direct

experimental evidence exists so far to support this mechanism.

Lowering the temperature will change the dislocation microstructure significantly.
In these experiments a hydrostatic confining pressure is dpplied to suppfess fracture.
Deformation of Si under 1.5GPa pressure [40, 18] has‘ resulted in large number of
free partial dislocations and stacking fault areas. Recent experifnents [39] at room

temperature with 5GPa confining pressure have found that d'is‘locationsb are mainly-
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Figure 2-7: (a) Dislocation microstructure at 7' = 450° and 1.5GPa confining pres-
sure, showing large stacking fault areas. (b) Dislocation microstructure at room
temperature and 5GPa confining pressure, where the dislocations are mostly aligned
along [110] and [123] directions. (Fig. 2 of [18] and Fig. 1 of [39].)
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undissociated and aligned along [110] (screw) and [123] (mixed 41°) directions, sug-
gesting that they are on the shuffle set planes. Similar behavior is also recently found
in III-V compbunds [19, 20, 21], where the transition into shufﬂe occurs at a much
smaller stress (~ 1GPa) so that the experiments are easier to perform. It is also
found [18] to be very difficult for the preexisting dissociated dislocation to recombine-
into the undissociated form, so that thé shuffle set dislocations at low temperatures
are most likely newly nucleated, possibly from internal crack tips. Fig. 2-7(a) and (b)
show the dislocation microstructures at 1.5GPa and 5GPa confining pressure respec-

tively.

2.3 Dislocation Mobility

In the context of this Thesis, it is a fortunate fact that a great Wealthk of 'experimental
data are available on the dislocation mobility in Si. Among the different approaches
to observe dislocation motion, X-ray topography method used ‘by A. George [41]
in 1972 is still one of the most pbpula.r ways to investigate the intrinsic behavior
- of dislocations, with the advantage that artificial effects on dislocation motion are
relatively small. In comparison, in the “double-etching” method [42], where the
pésitions of the dislocations are revealed by chemical etching béfore and after applying
the loading stress, dislocations could be pinned by impurity atoms segregating on
the etching surface. As a result, a starting stress at 5 ~ 10MPa was reported in
experiments [42] using the etching method, below which no disldcation‘motion is
found, while this is not the case in X-ray -topography experirhents. ‘

In the éxperiments of George [45], dislocations were introduced into initially dis-
loéation free Si samples by scratching the surface With a diamond needle, along the
direction perpendicular to that of the anticipated slip lines on this surface. Uniax-
ial loading is then applied to the sample at an elevated 'i:empbera,ture.2 As shown in

Fig. 2-8, dislocation half loops emerge and expand in the direction perpendicular to

2The process of dislocation nucleation at the scratch surface during annealing was investigated by
Puttick et al. [46, 47, 48]. Other methods of introducing dislocations also exist, such as indentation
by a micro-hardness machine [49].
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Figure 2-8: Growth of dislocation half loops in Si revealed by X-ray topography.
Dislocations were introduced by scratching the surface followed by uniaxial loading
at elevated ‘temperature. Dislocation half loops expanded perpendicular to the scratch
direction. (Fig. 6 of [43].)

Figure 2-9: Expansion of half and full dislocation loops in Si under shear stress,
observed by X-ray topography. (Fig. 1 of [44].)

the scratch direction. The dislocation segments barallel to the free surface were found
to be screw while the two arms intersecting the surface were 60° dislocations. These
dislocation half loops as well as some complete hexagonal loops inside fhe sample [44]
continued to expand upon further loading, as shown in Fig. 2-9. The velocities of both
screw .and 60° dislocations were then obtained by measuring the size of these loops
at different times. Fig. 2-10(a) and (b) show the measured dislocation velocity at
different temperature and stress respectively [44] Before discussing the temperature.

and stress dependences, some microscopic details are worth mentioning.

First, the two 60° dislocation segments moved with slightly different velocities. In
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Figure 2-10: (a) Temperature dependence of velocity of screw (e) and 60° (o) dislo-
cations in intrinsic Si at stresses (1) 7 = 30, (2) 19, (3) 10, (4) 6, (5) 4 MPa. (b)
Stress dependence of velocity of screw (o) and 60° (o) dislocations in intrinsic Si at
temperatures (1) T' = 800, (2) 710, (3) 650 °C. (Fig. 2 and 3 of [44].)

one case [43], the relative velocities of the three segments were found to be: screw
1; 60719 1.1, 6057z 1.5 . This may be attributed to the different order of the partials
in these two 60° dislocations. There is however, a more puzzling phenomenon, that
' is, the faster moving 60° dislocation seems to be subjected to a “glide instability”,
- where part of the segment can'suddenly increase its velocity by 40% with other parts
moving at the same spéed as the other 60° segment, resulting in a “zig-zaged” shape,
see Fig. 2-8(c). George [43] suggested that this éould be due to some changes in
the dislocation core structure resulting from a climb mechanism. The velocity of 60°

dislocations in the following discussion refer to the average values of the left and right

segments.

Dislocation velocity v as a function of temperature 7" and resolved shear stress 7

were usually fitted with the following empirical formula [41],

v=onexp(—k%),» e
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Table 2.1: Stress dependence of activation energy @ and temperature dependence of
*stress exponent m for screw and 60° dislocations in intrinsic Si. (Table 2 and 3 of

[44].)

T(MPE\,) Qs (eV) Qsoo (CV)
240 19 1.9 [50]
30 2.17 2.16
19 2.19 2.22
10 2.22 2.28
6 2.23 2.42
4 2.17 2.43

T(OC) mg msoo
800 1.15 0.8
710 1.1 1.2
650 1.15 1.2
580 1.2 1.4
550 13 18
520 1.2 1.6 -

where m is called the stress exponent, @ is the effective activation energy, kp is the
Boltzmann’s constant and C' is a constant. However, it is‘clear that a power law
stress dependence of velocity is only obeyed for stress larger than 6MPa (see Fig. 2-
'10(b)), and m increases at lower stresses. The stress exponent m is also temperatu_re
dependent and the actlvatlon energy has stress dependence as well. This dependence
is more pronounced for 60° dislocations than for screws. The ﬁtted values for Q) and m

at different temperature and stresses are listed in Table. 2.1 and plotted in Fig. 2-11.

It was known that the description of dislocation mobility by Eq. (2.2) is valid only
in the so called “central range” ([9], p.955) of temperature (750 ~ 1100K) and stress
(6 ~ 100MPa). In the rest of this section; we will discuss dislocation mobility at high -
and low extremes of stress and temperature. As discussed in the previous section,
the majority of dislocations below a transition temperature will glide on the shuffle
set planes, hence they are expected to have a very different mobility. At the same
vtlme the simple linear temperature dependence as shown in Flg 2- ll(a) is also found

to change at higher temperatures [7, 51, 52].

In the double-etching experiment, Farber et al. [51] measured temperature depen-
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Figure 2-11: Stress dependence of activation energy @ (a) and temperature depen—
dence of stress exponent m (b) for screw (o) and 60° (e) dislocations in intrinsic Si.
(Data from Table 2 and 3 of [44].)
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Figure 2-12: Temperature dependence of dislocation velocity in Si at high tempera-
ture. Smooth splines are drawn to guide the eye. (Fig.1 of [51].)
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Figure 2-13: Stress dependence of dislocation velocity in intrinsic Si at low stresses.
(Fig.4 of [43].) -

dence of 60° dislocation velocity up to 1600K (0.97;,), as shown in Fig. 2-12. At
temperatures higher than 1323K, the dislocation velocity becomes higher than the
low tempekrature extrapolation, and the effective activation energy nearly doubles, i.e.
Q = 4 £+ 0.1eV. Parenthetically, similar measurements in Ge showed either decreased
or unchanged velocity and activation energy af high temperatures, depending on the
loading stress [53]. Farber postulated that dislocation-point defect interaction could
be responsible, and it could be related with the possible transition from equilibrium
vacancies to equ‘ilibrium,interst‘itials at elevated temperatures. Recent atomistic cal-
culations [17] and high temperature yield point measurements [16] seem to support
‘this view. | | ‘

The behavior of dislocation mobﬂity at low stress regime still remains as a mat-
ter of controversy to date. As shown in Fig. 2-13, there seems to be a “thresh—
old stress” [43] (around 6MPa), below which dislocation velocity drops much more
rapidly with decreasing stress than at higher stresses. The effect of phosphorus con-
centration was investigated, but no effect Wa;.Sval'lI_ld for coﬁtents ranging from 10

to 1.2 x 10'8at.cm~2. It was then argued [43] that the “threshold stress” behavior is
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intrinsic to dislocations in Si, a.lthbugh it cannot be explained by the well known kink
diffusion model of Hirth and Lothe (H-L), which predicts linear rela.tiqnship between
velodity and stress. At the same time, in situ X-ray topography study by Imai et
.al. [54] reported 1iﬁear stress-velocity relationship in high purity Si throughout the
stress range of 1.2 ~ 40MPa, in contradiction with George. In Chapter 7, we present a .
possible resolution of this controversy by considering the coupling ‘effect [55] beﬁveen

the two partial dislocations.

Inl the high stress limit (30 ~ 300MPa), the stress dependence of dislocation
velocity can be well described By the power-law equation v = vo(7/70)™ [7, 9, 56].
However, it was found that the stress éxponent m depends not only on the dislocation
character, bﬁ_t élso on the relative orientation of Burgers vector (l_;) with respect to the
loading axis (é), along which uniaxial compression is applied. An empirical expression

for this relation was found to be,
m=—72(1—1b-8)*F,/bo +m1, (2.3)

where F}, is the normal component of the force on the dislocation, and o is the nominal
compression stress. The fact that dislocation mobility depends on F, is a violation of
the so called Schmid law, which states that dislocation velocity should only depend
on the glide component of the resolved shear stress on the slip plane. Although no
serious attempts have been made so far to explain this non-Schmid effect in Si, it
may be due to the coupling between partial dislocations again. Although F,, cannot
exert a net glide force on the perfect dislocation, it exerts opposite forces on the two
partials, thus can alter the separétion between the two partials. The effecf of the

partial separation width and the dislocation mobility will be investigated in Chapter
7.

- Before closing this Section, let us take anOthér look at the asymmetry of 60° dis-
location mobility. Differently from the findings of George [43] for the slight symmetry
on the mobility of the small difference of the two 60° dislocations both moving for-

ward, the mobility difference of the same 60° dislocation in the forward forward and
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backward direction was found to be more than one order of magnitude [57, 58]. Care
must be taken to understand these results, because they could easily come from the
surface effecf rather than the intrinsic properties of Si. Since the dislocation lines are
inclined at 60° with thé free surface, image forces would tend tb shljink the disloca-
tion half loops. Louchet [7] also suggested that surface effect should be responsible by
noticing the éhape of the etch pits of these experiments. However, Nikitenko et al [57]
- argued that since dislocation half loops did not undergo spontaneous shrinkage under
annealing, the surface (or image) effect is hegligible. Instead, a long time annealing at
T > 700°C resulted in disappearance of the mobility asymmetry effect. The authors
argued that this effect can only be explained by the change of the “states” of point
defects or impurity complexes after the passage of dislocaﬁion. To account for the
asymmetry effect, the authors had to assume the defect cqmplexes have an “order
orientation” such that they impede dislocation coming from one direction while en-
hance their motion for those conﬁhg from the other side. Such an explanation sbunds
a little far-fetched, since no such anisotropic defect complexes has ever been found
before. Here we discuss an alternative explanation. Notice that the motion of surface
etch pit does not necessarily imply the uniform motion of the entire 60° dislocation
segment beneath the surface. Part of the dislocation could be slowed down byi point
defects and have not moved as far ahead aé the etch pit during the forward motion.
This could result in the faster backward motion of the etch pit upon reversed loading. -
Annealing could make the eﬁtire dislocation catch up with the su_fface etch pit and
thus removing the asymmetry effect. In this sense, it looks important to repeat éuch

experiments with X-ray topography where the entire dislocation line can be observed.

2.4 Kink Mechanism

To date it is widely accepted that® dislocations in Si moves by double-kink mecha-
nism [30] on the two partials, although point defect interactions are also important.

The double-kink mechanism is illustrated in Fig. 2‘—1>4._ Due to the strong Peierls bar-

3at least in the temperature range of 750 ~ 1100K
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Figuré 2-14: Schematic of the Peierls barrier and kink mechanism for dislocation
motion. Dislocation is represented as a continuous line, which resides mostly at the
bottom of the Peierls energy surface except at kinks.

rier, each (partial) dislocation moves forward by advancing only a segment of itself
to the next Peierls relief, thus creating a “double-kink”, followed by the migration of
the two kinks in opposite directions. Thus two energy barriers control the disloca-
‘tion motion, one for the double-kink nucleation (Egx =~ 2E%, Ej for single kink self

energy), and the other for the kink migration(W,,).

This Séctipn discusses various experimental approaches to determine the values_'
for By and Wy,. This would be impossible without at least a brief introduction on the

- theoretical model which relates these energy parameters with the dislocation velocity.

A complete description of dislocation motion has to consider possibly correlated

kink mechanisms on the two partials, which will be the subject of in Chapter 7. On
 the other hand, a lot of insight can be obtained in the Hirth-Lothe (H-L) model (30],
which studies a simplified Scenério of undiséociated. dislocation motion. In the H-L
model, kink migration is assumed to be at a constant velocity i}k and the double
kink nucleation rate is assumed to be at a constant J per atomic site along the
dislocation. As will be discussed in more detail in Appendix C.1, H-L model predicts

the dislot;ation velocity to be,

ha exp (——Ek + Wm> , (2.4)

| . .
= \V20r] = wov/2h
v vl = woV'2h k5T ks,
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in the limit of infinitely long idislo>cations. Therefore, the effective activation energy

Q fitted from the temperature dependence of dislocation velocity is related with the
| kink energies through Q = Ej + Wy,. For screw and 60° dislocations in 800 ~
1100K, Q ~ 2.2eV. Therefore, conventional experiments on dislocation mobility gives

E, + W,, = 2.2V, but cannot ,diﬁerentiaté the relative contribution of Ej and W,,.

For dislocations with length L much shortervthan the mean free path of kinks, their
" motion becomes nucleation controlled and their velocities exhibit a linear dependence

on L with a different temperature dependence,

(2.5)

2 .
v o= hLJ=onbh L_Dkexp _ 2Bk & W .
kgT

kgT

In this case, Q@ = 2E) + Wy,. Therefore, by studying the length dependence of

dislocation velocity, one can extract Ej and W, separately.

The experiments of this type requires a much higher resolution than X-ray topog-
raphy and are usually carried out in a high-voltage electron microscope. For example,
Louchet [50] found that the mbobilities of both screw and 60° dislocations are inde-
pendent of their length down to about X = 0.4um at 7 = 90MPa, T' = 873K, while
at a higher stress (7 = 550MPa, T' = 813K), X = 0.1lum [7]. Hirsch [59] estimated
that this critiéal length to be 0.2um (to within a factor of 2 or 3) at 7 = 280MPa,
T = 593K, which gives

' W, < 1.2eV. (2.6)

Gottschalk [60] measured W, by studying mobility of individual partials at very
low temperatufe in high stress deformed specimens, which confains an over saturation
of kinks. The dislocation mobility in this experiment is then controlled only by
migration of these pre-existing kinks. Assuming thé kink migration to be equal for

-30° and 90° partials, W,, is found to be between 1 and 1.2¢V, which is consistent
with the above result of Hirsch. Assuming Ey + Wi, & 2.0eV, kink formation energy
‘was found to be '

B, ~08V. | o @en
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Figure 2-15: TEM image.of dissociated 60° dislocation in Si, displaying kinks on the
two partial dislocations. (Fig. 3 of [61])
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Figure 2-16: The stress pulse sequences in intermittent loading experiment [63]‘.

Recently Kolar et al. [61, 62] used the so called atomic resolution electron mi-
croscopy to study dislocations in Si, where individual kinks on the partials aré vis-
iblé, as shown in Fig. 2-15. The kink density was obtained by simply counting
the kinks along the partials. Assuming the mobility of the partials is determined
solely by the migration of these kinks, the kink migration barrier is estimated to be
W = 1.24 + 0.07eV for both 30° and 90° partials. Assuming tﬁe kink'density is at
thermal equilibrium, kink formation energy is estimated to be By = 0.797 £ 0.15¢ for
30° partial and Ey, = 0.73 :I: 0.15¢V for 90° partial. These gives an estimation‘of the
effective activation energy of dislocation mobility at @ = Fy + W,, = 1.97 + 0.2eV,
which is consistent with direct mobility measurements (Q = 2.2eV) [44].

Estimation of By and Wy, can also be obtained by applying an intermittent load-
ing * [63, 65, 66], i.e. a constant external stress is applied duﬁng load pulse t; while

zero load is épplied during pause period t,, as shown in Flg 2-16. The total tinie
| with stress exerted on the specimen > t; is kept constant at 7200s. Mobility of 60°
dislocations as a function of ¢; and ¢, were investigated by etch—pit methbd,;\’vith
t, = 0 corresponding to the conventional static loading condition. Fig. 2-17 shows
the average dislocation displacement with different choices of #; and t,. .In (a), tp is

kept equal to t;, and dislocation displacement increases with increasing ti, and the

4Sinusoidal stress oscillation has also been applied in the so called internal friction experi-
ments [64]. But it has not been successful in determining kink energies.
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- Figure 2-17: Dislocation displacement during intermittent loading, at 7' = 873K and
o = TMPa, (a) as a function of ¢; with ¢, = ¢; and total loading time Y ¢; = 7200s.
Curve 1 (o) and curve 2 (o) correspond to the two 60° dislocations respectively; (b)
as a function of t,/t; at ¢; = 94ms. (Fig. 2 and 3 of [63)]).

dislocation did not move at all if t; < 10ms. In (b), ¢; is kept at 941i15, and disloca-
tion displacement decreases with tp/ti. Dislocation displacément vanishes altogether
at t,/t; = 3 to 5. By comparing these results with the kink model of disioca.tion
mobility, the energy factors are found -[63]"00 be W, = 1.58eV and E; = 0.62eV. A
comparison vbetween kink energies from experimental measurements and those from

atomistic calculations will be presented in Chapter7.2.3.
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Chapter 3

Experiments on Dislocations in

BCC Metals

The start of making and utilization ofA metals (copper, iron) and alloys (bronze) -
Was a huge technological advance in the human history. Today 86 metals has be-
come known [67], and they can be characterized either by their structure or by their
chemical properties. The different strvucturesof metals were revealed by the X-ray
diffraction method, the invention of which by von Laue in 1912 had simultaneously
proved the wave nature of X-ray and the periodic arrangement of atoms in crystals.
Common crystél strﬁctﬁre of metals include face-centered cubic (FCC), such as Cu
and Al, body-centered cubic (BCC), such as Fe, W, Mo énd Ta, and hexagonal close
packed (HCP), such as Zn and Mg, etc. Metals can aléo be divided into represen-
tative metals, including groups 1(IA), 2(IIA), 13(IITA), 14(IVA) and 15(VA), and
transition metals, including groups 3(Ii_IB) to 13(IIB), which are in the center region
of the periodic table.! The common feature of transition metals is that they all have
‘partiallvy filled d-orbits. Transition metals in group 5(VB), such a,s‘ V, Nb, Ta, and
groﬁp 6(VIB) such as Cr, Mo, W, and Fe in group 8 (VIII) are of primary interest
~in th‘is“Thesis, and they all have BCC structure. Some important bulk properties of-

‘these metals are listed in Table 3.1. In the following sections, we will mainly focus

1For simplicity, We have ignored lanthanides and actinides, which are also called inner transition
metals. :
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Table 3.1: Bulk properties of BCC transition metals [68, 69, 30, 70]. Elastic constants
C11,C12,Cy in GPa, melting temperature in K, cohesive energy FE. in eV, and
-thermal conductivity x in Wm~'K~!. Note that VIB metals Cr, Mo and W generally
have a larger shear modulus Cyy and thermal conductivity « than VB metals.V, Nb
and Ta.

Z ele. conf. Cq Cis Cua T Fern &
V 23 3d%4s? 227.9 118.7 426 2163 5.31 30.7
Nb 41 4d*5s! 246.6 133.2 28.1 2742 7.57 53.7
Ta 73 5d°6s? 266.0 161.2 82.4 3293 8.10 575
Cr 24 3d°4s! 387.1 103.5 100.8 2130 4.10 93.7
Mo 42 4d°5s! 464.7 161.5 108.9 2896 6.82 138
W 74 5d*6s? 522.4 204.4 160.6 3695 8.90 174
Fe 26 3d°4s’ 242 146.5 112 1808 4.29 80.2

on the properties of Mo, as ‘a' representative of BCC transition metals.

£

BCC metals are generally strong and have high melting points, so that are widely
used in structural applicationé, sﬁch as iron, and under high temperature conditions,
such as tungsten vﬁlameflt.i Expérimental studies on strength and plasticity of BCC
metals and their relation with dislocation activities were initiated around 1960’s, and
they are still attracting the interests of numerous researchers today. Besides the
néed for high  temperature high strength materials, to understand the plasticity of
BCC system is an immensely intellectually challenging problem. The yield strength
of BCC meﬁals exhibits strong temperature and orientation dependence as well as
asymmetry with respect to tenéioﬁ and compressioh; Unexpected slip systems are

found to be operating at low temperatures, and were referred to as “anomalous slip”
| due to the lack of a convincing explanation. At the same time, the intriﬁSic lattice
resistance to dislocation motion is found to be large, and capable to explain a number
of distinctive béhavior of BOC metals. This allows atomistic modeling to make direct
* contact with macroscopic deformation behaviors of these materials. However, for a

complete‘ understanding of the plastic strength of BCC metals one has to take into
~ account the collective behavior of a large number of dislocations, giving rise to their
‘own microstructures, at the so called “meso” svcale, which is between the atomistic and

the macroscopic. In this Chapter, we summarize the current experimental knowledge
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on dislocations in BCC metals, ih hoping to provide a general background for the
“theories and numerical modeling in the following Chapters. ‘

The experiménts on the temperature and orientation dependence of plasticity of
BCC metals, as well as their relationship with the core sffucture of screw dislocations
have been discussed in great detail by Duesbery and Vitek et al.(from 1969 to 1998)
[71, 72, 73, T4, 75, 76, ,11, 68], as well as Kubin [77]. While these topics will be
the focus of this Chapter as well, we will also discuss anomalous slip, dislocation

microstructure and individual dislocation mobility measurements.

3.1 Temperature and Orientation Dependence of

Mechanical Response

The differences in the mechanical response of BCC metals from that of FCC metals
“mainly come from the stronger lattice resistance to dislocation motion in the former.
As a result, the yield stress of BCC metals rises dramatically as temperature ap--
proaches zero. In comparison, the résistance to plastic deformation in FCC metals
mainly comes from dislocation interactions with impurities or other dislocations (work
hardening), with intrinsic lattice resistance to dislocation motion being vanishingly
- small (see for exdmple the stress-strain curve of Cu [78]). In addition, slip in BCC
metals also exhibit strong orientation dependence, most of which can be accounted
for by the anisotropy of intrinsic lattice resistance to dislocations. »

Fig. 3-1(a) shows stres‘s-s_train curves of Mo at two different temperatures [79].
The sample was under ﬁniaxial tension along the direction marked as A inside the
standard triangle. This loading condition favors single slip on (101)[11T] system? with
Schmid factor ~ 0.5. While at 493K three-stage hardening was observed, the crystal
at 293K is much stronger and exhibits parabolic hardening. Fig. 3-1(b) shows the
str‘ess—strain curves at high symmetry tensile directions [80] such as [110] and [100],

where multiple slip systems are favored. The increase of yield stress with decreasing

2The slip systems in BCC metals will be discussed in the next Section.
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Figure 3-1: Tensile stress-strain curve of Mo. (a) Uniaxial tension along A direction

(inside the standard triangle) at 293 and 493K. (b) Uniaxial tension along [110] and
[100] from 77 to 573K. (Fig. 2 of [79] and Fig. 1 of [80].)
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Figure 3-2: Tensile stress-strain curve of Mo along [101],[010], [111] directions under
(a) 293K and (b) 77K.. (Fig. 1 of [81]. 1kp/mm? = 9.8GPa. )
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Figure 3-3: Temperature depéi;dence of the critical resolved shear stress of [110] Mo
single crystals for tension (e) and compression (). (Fig. 1 of [82]. lkp/mm? =
9.8GPa.) o

temperatﬁre is also .cle_arly Seé'n iﬁ multiple slip 6rientations. As shown in Fig. 3-
2, a slight asymmetry in stress between tension and compression is found at low
temperature (77K) but not at higher t_emperatufe (293K).

The critical resolved shéar stress (CRSS) 7y for Mo single crystals as a function of
temperature was compi;led' by Kaufmann et al. [82], which is repro.duced in Fig. 3-3.
We observe thaf as temperature approaches zero, the CRSS goes to 750MPa. The
low temperature limit of CRSS for Mo and Ta are listed in Table 3.2. This value is
usually regarded as the experimental indication of the minimum stress to move the
dislocation across the lattice, namely the Peierls stress, and can be compared with
atomistic calculations such as in Chapter 6.

' Stress-strain relations have also been measured for other BCC metals, such as

Nb [93], W[85], Fe[94], etc, and strong temperature and orientation dependence of
-' yield stress has been found as a general behavior. The orientation dependence of
CRSS for several BCC ‘metals at 77K are compiled by Dueshery et al. [11], which is
reproduced here in Table 3.3.

69




Table 3.2: Resolved yield stress 7 (in MPa) for Mo and Ta below 4.2K. x is the angle
between the maximum resolved shear stress plane and the (110) slip plane.

To T deformation mode Ref.
Mo 750 0.5K [110] tension [82]
Mo 666 4.2K [110] tension/compression [82] -
Ta 364 0.7TK x = +10° tension [83]
‘Ta 350 4.2K x = +10° tension [83]

Table 3.3: Orientation dependence of the CRSS (in MPa, resolved on the M.R.S.S.
plane) for BCC metals at 77K. [uvw] represent directions near the corner or the center
of the standard triangle. (Table 1 of [11].)

Tension Compression

[110] [100] [111] f[uvw]|[110] [100] [111] [uvw] Ref.
W | 730 353 416 485 - , [84]
W 584 283 255 ' [85]
Ta | 323 179 ' 172 273 - [86]
Ta | 353 283 . 264 221 [87]
Ta | 406 297 337 338 - [88]
Ta [400 278 293 275 259 221 309 300 [89]
Fe | 270 200 3 [90]
Mo | 471 151 393 137 [86]
Mo : : 577 214 647 320 © [91]
Mo [ 500 170 - 250 [92]
Nb | 254 165 108 214 [36]
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3.2 Slip Behavior

3.2.1 Slip Systems

FCC and BCC lattices are reciprocials of each othér, so that the slip systems in BCC

metals are the “conjugate” of those in Si as discussed in the previous Chapter. While

- slip in FCC lattice occurs on (111) planes and along [110] directions, the most common
slip planes in BCC lattice are (110) with slip directions along [111]. Slip on (112)
planes is also observed in BCC metals. |

The planes on which slip occurs can be determined by observing the slip traces
on the surface of the specimen after deformation. A general feature in BCC metals is
that multiple slip systems tend to operate simultaneously. Fig. 3-4 shows the slip lines
on. (010) (face 1) and (201) (face 2) surfaces [92] for Mo deformed at, 353 and 413K,
under uniaxial tension along a direction near the center of the standard triangle.
This condition favors single slip with the stress-strain curve exhibiting three-stage
hardening. Slip traces on ’_face 1 were short wavy segments corresponding to (112)
and V(Oll) slip planes, both containing [111] direction. The waviness of the slip traces

-can be interpréted as the result of cross slip of [111] screw dislocations between these
two planes. While at small strain slip traces on face 2 indicate single slip on (011)
planes, both primary slip on (011) planes and secondary slip on (112) are observed at
larger strain. For tension along [110] and [100] directions slip lines were very difficult
to resolvé, because multiple slip systems are equally favored.

Vesely carried out more systematic studies of slip traces of Mo, both at 293K
(parabolic hardening) and 400K (three-stage hardening), with tensile axis inside the
standard triangle. The Slip traces at 400K were dominated by (101)[111] primary
system, similar to the results discussed above [92] At 293K however, the slip traces
of both the brimary slip system (TOl)[Ill] and conjugate system (101)[111] were
visible, as shown in Fig. 3-5. Vesely v‘noticed that at very small strains (0.8%), the
slip lines did not correspond to ‘the primary slip system, which become dominant
only after the strain reached a few percent. This is clearly shown by plotting the

slip bands on the stereographic projection; as in Fig. 3-6. The fact that the overall
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Figure 3-4: Slip traces of Mo deformed at 353 and 413K under uniaxial tension along
the direction near the center of the standard triangle. (a) Slip lines on face 1 after
0.045 tensile strain. (b) Slip lines on face 2 after 0.045 tensile strain. (c) Slip lines on
face 2 after 0.175 tensile strain. (Fig. 6 of [92].)
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Figure 3-5: Slip traces of Mo deformed at 293K under uniaxial tension along the
direction near the center of the standard triangle. (Fig. 5 of [95].)

(b)
Figure 3-6: Slip band directions of Mo deformed to (a) 0.8% and (b) 20% under same
condition as in Fig. 3-5. (Fig. 7 of [95].)
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picture of slip bands changes with deformation and that multiple slip systems operate
at the initial stage of deformation were noted as surprising [95], because precesses
like dislocation intersections should not play an important role in such conditions.
Vesely argued that there must be a temperatur‘e dependent criterion responsible for
the choice of slip systems at low temperature and low stresses, which determines the
condition for the primary slip system to become fully operative. The origin of this
critérion may come from the temperature dependent intrinsic lattice resistance to
screw dislocation motion, which can be studied by atomistic methods (see Chapter
6). It was noted that surface effect could also play an 1mportant role at the initial
stage of deformation, because of the enhanced moblhty of screw dislocations near the

surface due to image forces.

3.2.2 Slip Asymmetry

Slip analy31s was also carrled out in Mo deformed by pure shear [96] at temperatures
between 77 and 293K. The shearmg direction was always along [111], but shear on
~ both (112) and (110) planes were studied. Similar to the tension-compression asym-
metry under uniaxial loading (see Fig. 3-2), shearing along two opposite directions
on (112) plaﬁes have different responses as well, and are labeled “soft” (favorable for
twinning) and “hard” (anti-twinning) respectively. Fig. 3-7(a) shows the stress-strain
curves for three different shear orientations at three different temperatures. The es-
fimated CRSS of different slip systems is shown in Fig. 3-7(b), which is compatible
with uniaxial deformation experiments [82] (see Fig. 3-3).

Slip a.symmetry' in BCC metals becomes even more pronounced in cyclic deforma-
tions. A dramatic consequence is the shape change of the sample, with its cross section
turning from circular to elliptic [97, 98, 99, 100] durihg cyclic tensile-compressive de-
formation. In Mo this effect is most pronounced at around 400K [101]. The shape
change is the result of the operatlon of different shp systems during tension and com-
pression respectwely [102]. This also leads to the difference in the response stress for
compression and tension at the same strain amplitude., as shown in the cyclic stress

. strain (c.s.s) curve of Fig. 3-8 [100]. Stress asymmetry (A7) is plotted in Fig. 3-8(b)
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Figure 3-7. (a) Stress strain curve of Mo under direct shear. (b) Estimated bounds
for critical resolved shear stress to nuclear slip on different planes. (Fig. 3 and 4 of

[06].)
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Figure 3-8: (a) Cyclic stress-strain curve of Mo under uniaxial deformation at room
temperature. (b) Stress asymmetry AT between tension and compression as a func-
tion of angle y between MRSS plane and (110) plane. (Fig. 1 and 2 of [100].)

as a function of angle x between the maximum resolved shear stress (MRSS) plane
and the (110) plane. As noted by Anglada et al. [100], A7 (x) would be symmetrical,
i.e. AT(x) = —A7(—Y), if the tensile-compressive asymmetry were induced solely by
the shear asymmetry in the twinning-antitwinning (or Soft-hard)» sense on the (112)
planes (see Fig. 3-7). The fact that Ar(x) is not symmetrical indicates that normal
stress components also affects the lattice resistance to dislocation motion. This is in

agreement with some atomistic simulations of screw dislocations [74].

3.2.3 Anomalous Slip

- “Anomalous” slip [103] occurs at low temperature in high purity BCC metals, and
derives its name from the fact that its Schmid factor is much lower than that of the
primary slip system, so that its occurrence is “Ltnexpecfed”. As 'shbwn in Fig. 3-9,
for the specified tensile direction, the Schmid factor on the primary slip plane (011)
is about 0.5, while that on the anomalous slip plane (101) is only 0.25 ~ 0.3 [104].

. Yet in VB transition metals such as Nb, anomalous slip can even be the dominant -
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Figure 3-9: Orientation of the primary slip plane and the anomalous plane with
respect to the tensile axis. (a) Stereographic plot. (b) 3-dimensional plot. (Fig. 1
and 2 of [104].) - -

slip system, carrying as much as 70% of the total plastic strength [105]. Furthermore,
anomalous slip lines are coarse and crystallographic, as shown in Fig. 3-10, in contrary
to the wavy ones of normal slip, such aé in Fig. 3-4(a). To distinguish the anomalous
slip from other secondary slips, Matsui named it anomalous (101) slip.

Anomalous (T01) slip was first discovered only in VB metals, such as Nb and
Ta [105, 106, 107], and it was not clearly identified in VIB metals such as Mo and W.
In the latter case multiple slip systems were found at the beginning of the deformation
but primary slip system quickly become dominant [95], as shown in Fig. 3-6. However,
Matsui and Kimura [103] later observed anomalous (101) slip lines in high purity Mo,
where for the first time the anomalous slip lines appear to be the most pfominent.
Although anomalous (101) slip lines are eventually replaced by primary slip lines at
larger straiﬁs, Métsui et al. argued that anomalous slip in VB metals and in Mo are
essentially the same effect, With the persistence of the anomalous slip bands affected

by the mobility ratio of the edge and screw dislocations.
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Figure 3-10: Anomalous (101) slip lines in high purity Mo at 77K after 0.46% strain.
Secondary slip on (101) plane is also visible. (Fig. 2 of [103].)

<.

Several mechanisms were proposed to explain the anomalous slip in BCC metals.
The early theory based on the core effects of screw dislocation by Takeuchi et al. [108]
did not seem to be able to explain a lot of the observed properties of anomalous slip,
| and the proposed planarly Split core structure is not consistent with later atomistic
simulations. Vitek and Taylor [109] argued that‘a,nomalous slip can only be explained
by incorporating extra features, such as a free surface, dislocation interactions, or
normal stress components, in order to overcome the symmetry restrictions of a theory
based only on intrinsic dislocation core propertiés. A later model proposed by Matsui -
and Kimura does incorporate both the free surface effect [110, 111, 112] and the
dislocation interactions, i.e. the so called coplanar double slip mechanism (CDS) [113].
In their model, it is postulated that the image force of a free surface bends intersecting
screw dislocations towards a mixed orientation, making them mobile at a much lower
stress than straight screws. Two sets of screw dislocations activated through this
or other processes (such as from intefnal defects) will then intersect with each other
and form a lamellar network structure in the anomalous slip plane, which moves as
a whole. Some microstructural evidence of this mechanism will be presented in the
next section. It is aréﬂed by Matsui et al. that the dominance of primary slip over

anomalous slip in Mo at larger strain is due to the relative unstableness of the lamellar
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network.

3.3 DiSloclation Microstructure

Macroscopic properties of materials are largely determined by their microstructures.
For plastic deformation of a single crystal, the controlling microstructure is formed
by dislocations. In this section we discuss transmission eleétron microscopy (TEM)
obser\}ations of disldcation microstructures in deformed Mo samples, and their corre-

lation with the macroscopic strain hardening behavior.

3.3.1 Initial Microstructure

<o

The microstructure of grown-in dislocations in single crystal Mo (with 13 p.p.m.
carbon) were observed before any deformation [114]. Dislocations either take the form
of prismatic loops emitting from inclusion (most probably Mo,C) particles, see Fig. 3-
11(a), or as lines pinned by fine impurity segregations, as in Fig. 3-11(b). The stress
near an inclusion are usually compressive and the loops are mostly of interstitial type.
Upon deformation, these grown-in dislocations act as internal dislocation pinning
centers where dislocation entanglement occurs and dislocation network starts to form,
as shown in Fig. 3-11(c). Therefore the materials hardening rate may be sensitive
to the initial dislocation structure and sémple purity. On the other hand, grown-in
dislocations in high purity Mo ﬁrere found to be featureless, as shown in Fig. 3-11(d).

During tensile loading, the dislocation density increases, with higher multiplication
rate at lower temperatures. Lavvlejr et al. [116] found that a linear relationship is well
obeyed between the flow stress Tf and the square root of dislocation density p, i.e.

7t = 7o+ K,/p. As the temperature dependence of 7y is much weaker than Ts, Lawley

et al. arguedl that a large portion of the apparent temperature dependence on the -

macroscopic yield stress mainly comes from the more pronounced work hardening
rate at low temperatures, although the intrinsic lattice resistance for dislocation is

. temperature dependent as well.
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Figure 3-11: (a) Grown-in dislocation loops around inclusion particles. (b) Grown-
in dislocations pinned by fine precipitate particles. (¢) Grown-in dislocation act as
dislocation pihning centers upon deformation. (d) Featureless grown-in dislocation
microstructures in high purity Mo. (Fig. 1, 4 and 7 of [114] and Fig. 2 of [115].)
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(b)

Figure 3-12: Dislocation structure of Mo under 0.5% tensile_strain at 4.2K._Primary
Burgers vector along [111]. Foil plane on (011) using (a) (233) and (b) (01I) reflec-
tions. (Fig. 5 of [116].)

3.3.2 Screws and Prism'atic" Loops

Fig. 3—12 shows a typical dislocation microstructure in Mo deformed by tension at
4.2K [116]. The tensile axis is near the center of the standard triangle so that single
. slip- on (011)[111] is favored. Dislocation line are observed to lie largely along [117]
direction, and have the primary Burgers vector [111], i.e. they are mainly screw dis-
locations. The large number screws than edges indicating the much smaller mobility
of the former. The velocity' ratio for edge and screw are est_iinated as 40 : 1. The
diffraction contrast between two adjacent screw dislocations are often dark grey; this
indicates that the two screws have opposite Burgers vector, i.e. they form a dipole.
Thesé ‘microstructures are away from any inclusions or immobile grown-in disloca-
tions, so that even though dislocation density is quite high, dislocation distribution is
remarkably uniform and entanglements are not observed. Numerous cusps are found
on screw dislocation segments. Short straight secondary dislocation segments were
observed to run completely through the foil, which are postulated to act as obsta-

cles and create jogs on the gliding primary screw d-islocation.’ It is estimated that
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Figﬁre 3-13: Dislocation structure of Mo under 2% tensile strain along [110] at 4.2K.
(Fig. 6 of [82].) o . '

the jogs created by dislocetiqn iﬁterse_ction,can exert a substantial dragging stress on
the screw dislocation, which contribu_;ues signiﬁeantly to the macroscopic yield stress.
Therefore, the temperature dependence of macroscopic yield stress was regarded to
be mostly due to work hardening by cutting through secondary dislocations, instead
of the intrinsic lattice resistance. In‘qereStingly,_it was realized later that the emer-
gence of. secondary slip itself at the onset of plastic deformation (even when the
loading direction favors single slip) is related to the large intrinsic lattice resistance
to screw dislocation. Secondary screw dislocations appear because the stress to move
secondary edge dislocations are smaller than that to move the primary screw dislo-
cation.

Round or elongated prismatic3 loops with length to ratio of < 5 : 1 are found
in the wake of the glide screw dislocations. The maximum loop length is around
22004 and their average length is 9004. While the length and distribution of loops

larger than 5004 did not change significantly with temperature for a given strain, the

3Burgers vector normal to the loop plane.
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density of small loops increased with decreasing temperature for a given strain. A -
large number of dislocation debris was also present in the form of unresolvable spots.
Since the debris was not present in undeformed material,v‘ they are most probably

small prismatic loops.

For tensile axis along high symmetry directions such as [110], multiple slip sys-
tems are favored. The dislocation structures under such conditions consist of the
uniform distribution of two sets of long screw dislocations with a high density of

small prismatic loops, as shown in Fig. 3-13.

Similar dislocation microstructures are found at 293K, where the tensile stress-
strain curve is still parabolic, i.e. it belongs to the low temperature regime, see Fig. 3-
1(a). Fig. 3-14 shows the change of dislocation microstructures with increasing strain,
with tensile orientation faf/oring single (101)[111] slip [117]. In (a) at 0.3% strain long

~and jo,gged.sc'rew dislocations were observed, as well as attractive di-s;location junc-
tions (R) and prismatic loops. In (b) at 3.5% strain, dense dislocation entanglement -
starts to appear, WhiClrlv are not necessarily around grown-in dislocations, while the
distribution of screws and debris loops remain unchanged. Qualitatively the same v
feature was observed for tension along [110] axis, as shown in Fig. 3-15. For strains
above 5% where the stress-strain curve reaches plateau (see Fig. 3—1(&)), the size of
entanglements as well as the dislocation density within thefn continue to increase,
while density of long screw disiocations keeps nearly constant. Dislocation junctions

formed at earlier stages should be important for the formation of these entanglement.

Dislocation density and debris density as a function of strain are shown in Fig. 3-16.

3.3.3 ° Anomalous Slip

In high purity Mo, anomalous slip was observed under low temperature at small
strains (see S‘ection 2). As shown in Fig. 3-17, the dislocation microstructure corre-
sponding to andmalous slip exhibits straight, lamellar structure of slip bands on the
anomalous (101) slip plane. The lamellar structure are seen to consist of two sets of

screw dislocations, in accordance with the model of Matsui et al. [113].
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Figure 3-14: Dislocation structure of Mo at 293K with (a) 0.3%, (b) 3.5% and (c)
14% strain. (Fig. 2, 5 and 7 of [117].) '
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Figure 3-15: Dislocation structure of Mo under 5.8% tensile strain at 293K. (Fig. 5

of [82].)
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Figure 3-16: Dislocation density (a) and debris density (b) in
strain. (Fig. 8 and 9 of [117].) '
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Figure 3-17: Dislocation structure of Mo with anomalous slip, 7' = 77K, axial strain
€ = 0.46%. (a) Straight lamella dislocation bands along anomalous (101) plane. (b)
Dislocation arrangement on the anomalous (101) plane. Dislocation junctions (R),
dipole trails (D) and dipole loops (L) are observed. (Fig. 3 and 4 of [103].)
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Figure 3-18: Dislocation structure of Mo at 493K with 2.1% strain. (a) Edge dipoles
and elongated loops. (b) Long bundle of primary edge dislocations. (Fig. 7 and 8 of
[79].)

3.3.4 High Temperature Behavior and Cell Structure

At 493K the dislocation microstructure changes substantially [79] from that at 293K,
and is accompanied by the three-stage hardening in the stress-strain curve (Fig. 3-
1). As shown in Fig. 3-18, dislocation structures consist mainly of edge dipoles
and elongated loops Widely varying in size‘ and distribution, with screw dislocations
no longer found. This is due to the high mobility of screw dislocations at elevated
temperatures and their capability to cross slip and annihilate with each other. At 2.1%
strain which is in the middle of stage I, dislocations are organized into long bundles
which are not connected with each other. The remaining region in the materials is

nearly dislocation free.

When the tensile axis is along high symmetry directions, such as [110] and [100],
multiple slip is favored, which leads to the formation of cellular structures at high
temperature and large strains. Fig. 3-19 shows cell structures in Mo under tension

at 423K-and 573K respectively. Cellular structures and dislocation walls were also
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Figure 3-19: Cellular structure of dislocations in Mo urider tension along [110] at (a)
423K with 12% strain and (b) 573K with 4% strain and (c) along [100] at 423K with
12% strain. (Fig. 5 and 7 of [80].)

88




Figure 3-20: Dislocation microstructures in Mo under cyclic deformation along the
axis near the center of the standard triangle. (a) Cell structure at plastic strain
amplitude €, = 1.04 X 107 and cumulative strain ¢, = 5. (b) Dislocation walls at
ep = 1.13x 107% and ¢, = 4.5. (c) Dislocation bundles linking to form cell structure
at high total strain amplitude ey = 3.45 x 1073 and ¢, = 0.94. (Fig. 10, 12 and 18 of
[115].) '
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found in cyclic deformations, as shown in Fig. 3-20.

3.4 Dislocation Mobility

Measurements of individual dislocation mobility could provide information on the
most fundamental aspect of mechanical strength, and serve as a reference point to
check the validity of atomistic models of dislocations. Unfortunately, not much data
available for single dislocation mobility in BCC metals, such as Mo, as compared with
the case of Si. This is mainly due to the difficulty in obtaining dislocation free samples
as well as in introducing single dislocations from the surface. Early experimental
results using etch pit techniques might be contaminated by the interaction of observed |
dislocations with grown-in dislocations and the free surface [118] In comparison, a
recent in situ TEM study [119] seems to be more reliable. However, a more systematic
in situ study of dislocation nibbility in Mo is still lacking [120]. In this section, the

early measurements of dislocatioh mobility will be discussed. We will see that, while
| today it is believed that .edge':dislocation moves much faster than screw dislocations,
early experiments seems to show the contrary, most probably due to various surface
artifacts.

One of the earliest measurements on the mobility of individual dislocations was
performed by Prekel et al. [121]. Edgé dislocations were introduced by indenting
the surface using a sharp sapphire stylus. Indentation was used instead of surfaée
scratching [122] because dislocations nucleated near the scratch surface were previ-
ously found to be not moving, unless stress is so high that grown-in dislocations move
as well. Dislocation positions are revealed by etch pits, as shown in Fig. 3-21(a).
Dislocation lvelocity as a function of resolved shear stress are shown in Fig. 3-21(Db)
for 77 and 300K and on (110) and (112) planes. Edge dislocations were found to be
more mobile on (112) planes and the mobility increases with temperature. The dis-
location velocity data was found to support kink mechanism with kink energy fitted
to be 0.63eV. However, the kink mechanism on edge dislocation are not consistent

. with more recent atomistic calculations. As will be discussed in Chapter 6, edge
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Figure 3-21: Edge dislocation mobility measurements. (a) Dislocation etch pits
from the indentor. (b) Measured dislocation velocity as a function of stress in
unit of (kg/mm?) at different temperatures and slip planes. (Fig. 5 and 6 of [121].
1kg/mm? = 9.8MPa. ) ‘

5, =

dislocation experiences a very small lattice resistance and are ready to move without
forming kinks. Prekel’s conclusion that the resiilts agree with Peierls-Nabarro model
was also criticized by Stein [123] for the failure to account for the temperature de-
pendence of yield strength. The apparently strong resistance to dislocation motion in
this expériment may come from interactions with grown-in dislocations, point defects
or the surface. It was found later [124] that a thin surface film always appeared on

etched Mo sample and strongly impeded dislocation motion.

On the other hand, early experiments by Leiko [125, 126, 127, 128] reported an
unexpectedly high mobility of screw dislocations. This had lead Nadgornyi [124]
‘tQ conclude that kink mechanism does not play a role in screw dislocations, which
is also inconsistent with current uhderstandings.4 Dislocations are introduced by
indentation and revealed by etching, as shown in Fig. 3—22(‘a). The geometry of
dislocations are illustrated in (b) and the velocity data are shown in (c). Leiko [125]
observed that screw dislocations start to move at very low stress 7 &~ 2MPa with

very high velocity v & 0.1lm/s. When plotting the results from Leiko (for screw)

4 Atomistic simulations show that the critical stress for screw dislocation is around 2GPa and it
has to move via kink mechanism when stress is below this critical value.
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Figure 3-22: Screw dislocation mobility measurements. (a) Etch pits displaying a
rosette pattern of dislocations around the indent. (b) Geometries of dislocation line
and slip planes near the indent. (c) dislocation velocity of two Mo sample (a,b) as a
function of loading stress at three temperatures: 1. 300K, 2. 77K, 3, 4.2K. (Fig.1, 2
of [125] and Fig.2 of [126].)
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Figure 3-23: Comparison of velocities of edge (from Prekel et al.) and screw (from
Leiko et al.) dislocations as a function of stress. It is misleading since screw disloca-
tions have a much higher mobility than edges. (Fig. 6.28 of [124].)
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Figure 3-24: Dislocation mobility in Mo by in situ high voltage electron microscopy.
(Fig. 1 and 2 of [119].)

and Prekel (for edge) as did by Nadgornyi [124], see Flg 3-23, it is confusing to see
screw dislocations to have a much higher mobility than edges. It: is very likely that
a surface effect méchanism suggested by Matsui [110] (to explain anomalous slip,
see Section 2) could be responsible, where screw dislocations intersecting with the
free surface may be forced to bend toward a mixed configuration thus substantially
increase their mobility. In this respect, both the early results on edge [121] and
screw [125] dislocation mobility could be contaminated by surface effects and should

not be trusted as an accurate measure of the intrinsic behavior of dislocations mobility

in Mo.

Fortunately, more recent in situ TEM observations seemed to provide convinc-
ing results [119]. As shown in Fig. 3-24(a), edge dislocations are observed to move
faster than screws. Their velocity as a function of applied stress and effective stress
(corrected for mutual elastic intéractions) are plotted in Fig. 3-24(b). Unfortunately,
no systematic investigation of dislocation mobility at different temperatures and on
different planes are available! so far. New experiments similar to this one that are

sufficiently free from artificial surface effects are critically needed.

To conclude this section, let us examine some evidence on the core structure of
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Figure 3-25: Core structure of screw dislocation in Mo by high resolution transmis-
sion electron microscopy (a) HRTEM images and (b) Atom position and (in plane)
differential displacement map constructed from (a). (Fig. 5 and 6 of [129].)

screw dislocations. It is now widely accepted that the low mobility of screw dis-
locations in BCC metals compared with non-screw segments are due to the three
fold splitting of the screw dislocation core, first proposed by Hirsch [130], and later
confirmed by various atomistic simulations. The recent high resolution transmission’
electron microscopy (HRTEM) [129] observation of screwidislocation core also seemed
to support the core splitting picture. As shown in Fig. 3-25, the observed in-plane
displacement field, corresponding to edge Burgers vector components, does seem to

show a 3 way extended pattern.

94 -




Chapter 4
Atomistic Simulation Methods

In this Chapter, we discuss several methodological issues on atomistic simulations,
which will become useful for the dislocation studies on Si and Mo in later Chap-
ters. For a mbre comprehensive treatment of atomistic simulation methods, such as
Molecular Dynamics and Monte Carlo, the reader is referred to several well written
books [131, 132, 133, 134].
| In the first section, we will discuss and compare several interatomic potentikals
for Si and Mo that will be used in our simulations. We will then present two recent
contributions on the study of boundary effects in atomistic simulations. According
to Chapter 1, the discussions in Section 2 and 3 are two examples of type (a) cou-
- pling between atomistic and meso scales, and address the static and dynamic effect,

respectively, of a mesoscale surrounding to an atomistic domain.

4.1 Interatomic Potentials

Atomistic simulations study the energetics and dynamics of a collection of interacting
atoms following classical dynariﬁcs. For a system containing N atoms with position
7; and velocity @; = dfi/dt, i = 1,---, N, the total Hamiltonian is,

H{RY = T+V =3 tmd? + V({7)), (1)

=1
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where T' and V' represent kinetic and potential energy respectively, and m; is the mass
of atom 7. Molecular Dynamics (MD) simulation is then the numerical integration of
Newton’s equation of motion,’ | |

d

maE = =

O V{7, i=1,N (42)

which produces the trajectory 7(t) of all N atoms. Here F, represents the force
on atom ¢ due to its interaction with other atoms. Most of the thermodynamic
properties caii then be calculated as the time average along the atomic trajectories.
Transport properties, on the other hand, can be calculated from the time correlation

functions [131, 132].

Another widely used method is static structure relaxation, or the search for a local

£

minimum? of the potential energy for a given microstructure,
E, = 1{@? vy . (4.3)

’ Fof.example, one can compute the excess energy of a particular defect by comparing

‘the relaxed energy of the same atomic system with and without this defect.

The validity of atomistic simulation results thus depends critically on how well
the potential energy function V' ({r;}) describes the interactions between the atoms in
the real material. For empirical potential functions constructed by fitting with exper-
imentally measured properties, their predictive power is quite limited, although they
are still useful in interpolating or extrapolating known properties and in constructing
reasonable atomic structures for unknown defects. Many of the interatomic potentials’
nowadays are semi-empirical, because their functional forms are constructed based on

first-principles theory and their parameters are fitted with ab initio calculation results

18everal most Widely used numerical lntegratlon schemes in MD can be found inf131].

2The “locality” of the energy minimum is usually not rigorously defined. It refers to the energy
minimum within the phase space which preserves a given microstructure. For example, the true
global energy for a simulation cell containing a dislocation dipole could be a perfect lattice where
the two dislocations have annihilated with each other, but it is not the energy minimum of interest.
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as well as experiments. This typé of potential is expected to be more transferable
and to have higher predictive capability.

Most of the atomistic simulations on Si in this Thesis used the so called Stillinger-
Weber (SW) potential [135]. The more recent (and' more complex) Environmentally
Dependent Interatomic‘Potential (EDIP) [136] is also used occ:exsiori::ﬂlyT Tersoff [137]
potential is another widely used potential in Si, which will be discussed here as well.
On the other hand, our simulations on BCC metals are mostly based on the FEm-
bedded Atom Method (EAM) type Finnis-Sinclair (FS) [138] potential. The more
sophisticated and more computationally expensive potential based on the Multi-ion
Generalized Pseudopotential Theory (MGPT) is also applied for comparison.

‘The oldest interatomic potential used in MD simulations is the Lennard-Jones
(LJ) [139, 140] potential, where the total potential energy of the system is pairwise
additive and takes the form of v(r) = 4e[(c/r)® — (o/r)1?] for each pair of atoms
separated by 7. The LJ potential well describes the interactions between atoms in
noble gas solids, such as Ar, which form a close packed structure. HoWever this
pofential is found not adequate to describe Si atoms. It became quite obvidus that
" no reasonable pairwise potentials can even stabilize a diamond cubic structure.

Stillinger-Weber potential [135] was constructed to overcome this difficulty. It
stabilizes the diamond cubic structure by explicitly putting in three-body interactions,
favoring the tetrahedra bonding structure. Furthermore, its parameters chosen td best
reproduce the liquid structure of Si as well as its melting point. Therefore, the SW
-potential is expect to be more transferable‘, i.e. more accurate in desbribing different
local structures such as defects, surfaces, as compared with the Keating potential [141]
which is constructed only to reproduce small perturbative responses from the perfect
lattice

The functional form of SW potential is reproduced bélow,

VR = Tw@E s+ Y wEs s, ()

1<J i<j<k .
'U2(7_{i:7:3) = €f2(rij/a)7 ‘ A (45)
Ug(ﬁ,f';‘,?:'k) = €f3(ﬁ/037-':‘7'/o-7f‘k/0-)7 o | (46)

97 -




A(Br? —r9exp|(r —a)™Y], r<a
falr) = (4.7)
0, : r>a '
fa(T)o, /o, Fefo) = h(rig,rie Oi) + h(rsi, Tin, Ougw) + BThi, Ty, O),  (4.8)

v h(rij, Tin, O5i) = Aexp[y(ri — a)™t + y(r — a)~)(cos 8 + 1/3)2 (4.9)

The term (cos 8+ 1/3)? in the three body interaction vg explicitly favors the tetra-
hedra bonding structﬁre, whose Bonding angle satisfies cos§ = —1/3. The interaction
vanishes whenever the separation between two atoms exceeds the cut-off radius a; A
common cut-off scheme is use here, by the exp[(r — a)™'] term, which ensures that all
the derivatives of the potential function vanishes smoothly at the cut-off radius.
~ Broughton et al. [142] applied SW potential to calculate the melting point of Si and
obtained T}, = 1691 + 20K which is very close to the experimental value of 1683K.3
HoWever, SW behaves poorly in describing amorphous phase of Si. The cut-off radius
of SW potentiai is also very short — it only includes first nearest neighbor interactions,
therefore it cannot differentiate FCC from HCP packing (which are different only in
second nearest neighbors) and leads to zero stacking fault energy. |
A very different approach to describe bonding was proposed by Tersoff {137, 143],
which- utilized the notion of bond order.* The Tersoff potentiél was subsequently
improved both in functional forms and parameter values, and 1ts three versions are
also known as T1 [137], T2 [143] and T3 [145). The functional form of T3 is reproduced

b elbw,

v({n}) = %Z Vis, | | (4.10)

iy A .
Vi = felrij)las; Aexp(—Airi;) — bi; B exp(—Aory;)], (4.11)
by = (148", - (4.12)
Gj = Z Fe(rae) g(Bigx) expNi(r; — rae)’], ,(4.13)‘
ki,
g(0) = 1+c%/d® —2/[d* + (h — cos6)?], (4.14)

3This could be considered as fortuitous as one usually does not expect empirical potentials to
have such high accuracy. '

- 4An elementary introduction to bond order can be found in the book of Sutton [144].
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ay = (14, - (4.15)

mp = 9 fe(ra) exp[(ri; — rae)’], - (4.16)
ki, ‘

where f.(r) is a cut-off function. Bond order is included in b;; term, which depends

on the local environment of atom . It is a decreasing function of the number of

competing bonds, the strength of the competing bonds and the cosihe of the angles

with competing bonds. In this formulation, V;; # Vj;, mea,nmg that the energy of

a bond is not equally distributed to the two atoms. The Tersoff potentlal was also

generalized to describe carbon [146] as well as multicomponent systems such as Sic,
SiGe [147].

A comparative study of SW, T3 along with several other proposed potentials for

Si WasAperformed by Balamane et al.[13], which concluded that all these potentials

do a relatively poor job on modeling the energetics of small clusters as well as various

~ constructions of the Si (111) surface. Interestingly, SW and T3 potentials predict

different behavior of atomic relaxé,tion around a single vacancy — SW leads to inward

relaxation of first nearest neighbof atoms, and T3 gives outward relaxation. While

the direction of relaxation was still a cdntroversy>at the time when this comparison

was made [13], recent DFT calculations showed quite convincingly that the nearest-

neighbor atoms relax inwards, decreasing the open volume, in agreement with the

SW potential.

A neﬁvly developed potential, named Environmentally Dependent Interatomic Po-
tential (EDIP) [136] seems to out-perform both the SW and T3 pdtentials in describ-
“ing interactions between Si atoms in a wide range of environments, especially in the
“dislocation core. Surprisingly, the better performance comes with no extra computa-
tional cost, in that the computing time ofb EDIP is comparable with both these two

potentials. The functional form of EDIP is given below,

V{7}) = ZE (a17)
E = Z‘/'z(w,Z)JrZ > Valfsy, s 2 ) (4.18)
J#i o k#k>)
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Table 4.1: Reconstruction energy (in eV/b) of 90° and 30° partials in Si by SW,
Tersoff (T3), and EDIP potentials, as well as by DFT calculations. (Table 1 of [150])

DFT [151, 152] SW [153] Tersoff [150] EDIP [152]
90° 0.87 R 0.86 0.80
30° 0.43 0.81 0.45 0.36

Z; = Zf(""im)a ‘ (419)

~ where f(r) equals to 1 at small r and smoothly goes to zero at large r. Z; describes
the coordination number of atom 4. The theoretical justification of the potential form
is given in [148, 149]. Intuitively, one can appreciate EDIP as a combinaﬁon of both
the merits of SW and Tersoff, i.e. having both explicit three-body interactions and

an environmentally dependent bond order effect.

As this Thesis mostly concerns dislocation properties, a comparison of the per-
formance of the different potentials discuésed so far would be highly relevant. We
reproduce here the data from [150] in Table 4.1, which lists the core reconstruction
~energies for 90° and 30° partial dislocations in Si. SW potential does not predict the
correct reconstruction at all on the 90° partial, while both Terséff and EDIP give com-

parable predictions with first-principle density function theory (DFT) calculations.

Similar to the case of Si, atomistic simulations on B‘CC transition metals cannot
employ pair potentials either. An obvious drawback for pair potential here is that the
resulting elastic constants for cubic crystals must satisfy the so called Cauchy relation
C’lg = Clys, which is never obeyed by real metals. A simple potential is proposed by
Finnis and Sinclair [138], which describes the metallic bonding following a second-
moment appfoximation to the tight-binding model [154, 144]. The function form of
the FS potential is given lbelovv-, ' |

V7)) = Vn+Vp, | (4.20)
W = -AS VA, - (4.21)
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pi = Z¢(Tz‘j), (4.22)

Vp = %;U('f‘ i) + Ve(Ti), 1 - (423)
or) = (r—d)?+pB(r—d3?/d, r<d (124)
0, r>d

r—c)}(cot+erter?), r<c ,
0, r>c '

vo(r) = B(by—r)exp(—ar), (4.26)

where Vp represents a pairwise repulsive interé,ction accounting for the core electron
overlap and Vi describes metallic cohesive energy. The cohesive energy per atom
varies as the square root of the effective electron charge density p;. Although the
theoretical justification of the functional form of F'S potential was thought to be valid
“only for metals with nearly half filled d band, such as VIB metals Mo, W, etc, it
“was later shown by Ackland et al. [154] that it is applicable for all band fillings after

charge neutrality of each atom is considered, so that the square root form can be used

for noble metals and Ni as Well.

FS po.fentials were constructed for seven BCC metals, V, Nb, Ta, Cr, Mo, W, Fe,
with parameters fitted with experimental data on lattice constants, cohesive energy,
elastic constants. The v, term in the pair potential term Eq.(4.23) was later revised
by Ackland et al. [155] to correct the unphysical behavior of short range interactions

of the original F'S poténtial.

Althiough widely used, F'S potential has its limitations. It is found [156] that
it results in low thermal expansions and describes surfaces poorly. Later on, it be-
came quite clear that angular terms need to be introduced explicitly into potential
functions [157]. This is done in the MGPT potential of Moriarty [158] based on the
Generalized Pseudopotential Theory [159, 160, 161]. This potential was explicitly
tailored for central trahsition metals, i.e. metals with half filled d band, such as Mo.

In MGPT, the total energy of the system is rigorously expanded in real space into
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two-, three-, and four- body interactions, i.e.

- 1 N | o 1 < .
V({#i}) = NBua(®) + 3 sz(m +2 Z vs(ik) + 5 Z va(igkl), (4.27)
i itk ikithAl
where € denotes atomic volume. While MGPT potential is supposed to be more
accurate than FS potential, it is much more computationally intensive as well. Both
potentials are used in the atomistic simulation of dislocations in BCC metals in cur-

rent literature [162, 163].

4.2 Dislocations in Periodic Boundary Conditions

It is fair to say that, besides the interatémic potential, the treatment of boundary
conditions is the single most important aspect for atomistic simulations: In this
Section and the next, we will discuss two spéciﬁc contributions on the study of static
and dyhamic effects of a mesoscale surrounding to atomistic simulations.

Periodic boundary conditiohs (PBC) are ubiquitous in describing crystalline states
theoretically and computationally, its fundamental appeal being that translational
invariance of the inﬁnite crystal is naturally preserved. However, when applied to
study dislocation core energies and structures, it also introduces an artificial effect
as if the dislocations are embedded in an infinite periodic array of their own im-
ages. Because of the long-range stress fields of dislocations, the summation of image
intefagtions is only conditionally convergent. While existing methods of summa-
tion [164, 165, 166,. 165, 167] are applicable to isotropic media only, we present here

a new treatment [168] that is applicable to general anisotropic media.

4.2.1 PBC and Conditional Convergence

Consider an atomistic simulation cell for dislocation core energy calculations that is
periodic along ¢;,¢» and & directions, and contains a dislocation dipole with Burgers
vector :1:5, as. shown in Fig. 4-1.. The dislocation lines are parallel to ¢; and are

separated from each other by a. "The total energy Faim, in excess of that of the
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Figure 4-1: Schematic of an atomistic simulation cell (solid rectangle) containing a

dislocation dipole with Burgers vector +b and separated by @ under PBC along &,

¢ and & (out of plane). To facilitate calculation of the image energy, we mtroduce
“ghost” dislocations (in white) at the cell boundaries.

perfect periodic lattice, obtained from a fully relaxed atomistic calculation can be

separated into core and elastic contributions [169],
Eatm = 2E¢ore + Eprm + Ejmg y ’ (428)

where F.. is the core eﬁergy of each dislocation, Fp., represents the linear elastic
interaction between the two dislocations in the'primary simullation ceH, and Fipg
represents the interaction between the primary dipole and all the periodic images.
The sum of Eg, and Eimg constitute the elastic interactions, E.. For thé sake of
simplicity, we assume 3 has length unity, so that all the energies are normalized per

unit length of dislocation.

For a scfeW dipole and assuming isotropic elasﬁcity Eprmbis known [30], Fom =
pb*/(2m) In(|@|/r.), where p is the shear modulus and r, is the core cuf—off radius.?
The problem of extractmg Ecore from FE,yy therefore reduces to determining E’lmg
: Followmg current prdctlce [169, 170] one regards the effect of PBC as introducing

an infinite array of i 1mage cells (see Fig. 4-1), and treats Ein, as the total interaction

5A more detailed discussion of hnear elasticity theory of dislocations and cut-off radlus is given’
in Appendix A.
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between the primary dipole and all the image dipoles,
1 N |
Elog = 5 > 'Eaa(R) (4.29)
é .

where the summation runs over R = mé, + né;, m and n being integers, and R # 0.
Eaa(R) denotes the interaction between the primary dipole and an image dipole at
position B. The interaction between two dipoles is just the superposition of four

dislocation-dislocation interactions. For screw dislocations in isotropic medium,
Eau(R) = 5- In(|R+dl - |R—dl/R") . (4.30)

“The factor of % in Eq. (4.29) appears because bnly half of each interaction term should
be attributed to the primary dipole. This factor also appears naturally in our more

systematié treatment below.®

! og b0 indicate that this summation is not absolutely

We denote Eq. (4.29) as
convergent, since Fgq ~ R~2 for large R. The lack of absolute convergence can be
seen (by definition) by the divergence of the series if absolute values of each summand

is summed, i.e.

ZEdd(E) ~ / dR-2rR- R
i

= an
R .
~ [InR]” — oo L (4.31)

The cancellation of terms having opposite signs makes the original summation condi-
tionally convergent [166], with its value depending on th"é ’ordering of the summand.

Similar problems arise in summing Coulomb interactions of dipole lattices, e.g. -the.

cohesive ehergy of NaCl crystal. They are called Madelung summation [171, 172],
and are typically treated using the Ewald method [173, 174]. |

8Eq. (4.28) and (4.29) are equivalenf to Eq.(1) and (2) of [169], except that the factor 1/2 is
absent in [169], which is probably a typo. :
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4.2.2 Conventional Methods

Naive summation of Eq. (4.29) clearly will give the wrong estimation of Eing, which

would lead to incorrect core energies F.., if the summation is arbitrarily cut-off.

This is because no matter how large the cut-off radius is chosen, the summation result

still varies from scheme to scheme, depending on the detailed shape and morphology

of the cut-off surface. One can show that by “maliciously” choosing different cut-

off schemes, the summation can “converge” to any real number from minus to plus
infinity [175].

Current approdches to resolve the conditional convergence problem include sum-
ming dislocation walls for edge dislocations [164, 165, 166] and performing fast mul-
tipole caléulations [165] or Ewald-like summations for screw dislocations [167]. How-
ever, all the proposed methods are applicable only to isotropic media, leaving the

effects of anisotropy without scrutiny.

4.2.3 A Systematic Approach

In our systematic treatment of the elastic interactions, the issue of conditional conver-
gence does not arise. By evaluating the reversible work to create a dislocation dipole
in the periodic cell, we obtain an expression for the elastic energy of the dipole,

expressed in terms of its stress field o(7) in the PBC cell.

By = -% / AAbi0%(7) + %SEQV, :  432)
where the integral extends over the area enclosed by the dislocation dipole, T =
(o(7))v is the stress averaged over the cell volume V,‘ 0% = o(r) — 7, and S is the
elastic compliancé‘tensor. ‘

Eq. (4.32) is our central result; it follows from fhe combination of two steps, first
creating a perfect lattice under a uniform stress field and then creating a dislocation
dipole by making a cut on a surface (under stress) and displacing the two sides
of the surface relative to each other. A detailed derivation of Eq. (4.32) is given

. in Appendix A. The elastic energy is therefore composed of a defect contribution,
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which depends only on the stress field variation o°(7), and a bulk contribution varying

quadratically with the average stress 7.

One can express o°(7) as the summation of variations in the stress due to the
1nd1v1dua.l dislocation dipoles. Denote the stress field of a chpole at R by ad1p°le (7 —E);
this summation is absolutely convergent since the stress d1fference between two field
points decays like R~3. To connect with the existing approach mentioned above, we
note thaf the integral of the stress field of one dipole over the region enclosed by the

primary dipole equals to minus the interaction between the two dipoles, so that

prm = /dA b;o ;’inpole » (433)
and .
Edd(R) / dA;b; ;‘;P°‘e —~ R). ) (4.34)

It then follows that FEiny, can be rigorously written as

1 err 1 — : ' |
1mg = —Z,Edd -+ EA]'bio_ij - §S0'2V , . (435)

where off" = <Z f dlp':’le( _'ﬁ)>v, and the summation here involves the same col-
lection of image dipoles as in the first term of Eq. '(4.35) plus the primary dipole
contribution (£ = 0). Eq. (4.35) shows that what is missing in Eq.(2), besides a term
describing the bulk stress effect, S_ 2V, is a dipole correction A biog;", which is
-1 /2 of the interaction between the primary dipole and the average stress introduced
by the primary and image dipoles. This is similar to that defived by Wolf [176] in.
treating Coulomb interaction summations in electric dipole lattices. The correction
is non-zero only if the primary cell eentains a nonzero dipole moment [177]. If one
can group every two neighboring cells to form a dislocation quadrupole array [151],‘
its image summation is then free from this dipole correction. It is irnportant to
note the difference between o and 7. The former is average stress arbitrarily in-
troduced into the PBC cell when summing the image dislocations, Whose effect has

. to be subtracted out completely. On the other hand, 7 is the “physical” average
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stress determined by atomistic siniulations, whose contribution to the total energy is
expressed in the quadratic term in Eq. (4.32). |

One can ishow that the dipole correction can be exactly canceled by introducing
a set of specially chosen “ghost” dislocations to interact with all the dipoles, see
- Appendix A for details. This is analogous to the fictitious charges introduced in [178]
to cancel the dipole correction in the lattice of electric dipoles. As shown in Fig. 4-1,
“ghost” dislocation with Burgers vector ab can be placed at ¢ /2, —ab at —& /2, ﬁg
at &/2, and —fBb at —&/2, with o0 satisfying @ = o, + . In this way Ein,
becomes,

1 L o1 1
Eimg = _2' Z’(Edd(R) - Edg(R)) e §Edg(0) + '2—552‘/, (436)
R .

where Eq,(R) represents the interaction energy between a dislocation dipole (at offset
R) and the “ghost” dislocations. The summation in Eq. (4.36) is absolutely Tonver-
~ gent because the “ghost” dislocations have exactly the same dipole moment as the
primary dipole, so that Edd(ﬁ) - Edg(é) ~ R73 for large R. Since Eq. (4.36) does
not depend on the explicit form of dislocation interactions, our method is applicable

to dislocations of any character in a general anisotropic elastic medium. -

4.2.4 Extracting Core Energy

We apply our method to extract the core energy of a shuffle-set screw dislocation in
'Si from atomistic calculations using the Stillinger-Weber (SW) [135] potential. The
basis vectors ,5,,c3 of the simulation cell are along [112],[111] and [110] directions
respectively. The two dislocations have Burgers vector b= +[110]/2, and are sep-
arated by @ = ¢1/2. The cell is given an overall strain to accommodate the plastic :
strain introduced by the disloéation dipole, so that the it has zero average stress and
the last term in Eq. (4.36) vanishes. A typical atomic stru'cture in these simulations
~are shown in Fig. 4-2. Fig. 4-3(a) shows the variation of the total enefgy per unit dis-
location length (Eatm) with cell dime_nsién ¢y, while & is fixed at 3[111]. For a given
simulation cell, we calculate the corresponding elastic energy . Epmm + Eimg through

Eq. (4.36) and use sextic anisotropic elasticity theory for individual dislocation inter-
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Figure 4-2: Atomic structure of shuffle set screw dislocation dipole in Si a simulation
cell under PBC. The displacement field for these two dislocations are mainly along
z direction, which is perpendicular to the paper. The high energy atoms in the
dislocation core are plotted in dark color. '
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Figure 4-3: (a) Variation of atomistic (0) Eyu, and linear elastic (anisotropic < and
isotropic O) E, energies of a shuffle-set screw dislocation dipole in a PBC cell of
Si with ¢; at & = 3[111]. Predictions of 2F.,,. are shown .in dashed and dotted line
respectively. (b) Variation of Fym with & at & = 4[112]. Atomistic simulation results

are shown in o, while anisotropic elastic results for Eg plus 2E. obtained from (a)
are shown in <. : _ ' :
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action energies. The expression for the interaction energy are obtained by integration
of the stress expression from[30]. For two parallel dislocations sepaiated_ by (z,v),
their interaction fakes the form E ~ In(z + pay), with p, b_eing roots of a sixth order
polynomial. More details on dislocation interactions in anisotropic elastic medium
are presented in Appendix D. The elastic constants used for elasticity calculations are
tvaken from the reported values [13] for the SW potential, which are Cy; = 161GPa,
Cyp = 81.6GPa, Cy = 60.3GPa.

The anisotropic elasticity results, Eq. (4.32), are seen to fall on a straight line with
a slope that agrees with the atomistic result to within 0.5%. This agreement betwgen
~ atomistic and anisotropic linear elasticity results is significant because there are no
adjustable parameters in either calculation, in contrast to previous studies -[166, 169).
The differenée between the two gives the core energy Feoe = 0.526 + 0.002eV/ A, at
r. = b = 3.844, which is ma;lifestly independent of ¢;. As discussed in Appendix
Al, thls result can also be expressed in terms of a cut-off radius r. = b/a for which
Ecmre = 0. In this case, o = 4.31. A previous calculation using first principles method
and isotropic elasticity theory [169] has given Eoe = 0.56 & 0.21eV/A using the
same 7., (corresponding to o = 4.73). First principles method is supposed to be more
accurate than empirical potentials in obtaining the atomistic energy, while anisotropic
elasticity is more accurate than isotropic elasticity in esﬁmating the -image energy.
In view of this and considéring the large error bar in the previous work, one cannot
conclude much at this stage.

In Fig. 4-3(b) we directly compare the two sides of Eq. (4.28) by fixing ¢; at 4[112)
and varying &, from 2 to 10[111]. The atomistic result agrees very well with the sum
of anisotrdpic elasticity results plus 2Eqye obtained from Fig. 4-3(a), except -at the
smallest & (2[111]), where the dislocation cores overlap with their own image and
linear elasticity is expected to break down. This is a direct confirmation of Eq. (4.28)

“as the proper way of define the core energy of a dislocation.

To bring out the effects of elastic anisotropy, we repeat our calculation by as-
suming elastic isot_ropy. The shear modulus and Possion ratio for isotropic elastic- |

~ ity calculations are obtained by Voigt averaging [30] of the cubic elastic constants

109




Ci1, Ci2, Cy4, which yields p = 52.18GPa and v = 0.2924 for Stﬂlinger-Weber Si. The
results, shown in Fig. 4-3(a), also follow a linear variation with a slope that is now
14% larger than the atomistic calculation. One could try “improving” the isotropic
elasticity estimate by replacing the shear modulus uvby an energy prefactor K [167],
with K taken from ‘a,n anisotropic expression of screw dislocation self energies. In
this case, K = (Cu(Cy — Cia)/2)Y/? = 49.11GPa. Yet the resulting slope is still
too large by 8%. Alternatively one could treat p as a free parameter [166, 169] to
obtain a best fit with atomistic data. Such a procedure leads to a core energy of
Eeore = 0.532 £ 0.002¢V/A (corresponding to o = 4.38).

| We have also performed similar calculations for edge dislocations in a BCC metal
Mo. We use a simulation cell with .6'1,62,53 along [111],[101],[121] directions respec-
tively, with @ = Ca/2 and_l_; = £[111]/2. A typical atomic structure is shown in
Fig.. 4-4. The dislocation dipole is created by removing a layer of atoms followed
by relaxing the configuration to 'zerc.>vstress. We adopt the Finnis-Sinclair (F'S) [138]
potential, for which C; = 464.7GP@, C1o = 161.5GPa, Cyy = 108.9GPa, and Voigt
average values ére @ = 125.98GPa, v = 0.2932. As shown in F ig. 4-5, the behav-
iors are found to be similar to that of Si. The core energy predicted by anisotropic
elasticity is Poye = 0.324 £ 0.002eV/A, at r, = b = 2.72564, ('corresponding to
o= 1.66).. On the other haﬁd, using  as a free parameter, isotrdpic elasticity gives
Eere = ’0.382 + 0.002eV/A, (corresponding to o = 1.81), significantly different from
anisotropic results. Thus dislocation core energies obtained under the assumption of
elastic isotropy can be in appreciable error even when the energy prefactor is fitted

to atomistic data. This error seems to be more pronounced in edge dislocations.

4.2.5 Predicting Elastic Interactions in PBC

‘The foregoing analysis indicates that elastic isotropy should not be assumed in de-
termining the elastic interaction results toward which atomistic calculations should
bonverge in the limit of large simulation cells. An issue of practical coﬁcern then
is whether there exists an optimum cell geometry for atomistic simulation studies

- of dislocations. Linear elasticity predicts that when @ is kept at ¢1/2, Eimg is only
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Figure 4-4: Atomic structure of edge dislocation dipole in Mo a simulation cell under
PBC. The dipole is created by removing a layer of atoms between the two dislocations.
. The high energy atoms in the dislocation core are plotted in dark color.
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Figure 4-5: Variation of atomistic (o) E,m and linear elastic (anisotropic ¢ and
isotropic O) E, energies of an edge dislocation dipole in a PBC cell of Mo.

depen‘dént on the cell aspect ratio. Fig. 4-6 shows the predicted image interactions
not only decrease with increasing aspect ratio, as one would expect, with anisotropy
effects reducing the magnitude, but also the energies can change sign. This informa-
tion is noteworthy because a simulation cell with small magnitude of image energy

Eimg would have higher accuracy in determining the core energy.

Proceeding further, we can ask how cell geometry generally affects the total elas-
tic‘ interactions and hence the dyhamics of dislocations in atomistic simulatibns. A
question of practical interest is whether there exists an optimum cell geometry for
which the elastic interactions are minimized. Consider a simulation cell (Fig. 4-7(a))
containing an edge dislocation dipole at separation @ = &/2 which can only glidé
along ¢;. The system energy is then a periodic function of their relative displace-
ment z along & direction, the energy barrier being a result of an oscillatory image
stress field superimposed on any applied éxternal stress. Linear elastic considera-
tions show that the energy variation has extrema at z = 0 and z = ¢;/2, so that

AE = E(z = 0) — E(z = ¢1/2), a function only of the cell aspect ratio, is an ap-
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Figure 4-6: (a) Elasticity theory predictions of image energy (in <) for screw dis-
location dipole as in Fig. 4-2,4-3. Anisotropic elasticity (in <) predicts Eyp, = 0
at cp/c; = 0.329, while isotropic elasticity (in O) predicts a different zero point at
02/61 = 0.365. -
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Figure 4-7: (a) Schematic of the total energy variation with relative displacement z,
AEFE being the maximum. (b) Variation of AE with cell aspect ratio cy/c; for edge
dislocations in Mo, with the same set up as in Fig. 4-5. Anisotropic elasticity predicts
AE =0 at cp/c; = 2.918 (). Isotropic elasticity predicts a monotonic decrease of
AFE with increasing cy/c; (O). Atomistic simulations with ¢; = 15,20 and 30[111] are
shown in x, o and + respectively. ’ ‘

propriate measure of the internal dislocation interaction. For dislocation mobility
simulations [179] a minimum value AF is desirable for obtaining an accurate relation

between the dislocation velocity and the applied stress.

Results for the energy barrier determined separately by-isotropic and anisotropic ;
elasticity calculations are compa,red in Fig. 4-7(b). One sees the former 'cl_early
- decreases monotopically with increasing aspect ratio without becoming negative,
»Whe_reas the latter vanishes at the value of cy/c; = 2.918. Also shown in Fig. 4-
7(b) are direct atomistic simulation results for the energy barrier for three cell sizesA,

showing a converging behavior toward the elasticity result.

The vanishing of the energy barrier at the special aspect ratio implies a complete
cancellation among the primary and image interactions, thus allowing unhindered
dislocation glide in the PBC simulation cell. Direct atomistic simulations confirm
that AE indeed is greatly reduced at a cell geometry close to the predicted‘ ca/ cl.'
. For example, at & = 20[111] and & = 64[101], simulation gives AE = 0.091meV/A,
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Figure 4-8: Variation of AF with cell aspect ratio ¢a/ ¢y for screw dislocations in Mo.
Anisotropic elasticity predicts a reverse of sign at ca/c; = 2.2 while isotropic elasticity
- predicts a monotonic increase of AF approaching zero.

corresponding to.a maximum internal stress of about 0.3MPa. In contrast, typical

stresses applied in mobility simulations are in the range of 10 — 1000MPa [179].

It may appear that the atomistic results in Fig. 4-7(b) indicate a significant size
dependence. Indeed, a contributing factor could be the higher order (e;g; ~ 1/r)
terms in the elastic interactions. On the other hand, it should be noted that the
energy scale in this figure is about 2 orders of magnitude smaller than typical values
for migration barriers for dislocations, so the effect here is rather small. NeverfheleSs
we believe the existenci\e of special geometries, arising from elastic anisotropy,r for
which AE = 0 is quite general, and it is indeed confirmed by our results for a screw

dislocation in Mo, as shown in Fig. 4-8.

According to Fig. 4-7(b), for edge dislocation mobility simulations in Mo using
periodic boundary conditibns,' the aspect ratio ¢, /cy of the simulation cell need to be

. larger than 3 ~ 4 to make image interaction effects negligibly small. This prediction.
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Figure 4-9: Variation of total energy E and Virial stress o, and dislocation displace-
ment X in MD simulations of edge dislocation motion, with cell aspect ratio c2/cy
at (a) 3.8 and (b) 1.65. The fluctuation in (a) is small and is mainly due to thermal
noise, while the large oscillations in (b) is clearly due to the image interaction artifact.
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is confirmed by direct Molecular.Dynamics simulations. Fig. 4-9 shows the Virial
stress oscillation during MD simulations of moving edge dislocation dipoles with cell
aspect ratio at 3.8 and 1.65 respectively [180]. The simulations are performed at 20K
with a constant shear rate of 0.4 x 10~%~, The Virial stress oscillation for the large
aspect ratio is very small and mainly comes from thermal fluctuation, while that for
the small aspect ratio clearly shows a sinusoidal pattern, which is an artifact due to

the image interactions.

4.3 Dynamic Domain Coupling

In this section, we study an even more clear-cut case of type (a) coupling (see Chapter
1), where an atomistic region is embedded in an elastic continuum surrounding. We
will present a systematic approach [181] which couples a discrete atomistic simulation
domain with a linear elastic surrounding where the artificial wave reflection at the

interface is minimized.

4.3.1 Artificial Wave Reflection at Domain Boundary

. A general problem in the domain decomposition approach to modeling discrete sys-
teﬁs with localized inhomogeneities (defects) is the spurious reflection of elastic waves
due to a change in system description across a domain boundary. Such effects are
seen in, for example, the atomistic modeling of dislocation motion [183], crack propa-
gation [184, 185, 182, 186], and energetic particle-solid collisions [187, 188], while they
are also of concern in the recent development of hybrid techniques involving multiple
- length and/or time scales [189, 190, 191, 192]. Fig. 4—10 illustrates such reflections
of elastic waves emitted from the éra,ék tip in an MD simulation (from B. L. Holiaﬁ). :
Such an reflection is inherently due to the change of system description across the
domain boundary. For example, fixed boundary conditions are nsu511y used for crack
simulations [185, 182], and the wave gets reflected at the rigid boundary surfaces.
In coupled MD-Finite Element method (FEM) simulations, wave reflection also oc-

. curs, because elastic wave modes with short wavelengths simply do not exist in the
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Figure 4-10: Elastic wave emitting from the crack tip gets reflected at the boundary
of the simulation cell. (From B. L. Holian via S. Yip. Similar results can be found
in [182]. ) :
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Figure 4-11: MD region P is the region enclosed by the solid line, surrounded by
region (), which is perfect lattice.

coarse grained FEM region. Minimizing boundary reflection is therefore equivalenf
to minimizing the difference between fhe dynamic responses of the two domains. Ide-
ally the reflection will disappear if the two domains are identical, both being fully
resolved by Molecular Dynamics, in which case there is no physical interface at all.
However, the very reason that a domain coupling problem arises in the first place is
the computational limitation of MD simulations. It is common practice to simulate
only a small portion of the real systeni and treat the remaining region as a boundary
condition, which can be usually regarded as infinitely large compared with the MD
region. A number of coupling schemes or boundary conditions have been proposed in
order to minimize such reflections, such as ad hoc viscous damping [185, 182, 186] and
the more physically motivated use of an approximate description of coupling across a
domain boundary [188]. To date, however, none can claim to be free from empiricism
and the attendant limitation on general applicability. In the following subsections,

we will present our systematic solution to this problem based on the linear response

theory.
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4.3.2 Linear Response Theory

Consider a crystalline P-Q system in which region of interest P may contain inho-
mogeneities, while medium @ consists of defect-free material only, see Fig. 4-11. For
sufficiently large P and moderate temperatures it is appropriate to describe the P-Q
and @-Q interactions as vharmonic. One can then obtain an equation for P from which
the explicit degrees of freedom associated with medium @ have been eliminated and

replaced by an implicit formulation [193, 194):

t N
g;/i +/0 dT;@j (1) (t — 7) +
N
£ B (1) 25(0) + Ri(o). e

Here, the z; represent the IV degrees of freedom in P,V = V({z;}) is the potential
energy of the entire system with the atoms in Q fixed at their equilibrium positions,
Bi;(t) denote the N 2 elements of the time-depvendent memory kernel matrix B(t),
and .R;(t) is a linear function of the initial displacements and velocities in domain
Q. Eq. (4.37) is generally referred to as the generalized Langevin equation (GLE)
[193, 194, 195], in which the functions §;;(t) describe the response of medium @ to
disturbances in region P in the form of P-to-P correlation. The R;(t) represent the
effects on P due to any initial disturbance in ¢ and are usually treated as random
forces to describe the effects of statistical fluctuations in region ) at a nonzero temper-

ature [188, 193, 194]. A detailed derivation of GLE will be presented in Appendix B.

Eq. (4.37) provides the equation of motion for MD simulations with the region P,
while all the effects of ) atoms are accurately represented by the memory kernel func-
tions G;;(t) as a time-dependent boundary conditioﬁ. In principle, such a simulation
should not give any boundary reflections, since no approximate was made at this stage
other than the linearity assumption for the P-Q and Q-Q interactions. Although this

equation has been derived for a long time, it did not result in a systematic solution
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of the boundary reflection problerﬁ, because the functional form of the memory func-
tions are not known for an general system with an arbitrarily complex Hamiltonian.
Analytlcal solutions of the memory kernel only exist for very idealized systems, such
as one-dimensional harmonic lattices [196] (see Appendix B.5 for more details). For
more realistic systems, approximations to the memory kernels were made [188], which
can be shown to be equivalent to introduce a viscous damping force on boundary layer

atoms.

4.3.3 Measuring Memory Kernel

In this work, we found that the memory kernel functions can be rigorously determined,
albeit numerically, through a series of MD simulation. This is done by regarding the
() region as a linear system and the memory functions as its response functions. More
discussion on this analogy are presented in Appendix B. v
Suppose the system is at equilibrium with the atoms in P and @ all at rest. At
¢ = 0 one of the atoms in P is given a displacement ¢, after which all atoms in P are

frozen in their initial positions:
z;(t) = z;(0) = €. (4.38)

Allowing the atoms in @ to relax after ¢ = 0, the time-dependent forces acting on the

atoms in P are given by the right-hand side of Eq. (4.37),

Fi(t) =~ + ¢ (0, o (4.39)

where the convolution terms and the R;(t) have vanished due to Eq. (4.38) and the
fact that region @ is initially in equilibrium, respectively.

The first term in Eq. (4.39) represents the static force exerted on z; if all atoms in
@ were to be held fixed in their initial positions (i.e. fixed boundary conditions), while
the second term is theﬁme—depéndent component arising from the motion of the @@

~atoms after ¢t = 0. It is clear that the response functions B (t) completely specify
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Figure 4-12: Typical behavior of the memory kernel matrix elements as a function
of time (full line). In practice, the response functions are determined within a time
interval [0, ¢ ], with ¢, being a cut-off time. For ¢ > t. they are assumed to remain
constant at their cut-off values 8;; (t.) (dashed line).

se

the P-@ coupling as a space-time dependent P-to-P correlation through medium Q.

Equations (4.38) and (4.39) constitute the basis for an algorithm to compute Gy, (¢)
from a series of test simulations. Each simulation would start with the perturbation of
an v:ck according to Eq. (4.38), followed by an MD run that measures the subsequent
response of the atoms in ) under the constraint of fixed poSitions in P. During
each run the forces F;(t) are recorded as a function of time, giving directly the N
response functions S (t), 7 = 1... N, after subtraction of the static force components
-0V /0z;.

In practice, the test simulations are performed over a finite time interval, so that
the §;; (t) are determined only within a time interval [0, ¢.], with ¢, being a cut-off
time. Given the typical behavior of the matrix elements as a function of time, shown in
Fig. 4-12, it is reasonable to disregard any further variations in the response functions
for ¢ > t., and assume they remain constant at their cut-off values §;; (t.), provided
that ¢, is sufficiently large. To be internally consistent, temporal truncation should be
accompanied by a spatial cut-off. This means one should neglect all matrix elements
that involve atoms separated by a distance larger than a cut-off radius r, ~ ct,,

where c is the sound velocity in ). In many cases, the number of relevant response
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Figure 4-13: Memory function for one-dimensional harmonic oscillators. MD simula-
tion results () agrees closely with analytic solutions §(t) = —Jo(2t) — J2(2¢) (in solid
line). '

functions can be further reduced if the interatomic potential model is finite-ranged
and the number of degrees of freedom in P that interact directly with those in @ is

considerably smaller than N.

4.3.4 Reflectivity Tests

As a first demonstration of the effectiveness of the response function boundary condi-
tion we are proposing, Wé apply Eq. (4.37) to simulate the dynamics in a small section
of a linear chain of identical harmonic oscillators with nearest-neighbor interactions.
The masses, spring constants and equilibrium distances are set equal to unity. 50 os-
cillators are assigned to a region P which is bracketed by two semi-infinite chains Q;
and ()». Because of the configurational symmetry there is only one relevant memory
kernel in this problem, déscribing the response of a semi-infinite chain to a displace-
ment in the corresponding boundafy oscillator. The test simulation, carried out using
a time step At = 0.1, is truncated after a cut-off time ¢, = 50, when the force fluc-

tuations in the response function have decayed to within approximately 0.15% of the
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Figure 4-14: Phonon reflectivity as a function of wave vector k for a one-dimensional
chain of harmonic oscillators. Inset shows reflectivities associated with the CGMD
method [191] for the same problem.

asymptotic value. The numerically computed response function is essentially indis-
tinguishable from from the analytical solution 5(t) = —Jy(2t) — Ja(2t) [196], as shown
in Fig. 4-13.

Usihg the numerically combuted response function in (4.37), an MD simulation
is performed to study the time evolution in P after introducing initial displacements

z;(0) according to the wave packet
7;(0) = cos [ k(X — b) | exp [ —(X?==6)?/202].

Here, X? denotes the equilibrium position of oscillator ¢ and X = b is the position
in the center of domain P. As a reference, the motion is also monitored using a
full MD simulation in which the oscillators in @y and @5 are treated explicitly and
no boundary is present. As a measure of the effectiveness of our response function_
approach, we evaluate the wave reflection at the boundaries between domain P and
the chains @; and 3. The reflectivity R is defined as the maximum difference
between the instantaneous energies stored in region P during the response function
simulation and the full MD run, divided by the initial energy in region P.

In Fig. 4.3.4 R is plotted as a function of wave vector k with ¢ = 5. The results
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show that the response function approach provides an excellent description of the
dynamics in P, featuring a reflectivity below 1073 for approximately 80% of the
Brillouin zone, and of the order of only 10~ for k-values at the the zone'boundary. For
comparison, the reflectivity results obtained in a coarse-grained molecular dynamics
(CGMD) simulation for the same system [191] are shown in the inset. It can be
seen that the coupling method in the latter work is much less effective, as only the
lower 5% of the Brillouin zone is treated correctly while the components with higher
values of k are totally reflected due to the fact that such modes cannot exist in the

coarse-grained region.

As a second demonstration we study wave reflectivity in a two-dimensional ver-
sion of the previous system, a square lattice of harmonic oscillators with the same
spepiﬁcations. The oscillators are allowed to move only in the direction perpendicu-
lar to the plane of the lattice. The primary domain P is defined as a square reﬂgion
containing 3600 lattice sites. Given the symmetry of the configuration and the short
range of the interactions, the total number of test simulations required to fully spec-
ify the memory kernel matrix is 30. Each simulation is carried out using a time step
At = 0.1 and is truncated after a cut-off time t, = 50. Furthermore, an additional
spatial truncation is introduced; all matrix elements that involve oscillators separated

by a distance larger than a cut-off radius r, = 30 are disregarded. In this case, the

storage of the total memory function matrix takes about 56Mega-bytes.

In order to compare to existing reflectivity results [188] we study the boundary
reflectivity as a function.of the width of the wave packets. The initial displacements
in P are set according to a symmetric two-dimensional Gaussian function of width o,
centered in the middle of domain P. Following the procedure described previously,
the reflectivity R is evaluated by éomparing the energies stbred in domain P during

the full MD run and the response function simulation.

Fig. 4-15 shows four snapshots of the simulation with the memory kernel method.
The initial Gaussian wave packet smoothly passes through the simulation cell bound-
ary leaving no residual oscillation behind. As a comparison, simulation snapshots

using a free boundary are shown in Fig. 4-16. We notice the severe wave reflection
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Figure 4-15: (a) Initial condition of a Gaussian wave packet on a 2D harmonic lat-
tice. (b) Wave packet propagating outwards after 300 timesteps using the boundary
condition developed in this section. (c) 450 timesteps. (d) 600 timesteps.
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Figure 4-16: (a) MD simulations after 450 timesteps under free boundary, with the
same initial condition as in Fig. 4-15(a). (b) At 600 timesteps, severe boundary
reflections are observed.

at the boundary. In this case, réflection is inevitable because the total energy of the
system is conserved.

Fig. 4.3.4 shows the reflectivity R as a function of the width o. Our method
provides an accurate description of the response of medium (), showing reflectivity
between 10~3 and 10> across a wide range of values for o. The inset shows reported
reflectivity results for similar initial Gaussian displacements in a three-dimensional
study using another reflection reduction method [188]; the different curves correspond
to different values of the empirical damping coefficient in this scheme. Even though
these results and ours do not refer to identical simulations, nonetheless, we believe
it is significant that the reflectivity given by our treatment is some two orders of
magnitude lower. Moreover, the reflectivity of our method can be systematically

reduced even further by increasing the cut-off values for ¢. and r,.

4.3.5 Application to Static Relaxation

In addition to minimizing boundary reflection, the response function framework is also
useful in the context of static relaxation of displacement fields associated with a defect
embedded in domain P. This is because the long time limit of the memory kernel

functions [(oo) is related with the static lattice Green’s function. The relationship
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Figure 4-17: Reflectivity on a two-dimensional square harmonic lattice as a function

of the width ¢ of initial Gaussian displacements. Inset shows reflectivity results

reported in Ref. [188] using another reflection reduction technique for similar Gaussian
displacements in a three-dimensional fcc lattice.

Figure 4-18: (a) Displacements in two-dimensional square harmonic lattice containing
a screw dislocation dipole in primary region P. (b) Displacement fields of oscillators
along the four edges of the boundary a-b-c-d-a; results obtained using conjugate-
gradient minimization (full line) and response function relaxation (dotted line).
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between the memory functions and the Green’s function is discussed in more detail

in Appendix B.

As a demonstration, we introduce a model screw dislocation dipole at the center
of the previously described two-dimensional square harmonic lattice. The dipole is
created by fixing the displacements of a row of atoms in P to +0.5, while constraining
those in the adjacent row to —0.5, as shown in Fig. 4.3.4(a). To obtain the reference
static displacement fields for this configuration, we first perform a conjugate-gradient
(CG) energy minimization procedure on the entire system employing a sufficiently

large @) region to achieve satisfactory convergence.

In order to obtain the relaxed displacement field using the response function
method one may directly integrate the equations of motion (4.37) until all kinetic
energy has dissipated. Using the response functions and cut-off parameters deter-
mined in the second application the static displacement field is thus obtained after
about 10° MD steps. However, since we are interested only in the static response of
medium () in this application, the same result may be obtained more effectively by
neglecting the specific time-dependence of the response functions and using only their
long-time asymptotic values. In addition, one may also disregard the force compo-
nents that arise from a particular initial condition. In this manner, the same relaxed
displacement fields can be obtained by relaxing the static forces

N
Fi{e}) =~ 90+ 3" 6 4 (4.40)

using the cut-off values §;; (t.) for the asymptotic values of the response functions.

Fig. 4.3.4(b) shows a comparison between the results obtained with the reference
~ CG procedure (full line) and our responée'function approach (dotted line). The
curves describe the relaxed displacement fields as a function of the oscillator position
along the four edges a-b-c-d-a of the P-Q boundary, as indicated in Fig. 4(a). The
indicated agreement is satisfactory, while the small discrepancies originate from the
errors introduced by the temporal and spatial truncations of the response functions.

"These errors can be systematically reduced by increasing the values of the cut-off
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parameters t. and r..

In summary, we have shown how the response of a linear medium surrounding an
atomistic simulation system can be treated in a systematic and numerically tractable
manner réquiring no assumptions beyond linear response theory. The method is found
to be optimal in reducing artificial boundary reflections in dynamical simulations, as
well as effective in the context of the static relaxation of displacement fields associated

with embedded inhomogeneities.
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Chapter 5

Atomistic Study of Shuffle Set

Dislocation in Si

The type (b) coupling between atomistic and meso scales that we discussed in Chap-
ter 1 refers to the extraction of mechanistic understandings based on atomistic studies:
and use them as inputs in the mesoscale models. In this Chapter and the next, we
present several findings on the atomistic modes of dislocation motion in semiconduc-
tor Si and BCC metal Mo respectively. |

As discussed in Chapter 2, controversy still remains on whether the dislocations
in Si moves on the glide or the shuffle set (111) planes. After experiments showed
that dislocations in Si move in dissociated form at high temperatures (> 800K),
it became widely accepted that dislocations should move on the glide set planes
at these temperatures.- Consequently, atomistic calculations has been focused on
the core structure, kink energies of partial dislocations on the glide set. However,
recent experiments on Si [39, 18] and III-V semiconductors [20, 19, 21] under high
confining pressure suggest that the deformation mechanisms could change from glide
set dislocations to shuffle set dislocations below a critical temperature.

At the same time, earlier analysis based on a quasi-elastic Peierls-Nabarro model [22]
suggested that such a transition could indeed be possible, when shuffle set dislocations
becoming more mobile than their glide set counterparts at higher stresses. However,

a conclusive answer to the shuffle-glide competition problem requires a systematic
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Figure 5-1: Core structures of shuffle set screw dislocation in Si. The high energy
core atoms are shown in dark color. (a) Core A resides in a hexagonal ring. (b) Core
B resides at the boundary between two hexagonal rings.

S

atomistic study of shuffle set dislocations [169, 197, 198], as well as on glide set dis-
locations. In this section, we will present several recent studies on the core and kink
energies of shuffle set screw dislocation in Si, as well as direct Molecular Dynamics
simulations of its motion. Our results suggest that the mobility of shuffle set dislo-
cations is always higher than that of glide set dislocations, both at low and at high
stresses, which is in contradiction with the prediction of previous analysis [22]. A
explanation is then proposed to reconcile this finding with the predominance of glide
set dislocations in high temperature plastic deformations of Si, by considering the

multiplication and dissociation rate of a perfect shuffle set dislocation.

5.1 Core Structure and Peierls Stress

The core properties of shuffle set dislocation in Si was first studied by Arias and
Joannopoulos using first principles method [169]. The predicted core structure is
shown in Fig. 5-1(a), where the core centers in a hexagonal ring of Si atoms. The core
energy was found to be Eeore = 0.56-£0.21eV /A at cut-off radius r, = b = 3.844. More
recent atomistic simulations [198] using Stillinger-Weber (SW) potential model with

a much larger number of atoms finds that there are two core structures. SW potential
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predicts‘ that the core A, which is Si_milar to the ground state found in first principles
calculations, is only metastable, and that in its ground state the core centers at the
intersection of two neighboring hexagonal rings, as shown in Fig. 5-1(b). As discussed
in Chapter 4.2, using SW potential, we found the core energy.of structure B to be
0.526 £ 0.002eV/ Aatr,=b= 3.84A. The core energy of structure A is found to be
0.04eV/ A higher. Because SW potential and first principles calculation gave different
predictions on the ground state core structure, it would be worthwhile to study the
relative stability and energy difference between the two core structures using more
sophisticated potentials, éuch as EDIP, as well as more first principles calculations.
The core energy calculations here used periodic boundary conditions, whose effect
were discussed in Chapter 4.2. In the following calculations of Peierls barrier, kink
energy and dynamic simulations of dislocation motion, a different boundary condition
is applied. )

Fig. 5-2(a) shows the simulation cell containing 1920 Si atoms, with cell vectors
being 4[117] (x, horizontal), 10[111] (y, vertical) and [110] (2, out of plane) respec-
tively. The dislocation Burgers vector is 1/ 2[170]. The cell is periodic along the
dislocation line direction z and its glide direction z. Two layers of atoms are fixed
at perfect lattice positions at the two ends of the cell in y direction, and a step is
created by the dislocation at the bottom layer, as shown in Fig. 5-2(b) and (c). Dif-
ferent from periodic boundary conditions, the simulation cell here contains only one
dislocation. Obviously, the fixed 1ayér of atoms present some artificial effect on the
dislocation, since the atoms are fixed at perfect lattice positions which is evidently
different from the strain field of a dislocation in an infinite medium. On the other
hand, this boundary condition makes the system invariant with respect to a transla-
tion of the dislocation core, provided the fixed layer of atoms are displaced uniformly
to accommodate the plastic strain. The translational invariance property makes this
set up suitable for studying the energy barriers and transition paths of dislocation
glide:. '

We will first discuss the Peierls stress 7p of the shuffle set screw dislocation, which

is defined as the minimum stress needed to move a straight dislocation line at zero
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(a) Front view. The cell is
axises. Dislocation line is along

Top view of the upper fixed atom layer. (c)
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Bottom view of the lower fixed atom layer. The two possible shuffle set slip planes -

S; and Sy are shown in dash lines.

and z (
z axis with core atoms shown in dark color. Two layers of atoms are set fixed (grey)

)

Figure 5-2: Simulation cell containing a single dislocation.

periodic along z (horizontal
at the top and bottom of the cell .
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F’igure 5-3: Initial (B) final (B;) and intermediate (A) configurations for Peierls stress
calculation. ‘

temperature, against the resistance from the crystal lattice. Previous calculations of o
Peieﬂs stress of shuffle set screw dislocation in Si using the same (SW) potential yields
surprisingly different results. While Ren et al. [197] predicfed 7p = 0.086G = 4.0GPa,
more recent calculations by Koizumi et al. predicted Tp = 0.044G = 2.0GPa, with
shear modulus G = 46GPa. The fact that two calculations with the same interatomic
potential yield drastically different results suggests that there is émbiguity in the sim-
ulation set up and boundary effects. Peierls stress is usually determined by recording
the Virial stress in the simulation cell where the dislocation starts to move. However,
as shown recently by J. Li [199], the Virial stress is not an invariant measure of the
dislocation driving force because the boundéry condition or other microstructures
in the simulation cell usﬁally exert a significant force on the dislocation. Instead,
Li [199] showed that the bchange of Gibbs free energy in a domain containing a single
dislocation (without any other defects) after a unit translation of the dislocation is
a invariant measure of the dislocation driving force. The Gibbs free energy change
include the energy change within the domain (separated from the outside by a “ring”
of atoms) plus a work term that equals to the sum of forces on the “ring” atbms times
their displacement during the dislocation motion. It was shown that the free energy
change defined in this way is invariant with respecty to the size of the domain that
contains the dislocation, as long as its boundary is 1 ~ onm away from the dislocation
core.

In this work, we choose entire simulation cell as the domain to measure the dis-
location driving force. va we do not allow the boundary atoms to move during the
~ dislocation core translation, the »Gibbs energy change is then simply equal to the total

- energy change of the system. We label the initial configuration as B, which contains
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Figure 5-4: Energy change of system B, B; and A as a function of dz the displacement
“of upper layer of fixed atoms in —z direction. :

an B-type dislocation core at thé-cell center, and the final configuration B;, where
“the dislocation core is displaced by one repeat distance to the right. An interme-
diate configuration is also created, which contains a dislocation of core type A, as
illustrated in Fig. 5-3. We then displace the upper layer of fixed atoms in B and
B, simultaneously in the —z direction by dz. The relaxed enefgy and internal Virial
stress of the two systems are plotted in Fig. 5-4, in which we use the energy of B
at dz = 0 as a reference. The maximum value of dz in Fig. 5-4 corresponds to the
critical condition, at which point a further increase of dz by 0.014 will result in a
spontaneous motion of dislocation core in B. It is also observed that at dz = 1.7721,
core A becomes unstable and relaxed to B;. This is consistent with the finding the

core A becomes unstable at 1GPa stress in the previous study [198].

At the critical displacement dz = 3.33A4, the energy difference between B and B
is AE, = Eg — Ep; = 0.1529¢V /A, which is an invariant [199] measure of critical
driving force to move the dislocation through the lattice. One can convert AFE, into

the traditionally used Peierls stress through,

. . , )
P = =1.92GPa , ; (5.1)
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where b = 3.84A is the Burgers ’vector, h = b/3/2 = 3.334 is the lattice repeat
distance along the direction of dislocation glide. This result is consistent with that
from Koizumi [198] of 7p = 2GPa. It is obvious that this stress is not exactly the
same as the Virial Stress values at the critical condition, which are oy, = 1.54GPa,
0z = —0.225GPa, as shown in Fig. 5-4(b). In fact, for inhomogeneous systems (e.g.
in this case having a border), the Virial stress is only an approximate measure of the
average stress [200]. Similar calculat‘ions for dissociated screw dislocation on the glide

set lead to the preliminary prediction of 7p = 5GPa for 30° partials.

5.2 Peierls Energy Barrier

At stresses below the Peierls stress, the dislocation is still possible to move througl_}
the lattice at finite temperature, with the help of thermal activation to overcome the
so called Peierls energy barrier E,. In this section, we compute the Peierls barrier i,
at differeﬁt stresses by identifying the saddle point configuration for dislocation glide
at stresses below 7p.

We used the Nudged-Elastic-Band (NEB) method [201, 202, 203] to determine a
mihimum energy transition path from state B and state By, which are defined in the
previous section. Because it is already known that an intermediate state A exists
between B and B; at small stress, we search for the transition path between B and
A, and between A and By separately under such conditions.

In the NEB method, one relaxes the energy of a .series of intermediate states con-
nected by artificial “clastic bands”, corresponding to a low energy transition path
between the initial and final states of intereét, e.g. B and A. Because the relaxation

can easily be “traﬁped” in a local energy minimum, one should perform simulated
| annealing technique to search for the global energy minimum of the transition path.
For simplicity however, steepest descend relaxation is used in this work, so that the
relaxed transition path depends critically on the choice of the initial guess. Nonefhe—
less, the result we obtained can be regarded as an upper bound of the true energy

barrier, and it can be a close approximation to the latter when the initial guess is
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Figure 5-5: Energy variation along the transition path between states B and B;via A
when the displacement of the top fixed layer is at dz = 0. The results with r¢,, = 254
() and 7oy = 154 (o) are indistinguishable.

reasonable.

Similar to the approach in [204], only a limited number of degrees of freedom
are included in the search for the minimum energy transition path. In this work,
only the atoms that are within a cut-off radius r.,; around the dislocation core are
included. When 7y = 254, 784 atoms are included, as compared with 1920 atoms in
the entire cell. The posiﬁon of the surrounding atoms in the intermediate states are
set to the linear interpolation values between those in the initial (B) and final (B,)
states. Fig. 5-5 shows the eﬁergy variation along the relaxed transition path with
Fewt = 254 and 7oy = 154 (288 atoms). The results from these two cut-off radius
are indistinguishable, indicating that coﬁvergence is reached. The energy barrier for
core transformation from B to A is about 45meV /A, while the barrier for the reverse
transformation is about SmeV/A. In the following discussions, ey = 25;1 is always
used. F1g 5-6 shows the ;energy variation along the transition path éorreéponding to
different displacements of bpundary 1ayer atoms. At the critical condition of dz =
3.334, the energy barrier vanishes, confirming the calculation of Peierls stress in the
previous section. One can also observe that at dz = 1.53A4, the energy barrier for

. stabilizing core A becomes very small, and core A is no longer a metastable state at
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Figure 5-6: Energy variation along the transition path at dz = 0 (thick line), dz =
1.53A (thin line) and dz = 3.33A (dash line).

larger strains.

5.3 Kink Structure and Energy

The energy barriers calculated in the previous section are for rigid translation of
straight dislocations, with the results expressed in unit of eV/A. In reality, the
dislocation does not move as a perfectly straight line, but through a double-kink
mechanism. As illustrated in Fig.2-14, a segment of the dislocation moves forward
first, creating two kinks, which then moves latefally away from each other. The two
energy parameters controlling this process are thé kink formation energy Ej and kink
migration barrier W,,,. One can give a rough estimate of the dislocation velocity based
on these two parameters using the Hirth-Lothe model [30] of kink diffusion (for more
details see Appendix C). In this section, we calculate Ej and W, of shuffle set screw
dislocation in Si using the SW potential.

Given the small energy difference between core A and B, in principle one would
need to consider the possibility of dissociation of kinks into partial kinks [205] con-
nected by a segment of core A, as shown in Fig. 5-7. This would be analogous to

the dissociation of glide set dislocations into partial dislocations enclosing an area of
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Figure 5-7: (a) Schematic of (full) kinks (K) between shuffle core B and B;. (b)
Schematic of dissociation of full kinks into partial kinks (PK) connected with a
segment of dislocation in core A.

vstackihg fault. Howéver, for the sake of simplicity, we will ignoré such complicatibn
in this section and assumé that the kinks are not dissociated.

Fig. 5-8 shows the atomic arrangements around a shuffle set screw dislocation with
a double-kink. It is created by pasting two atomic configurations with dislocations at

B and B; states (as defined in the previous section) respectively, followed by static
relaxation using the conjugate gradient method. The upper layer of fixed atoms are
displaced in —z direction by b/32 to accommpdate the internal plastic strain caused
by double-kinked segment. In Fig. 5-8(a) the twov kinks are separated by 20b, while
in (b) and (c), the left kink is displaced with respect to the right kink by +b and
—b, so that the kinks are separated By 19b and 20b respectively. According to the
kink classification method based on dislocation symmetry [206]; the left and right
kinks on shuffle set screw dislocation in Si are degenerate, provided that there are no
core reconstruction. The kink pair energy is then twice the energy of a single kink,
and is calculated by the difference between the relaxed energy of the double-kink |
configuration in Fig. 5-8(a) and that of the straight dislocation configuration. The
result is 2E}% = 1.456+0.1eV, i.e. Ex = 0.728 £ 0.05eV, with the ﬁncertainty residing
" in the estimation of the elastic energy difference between the straight and kinked
dislocation configurations. ’

As shown in Fig. 5-8, the kinks on shuffle set screw dislocations in Si are very
narrow, similar to those on the partial dislocations on thé glide set plane. Since all
_ three configurations in Fig. 5-8 are (rheta—) stable, there must exist an energy barrier
W to kinks to rﬁigra,te. Again, we calculate W,,, using the Nudged-Elastic-Band |

method.. A cut-off radius rey, = 154 is chosen and only the 968 atoms within 7y
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" Figure 5-9: Energy variation (solid curve) along the transition path of kink migration.
" The dashed curve is the result after a linear term corresponding to the residual stress
effect is subtracted. The peak of the dashed curve gives W, = 0.022¢V.

around the left kink are included in the path relaxation, while the total number of
atoms in this cell is 38400. Fig. 5-9 shows the energy variation along the transition
path in changing the kink péir width from 19b to 21b. Thé overall slope of the
energy curve indicates the existence of a residual stress in this simulation setﬁp. If
one subtracts off a linear terrh to counter balance this effect, one obtain the kink
migration barrier of Wm = 0.022 £ .001eV, from the peak of the dashed curve in
Flg 5-9. '

“As will be discussed in Chapter 7.2.3, the kink energy and mlgratlon barrier for
30° part_1als on the glide set is roughly Ej, = 0.7eV and W,,, = 1.2eV. Therefore, the
above calculation ﬁsing SW potential indicates that the kink energy for shuffle and
' gl@de set dislocations are about the same, while shuffle set perfect dislocations have
a much smaller kink migration energy than glide set partials. This is related to the
large atomic spacing across the shuffle set plane, which also gives rise to the much
smaller Peierls stress (2GPa) on vthe Shufﬁe set plane than that on the glide set plane
(~5GPa).

The above results do not agree with previous analysis using a quasi-elastic Peierls-
Nabarro model [22], where the double-kink nucleatlon energy barrier for shuffle set

screw d1slocat10n at zero stress is around 2. 4eV higher than tha,t for glide set partials
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(2.1eV). It was argued that [22] the higher energy barrier for double-kink nucleation
is due to the larger Burgers vector of the perfect shuffle dislocation. On the other -
hand, the Hirth-Lothe model [30] predicts the effective activation energy for double-
kink nucleation as Qnu. = 2FE + W..l. So that the atomistic calculation hefe predicts
Qe ~ 1.5eV for perfect shuffle set screw, much smaller than the Qpy. =~ 2.6V for 30°
partial on glide set plane. Although the SW potential may not necessarily describe
the atomic interactions in the dislocation core region very accurately, the results in
this section still cast doubts on the conclusions reached in the previous quasi-elastic
analysis. If later calculations using more sophisticated interatomic potential or first-
principles methods iconfirm that W, for shuffle set dislocations are Very small, it -
would 'then' be reasonably safe to conclude that, shuffle set dislocations always move

faster than glide set dislocations, under all temperature and stress conditions.

With the above arguments made, we feel.'obliged to give an explanation on the
predominance of glide set dislocations under usual experimental conditions (e.g. with-
out confining pressure), because one would expect the shuffle set dislocations to be
‘dominant if they are much easier to move and hence to operate. This apparent para-
dox would be resolved, without resorting to a reverse of the relative mobilities of
glide and shuffle dislocation, if one notices that by dissociation on the glide plane the
dislocation lowers its core energy, thus making p‘érfeét shuffle set dislocations thermo-
dynamically unstable. One can envision that all the shuffle set dislocation segments
are irreversibly becoming dissociated on the glide set plane. Define the density of
shufﬂe‘set and glide set dislocations as p, aﬁd Pg respectively,'i one can write down the ‘

following equation,

:P's = M, ('7—; Us)ps - jdissps : (52)
ﬁg = Mg(Ta 'Ug)pg + jdissps | ) (53)
€ = pPsUsb+ pyugh (5.4)

1The effective activation energy for thé dislocation velocity is the average of Q.. and W,,,, which
. 18 Q = Ey + W,,. For more details see Appendix C.
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where 7 is the shear stress and € is the strain rate, v, and v, are the velocities of
shuffle and glide set dislocations respectively. jqiss is the dissociation rate of the
shuffle set dislocation. M,(r,v,) and M,(7,v,) are the multiplication rates for shuffle
and glide set dislocations, a.nd one may use M(7,v;) = Ctv, and Ms(f, vy) = CTuy,
with a constant C, folloWing Alexander [8]. In this picture, whether or not the
shuffle set dislocation will become the dominant carrier of the plastic deformation
depends critically on the relative magnitude of the multiplication rate M,(7,v,) and
dissociation rate jgiss-

The situation would become even more unfavorable for shuffle set dislocations if -
one consider the situation where only a fraction of the dislocation population are
moving at any instant of time, while the stresses on other dislocations are not large
enough to break them away from their interactions with surrounding defects. For
glide set dislocations, one would expect th:a remaining dislocations to become mobile
at higher stresses (strain hardening). But for shuffle set dislocations, they would be
irreversibly converted into dissociated glide set &islocation_s during the waiting period.
Although a quantitative model incorporating these effects are still lacking so far, we
believe that for a conclusive explanation on which type of dislocation is dominant,
one has to account for the relat'n-/e magnitude of multiplication and annihilation rate
of shuffle set dislocations. In thi.s‘ sense, it is inherently a multi—dislocation problem

and could not be explained by the mobility change of individual dislocations.

Therefore the shuffle-glide controversy still remains open. The situation would
look even more complicated than what has been discussed above, if in addition to the
competition between perfect shuffle and dissociated glide dislocatibns, one consider
partial dislocations on the shuffle set plane — a glide set partial would climb to the
shufﬂe set plane by absorbing a row of vacanéies or interstitials. A recent stu&y
by Justo et al. [37] on the free energy of vacancies in the core of 30° partial has
showed that the vacancy concentration in the core is very low at thérmal equilibrium.
‘However, the poséib’ility of shuffle set partiéls has not been ruled out yet Because the
dislocation processes diuring deformation are by definition under the condition that

is far away from equilibrium.
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5.4 Dislocation Motion by Molecular Dynamics

Similar to what we discussed in the previous sections, current works on atomistic
studies of dislocations have been mainly focused on static relaxations, in trying to
determine zero temperature structure and ground state energies, as well as tran-
sition energy bafriers for dislocations and kinks. In comparison, direct modeling of
dislocation motion at finite temperature by Molecular Dynamics (MD) has not, unfor-
tunately, been applied extensively. The importance of finite temperature dynamical
simulations, however, can hardly be overstated. Logically, one should perform dynam-
ical simulations ﬁ'rst, and after having identified the controlling atomic mechanisms
of the process, then use refined static relaxation method to pinpoint the key energy
parameters. However, it seems to be common practice to initiate static relaxation
Ealcﬁlations to determine energy parameters for postulated atomic mechanisms. It is
“part of the purpose of this Thesis to provide a reminder that in the end, the validity
or relevance of such static calculations should be double-checked by either putting
them into a mechanistic mesoscopic model (e.g. Chapter 7, 8) that can connect with
experiments, or, by comparing zero temperature results with direct dynamical sim-
ulations. Oniy after the static and dynamic studies start to form a coherent theory
can one be confident to claim a complete understanding of the atomic mechanisms of

the process of interest.

Comparing with static relaxation methods, the main limitations of conventional
MD method is on the time scale of the processes that it can follow. Typical physical
times in MD simulations are between 1025 and 107, leaving direct simulations of
the so called “rare events” happening on the scale of 1072 ~ 1s out of the the question.
-On the other hand, MD simulations on dislocation-mobility problems‘ are usually
hindered by other technical difficulties that are definitely :tllo‘t‘insurmounvtable, such
as the setup of boundary conditions and fhe automatic identification of dislocationsv
during the simulation. In this section, we discuss a set of MD simulations on the
“motion of shuﬁ‘le set-sc'r.ew dislocations in Si, in trying to demonstrate the capability

of MD simulations on uncovering atomistic details and brining new understandings
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~ Figure 5—10:_ Variation of the internal stress during MD simulations of shuffie set
~ screw dislocation motion at 10K under constant shear strain rate (see text).

that are not apparent from zero temperature reéults alone.

The MD simulations in this section used the same atomic cell and boundary condi-
tions as shown in Fig. 5-2, éonsisting of 1920 atoms. The Newton’s equation of motior_l
for the atoms are integrated by Gear’s 6th order predictor-corrector method [131],
ﬁsing a timestep of 5 x 10~'%s. The simulation starts with 1000 equilibration steps
where the velocities are rescaled to maintain the desired temperature. After that,
~ the temperature is controlled by the Nose-Hoover thermostat [207, 132]. The two
_layers‘of fixed atoms are displaced with respect to each other in z direction at each
timestep with a sPeéd of 0.02b/ps. Under this constant shear strain rate loading con-

dition, the average dislocation velocity is maintained as 0.32h,/ps ~ 106m/s, where
hs = bV/3/2 _ 3.33A is the lattice repeat distance along the glide direction of the
screw dislocation. |

Following Chang [208], the dislocation core position is identified automatically
during the simulation in the following way. First, a time average (over 100 timesteﬁs
in this case) of the energy for each atom is calculated and the atom with the largest

energy is selected. The dislocation core is identified as the average positions of atoms
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Figure 5-11: Instantaneous dislocation position during MD snnulatlons under the
same condition as Fig. 5-10.
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Figure 5-12: (a) Magnified view of stress variation in Fig. 5-10. (b) Magnified view
of dislocation displacement along z in Fig. 5-11.
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within a cut-off radiug (44 in this case), weighted by their time averaged energies.

Fig.5-10 shows the internal stress variation during the‘simulation. 0y exerts f_orce
on the dislocation in the z direction, and is called glide stress, while Oz, exerts force
in the —y direction and is called non—glide stress. Although only glide strain is ap-
plied, non-glide stress component arises due to the elastic anisotropy of the crystal.
As shown in Fig.5-11, the dislocation moves by pure glide. Here the displacement
in z direction is plotted in unit of A, the lattice repeat distance along z, and that
in y direction is plotted in unit of hy = [111]/3, the minimum separation between
equivalent shuffle set slip planes. The dislocation glide seems to be highly inhomo-
geneous in time. As shown in Fig.5-12, the dislocation suddenly moves over. 10h,
during a period of 2.4ps, and relieves stress 0y, from 1.5GPa to 0. The instantaneous
dislocation vélocity during this period is then 1400m/s, comparable with fhe sound
speed 2200m/s. The fact that the dislocatipn can stay mobile till the glide stress
drops to essentially zero is a very surprising behavior, especially in Si where the lat-
tice resistance is expect to be large. This is different from the screw dislocations
in Mo that will be discussed in the next Chapter, where the glide stress needs to -
be maintained close to the Peierls stress (also about 2GPa) to keep the dislocation
moving. The origiri for this exceptionally high mobility of shuffle set dislocation in
Si (once the motion starts) could be either due to a different cdre structure for a
moving dislocation, or due to the extremely low radiationvloss when the dislocation
overcomes a Peierls barrier. ‘F“‘urther study to identify the underlying mechanism is
necessary. At this point, it is intefesting to note that a direct Molecular Dynamics
simulation on a single dislocation can give rise to pronounced plasticity instabilities in
a constant strain rate deformation, which resembles the Portevin-Le Chatelier effect

in real experiments [209,’ 210].

Fig. 5-13 and 5-14 show the internal stress variation and the instantaneous ‘dislo- |
cation position during the simulation at 300K The dislocation starts to move a much
smaller vstr'ess, below 1GPa, although the internal stress occasionally exceeds 1.5GPa.
Sudden dislocation Jumps over large distances are still observed, while jumps over

small distances are more frequent than in the case of 10K. The major difference of
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Figure 5-13: Variation of the internal stress during MD simulations of shuffle set screw
dislocation motion at 300K under constant shear strain rate 7,, = 4.08 x 10™4ps~.
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Figure 5-14: Instantaneous dislocation position during MD simulations under the
same condition as Fig. 5-13. :
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dislocation motion at this temperé,ture from that in 10K is that it also cross slips in
the —y direction. In response, the boundary atoms automatically generates a back
stress 0, exerting a force on the dislocation in the +y direction, trying to suppress
further cross slip. At the end of the simulation, the dislocation has cross slipped for
9 planes below its original plane.

Fig. 5-15 and 5-16 show the instantaneous atomic positions at 150ps and 400ps
during the MD simulation. It is clear that the dislocation has cross slipped for 4 and
9 planes downwards respectively. Slip traces are also created in the crystal where
the dislocation has passed for mliltiple times through the simulation cell. The reason
that cross slip only occurs downwards is due to the slip geometry of Si. As illustrated
in Fig.5-2(a), there are only two types of shuffle set plane, S; and S, on which the
dislocation can glide. When the dislocation moves to the right, it is likely £0 cross slip
downwards. One would expect that when the loading stress is reversed, the dislocation
would move to the left and is likely to cross slip upwards at high temperatures. We

are performing more MD simulations to test this claim.
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Figure 5-15: Snapshot at 150ps of MD simulation at 300K (see text). Atoms with
instantaneous energy higher than —4.5¢V are plotted dark. Slip steps are created

where the dislocation has pass through the cell for multiple times. (a) Front view.
(b) Side view. '
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Figure 5-16: Snapshot at 400ps of MD simulation at 300K (see Fig. 5-15). (a) Front
view. (b) Side view.
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Chapter 6

At‘OmistiCStudy of Dislocations in

Mo

This Chapter presents atomistic studies of screw, edge and n:ixed 71° dislocations in
BCC metal Mo, using the Finnis-Sinclair (F'S) potential. It is found that the Peierls
barrier varies significantly for these diélocations, and that it seems to be closely related
with the dislocation core structure. The compactness of mixed 71° dislocation core
results in much higher Peierls stress than that of edge dislocation. The non-planar

shape screw dislocation core leads to a further increase of the Peierls stress. Direct

Molecular Dynamics (MD) simulations are carried out to study the glide and cross -

slip of straight screw dislocation under high stresses at two different temperatures.

6.1 Core Structure

Fig. 6-1 shows the atomistic simulation cell containirig a single screw dislocation under |
periodic boundary conditions (pbc) in two directions (z, z)iand fixed boundary in y
difection, similar to the one used in the previous Chapter. The cell dimensioﬁs are
8[112] along i, 18[110] along y and 5[111]/2 along z, containing 4320 Mo atoms. The
dislocation Burgers vector is b = [111]/2. A step of size b vpresences in the crystal
below the dislocation, as can be seen in bottom view of the lower fixed layer in Fig. 6-

1(c). Atoms with energy higher than —6.72eV are plotted in dark color, to indicate
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the region of the dislocation coré. In comparison, the energy per atom in perfect
lattice is —6.82eV. The screw dislocation is observed to undergo spontaneous core
reconstruction, leading to two energetically degenerate but topologically distinct core
structure, each having only three fold symmetry. The two possible core structures
are shown in detail in Fig.6-2 and Fig.6-3, and are defined to have polarity +1 and
—1 respectively. Obviously, the screw dislocation core is non-planar, which leads to

the exceptionally high Peierls barrier as compared with other dislocations.

Fig. 6-4 shows the simulation cell containing a single mixed dislocatibn, with cell
- dimensions being 10[121] along z, 24[T01] along y and 5[111]/2 along z, containing
7080 atoms. The dislocation Burgers vector is b = [111]/2. Since its line direction
is at 71° degree with respect to the Burgers vector, it is called mixed 71° degree
dislocation. Mixed 71° and screw dislocations are the only two dislocations on the
(110) (y) slip plane whose line direction lies along the close packed (111) direction.
Because the Burgers vector has edge component, atoms are removed in a half plane
beiow the dislocation, so that the upper and lower fixed layer have different number
of atoms. As shown in Fig.6-5, the core structure of mixed 7 1° dislocation is planar,
and has a well defined center, where the two léyers of atoms (above and below the

glide plane) are perfectly aligned.

Fig. 6-6 shows the simulation cell containing-a single edge dislocation. In this case,
the cell has length 20[111]/2 along z, 24[101] along y and 3[151] along z, containing
8424 atoms. The dislocation Burgers vector is b= [111]/2, along z direction. Because
the Burgers vector is purely edge, more atoms are removed in a half plane beiow
the dislocation. The crystal below the dislocation only 19 repeat distances aloﬁg x
direction. As shown in Fig.6-7, the edge dislocation core is also planar. In contrast
to that of mixed 71° dislocation, the edge core does not seem to have a well defined
center regioh, Le. its Burgers vector seems to be more diffused. As will be discussed in

. the next section, this leads to an exceptionally low Peierls barrier for édge dislocation.
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Figure 6-1: Simulation cell containing a single screw dislocation. (a) Front view. The
cell is periodic along z (horizontal) and z (out of the plane) axises. Dislocation line
is along z axis. Fixed atoms are plotted in grey. Atoms with energy higher than
—6.72eV are shown in dark color. (b) Top view of the upper fixed atom layer. (c)
Bottom view of the lower fixed atom layer. '
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Figure 6-2: Core structure of screw dislocation with polarity +1. (a) 3D view. (b)
Top view. (c) Side View.

Figure 6-3: Core structure of screw dislocation with polarity —1. (a) 3D view. (b)
Top view. (c) Side View. ' :

156 -




069652500262626262020262626202020C020C0 0000 ®
026202080202020909020908020808080808080808e 205
@@@@@ooooooooooooooooooooooomwwmwwmmwmwwmwmwwmw®
096902680969590202e
9863080803680308630303030303030308030302020
09050503080303030303050303030203030308030505 050
090803080308030803030208630363030303030305096509
903630808030303690969626202020903e8e
090203030803030303eSe0e
0980303030303050303030905@
020808090050305080005030505068680
0202020620208020202897950505050589695000680
02020262026262620862020860503030303030303030600@
000 ooooooooooooooooooouooooooowmwmwmwmwwmmwwwM
80080308080800030500080005009688252626258620
900605050506005855030300e00050696305605059586969
630908080%e20
6309030802
osiatsssccreesese
26902020803636303030 oooooomomommwwmmwmwwmwwmmm@
[0)4(8) 00
oot s s
0303080803989696 02620808086863086%02020
0050808080308080506303080309620363030508020
020208030
080000000008000083088080000000000003000003089989
- 626203630308630!
02020269690202630363080305030303030303030306€
096803030803080308°80806980606°6°5°6°6°6°6 626 %

Figure 6-4: Simulation cell containing a single mixed 71° dislocation. (a) Front view.
Dislocation line is along z axis. Atoms with energy higher than —6.72eV are shown

in dark color. (b) Top view. (c) Bottom view.
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Figure 6-5: Core structure of mixed 71° dislocation. (a) 3D view. (b) Top view.
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Figure 6-6

(c) Bottom view.
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(b)

Figure 6-7: Core structure of an edge dislocation. (a) 3D view. (b) Top view.
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0.5

dz/b"

Figure 6-8: Total energy variation AE of the relaxed structure containing a screw
dislocation (Fig. 6-1) as a function of the displacement dz of the upper layer of fixed
atoms. The initial dislocation positions are at the origin (solid line), and (b) one
repeat distance h, = 24/2b/3 to the right (dash line) respectively.

6.2 DPeierls Stress

In this section, we present results on the Peierls stress for the above three types of
dislocation, using similar approaches as in the previous Chapter. Specifically, the
relative displacement dl - (dz,0,dz) between the upper and lower layer of fixed
5toms is changed in small steps along the Burgers vector, until dislocation motion is
- observed. The Peierls stress (and sometimes the Peierls energy barrier) is obtained
by ﬁlonitoring the relaxed total energy of the cell as a function of di.

In the case of screw dislocation, the Burgers Vectbr is along z direction, i.e. dl =
dz. Fig. 6-8 shows the variation of the total energy after relaxation at each dz.
- The solid line, defined as Ey, representé the case where the disldcation is iﬁitially at
origin. Thfa dash line, defined as Fj, correspond to the dislocation initially at one

. repeat distance h5‘=‘2\/§b/3 = 2.57A to the right. At the critical displacement of
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dz =~ 0.43b, the dislocation in state Ey becomes unstable. It mo%res forward in =
direction by 2h, (as checked by the atomic structures) and suddenly relieves the total
energy.! At even larger dz, the dislocations in state E; starts to move as well. The
~ system is translationally invariant with respect to the initial dislocation pésition, as
can be seem from the same shape of Ey and E; curves. The measure of the critical
driving force is defined [199] as the maximum difference between Fy and Ey, and is

AE, = 1.3040.01eV. This can be converted to the usually used Peierls stress as
1,(screw) = AE,/(bh,L,) = 2.18 % 0.02GPa, (6.1)

where L, is the cell length in‘the z direction. This is smaller than the previous
result [162] uéing MGPT potential, which gives 7,(screw) = 3.4GPa. The average
Virial stress in the cell can be estimatéd fromr the derivative of AE against dz, i.e.

= d(AE)/dz/L,/L,, where L, is the cell 1ength in the z direction. Near the critical
region, the critical average stress is found to be 7, =231+ 0.02GPa, within 6% of
the Peierls stress 7, from the energy criteria.

Since the microstructure of BCC metals at low temperature mainly consists of
screw dislocations, the Peierls stress of screw c‘omputed from atomisﬁc simulations is
usually compared with the experiment_ally measured yield stress, or critical resolved
shear stress (CRSS) at near zero temperature. From Chapter 2, the CRSS for Mo
‘at the zero temperature limit is 750MPa, which is about 3 times smaller than the
Tp = 2.18GPa from the above calculation. This factor of 3 difference be atomistic and
experiments results are common for most BCC metals, whose origin is not clear so
far. It was argued that the experimentally observed CRSS could be the result of the
collective behavior of an ensemble of diSlocations, and hence vmay not correspond to
the critical stress to move a single dislocation[211, 70].

Similar results for mixed 71° dislocation are shown in Fig. 6-9. The dislocqtion

is initially at the origin. When a critical displacement dl is reached, it suddenly

1The fact that the dislocation moves forward by two repeat distances whenever the system be—
. comes unstable is related with the system size and the relaxatlon algorithm; it is not an intrinsic -
property of the dislocation. -
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Figure 6-9: Total energy variation AF of the relaxed structure containing a mixed
71° dislocation (Fig. 6-4) as a function of the displacement dl of the upper layer of
fixed atoms.
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Figure 6-10: Total energy variation AE of the relaxed structure containing an edge
dislocation (Fig. 6-6) as a function of the displacement dz of the upper layer of fixed

atoms.

moves to the next lattice site and relieves the total energy. By checking the atomic
configurations, it is found that the dislocation moves by exactly one lattice repeat
distance h,, = h,. The critical energy can then be deduced from the single curve as
the magﬁitude vof the énergy drop at the discontinuity, AE, = 0.19 & 0.003eV. Thg

corresponding Peierls stress is then
1(71°) = AE,/(bhmL,) = 320 + 5MPa, o (6.2)

The average stress of the cell at the criticai'condition is estimated to be 7. =
d(AE)/dl/L,/L, = 375 + 5MPa, which is within 20% of the estimation based on
" the energy criteria.

In the above two calculations, the screw and mixed 71° dislocations behave sim-

. ilarly. However, the results on edge dislocation seems to be qualitatively different.
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As shown in Fig. 6-10, the totall energy changes smoothly from one minimum to
another, without any discontinuity or instability. By analyzing the atomic configu-
rations, it is found that each of the energy minimum corresponds to a equilibrium
position of the dislocation separating from neighboring ones by exactly the lattice
repeat distance he = b/3 in z direction. The appearance of the smooth transition is
the result of the exceedingly small lattice resistance to the dislocation motion. Thé
lattice energy barrier is estimated to be the largest energy increase in Fig. 6-10, i.e.
Ep(edge) = 1.38 x 10-%V. The Peierls stress is estimated from the maximum average

stress, i.e.
Tp(edge) = AE,/(bh.L,) = 20 &+ 4MPa. (6.3)

The choice of error bar is base on the previous estimation (om 71° dislocation) that
the maximum Virial stress could be 20% off the “true” value of the Peierls stress.
It should be emphasized that the determination of Peierls stress for edge dislocation
- is beyond the aécuracy limit of empirical potential models, becauée the total energy

variation is below 2meV as shown in Fig. 6-10.

The edge dislocation Peierls stress estimated here is considerably smaller than vthe
previous prediction [163] of Tp(edge) = 0.003 ~ 0.005u = 400 ~ 7OOMPa, if one takes
shear modulus p = 137GPa [162]. If the present calculation is correct, it is then un-
necessafy to rely ‘on kink mechanism to explain the large mobility difference between
edge and screw dislocations, as did in [163]. As the loading stress cén easily exceed
the Peierls stress, kinks may not even be stable on edge dislocations, which would -
‘move more like a smooth spring than a series of kinked segments. The large “Peierls
stress” in the previous calculation is very likely to be contaminated by artificial im-
age stresses from the boundary, whi¢h can easily be on the order of 100MPa. In the
present calculation, such artifacts do not exist, because the boundary conditions are
manifestly translational invariant on the dislocation glide plahe. As a result, we are

able to capture the periodic energy variation due to the lattice resistance on the scale

 of 0.001eV.
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6.3 Kink on Screw Dislocatio»n

Due to the high Peierls stress of screw dislocations, their motion under normal .stiress
conditions is through the double-kink mechanism. The activation energies for double-
kink nucleation at different stress are then the material parameter that controls the
rate of plastic flow. Recently, such energy barriers are calculated [70] by the Nudged-
Elastic-Band method using the Embedded Atom Method (EAM) potential for Fe. In
this section, we present the results of a less ambitious calculation, on the formation
energy Ey, of a widely separated kink pair and the energy barrier W, for the kink
pair expansion. The dislocation velocity can be estimated once these two energy
parameters are known, based on the Hirth-Lothe [30] model of kink diffusion (see
Appendix C for details).

Fig. 6-11 shows-the atomic core structure of the screw dislocation with a double
kink. Only the atoms with local energy exceeding —6.72eV are shown. This con-
figuration is created by pasting together two configurations with offset dislocation
positions (by one lattice repeat distance hs), followed by energy minimization. The
upper layer of the fixed atoms are displaced by /48 in z direction to accommodate
the plastic strain due to the double-kink. Previous calculations such as [70] have
shown that double-kink nucleation is the easiest when it is companied by a change of
polarity from p = +1 to p = —1. The configuration created here corresponds to this
case. It is obvious that the left and the right kink are topologically different, which
can be seen most easily in Fig. 6-11(d). This is because the 180° rotation around
the [111] axis is not a symmetry operation in the BCC host lattice [206]. The two
kinks are also different because they are combined with different core reconstruction
' defects (RD) due to the change of polarity across the kink. The kink pair energy is
estimated as the excess energy of the kinked structure with respect to that of the

straight dislocation, which is
By = 1.63eV. (6.4) -

. This is somewhat smaller than the previous prediction [162] using MGPT potential,

166 -

e T S S



d

(

Figure 6-11: Core structure of a screw dislocation containing a double-kink. (a) 3D

view. (b) Front view. (c) Side view. (d) Top view.
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Figure 6-12: Total energy variation AE of the relaxed structure containing a double-
kinked screw dislocation (Fig. 6-11) as a function of the displacement dz of the upper
layer of fixed atoms.

which gives Ejy, = 2eV. Recalling the comparison on Peierls stress calculations in the
previous section, it is reasonable to say that the MGPT potential predicts a “stiffer”
dislocation core than F'S potential, most probably due to the explicit angular term

for directional bonding_' in MGPT.

" The secondary Peierls bérri‘er, i.e. the energy barrier to move kinks, are calculated
by displacing the upper layer of the ﬁxed atoms in small steps and recording the
relaxed energy. As shown in Fig.6-12, the structure becomes unstable (due to the
mutual vattraqtion between the two kinks) at dz > 0.04b. The maximum energy
increase is taken as an estimation of the kink migration barrier, i.e. Wi, ~ 0.009V.
The secondary Peierls stress, i.e. | the critical stress for kink migration is estimatedr
from the maximum Virial stress as 7,, ~ 27MPa. Thus the Peierls-vstress for kink

migration on screw dislocation is on the same scale as that for the edge dislocation,
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both being very small.

6.4 Dislocation Motion by Molecular Dynamics

In this section, we explore the dynamical behavior of a screw dislocation under high
stress at finite tempel;ature. For simplicity, the simulation cell is rather thin (5b)
along the dislocation line, so that kink processes are artificially suppressed and the'
systerh is essentially 2-dimensional. The same simulation cell as in Fig. 6-1 is used
and the two boundary layers are displaced with each other at every timestep with
a speed of 0.01b/ps in z direction. Under this constant shear strain rate loading,
the average dislocation velocity is maintained at 0.24h,/ps ~ 62m/é. The integra-
tor, timestep, equilibration and temperature control methods are the same as in the
previous Chapter. | |

Fig. 6-13 shows the internal stress variation during the simulation at 10K. The
glide stress o, is observed to oscillate violently around the Peierls stress (2GPa).
Eveh though only glide strain is applied, non-glide stress o, which exerts forces on
the dislocation in the 'y direction was maintained at a small negative value due to
elastic anisotropy. Fig. 6-14 shows the instantaneous dislocation core position in z
and y direction as a function of time, in units of the h, and h, respectively, where
h, = [112]/3 is the lattice repeat distance along the (screw) dislocation glide direction
and A, = [170]/2 is the minimum separation between equivalent ‘(1TO) slip planes.

The dislocation stafts to glide in z direction after the stress reached Peierls stress
at around 50ps. The glide continues on the y = 0 plane until at around 380ps,
when the dislocation cross slipped in the +y direction. The fixed boundary then
automatically created a large stress of o, ~ 1.2GPa in response, which acted a force
on the dislocation in the —y direction. Downward (—y direction) cross slip did not
occur and o, remains near a constant till the end of the simulation. |

Although in the current simulation setup, the dislocation is allowed to cross slip
in both the +y and —y direction, the former is always preferfed. This is the manifes-

tation of the twinning-antitwinning asymmetry of the BCC lattice. The fact that the
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crbss slip preference in Mo (this Chapter) and that in Si (previous Chapter) comes
from different origin can be appreciated in the following experiment. In the case of
Si, a reverse of loading direction would result in a reverse of the cross slip prefer-
~ence, as well as the dislocation glide'direction. In the case of Mo here, the reverse
of loading direction only changes the dislocation glide direction but the upward cross
slip preference remains. This preference is consistent with the previous’prediction
by the line tension model [212], favoring the double-kink nucleation in the upward
direction against the downward direction, in the limit of large glide stress. The dislo-
cation glide seems to be non-homogeneous in time, consisting of hibernation periods
of about 5-10ps and sudden jumps over a few lattice repeat distances. A detailed plot
of this jverky motion is shown in Fig. 6-15(a). The same seems to be true for cross
slip as well, as shown in Fig. 6-15(b). :

The dislocation core during glide seems to take a plémar structure, as shown
in Fig. 6-16(a) and (g). Cross slips are initiated when the planar core becomes
bifurcated, as shown in Fig. 6-16(b) and (c), most probably due to the scattering
with random phonon waves. It is observed that after some initial oscillations over
the upper and lower bifurcation branches, the upper braﬁch always become dominant
in the end, and the dislocation cross slips upwards. Due to the back stress of the
ﬁxed boundary, the dislocation is then forced to glide on the horizontal plane after
moving upward for a few lattice distances. The instantaneous configurations during
367.5ps to 395.0ps are shown in Fig. 6-16. to illustrate the atomistic pathway of cross
slip. Atoms with local energy higher than —6.72eV are plotted dark representing

dislocation core. »

At 300K, the dislocation starts to move a much lower stress (around 1.4GPa), as
shown in Fig.6-17. Cross slip also occurred earlier and more frequently than in the
case of 10K. As a result, the stress component o, quickly reaches an equilibrium of
around 1.7GPa, exerting a force in —y direction suppressing further cross slip. The

‘dislocation was then oscillating between slip planes y = 4 and y = 5, as shown in

Fig. 6-18.

In summary, our MD simulations of a straight screw dislocation in Mo have re-
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Figure 6-13: Variation of the internal stress during MD simulations of screw disloca-
tion motion at 10K under constant shear strain rate (see text).

100
30|
601
401

20

T

0 100 200 300 400
' t (ps)

Figure 6-14: Instantaneous dislocation p081t10n durlng MD simulations under the
same cond1t1on as Fig. 6-13.
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Figure 6-15: Instantaneous dislocation position.during the same MD simulation as 1n

Fig. 6-13.

vealed its jerky mode of motion, as well as a cross slip asymmetry. The dislocation

core also assumes a more planar shape during the motion. It would be worthwhile to

see how Ivnubch of these behaviors still remains when dislocdtipns are long enough to

allow kink nucleation and migration.

172




it
-

)395.0ps

w [99) 0
N 2,
) S 0 e
(o] (@] D~
I~ o0 0
o™ o o
o [ =
(C N— N’
S
002000260,
SRRt
g e
2 3 N
(@8 O O
E £ .
S - 2 BSEseans ittt
o~ b~ oty 5 3000503500326559)
el @ L) o5 0805530307
~ —~ = e000000000003000380
o) [ mo oooooomo oowmmmm
20268 50308030805030608
aaaeow.@uo SE0523000! 0020
65080 0303060 59600
e
Oa%5002,
s
5208680830863680805
826803 63050203
. wn  GB0R503880508 0 w
A 2, 2,
0 < 10
. 5 2
S o= 2]
[3p] [2rN o
2 2 3
(a N— N—’

(

Figure 6-16: Instantaneous configurations during MD simulation (see text) showing

the atomistic pathway for screw dislocation cross slip.
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Figure 6-17: Variation of the internal stress during MD simulations of screw disloca~
tion motion at 300K under the same strain rate as in Fig. 6-13.
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Figure 6-18: Instantaneous d1slocat10n position durmg the same MD simulation as in ’
Fig. 6-17..
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Chapter 7

Mesoscale Study of Dislocation in

Si

7.1 Introduction

As we have seen from Chapter 5 and 6, the study of dislocation motion by direct

Molecular Dynamics simulations is limited in both length and time scales. Disloca-

tions in MD are typically 1004 in length, while in experiments they are usually over

100ur’n [44].- At the same time, typical MD simulation timesteps are on the order of
1fs (107%5s), so that a million timesteps would only reach Ins (10~%). However, the

average displacement of the fastest dislocation over 1ns in a typical experiment [44]

would only be 1072A. This s_,imply means that no dislocation motion will be ob-

served at all dﬁring the MD simulation, if the temperature and stress conditions are

comparable with those in experiments, since the lattice spacing in Si is around 34.

Ther‘efbre, it is obvious that direction MD is not able to produce dislocation mobility
data on the same scale as where typical experiments are performed.

On the other hand, we have seen from previous Chapters that dislocations do start
to move in MD simulations, whenever the applied shear stress reaéhes the Peierls
stress (around 2GPa). But this sfress is too high compared with that in typical
experiments, which is around 1-100MPa, and the mechanisms of dislocation motion

in theSe.tWo stress regimes are different too. In the high stress regime, phonon
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radiation loss and dislocatioii-pholnon scattering are the speed limiting mechanisms.
Dislocation velocity in this regime are typically higher than 1m/s, and can become
comparable with sound‘velocity (2200m/s). In the low stress regime, where most
experiments are performed, dislocations move by nucleation and migration of kinks
with the aid of thermal fluctuation. Each elementary kink process is an rare event with
an energy barrier of 1 ~ 2eV. Due to the fundamental difference in their mechanisms,
dislocation mobility data by MD simulations are usually not directly comparable with

experimental results.

- As the dislocation dissociation and kink mechanisms became well established in
Si (see Chapter 2 for details), much theoretical effort has been spent on obtaining
accurate activation parameters for kink nucleation and migration on 30° and 90°
partials by energy minimization [204, 213, 214, 215, 216]. The kink energies are
uéually compared with the (;ffective activation energy () obtained from an Arrhenius
fit of the experimental velocity-temperature curve. Such a comparison is heretofore ‘
based on the generic kink diffusion model by Hirth and Lothe [30] (from here on
referred to as the H-L model). However, it‘Wasv'evidént that the H-L model is not
able to explain a number of observed mobility behaviors, such as the nonlinear velocity
~stress dependence at low stresses, and has to rely on additional ad hoc assumptions
“such as “weak obstacles” to fit with experiments. Such difficulties are mostly due to
‘the idealization in the H-I. model, where non—intefacting kinks nucleate and migrate
on a sin"gle dislocation line (more details in Appendix C). It ignores a niimber of
important physical mechanisms, such as the elastic interaction b‘etvveen kinks, and

moreiinportantiy, the coupling between the two partials.

Considering the limitations of existing methods as discussed above, what is lacking
so far is a theoretical description which is sufficiently free of ad hoc assumptions and
capable of relating dislocation mobility behavior to the underlying kink mechanisms.
In this section, we present such a desbription by adopting a kinetic Monte Carlo
(kMQC) treatment kink nucleation, migration and annihilation processes along with-
full elastic interactions between the dissociated partial dislocations. The formulation

. is designed to produce the overall dislocation movement as the cumulative effect of a
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large number of individual kink évents, requiring for input only the kink formation
and migration energies from atomistic calculations. This is a typical typ/e (b) coupling
between the atomistic and meso séales as we have discussed in Chapter 1.

In Section 1, we present the implementation details of the kMC method, focusing
on the treatment of double-kink nucleation processes and the choice of kink ener-
gies. Theoretical predictions on the temperature and stress dependence of dislocation
velocities, and their comparison With experiments are discussed in Section 2. In fo-
cusing on the stress dependence of dislocation velocity, we show that it is strongly
affected by the compatibility between the averaged separation between the partials
vand the period of the Peierls barrier, and can lead to a sublinear behavior when they
are compatible. As a result, the nature of “weak obstacles” to kink propagation, a
longstanding postulate in previous data interpretation, is clarified. This also leads
to :;—i, prediction of non-monotonic oscillatory behavior of dislocation velocity with
increasing stress for a particular loadihg diréction, which we offer for experimental

verification.

7.2 Kinetic Monte Carlo Method

7.2.1 General Settings

Kinetic Monte Carlo (kMC) method is generally used to simulate the evolution of
a physical system through numerical sampling of (Markovian) stochastic processes.
While the traditional Monte Carlo (MC) method is applied to sample systems in
or close to the thermal equilibrium, kMC has a “kinetic” -character, in that it also
evolves the system in real physical time making it possible fo study non-equilibrium .
processes [133]. A connection between Monte Carlo timesteps and the real physical
time has been discussed Within< the theory of Poisson processes [217]. The appeal of
the kMC method is that it can treat large length- and long time-scale kinetic response
while incorporating atomistic information, through appropriately determined transi-

. tion rates. For example, it is widely used to simulate surface diffusion and growth -
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leading partial (1)

trailing partial (2)
2

- <110> *

Figure 7-1: Schematics of kMC model of dislocation in Si. Screw dislocation with
Burgers vector b is dissociated into leading and trailing 30° partials, with Burgers
vector b; and by respectively. Elementary kink width is b, while ink height is h =
v/3/2 b. An embryonic double-kink nucleation event is shown at position I, and a
kink migration event is shown at position II, both in dashed lines.

processes [218], in which the energy barriers for the atomic mechanisms are obtained
from atomistic calculations.

However, the kMC study of dislocation motion has a fundamental difference from
that of the surface growth processes. Due to the lower dimensionality of dislocation
line, the surrounding elastic medium transmit stresé fields which couples different
parts of the dislocation line. Thereforé, kMC model of dislocation motion needs to
incorporate long range elastic interactions, in contrast fo the case of surface growth
where only local rules are necessary.

Fig. 7-1 shows a schematic representation of a screw dislocation in Si that we study
in our kinetic Monte Carlo model. The dislocation line is lying mostly along the (110)
direction (z axis), dissociated into two 30° partials, with Burgers vectors b; and by,
respectively. Each partial consists is represented by a series of horizontal (H) and
vertical (V) segments. H segmehts have length in multiple of b, the Burgers vector
- and the V segments have length h = v/3b/2, the kink height. The area enclosed by
the two partials (shaded) is the stacking fault, Whose width is always a multiple of k.

Each partial can migrate upward or downward along (112) (z axis) through a series
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of segmental events. On the H-segment double-kinks can nucleate in the upward or
downward directions, while the V-segment can migrate to the left or right (indicated
by the dashed lines). |

The choice of z and z as the axis of this planar model (instead of z and y) may
need some justification. It is to ensure that the dislocation line is along z direction
and that its motion is along z direction, so as to be consistent with our atomistic
models (see Chapter 5, 6), as well as the convention used by Duesbery [163].

The dislocation is represented in the computer by two kink lists, together with 1
and z, specifying the location of the two partials at z = 0. Each entry in the kink
list contains the position z; and sense v; of a kink, with v; = +1 or —1 for left or
right kinks respectively. Either one of the kink lists is updated at eifery simulation
step as a resﬁlt of the occurrence of an elementary kink event, e.g. double-kink nucle-
ation, kink migration or kink annihilation on the corresponding partial. The choice
of which event to occur is made as follows. At each simulation step, an event list is
generated containing all possible kink pair nucleation events on each and every hori-
zontal segment of the two partials, and all possible lateral displacements (migratioh
to the left or the right) of the existing kinks. A kinetic Monte Carlo algorithm [219]
is then applied to select a particular entry from the event list, with the probability of
selecting each event proportional to its occurrence rate. The physical time increment
is then evaluated as the inverse of the total (sum) rate of all the events in the current
list and the simulation continues to the next step.’ |

The rate of each event is calculated within the transition state theory [220]. Similar
to the surface grthh studies [2 18], the activation energy barriers for each transforma-
tion contain terms that are irﬁported from atomistic calculations. However, sincé the
dislocation segments can interact both with external stress and with each other, there
is an additional energy term in the activatioﬁ energy, defined by the local stress at

the transformation site. This local stress is evaluated as a sum of the external stress

~ 1Strictly speaking, the physical time increment should be a random number satisfying exponential

distribution with its mean as calculated above. However, if only the average dislocation velocity is
to be extracted from the kMC simulation, the above procedure provides the same result but with
smaller statistical fluctuation, provided that steady state dislocation motion is reached.
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and the internal stress due to all other dislocation segments. For example, the rate
for kink migration on partial p (p = 1, 2 for leading and trailing partials respectively)

is calculated as,

Wy — TS — (£ysr — Oyzbpz — Uywbpym)A/2> ) (7.1) ‘

jm = WO eXP‘ <_ kBT

where wyp is the pre-exponential “frequency” féctor that we set equal to the Debye
frequency (wo = 1.3544 x 1013Hz), W, is the kink migration energy barrier which
can be calculated by atomistic methods, S is the vibrational entropy, which is set
to 3kg, according to earlier theoretical and experimental estimates [221, 50]. vsr is
the stacking fault energy, with “+” or “—” signs for the leading and trailing partial
respectively, o is the stress tensor; A = +bh is the area swept out by the dislocation
during kink migration, with“+” or “~” sign corresponding to the dislocation moving
upward (e.g. left kink move left) or downward (e. g.' left kink move right), respectively,

kg is the Boltzmann’s constant and T is the temperature.

The factor of 1/2 appears in Eq. (7.1) because we assume that the dislocation has
swept out half of the total area A at the saddle point coﬁﬁguration. This assumpfion
is valid for the small stresses, where the work done by the stress is much smaller
than the energy barrier itself. In this paper the criterion becomes T L W/ b* and
simple calculations show that it is satisfied in the normal range of stresseé. Kinks may
annihilate as a result of their migration, so we do not calculate the kink annihilation
rate separately. ‘A similar expression exists for double-kink nucleation, with W, -
replacéd by the corresponding activation energy, €.g. Eemp for embryonic (width one b)
double-kink nucleation. The situation for double-kink nucleation is more complicafed
due to the mutual interactions between the two kinks at small separations, which we
discuss in more detail in Section 7.2.2. The stress iﬁ Eq. (7.1) is the value at the
center of the V-segment?. Thé stress formula simplified for 2-dimension is given in
Appendix D. For the newly emerged dislocation segment at eaich simulation step,

stress contributions from all other segmenté will to be calculated at its center point. |

" 2also at the center of the nucleation site on the H-segment for double-kink nucleations

180




The stress field on all other segménts, on the other hand, can be updated simply by
superimposing the stress field of a small dislocation loop. The choice of kink energies
from various sets of atomistic data are discussed in Section 7.2.3. |
The approach described above where the dislocation is represented as H and V
segments are not the only way of pérforming kMC simulation of dislocation motion.
Recently, a lattice spin model of dislocation is implemented by C. Deo and the author;
it has advantages in treating dislocation multiplication and annihilations, as will be

discussed in Appendix C.4.

7.2.2 Double Kink Nucleation

Our experience is that the major bottle-neck of kMC simulations in general, including
kMC simulations of dislocation motion, is an efficient treatment of fast events thé,t
consume most of the computing time but do not contribute appreciably to the overall
evolution. It is a general feature of all kMC simulations that they lack any naturai
- dynamic or kinetic constraint. Unlike Molecular Dynannlics; in which dynamics is
naturally deﬁned by the interatomic potentials, kinetic Monte Carlo method Will
sample all and every process from its current event catalog. As is often the case,
the catalog may contain a number of very fast events that are repetitive or otherwise
uninteresting. It is up to the researcher to help such an ill-behaved simulation by
integrating out, one way or another, such uninteresting events from the event catalog.
In the case of Si, a vast majority of fresh kink pairs (with kink pair separation b)
recombine almost immediately after their formati-qn. Unless specially treated, almost
all of the kMC cycles are wasted on sampling these fast but unimportant processes,
resulting in a very ineﬁiéient simulation unable to advance the dislocation over an
appreciable distance within a reasonable amount of simulation time. To remedy such

| an unwanted behavior we studied kink pair nucleation and propagation as an isolétéd
(Markov) stochastic procéss. Speciﬁcally, we examined a one-dimensional random
walk with one absofbing end and derived a recursive formula that allows to compute -
the effective rate of formation of sustainable kink pairs of width wy, i.e. kink pairs that

have considerable probability to expand further without recombination [222]. Based
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Figure 7-2: Theoretical dependence of the kink pair energy Ey on its width w are
shown as dots. For large width it approaches 2E,. At finite width w, Eg is a
superposition of 2E;, and the kink pair interaction energy Win:(w). The solid curve
illustrates the energy barrier between the neighboring states. E.n; is the barrier for
nucleating an embryonic double-kink, i.e. transition from state w = 0 to w = 1.

on this result, it became possible to speed up our kMC simulations by alloWing only
kink pairs of width w, to nucleate. Parameter w, was chosen as a compromise between
efficiency and accuracy: a larger w, means a higher probability for the nucleated kink
pairs to survive, while a smaller w, means a more detailed and realistic sampling of
the kink pair propagation processes. In this section, we discuss the calculation of the
nucleation rate of kink pairs with an arbitrary width w on an isolated dislocation.
A close form solution of this problem also exist, if the elastic interaction between
kinks is ignored, which will be present_ed in Appendix C.2. The result shows that
the faét kink pair recombination rate is not only due to mutual kink attractions, but :
also due to the randomness of kink diffusion. Generalization of this method to study

the correlated double-kink nucleation on two partial dislocations will be discussed in

Appendix C.3.

. We plot in Fig. 7-2 the profile of an ehergy Eqr, showing the variation of the
double-kink energy with its width w. For large width this quantity approaches 2Fy;.
At finite width w, Ea(w) is a superposition of 2E; and the interaction energy Wiy,

between the kink pair, as indicated by the dots in Fig. 7-2. From linear elastic theory
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we have [30],

Eg(w) = 2B+ Win(w), (w>1) (7.2)
: _ _ /.Lhz . 2 1 + 1% 2 1 ‘_ 21/ ‘
mm(w) T 8rwb (bzl " b 1—-v /)’ (7.3)

where b, = b/2, b, = bv/3/6 .

Given that Wm is the energy barrier separating two neighboring states of the
double-kink in the limit of large width (c.f. Fig. 7-2), we will assume that at finite
width including a width of one b, the barrier between adjacent states is still given
- by placing W,, at the midpoint between the two states. This leads to the following

expressions for the transition barriers of each state

WHE) = %[Edk(z'+1) ~ Ea)] + W (7.4)

W) = g Bl 1)~ B+ W, (7.5)

where W+ (i) and W~(:) are the energy barriers for the forward (i — i+ 1) and SR

backward (i — 1 — 1) transitions respectively. Specifically, for a width of one b we
obtain

By = WH(0) = % (2B + Wins(1)] + Wi (7.6)

The nucleation rate of a double-kink of width w, can be written as

Jar(we) = Jar(1) - ps(1 — we) | | (7.7)

Eem_T'_:t - zVp,z — zwAQ
Jdk(l) = wpexp (_ b S . ( FySFk:B;y bP, Ty bP; ) / ) 7 (78)

where jgx(1) is embryonic double-kink nucleation rate and the various terms in Eq (7.8)
assume the same meaning as in Eq. (7.1). ps is the survival probability that an em-
bryonic double—kihk successfully reaches a width w, before it is annihilafed.

More rigorousiy, we define p, as follows. Consider the double-kink nucleation
and expansion process as a Markov process in the discrete space of kink width w,

. w=0,1,2,---, see Fig. 7-3. The state w = 0 corresponds to the situation where
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Figure 7-3: Schematic representation of the Markov process in the space of discrete

kink width w. Transitions are allowed between neighboring states, shown as solid arcs.
Every state can be reached from every other state. We draw dashed arcs between

states widely separated to denote a collection of different paths. F'(i) and B(7) are

the forward and backward probabilities from state 5. The nucleation rate jau(w.) of

double-kinks of width w, is the product of embryonic double nucleation rate Far(1)
- with the survival rate ps(1 — w,). -

(1—~n
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Figure 7-4: (a) Survival probabilities p,(1 — n)can be broken up as the multiplication
- of smaller survival probabilities p,(s — i +1). (b) Two possibilities of reaching 7 + 1
from 4. First, it can jump to i + 1 directly from the first step. Second, it can choose

to jump to 2 — 1 in the first step. But then it has to come back to ¢ from 7 — 1 before
it can reach ¢ + 1. :
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there is no kink pair. Then p,(i — n) is the probability of reaching state n by
starting from state ¢ without ever reaching state 0. The condition of ¢ <n is always
assumed. , | o | o - - |

Because of the connectivity of the 1-D Markov chain, we observe that starting
fromv state 1, the system has to reach n — 1 before n, and it has to reach n — 2 ‘
before it reaches n — 1, and so on. Thereforé, we can express the survival probability
ps(1 — n) as the product of the elementary ones, see Fig. 7-4(a).

n—1

ps(l1— n)= Hpsz—> i+1). : (7.9)
i=1

To evaluate ps(1 — i+ 1), we note that there are two possibilities of reaching 7 + 1
from i, as shown in Fig. 7-4(Db). First the system can go to 7+ 1 upon the ﬁrst jump
from state 7. That has the probabﬂity-of F(i), which we will give explicit expressmn
below. Second, the system can choose to go to i — 1 upon the first jump from 7. This
has the probability of B(¢) =1 — F'(z). Since it makes the Wrong move in its first
step, it has to correct itself sometime later by coming back to ¢ before 1t can reach
i+ 1. The probability of coming back to ¢ from ¢ — 1 is ps(i — 1 — 7). After that,
the situation is exactly the same as the‘initial stage, when the system starts off from |
- state 4. The probability o f reaching i + 1 now is ps(i — ¢ + 1) égain’. Therefore we

have the recursive equation
pali = i+1) = F(i) + B(i)pa(i =1 — i)ps(i — i+1). (7.10)
Solving for ps(i — i+ 1) in terms of ps(i — 1 — %) we have,

F(i) y |
1= Bp(i—1— 0) " = (7.11)

ps(i— i+1)=

With the initial condition of ps;(0 — 1) = 0 we can solve for p;(1 — 7+ 1) for all
i=1,---,n. The F(i) in Eq (9 10) is defined as the forward probability of state i —
the probability of going to i + 1 instead of ¢ — 1 upon leaving 4. B(i) is defined as the

: ‘backward pfobabilz'ty which is just 1 — F'(7). In terms of the transition barriers given
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in Eq. (7.47.5), the expression for F'(i) is

F(i) = [1 + exp (W+(i) — W_(i))]_l ci>1, (7.12)

ksT

where W+ (i) and W~ (i) are the transition barriers given in equations (4) and (5). At

finite stress and in the presence of the stacking fault, the expression of F'(i) becomes

-1

. (1.13)

F(i) = [1 + exp (W+(i) - W‘(i)k; ;fm — 7 ba)A>

where the additional terms have the same meaning as in Eq. (7.1). The rate jgx(w.) of

nucleating double-kink of width w, is now fully specified in Eqgs. (7.1) through (7.13).

In practice, we found that aﬁy value of w, between 10 and 20 was sufficient to
generate reasonably large statics of kink pair nucleation events (sur\}ival probability
1 ~ 10%) and that specific choice_vof w, from this interval had no detectable effect
on the final result of dislbcation velocity. It turns out thaﬁ for these choices of w,
the nucleation rate is not sensitive to the exact value of E.,;, either and is lafgely

determined by Ej and Wp,.

7.2.3 Kink Energies

'As we have emphasized we Wﬂl rely on atomistic calculations to provide values for
‘the kink formation and migration energies. ‘It was first found in [204] and then
rationalized in [206] that for 30° partials four topologically distinct types of kinks
can be distinguished, if one neglects the reconstruction defect and its complexes
with the four pfimary kinks.‘ Table 7.1 shows formation (Ex) and migration (W,,)
energies for all four kinks obtained using the environment-dependent interatomic
potential (EDIP) [223] and the tight-binding approximation (TB) [215]. Although
kink multiplicity can be readily incorporated into our model, in the present v&ork we
opted for a siinpler parameter space and set representative values for Fj and W,, as
follows. Considering that the grea‘;est contribution to dislocation motion comes‘fr‘om

kinks that nucleate and migrate at the fastest rates, the value of E}, is taken as the
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Table 7.1: Formatipn energies, Fj, and migration barriers, W,,, of kinks on 30°
partials in silicon, obtained from atomistic calculations using EDIP and TB, in eV.
Underlined values are selected for use in kMC simulation.

E, Wi

EDIP TB EDIP TB

LK 065 035 146 152
RK 072 124 056 2.03
LK’ 149 076 062 1.11
0.39 1.85 0.89 1.42

RK'

Table 7.2: Kink’s formation energy Ej and migration barrier W,, (in V) on 30°
. and 90° partials in silicon obtained from atomistic calculations using EDIP potential,
tight-binding (TB) and density functional theory (DFT), and experimental measure-
ments using transmission electron microscopy (TEM) and high resolution electron
microscopy (HREM). ' ’

30° 90°
| By Wn | B2 W,
EDIP  [223] | 052 0.89 | 0.70 0.62
TB [215] | 0.82 152 | 0.12  1.62
DFT  [224] 2.1
DFT  [213] 01 18
DFT  [216] 0.04 1.09
TEM  [59] >04 <12
TEM  [60] C1~12 1~1.2
HREM [61] | 08 155 | 0.74 155

~average of the lowest “values for two left (LK, LK) and two right (RK,RK’) kinks
separafely, giving E; = 0.52eV (EDIP) and 0.80eV (TB). For W, we choose the
lower value from the maximum of (LK, LK') and of (RK, RK'), giving Wi, = 0.8%eV
(EDIP) and 1.52¢V (TB). |

“As will be seen in the next section, the different kink energies from EDIP and TB

~ calculations leads to a discrepancy on dislocation velocity up to four orders of magni-
tude, indicating that kMC predictions for dislbca.tion velocity depend sensitively on
thé atomistic inpuf. Simple analysis shows that to achieve ‘reasohable vag_r‘ee'ment in

~ the absolute values of dislocation velocity, the kink energy calculations has to reach
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the accuracy of 0.1eV, which is oniy attainable for the first principles methods. How-
ever, as shown in Table I, even density functional theory (DFT) calculations available
for the partial dislocations in Si [224, 213, 216] have neither converged nor agreed with
the-experimental estimates which themselves show considerable scatter [59, 60, 61].
Based on various calculated and experimental values available at present, our best
estimates for the energetics of the .“generic” kink on 30° partial are Ey = 0.7eV and

W = 1.2eV.

7.3 Dislocation Mobility

7.3.1 Extracting Dislocation Velocity

Figure 7-5 shows the evolution of the profile for the leading partial of a moving screw
dislocation. The simulation is carried out at resolved shear stress of o,, = 50MPa
and temperature of T' .= 1000K. The energy parameters we use are Ej, = 0.52eV,
W = 0.89eV, based on EDIP calculations. The stacking fault enefgy is chosen to
be fysj: = 0.004eV/ A2, s0 that the separation between the two partials is around 10h.
The simulation starts at ¢ = 0 with a straight dislocation. Shortly after, a double-
kink is nucleated in the middle of the dislocation shortly after that. The two kinks
begin to drift in opposite directions and finally annihilate with neighboring kinks. As
more dotible-kinks are hucleated“and more kink pairs annihilated, the motion reaches
a steady state, with about 10 kinks on the 2um long dislocation at any instant. At
t = 2ms, the dislocation has glided a distance of 6 kink heights in the z direction,
which is about 20.1. )
To extract dislocation velocity, instantaneous average positions of the leading and
trailing partials along the dislocation line is plotted as a function of time, as shdwn
in Fig. 7-6 corresponding to 7' = 1000K, ai,z = 10MPa. During the 0.15s interval of
simulation the two partjals are seen to maintain roughly constant separation as they
advance a distance of some 5.7 x 107%cm. The dislocation velocity is obtained from

. the average slope of the curve'which yields 3.8 x _10‘5cm/s in this example.
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Figure 7-5: Profile of the leading 30° parﬁal dislocation during the motion at T
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Figure 7-6: Simulated instantaneous positions of the two partials at 7 = 1000K,
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Figure 7-7: Temperature-dependent velocities of screw dislocations at stress 7 =
10MPa. Experiments are denoted by ¢ [43] and o [54] respectively. M and  are kMC
predictions using EDIP and TB kink energetics. KMC predictions for the optimized
kink parameters, Ey = 0.7eV and W,,, = 1.2eV, are also shown in x.

7.3.2 Temperature Dependence

Fig. 7-7 shows a kMC prediction for the dislocation velocity as a function (;f tempera-
ture at 10MPa shear stress, along with two sets of relevant experimental data [43, 54].
Kink energies from EDIP and TB calculations were used in kMC simulations. The
pfedicted velocities based on these two sets of atomistic inputs are seen to differ by
some four orders of magnitude, bracketing the experiments. An Arrhenius fit of the
simulated and the experimental velocity data produces an‘ovérall activation energy
Q=1.31eV (EDIP), 2.23eV (TB), and 2.20 (exp’t). Dislocation velocities calculated
“based on the “optimal” set of kink parameters (Ej = 0.7eV and W;, = 1.2eV) are
also shown in Fig. 7-7. Although the result looks reasonably good, we would like
to emphasize that quantitative agreement between the predicted .Velocities and the
experimental data is not significant at this stage. This is because some other paré,me—
ters, such as the sampling frequency LQD‘ or the vibrational entropy S in Eq. (7.1), can

easily shift the entire velocity curve by one to two orders of magnitude. Despite these

190




v (cm/s)

2 5 10 20 30 50
T (MPa)
Figure 7-8: Velocity of a screw dislocation in Si as a function of stress, at temperature
T = 1000°K. kMC prediction for a commensurate case (Xo = 10.0h) is shown as
¢, with a “starting stress” at about 20MPa. Experimental data from [43] shows
similar velocity variation, plotted as ¢. kMC results for a non-commensurate case

(Xo = 10.5h) are plotted as e, demonstrating linear stress-velocity relationship, in
agreement with other experiments [54], plotted as o.

uncertainties, the fact that the simulated dislocation velocities bracket the experi-
mental data, and that they have similar temperature dependence with experiments
are significant, indicating that our kMC model is adequate but the accuracy is limited
by the quality of its atomistic input. If and when a more reliable set of atomistic
parameters becomes available, the model will be ready to incorporate the new data

for more accurate prediction of the intrinsic dislocation mobility in Si.

7.3.3 Stress Dependence

" The stress dependence of dislocation velocity is examined using the “optimal” set of
kink energies (E; = 0.7eV and W,, = 1.2eV). KMC predictions and experimental
res'ults are plotted together in Fig. 7-8, which shows two distinct behaviors which

warrant detailed analysis. In the first case, dislocation velocity remains linear with
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stress in the entire regime, while in the second case, a threshold behavior is observed
where the dislocation velocity is initially low at low stress but increases markedly

beyond a certain critical stress 7.

The most common interpretation of the threshold stress variation, long observed,
invokes the existence of “weak Qbstacles”, assumed to be randomlyv distributed along
the dislocation and having the effect of impeding the kink mobility [225, 8, 43]. The
physigal origin of these obstacles has been a longstanding unresolved issue, especially
since fitting such models to the experimental data results in rather unreasonable
magnitudes‘for the density of these obstacles [55, 8]. Mdller was the first to recognize
 the importancé of interaction between the dissociated partials. In his model [55] he
attempted to do without ad hoc obstacles, but in the end was forced to re-introduce
them to account for the low stress mobility variations in Si. In addition to this »
inconsistency, Méller’s model could not resolve another hotly debated experimental
controversy. While some researchers have observed very pronounced starting stréss
- behavior [43], others report perfectly linear velocity-stress behavior even down to a

very low stress [54] (also shown in Fig. 7-8).

On the other hand, both these two mobility behaviors appear naturally as a result
of underlying kink processes in our simulations, in which no ad hoc assumptions such
.as “Weak obstacles” were ever introduced. For interpretation purposes we follow a‘
simple mechanistic picture proposed in [226] and further developed in [227, 228]. We
first consider what would be the ideal separation between‘ the two partials if the
Peierls bafr_ier were not present. This separation, which we denote as X, is given by

the expression

XO = :u‘bza/(’YSF - Jzybm)v ) (714)

where p is the shear modulus, o - (1/4 — 1/12(1 — v))/2x, b, = b\/3/6, and v is |
the Poisson ratio. An analogy can be made betwéen the éffect of Peierls potential on |
the coupling partials and the act of putting two balls connected With_ a spring having
original léngth Xo onto a periodic .la,ndscape, as shown in Fig. 7—9(a)."Depending on

. the commensurability of Xy with the periodicity of the Peierls potential, two extreme
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Figure 7-9: Commensurability between the ideal separation X, and the periodicityv
~of Peierls barrier gives rise to two distinct mechanisms of dislocation motion at low
stresses (see text).
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situations can occur. If the two are commensurate, i.e. Xp is an integer in unit of kink
height h, the total energy of system as the superposition of the elastic coupling and
the Peierls barrier has a single minimum at X = X, as shown in Fig. 7-9(b). If the
two are non-commensurate, i.e. Xy is a half-integer, as shown in Fig. 7—9(0), the total
energy as a function of partial separation X has two (degenerate) minimum energy
states. This two extreme cases will lead to very different low stress mechanisms of
dislocation motion, as illustrated in Fig. 7-9(d) and (e). In the commensurate case,
double-kink nucleation on either partial will move the system away from the ground
state X = Xy, and is hence energetically unfavorable at low stresses. Therefore,
the only way that the dislocation can move forward is by correlated double-kink
nucleation on both partials, so that the lowest-energy state of X = 0 is preserved
everywhere. This additional constraint at low stress reduces the dislocation mobility.
In the non-commensurate case, because there are two states both having the minimum
_energy, ie. X = Xo+1/2)X = X, — 1/2, double-kink nucleation is possible on
one partial without having to be correlated with the other partial. In the case of
X = X5 + 1/2, double-kink nucleation on the leading partial is favored.- After the
leading partials has advanced on lattice period, double-kink nucleation on the trailing
partial is favored. Hence the two partials can move in the secjuentia.l manner, with
the stacking fault expanding and contracting alfernatively. This mechanism preserves
the linearity between stress and velocity down to very low stresses. Therefore, the
‘commensurability mechanism originally proposed in FCC metals, i.e. in the limit
s of low Peierls barrier, is found to be also operative in the high Peierls barrier limit,

where dislocations move via kinks.

The two curves in Fig. 7-8 from kMC simulations with and without the thresh-
old behavior corresponds to the cases of Xy = 10h and Xy = 10.5h, resp:ectively.
A somewhat weaker threshold behavior is observed experimentally, as indicated also
in Fig. 7-8. This is not unreasonable given that the measurements average over a
distribution of local conditions, whereas the prediction is stvri,ctly/‘for the ease of com-

mensurate barrier (Xo/h is integral). The threshold condition is expected to become

. ineffective when applied stress becomes high enough for its work to compensate the
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Figure.7-10: Dislocation velocity plotted against glide stress oy, as e, predicted for
a 'special case when the ratio of the glide stress oy, to the non-glide stress oy, is
fixed at —0.16. For comparison, dislocation velocity for a non-commensurate case
{Xo = 10.5h) and zero non-glide stress is also shown as the dashed line.

“commensurate” energy barrier to moving a single partial to the next valley. Based
on the numerical parameters used in our simulation we estimate this critical stress
to be 7, = 16.8MPa, in agreement with our present kMC simulations and another

estimate given in 8] (p. 167).

For the simulations discussed above, the variation of Xo'Was induced by a 5%
‘change in the stacking fault energy, but a similar effect will manifest by an equivalent
variation in the elastic constant, or any other local factor which will influence the
dissociation width. As shown in Eq. (7.14), X, depends on the so-called non-glide
» stréss, or oy, in our notation, because it exerts opposite forces on the two partials.
For an ideal dislocation, this stiess‘compoﬁent should have nb eﬁect on the glide
Velocity.' However, in the context of our present model o, can be used to manipulate
the splitting width Xy and to induce transitions between the “integral”‘ and “half-
integral” conditions. A striking illustration of such traﬁsitions is presented in‘Fig. 7-

10, where simulated dislocation velocity is plotted against glide stress oy, for a special
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loading condition chosen to maintain a constant ratio —0.16 of glide (0y2) to non-glide
(02y) stress components. With increasing stress amplitude, two effects counteract.
The increasing glide stress makes both partials move faster while the increasing non-
glide stress pushes the partials tdgether making them pass through a sequence of
“integral” and “half-integral” conditions. Accordingly, the dislocation velocity shows
a non-monotonic oscﬂlatory pattern, each dip corresponding to an “integral” 81tuat10n
and each hump to a “half-integral” one.

We conclude this Chapter by emphasizing that the present work is the first attempt
to link the microscopic details being generated by electronic structure and atomistic
calculations with dislocation mobility behavior that is directly experimentally acces-
sible. We are collaborating with A. George in search of experimental verification of )

the predicted effect of non-monotonic velocity variations in the low stress regime.

o
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Chépter 8

Mesoscale Study of Dislocation in

BCC Metals |

We have seen in the ipreviousChapter that the generic H-L model is insufficient to
connect the atomistic kink calculations with experimvénts on dislocation glide in Si,
because it ignores the coupling effect between the two partials. In this Chapter, we
will discuss another éituation in which a more detailed mechanistic treatment than
H-L model is needed; the additional bcomplexity here is introduced by cross slip, which

‘occurs on screw dislocations in BCC metals.

We will present in Section 1 the.kinetic Monte Carlo (kMC) model that is gen- '
eralized from our'study‘ on dislocation glide in-Si, and now incorporates cross slip.
We will discuss how the static calculations of double kink energies and Molecular Dy-
ramics siinulations of kink mobility are incorporated into the mesOscalé dislocation
model. In Section 2, we will see that several new mechanisms arise as the result of
cross slip, generating super jogs (cusps) on the dislocation and leaving behind debris.
dislocation ldops — a microstructure that resembles experimental observations. The
ori‘entation_dependeﬁcé of dislocation mobility introduced by these mechaniéms will |

be discussed in Section 3.
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Figure 8-1: A schematic of dislocation motion in BCC metals examined in the kMC
simulations. The dislocation line is mostly aligned along the 1/2(111) Burgers vector.
Kink pairs can nucleate on either of the three (110) planes a,b and ¢, after which kink
migration is constrained to the glide plane selected by kink pair nucleation. A kink
pair nucleation event is shown at position’ I, and a kink migration event is shown at
position II, both in dashed lines. :

8.1 KMC Model with Cross Slip

8.1.1 General Settings

As ‘discussed in Chapter 3, the microstructure of BCC metals deformed at low temper-
ature mainly consists of long screw dislocations. This is because non-screw disloca-
tions have much higher mobility and have already moved out of the crystal. Therefore,
low temperature plasticity of BCC metals is mainly controlled by screw dislocations.
In this Chapter, we study the motion of a dislocat-ibn mainly aligned along the screw
direction, i.e. along its Burgers vector 1 /2[111], as shown in Fig 8-1. The disloca-
tion line consists of horizontal (H) and vertical (V) segménts, with H-segments being -
pure’ screw and V-segments being pure édge, representing kinks.! V-segments all
have the same length , the unit kink height, while H-segments can be of any length.

This edge-screw representation of a dislocation is similar to edge-screw discretization

Tt is only an approximation to represent kinks as pure edge segments. Kinks in BCC metals
usually have a finite width of 5 ~ 10b, so that it can be represented more accurately as a tilted -
. mixed dislocation segment. This approximation is introduced here only for the sake of simplicity.
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employed in some Dislocation Dyhamics (DD) simulations [229], although the edge
segments are used in the latter case soiely for the purpose of discretization.

To account for cross slip, kink pairs are allowed to nucleate on H-segments in any of
the three (110) slip planes (a, b, ¢) intersecting the [111] direction. Once nucleated,
a kink (V-segment) can move in its glide plane along the dislocation line until it
recombines with another kink with the opposite sign. Similar to the previous Chapter,
periodic boundary conditions are applied along the dislocation line. However, due to
their difference in underlying atomistic mechanisms, the kMC algorithm for BCC
metals here is somewhat different from that for Si, as will be discussed in more detail

in following sections.

8.1.2 'Dduble-kink Nucleation

Atomistic simulations using empirical many-body potential MGPT [162] have calcu-
lated kink pair nucleation energy barrier on screw dislocations in Mo to be around
2eV, in the absence of external stress. When the resolved shear stress reaches the
Peierls stress 7, = 2GPa, screw dislbcations can move as a whole, hence the double
kink nucleatibn energy is zero. While no similar atomistic data are available for stress
vé;.lués in between?, Edagawa’s line tension model [212] provides a reasonable descrip-
tion of the variations of the double-kink nucleation energy as a function of loading
stress. Combining Edagawa’s' model with the atomistic data [162], Bulatov [230] cal-
culated and té,bulated the double-kink nucleation energy Hy as a function of the
»magnitude 7 of and loading angle x, which is the angle between thé maximum re-
solved shear stress (M.R.S.S.)b pléme and the corresponding (110) glide plane. The
tabulated data was then fitted to a simple functional form of Hdk (7,%), which is then

used to calculate the kink pair nucleation rates,

Har(7,X) X)) , (8.1)

Jdk = Wo €Xp ( knT

2R'ecently, atomistic calculations using embedded-atom method (EAM) potentials on screw dis-
locations in Fe have obtained double-kink nucleation energy on screw at finite shear stress [70]. We-
are currently petforming similar calculations for Mo.
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Figure 8-2: (a) Peierls stress 7, as a function of loading angle x (see text). (b) Double
kink nucleation energy AH as a function of loading stress 7 at different angle x. Both
predicted by the line tension model [212] taking only a single energy parameter from
atomistic calculations, i.e. the core energy difference between hard and easy cores.

where wp is an attempt frequency factor, and‘ is set equal_to the Debye frequency
(wo = 9.3768 x 10'2Hz) of Mo in this work. It needs to be emphasized that Eq. (8.1)
is only an approximation. The effect of core polarization (see Chapter 6) and the
effect of non-glide stresses (non-Schniid effect) are ignored, due to the lack of accurate

atomistic data. -

The double-kink nucleation energy takes the functional form of

- N ' _
Hae(r,x) = Ho »[1 - <7—'E> ] ) | (8.2)
where 7,(x) is the orientation dependent Peierls stress and is plotfed in Fig. 8-2(a).
Fig. 8-2(b) shows Hy as a function of M.R.S.S. 7 at several loading angles. It should
be emphasized that only a single energy parameter is taken as input in this line tension
| - model, which is the hard and eaéy core energy difference [162]. We observe that the

line tension predicts Hy, = 1.91eV at zero shear stress; in good agreement with

. atomistic result of 2eV [162]. However, the predicted Peierls stress seems to be larger
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than 2GPa as from atomistic calcﬁla.tions. In Fig. 8-2(a) the minimum Peierls stress
is around 0.025u which is around 3GPa if we take p = 123GPa for Mo. On the other
hand, the line tension model does capture thé twinning-antitwinning asymmetry of
the host BCC lattice, in that the Tp(x)‘plot in Flg 8-2(a) is asymmetric with »respect‘
to x = 0, and is smaller in the x < 0 region ‘(in favor of twinning). However,
whether or not the minimum Peierls sfress occurs at xy = —30° as predicted by the
line tension model is worth checking by direct atomistic simulations. In conclusion,
the line tension model provides a reasondble description of stress assisted double-
kink nucleation energy. But it should be replaced by the more accurate atomistic

simulationi data whenever they become available.

8.1.3 Kink Migration and KMC Algorithm

In contrast to the high Peierls barrier fdr kink pair nucleation, kink motion along screw
dislocations in Mo is extremely easy, as manifested in the low kink (or secondary)
Peierls barrier (~ 0.0005e¢V), given by atomistic calculations [231] using the Finnis-
Sinclair empirical potential. Such a low energy barrier means that kink migration
along the screw dislocation does not require thermal activation and its speed is only
limited by its interaction with phonons. Because the kinks on a screw dislocation
can be viewed as short segments with non-screw component, their high mobility is
consistent with recent Molecular Dynamics (MD) simulations of edge dis‘location's
motion [179] in Mo using the same pbtential. Therefore, we model the‘ kink velocity

as proportional to the local stress, i.e.
v = 7,b/B N - (83)

where Ty is the glide component of the resolved shear stress, b is the Burgers vector, -
and B is defined as the phonon drag coefﬁcien_t. Our preliminary MD simulations
have lead to the prediction of the drag coefficient B = 4.5 x 1075Pa-s.

Kink migration as described by Eq. (8.3) is deterministié, so that it cannot be
. treated in the same way as in Si (see Chapter 7). A new kMC algorithm is then.
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needed, which is briefly described below.

1. At the beginning of each kMC step, stress is calculated along the entire dislo-
cation line, which determines double-kink nucleation rate on H-segments and

kink velocity of V—segments through Eqgs.(8.1) and (8.3) respectively.

2. Assuming that all the kinks move with constant velocity calculated at this
moment, a migration time ¢,,;, is then computed as the upper limit of the time '
before any kink has moved for more than a prescribed distance, and before any

kink pair annihilation or debris dislocation loop formation (see next Section).

3. A nucleation time t,,. is generated as a random Iiumber from the exponential
distribution defined by the total nucleation rate. The latter is calculated by

simming up kink pair nucleation rates on all H-segments.

4. It < thuc, then all kinks move with the current velocity for a time period tmig-
If any kink pair recombination or debris loop formation events are detected,
they are carried dut and the algorithm returns to step 1. Otherwise, the kinks
move with their current velocities for a time period #,,., followed by a kink
pair nucleation on an H-segment. The nucleation site is chosen according to the

local nucleation rates by a standard kMC algorithm [222]. Return to 1.

8.2 Super Jog and Debris Loop

Because double-kink nucleation is now allowed on three different planes, an immediate
consequence that need to be handled during the simulation is the formation of super
jogs on the screw dislocation and debris loops left behind the moving dislocation (as
- mentioned in step 2 of the kMC algorithm in the previous Section). This process

_starts when two kink pairs form spontaneously on two different (110) planés. As
illustratéd in Fig. 8-3(a), when thesé two kinks move towards each other‘ and collide,
they cannot tecombine. Because they are pushed towards each other by external

- stress the kinks are now constrained to move together, forming a super jog. In such
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<111>

Figure 8-3: Schematic representation of the formation of (a) two kinks forming an
elementary super jog (or cross-kink), (b) more kinks joining the super jog, and (c)
debris loop L formation with the primary dislocation breaking away from the self-
pinning point A.

cases thé forces on the two cross kinks act in the opposite directions along the line
and the cross kinks can slow down or halt their coupled motion altogether. Such
elementary super jog will grow in size when more kinks pile up on either sides of the
initial pinning point (A) forming super jogs [30] (p. 261),» as shown in Fig. 8-3(b).
Again, due to the easy cross-slip, the kinks in the pile-ups on two sides of the pinning
point may belong to different planes. Consequently, projections of the two developing
pile-ups on the [111] plane appear similar to two random walk trajectories; originating
from the same point (initial cross kink) on a two-dimensional lattice. If and when
two such trajectories. cross each ofher again, the dislocation line may reconnect by
recombmatlon of kink pairs. As a result, the two pile-ups are now reduced in size

leaving behind a pr1smat10 (debrls) loop L, shown in Fig. 2(c).

Fig. 8-4 shows the continuous formation of debris dislocation loops in the wake
of the moving dislocation. In this plot, the H segments are significantly shrunken

compared to the V segments in order to show the entire dlslocatlon line; the total
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Figure 8-4: Snapshot of kMC simulation showing debris loops left in the wake of
the moving screw dislocation. segments are significantly shrunken compared to the V
segments in order to show the entire dislocation line; the total length of the H segments
are in fact 27um while each V segment is only 2.5A. Linear elastic interactions wer
ignored in this simulation. : ‘
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length of the H segments are in fact 27um Whilé each V segment is only 2.5A. Linear
elastic interaction between kinks were ignored in this particulaf simulation, so that
it cofresponds to an “ideal gas” model. An even more simplified model for the size
distribution of debris loops is presented in Appendix C.4, in which the growth of two
arms of the super jog is treated as 2-dimensional random Walks. Although elastic
interactions between kinks are also ignored ub this model, it nonetheless leads to
some interesting results, such as the slow decay of the distribution function in the
large loop size limit. This means that there is always appreciable probé.bility of
finding veryllarge sized loops, in apparent agreement of experimental observations
(see Fig.3-15 ).

The occurrence of the above mentioned mechanism depends most critically on
the loading stress, and also on temperature and thellength of the dislocation. At
low temperature and low stress, there is always at most one lZink pair on the entire
dislocation, which quickly moves apart and annihilate with its PBC images. In this
case, fhe dislocation velocity is double-kink nucleation controlled, and is proportional

to dislocation length, in agreement with earlier theories [71].

At a higher stress and/or higher temperature, kink pair nucleation rates increase
‘dramatically. Consequently, a large number of ‘kinks may be simultaneously present
on the dislocation line in which case dislocation velocity becomes length-independent.

" In this case, the super jog and debris loop mecha,nvism could operate. It is observed
that this process would _alsg occﬁr even at lower stresses, if the simulation runs long .
enough, given the stochastic nature of the double-kink nucleation process. Recent
TEM experiments [232] in Mo seems to agree with this analysis, showing loop for-
mation at higher strain rate (1s~!) but not at lower strain rate (1073s71). It is also
observed that the rate of ldop formation is material dependent, with loops forming
more easily in Ta than in Mo. This is apparently related with the large shear modulus
in Mo, giving rise to a higher energy barrier for the two arms of the éuper jog to form

a closed loop.

The occurrence of the pinning points and kink pile-ups significantly affects the

dislocation mobility. They act as intrinsic obstacles which can be overcome only by
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slow side-way migration of the sui)er jogs along the line leading to possible partial
recombination with other super jogs, or by formation of prismatic debris loops left
in the wake of the moving dislocation. In either case, a large amount of work is
absorbed to help the screw dislocation overcome the linear elastic interactions of these
microstructures. Not surprisingly, it has been proposed [116] vt‘h‘at the cusps (super
jogs) on the screw dislocation contribute a major part of the observed macroscopic
yield strength, in comparison with the intrinsic lattice resistance. This mechanism

was also postulated to explain the yield stress anomaly in -TiAl alloy [233].

At the same time, super jog formation also creates technical difficulty for kMC
simulations. The kinks in these pile-ups tend to oscillate frequently between neighbor-
ing positions on thé dislocation line, making no contribution to the overall dislocation
displacement. _This is similar to the fast processes of kink pair nucleation and recom-
biné,tion in the case of Si. Unless some sort of special treafment of such uninteresting
events is applied, the simulatibn will become progressively less efficient as the kink
pile-ups grow larger. Currenf work in progress involves approximating all the kinks

in a pile-up as a single dislocation segment, in order to speed up the simulation.

8.3 Okrientati}on Dependence of Dislocation Mobil-
| ity

In-this section, we discuss the effect of the shear étress orientation on super jog and
debris loop formation and consequently on the dislocation mobility. Fig. 8-5 shows
two snapshots of kMC simulations of screw dislocation motion at 373K under 320MPa
shear stress with different orientations of the M.R.S.S. plane. In these plots, the H
' segme'ntsvare significantly shrunken compared to the V segments in order to show the
entire dislocation line; the total length of the H segments are in fact 27um while each
V segment is only 2.54. In Fig. 8—5(&), the M.R.S.S. plane bisects two glide planes
"~ a and b, making kink pair nucleation eqﬁally probable on on both planes. Cross-

kinks and debris loops are readily observed in this case. In Fig. 8-5(b), the M.R.S.S.
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(a) | (b)

Figure 8-5: Snapshots of kMC simulations of screw dislocation motion at 373K under
320MPa resolved shear stress with different orientations. (a) M.R.S.S. plane bisects
the glide plane a and b, with super jogs and debris loops readily observed. (b) M.R.S.S.
plane is parallel to glide plane b. The dislocation moves only in this plane. The larger
resolved shear stress on the glide plane results in a much higher kink density.

plane is parallel to glide plane b and double-kinks mostly nucleate on this plane. In
addition, the resolved shear stress on the glide plane (b) is much larger than that in

the previous case, resulting in a much higher kink density.

Similar to Chapter 7, dislocation velocity is extracted from the simulation by
ﬁtting. the slope of the curve for the.instanta,neous‘a\}erage ‘dislo‘cvation position as
a function of time. We find that the above two diﬁereht orientations of M.R.S.S
plane lead to two different dislocation mobility behaviors. In case (a), the averaged
double-kink nucleation rate per lattice site on plane a is jg = 1.5 x 10°%~!s~1, and
the averaged kink velocity is vy = 6.2 x 10%% - s~ where b is the Burgers.vector.
“ ‘The overaﬂ dislocation velocity along plane a is found to be v = 6.8cm - s~%, which
| would Be about half of what the kink diffusion model of Hirth and Lothe would
predict [30], VHL = V2h(Jug)Y? = 1lem - s71. On the other hand, in case (b), jg =
1.3 x 10761571, vy, = 7.1 x 1012b-s~1, dislocation velocity of v = 343cm -5~ obtained

~in the kMC simulation is in agreement with the kink diffusion model prediction of
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vgr = 349cm - s~

The reason for such a considerable difference between the two
models in the case (a) is that, in our model, spreading of kink pairs is constrained by
| pile-ups formed at cross kinks. In the presence of such pinning points many kink pairs
eventually recombine with themselves ond do not contribute to the overall dislocation
motion. ' »
Compared with the previous Chapter on Si, the kMC study in BCC metals is still
in the beginning stage. Current work involves improving the efficiency of simulation
algorithm when kink pile-up occurs and a systematic study of dislocation velocity at
different temperature and stresses. The mobility data obtained from this model can
serve as inputs for larger scale dislocation dynamics (DD) simulations, which study
the behavior of a large collection of dislocations to model the deformation strength

of a single crystal.
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Chapter 9

Nodal Dislocation Dynamics

9.1 Introduction

While so far we have only discussed mobility of a single dislocation, in this Chapter
we will address some problems concerning dislocation dynamics (DD), which was
developed [234] to model the collective behavior of an assembly of dislocations, and
has been envisioned a_s-t‘he link between single dislocation behavior and the plasticity
étrength of a single crystal [235, 236].

To date, several formulationé for DD simulations have been proposed and imple-
mented, with different discretization approaches and hence the governing equations
of motion. These include representing a continuous dislocation line by pure edge
and screw segments [234]!, by a string of connected segments with arbitrary orien-
tation [237, 238], or by a series of cubic splines [239].- However, there seems to be
some controversy on how to calculate the dislocation driving force. It was found that
when dislocations are discretized into straight segments, the stress diverges at the
end points of each segment, creating problems if the driving force on each segment
is defined as the average stress on them. An cut-off radius was introduced around

~segment ends to remove this singularity [240]; however, this approach was not satis-

factory due to the arbitrariness of the cut-off radius. In this Chapter, we will show

1Recently, mixed dislocation Segments with a particular orientation is added for a better repre-
sentation of dislocation loops.
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that such a cut-off radius is unnecessary and the equation of motion for a system con-
sisting of straight dislocation segments is well defined. We will show that the stress
singularity problem can be regularized systematically by considering the interaction

‘energy between adjacent segments.

Generally speaking, the current approaches for DD simulations can be classified
into two categories. In the first case, one focuses on dislocation segments [237, 238],
and the forces on the segments are calculated through the average stress on them, as
mentioned above. At every timestep, the segments are displaced according to these
forces. However, after displacing the segments, they are no longer connected, if theif
lengths are kept fixed, so that the dislocation becomes “broken”. Therefore, one will
‘have to use some ad hoc technique to “glue” the segments back together again. The
violation of the dislocation continuity in this approach is connected with the driving

force divergence problem mentioned above.

In the second approach, the continuity of the dislocation is preserved at all times
during the simulation. One focuses on generalized coordinates (such as nodes) de-
scribing a continuous dislocation line and compute the genéralized forces on these
coordinates. For example, when dislocations are represented as splines [239)], it has
been_ shown that no driving force singularity problem arises, if the driving force is de-
fined as the derivative of the total (free) energy with respect to the spline parameters.
In this Chapter, we will show that this is also the case if dislocations are discretized
into peicewise straight segments, and that the driving force remains well defined even
though the dislocations have sharp corners. The fobustness of our method in han-
dling sharp corners is advantageous, because théy do exist on real dislocations, such
as at the intersection between two slip planes, and at the junction node where three

dislocations meet.

This approach is illustrated in Fig. 9-1, where the dislocations are represented as -
~ aset of nodes (71,7a, - -+, Tn), connected by straight segments. If we ignore the kinetic
energy for simplicity, the total energy of the system H is only the elastic interaction

 between the segments, plus their self energies. When inertia effects are ignored, we
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Figure 9-1: Representation of dislocation as linked nodes. The motion of nodes after
each times step gives the dislocation motion.

can write down an equation of motion for the nodes as

5 = Df;, (9.2)

0 o
fi = —B_ﬁH({Tj})’ . (9.1)

where f; and v; are nodal force and velocity respectively, and D is a damping ratio.
Eq. (9.2) is only empirical and is helpful to relax a certain dislocation structure to
a minimum energy configuration. However, it does not necessarily describe the true
dynamics of the dislocation, especially when the segments do not have the same
length. We will give a more rigorous derivation of the noda} equation of motion in
Section 1. .

Interestingly, this method has already been implemented by Ramirez et al. [241]
to simulate dislocation glide in 2-dimension. However, when applying this approach
directly to 3-dimension DD simulations, one is confronted with great technical difficul-
~ ties. The form of the interaction energy between two generally oriented dislocation
segments is very complicated, let alone its derivatives. To make things worse, the
general formula becomes numerically unstable when the two segments become close
to coplanar or parallel and different formulas have to be used in these special cases.

This is probably the reason that most 3-dimensional DD simulations use stresses,
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instead of the energy derivatives, és the dislocation driving force. The purpose of this
Chapter is to develop an énergy based DD formulation that is also practical enough
to implement. As we will show in Section 3, the evaluation of the segment interac-
tion energies is only necessary for segments that are adjacent to each other, which is
coplanar by definition. The interaction energies between well separated segments can

be rewritten in the form of stresses.

9.2 Equation of Motion

In this section, the equation of motion for a set of nodes ry,72,- -+, is derived,
assuming that the dislocation velocity is limited by phonon drag, and that the dislo-
cation inertia effect (kinetic energy) is negligible. The basis of this derivation is that
the decrease total elastic energy is all dissipated into heat, through the diélocation—
phonon interactions?. The decrease rate of the total elastic energy can be written as

a summation of nodal contributions,

d —8H dF;
—(—ﬁH = _;(‘Bﬁ'dt (9.3)
= > fi# (9.4)

The phonon dissipation energy, on the other hand, has to be summed over segmier.lt
évontributions. For the sake of simplicity, we constrain the motion of every node 7 -
along é pre-specified direction &, .;so that ¥, = vf;. Also define f; = ‘ ﬁ - %;. This
constraint is not unreasonable, because the motion of dislocation is usually confined
to its glide plane and the drift of a node along the dislocation line does not change
the dislocation at all. Therefore, there is only meaningful direction of motion for each
node. The directions of t; can also change during the simulation, corresponding to
the change of topological constraint of the dislocation. This.is a generalization of

the “abacus” model of Li [199], in which £, is the same for all nodes and does not

2Dr. Ju Li has expressed the same idea in our discussions.
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Figure 9-2: Velocity distribution on dislocation segment 7;-1;11. -

cha,nge.during the simulation. As the direction of motion can be calculated at each
simulation step from topological constraints, the remaining task is to determine the

scalar velocity v; for each node.

Define L; as the length of the segment r;-r;41, and 7; as the vector orthogonal
to the segment and within the same plane as #; and ti11, as shown in Fig. 9-2. The

energy dissipation rate of this segment is then,

Egesl(i) = B L/ dz [vi(t; - 71; (1—m)+vz+1(t¢+l nm)a:]2 (9.5)

= B- L3[ ( 7132 4 Vi (Fia - 785)° + viviga (B - 7) (g - )] (9.6)

= B-Lil

3 [vPof + v} B + vivipr i) (9.7)

where B is the phonon drag coefficient, o; = (£ - 7:), B; = (t;-7i_1). The total energy

dissipation rate is. then
Ediss = ZEdiss(i)'
1. o 32),2
= ZB g(Liai'f‘Lill/@i')vi
1 1 ‘ |
+6Liaiﬁ_i+lvivi+1 + ELi—lﬁiai—lvz‘—lw (9.8)
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Equating Fgis in Eq. (9.8) with —dH/dt in Eq.(9.4), we construct the equation of

‘motion for each node,

1 1. 1 - . .
g(Liaf + Li_1B7)vi + éLiaiﬁi+1vi+1 + ELi—lﬂiai—l'Ui—l = fi/B (9.9)

In other words, in order to obtain nodal velocity v;, one needs to solve a set of linear

equations
ZA@UJ- = fi/B, | (9.10)
7 » .

where the elements of matrix A are

’

(L2 + Liyf37), j=1i
-1-L,;Olq; i1, ) =1+ 1
%Li—lﬂiai—l; j=1- 1‘ '
{ 0, otherwise
In the limit of L; =~ L;11 = L and a; = ; = 1, matrix A becomes
141
L 1 41 ‘
A = = (9.12)
6 1 4 , ,
A first order approximation of v; would be
_
vi = BT (9.13)

which is equivalent to Eq. (9.2) with D = (BL)~!. However, it is only an approximate
solution of Eq. (9.10) and (9.11).

To avoid solving the linear system Eq. (9.10) directly, one can calculate v; itera-
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tively. First, assuming v; ~ v;11 & vi_1, one has the zeroth order approximation,

| 1 1 1 - .
v = fB71 [E(Lia? + Li1f) + gLiaiﬁiﬂ + ELi—lﬂiai—l] (9.14)
This solution can be improved by the following iteration, till satisfactory accuracy is
reached,
1 1. 1 .
uftt = [fB_l - ELioéiﬂiﬂUfﬂ - E'Li—lﬂiai_lqu] [g(Liag + Li-lﬂf)] (9.15)
In conclusion, the nodal equation of motion is
Ch 10 |
Zj:Az'jUj = 5= —557;1_17({"3}) b, (9.16)

‘o

with matrix elements A;; specified in Eq. (9.11).

9.3 Nodal Driving Force

In this section we develop a practical approach of calculating nodal driving force in |
3-dimension. FWe show that for two segments that are well separated, their interaction |
can be represented in terms of stress fields. For two segments ‘sha'ring a édrﬁmon node
and for self interactions, explicit derivative of the elastic energy is needed. Special care
need to be taken when combining these two methods, because both are meaningful
only for complete dislocation loops. -
.For a dislocafion consisting of straight segments as shown in Fig. 9-3, the driving

force on node P is,
0H

Fp=—

(9.17)
where H is the total elastic energy of the dislocation, which is the summation of self
enefgies of all segments and interaction energies between them, i.e.

H = Wa+Wp+We+Wp+ Wg
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Figure 9-3: Dislocation discretization into segments.

Wap + Wao + Wap + Wag
Wgo + Wap + Wae
Wep + Wor

S+ o+ o+

where W is the self energy of segment A and W3 is the interaction energy between

A and B, etc. Therefore,

5 |
s = —C‘M—P(WA+WB+WAB+WAC+WBD.

+ Wap +Wag +Wac+ WhE) . , (9.19)

For dislocation segments that are not adjacent each other, their interaction change can

be written as the integration of the stress field over the area swept by the dislocation,

0 o

%[(WA,@D@) ~ (Wactp+p)] = ) A dSTc1D+B (9.20)
a .. . . 0 . o
%[(WB,C+D+E)+ (Wa,c1p4E)] = 52p PP,RdSTG+D+E7 (9.21)

where « is the differential segment PP’ introduced to complete the dislocation loops

. PP'Q and PP'R. 7¢.p+x represent the superposition of the stress fields of C, D, £

216




Figure 9-4: Introducing semi-infinite segments M and N for nodal force calculation.

segments. Therefore,

gg = % Wy+Wg+Wyp + ]i P,P+PP’R’ dSToypiE (9.22)

The prominent feature of Eq (9.22) is that the contributions from segments shear-
ing node P is treated with explicit energy formula, while far away segments are treated
with stress fields. As will be shown later, the interaction energy for two segments with
a common node takes a much simpler form than segments with general orientations.
At the same time, stress fields of far away segments does not lead to singular nodal
forces. Therefore, Eq. (9.22) provides a practical approach of computing ﬁodal forces
that is free from singularities. Unfortunately, Eq. (9.22) is not rigorously correét,
“because both energy and stress formula bfor dislocation segments are meaningful only
when contributions of all segments forming a cbmplete- loop is summed together. In
Eq. (9.22), neither the energy nor the stress terms form complete loops by fhemselves,

which will lead to uncontrollable error.
Fortunately, this problem can be easily fixed, by introducing semi-infinite dislo-

cation segments M and N to complete both loops, as shown in Fig. 9-4, which leads

to

OH 0
P2r %[WA +Wg + WgB — WarB M+N
+ jg dSTrM+C+D+E+N] - (9.23)
QP'P+PP'R : v .
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where Wayp min = Wanm + Wan + Way + Way. Segments M and N are co-linear
with line QR, so that all the interaction energy ferms in Eq. (9.23) are for co-planar
segments, WhiCh have a very simplified form. As mentioned above, Wan is infinite
be.ca,use‘of the infinite length of M. However, the derivative of Wy, with respect to
zp can be shown to be finite. The derivations of several terms in Eq. (9.23) are given

in Appendix D.

9.4 Prismatic Loop and Super Jog

As a proof of principle, we compute the nodal driving force for a circular prismatic
dislocation loop, as shown in Fig. 9-5. The Burgers vector is out of the plane. The
total energy and nodal driving force at different number of nodes (IV ) are compared
with analytical solutions [30] in Fig. 9-6. Both energy and driving force are convérging
to analytic solutions (sblid lines) for large N. This result is clearly better than that
of the stress approach using a cut-off radius [240], which reported divergence at large
N and dependence of driving force on the choice of cut-off radius.
The development on Nodal Dynamics is still in progress. Current work involves
using it to study the process of super jog growth and debris loop formation on screw
dislocations in BCC metals, as illustrated in Fig. 9-7. The objective here is to deter-
" mine the critical stress at which debris loops is formed, which will serve as an input

for mesoscale dislocation mobility models (see Chapter 8).
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Figure 9-5: A circular prismatic dislocation loop discretized into linear segments
connecting a set of equally spaced nodes. Number of nodes NV = 20.
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| Figure 9-6: Total energy (o) and nodal driving force () of prismatic dislocation loop,
as a function of node number N. Both energy and driving force are converging to
analytic solutions (solid lines) for large N. '
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Figure 9-7: Super jog on screw dislocations in BCC metals represented by Nodal
Dynamics. (a), (b) and (c) are equilibrium configurations under progressively larger
shear stress. In (d) a prismatic loop is formed by joining the two arms of the super
jog. Shear stress is removed after the loop forms.
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Chapter 10
Sllimmary and Outlook

This Thesis has presented five studies in dislocation mobility modeling to highlight the
particular challenge of linking atomistic and meso scales. Each represents a specific
contribution where only one scale is treated explicitly while the effects of the other
are taken into account through a coupling of type (a) or (b). It is noteworthy that
- the energy of interaction, whether atomistic or elastic in nature, plays a central role
in the proper treatment of the cdupling effects. '

As we have illustrated, proper coupling of an atomistic region to its larger sur-
rounding can resolve effects that are not physical in origiﬁ or become important for
avoidihg simulation artifacts associatéd with unphysical constraints. For atomistic
simulation of dislocations in a periodic cell, we have derived a rigorous method for
‘calculatihg the anisotropic elastic energy due to the artificial effect of the periodic
boundary conditions. This allows the extraction of dislocation core energy that is
manifestly invariant with atomistic simulétion cell sizes. This method also leads to
the design of atomistic cell geometries for which the artificial image stress on dislo-
cations can be completely canceled. -

An even more clear-cut case of type (a) coupling is the simulation of an atomistic
region embedded in an Ielastic continuum surrounding. Through a systematic study
of linear response theory, we have derived a boundary condition for dynamically
coupling the two domains for which the spurioué reflection of elastic waves across the

domain boundary is minimized. This method provides a rigorous solution in atomistic-
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simulations of dynamic processes where interactions with phonons are important, such
as crack propagation and dislocation motion. While so far we have focused on the
atomistic simulation domain only, opportunities exist in combining this method with
the quasi-continuum method [242], or coarse grain MD [191], so that an atomistic
simulaﬁon can be coupled with a coarse grained method while still maintaining the

correct dynamics in the former.

In type (b) coupling, on the other hand, the emphasis is on combining atomistic
mechanisms and a mesoscale mechanistic description in modeling dislocation motion. |
* We have presented several recent results on the dislocation cbre and kink mechanisms
in Si and BCC Mo. Our calculations on the kink energies have shed new light on
the interpretation of the long standing shuffle-glide controversy in Si. And a better
treatment of boundary condition has allow us to determine the “true” Peierls stress of
edge dislocation in Mo, which 1s much smaller than previously reported. This result

leads to a deeper understanding of the mechanism of motion of edge dislocations and

naturally explains their high' mobility.

The atomistic-mesoscale coupling becomes most apparent when the atomistic kink
mechanisms are used as the basis to construct our mesoscale kinetic Monte Carlo
(kMC) model of dislocation motion. In the case of Si, where the dislocation dissoci-
ation into partials has been taken into account, our approach leads to a qualitative
agreement between the predicted mobility data and experimental results. While pre-
vious explanation of the low stress dislocation mobility behavior has relied on-ad hoc
bassumptions such és “weak obstacles”, our results suggesté that they are not nec-
essary, and that the coupling éﬁect between the partials is enough to give either a
linear or a sublinear behavior of stress dependence, depending on the commensura-
bility between partial separation and the lattice periodicity. This has also leads to a
new prediction of non-monotonic stress-velocity dependence for a given loading con-
dition. Evidently, an experimental verification or invalidation 6f this prediction would |
be highly informative towards a definitive understanding on the modes of dislocétion
motion in Si.

We have generalized our kMC model for Si and incorporated the effect of cross
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slip for studying the motion of séreW dislocations in BCC metals. We found that
cross slip of these dislocations automatically leads to several new mechanisms that
generates cusps aﬁd debris loops from an initially straight dislocation, which produces
a marked effecf on dislocation mobility, and a microstructure that resembles experi-
ment observations. While these results are still i)reliminary, further study along this
direction would need to include the interaction between the dislocation and debris

loops, which could be left behind by a previous dislocation.

In our last contribution, we developed a new formulation of dislocation dynamics
(DD) simulations focusing on dislocation nodes. The conventional stress singularity
problem was removed by using the concept of local interaction energies. This leads to
a convergence behavior when a dislocation line is represented into progressively more

segments, while an previous artificial cutoff scheme has resulted in divergence.

Now at the end of this Thesis, which so far has been focused on single dislocation
mobilities, it is natural to raise the question: what is coming next? Evidently, more
studies towards clarifying the atomistic details of dislocation motion are still needed.

‘However, it seems now critical to start conhecting the understandings about single
dislocations with fnaterials behavior at an even larger scale. In Chapter 1 we have
discussed that there is an opportunity to predict macroscopic plastic deformation
behavior of a single crystal, base on undeﬂyiﬁg physics that focuses primarily on “
dislocations. This opportunity now becomes more realistic as We can start to develop
large scale dislocatioh dynamics (DD) simulations that will benefit from our recent
formulation in Chapter 9, and incorporate understandings on single dislocations in
other Chapters. In order for the DD model to be able to make meaningful predictions,

the challenges here are, Wﬁether we can afford to simulate enough number of dislo-
cation segments, and whether we can reprodﬁce experimentally observed dislocation
microstructures. Regarding the size limitation on current DD simulation efforts, it -
is reasonable to expect that at least in studying large strain deformations, we would
need to transfer ’the information génefated by discrete DD simulations to 5 field theory
of dislocations that describes the lattice aeformation at a more coarse grained level.

Further development"s on dislocation field theories are also needed, to go beyond a
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mean-field type approach [243] and to include spatial gradients and dislocation flux.

That would get us to single crystals. But to resolve the discrepancy between
experiments and theoretical models such as shown in Fig. 1-1, which is on polycrystal
Ta, we Wiﬂ need to incorporate the effects of multiple grains and gré,in boundary
activities. While all of these looks pretty straightforward, at least in principle, we
have to remind ourselves that we are still within a small corner of reality. Even if we
succeed in obtaining a detailed understanding on the stiength of a crystal, there is still
“a long way to gd before we can comprehend and start mimicking the microstructural
effects on the strength of a living biological system, let it be a tree or a bone [244].
The coalescence between computation and materials science is only at its beginning.
With more years to come, we would have a better understanding than today on what
computations can and cannot do. Yet there are already ample reasons now for us to
believe that it is worthwhile to pay more attention to the coupling across different

scales and the connection between strength and microstructure.
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Appendix A

Dislocation Dipole Energy in PBC

A.1 Cut-off Radius and Core Energy

so

Thé linear elastic theory of dislocations has singularities at both the small and the
large scale limit. It is the purpose of this section and the next to address them
separately in reasonable detail, and our hope is to provide some clarification on certain
commonly raised confusions. For the sake of simpiicity, isotropic elasticity ‘is assumed

in these two sections.

Let’s start with the energy of an infinitely long straight dislocation. This is essen-
tially a two-dimensiénal problem since the system is invariant along the dislocation
1iﬁe. For. a straight screw dislocation with Burgers vector b at the center of a cylin- -
drical medium with radiu_s R, as shown in Fig. A-1, the self energy of the dislocation
per unit length is [30] | ‘

Ealr =E-m=, (A1)

where r, is an artificial cut-off radius around the dislocation, which is usually referred
to as the core radius. Here we irisis_t on calling it cut-off radius in order to differentiate
it from a physical core radius of dislocations, which will be discussed later. We use
_E%l(rc) to emphasiZe that the elasticity theory prediction is explicitly dependent on
the choice of 7. Eq. (A.1) diverges both at the small scale limit, i.e. 7. — 0 and at

. the large scale limit, i.e. B — oo. We will discuss the origins and consequences of
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Figure A-1: An isolated screw dislocation within a cylinder of radius R. The disloca-
tion line and Burgers vector b are out of the plane. The material within cut-off radius
r. around the dislocation is removed to avoid singularity.

these two singularities separately.
_ The. need to introduce a cut-off radius r. is because linear elastic solution of
dislocation stress and strain field diverges on the dislocation line. Common practice
in linear elasticity theory is to assume the medium to be hollow within a radius .
around the dislocation, so as to “cut out” the singular region. The choice of 7, is
completely arbitrary, but the total elastic energy differs for different choice of r,.
In order to compare results from different people, one has make sure the same cut- -
off ra,diué is applied. Confusiqh will arise if some researcher uses a constant 7. for
--all dislocations while others choose r. to be dependent on the dislocation .characfer'
angle.! |

The small scale divergence is merely an artifact of the linear elastic theory, which
assumes the existence of mathematically smooth fields of stress and strain. The fact
that this is only an approximation can be easily appreciated since all materials are
made up of atoms, i.e. they are all fundamentally discrete. The arbitrariness of

dislocation self energy due to the choice of r, can be fixed by comparing E. with

langle between dislocation line direction and Burgers vector
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direct atomistic simulation results Eagy, [245], which is free from the cut-off problem.

A dislocation core energy Fore(r.) is defined as their difference,
Eatm = el(rc) + Ecdre(rc) . (AQ)

Since dislocation core energy is ihﬁoduced to cancel the r, dependence of the elas-
tic energy, it obviously has to have r, dependence as well. Therefore, to compare
dislocation core energies, one has to specify the choice of cut-off radius as well.

As mentioned above, the choice is r. is arbitrary; it can be either 14 or 1. On
the other hand, a dislocation also has a physical core radius, r,, which is one half of
the minimum separation between two dislocations where there interaction energy can
still be described by linear elasticity theory. One can choose . to be rp,, but this is
not mandatory. - '

One can also choose 7. such that Feye = 0 [30]. In this case, the linear elasticity
theory exactly matches the atomistic calculation. The r. that makes E o vanishes
is usually expressed in terms a dimensionless parameter «, for which r, = b/a. One

fcan show that « is related with the core energy at r. = 1b through,

AT Eeore(Te = 1b)] -

o = exp[ o (A.3)

where K is the self energy prefactor in anisotropic elasticity, which equals to u in

isotropic. elasticity.

A.2 Line Energy Divergence at Large Scale Limit

According to the last section, the small scale divergence of Eq(Al) is only a math-
ematical artifact, which can be complefely removed by introducing an r.-dependent
core energy. However, the large scale divergehce over R is not an artifact at all, con-
trary to sofne common believes. This is in accordance with the fact that linear elastic
" theory only becomes more and more»accurate as one goes to larger length scales.

- Therefore, the logarithmic divergence of dislocation self energy over the medium ra-

227




(a) | (b)

Figure A-2: (a) A screw dislocation dipole separated by a. (b) An elongated dislo-
cation loop consisting of two screw segments of length L and two edge segments of
length a.

dius R is physical, as can be seen from direct atomistic simulations in Mo by Xu et

al. [245).

It may seem counter-intuitive if one is not allowed to take the size of the elastic
medium to infinity when it contains dislocations, an idealization that is usually as-
sumed when discussing lattice defects such as vacancies. However, we can still work
with an infinite elastic medium if it contains two dislocations in the form of a dipole,
or if it contains a dislocation loop, as shown in‘ Fig. A-2. For a screw dislocation
dipole separated by a, its elastic energy (per unit length) is [30]

=t Y

Tc

~ which is very similar to Eq.(A.1). Again, the elastic energy diverges if their separation
a goes to infinity. This is similar to the quark confinement in Quantum Chromody-
namics (QCD), in that no “free dislocation” or free quark could exist. The fact
that the line energy? of an isolated straight dislocation goes to infinity was sometime

used to arrive at the following conclusion, that “no dislocation should exist in perfect

- 2The energy per unit length, also called line tension.
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thermodynamic equilibrium” 3. While it is probably true that the notion of thermal

equilibriﬁm may not be very helpful in the discussion of plasticity processes, in which

the system is driven far away from equilibrium, the above claim is not exactly correct. \
‘This is because the line tension only diverges for isolated straight dislocation that is

infinitely long. For dislocation dipoles or dislocation loops, which appear frequently

in real materials, their line energy is finite. Therefore, the equilibrium concentration

of dislocation loops would be non-zero in principle, although in practice this value

could still be vanishingly small. Under an applied shear stress, the energy of dis-
location loops could decrease and homogeneous dislocation loop nucleation is then
possible with the aid of thermal activation [246].

Before closing this section, let’s study the energy of an elongated dislocation loop,
shown in Fig. A-2(b), as another path towards the divergence of dislocation self energy.
The loop consists of two screw segments having length L and the two edge segments
having length a, with L >> a.* As L — oo, we approach the limit of Fig. A-2(a). The
total elastic energy of the system can be expressed as the self energy of dislocation
segments A, B,C,D and the interactibn energy between them [30]. When L > q,

only the contributions from segments A and B are dominant; ie.

Wi(d)  WiB) b L

=R
VVint]EAB) _ 32%2 n | (A.6)
Ea%mf)mfumﬁw) (A7)

= | (A

Thereforev we obtain the same result as Eq. (A.4). At the same time, Eq.(A.5) shows
that the self energy (per unit length) of a dislocation segment diverges as its length
goes to infinity. The total energy of the system is still finite, if there exists an

anti-dislocation nearby, with the divergent term exactly canceled by their interaction

3At least I have made similar claims to my fellow colleagues occasionally.
4This type of microstructure is very common in BCC metals due to the much higher velocity of
edge segments than the screws.
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energy Eq (A.6).

In summary, Eq. (A.1),(A.4) and (A.5) illustrate the divergence of dislocation
energy (per unit length) as the size of elastic medium, bthe separation of a dislocation
dipole and the dislocation length goes to infinity, respectively. These effects are not
artifacts at all, but is due to the long range stress-strain field of dislocations, the
same reason that gives rise to the conditional convergence problem as discussed in

Chapter 4.2 and in the next two sections.

A.3 Derivation of Dipole Energy in PBC

This section derives Eq. (4.32), which expresses the elastic energy of a periodic cell
containing a dislocation dipole in terms of its stress field. This is accomplished by
evaluating the reversible work done when creating a dislocation dipole in a defect free
medium. |

We start out with a defect free and stress free system, with energy Fp, which serves
as the energy reference state. For generality, we construct a reversible path from Ej v
to the final state Ej in two steps. First, system Fj is giveﬁ a shear deformation so

~ that it has a homogeneous stress ¢! and reaches energy Ej,
: Lo 1y2r, — 1 11 :
By, = Ey+ 58(0‘ ) V=Ey+ ESijklaijale, , (AQ)

where S is the elastic’ compliant tensor and V' is the volume of the PBC cell. Following'
Hirth and Lothe [30], the dislocation dipole is then created in system E; by making
a cut at surface A and displace the surface on the positive side of the cut by b with

respect to the negative side, as shown in Fig. A3.

Define the stress field of E; as o(7), its volume average as @ = (o(7)), and spatial
variation as 0°() = o(F) — 7, respectively. Due to the internal stress, external
force has to be applied to balance the internal force at the cut surface. During the

. transformation, the stress in the medium changes continuously from ol; t0 035(7), so
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z

Figure A-3: Introducing a cut in a perfect lattice at surface A and displacing the
positive side of A by b relative to the negative side, to create a dislocation dipole
separated by a.

o

that the work done in displacing the surface is,

E2_E1 = AW
1
= —E/dAjbi(ai]’(F)—l-agj
= —5 [ Al ~ AN+ o) (4.10)

In order to express Ey solely in terms of o(7), we need to evaluate a'. We note that

the transformation from E; to E, introduces a finite plastic strain to the system,

biA, ‘
Efj = |:#:|s ) } (A].l)

where [-], represent the symmetritization operation, i.e. [ai]s = (@i + a;i)/2. At
the same time, since the transformation from F; to E, only operates on the internal
surface, the total strain change is zero. This means that the internal plastic strain efj

is balanced by an internal elastic strain ¢},

€ =‘E—?j+€1}:’j=07 o (A.12)
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& = = - [%} (A.13)

The elastic strain leads to the change of the average stress in the system, so that

Gij — 0y = Cijuey
brA;
bpA
C’«:lj = 0y + Cijm e - (A14)

V 7
where C' is the elastic constant tensor. Combining Eq. (A.9),(A.10) and (A.14), we
obtain

By— By = _% / dA;b.0%(7) + %SE"’V , (A.15)

If we regard oy)(7) as the intrinsic stress field of the dislocation microstructure, and
the homogeneous @;; as an external stress field, Eq. (A.15) is then a verification of
the statement that “there is no cross term between the external and internal stress

fields in the total elastic energy.” by Hirth-Lothe [30] (p. 53, Theorem 2-1).

- Before closing this section, we give the proof that — [ dA;b;0:;(7) is the inter-
action energy between the primary dislocation dipole and the stress field o;;. This
pr0positioﬁ is used in Chapter 4.2 to separate Ei,, from the total elastic energy
FEq = Eg‘ — Ey. Because

dA = L(¢, x da) , (A.16)

it follows that,

;/dﬁ.(g.g(f)) - —L/(éFZde’)-(E'-J(F))
=}—L-/(E’-U(f')xéz) |

= —L/f’(f-)-da, (A.17)

where f(7) is the force per unit length exerted by ;; onto a dislocation with Burgers
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vector b at position 7. Therefore, — [ dA;bioi;(7) is the work done to move dislocation

b for a distance a, which is equivalent to what we _intended to prove.

A.4 Ghost Dipole Correction Term

Instead of giving a rigorous proof, this section will use a hlghly simplified model, i.e.
screw- dislocations in isotropic medium, as an example to demonstrate the effect of
“shost” dislocation dipoles in correcting the o™ term in Eq. (4.35).

In analogy to the electrostatic potential field, we define a 2-dimensional potential
field of dislocations, as the work to be done to move a “test” dislocation, i.e. with
unit Burgers vector, from a reference point to the specified position. For example,

the potential field of a screw dislocation b at origin in isotropic linear elasticity is
ub
(7)) = — 111— , : (A.18)

where we use the subscript “m” to indicate dislocation “monopole”, or a single dislo-
cation. The potential field of a dislocation dipole consisting of a screw b at R+d /2

and a screw —b at R — @/2 is then

¢d@ __pby fF-R-dj2

2 |7 — R+d/2| (A-19)

where we use “d” to indicate dislocation “d_ipole” ) By superimposing the potentiai
fields of primary and image dislocation dipoles, one can construct the potential field in

a simulation cell containing a dislocation dipole under Periodic Boundary Conditions,

all dipoles

FEC(R) = . ¢a(F-R), (A20)
R

where R runs through the offset vector of all dipolesvwith respect to the primary
dipole (R = 0 for the prlmary dipole). Of course, this summation is not absolutely

convergent. Similar to Eq. (4.29), we use a “~” sign here to indicate that this sum-
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mation can be problematic, and define the “true” potential field as ¢*B°(7). By

definition, ¢PBC(7) is periodic, i.e.
SR E) - M =0, i=12 (A21)

Now let’s study the convergence property of ¢*B¢(7). From Eq. (A.19) it follows

that the dipole potential field and its derivatives have different decay rates as R — co,

lpa(F—R)| ~ R', (A.22)
Biga(F— R)| ~ R?, (A.23)
|0:0;6a(F — R)| ~ R, (A.24)

where & = 0/0z:,i = 1,2, R*= /&3 + #3. It then follows that 88;¢PEC(F) is
absolutely convergent, while 8;¢"2°(7) is conditionally convergent, and FPBC(7) is
not convergent at all. | |

Since the second derivatives 9;0; @PBC(7) of the potential field is absolutely conver-
gent, it means that different summation sequences Will converge to the same result,
ie.

8:0;677°(F) = 8:0;¢"B°(F) . (A.25)

By integration we obtain

C8;¢FBO(M) = 9;"BC(R) - E;

OER) = SO~ B+, (4.26)

where E; and ¢° are integration constants, and summation over j = 1,2 is implied
when it appears twice in a multiplication. Eq. (A.26) is an important result we
have obtained, stating that although different summation schemes will converge to

different potential fields, they are essentially the same up to a constant term (¢°) and

~ a constant slope term (E;rj).

The constant ¢° is irrelevant since we can always redefine the reference (zero)
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potential point. The constant vector E on the other hand, corresponds to the force

on a dislocation with unit Burgers vector (5/]5]) due to the residual constant stress

err

o, ie.

E= (ae“ : E/|5\) X &, ,
If we define o, 8 such that @ = dé’l + B¢z, then

— Aot = — (aE‘- G+BE-G)b.

From Eq. (A.21) and (A.26) we have

¢PBC(F+5;:) _ ¢PBC(F) _ _E’ . E:; .
Therefore,

— Ao = ab($FO(+ &) - $FEO())
| +8b (7207 + &) - §7°°(7))
all dipoles .
= Z Edg(R) ,
R .
all images

= Z Edg(ﬁ) + Edg(ﬁ =0),
ﬁ B

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A32)

where Fa,(R) is the interaction energy between the dipole at offset B (w.r.t the

primary dipole) with the “ghost” dipoles, consisting of dislocations ab at ¢1/2, —ab

at —¢1/2, Bb at Cy/2, and —Bb at —c3/2.
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Appendix B

More on Dynamic Coupling

B.1 Derivation of Generalized Langevin Equation

In this section, ﬁhe derivation of the Generalized Langevin Equation, Eq. (4.37)7 is
presented. The two domains P and @ are as defined in Section 4.3.2 and Fig. 4-11.
The only assumption is the linearity in P-Q and Q-Q interactions. No assumption
on P-P interactions is needed. Therefore, it is more general than that given in [188].

Mathematically, the linearity assumptions can be written as

2

MV(@:, zq) = const | (B.1)
) 82‘ ’
mV(zp, zq) = const (B.2)

where V is the total potential energy of the System. Here we use a vector notation
where zp and L@ represent the displacements of P and @ atoms respectively, measured

from their equilibrium positions.

Taylor expand the potential function V(zp, Q) around z, = 0,

vV(:r:.p,xQ) - V(xp,0)+ian(xp)xg (B.3)
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and then expand the coefficients a,(zp) around zp =0,

V(zp,zqg) = V(zp,0)+ Z Z ArrnTH LY ' (B.4)
. m=0 n=1 . '
= V(zp,0) +auzprg+ ao2z'22 (B.5)
: ) .
= V(CCP, 0) + wg@prQ -+ —2-w£<IJQQmQ (B.G)

Eq.(B.5) is valid because the higher order terms vanish due to Eq. (B.1) and (B.2),
and the lower order terms disappear because zp and z¢g are defined relative to the
equilibrium positions. In Eq.(B.6) we redefine the symbols to be consistent with the
notation of Moseler, where ®pg and ®gq are constant matrices. The equation of

motion for'both P and ) atoms now reads,

0 0

N ’m,:ip = —bx—PV(l‘p,xQ) = —%V(mp,O) — (DPQ.’L'Q (B'?)
0 o
= —5;;‘/(27}:,0) +FPQ, ‘ (BS)
. 0
miq = —%V(fvp:w) = —®qpzp — Pozq, (B.9)

“where ®op = &1, and double-dot represents second order time derivative. Fpg is

defined as Fpg = —Ppgrg. After Fourier transform of Eq.(B.9),
—mulig = —Pgpip — Pgoiq, . (B.10)

zg can be symbolically solved as

57@((.4)) = (mwzl + @QQ)_I@QP:Z'JJ(LU). , (Bll)

Therefore, the force from Q) to P atoms can be solved as,

Fpo(w) = —®po(muw? + Bgg) ' Bopip(w) (B.12)

= Opr(@ir) (B.13)
Fro(t) = /0 Opp(r)Ep(t — 7)dr  (B.14)
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Hence follows the equation of motion for P atoms, commonly know as the Generalized

Langevin Equation (GLE),
bl t
mip = —=——V(zp,0) -I—/ Opp(T)zp(t — T)dT - (B.15)
Ozp 0

After integrating by part, we arrive at form similar to Eq. (4.37), which relates the

boundary force with P atom velocities instead of positions,
. 5 .
mitp = — 5V (p,0) + / Brp(r)ip(t — )dr + Brp()a(0) + R(2),  (B.16)
0

where ©pp(t) = dB(t)pp/dt and R(t) is a complex functional of the initial condition
in Q.

B.2 Symimetry between‘ GLE and Green’s Func-
tion -

Suppose the entire system is divided into two parts, a finite region P for MD Simu-
lations and a much larger surrounding @ treated as the boundary condition. In prin-
ciple, there are two Wéys to establish a dynamic coupling between P and () within
the linear response theory. One is the Generalized Langevin Equation (GLE) type as
discussed above and in Chapter 4, and the other is Time—depéndent Green’s Func-
tion (TGF) type. The notion of Green’s function is perhaps more widely used than
the GLE. The newly de{}eloped GFBC [247] (stands for Green’s Function Boundary
Condition) uses static Green’s function for structural relaxation purposes. We find
it interesting as well as instructive to think about the symmetry between GLE and
TGF, and to make analogies between MD and linear systéms (circuits), which opens
up new opportunities for improving bdth types of bdundary conditions.

Let’s start with the Generalized Langevin equation written in the following way,

'dzfr:p

m—s = Fpp(zp)+ Fro, N (B-17)
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» Figure B-1: MD region P is the region enclosed by the solid line, surrounded by region
@, which is perfect lattice. The effect of @ is to exert a force Fpg(t) on atoms in

P, as a boundary condition. This boundary is of the Generalized Langevin Equation
(GLE) type. : '

S

where Fpp is the force on P atoms due to other P atoms, and F'pg is the force on P
atoms due to @ atoms. Neglecting the effect of initial condition in @, Fpg(t) should
depend on the trajectory of P atoms zp(¢). This dependence is the property of Q,

and can be formally written as a functional,
Fro(t) = Qlep®). (B.18)

If functional @[] is linear, it can be expressed as a convolution of zp(t) with the

so called Memory Kernel matrix ©pp(t), i.e.
Fro(t) = / Opp(r)zp(t — T)dr. (B.19)
0 .

One can then regard domain @ as a (linear) system, whose input is the displacement
zp(t) of P atoms, whose output is the force Fpg(t) from @ on P atoms, as illustrated
in Fig. B-2(a). Following this analogy, we can also represent domain P as a (usually

" nonlinear) system, i.e.,

zp(t) = PlFpo(t)]. N  (B20)
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(b) (©

Figure B-2: Domain P and Q as systems. (a) Fpo(t) = Qlzp(t)]. (b) zp(t) =
P[Fpg(t)]. (c) Coupling between P and Q. :

The input of system P is the forces Fpg(t) from region @, and its output is the
displacements of P atoms, zp(t), as illustrated in Fig. B-2(b). The dynamics of the
entire domain is then represented by the coupled PQ system, formed by directing the
output of ) into the input of P and vice versa, as illuStrated in Fig. B-2(c). |
There is no obvious reason for the choice of atbmic forces as the input of P and
~ atomic positions as its output, and conversely for (). By symmetry, the interface of |
P and @ can be interchanged. As shown in Fig. B-3, we can set up a layer of atoms
rg as the the boundary condition for P. P will exert forces Fgp on @, and Q will
- respond to these forces by moving atoms zg accordingly. Mathérhatically, we can

also express P and @ as functionals,

wot) = QFer®)], (B.21)
Fop(t) = Plug(t)]. - (B

When the functional Q[] in Eq. (B.21) is linear, zg(t) can be expressed as a con-
volution of Fip with the so called Time-dependent Green’s Function matrix Ggg(t),
ie.

zolt) = / Gaa(r)Fap(za(t — ), zp(t — 7))dr. (B.23)
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Figure B-3: MD region P is the region enclosed by the solid line, surrounded by
region @, which is perfect lattice. P will exert forces Fpp(t) on atoms in @, while @
responds to these forces accordingly by moving its atoms zg(t). This boundary is of
the Time-dependent Green’s Function (TGF) type.

xQ B Q 4—}&, -t Q ~

a

( ) : Xq v A FéP
xQ-—b- P ——p~ Fép . P -

(b) (c)

Figure B-4: Domain P and Q as systems. (a) zo(t) = Q[Fgp(t)]. (b) For(t) =
Plzg(t)]. (c) Coupling between P and Q.
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In analogy with the GLE type coupling, the TGF type coupling represented as
circuits is illustrated in Fig. B-4. A Time-dependent Green’s Function (TGF) bound-
ary condition for MD simulation in P can be implemented if we obtain the Green’s
function Goo(t) and use Eq. (B.23) to update the displacement zq(t) during the
simulation. The Time-dependent Green’s Function Ggg(t) can be calculated before
the MD simulation in P by performing a series of “test” simulations in region @. In
principle, for atoms 7,5 in Q, if we exert an external force Fj(t) = 6(t) on one atom
j, the displacement z;(t) of atom i equals to the matrix element Gy;(t). This is to
" say that, each of these “test” simulations in @) will provide one column of the Green’s
function matrix. The entire prdcedure here WOuld be completely analogous with the

GLE type boundary conditions discussed previously.

B.3 Translational Invariance in GLE Approach

Both the GLE and TGF boundaries discussed in the last section have the same
‘requirement, i.e. one needs to compute and store a time-dependent large dimension
* matrix, which may -create technical difficulty for large scale siinulétions. It is natural
to pose the following question: Is it necessary to store all these data? The numerical
results on the mémory kernel functions in some model systems (see Chapter 4) indicate
two reasons for which technical improvement should Be possible. Firstly, all matrix
elements have similar time dependence. They all take some negative value at t = 0
and then oscillate around its long-time limit. Secon_dly; all matrix elements are smooth
- functions. Ih this section and the next, we explore thé possibilities of reducing the
size of the kernel matrix by the translational invariance of the crystal lattice. In the
last section, we propose a method to take advantage of the smoothness of the memory
functions by studying their Fourier transform.
| For a general shape‘P region, each matrix column of the memory kernel inatrix Bpp
is different, except fof some accidental symmetries. This is because the translatidnal
invariance of the perfect lattice is destroyed in the very definition of Bpp. Note that

each column of Spp is defined as the force coming from @ atoms due to a perturbation
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(a) (b) -----------

Figure B-5: (a) Replace MD region P with a perfect lattice region L. Define the total
region L plus @ to be {2, which is translationally invariant. Define a Memory Kernel
matrix Aoq(t) for Q, Whose element f;;(t) is the total force F(t) on atom i, if atom j
is dlsplaced to z; = 1, while z; = 0 for all the other atoms ¢ #jin @ (and v; = 0 for

all i). Baq(t) is translationally invariant, i.e. B (8) = B(Fi =7, ) (b) Representation
of @,L and ) as systems.

<o

on a specific P atom, with all other P atoms kept fized. Therefore, each column
‘corresponds to a distinct scenario defined as the relative position of the perturbed
atoms with respect to the remaining fixed domain.

As region P may contain local défects‘disrupting the lattice translational invari-
ance, we can ohly restofe the latter by replacing P with a perfect lattice named L
Which is cdherent with the surrounding lattice domain @, as shown in Fig. B-5(a).
The entire system © = @ + L is then an infinitely large perfect lattice. A new defi-
nition of the memory function ﬁgg is also Iiecessary in order to restore translafional

invariance. We define matrix element 3, as the total force Fi(t) on atom 4 if atom j
is displaced to z; = 1 at ¢ = 0. Initial conditions of all other atoms are z = 0 and
all atoms (including j) are allowed to relax at ¢ > 0. Under this definition, ,@m(t) is

translationally invariant, i.e.

A

ﬁn(t) B(7i — 75,1), |  (B24)

where 7} refers to the perfect lattice position of atom i. Using ﬁgg, one can construct

. a linear system as shown in Fig. B-5(b), which responds to external perturbations
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Figure B-6: Representing P-() system in terms of the L-() system in GLE formulation.

on L atoms by exerting a time dependgnt force Fgr, on L. Although ,@QQ only gives
the total forces on L atoms, Fgr, can be computed by subtracting off forces due to
L atoms themselves, thus without the knowledge of Q) atoms. In other words, /énn is
equivalent to a linear system Fpq = Q[0zy).

Comparing system Q-P in Fig. B-2(c) with system @-L in Fig. B-5(b), we are
now in the position to construct a dynamic boundary for P using the translational
invariant rhemofy function fBoq. As shown in Fig. B-6, we can decompose the P-Q)
system and represent it in terms of {2, L and P. Mathematically, this coupling can

be written as

FPQ = Q[&L‘L], » (B25)
5$L = P[FPQ]—L/[FPQ]. ‘ (B26)

Even though we do not give an rigorous proof here, we hope that Fig. B-6 and
Eq.(B.26) describe a reasonable picture of how this alternative way of coupling is
possible. At this point, we want to emphasize that difference between this new
coupling and the one presented in Chapter 4 is that a translationally invariant Ihemory
kernel (Bgm) now suffices to replace the Q region, saving the effort to compute and

store a much larger matrix (Gpp).
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Figure B-7: Molecular Dynamics on two sets of coupled systems, P-Q and L-Q),
where Q' behaves the same as (. We interpret the physical meaning of dzy,, as the
amount of external disturbance needed to maintain system @’ the same as Q.

We close this section by pointing out the physical interpretation of the newly
introduced variable dz7,. Imdgine doing MD on two sets of coupled systems, P-Q
énd L-Q'. @ and @ are two subsystems having the same Hamiltonian and initial
conditions, but are coupled to L and P respectively, see Fig. B-7. Because P and L
behave differently (either in their Hamiltonians or initial conditions), the trajectories
of atoms in L would be different from those in P, so would Q’ behave differently from
Q. However, if we add external disturbance dz; to make the atoms in L to have the
same trajectory as P, ie. —|— dzy, = xp, (actually this is necessary only for a la.yer
of atoms in L which couples directly to @), then the trajectories of atoms in @ will be
no differeﬁt from those in @’. On the other hand, the trajectory of @' (and hence Q)
atoms can be calculated using the memory function Baq. Therefore by introducing L
and then subtracting it off again P, we arrived at a method of providing a dynamic
boundary for P using a translationally invariant memory kernel. Unfortunately this
method has not been implemented at this moment, so that we will need to wait a

little longer to see how it works in real applications.

B.4 Translational Invariance in Greens’ Function
Approach

Due to the symmetry between GLE and TGF coupling methods as discussed in Sec-

. tion 2, the translational invariance approach for GLE discussed in the last section
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...............................

Figure B-8: (a) Replace MD region P with a perfect lattice region L. Define the total
region L plus @ to be Q, which is translationally invariant. Define a Time-dependent
Green’s Function matrix Giaq(#) for Q, whose element Gi;(t) is the displacement z; of
atom % in response to an external force 0F};(t) = 6(t) exerted on atom 5, while z; = 0

A

for all atoms at ¢ = Q. é’gg(t) is translationally invariant, i.e. éij (t) = B(F; — 7, t).
(b) Representation of ,L and Q as systems.

can be directly generalized to TGF method. _

Fb]lowing the treatment in the last section, we replace P with a perfect lattice
region L and introduce a new Green’s function matrix Goa defined on system Q =
@ + L. The matrix element éij is the displacement z; of atom 7 in response to an
‘additional external forceiéFj(t) = 6(t) exerted on atom j, with z, = 0 for all atoms

at ¢ = 0. With this definition, G’gg is translationally invariant, i.e.
Gy(t) = G -7, 1). | (B.27)

The coupled Q-L system together with the external forces are represented in Fig. B-
8. With Ggq we can construct a linear system taking external forces on () atoms as
inputs and outputting trajectories of Q atoms.! Denote this system as zq = Q[6Fy],

we have

T = /000 éQQ(T)éFQ(t —T)d'T, | » (B.28)

1The reader may find this definition of G‘Lreen’s function more “physical” than the corresponding
definition for the Memory Kernel function Ban. Mathematically, they are symmetric. '
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| Figure B-10: Molecular Dynamics on two sets of coupled systems, P-Q and L-Q’,
where )’ behaves the same as ). We interpret the physical meaning of 0Fg, as the
amount of external force on @' needed to maintain system Q' the same as Q. -

where G’QQ is a sub-matrix of the @QQ matrix.
Comparing system Q-P in Fig. B-4(c) with Fig. B-8(b), we are now in the position
of representing the Q-P system in terms of the Q-L system, as shown in Fig. B-9.

Mathematically, this coupling can be written as

o = QF, | " (B.29)
(5FQ = P[SCQ]—L[.Z‘Q]. ) (BBO)

Eq. (B.30) and Fig. B-9 illustrates the recipe of using' a translationally invariant

Green’s function for dynamic coupling of P and @ regions.

We close this section by pointing out the physical interpretation of the newly
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Figure B-11: One dimensional semi-infinite chain of harmonic oscillators z1, z2, z3, - - -.

introduced variable §Fg. Imagine doing MD on two sets of coupled systems, P-Q
and L-Q', see Fig. B-10. The trajectory of atoms in @ and @’ will naturally be
different, because they couple to different systems. However, if we exert an external
forces 0 F on atoms in @', such that 6Fg+ Fr = Fgp, then the trajectories of atoms
in @ will be no different from thbse in @), because now they have exactly the same
inpﬁt — For, + 0Fg for @ and Fgp for Q. ‘Because the zg (= zg) due to external
forces 6Fg can be éalculated from the Green’s function Gqq instead of performing
 simulations in @, we obtain the time-dependent boundary condition for P based on

linear response theory.

B.5 GLE Typé_ Coupling in Fourier Space

In principle, the computational and storage cost of the memory kernel function ma-
“trix could be further reduced (after> using a translationally invariant formalism) by
exploiting the smoothness of their time-dependence. In this context, an analysis of
the niemory functions in Fourier space would be useful. In fact, the analytic solution
for the memory function of the one—dimensiondl harmonic oscillator was derived [196]
in the Fourier space. This derivation is reproduced below, which serves as a basis for
oﬁr further discussions. -

Following in Section 1, the force on oscillator z; due to the infinite chain to its

right is related with the memory function ©(w) through

Fu(w) = B(w)ii(w). - (B.31)
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At the same time, this force is exerted‘solely through oscillator z3, so that we have,
Zo(w) — 1 (w) = O(w)Ea(w) | (B.32)
Similaﬂy, the force on x5 due to x3 can also be written as
Fi = —-OW)Ew) (B.33)
The eQuation of motion for z, can be Written as

—w?%y(w) = Fia+ Fa (B.34)
= —BW)&E (W) + Ow)i(w), (B.35)

where the identity Fio = —Fpyy is used. Cor’nl:;'ining Eq. (B.32) and (B.35) yields an

equation for O(w),

_ -1 =6 (B.36)
9ty
O +w?O+uw® = 0, - (B.37)
which leads to,
N 34— 2 ' '
CBw) = VY 24 udl . (B.38)
> _ Ow) w\2 iw :
) = ==\ (5) +5 (B.39)

BE) = —Jo(2t) — Ja(28) . (B40)

Fig. B-12(a) shows the real part of 3(w), which is has a semicircular shape. The
‘reason that it is bouvndedeithin w € [~2,2] can be seen from the phonon dispersion
curve. As shown in Fig. B-12(b), w = 2 is the maximum frequency in this lattice.
Since any physical lattice has a natural ubper bound inbits frequency spectlfum, it
é)éplajﬁs the smoothness of all the matrix elements for a general system. Because

B (w) is nonzero only within a finite region of w, it appears to be more economic to
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. Figure B-12: (a) Real part of the memory kernel function in Fourier space. (b)
Phonon dispersion relation of the one-dimensional harmonic oscillator.

store the memory kernel functions in 'Fourier space, iﬁstead of tabulating it in real
space, for which the time axis is unbounded: ‘

| In a Fourier space implementation of dynamic boundary,‘the Fourier transform
‘Zp(w) of the velocity history zp(t) would be maintained. It is updated at every

timestep as
ip(w) +— Zp(w)exp(iwAt) +zp(t), _(B41)

where At is the simulation timestep and zp(t) is the atom position at the current

timestep. The Fourier transform of the boundary force is then calculated as
Fpo(w) = Opp(w)ipw), (B42)
and the boundary force at current timestep can be calculated as

FPQ (t) / dUJFpQ (B43)
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Appendix C

Markovian Models for Dislocation

Motion

C.1 Hirth-Lothe Model

In the Hirth-Lothe (H-L) model [30], the dislocation velocity is calculated from the -
double-kink nucleation rate J and the kink drift velocity v. It is a mean field theory
in that it calculates the average kink migration distance X by equating the double-
kink nucleation rate with the kink annihilation rate. The arguments of the H-L model

is outlined below. Let T be the mean life time of a kink pair, so that
X = VT, (O].)

At the same time, 7 must equal to the average waiting time for a double-kink nucle-

ation,
T=— , (C.2)
so that

.X= L '(0.3)



and dislocation velocity is then
v = 2hXJ = 2h\/Juy, (C.4)

where h is the kink height. A more detailed analysis of Bertocci [248] incorporating

the effect of statistical fluctuations giveS similar results, but with different numerical

constants,
1 | ;
- ¥
X = /55 | (C.6)

v = hy2Ju. | (C.7)

| For 'compl,eteness, we reproduce Bertocci’s development here. The Bertocci’s model
was designed for surface growth but it can be translated into the language of disloca-
tion motion without any change in its mathematical content. Define the density for
left and right kink as p. and. p_ ‘respectively. Let ¢ = p, — p_ and total kink density
p = p4+ p—. Let [ be the distance between two left kinks and n(l) be the normalized

statistical distribution,

/mn(l)ldl -1, o (C.8)
0 . .
/0 n)dl = py . (c9)

The average lifetime for a right kink (—) nucleated on a segment [ is

() = —. | (C.10)

The density of right kink p_ is then the product of life time 7_(I) and the rate of

production on segment I, Jn(l)I, integrated over all s,
I L I |
po = | Ir@nidi= = [ n@Pa. (C.11)
0. .

Uk Jo
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If one assumes no correlation between individual events, i.e.

n{l) = noexp(—al) = g2 exp(—p,l), (C.12)

then

pPP=¢ = dpip_ =2J/y, , (C.13)

2 ’ '
p = \/U—J+C2, (C.14)
k
v o= phvk=h\/2Jvk+C2v,§. ' (C.15)

In the case of non-tilted dislocations, ¢ = pr—p— =0, Eq. (C.15) reduces to Eq. (C.7).
Although Bertocci’ model includes statistica] ﬂuétuations, it is still not a rigorous
probf of Eq. ‘(C.T), due to the approximation made in Eq. (C.10), (C.12). On the
other hand, if one assumes uniform double-kink nucleation rate J and kink velocity

Ug, the dislocation velocity has to take the form

LV = ahy/Ju, _ (C.16)

from dimensional analysis. The argument goes as the following. Define Xs = 1/p,

which is the average separation between kinks, then

v o= h%:%XJ, o (can)
XX, = ;’i (C.18)

Note that X (average kink migration distance) and X, (average kink separation) are
different entities, the former being more related with dynamics (kink life time) and
the latter more with statics (instantaneous kink distribution). The Bertocei’s model is
equivalent to the approximation of X — X,, while thet original H-L mode] is equivalent
to X = 2X,. If one neglects the discreteness of elementary kink juxhp distance, there

will be no intrinsic length scale of the system and X must be proportional with X,
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which will lead to Eq. (C.16). Althéugh no rigorous proof exists for & = v/2 in
Eq. (C.16), it was confirmed by Monte Carlo simulations [248].

A detailed derivation of double kink nucleation rate J and kink drift velocity vy,
based on stochastié jumps of kinks are given in the next section. Here we simply

quote the result of H-L model based on continuous kink diffusion,

_ obh 2E},
bh
| (C.21)

where a is the elementary kink jump distance, Ey is the kink formation energy and

-Dy, is the kink diffusivity,
Dk; = (UOG,2 exp (—%;:) . | (022)

Here W, is the kink ‘migration energy barrier and wy is the attempt frequency and is

usually taken as the Debye frequency of the lattice. Therefore,

obh 2B, + W, :
| J = \WOEI—.,EXP (_l{:lg—T) y v | (023)
a’abh [ Wn o '
Vp = o kg T eXp'(—_kBT) ) ' | (0124)
obha ([ Ex+ W,
v = wyV2h T P (—kB—T) . (C.25)

Eq. (C.25) is valid for infinitely long dislocations. It shows that the temperature
dependénce of dislocation velocity is governed by the effective activation energy Q =
Ei; + W,,. For dislocation segments with finite length L, the dislocation velocity

becomes modified to

4 s o _ |
v o= h.\/ZJvkL+X. I (C.26)
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In the limit of L <« z, the dislocation velocity becomes nucleation controlled,

| WL ([ 2,
v = hLJ = E—TDkexp (_kB_T) o

obh’L [ 2B+ W
ksT )

(C.27)

Therefore, in the limit of short dislocation segments, their temperature dependence

of dislocation velocity is gdverned by a higher activation energy @Q = 2E; + W,,.

C.2 H-L Model with Discrete Kink Jump

In the previous section, we quoted the expressions for J and v from H-L theory [30].
They were derived by assuming kink diffusion on a continuous landscape. In this
sectlion, we present a rigoroﬁs derivation of J and v based on discrete kink jumps.
The discrete approach is more physical in the limit of high Peierls barrier such as
in Si. We will show that most of the predictions of H-L theory can be rederived in
the Ianguage of discrete kink jumps. However, 4in low stress limit, prediction of H-L
model s.hould, be modified.

In this section, we still ignore the elastic interaction between kinks, leaving the
- most complete treatment to the kinetic Monte Carlo simulations in Chapter 7 and
8. In this case, the kink pair energy Eg as a function of width w takes the form as
shown in Fig. C‘—l. ' /

The Ilnicleﬁtion. rate of embryonic vd_ouble—kink (’;aridth w= 1) is fhén
2E; + Wm)

= (C.28)

i) = -

Following Chapter 7, the nucleation rafe of double—kin‘k with finite width w = N can

be caiculated as
Ja(N) = ja(1) - ps(1 — NV), ~ (c29)

. where p; is the survival probability. Because the kink elastic enérgy is ignored, we
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Figure C-1: Kink pair energy Eg as a function of width w, shown as dots. Elastic
interactions of between kinks are ignored. The applied stress creates a tilt in the
energy landscape. :

| can derive the explicit form of p; . As shown in Fig. C-1, the kink pair energy Edk‘as

well as energy barriers are the following,

Ea(w) = 2B, —oabhw , (C.30)

W* = Wy oabh, (@3
W = Wm+%aabh . (C32)

7.

The forward and backward probability are the same for each state (t<1)

F(z’) = [1+exp (,—ZZI;L)]_IEF, O
B(i) = 1-F(i)= [1+exp ("]’C‘;?)}_lsg | (C34)

Following Eq. (7.9), (7.11), the general solution for the survival probability is

1B/

"'ps(m”n) - 1-(B/Fy (.0;35)
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Let B=1/2—a, F =1/2+ a. In the limit of o < 1,

cabh

a = m y | (036)
% = 1-da, (C.37)
1-(1-4a)™ m
= — = (C.38
ps(m, ) 1-(1—4da)* n (C-38)
However, if @ < 1 but with n — oo and an > 1, then |
cabh
= C.39
g = 1-4a, © (Ca0)
. (B\™ , '
pim,o0) = 1 () =dam,  cay
abh o
ps(1, 00) 4o *sT ( ) |
Therefore the double-kink nucleation rate J is
| | obh 2By + Wi | “
J | Jar(1) - ps(1,00)/a »kaBT exp( % ) - (C.43)

Thus we reproduce Eq. (C.23).

| Next we study how Eq.'(C.24) can be"r'eproduced, by calculatiﬁg the elastic av-
erage time for av “successful” double-kink to expand to a given width N, in the limit
of N > 1. Define forward time of state i, t7(i) as the average time it takes for the
. double-kink to reach width 4 —l— 1, starting from Width 1, under the condition that it
ﬁever reaches state with width 0. Define average waiting time for elementary kink

jump

1 ' |
T= Ewo_l exp (m) ) (C.44)
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then

t(1) = 7, | (C.45)
tp(2) = TF+ B(r +t5(1) +4(2) o
— l+§tf(1) ' (C.46)

F F

Define g = F/B=1—4a =1— gabh/kgT, then

t(1) = 7, (C.47)
2 = (F'+g)r, (C.48)
t(3) = (FY1+g)+d)r, S (C.49)
t(4) = (F(1+g+0)+4)r. (C.50)

(C.51)

The total time t(1, V) it takes to reach state N from state 1, under the condition

that state 0 is never reached is

Ny
t1L,N) = > (i)

=1
_ _ ,N-1 _ N
= T{F—l[N 1—g1 J 2]+1 J }
| l—g "(1-y9) l1-g
T 1—gN1 N
~ 1_g[(2N"1)—29—1—_—g—*9 : (C.52)

where in the last step F' == 1/2 is used. A plot of £(1, N) as a function of N at different
value of oo = (1 — ¢)/4 is given in Fig. C-2. |

In the limit of N — 0, o < 1,

t(1,N) = (3N —2), - (0.5'3)
| | (C.54)
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Figure C-2: Expansion time t(1, N) for successful double-kinks (see text). Kink jump
step is set to a = 1. (a) a = 0.01, z4 = 24.5, v, = 0.02. (b) a = 0.001, x4 = 249.5,
v = 0.002.

In the limit of N — oo, g — 0,

= W —mpa (C.55)
Vi o '
where
_ i _ ksT 1
np = (1+9)/20-g)=1/4a—-1/2= T | (C.56)
_ a(l—g) 2aa  od®bh W\ .
v, = o = wp TnT exp T « (C.57)

Therefore, we reproduce the expression for vy, in Eq. (C.24). Moreover, np in Eq. (C.56) _
correspond to the critical s‘epafation z* in H-L theory [30] (p. 538) through Az =
npa ~ x*. The physical meaning of Eq. (C.55) is that, kinks belonging to successful
kink pairs! have an apparent veloci’py highér than vy when their anti-kink is within
a distance Az away. This apparent “repulsion” between kinks is completely statis-
tical in nature. It is simply because those kink pairs which do not move fast away
from each other has a larger probability of annihilating §vith themsélves and will not -

become a “successful” pair. To incorporate this effect, the H-L model for dislocation

1Those who do not annihilate with themselves.
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velocity should be modified in the following way.

Ve
X—-Az’

v = 2hXJ~h (C.58)
which lead to
X AzX - X}, =0, (C.59)
Where' Xpur = v/uk/2J. The solution is
Az [(Az\? | 5
X = Ty + (—2—> + XIZIL7 : - (C.60)
v o= vo+1/vd+ v (C.61)

where vgr, = 2hJX = v/2Ju; and

w = hJAz | v (C.62)

~ L/ (C.63)
ob , ,

= wohexp (—%) (C.64)

Eq. (C.61) _provides a correction term (vp) for the dislocation velocity in H-L model,
due to the effect of lattice discreteness. The cdrrection is always positive and becomes
more significant in the limit of high temperature, low stress'and low kink formation
enérgy E;. However, as shown in Fig. C-2, Eq. (C.55) and hence Eq (C.61) are ;zalid
only-if X > 2Az, or vyr > 41)6. | .

'C.3 Correlated Double Kink Nucleation in Si

In Chapter 7.2.2 we studied double-kink nucleation and expansion as a one-dimensional
random walk process on a semi-infinite lattice. It has been postulated [55] that double-

. kink nucleation on two partial dislocations in Si at low stress could be correlated. In
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Figure C-3: Two-dimensional lattice representing the width of the double-kinks on
the coupled partials.

Chapter 7.3.3, it is shown that this correlation may or may not existA depending on
the whether the ideal partial Separation Xy is c’ommensurafe or not with the period-
icity of the Peierls barrier. In this section, we investigate this correlation by isolating
the double-kink nucleation on two partials from other kink events and model it as
a}Markov process, similar to the treatment of kink nucleation on a single partial in
Chapter 7.2.2. This is the first detailed study of correlated double—kirik nucleation by
discrete stochastic ﬁrocesses, and it is supposed to be more rigorous than previous
investigations [55]. | , o |

- The system of double-kinks on two-coupled partial dislocations can be mapped -
on to a discrete 3—dimensioﬁal lattice,‘with each lattice point (w;,ws, L) specifying
the width of the two double-kinks (w; and wsy) and the offset between their centers
(L). For simplicity, we assume L = 0 in following discussions, so that the system
corresponds to the ﬁi‘st quadrant of a 2—dimehsional square lattice, as shown in Fig. C-
3. The double—kink‘nucleation and growth process then corresponds to the random
walk on this 2-dimensional lattice. Due to the elastic interaction between kinks and
the randomness of their motion, kink pairs with small widths are prone to annihilate

. with themselves. In this section, we calculate the rate for nucleating kink pairs with
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width larger than one lattice spacing.

Define sets of states
i = {(w1, wa) w1 + wp = i,wy > 0,wy > 0} | (C.65)

In the following discussion, we simply call 1 a state, which contains i+1 sub-states with
wli =0,---,i. Due to the connectivity of the lattice, the system cannot reach state i
without go to (i — 1). Therefore, a recursive formula similar to that in Chapter 7.2.2
can be developed. It follows that all the definitions and derivations in Chapter 7.2.2

can be directly applied here, provided the variables are now interpreted as matrices.

The double-kink nueleation rate for state IV is related with the survival probability

ps(1 — N) through,
jaN) = ja(l) p(1—N), ' ~ (C.66)

where jau(N), jae(1), ps(1 — K) are 1 x (N +1), 1 x 2 and 2 x (N + 1) matrices,

respectively. The survival probability matrix can be calculated as

ps(i — N) = 1:[ ps(qf — (i + 1)), | (C.67)
pi— (11) = [[-BAmG-D—d] -FO, (e
| (C.69)

where F'(2) and B(3) fof»ward and backward probability matrices with dimension 7 x
(i+1) and ¢ x (¢ — 1) respectively. F(i) and B() can be calculated from the energy
difference between state 2 and its neighboring states. They are band matrices due to
- the connectivity of the ‘square lattice. The explicit, form of F(z) and B(z) is omitted
here for brevity. , o - o '
' Fig. C-4 shows the energy landscape on the square lattice“(wl', wsy), in the case
of commensurate (XQ = 5.0) and.incommensurate (Xo_z 5.5) partial separations,

_ calculated using linear elasticity (more details in Appendix D). From the energy
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Figure C-4: Energy landscape and contour for double~kinks on the two coupling
partials as a function of their width wy and ws. (a), (b) Xo =5.0. (¢),(d) Xo =5.5
. Kink energy Ej = 0.25eV. Stress o = 4MPa. ’ :
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Flgure C-5: Rate distribution of double—kmk nucleatlon on two partials with wy+wq =
~w = 50 at stress.c = 4MPa. (a) Xy = 5.0, Ej, = 0.25eV. (b) Xo =5.5, Fy = 0.25eV.
(c)»Xo =5.0, B, = 0.5eV. (d) Xo = 5.5, B = 0.5eV.

landscape in (a) and (b), one can anticipate that correlated nucleation on two partials
(wy = wg) is fhe only way to nucleate kink paifs at small stresses that is energetically
favorable, for X = 5.0. In Fig. C-4(c) and (d), Xo = 5.5 while the actual separation of
the‘ partials is X = 5. The energy 1andscape shows that double-kink nucleation on the
~leading partial (w; > 0,wq = 0) is favored. This observatioﬁ is largely consi‘étent with -
- the detailed rate calculation using fhe recursive formula above. However, it is found
that the kmk energy Fj, also play an important role on the nucleation correlatlons
Fig. C- 5 shows the dlstrlbutlon of double—kmk nucleation rates in state 50, ie. -
wy + wy = 50, among the 51 individual substates. For E, = 0.25¢V, the d1fferenc_e ‘
in the cofnmensuraﬁe and incommensurate case is cleatrly»observved. At X, = 5.0, av

peak exists for wy & w, indicating a large contribution from correlated nucleation. At
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Xo = 5.5, only a single peak exis’rs around w; = 49, so that double-kink nucleation
on the leading partial is the main contribution. In the case of Fy = 0.5eV, the
peak at w; = wy ceased to exist even for the commensurate case. However, two
peaks are observed for Xi) = 5.0 indicating kink nucleation on both partials are both
possible. When Xy = 5.5,ionly nucleation on the leading partial is favored. For both
small and large values of Ej ,I the double-kink nucleation rate is always larger in the
incommensurate case (Xp = 5.5) than that in the commensurate case (Xo = 5.5), in

agreement with Chapter 7.3.3.

'C.4 Debris Loop Distribution

In this section we derive the size distribution of the remnant (debris) dislocation loops
in the Wake of a moving screw dislocation under the assumption that double-kink
nucleatlons occur randomly and uncorrelated on two slip planes. ‘

Consider the growth of the two arms of a kink cluster, also called cross kink,

or super jog on screw dislocations in BCC metals. According to the kMC model
in Chapter 8, double kink nucleation on three (110) planes are possible. When the
 maximum resolved shear stress V(MRSS) plane bisects two (110) planes, double-kink -
nucleation rates. on these two planes are equal, and sriper jog are most likely to
grow. In this section, we only consider double kink nucleation on two slip planes for
Slmphcity In this case, the growth of two arms of the super Jog is equivalent to two
random walkers i in two d1mens1onal lattlce as shown in Fig. C-6.
_ * For simplicity, we only oons1der kink formation in the forward direction, i.e. the
random walkers only moves upward or to the right. Define p as ithe probability of
choosrng upward and 1 — p for moving to the right. Let the meetrng pomt to be
- X (m,n), then the length of the loop is 2L = 2(m+n). Deﬁne the area of the loop as
A In this section we calculate the dlstrlbutlon functlons of L and A in terms of p

This problem can be simplified into the process of one random Walker on a one |
dimensional lattice. Define coordrnatron transformation ¢ = m + n, j =n-m and .

: k(' i) = 71(3) — 42(4) as the offset of the two walker along j d1rect10n for a given 1.
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Figure C-6: (a) Two random walkers on two dimensional lattice representing the
growth of the two arms of the super jog. (b) Coordinate transformation of (a) into a
one-dimensional random walk.

Then the loop formation process can be regarded as a one-dimensional random walk
along k axis, with ¢ playing the role of time. The initial condition is k(¢ = 0) = 0,
k(i = 1) = 1 and the random walk terminates, i.e. loop forms at k(1) = 0 again.
At each step, the walker can either gd up, or down, or étay at the same level with

probabilities pq, pa, 3, réspectively ie.

| KO +1 m=p-p)
KG+1) = 4 k({@), m=p+(1-p? (C.70)
KO -1 m=pli-p

The probability of a given path is then the product of L number of p; terms, i = 1,2, 3.
For example, the probability of the- path‘shown in F‘ig. C-6(Db) is plpgpgpipgpgpgpg.
Define F'(L, A) as the summation of probabilities‘for all paths with length L aﬁd
area A, for which ‘only the starting and ending pbint has k = 0, while all other -
points’éatiéﬁes k > 0. Since all such paths must choose p; 'in\thevﬁrst Step and
3 >‘invthe last step, the probability distribution function f (L,A) that we are after
s f(L,A) = pyip3stF(L, A). Also define G(L, A) as the,summ_ation of probabilities -
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Figure C-7: Diagram for F(L,A) (solid path) and G(L,A) (wavy path) and their
recursive relationships.

for all paths with all points satisfies &k VZ 0. We can develop recursive relations for
+ F(L,A) and G(L, A).
As shown in Fig. C-7, we can represent F'(L, A) as a solid path, and G(L, A) as a

‘wavy path, and they satisfy the recursive relationship,

F(LA) = ppsGL-2A-L+1), (c.71)

. L A '
G(L,A) = pGL-1,A)+) > F(i,a)G(L—-i,A-a), (C.72)
| o : (C.73)

with initial conditions

FLA) =0, (C.74)
F(2,1) = pps, o - (C75)
Go,4) =0, | (C.76)
G(1,0) = pr | (C.77)

Similar relations also exist for the distribution function for loop half length L alone,
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'Figure C-8: Loop half length distribution function f (L) for different values of p.

L
L) = pzf(L—1)+Zf(i—2)f(L—i), | (C.78)
fO) = 1, - (C.79)
f1) = p (C.80)

Fig. C-8 shows the numerical solution of loop half length distribution function
F(L) for different p. The distribution function has a slow decaying tail ~ L=%/2,
regardless of the value of p. Therefore, the average loop half léngth (L) diverges,
meaning that there exist appreciable probability of finding arbitrarily large lbops.
The distribution function f(L, A) for fixed L and fixed A are plotted in Fig. C-9 and
a contour plot of f(L,A) is shown in Fig. C-10. The dislocation function is nonzero
only for L2/4 < A < L — 1, and are most prominent along the ridge A = L1%/2.3,

. indicating a “fractal” loop dimension of D = 1.5.
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Figure C-9: Distribution function f(L, A) for (a) fixed L and (b) fixed A at p = 0.5.

f(L A)

100
80!
60}

10,

20¢

oA - ' ' -
0 20 40 60 80 100
. L
Figure C-10: Contour plot of f(L, A) for p = 0.5. f(L, A) is nonzero only for L?/4 <
A < L1, and are most prominent along the ridge A = L'*/2.3 (dash line), indicating
a “fractal” loop dimension of D = 1.5.
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C.5 Lattice Spih Model of Dislocation Motion

C.5.1 System Description

In this section we discuss an alternative approach for kinetic Monte Carlo (kMC)
modeling of dislocation motion, different from that described in Chapter 7. The model
development and numerical results presented in this section are the consequences of
the author’s collaboration with C. Deo 2 [249]. Although the ultimate goal of this
work is to study dislocation solute interaction, we only discuss dislocation motion in
this section. |

In this approach, the system is similar to Ising model, and the kMC simulation
resembles cellular automata. The system is specified by a set of integer values on a-
2-dimensional square lattice. For simplicity, assume the lattice values can only be 0
or 1. This 2-dimensional lattice represents a slip plane of the crystal, with value 0
representing the original state of the crystal and value 1 representing the occurrence
of slip by one Burgers vector. The dislocation line is then the boundary between
the domain of all 0’s and that of all 1’s, i.e. the boundary between the slipped
and unslipped region, as shown in Fig. C-11. This representation is similar to the
nevﬂy proposed Phase Field method for dislocation simulations [250, 251]. Comparing
with the method in Chapter 7 and 8, this approach has the advantage that multiple
dislocations and dislocation loops can be represented naturally, but the necessity to
store a 2-dimensional matrix limits the size of the system.

The kinetic Monte Carlo simulation of dislocation motion then corresponds to
; flip of lattice values (spins) between 0 and 1. Similar to Chapter 7, an event list is -
generated at each step, which lists the rate of spin flip for every lattice point. A
kMC algorithm is then applied to select a particular spin, whose value is then flipped
and the simulation continues. The rate of spin flip is theﬁ the central aspect of
the simulation, which consists of contribution from double-kink nucleation and kink

migration mechanisms.

2The original simulation code was imi)lemented by C. Deo (Princeton), whose collaboration with
the author during his visit to MIT (during 1/8-1/11/2000) are summarized in [249].
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Figure C-11: Lattice points next to a dislocation segment
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Figure C-12: Local environment of a lattice spin determining whether (a) double-kink
nucleation, (b) kink migration, or (c),(d),(e) annihilation is controlling the spin flip.
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Because spontaneous dislocatién loops is not allowed in this model, a lattice spin
cannot flip unless one of its four neighbors has opposite spin values. Furthermore, we
“use the values of the four neighbo-ring spins to identify whether the spin flip is due |
to double-kink nucleation and kink migr’atidn. As shown in Fig C-12(a), if only one
neighbor has opposite spin value, the spin would flip as a double-kink nucleation. If
neighbors that are not facing each other have opposite spins, as in (b), kink migration
is then possible.. For all other cases, as in (c),(d),(e), the spin would flip as kink
annihilation. Different from the treatment in Chapfer 7, we specify an annihilation
energy barrier E,,, and compute the annihilate rate by,

Jann = wo €XD(—(Bann + 7420.4/2) /ksT) . (C.81)

C.5.2 Verify H-L Model

As a check on the validity of the model, simulations with constant double-kink nucle-
ation rate J and kink migration velocity vy is déjrried.out? whose predictions of disloca-
tion velocity v are compared with that of Hirth-Lothe (HL) model, i.e. vyr = v/2Jvg
(see Appendix C.1 for more detail). |
~ The simulation cell consists of 100x 100 lattice points s;. Initially the lattice values
s; in the lower half of the cell are all set to 1 and those in the upper half all set to 0.
The average displacement d of the dislocation is simply the number of lattice points
that has flipped from (0 to 1), divided by the cell width, i.e. d=(}; s — 5000) /100.
Because every kMC step, one and only one lattice point flips from 0 to 1, a plot of d -
against kMC steps would always give a straight line with slope 0.01, regardless of the
values of J and v;. On the other hand, dislocation velocity is obtained by plotting d
against physical (real)btime, and it depends on J and v because'they determine the .
relative proportions of nucleation and migration contributions to a spin flip rate.
Fig. C-13(a) shows a snapshot of the simulation with J = 1 and vz = 50, (in
arbitrary units). Only the lattice sites adjacent to the dislocation are plotted. Fig. C-
13(b) shows the average dislocation displacement as a function of the physical time.>

. The average dislocation velocity extracted from the slope of the curve is v = 10.306,
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Figure C-13: KMC simulation of dislocation motion with constant double kink nucle-
ation rate J and kink migration rate v, only lattice sites neighboring the dislocation
are shown. (a) simulation snapshot with J = 1, vy = 50. (b) average dislocation
displacement as a function of physical time, parameters as in (a). (c) simulation
snapshot with J =1, vy = 5, (d) average dislocation displacement, parameters as in

(c).

which is in good agreement with the th.eoretical value of vy, = 10. Fig. C-13(c) shows
a snapshot of the simulation with J = 1 and vy, = 5,. (in arbitrary units). Fig. C-13(d)
shbws the average dislocation displacement as a fu‘nction of the physical time. The
average dislocation velocity extracted from the slope of Fig. C-13(d) is v = 3.23, in

good agreement with the theoretical value of vHL = 3.16.
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C.5.3 Dislocation Loops and Pinning Points

To demonstrate the robustness of the model in treating multiple dislocations and
dislocation loops, simulations with an initial dislocation loop are carried out. Pinning.
points are also introduced simply by specifying a spin (0) that are not allowed to flip
(to 1). ‘

Fig. C-14 shows snapshots of such a simulation with constant J and vy, and ignoring
linear elastic interactions. Fig. C-14(a) shows the initial condition of a rectangular
dislocation loop with 4 pinning points. Periodic boundary condition is applied so that
dislocation can annihilate with itself across the cell border. As shown in Fig. C-14(e),
(), (k), the dislocations is temporarﬂy impeded when it encounters the pinning point.
The dislocation then bows around it, eventually leaving behind a small dislocation
loop surrounding the pinning point. Since this model does not include linear elastic
interactions, i.e. dislocation has no line tension, this bowing-out process occurs rather
rapidly, and the pinning point is therefore not a strong obstacle to the dislocation
motion in this case. In Fig. C-14(1) and (m), for example, as the dislocation reaches
the edge of the simulation cell, it recombines with itself due to the periodic boundary
conditions. The recombination occurs quite naturally, with no special rules necessary,

showing the robustness of this method.

Fig. C-15 shows snapshots of a similar simulation when the stress field effect is
included: In this case, the dislocation appears more straight, due to the effective line
tension. As a result, the dragging effect of the pinning point is more pronounced.
Eventually, the dislocation annihilates with itself across the periodic boundary, leav-

ing behind four loops surrounding the pinning points.

As a conclusion, we diécuss the limitation and future generalizations of the lattice
kMC model. The system sizes, i.e. dislocation length and its range of motion are
vcurrently limited by fhe size of thé two dimensional array (oﬁ the order of 100 x 100)
for the lattice values. This limit can be removed by representing the lattice afra’y
as a sparse matrix. As discussed .in Chapter 7.3.3, a special treatment for double-

kink nucleations is needed to prevent rapid nucleation and annihilation of embryonic

276 -




double-kinks. The lattice spins can be generalized to take multiple values, even
vectors, to represent multiple dislocations, partial dislocations and stacking faults. It
is also possible to apply a Fast Fourier Transform (FFT) method to calculate stresses,
similar to the Phase Field approach of Wang et al. [250, 251], which may increése

‘computational efficiency.
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Figure C-14: KMC simulation of dislocation motion with constant double kink nucle-
ation rate J and kink migration rate vz. The dislocation loop overcomes four pinning -
points during expansion. (a) initial condition containing a dislocation loop. (b-t)
snapshots of subsequent simulation steps.
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Appendix D

Linear ElastiCit'y Theory of

Dislocations

D.1 Stress in Two-Dimension

In this section, we give the explicit formulas for the stress fields of a dislocation on its
glide plane, which are used in kinetic Monte Carlo simuiations in Chapter 7. With.
the'coordinafe syétem shown in Fig. D-1, the dislocation Burgers vector is specified
by (b.,b;). We have b, = 0 because plahe x-z i8 chosen as the dislocation glide plane.

The formulas below are simplified from those given in [30] for a generél casé. Only
two stress components (o, oy,) are listed here because they are the only ones that

are exert forces back to the dislocation itself. The stress at point (z,z) is given as -

< ,
‘ (Z’X) ' X
®
(0y,:04y)
(b, bx) (z, 0
Z — (o) -
0 z z; z 0 7z z-p° ' z4p z, Z
(a) . _ (b)

Figure D-1: Stress calculation of dislocation segment for the points on the glide plane.
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the difference between functions evaluated at two end points of the segment,

Ozy = C"wy(zé) - Umy(zi)b ) . (D-l)
Oy = 0ya(2y) — 0ya(2) (D.2)
where
—bomy Z2<# <%
ogy(2') \ :
Tos | § bap 2 <2< 2 (D.3)
‘ L bx—(ﬁ_—)) Zi < Zé <z
( N
) vhyg — (1 - I/)ﬁ(—bﬁ)\—) z <z <z
Oyz g
yao = { vheg+(1—v)kd < z< 2 (D.4)
\Vbz%+(1—v)% z <z <7
oo = p/ir(l-v), (D.5)
A= Z—z, (D.6)
R = 2+ (2—2)° (D.7)

The three forms of stress formula yield are mathematically equivalent results, but

each one should be applied at different situations as specified to ensure numerical

stability. For example, for infinitely long dislocation, 2 — —o0, 25 — 00, one should

use the second form and will get,

Oy

Oyz

_ M
C2n(l—-wv)z’ (D-£)
2b, b, ’

z°T g A (D-9)

which agrees with the stress field for infinitely long edge and screw dislocations [30].

To calculate the stress at a point on the dislocation segment, as shown in Fig. D-

1(b), we use the “principal value”. This is

to say that we will attribute the stress at

point (z,0) due to the segment z},z} as the superposition of the stress due to two

segments 27, z — p and z + p, 25, and take the limit of p — 0. Specifically, when z = 0,
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71 < z < z3, we have g,, = 0 and Oyz = 0yz(23) — 0.(2]) , with

oy:(2') _ 1
. vb, 7

(D.10)

D.2 Energy in Two-Dimension

In this section, we give the explicit formulas for elastic energies of dislocation segments
on the glide plane. For simplicity, only horizontal (H) and vertical (V) segments are
considered. This is sufficient to calculate the double-kink nucleation energy landscape

on coupled partial dislocations in Si (see Appendix C.3).

The interaction energy between two dislocations is given by [30],

- ff (b1ng) dZIXdlg) ff bl dll 62 dlg)
Cl Cy 471'

A 1_ 5 j{h ]gz(bl x dlt) - VYR (by x diy) | (D-11)

where by, by are Burgers vectors, R = ((z; — )2 + (11 — )% + (21 — 2)2)"2, and
the integrations are along the two dislocation lines.
If all the dislocations are on the glide plane z = 0, then blz = bzz =0,z =29=0.

bl X dll ~ €, bg X dlg ~ é,. Also notice that,

d _ 21 — 29
kR = 222 (D.12)
62 1 (Zl — 22)2 1
821(922R - E - T - _é ' (D13)
(D.14)
Therefore,
Wi = —”—]{ j‘{ [—2(51 X by) + (dly x dly) + (B - di}) (B - dE)] 1
471' Cy JCy R
# - — - N - pnd - 1

+4_7T(T-—7) ﬁl ﬁz [(bl X dll) . ez} [(bz X dlg) . ez} -]—% (D15)
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Figure D-2: Dislocation segment interactions (a) between horizontal (H) segments,
(b) between horizontal (H) and vertical (V) segments.

For interactions between H-H segments, as shown in Fig. D-2(a),

Whn

where

Enn

f(z,v)

b1,b
ypm (1_ ) (blzbZI 1y 2y> /dilh/da:z

E / dzq / dz
HH ! 2 (wl—m2)2+d2

EHH(f(c1 d) (C— a, d) f(bad) + .f(b —-a, d)) )

[k b1ybay
— | bigba,
.47r(1-—1/)(1 2_*_1—1/

rin(v/z?2 + 2+ ) — /22 + 92 .

For interactions between H-V segménts, as shown in Fig. D-2(b),

Wav

where

9(z,y)

7 1—2v 1
m ("‘blzb2y+ T"blbez) /dﬂ?l/dyzﬁ

d
EHV / dx 1 dx 2

V :L'l—b)z—i-y,

EHV( ( ) ) g(b— a‘>d) (b,C) +g(b_aac)) ’

7 1—-2v
——— | =bighy, + —— .
d7(l —v) ( 1202y + 1—v biyba )

xln(\/m+y) +yln(v/22 + 42+ z) .
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Figure D-3: Dislocation segment interactions (a) between horizontal (H) segments,
(b) between horizontal (H) and vertical (V) segments, when two segments share a
common node. : '

If two H segment share a common node, as shown in Fig. D-3(a), then

e = Euu(f(b,0) - f(b—q,0) - f(a,0) + f(0,0)), ~ - (D.28)
£(@,0) = o(n(jz]+2)—|o| = eln2s -z , (z > 0) (D.29)
£(0,0) = 0, " | | (D.30)
W = Bau(blnd— (b —a)(b—a)—alna). (D.31)

One can check that in this case, Wyn equals to the self energy of segment with length
b minus the self energies of segments with length a and b — a, where the self energy

of a segment with length L is [30],

_ K blyb2y £ _
WD) = i (bmbzz—l- ) Ln = - 1), (D.32)

with 7. being a cut-off radius (see Appendix A.1). In the limit of a — oo,

Wan — EHH(b-I—bln%)—>oo (D.33)

If an H and a V segment share a common node, as shown in Fig. D-3(b), then

Wav = Bav(g(a,b) - 9(0,5) — g(a, 0) + 6(0,0)) | (D.39)
9(z,0) = 9(0,2) =zln(|z] =zlnz ,(z > 0) N (D.35)
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Figure D-4: Interaction between an infinitely long H segment (a — oo) with (a) an
H dipole, (b) a V dipole. '

g(0,0) = 0, : v (D.36)
Wiav = FEuav {aln(\/ a?+b2+b) |
+bln(va2 + b +a) —alna - blnb} (D.37)

2

In the limié of a — oo,
2a
Wav — EHv(b+ bln T) — 00 ‘ : (D38)

The interaction energy between an infinitely long H segment with a H segment

dipole, as shown in Fig. D-4, is

W = lm Bu{[f(z+w+a,y) - fz+w,y) - fz+a,y) + f(z,9)]
—[f§w+w+a,y+h) — flz+w,y+h)

~faray+h)+ @y E ) (D.39)
= Emulf(z+w,y+h) - flz+wy) — flz,y+h)+ f(z,y)], (D.40)
because | (D.41)
lim f(a+a,9) — flz+a,y+h) ~ 0(%) 0 (D.42)

The interaction energy between an infinitely long H segment with a V segment

dipole, as shown in Fig. D-4, is

W= lim Bav{lg(z +a,y+h) —g(z,y + 1) — g(z +a,y) + g(z,9)]
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—[g(m+w+a,y+ h) — g(z +w,y+h)
—g9(z+w+a,y)+g(z+wy)} (D.43)
= Egvlg(z +w,y+h) —g(z+w,y) —g(z,y +h) +g(z,y)], (D-44)
because ' ~ (D.45)
alirrolog(m +a,y) — glz + a,yv—l— h) ~ O(%) —0 (D.46)

D.3 Nodal Driving Force

In this section we give the formulas that will be essential to calculate nodal driving
force in a Nodal Dislocation Dynamics simulation (for more details see Chapter 9).
These include interaction energy for two dislocation segments sharing a common
node (i.e. a hinge), and the interaction energy between a finite and an differential

dislocation segment.

D.3.1 Hinge Interaction

According to [30], the interaction energy between the two dislocation segment forming

a hinge, as shown in Fig. D-5, is

b[5G [B- ¢ »fzxes}

* Iy 5) + oy | (B &) (B2 &)
X {R(za,ys) — c0s0 [za Int(za, ys) + yslns(za, yp)l} ,  (DA4T)

Wo = o {G8)B &) -2[6:xB) - 6 x &)
| |

where & and &, are the line directions of the two segments, I(zq,ys) = I(z,y) —

I(z,0) — I1(0,y) + 1(0,0), etc. The functions I, R, s and ¢ are given below,

R4y —acosf | -
I(z,y) = «ln +yx“°S +y1nR+“’”yyC°S‘9,  (D.48)

I1(0,y) = yln (zsin2 g) ) _ (D.49)
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Figure D-5: Two dislocation segments sharing a common node form a hinge structure.

I(z,0) = zln (2 sin? g) , (D.50)
1(0,0) = 0, (D.51)
R(z,y) = (2*+y* - 2zycosh)™/? (D.52)
s(z,y) = yecosh—z+ R(z,y), (D.53)
t(z,y) = zsinfd—y+ R(z,y) . (D.54)

If the two dislocation segments belong to the same dislocation, then l_;l = l—;g = g, and

Wiy simplifies to,

Wa = £{0-800-8) + 1 i@ xa] [F @ xa]

1-v
x1(zays) + g =y ()6 - 2)]

X {R(Za,Yp) — c0s0 (2o Int(za,yp) + ysIn (20, yp)]} - . (D.55)

Let b = (bg, by, b,), & = (1,0,0), & = (cos@,sin @, 0), then,

& o= b, (D.56)
by = bycos+b,sind (D.57)
b:(&x @) = —b, N (D.58)
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b-(& x &) = bysing —bycosf (D.59)
R+ 1y —xzcosf R+ 1z —ycosd
n + yln -

Iza,y5) = =l yl ”
—yln (2 sin® g) —zln (2 sin® g) (D.60)
R(za,ys) = R—z—y ‘ (D.61)
Tolnt(zq,ys) = zln(zcosfd —y+ R)— zln(zcost + z) (D.62)
yplns(za,ys) = ¥ 1n(y cosf — z + R) — yIn(ycosf + ) (D.63)

Several terms in Eq. (D.62-D.63) becomes singular when 6 — 7, i.e. cosf — —1,

while the energy itself remains finite. When this is the case, the energy should be

calculated using a different formula. Define e = 1 + cos @, then

tolnt(za,ys) = zln(l+ s - (D.64)
, . g
yslns(zq,ys) = yln(l+ x—y—yé) , (D.65)
where,

11, 135 5 44 7 54 5
= —ca-cd¥e— —d%® — ——atd — — D.66
] 50T g0 €T 50C T T5R%E T gmgt € —EO(e,), ( )

2zy

= _ D.67
(z+y)? | | (D67

For two dislocation segments oriented in differént directions, we transform the coor-
dinate system into geometries shown in Fig .D-5 and use Eq. (D.55-D.67) to calculate
their interaction energy. Contribution to nodal driving force due to this interaction
can be obtained by differentiating W12 against z,y, 0 etc. The explicit forms of the

driving force will not be given here.
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Figure D-6: Interaction between a finite and a differential dislocation segment.

D.3.2 Interaction Energy between a Finite and a Differential

Dislocation Segment

In this section, we assume that the two dislocation segments have the same Burgers

vector, i.e. by = by = b. Then 'Eq. (D.47) becomes,

Wi — fi ,%o (b dly)

+—t f (b x dly) - VVR - (bxdlz) " (D.68)
4 l—V Cc1 JCs

When one of the dislocation is a differential segment (dl_j, as shown in Fig. D-6, their
interaction becomes, '

Wi — ”/zzd L&) diy
2T 4 ), RV

7

In the geometry of Fig. D-6, R = /z2 + y2. Therefore,

22

\/W = In(R+z)|2

= —In(R-— x)|72
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The components of VVR are, e.g.

32
oz
82

0x0y

-2

" - 20

7)

= In Vw%+y2+w2

Vi + 2+ 2
In Vai+yt—m

VEi+yt -

1 =
R R3
Ty

W

Il

v
R3

‘The integration of VV R will use the following integrals,

Therefore,

/”’2 P 11]* 1 1
T — = —_— - — —
&1 R 1 \/33% + y? \/33% + 92
2 g2 z : T2 :
/ml does = (—ﬁ+ln(R+x))wl
x T2
= (——E —In(R+ w))zl
2
Yy z
dr=— = —
/z1 R T R
T2 T2 -11? B :_Bjj —% : 0
/ dzVVR / do | -z 1_¥ g
Ty 1
0 0o 1
S
~% In(R+z)- % 0
0 0 - In(R+x)
The interaction energy can be calculated as,
Bz o 7 >
W = —_— b " €g b . dl ]. r2
12 4,[(_( € )( _3 Il(R-'-.T) T1 +47r(]_—1/)(bx
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(D.70)

(D.71)

(D.72)

(D.73)

(D.74)

(D.75)

(D.76)

(D.77)




z2

z ¥ 0

R
% W(R+z)-% 0 - (b x dl) (D.78)
0 0 In(R + 2)

Tl

D.4 Anisotropic Elasticity

There are two forms [30] of anisotropic elasticity theory for straight dislocations.
One is the Stroh’s classical sextic theory, which involves a solution of a six order
polynomial equation. The other is the Integral Method, where the sextic problem
is reformulated into evaluating a set of integrals. In the limit of isotropic elasticity,
the Stroh’s sextic theory fails as the roots of the sextic equation becomes degenerate.
In comparison, the Integral Method is more robusf, but is also more complicated
to implement. In this section, we use integrate the disldcation stress field given by
Stroh’s sextic formalism [30] to derive the interaction energy between two dislocations

in an anisotropic medium, which is used in Chapter 4.2.

For completeness, we give a short summary of the Stroh’s sextic formalism [30]
below. Let us start with the standard elasticity relationships, between stress o;; and

strain ez, strain and displacement field ug, and on force equilibrium,

oij = Oijk.lfkl A : ' (D.79)
= - | —4+— D.
€Kl 2 (6:1:; + Ba:k) (D-80)
80‘,,;]' .

where Cyjp, is the elastic constant tensor, and 4,7,k = 1,2,3. Let the dislocation
line be along €3, the stress and strain fields are then invariant along é;. The force

equilibrium conditions now reduce to,

80-1'& _ ' :
. = O (D.82)
0

e = O - (D.83)
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Buk

o T iokB o D.84
o Ciakp 925 (D.84)
’ Bzuk .
iakg—— = 0, : D.85
Ciaks 0z,0z3 ( )
Whére a, 3 =1,2. The solution of Eq (D.85) is
up = Apf(n) | (D.86)
n = T1+pr2 (D.87)
where Aj is the solution of,
T
[Cite1 + (Ciake + Cior1)p + Ciogop ]Ak’éﬁ = 0, (D.88)
or équivalently,
a,ikAk =0 _’ (D89)
where, (D.90)
ax = Cigr + (Ciake + Cioxr)p + Ciakap® (D.91)
For Eq. (D.89)‘to have solution, matrix a;; has to satisfy
det{ax} = 0 - (D.92)

Eq.(D.92) is a sixth order equation for p. Let p,, n = 1,2,3,4,5,6 be its six roots,

and one can show that they are complex conjugate of each another, i.e.
p4=p>{: Ds :p;’ Ds =p§ (D93)

The solution for the displacement field is then

U = RGZ[Ak(n)fn(nn)], ‘ (D.94)

n=1
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=Inn, , (D.95)

where D(n) satisfies,

3 . -
Re [> #Au(n)D(n)| = by ,k=1,2,3. (D.96)

n=1

Here, by is the Burgers vector and the + sign takes + for Im(p) > 0 and — for
Im(p) < 0. Eq (D.96) only provide three equations for the 6 unknowns of D(n), since
D(n) are complex numbers. The other three equatidn are supplied by demanding

zero self force on the dislocation core, which yields

n=1

3
Re Z Bz2k(n)Ak(n)D(n)] =0 77: = 17 27 3) (D97) '
where
Bijk(n) = Cijir + Cijkapn (D.98)

The final form for the solution of displacement and stress field is then

ur = Re L2__7T1@ nzzl Ai(n)D(n) ln’nn] : (D.99)
oi; = Re 5—7?11 ; Bij‘k(n)Ak (n)D(n)ngl] (D.100)
- (D.101)

One can calculate the dislocation self energy by measuring the work done to displace
the two sides of a cut surface with respect to each other by gagainst the self stress

of the dislocation, which yields

1B
KL/_ = —5/ Tigbidxy (D-102)
N - T
= -In"Im >~ Biok(n) Ax(n)D(n) | - (D.103)
he n=1 ) .
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(a) ()

Figure D-7: Integration path of the second dislocation in the stress field of the first
dislocation at the origin to compute interaction energy . (a) The second dislocation
moves along x axis. (b) The second dislocation moves along a circle.

= —ZIn= (D.104)

where 7, is the cut-off radius and R is the size of the elastic medium (see Appendix

A.1 for more details). K is the so called energy coefficient, which is defined through

Kb = bIm | > Bii(n)Ar(n)D(n) | (D.105)

n=1

Egs. (D.79)-(D.105) are already given in [30]. In the remaining part of this section,
we will use these equations to derive the general form of the interaction energies

between two straight dislocations in anisotropic medium.

k4

First; we study the case where the two disllocations are both on z; axis, as shown
in Fig. D-7(a). Let dislocation 1 be at origin and move dislocation 2 along = axis.
~ For simplicity assume the two dislocation form a dipole, i.e. 5 = —5®@ = . Let r,
be the separation where the energy of the system is defined as 0. Then the energy of

the two dislocation system as a function of their separation is

W ™
Y - / o DbP dz, (D.106)
chz r ‘

Eq (D.107 is similar to Eq (A.4), with only p in isotropic elasticity replaced by
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the anisotropic energy coefficient K. However, Eq (D.107 does NOT mean that
the interaction energy between two dislocations depends only on their separation r.
Remember that Eq (D.107) is derived with dislocation 2 constrained along the z axis.
To obtain a general formula for the interaction energy, we need to measure the work

done to move dislocation 2 around a circle, as shown in Fig. D-7(b). Define

hg(n) = €35 Bijn(n)b;Ax(n)D(n) , (D.108)

we have, :
3 ,
= Im[hy(n)]. (D.109)
n=1
The interaction energy as a function of the position of dislocation 2 is found as,

3

D - w28l

—I-ZR { In( cosé)—i—pnsm9)] | (D.110)
n=1
W(z,y) _ § hi(n) %+ pny
7 = ;Re 5 In . \ (D.111)

In the limit of isotropic eiasticity, D123 — % and pgs e — —1, the sextic theory breaks
down for dislocations with edge components, because Eq. (D.111) (D.111) will fail to
describe any angular dependence. However, for screw dislocations they will naturally

reduce to the form of Eq.-(A.4).
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