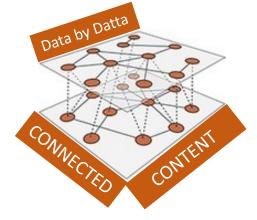


MOOC Tool for Economic Growth

Dr Shoumen Palit Austin Datta


For additional information please visit http://bit.ly/MIT-Made-in-Taiwan

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium (www.iiconsortium.org) • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT) • http://bit.ly/S-Datta

DISCUSSION http://bit.ly/MIT-Made-in-Taiwan

- History
- Context
- Purpose
- Economy
- Denominator
- Data
- Temporary Conclusion

Made in Taiwan

Dr Shoumen Palit Austin Datta

For additional information please visit http://bit.ly/MIT-Made-in-Taiwan

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium (<u>www.iiconsortium.org</u>) • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT) • <u>http://bit.ly/S-Datta</u>

History of MOOCs

Why history ?

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium (<u>www.iiconsortium.org</u>) • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT) • <u>http://bit.ly/S-Datta</u> 4

See three good reasons ... C ... C ... C ...

Study the past if you would define the future — <u>Confucius</u>

> Nescire autem quid antequam natus sis acciderit, id est semper esse puerum To be ignorant of what occurred before you were born is to remain always a child

— <u>Cicero</u>

The farther backward you can look, the farther forward you are likely to see — <u>Churchill</u>

ntiaotiant2.ntia.doc.gov/top/docs/nar/pdf/416096071n.pdf C

96071 University of California Barkely

Executive Summary

This a Demonstration project intended for the Pre-School and K-12 Education primary application area and the Community-wide Networking secondary application area. The University of California, Berkeley, working in partnership with San Francisco and Oakland Unified School Districts, San Francisco and Oakland local government, community based organizations, and industry, will develop a model of how to use information infrastructure to best support K-12 students, their families, and teachers in disadvantaged urban communities. We will identify a set of Internet based outreach methods and partnerships that will enable us to help underserved students succeed in school and be prepared for college, careers, citizenship, and lifelong learning. We seek to develop a national model replicable by other universities and communities.

1. Problem Definition

The broad problem we will address is how the University of California, Berkeley can best provide service to the community. In particular, we will focus on how to help K-12 students and their families in disadvantaged and diverse urban neighborhoods; and how to provide this assistance in a partnership of support with schools, local government, and community based organizations (CBOs).

This problem has two sides. In poor urban communities, the barriers students face to academic and career success are substantial. In the neighborhoods we will focus on --- the South East Corridor of San Francisco and West Oakland --- we see from 60-90% of students from AFDC families, on average 40% of students graduate high school, virtually no students have access to computers in the home, and those that do rarely have parents who can help them. In Oakland last year, as an example, only 12 African American students were eligible for UC, Berkeley. (See Appendix A for Target Area and Community Indicators.)

University outreach programs and other University faculty, students, and staff can make a difference. For example, UC systemwide studies show that well organized outreach programs can have a profound impact as indicated by the fact that 75% of current minority students at UC were participants in outreach efforts. The need for such interventions has become much more acute with the UC Regents' recent decision to eliminate affirmative action admissions criteria.

But University outreach activities face significant challenges; and this is the other side of the problem we address. The Berkeley campus, in response to elimination of affirmative action criteria, has initiated a major new campaign to preserve campus diversity and to provide a top quality education for students who are representative of California's diverse population: the Berkeley Pledge. The Pledge, in partnership with Superintendents from key Bay Area school districts, will work to create a "pipeline" of a small set of schools from elementary to middle to high school (to college) in economically disadvantaged and ethically diverse neighborhoods. But even with this renewed commitment, the campus faces barriers in delivering and organizing its rich human resources for service: barriers of distance, limited faculty and student time to participate, few channels to allow large numbers of interested volunteers to each contribute small amounts of time, gaps in outreach program focus, little coordination between outreach programs, and insufficient partnerships with other institutions.

The challenge then is how can a University with rich human resources and collections of materials best marshal its efforts to help the lives of disadvantaged students and families, to support teachers, and to assist neighborhoods? And how can it do this not on its own but with other critical community institutions?

Information infrastructure is a key to solving this problem. Properly deployed and applied, Internet tools may: allow a far larger number of campus members to interact with students and families; engender new types of effective service relationships; bring teachers curricular materials and tools for innovating teaching; link the campus and schools to community based projects; and facilitate the sharing of integrated information on outreach initiatives.

National Telecommunications and Information Administration

Q 22

July 1, 1996 **US Department of Commerce** → C intiaotiant2.ntia.doc.gov/top/docs/nar/pdf/416096071n.pdf

We will use an Internet based network infrastructure to link together the University, schools, local government participants, and community based organizations. The local and wide area network infrastructure is principally in place; building this infrastructure is not the focus of this project. Pacific Bell's substantial contribution (\$2 million) to the project will allow schools in San Francisco to upgrade many of their wide area connections to T1 speeds. IBM will commit half a million dollars in staff time and software to the San Francisco School District. Oakland schools will upgrade many of their Internet connections to higher speeds as well. Funding secured through HUD's Joint Community Development grant will allow us to hook up 24 CBOs in Oakland. San Francisco Unified School District. We will install a limited number of Pentium and Apple computers (7 of the workstations funded by this grant) to set up at least two school/community computing centers for after school/community activities; and we will install 10 Internet desktop video conferencing systems. (See Appendix C for a table of network and computing resources used in the project.)

In our work, we will leverage a series of technology initiatives in the schools and communities such as school district technology plans, home computer programs, Net Day '96, IBM's reinventing schools program, and a HUD funded Joint Community Development project to build community information infrastructure in Oakland with CBOs. (See Appendix G for a description of important technology initiatives).

Building this project upon the Internet not only allows Berkeley and its partners to draw upon substantial experience with the Internet, but ensures *interoperability* of networks. Defining *scaleable* outreach methods is a principal aim of our examination. Providing a range of curricular resources on the WWW certainly scales, but, even more importantly, we plan to train teachers to train other teachers to use such curriculum in the classroom. It is also a principal focus of this project to determine how to *institutionalize* Internet interactive programs in schools and CBOs. At the end of this project Internet based outreach methods will be a central component of: the outreach activities of all 20 campus groups participating in this project, the Berkeley Pledge pipeline schools, and the participating CBOs. Each partner has made the commitment to make use of the best practices that are identified here. Finally, the Berkeley campus has embarked on major policy and technology analyses regarding *privacy of end user* information. We intend to join with the schools to share this work and ensure that clear policies, procedures, and safeguards are implemented.

The complex and substantial collaboration required for this project will be addressed by a robust project management structure and dedicated project staff from the University, schools, and government agencies. Key elements of this structure are a multi-institutional Steering Committee and Operations Committee; project management staff at Berkeley; a technologists' committee which will bring together campus Internet technology and service experts to provide the project leading edge Internet expertise; and a small set of collaborative pilot projects, each with its own project coordinator responsible for testing innovative strategies in partnership with campus outreach groups, schools, city government, and community partners. (See Appendix E for project management structure.)

July 1, 1996 US Department of Commerce

C intiaotiant2.ntia.doc.gov/top/docs/nar/pdf/416096071n.pdf

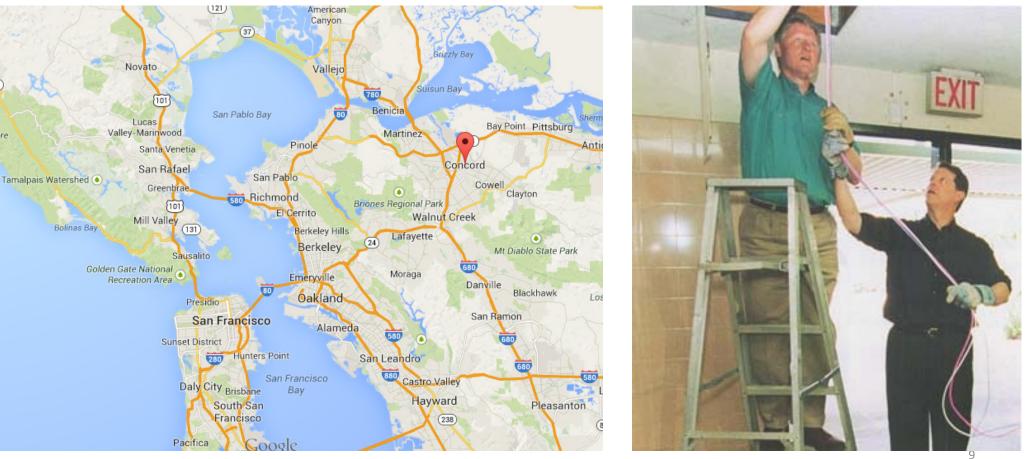
foundation of multi-institutional partnership. The uniqueness of our effort is heightened by seismic shifts in affirmative action policy, and consequent rethinking of outreach programs. We believe this project will be one of the first to identify a comprehensive program for the use of information infrastructure for University community service.

In urban and other communities, Universities are often one of the most important resources for public service. Faculty disciplinary experts, outreach programs, enthusiastic and intelligent students, and knowledgeable staff represent a vast pool for community assistance. As is the case with Berkeley, many of these Universities live in close proximity to communities with great need; and many are not doing near what they are capable of and would like to carry out. If we can develop a linked set of information infrastructure based methods, programs, collaborative strategies, volunteer channels, mentoring relationships, curricular delivery systems and the like, this will be of great benefit to a wide range of urban communities and higher education institutions.

The model is financially viable because it will allow Universities to provide more service at the same or decreased cost; because it will develop a range of Internet based strategies from limited efforts to full scale partnerships for service, enabling other institutions to choose their degree of cost; and because it should generate on-going support from industry and other partners.

4. Applicant Qualifications

UC, Berkeley is one of the world's leading research and teaching Universities with a distinguished history as a leader in public service. Berkeley's Interactive University project is a campus wide consortium of twenty campus academic departments and outreach programs---the Interactive University Partners---who are collaboratively exploring how to use information infrastructure for community service. Each of these campus groups are currently conducting community service projects, some with national reputations, and many of them are already making use of information infrastructure for outreach. These groups will bring to this project disciplinary experts (faculty, graduate students, and professional staff); outreach experts and staff; pedagogy specialists; experienced K-12 project evaluators; technical experts in Internet connectivity, transport technology, and Internet tools; and experienced project administrators. These individuals will participate in all areas of the project.


The project's sponsor and principal investigator is The Vice Chancellor and Provost Carol Christ, the chief academic officer on the campus, as well the leader of the Berkeley Pledge. A group of UC professors, in particular B.Sadoulet, A. Agogino, J. Innes, are closely involved with the project. The Interactive University Project Director is David Greenbaum, who has been leading Berkeley campus efforts to use the Internet for community service, and is directing or co-leading several federally and industry funded projects focused on K-12 schools and community based organizations. The Interactive University project is housed in the campus's Information Systems and Technology division, responsible for all computing and communications at the Berkeley campus. Berkeley will hire professional staff for project management, technology coordination, project evaluation, and administrative support. We will make substantial use of graduate and undergraduate students to act as pilot project evaluators, trainers, mentors, and support staff. (Please see Appendix F, for a detailed description of the new staff and participating campus groups.) The campus will be pledging over \$1.5 million to this project, of which \$350,000 will be direct monetary contributions.

5. Partnerships And Community Support

Project partners are the San Francisco Unified School District (SFUSD), the Oakland Unified

July 1, 1996 US Department of Commerce

NetDay 1996

President Bill Clinton installing computer cables with Vice President Al Gore on NetDay at Ygnacio Valley High School in Concord, CA. March 9, 1996.

EDITORIAL -- Tien's Alternative To Affirmative Action

http://www.sfgate.com/opinion/article/EDITORIAL-Tien-s-Alternative-To-Affirmative-2999656.php

Tuesday, January 2, 1996

IT WOULD HAVE been easy enough to accept the end of affirmative action at the University of California as a bad decision by the board of regents and leave it at that, but UC Berkeley Chancellor Chang- Lin Tien is not one to acquiesce quietly.

The public got a taste of the popular chancellor's polite but fierce determination at the July 20 meeting in which the regents voted 14-10 to abolish university hiring and admissions policies that consider race. Firmly but respectfully, Tien, a strong advocate of affirmative action, addressed Governor Wilson directly, challenging the chief executive's stance against policies that take ethnicity into account.

That confrontation may have hurt Tien's chances to be named the new UC president, but it held intact his well-earned reputation for valuing principle over expediency.

Keeping in character, Tien also did not wait for orders from on high before developing a plan to maintain a commitment to ethnic diversity at the prestigious Berkeley campus in spite of the regents' decision.

Two months after the regents' vote, Tien unveiled The Berkeley Pledge, a program designed to ensure that minority or low-income public school students will be eligible to attend Berkeley. Besides committing \$1 million of university money to the program, Tien pledged \$10,000 a year of his own salary, for at least three years.

How MOOC was born - forgotten facts

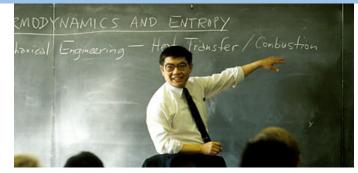
Tien and his family fled to <u>Taiwan</u> in 1949. Tien earned a <u>BS</u> in <u>mechanical engineering</u> from the <u>National Taiwan University</u> in 1955, <u>MA</u> and <u>PhD</u> in mech engineering from <u>Princeton University</u> in 1959. He served as the Chancellor of UC Berkeley from 1990-1997. He died (67) on Tue 10/29/2002.

Dr Shoumen Palit Austin Datta = SVP, Industrial Internet Consortium Research Affiliate, School of Engineering, MIT = http://bit.ly/S-Datta

In addition, the Pledge calls for principals of elementary and high schools to identify promising students for whom UC Berkeley outreach efforts

--such as special summer sessions, mentoring by professors and vigorous recruitment -- could make the difference between eligibility or ineligibility for admission to Berkeley.

And it includes a promise to try to raise \$60 million for scholarships as well as to make sure that minority and poor students recruited and admitted to Berkeley get the academic support they need to prevent them from dropping out.


As reported by Chronicle staff writer Nanette Asimov, the philosophy behind the Pledge already is showing signs of working in San Francisco schools, thanks to Shoumen Datta, the district's creative director of development. Datta has created a board of 23 scholars -- including 17 Nobel Laureates -- to act as academic guides for both teachers and students. Taking the idea of the Pledge, Datta is molding it to the needs of San Francisco students who might otherwise have fallen through the cracks.

Officials at other UC campuses, as well as administrators and teachers at the elementary and secondary level, would do well to follow the examples of Tien and Datta, who are demonstrating a commitment to finding opportunities for minorities who are underrepresented at UC -- even while others make their jobs more difficult.

Conceptualization of MOOC

 Home
 About
 Current News
 IU Archive
 Projects
 Support & Partners
 Contact

 Scholar's Box Project
 CITYIWatershed Project
 IU/CDL Collaboration
 Digital Learning Materials

Professor Chang-Lin Tien at UC Berkeley

My Photos > Gallery of Friends > Photo 232 of 700

🔀 Full screen 🖂 Share 🛛 Prints 👻 Actions 👻 🔍 💉

At the UC Berkeley Faculty Club with Carol Christ, UCB Vice Chancellor, Nobel Laureates Yuan T Lee and Glenn Seaborg, Helene Langevin Joliot-Curie, Professor Alice Agogino (extreme right, next to Yuan T Lee). Attache from the Consulate of France, Catherine Rodriguez, is at the extreme left. 11 February 1997. edit

About The Interactive University Project

Our Mission

The Interactive University Project uses the Internet to open UC Berkeley's resources and people to California's K-12 schools and citizens. Our goal is to use technology for the improvement of teaching and learning while making accessible the knowledge in universities, museums and libraries.

What is the IU?

The Interactive University is a unique campus-wide initiative of UC Berkeley and K-12 community partnerships. Since 1996 the IU has:

- Organized and implemented <u>more than three dozen</u> <u>campus/K-12 Projects</u> in three successive phases;
- Provided grants and support to 40 Berkeley campus units;
- Received \$4.8 million in grants;
- Established and sustained strong partnerships with Oakland and San Francisco Schools;
- Developed a model for large-scale campus involvement with public and K-12;
- Begun to implement a Scholar's Box Tool for teacher and student use in gathering, creating, sharing and saving curriculum components.
- The <u>IU Team</u>. Contact us <u>here</u>. http://iu.berkeley.edu/IU/

Our Goals

- Engage the academic core of the Berkeley Campus to add value to research, teaching and learning.
- Partner with K-12 teachers and support improvement in student achievement.
- Develop tools and environments in the Scholar's Box suite that enable university faculty, K-12 teachers, and all students and learners to gather, create and share digitized information.
- Create content, web-based events, and projects that will scale and be replicable.
- Learn from current campus and national partnerships to achieve our mission and support learning communities.

Statement from Director David Greenbaum

California's K-12 schools need support to improve student outcomes. The scope and challenge of meeting this need are daunting. In the San Fransicso Bay Area there are over 50,000 K-12 teachers and a million students. UC Berkeley has a diverse community of 40,000 faculty, students and staff, and houses growing repositories of digital content from all fields. But only a fraction of Berkeley's human and digital resources are easily available to UC faculty and K-12 teachers. The IU is working to make digital resources readily available to learners throughout California.

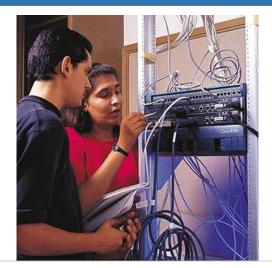
MOOC 1996 – It was / is not about the technology

In 1996, probably the 1st MOOC-esque activity was initiated when UC Berkeley

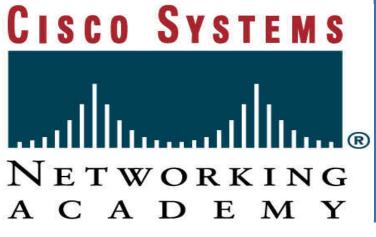
started an online math tutorial to help

students in San Francisco public schools.

Live as if you were to die tomorrow. Learn as if you were to live forever.

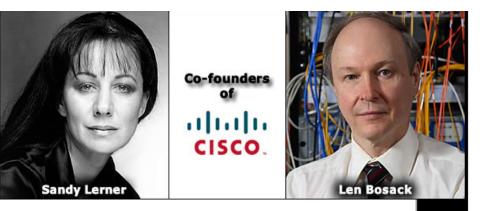


1996

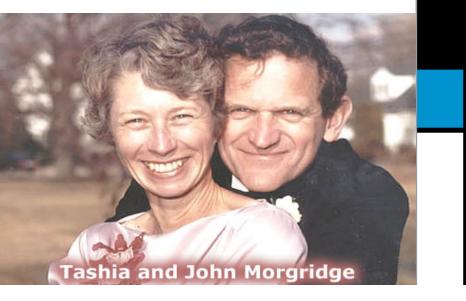

Another First

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

1996 Another First in SF Public Schools


Felicia Voss, Student at Thurgood Marshall

The Cisco Networking Academies program is in its first full year at schools. The pilot semester at one site, Thurgood Marshall Academic High School in San Francisco, provides an indication of the potential impact: more than 15 percent of the students involved in the school's semester program in spring 1997 secured summer jobs as a direct result of their one-semester experience.


And for teachers who have seen the early impact on students and their futures, the Academy stands as a model for school-to-work programs.

Dennis Frezzo technology instructor at Thurgood Marshall, says, "In one leap, Cisco has helped us have the most effective school-to-work program I've seen locally, and we're proud of that."

George Ward, Co-Creator Cisco Networking Academy

Cisco Networking Academies Program

Through an innovative partnership with school districts across the U.S., Cisco Systems is preparing students for the demands and enormous opportunities of the information economy while creating a qualified talent pool for building and maintaining education networks.

Network switches. Routers. Patch cables and punch-down blocks. RJ-45 jacks. Not your ordinary list of back-to-school supplies. Then again, for students across the country in a unique new curriculum known as Cisco Networking Academies, the Fall '97 semester was anything but your ordinary back-to-school experience.

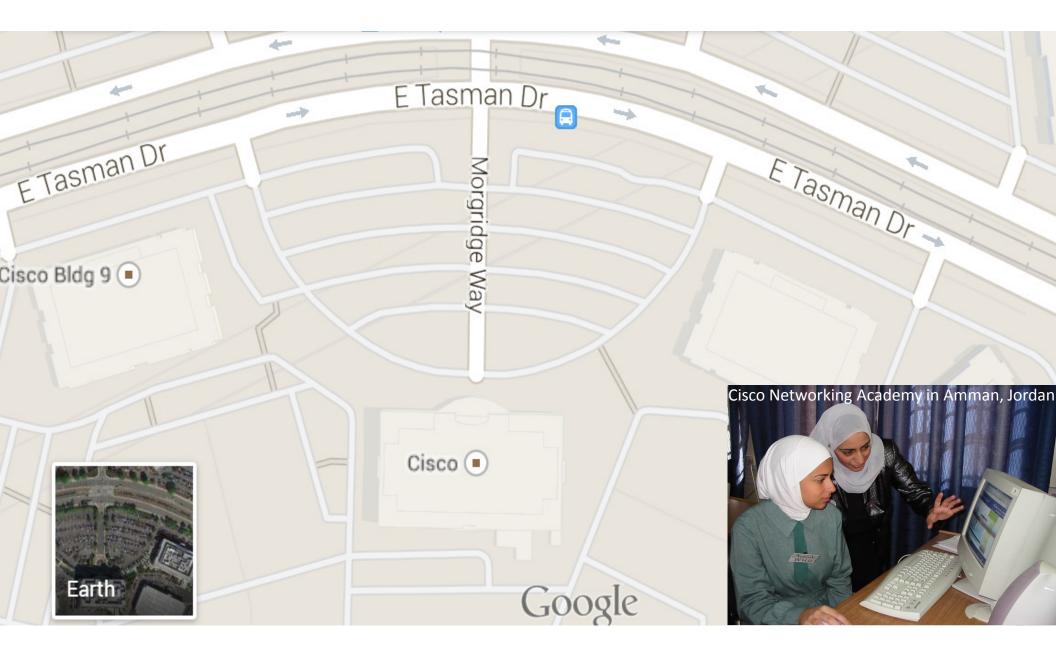
Now in the early stages of

a nationwide rollout leading to international participation, the Networking Academies is a cooperative venture between school districts and Cisco, the world leader in networking for the Internet. In a lab setting that closely corresponds to the real world, students get their hands on the building blocks of today's global information networks, learning by doing as they design and bring to life local and wide-area networks.

The Challenge

The information economy will demand an unprecedented level of technology literacy from tomorrow's workers. A few statistics foreshadow a potential crisis in the American workplace:

· Currently, mid- to large-sized companies in the U.S.


alone have about 190,000 unfilled technology jobs. And 82 percent of technology companies expect to increase their information technology (IT) staffs in the next several years.

- Nearly 70 percent of technology companies cite a lack of skilled IT workers as a barrier to growth.
- As teachers around the world begin to integrate the vast resources available to them on the Internet and as networks become an important tool for boosting administrative efficiency

Cisco Networking Academy MOOC

The Forgotten Revolution ?

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

Teachers ... not technology

Dr Dennis Frezzo, Teacher

Benefits and Results

The Cisco Networking Academies program is in its first full year at schools. The pilot semester at one site, Thurgood Marshall Academic High School in San Francisco, provides an indication of the potential impact: more than 15 percent of the students involved in the school's semester program in spring 1997 secured summer jobs as a direct result of their one-semester experience.

And for teachers who have seen the early impact on students and their futures, the Academy stands as a model for school-to-work programs.

Dennis Frezzo, technology instructor at Thurgood Marshall, says, "In one leap, Cisco has helped us have the most effective school-to-work program I've seen locally, and we're proud of that."

"The energy level of these students is so high, it's hard to find the words to describe it," says Barry Williams, who oversees Regional activities for the Round Valley School District in Springerville, Arizona. "Once, about half of my students had permission to leave school about 20 minutes early. But not a single one left. I talked topologies and media for 90 minutes without a break."

Close-Up: Thurgood Marshall Academic High School Section

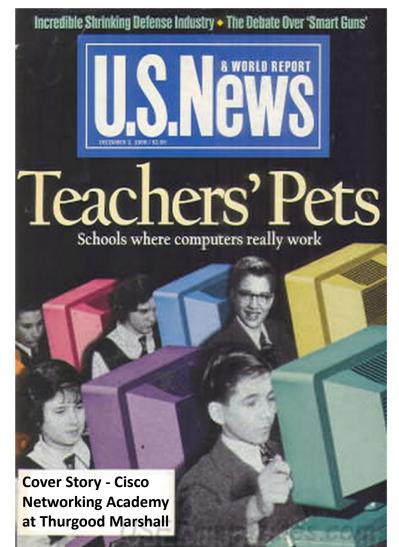
San Francisco, California

Thurgood Marshall Academic High School (TMAHS) was established in 1994 in the economically underdeveloped southeast corner of San Francisco. Focusing on a math, science, and engineering curriculum, the school gives students a rigorous course of academic study with an abundance of college-prep math, science, and English classes, plus three semesters of computer and technology electives.

The Cisco Networking Academies curriculum has been integrated into one of three areas for concentrated study selected by all TMAHS students after they reach their junior year. Juniors take Cisco I and II, and seniors complete the program with Cisco III and IV, supplemented by projects and courses in related engineering disciplines. "This is above and beyond what we normally do, but we thought this was an incredible opportunity for the kids," says Frezzo. According to Jai Gosine, another Academy teacher at TMAHS, "Certification is the biggest benefit" for the school's nearly 70 Cisco Networking Academies students, who are spread among three classes. "Potential employers of students who earn their Cisco Certified Networking Associate status will feel comfortable hiring them," he says, "because they'll know these students have acquired a set of practical, valuable skills."

The Networking Academies program is also projectbased, with students addressing challenges drawn from the real world of networking and finding solutions that work, not only in theory but in the model networks built and tested in the lab.

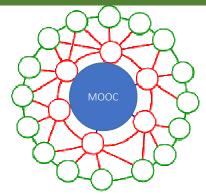
"A lot of people use these clichés, but they're really true," says Frezzo, "The old style of teaching was 'the sage on the stage.' Now we're trying to be the 'guide on the side,' helping in counseling and problem solving."

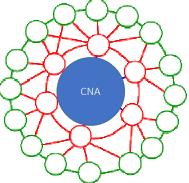

Senior Ricky Jackson notes, "The lessons aren't based on homework or tests so much. We do more hands-on work."

The project-based learning format helps truly instill skills that otherwise might be forgotten soon after the final exam, Jai Gosine explains. "A student's level of learning is determined by the form of assessment. In our case, it's not how much they can regurgitate, but how much they can do." Adds Frezzo: "Projects provide the ultimate in performance assessments. Was the job complete? Did the network work, with no excuses?"

Dr Dennis Frezzo (1996) with Jenica Lee at Cisco Networking Academy class in TMAHS

Report December 02, 1996


A Role for the Internet in American Education? Lessons from Cisco Networking Academies


Richard Murnane, Nancy Sharkey, and Frank Levy*

As of July 2001, Cisco Networking Academies—located in all 50 states and 130 countries—were teaching more than 160,000 students how to design, build, and maintain computer networks. The students learn from a common curriculum offered that is in nine languages and delivered over the Internet. Since the majority of Cisco Networking Academies in the United States reside in public high schools and community colleges—institutions that educate the vast majority of American youth—the team developing the Academy program confronted many of the same problems that beset American education. This paper describes how the Cisco Academies team dealt with these problems and particularly the use it made of information technology in crafting solutions. SAN FRANCISCO CHRONICLE – the complete newspaper article from December 25, 1995 www.sfgate.com/news/article/PAGE-ONE-UC-Berkeley-Is-Taking-The-Pledge-3017592.php

> To have been an instrument, a wheel and a true catalyst in not one but two influential endeavors is serendipity as well as a miracle and a blessing.

Good to connect with you.

Kevin Warner July 8, 2014 2:34 PM

I was just thinking about you last week when I was describing to my nephew how the Cisco Networking Academy launched in the fall of 1997. You played an important role in the success of that launch.

Dr Shoumen Palit Austin Datta • shoumendatta@gmail.com

Senior Vice President, Industrial Internet Consortium

www.iiconsortium.org

Research Affiliate, School of Engineering, Massachusetts Institute of Technology • shoumen@mit.edu

S.F. AHEAD OF THE GAME

Several Bay Area school districts -- including Oakland, West Contra Costa and Berkeley -- have expressed interest in joining with the university under the Berkeley Pledge. But Christ and others said San Francisco is already far ahead in this area, even though the details of the Pledge have not yet been worked out.

That is because San Francisco has a secret weapon: a molecular biologist named Shoumen Datta. Hired as the district's development director in March, Datta's goals coincide with those of the Berkeley Pledge: "To bridge the gap between university culture and public school culture," he said.

Born in Calcutta, where he lived on the same block as Mother Teresa, Datta grew up to study at Princeton and Rutgers, and to teach at Harvard and the Massachusetts Institute of Technology.

American universities are world-renowned, he said, but they rarely share their brains and resources with their country cousins, the public schools. Nor do schools, in desperate need of a scholarly infusion, take advantage often enough of a university's treasures.

Nanette Asimov, Chronicle Staff Writer Published 4:00 am, Monday, December 25, 1995

"It is as if we have a golden dome with wobbly pillars," said Datta.

To help strengthen those pillars, the scientist has forsaken a lucrative career in industry.

"Doing this is not my job," he said. "This is my mission."

ADVISORY BOARD

The Berkeley Pledge is providing support, but Datta is helping to invent the Pledge as he goes along.

For example, he created an academic advisory board for San Francisco schools like none the district has ever had. Twenty-three noted scholars make up the list -- including 17 Nobel Laureates, from economist Kenneth Arrow of Stanford to physicist Kenneth Wilson of Ohio State.

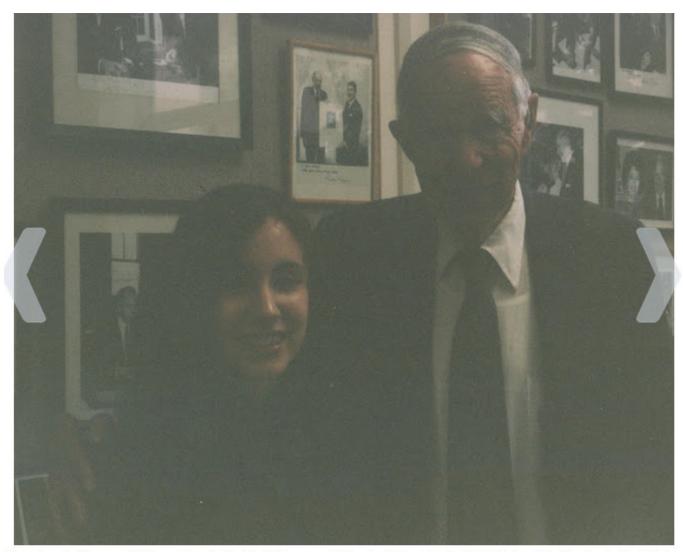
This constellation of the nation's greatest brains comes straight from Datta's personal address book. Through him, all have agreed to make themselves available to teachers needing scholarly advice. And through him, teachers seeking grant money and curriculum assistance now have valuable friends directly connected to such academic societies as the American Physical Society and the National Academy of Sciences.

The challenge, said Datta, will be for urban teachers to take advantage of the offerings of these groups, as wealthy suburban school districts routinely do.

"You should see what they're doing with physics in the Palo Alto schools!" Datta said. "We can do that, too." San Francisco Chronicle

NOBEL LAUREATE'S VISIT

Professor Charles Townes of UC Berkeley has already spent two days in San Francisco schools


Would you please allow me to digress?

Do you know who coordinated the visits?

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

With Nobel Laureate Charles Hard Townes (center) and student Miss Sarah Spoon (right) during the visit of San Francisco schools by Nobel Prize winners for the Distingusihed Lecture Series 1995

Miss Sarah Spoon, 11th grade student at Thurgood Marshall Academic High School in Hunter's Point, San Francisco with Nobel Prize winner Glenn T Seaborg in his office in Lawrence Berkeley Laboratory, University of California (Berkeley). edit 🛅

The General Advisory Committee to the United States Atomic Energy Commission meets for the first time at the War Department in Washington, D.C., 1947. From left to right, (seated): Professor Enrico Fermi, University of Chicago; Professor Glenn Seaborg, University of California; Hartley Rowe, Vice President, United Fruit Company; James B. Conant, President, Harvard University; (standing in back): Hood Worthington, chemical engineer; E.I. Dupont and Company; Cyril Stanley Smith, University of Chicago; and Professor I.I. Rabi, Columbia University

McMillan, Seaborg and Oppenheimer at UC Berkeley

Seaborgium – Sg 106

Discussing California Standards with Glenn Seaborg at his last (86th) birthday (Sunday 19 April 1998). His birthday reception was held on Monday 20 April 1998 at the Lawrence Berkeley Laboratory (Room 70A). Glenn passed away on Sunday 25 February 1999. edit in

"My most important discovery"

Glenn T Seaborg

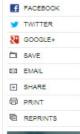
fast forward

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

Fast Forward 2012 Che New york Eimes

The Year of the MOOC

Expectations


The Year of the MOOC

Ciockwise, from top left an online course in circuits and electronics with an M.I.T. professor (eXX); statistics, Stanford (Udacity machine learning, Stanford (Coursera); organic chemistry, University of Iilinois, Urbana (Coursera). BY LAURA PAPPANO

Published: November 2, 2012

IN late September, as workers applied joint compound to new office walls, hoodie-clad colleagues who had just met were working together on deadline. Film editors, codewriting interns and "edX fellows" — grad students and postdocs versed in online education — were translating videotaped lectures into MOOCs, or massive open online courses. As if anyone needed reminding, a row of aqua Postits gave the dates the courses would "go live."

CALVAR

AUGUST 1

WATCH TRAILER

Go to Education Life »	
Related	
The Big Three, at a Glance (November 4, 2012)	

time

The paint is barely dry, yet edX, the nonprofit start-up from Harvard and the Massachusetts Institute of Technology, has 370,000 students this fall in its first official courses. That's

nothing. <u>Coursera</u>, founded just last January, has reached more than 1.7 million – growing "faster than Facebook," boasts Andrew Ng, on leave from Stanford to run his for-profit MOOC provider.

"This has caught all of us by surprise," says David Stavens, who formed a company called <u>Udacity</u> with Sebastian Thrun and Michael Sokolsky after more than 150,000 signed up for Dr. Thrun's "Introduction to Artificial Intelligence" last fall, starting the revolution that has higher education gasping. A year ago, he marvels, "we were three guys in Sebastian's living room and now we have 40 employees full time."

"I like to call this the year of disruption," says Anant Agarwal, president of edX, "and the year is not over yet."

By TAMAR LEWIN Published: December 10, 2013 │ **早** 337 Comments

Two years after a Stanford professor drew 160,000 students from around the globe to a free online course on artificial intelligence, starting what was widely viewed as a revolution in higher education, early results for such large-scale courses are disappointing, forcing a rethinking of how college instruction can best use the Internet.

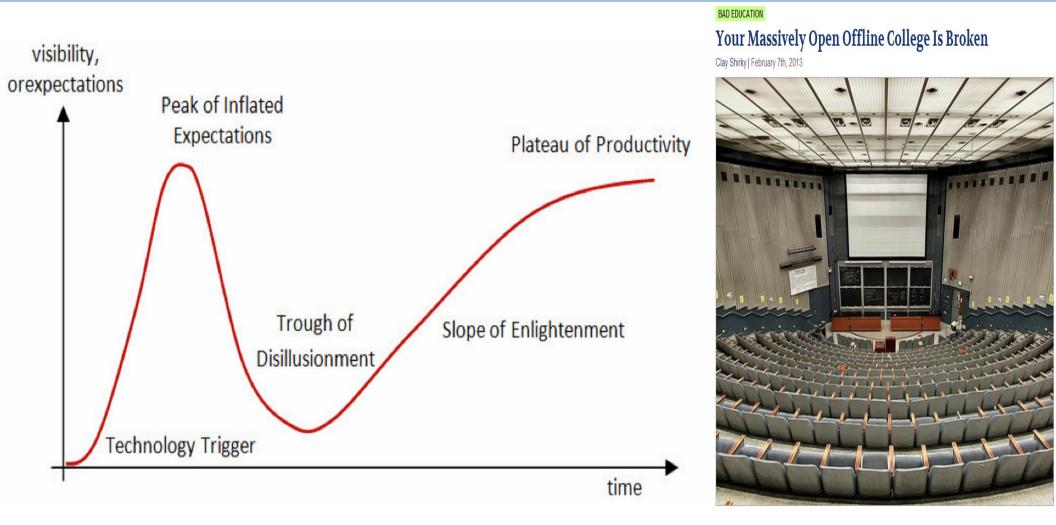
Online education: MOOCs taken by educated few

Nature **503**, 342 (21 November 2013) | doi:10.1038/503342a Published online 20 November 2013 A study of a million users of massive open online courses, known as MOOCs, <u>released</u> this month by the University of Pennsylvania Graduate School of Education found that, on average, only about half of those who registered for a course ever viewed a lecture, and only about 4 percent completed the courses.

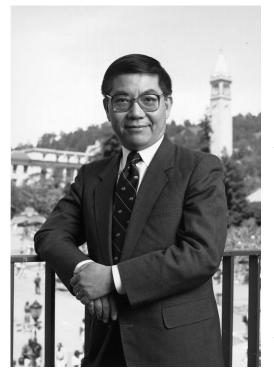
Much of the hope — and hype — surrounding MOOCs has focused on the promise of courses for students in poor countries with little access to higher education. But a separate survey from the University of Pennsylvania released last month found that about 80 percent of those taking the university's MOOCs had <u>already earned a</u> <u>degree</u> of some kind.

And <u>perhaps the most publicized MOOC experiment</u>, at San Jose State University, has turned into a flop. It was a partnership announced with great fanfare at a January news conference featuring Gov. Jerry Brown of California, a strong backer of online education. San Jose State and <u>Udacity</u>, a Silicon Valley company co-founded by a Stanford artificial-intelligence professor, Sebastian

Thrun, would work together to offer three low-cost online introductory courses for college credit.

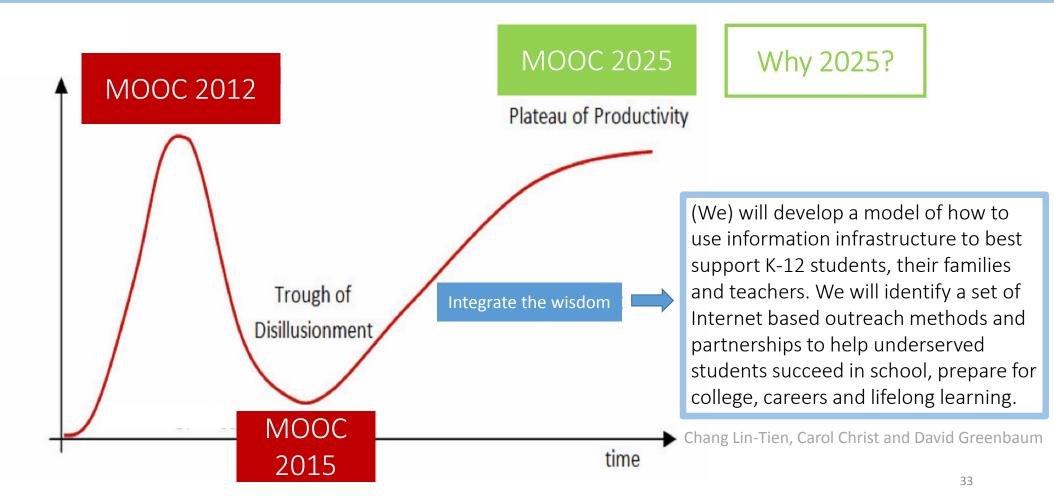

Mr. Thrun, who had been unhappy with the low completion rates in free MOOCs, hoped to increase them by hiring online mentors to help students stick with the classes. And the university, in the heart of Silicon Valley, hoped to show its leadership in online learning, and to reach more students.

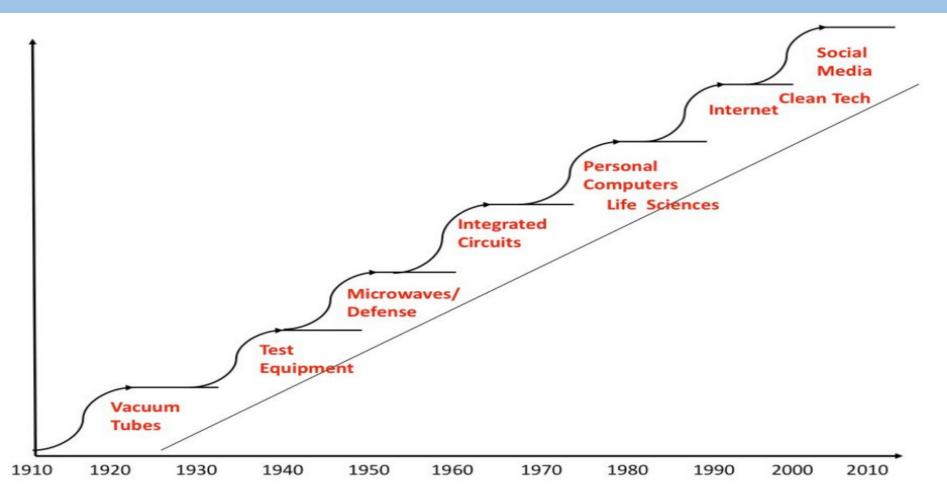
But the pilot classes, of about 100 people each, failed. Despite access to the Udacity mentors, the online students last spring — including many from a charter high school in Oakland — $\underline{\text{did worse}}$ than those who took the classes on campus. In the algebra class, fewer than a quarter of the students — and only 12 percent of the high school students — earned a passing grade.


The program was suspended in July, and it is unclear when, if or how the program will resume. Neither the provost nor the president of San Jose State returned calls, and spokesmen said the university had no comment.

Whatever happens at San Jose, even the loudest critics of MOOCs do not expect them to fade away. More likely, they will morph into many different shapes: Already, San Jose State is getting good results using videos from edX, a nonprofit MOOC venture, to supplement some classroom sessions, and edX is producing videos to use in some high school Advanced Placement classes. And <u>Coursera</u>, the largest MOOC company, is experimenting with using its courses, along with a facilitator, in small discussion classes

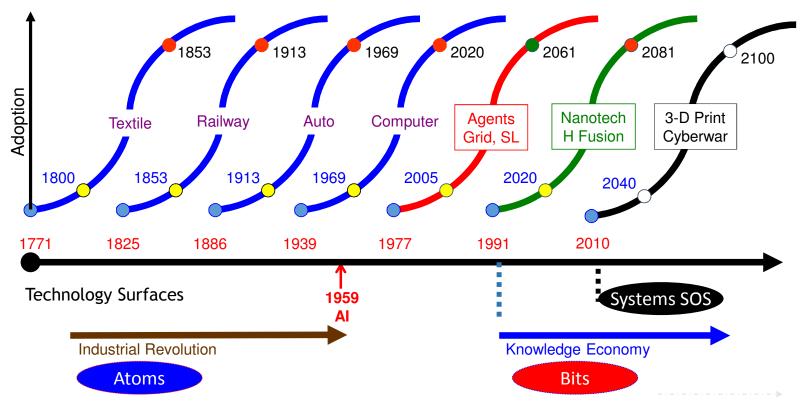
Is MOOC a hype? Is MOOC really "BAD EDUCATION"?


Revision of MOOC with the vision expressed in 1996


(We) will develop a model of how to use information infrastructure to best support K-12 students, their families and teachers. We will identify a set of Internet based outreach methods and partnerships to help underserved students succeed in school and prepare for college, careers, citizenship and lifelong learning.

http://ntiaotiant2.ntia.doc.gov/top/docs/nar/pdf/416096071n.pdf

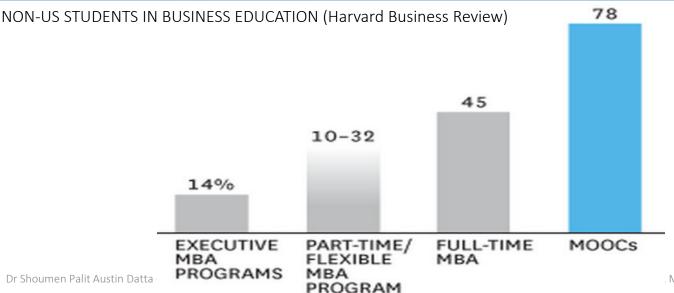
Rethink MOOC as a tool in the context of applications


Rethink MOOC divorced from (the hype of) social media

Steve Blank, NIH

34

MOOC 2025 – productive supplement and outreach tool for job training



Economic history data related to Textile, Railway, Automobiles and Computers provided by Norman Poire

It takes about 28-30 years for an idea to be socialized before it is accepted and adopted. 1996 was the birth year for the MOOC concept. Hence, it matures for adoption in 2025.

Rethinking MOOC – incisive insight – "underserved"

"Underserved" was used in the context of the affirmative action policies in the US. The "underserved" stands to gain the most by gaining access to excellent online resources. But, it is a paradox that they benefit the least due to lack of motivation. Current trends in MOOC converts the paradox to a paradigm but for non-OECD nations and emerging economies where opportunities and resources are gravely constrained (China, India, SE Asia) but determination, dedication and motivation are at their peak. In the future, MOOCs may act as a tool for economic growth for most geographies but probably to a lesser degree for the EU and the Americas.

On the way to changing the world, there are few signposts.

(We) will develop a model of how to use information infrastructure to best support K-12 students, their families and teachers. We will identify a set of Internet based outreach methods and partnerships to help underserved students succeed in school, prepare for college, careers and lifelong learning.

Massachusetts Institute of Technology (MIT) • <u>http://bit.ly/S-Datta</u> 36

What College Presidents Think about MOOC (January 2014)

	Hybrid courses that have both face-to-face and online components	3%	81%	
	Adaptive learning to personalize education	5%	61%	
	Technology that increases interactions among students	5%	50%	
	Competency-based education	20%	43%	
k	Prior learning assessment	15%	17%	
	Free or open education resources	28%	<mark>10%</mark>	
e	Massive open online courses (MOOCs)	52%	2%	Even with online mentors, MOOC students at San Jose State University performed worse than students who took classes on campus.

The results of *The Innovative University: What College Presidents Think About Change in American Higher Education* are based on responses from presidents of four-year public and four-year private, notfor profit colleges and universities that fall into a selected group of classifications developed by the Carnegie Foundation for the Advancement of Teaching. Maguire Associates, of Concord, Mass, which conducted the online survey for The Chronicle, identified 1,728 institutions that met the survey criteria. Presidents of these institutions were invited to respond, and 349, or 20 percent did. The data collection took place in January 2014.

Therefore, the most important factor is **CONTEXT**

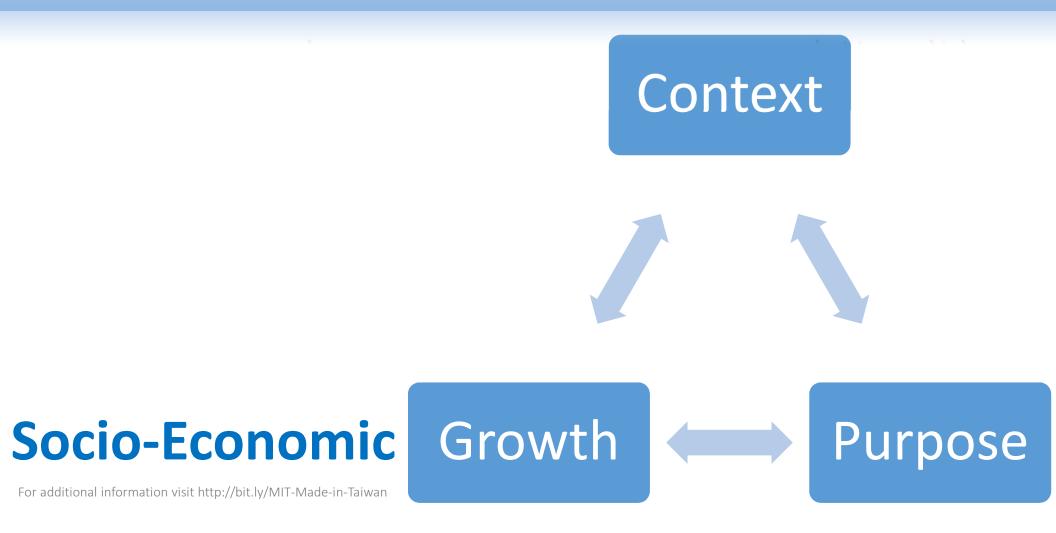
Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

Analysis of MOOC in context may be at the intersection of dull and boring

MOOC is a tool –

description, form and attributes may be

discussed ad nauseam, over and over ...


but ... on the way to changing the world, there are few signposts.

It is more important to know

How to use a tool and the context of the application.

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

MOOC is a tool – open resources are essential - http://ht.ly/yLAt2

After two days of MOOC sessions, are you still unclear about MOOCs ?

is a tool for ambitionis a tool for aspiration

Dr Shoumen Palit Austin Datta

SVP, Industrial Internet Consortium (<u>www.iiconsortium.org</u>)

Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

<u>http://bit.ly/S-Datta</u>

Ambition vs Aspiration

Ambition (*icchāna*) is an eagerness to acquire personal advantage – wealth, power, status, fame, credit – while aspiration (*patthāna*) is a gentle but firm determination to achieve something of value. The English word ambition comes from the Latin *ambitionem* meaning 'going around' (think about the vicious cycle of wanting more and more) while aspiration is related to the Latin *spiritus*, breath, and originates from the French word *aspirare* meaning 'to breathe out.'

Ambition is not necessarily negative but it may have a tendency to override integrity in its drive to get what it wants. The socalled Self-Improvement Movement is a good example of a philosophy of life based on ambition. Behind all the talk of 'the passion for excellence' 'being the best you can be' and 'contributing to society' usually lies greed and selfishness. It is a selfserving, solipsistic and narcissistic view of life that makes one believe that one is special, unique and one-of-a-kind or gifted.

Aspiration is a form of desire tempered by thoughtfulness, integrity and takes into account the interests of others (service above self). While ambition is focused totally on the goal, aspiration never loses sight of either the goal or the means used to attain it. Aspiration allows us to 'breathe freely' (*assāsa*) after we have achieved our goal, because we know we have not compromised our values or denigrated others. Aspiration balances material goals with spiritual goals and advocates gentle moderation in desires with a focus toward *Nirvāna*. We should aspire towards worthwhile goals without allowing our aspiration to degenerate into ambition, to paraphrase Buddha.

Taiwan Economic Indicators

Education

For additional information visit http://bit.ly/MIT-Made-in-Taiwan

Taiwan - Overview of Higher Education

http://eng.stat.gov.tw/ 2014 2013 2012 2011 1.Foreign exchange (end of period) 29.915 (Jun. 30) 29.950 29.136 30.290 2.Foreign exchange reserves(100 Million US\$) (end of period) 4,217 (May) USD 0.4217 Trillion 4,168 4,032 3,855 Banking 3.Past-due loan ratio of domestic banks (%)(end of period) 0.38 0.40 0.43 0.32 (Apr.) (Dec.) 4.Annual changes of M2 (%)(daily average) 5.9 5.8 4.2 (May) 5.9 (Jan.-May) (Dec.) 4.8 (Jan.-Dec.) 5.8 58.35 1.Labor force participation rate(%) 58.39 (May) 58.43 (Jan.-May) 58.55 (Dec.) 58.43 (Jan.-Dec.) 58.17 (M66.62,F50.50) (M66.68,F50.53) (M66.86,F50.57) (M66.74,F50.46) (M66.83,F50.19) (M66.67,F49.97) 2.No. of employed persons(10 thousand) 1.105.2 (May) 1,103.5 (Jan.-May) 1.102.9 (Dec.) 1,096.7 (Jan.-Dec.) 1.086.0 1.070.9 3.No. of unemployed persons(10 thousand) 44.3 45.7 (Jan.-May) 46.9 47.8 (Jan.-Dec.) 48.1 49.1 (May) (Dec.) Labor Force 4.Unemployment rate(%) 3.98 (Jan.-May) 4.08 (Jan.-Dec.) 4.39 3.85 (May) (Dec.) 4.18 4.24 5. Annual changes of labor productivity of manufacturing -0.77 3.22 1.18 (Apr.) 0.80 (Jan.-Apr.) (Dec.) 0.03 (Jan.-Dec.) -0.66 establishments (%) 6.Annual changes of average monthly earnings of non-farm 1.60 -2.35 (Dec.) 0.16 (Jan.-Dec.) 0.18 2.59 (Apr.) 4.73 (Jan.-Apr.) employees(%) II. Social Indicators 1.Rate of criminal case increased (%) -8.7 -6.5 8.1 (May) 11.1 (Jan.-May) 13.1 (Dec.) -5.8 (Jan.-Dec.) Police Forces 2.No. of violent crimes (cases) 175 (Jan.-Mav) 188 2.525 4,190 (May) 967 (Dec.) (Jan.-Dec.) 3.461 86.6 (Jan.-Dec.) 3.Percentage of criminal cases cleared (%) 81.0 (May) 86.3 (Jan.-May) 70.8 (Dec.) 84.0 79.5 26 1.Refuse incinerators (Sets)(end of period) 26 (Dec.) 26 Environment 2.Designed capacity of Waste Incinerated(10 thousand tons) 52.0 (Mar.) 55.6 (Dec.) 635.0 (Jan.-Dec.) 640.5 635.5 35.1 Percentage of public sewerage system(%) 36.1 (May) (Dec.) 32.1 29.0 1.Pupil-teacher ratio at elementary and junior high school 13.0 13.7 14.4 levels(persons)(school year) 2. Higher education gross enrollment rate (%)(school year) 83.9 84.4 83.4 3.No. of university and college(school year) 148 Education 147 148 4.Increased rate of students in university and college(%) -0.8 0.2 0.8 (school year) 5.R & D expenditure/GDP(%) 3.1 3.0

Key Economic and Social Indicators(cont. Jun. 30, 2014)

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium (www.iiconsortium.org) • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT) • http://bit.ly/S-Datta

⁴⁵

one of many

Taiwan Economic Indicators

Operating Efficiency in Manufacturing

For additional information visit http://bit.ly/MIT-Made-in-Taiwan

Taiwan – Operating Efficiency in Manufacturing vs Profit Rate

TABLE 23 Operating Efficiency of Enterprise Units of All Industries, by Industry Group									
2011 Unit: 1/									
利潤 存貨及存料 麦嗪運用固定 總資產 麦嗪運用资金 利潤率									
I	週轉率	資產淨額運轉率		漫額迴轉率					
生産淨額				17 40000000			-		
(按要索成本)	['	1'		1 7					
Profits	Turnover ratio	Turnover ratio	Turnover ratio	Turnover ratio	Profits rate		-		
l /	of inventory		of total assets						
Net value of prod.	· · · · ·	of fixed assets		of assets					
(at factor cost)	1	in operation		in operation	[]				
43.43	996.81		5 101.70	· ·	4.79	Manufacturing	7.38	Manufacture of Wood & of Products of	of Wood & Bamboo
45.31	785.53	92.10	48.71	1 53.57			5.34	Manufacture of Paper and Paper Prod	ucts
19.98	803.94	253.28	3 156.92	2 127.95	2.33	Processing and Preserving of Meat			
31.40	539.30	231.11	1 122.17	7 111.21	4.76	Processing and Preserving of Fish,	4.21	Manufacture of Pulp, Paper and Pa	
	[]					Crustaceans, Molluscs and Related Products	6.57	Manufacture of Containers of Pape	r and Paperboard
23.17						Processing and Preserving of Fruit and Vegetables	5.41	Manufacture of Other Paper Produ	cts
55.21						Manufacture of Edible Oils and Fats	9.88	Printing and Reproduction of Recorder	d Media
79.21						Manufacture of Dairy Products		0 1	
60.72	591.48	169.59	9 62.89	61.68	6.37	Grain Husking, Manufacture of Grain Mill	9.88	Printing and Service Activities Relat	ed to Printing
l/	<u> </u> '		/		<u> </u>	Products, Starches and Starch Products	7.84	Reproduction of Recorded Media	
		Manufacture of Prepared Animal Feeds	-1.65	Manufacture of Petroleum and Coal P	roducts				
39.47						Manufacture of Other Food Products		Manufacture of Chemical Material	
36.09						Manufacture of Beverages & Tobacco Products	9.84		
38.40						Manufacture of Alcoholic Beverages & Tobacco Products	4.57	Manufacture of Basic Chemical Mat	erial
26.47						Manufacture of Non-alcoholic Beverages	12.10	Manufacture of Petrochemicals	
35.88						Manufacture of Textiles	13.89	Manufacture of Fertilizers	
38.17						Spinning of Yarn			
42.23						Weaving of Textiles	9.59	Manufacture of Synthetic Resin, Pla	stic & Rubber Materials
37.19						Manufacture of Non-woven Fabrics	10.88	10.88 Manufacture of Man-made Fibers	
22.99						Finishing of Textiles	8.28	Manufacture of Chemical Products	
30.19						6.40 Manufacture of Textile Products			
32.59						Manufacture of Wearing Apparel & Clothing Accessories	5.81	Manufacture of Pesticides & Enviro	nmental Agents
35.62						Manufacture of Woven Wearing Apparel	6.39	Manufacture of Coatings, Dyes and	Pigments
29.96						Manufacture of Knitted & Crocheted Wearing Apparel	6.56	Manufacture of Cleaning Preparation	ons
30.56						Manufacture of Clothing Accessories	7.58	Manufacture of Cosmetics	http://eng.stat.gov.tw/
60.03	944.08	321.02	2 59.93	3 59.05	11.68	Manufacture of Leather, Fur and Related Products	7.58	Manufacture of Cosmetics	IIIIp.//eng.stat.gov.tvv/

24.53	Manufacture of Glass and Glass Products
9.43	Manufacture of Refractory Products, Clay
	Building Materials, Porcelain & Ceramic Products
13.38	Manufacture of Cement and Cement Products
6.57	Cutting, Shaping and Finishing of Stone
12.54	Manufacture of Other Non-metallic Mineral Products
4.56	Manufacture of Basic Metals
3.69	Manufacture of Basic Iron and Steel
5.78	Manufacture of Aluminum
5.06	Manufacture of Copper
9.01	Manufacture of Other Basic Metals
7.64	Manufacture of Fabricated Metal Products
9.60	Manufacture of Metal Hand tools and Die
6.90	Manufacture of Metal Structure & Architectural Components
8.13	Manufacture of Metal Containers
5.71	Metalworking Activities
7.81	Manufacture of Other Fabricated Metal Products
0.96	Manufacture of Electronic Parts & Components
7.89	Manufacture of Semi-conductors
5.52	Manufacture of Electronic Passive Devices
8.46	Manufacture of Bare Printed Circuit Boards
-9.00	Manufacture of Optoelectronic Materials and Components
4.03	Manufacture of Other Electronic Parts & Components
3.52	Manufacture of Computers, Electronic & Optical Products
2.56	Manufacture of Computers & Peripheral Equipment
10.74	Manufacture of Communication Equipment
4.60	Manufacture of Audio and Video Equipment
-2.31	Manufacture of Magnetic and Optical Media
6.20	Manufacture of Measuring, Navigating,
	Control Equipment, Watches and Clocks
7.76	Manufacture of Irradiation & Electromedical Equipment
6.88	Manufacture of Optical Instruments & Equipment
5.18	Manufacture of Electrical Equipment
6.70	Manufacture of Power Generation, Transmission
	and Distribution Machinery
4.52	Manufacture of Batteries
1.04	Manufacture of Wiring and Wiring Devices
-2.61	Manufacture of Lighting Equipment
7.53	Manufacture of Domestic Appliances
8.90	Manufacture of Other Electrical Equipment
9.49	Manufacture of Machinery and Equipment
9.00 8.82	Manufacture of Metalworking Machinery
8.82	Manufacture of Other Special-purpose Machinery Manufacture of General-purpose Machinery
6.60	Manufacture of Motor Vehicles and Parts
5.54	Manufacture of Motor Vehicles
5.54	

9.41	Manufacture of Bicycles and Parts
5.44	Manufacture of Other Transport Equipment & Parts Not Elsewhere Classified
6.45	Manufacture of Furniture
6.92	Manufacture of Non-metallic Furniture
6.18	Manufacture of Metallic Furniture
7.52	Other Manufacturing
6.55	Manufacture of Sport and Recreational Goods
10.31	Manufacture of Medical Instruments and Supplies
6.55	Manufacturing Not Elsewhere Classified
8.49	Repair and Installation of Industrial Machinery and Equipment
-3.12	Electricity and Gas Supply
-4.37	Electricity Supply
6.56	Gas Supply
-0.75	Steam Supply
9.31	Water Supply and Remediation Activities
1.35	Water Supply
14.58	Wastewater (Sewage) Treatment
12.36	Waste Collection, Treatment & Disposal Activities; Materials Recovery
11.41	Waste Collection
20.04	Waste Treatment & Disposal Rates > 20%
6.69	Materials Recovery
13.44	Remediation Activities & Other Waste Management Services
8.88	Construction
6.54	Construction of Buildings
5.77	Civil Engineering
6.33	Construction of Roads and Railways
8.94	Construction of Utility Projects
3.23	Construction of Other Civil Engineering Projects
11.78	Specialized Construction Activities
14.83	Site Preparation, Foundation and Structure Construction
12.82	Landscape Construction
8.94	Electrical, Plumbing and Other Construction Installation Activities
10.82	Building Completion and Finishing
20.18	Other Specialized Construction Activities
	Wholesale and Retail Trade
5.26	Wholesale Trade
11.31	Merchandise Brokers
5.61	Wholesale of General Merchandise
-3.69	Wholesale of Agricultural Raw Materials and Live Animals
5.33	Wholesale of Food, Beverages and Tobacco
5.94	Wholesale of Fabrics and Clothing Accessories
4.71	Wholesale of Household Appliances and Goods
8.48	Wholesale of Pharmaceutical and Medical Goods and Cosmetics

- 6.73 Wholesale of Cultural and Recreation Goods
- 5.27 Wholesale of Construction Materials

5.54	Retail Trade
4.16	Retail Sale in Non-specialized Stores
8.40	Retail Sale of Food, Beverages and Tobacco in Specialized Stores
8.20	Retail Sale of Fabrics and Clothing Accessories in Specialized Stores
6.83	Retail Sale of Household Appliances and Goods in Specialized Stores
6.69	Retail Sale of Pharmaceutical and Medical Goods and Cosmetics in Specialized Stores
6.36	Retail Sale of Cultural and Recreation Goods in Specialized Stores
6.25	Retail Sale of Construction Materials in Specialized Stores
3.50	Retail Sale of Fuel in Specialized Stores
6.06	Retail Sale of Information and Communications Equipment in Specialized Stores
4.17	Retail Sale of Motor Vehicles, Motorcycles and Related Parts
	and Accessories in Specialized Stores
10.17	Other Retail Sale in Specialized Stores
7.17	Retail Trade not in Stores or Stalls
5.16	Transportation and Storage
	Land Transportation
(D)	Transport via Railways
(D)	Public Rapid Transit
3.08	Bus Transportation
7.95	Freight Truck Transport
34.93	Other Land Transportation
-0.65	Water Transportation
-0.67	Ocean Transportation
2.13	Inland and Lake Transportation
	Air Transport
14.19	Support Activities for Transportation
14.70	Customs Clearance Services
12.17	Shipping Agency Services
7.57	Freight Transportation Forwarding Services
19.50	Service Activities Incidental to Land Transportation
25.44	Service Activities Incidental to Water Transportation
30.09	Service Activities Incidental to Air Transportation
9.91	Other Transportation Support Activities
	Warehousing and Storage
	Postal and Courier Activities
-1.85	Postal Activities
3.98	Courier Activities
	Accommodation and Food Service Activities
	Accommodation
13.15	Short Term Accommodation Activities
17.82	Other Accommodation
13.30	Food and Beverage Service Activities

15.13Beverage Service Activities via Shops9.86Other Food and Beverage Service Activities http://eng.stat.gov.tw/

13.34 Restaurants

Recording & Music Publishing Activities

- 11.55 Motion Picture, Video and Television Programme Activities
- 11.57 Sound Recording and Music Publishing Activities
- 8.90 Programming and Broadcasting Activities
- 4.82 Radio Broadcasting
- 9.11 Television Broadcasting and Subscription Programming
- 23.08 Telecommunications
- 8.30 Computer Systems Design Services
- 10.44 Information Service Activities
- Web Portals, Data Processing, Hosting and Related Activities 11.63
- 2.64 Other Information Service Activities
- 10.15 Financial and Insurance Activities, Social Security Activities
- 29.49 Financial Intermediation
- 24.44 Deposit Institutions

Rates > 20%

- Financial Holding Companies 29.79 Other Financial Intermediation
- -0.47 Insurance : Compulsory Social Security Activities
- -1.02 Personal Insurance ; Compulsory Social Security Activities
- 4.39 Property Insurance
- (D) Reinsurance
- Activities Auxiliary to Insurance and Pension Funding (D)
- 19.87 Securities, Futures and Other Financing
- 16.74 Securities

91.68

- 16.10 Futures
- Activities Auxiliary to Financial Service Activities 28.73
- 29.10 Fund Management Activities
- 18.45 Real Estate Activities
- 17.52 Real Estate Development Activities
- 21.36 Real Estate Operation and Related Activities
- 22.40 Real Estate Operation Activities
- 10.52 Other Real Estate Activities
- 11.79 Professional, Scientific and Technical Activities
- 19.02 Legal and Accounting Activities
- 21.33 Legal Activities
- 17.16 Accounting, Book-keeping, Tax Consultancy
- 12.31 Activities of Head Offices; Management Consultancy Activities
 - Activities of Head Offices
- 12.31 Management Consultancy Activities
- 10.61 Architecture and Engineering Technical Testing and Analysis
- 9.45 Architecture and Engineering Activities & Related Technical Consultancy
- 14.68 Technical Testing and Analysis
- 8.23 Advertising and Market Research
- 8.14 Advertising
- Market Research and Public Opinion Polling 12.40

- Renting and Leasing of Machinery and Equipment 12.52 5.38 Renting and Leasing of Transport Equipment 15.65 Renting and Leasing of Personal and Household Goods -3.31 Leasing of Intellectual Property and Similar Products, Except **Copyrighted Works** 7.44 Employment Activities Activities of Employment Placement Agencies 14.79 5.55 Human Resources Provision Activities 11.70 Travel agency, Tour Operator, Reservation Service and Related Activities Security and Investigation Activities 11.55 10.34 Services to Buildings and Landscape Activities 7.83 **Combined Facilities Support Activities** 10.39 **Cleaning Activities** 11.26 Landscape Care and Maintenance Service Activities 11.38 **Business and Office Support Activities** 14.69 Education Other Education 14.71 **Educational Support Activities** 13.99 9.21 Human Health and Social Work Activities 8.87 Human Health Activities 4.04 Hospital Activities 21.75 Clinic Activities Other Human Health Activities 11.21 16.03 Residential Care Activities 10.88 Social Work Activities without Accommodation 11.89 Arts, Entertainment and Recreation 10.96 Creative, Arts and Entertainment Activities 14.57 Performing Arts 9.16 Support Activities to Performing Arts 4.55 Museums and Other Cultural Activities 14.31 Gambling and Betting Activities 12.56 Sports Activities and Amusement and Recreation Activities 6.70 Sports Activities 14.31 Amusement and Recreation Activities 17.04 Other Service Activities Maintenance and Repair of Personal and Household Goods 15.32 14.49 Maintenance & Repair of Motor Vehicles & Motor Vehicle Beauty Shops 12.39 Repair of Computers, Communication Equipment & Electronic Products Maintenance and Repair of Other Personal and Household Goods 19.09 18.61 Other Personal Service Activities 15.15 Washing and (Dry-) Cleaning of Textile and Fur Products Hairdressing and Other Beauty Treatment 18.69 Funeral and Related Activities 21.74 http://eng.stat.gov.tw/
- Other Personal Service Activities Not Elsewhere Classified 16.71

Profit Rate – What does it indicate?

Taiwan Economic Indicators

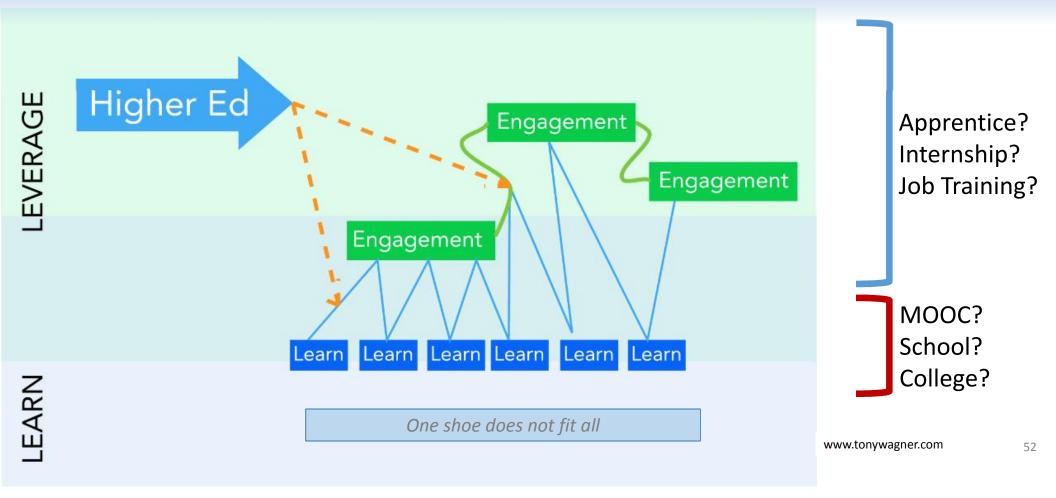
Operating Efficiency in Manufacturing

Money left on the table ?

For additional information visit http://bit.ly/MIT-Made-in-Taiwan

Operating Efficiency in Manufacturing

Can you improve profit rate by improving operating efficiency?


What skill sets do you need to improve operating efficiencies?

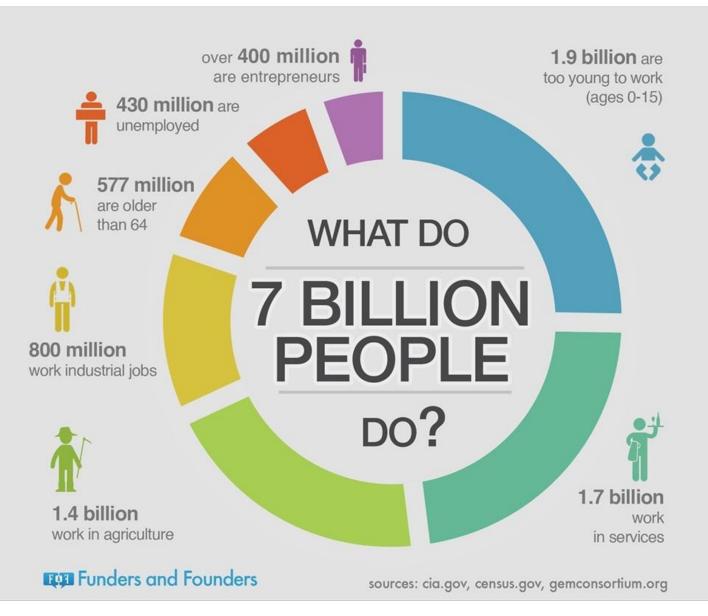
Are these skills attainable using online education or training?

Are we asking the correct questions? Is this at all about MOOC? Are we acting as a hammer always in search of a nail?

For additional information visit http://bit.ly/MIT-Made-in-Taiwan

How to improve operating efficiency in manufacturing?

Where are the jobs ?


Should Taiwan Emulate the US ?

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

Almost half are jobless

The richest 300 people are worth as much as the poorest 3 billion in terms of global wealth

About half are H2M

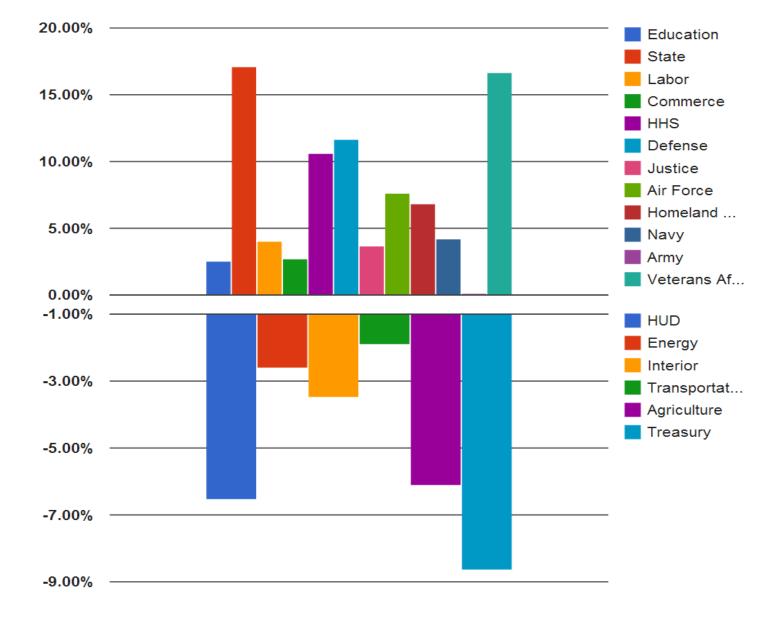
Jobs?

Robot that can park hospital beds in tight spots wins \$250,000 grant

BY JACQUELYN CHEOK jaccheok@sph.com.sg @JacCheokBT

Improving productivity: (from left) Lee Chuen Neng, head of Department of Surgery, NUS; Melvin Loh and Rachel Hong, directors of medical engineering research & commercialisation initiative, Department of Surgery, NUS; Prof Yu, Department of Biomedical Engineering, NUS; and Ng Kiang Loong, programme director of Hope Technik with the grant-winning robot

Google bought Boston Dynamics which designed LS3 'robot mules'


US Bureau of Labor Statistics

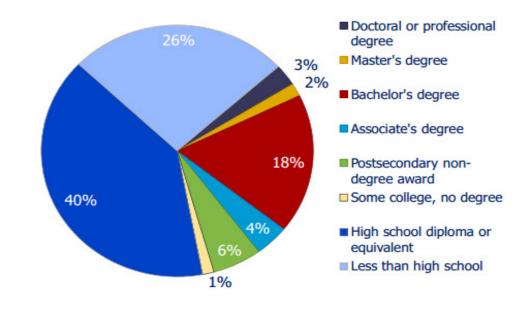
US Jobs and Predictions

2012-2022

Taiwan must develop its own model and provide leadership for the future of the innovation society in a networked global economy. Taiwan must be cautious about emulating US trends.

US Government

UNITED STATES OFFICE OF PERSONNEL MANAGEMENT

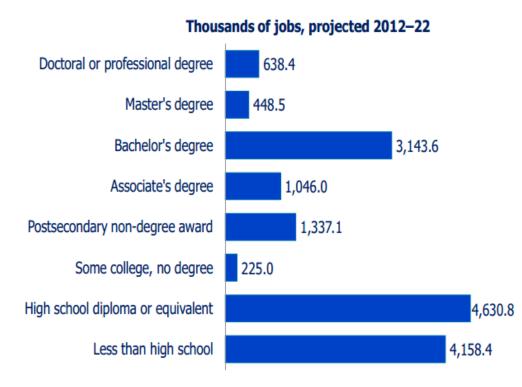

Education and training outlook for occupations, 2012–22

The 820 occupations for which BLS prepared 2012-22 employment projections received assignments in three categories: typical entry-level education, work experience in a related occupation, and typical onthe-job training needed to attain competency. In 2012, about one-third of jobs were in occupations that typically require postsecondary education for entry. 1 The largest share among the postsecondary groups was bachelor's degree. A bachelor's degree was the typical entry-level education for 18 percent of jobs in 2012. Most jobs in 2012 were classified as high school diploma or equivalent or less than high school.

¹These data are for 2012 employment summed by typical entry-level education assignment. The actual educational attainment of workers is different. Neither the 2012 data nor the projected 2022 data reflect actual or estimated numbers of workers by educational attainment.

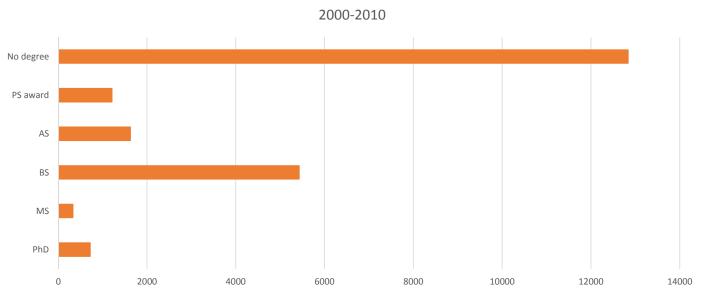
In 2012, about one-third of jobs were in occupations that typically require postsecondary education for entry

Source: U.S. Bureau of Labor Statistics, Employment Projections Program.

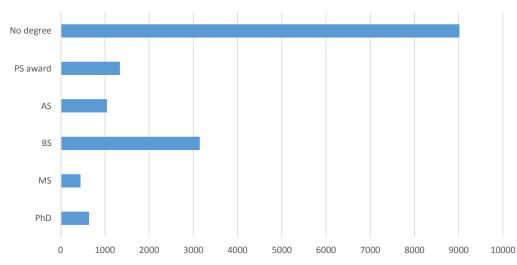

For additional information visit http://bit.ly/MIT-Made-in-Taiwan

Most new jobs from 2012 to 2022 will not require a college degree. About 4.6 million new jobs will require only a high school diploma or equivalent and 4.2 million new jobs will require less than a high school diploma. About 3.1 million new jobs are projected to be in occupations requiring a bachelor's degree for entry.

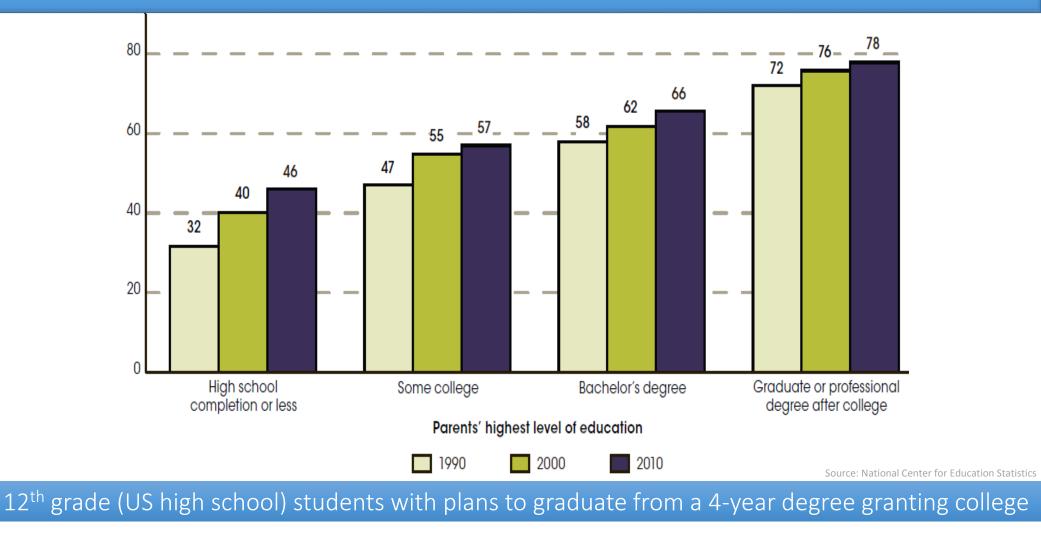
Occupations requiring a high school diploma or less than high school as the typical entry-level education include very large occupations that are projected to add many jobs. These occupations include retail salespersons; combined food preparation and serving workers, including fast food; and secretarie and administrative assistants.


The most new jobs from 2012 to 2022 are projected to be in occupations that typically can be entered with a high school diploma

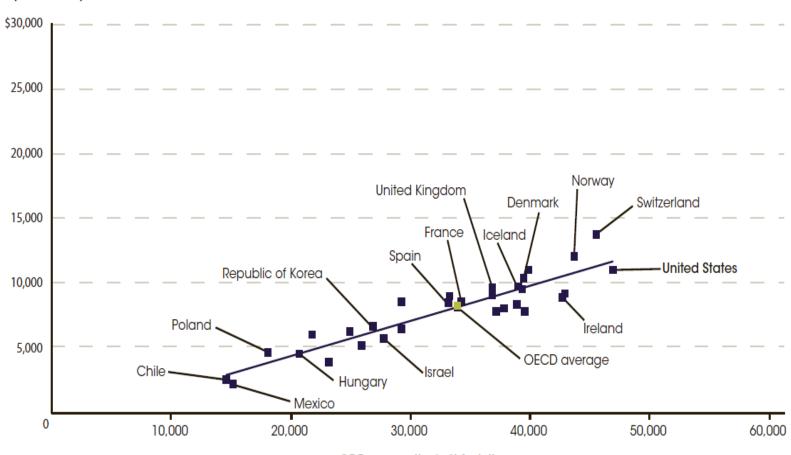
Source: U.S. Bureau of Labor Statistics, Employment Projections Program.


Facts of Life ?

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium (<u>www.iiconsortium.org</u>) • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT) • <u>http://bit.ly/S-Datta</u>


US Predictions

2012-2022



(000s) US Bi	ureau of Lat	oor Statistics	2012-2022		2000-2010	
PhD			638.4	4.1%	723	3.3%
MS			448.5	2.9%	333	1.5%
BS			3143.6	20.1%	5428	24.5%
AS			1046	6.7%	1626	7.3%
PS award			1337.1	8.6%	1213	5.5%
Some Colle	ge		225	1.4%		0.0%
HS			4630.8	29.6%		0.0%
<hs< td=""><td></td><td></td><td>4158.4</td><td>26.6%</td><td></td><td>0.0%</td></hs<>			4158.4	26.6%		0.0%
No degree			9014.2	57.7%	12837	57.9%
			15627.8		22160	

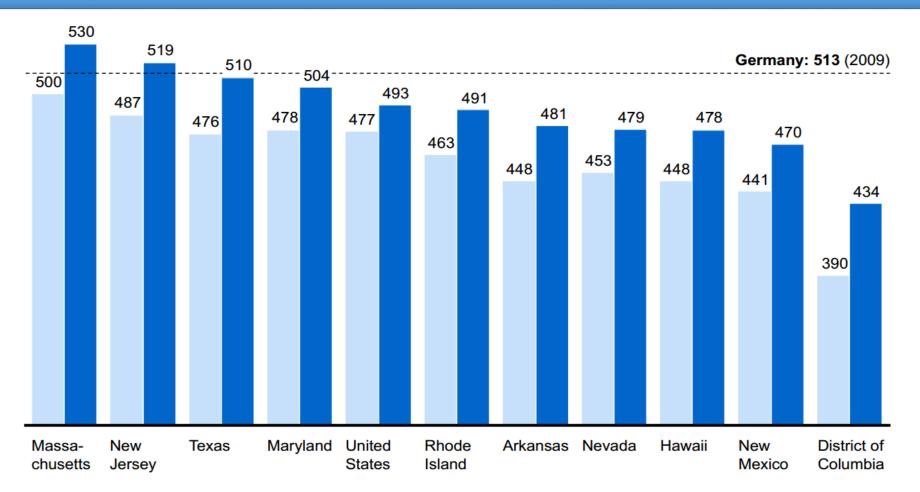
Environmental Impact (on Aspiration and Ambition) in Education?

Investment in Pre-College Education

Expenditures per student

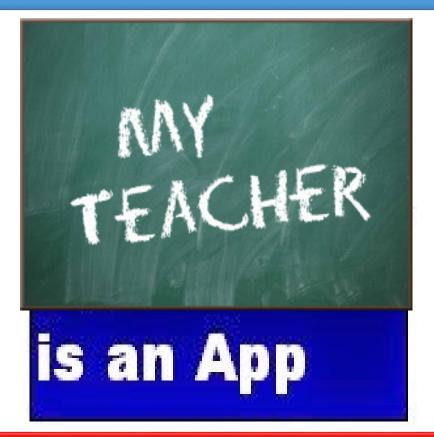
Source: National Center for Education Statistics

GDP per capita, in U.S. dollars


US High School Teachers are Lacking in Rigor in Mathematics and Science

Source: National Center for Education Statistics

Number and percentage of grade 9–12 public school classes of various subjects taught by a teacher with a major and certification in that subject area, by selected subject areas: 2007–08


Selected	Number of	Maj	Major in subject area			No major in subject area		
subject area	classes	Total	Certified	Not certified	Total	Certified	Not certified	Total certified
English	770,200	79.1	68.3	10.9	20.9	10.4	10.5	78.6
Mathematics	676,900	70.4	62.0	8.4	29.6	15.7	14.0	77.6
Science	562,700	81.7	71.2	10.4	18.3	11.4	6.9	82.7
Biology/life sciences	245,000	72.9	57.2	15.7	27.1	17.2	10.0	74.4
Physical science	289,300	43.2	35.4	7.8	56.8	29.1	27.7	64.5
Chemistry	106,900	46.0	35.3	10.7	54.0	33.9	20.1	69.2
Earth sciences	53,100	23.7	18.0	5.7!	76.3	22.1	54.2	40.1
Physics	43,200	46.7	31.4	15.4	53.3	28.3	25.0	59.6
Social science	565,000	81.2	70.6	10.6	18.8	11.0	7.8	81.6
Economics	39,800	11.0!	‡	‡	89.0	10.6	78.4	14.5
Geography	45,400	8.3!	‡	‡	91.7	16.2!	75.5	21.8
Government/civics	86,600	5.1	1.9!	3.2!	94.9	12.0	82.8	14.0
History	297,200	60.8	28.0	32.8	39.2	6.4	32.8	34.4
French	51,000	80.0	71.6	8.4!	20.0	13.7	‡	85.2
German	13,400	78.3	69.3	‡	21.7!	20.6!	‡	89.9
Latin	9,200	73.1	58.3	‡	26.9!	‡	‡	79.2
Spanish	189,700	73.3	57.4	15.9	26.7	19.4	7.3	76.8
Art/arts and crafts	139,800	88.9	79.6	9.3	11.1!	‡	3.4	87.2
Music	103,100	94.1	85.4	8.8	5.9	1.8!	4.0!	87.2
Dance/drama or theater	37,000	58.6	49.2	9.3!	41.4	16.6	24.9	65.8

Math PISA equivalent scores for 13-year-olds • 2003 vs 2011 (dark blue)

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium (www.iiconsortium.org) • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT) • http://bit.ly/S-Datta

US High School Teachers are Lacking in Rigor in Mathematics and Science

Not a problem – we have the best app

US High School Teachers are Lacking in Rigor in Mathematics and Science

Not a problem – we have the best – Dr Salman Khan – just MOOC him !!

M is for Motivation

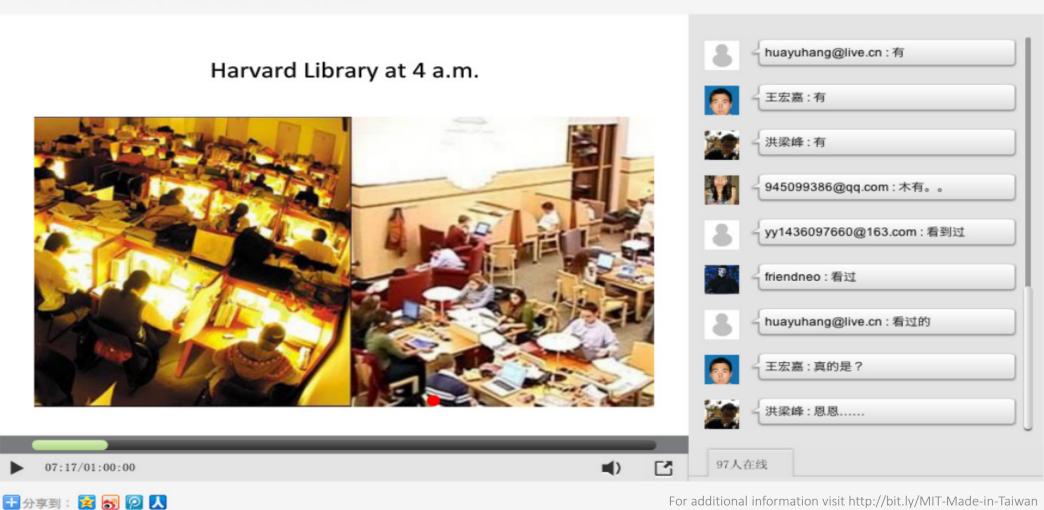
One of the hardest decisions you'll ever face in life is choosing whether to walk away or try harder.

For information visit http://bit.ly/MIT-Made-in-Taiwan

Harvard, MIT Online Courses Dropped by 95% of Registrants

By John Lauerman | Jan 21, 2014 4:08 PM ET | 29 Comments 🗳 Email 🛱 Print

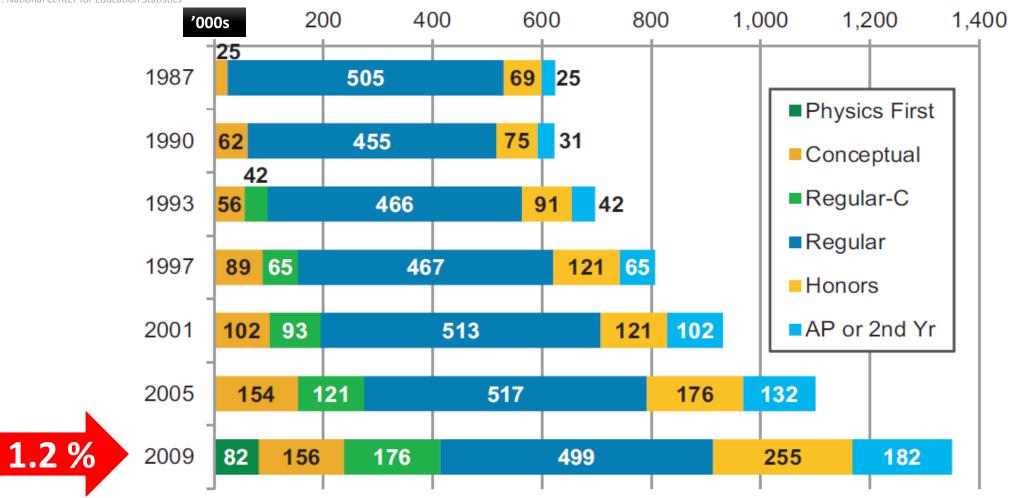
About 95 percent of students enrolled in free, online courses from **Harvard University** and the **Massachusetts Institute of Technology** dropped them before getting a completion certificate.


Out of 841,687 registrants in 17 courses offered in 2012 and 2013 by the universities' joint **EdX** program, 43,196 saw the classes to conclusion, according to an e-mailed statement from the Cambridge, Massachusettsbased schools. Some of the students signed up for multiple courses, according to the statement.

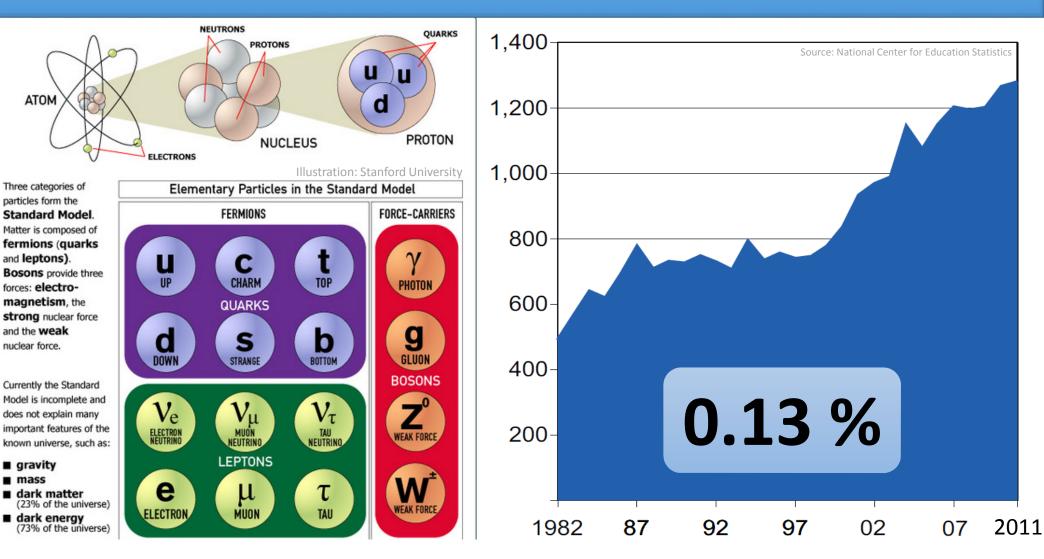
Photographer: Michael Fein/Bloomberg

Harvard University and the Massachusetts Institute of Technology began the \$60 million... Read More

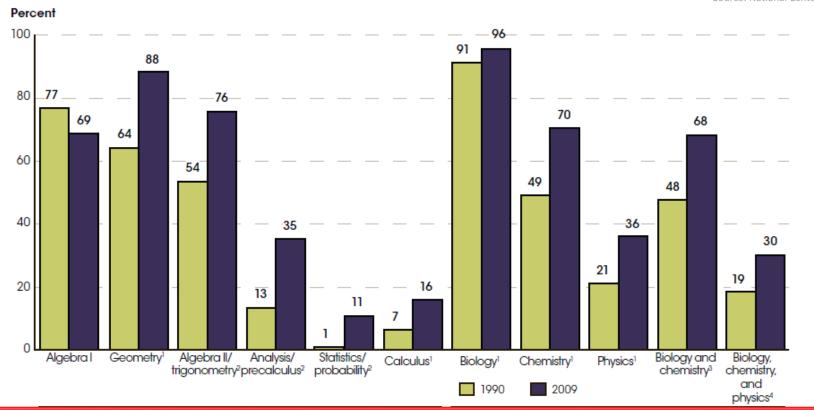
Harvard and MIT began the \$60 million EdX project in 2012 as an experiment to research the potential of massive open online courses, or MOOCs. The data released today show that while there's broad interest in the classes, people are accessing them for many other reasons besides obtaining a certificate of completion, said **Andrew Ho**, an associate professor in Harvard's Graduate School of Education.



王源: 连线纽约 - 挑战你的思维定势

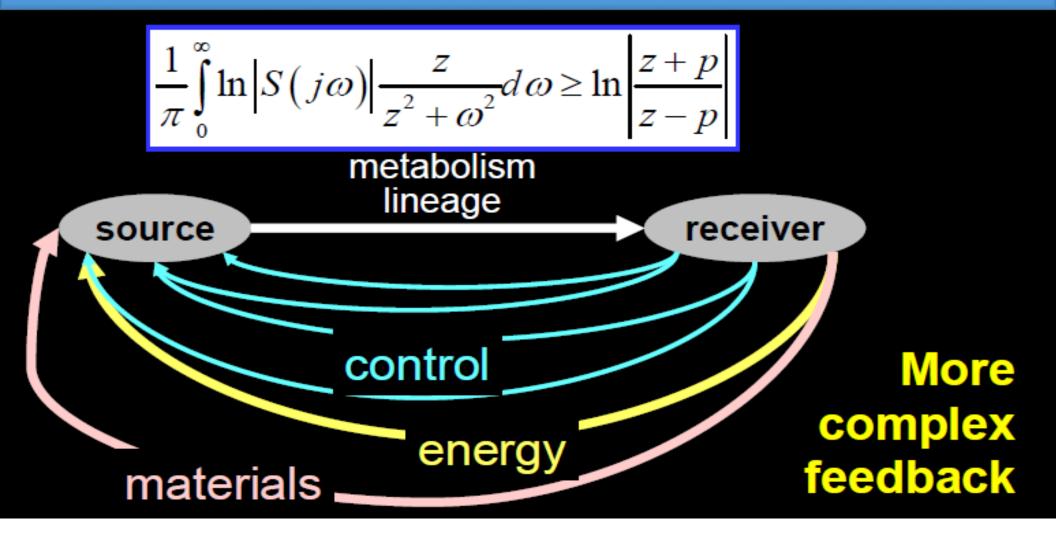

~

US High School AP Physics \rightarrow 182,000 out of 15,000,000 (grades 9-12)



Source: National Center for Education Statistics

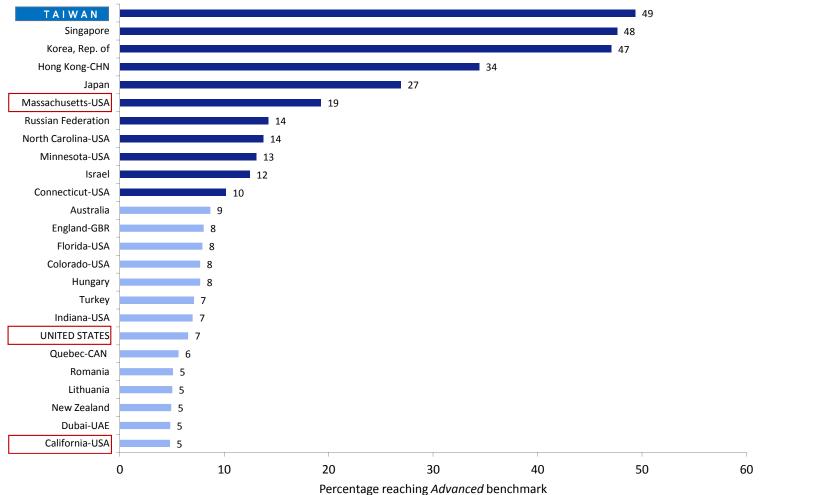
US Math-Science \rightarrow Women BS Physics \rightarrow 1,300 out of 1,000,000 (2011)


US High Schools Teach Biology divorced from Chemistry and Mathematics

Source: National Center for Education Statistics

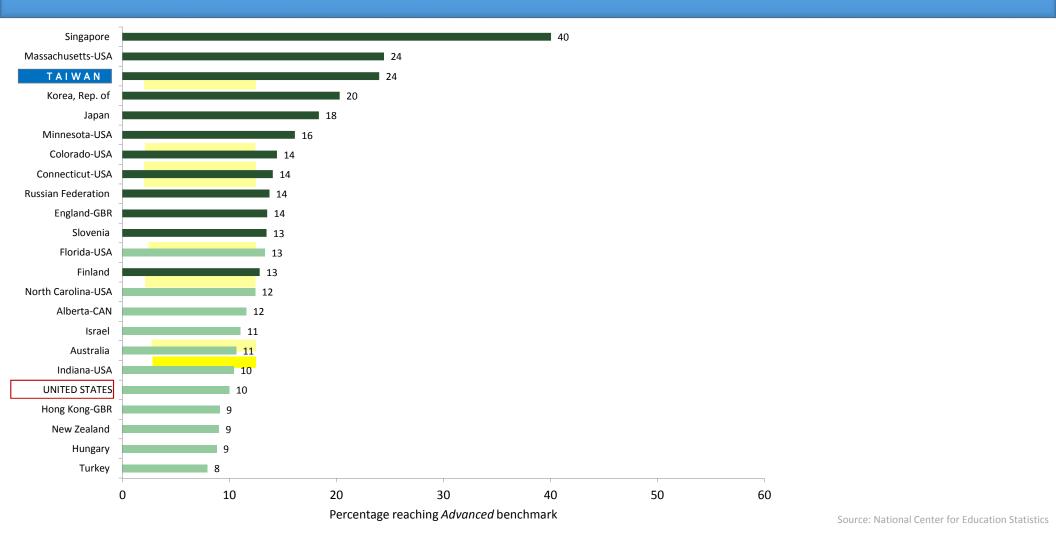
Enrollment of high school graduates in science and mathematics courses Dumbed-down descriptive biology infecting schools and general colleges

Understanding bio-systems and bio-networks may aid complex problems



Taiwan Public Education

Excellence in Classroom Performance vs Imagination, Invention and Innovation

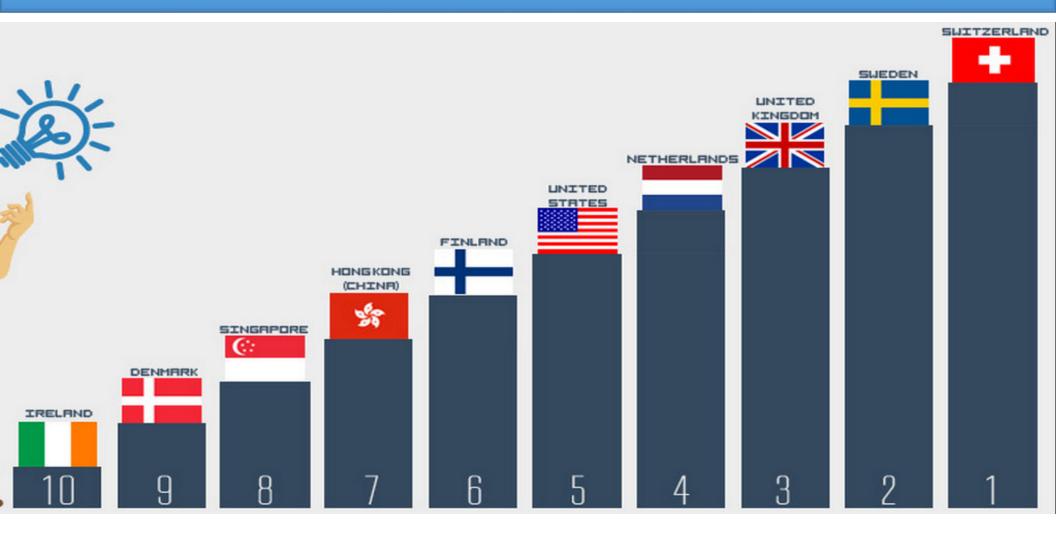

For additional information visit http://bit.ly/MIT-Made-in-Taiwan

Taiwan Ranks No. 1 in Global Performance in Mathematics by 8th Graders

Source: National Center for Education Statistics

Taiwan Ranks No. 2 in National Performance in Science by 8th Graders

Analyze this - 60% of the world's most innovative companies are from the US But the performance of public school students in the US are near-abysmal.


For additional information visit http://bit.ly/MIT-Made-in-Taiwan

The World's Most **Innovative Companies**

« The World's Most Innovative Companies Home | Methodology

SEARCH	BROWSE	E THE LIST	E.			Values ca	Iculated August 2013
Search by company name	Rank 🔺	Company		Country	12-Month Sales		Innovation
Search					Growth (%)	Annualized Total Return (%)	Premium* (%)
FILTERS	1		Salesforce.com	United States	32.1	21.6	72.8
Filter by region							
All regions	~		Alexion				
Filter by industry All industries	2	ALEXION	Pharmaceuticals	United States	39.2	38.4	72.3
See Also The 100 Best Companies	3	vm ware	VMware	United States	16.3	19.0	63.7
Most Profitable Small Businesses Small Business	4	REGENERON	Regeneron Pharmaceuticals	United States	128.3	65.8	63.1
Opportunities Innovative Business Ideas	5	ARM	ARM Holdings	United Kingdom	22.5	47.9	61.2
Entrepreneurship Programs	6	Baiden	Baidu	China	44.6	32.8	60.6
OTHER LISTS							
The World's Billionaires World's Most Powerful People	7	amazoncom	Amazon.com	United States	23.0	31.0	60.2
Forbes 400 Richest Americans	0	outros.	Intuitive Surgical	Taited Chatan	.0 -		
Global 2000 Leading Companies	8	1101-04		United States	18.3	5.2	53-9
World's Most Powerful Women	9	ORakuten	Rakuten	Japan	14.1	23.1	50.7
LICENSE THE LOGO							
Forbes 2013 WORLD'S	10	natura	Natura Cosmeticos	Brazil	-3-9	14.5	48.5

Most Innovative Countries - Top 10 List

Next Generation of Emerging Movers and Shakers

Alex Bard Salesforce.com

Mayank Bawa & Tasso Argyros Teradata

Oliver Beck

Billy Biggs Google

Catherine Courage Citrix Systems

Craig Federighi Apple

Timothy Young

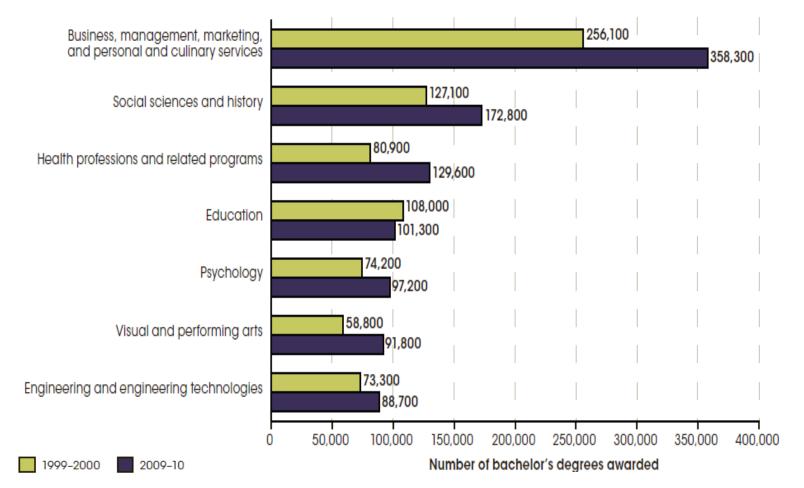
Amy Padour Kellogg

Tiffany Sepanski Mondelēz International

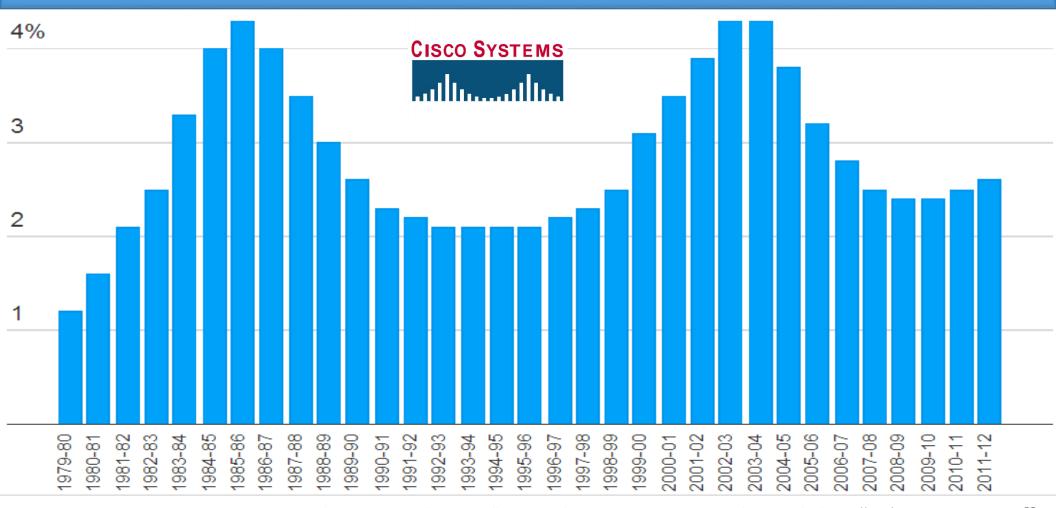
Phoong Tang Monsanto

FORBES 2013

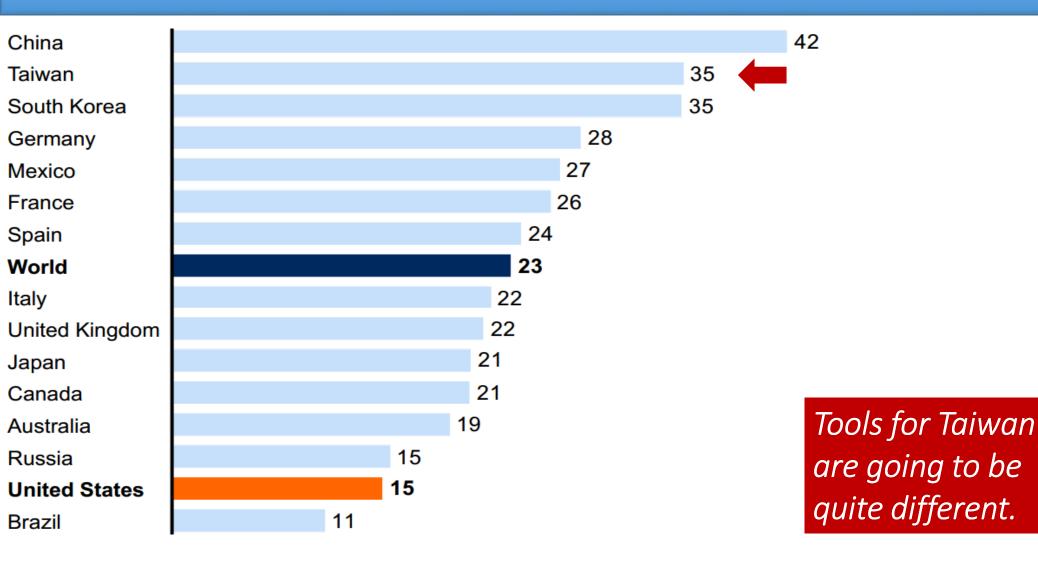
Rank	Company	Mkt Cap (\$MM)	LTM Rev (\$MM)	Employees	1st or 2nd Gen Immigrant Founder / Co-Founder	Generation
1	Apple	\$416,622	\$164,346	76,100	Steve Jobs	2nd-Gen, Syria
2	Google	268,445	49,958	53,861	Sergey Brin	1st-Gen, Russia
3	IBM	239,530	104,507	434,246	Herman Hollerith	2nd-Gen, Germany
4	Microsoft	234,828	72,764	94,000		
5	Oracle	172,044	37,230	115,000	Larry Ellison / Bob Miner	2nd-Gen, Russia / 2nd-Gen, Iran
6	Amazon.com	119,011	61,093	88,400	Jeff Bezos	2nd-Gen, Cuba
7	Cisco	116,904	47,252	66,639		
8	Intel	105,721	53,341	105,000	Andy Grove	1 st -Gen, Hungary
9	Ebay	65,357	14,028	31,500	Pierre Omidyar	1st-Gen, France
10	Facebook	63,472	5,089	4,619	Eduardo Saverin	1st-Gen, Brazil
11	EMC	53,347	21,714	60,000	Roger Marino	2nd-Gen, Italy
12	Hewlett-Packard	43,118	118,397	331,800		
13	Texas Instruments	38,756	12,690	34,151	Cecil Green / J. Erik Jonsson	1st-Gen, UK / 2nd-Gen, Sweden
14	VMware	35,917	4,605	13,800	Edouard Bugnion	1st-Gen, Switzerland
15	Priceline	35,583	5,261	7,000		22.9
16	Automatic Data Processing	31,274	10,945	57,000	Henry Taub	2nd-Gen, Poland
17	salesforce.com	25,840	3,050	9,800		
18	Dell	25,003	56,982	111,300		
19	Yahoo!	24,306	4,987	11,700	Jerry Yang	1st-Gen, Taiwan
20	Cognizant Technology	23,648	7,346	156,700	Francisco D'souza / Kumar Mahadeva	1st-Gen, India** / 1st-Gen, Sri Lanka
21	Adobe Systems	20,640	4,373	11,144		
22	Broadcom	19,713	8,006	11,300	Henry Samueli	2nd-Gen, Poland
23	Intuit	19,393	4,153	8,500		774
24	LinkedIn	19,357	972	3,458	Konstantin Guericke / Jean-Luc Vaillant	1st-Gen, Germany / 1st-Gen, France
25	Symantec	16,916	6,839	20,500		
Total Fo	ounded by 1st or 2nd Gen Immigrants	\$1,590,800	\$507,516	1,151,835		КРСВ


Founders / Co-Founders of Top 25 U.S. Public Tech Companies, Ranked by Market Capitalization

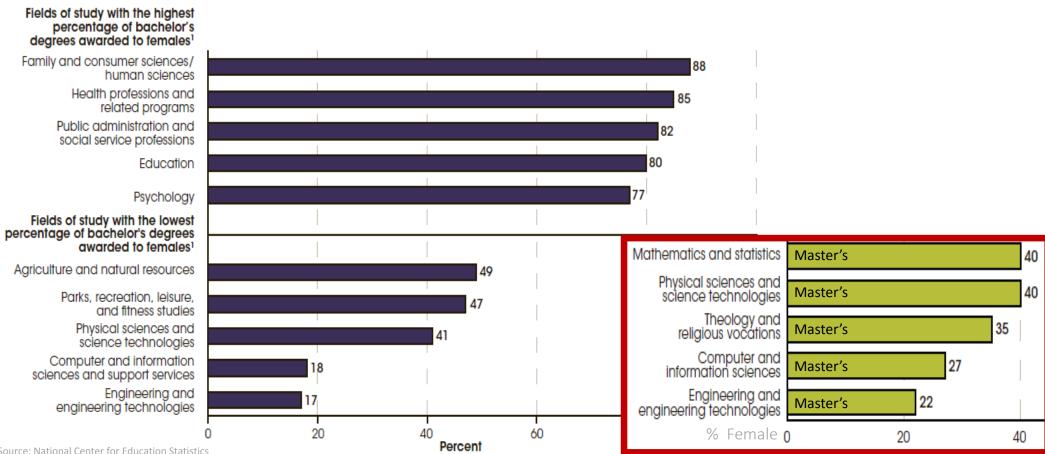
Comparative Investment in Post-Secondary Education


Expenditures per student

Slippery Slope \rightarrow one result of poor math & science in US public schools


Source: National Center for Education Statistics

Computer Science degrees as a share of all bachelor's degrees awarded


Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium (www.iiconsortium.org) • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT) • <u>http://bit.ly/S-Datta</u>

STEM degrees as a percentage of bachelor's degrees awarded (in 2008)

Gender Gap \rightarrow another result of poor math & science in K-12 education

Percentage of bachelor's degrees awarded to females by degree-granting institutions in selected fields of study: Academic year 2009-10

Source: National Center for Education Statistics

Gender Gap in Taiwan – How much did it shrink after thirteen years?

Appendix table 2-35

First university degrees and ratio of first university degrees and S&E degrees to 24-year-old population, by sex, in selected locations, by region: 2000 or most recent year (revised)

Source: US National Science Found	ation All first university		Natural	lathematics/ computer	Agricultural	Social/ behavioral			First university		Social/ behavioral science
Sex, region and location	degrees	All S&E	sciences	sciences	sciences	sciencesb	Engineering	24-year-olds	degrees	NS&E degrees	degrees
	-			Numb	ber			-	Ratio to	24-year-old popu	lation ^c
Male											
Asia											
Cambodia	1,817	415	67	98	64	109	77	77,800	2.3	0.39	0.14
Japan (2001)	335,850	275,451	10,110	3,761	7,854	160,525	93,201	880,400	38.1	13.05	18.23
Kyrgyzstan	7,915	3,281	805	171	297	710	1,298	44,000	18.0	5.84	1.61
Laos	1,135	314	42	20	81	15	156	47,400	2.4	0.63	0.03
South Korea	113,573	63,881	6,843	4,289	3,805	6,729	42,215	403,200	28.2	14.17	1.67
Taiwan (2001)	59,091	35,661	2,466	6,268	1,482	2,225	23,220	197,531	29.9	16.93	1.13
Europe											
Austria	7,939	3,487	407	442	138	355	2,145	47,600	16.7	6.58	0.75
Belgium	11,273	5,052	829	391	292	859	2,681	63,600	17.7	6.59	1.35
Denmark	3,277	1,291	238	145	85	800	23	33,200	9.9	1.48	2.41
Finland	10,319	6,940	432	542	308	521	5,137	33,400	30.9	19.22	1.56
France	119,281	64,647	16,616	10.002	1.031	10,427	26,571	388,600	30.7	13.95	2.68
Germany (2001)	96,418	60,037	5,536	6,584	2,218	21,839	23,860	460,200	21.0	8.30	4.75
Hungary	18,810	6,314	278	461	868	868	3,839	84,800	22.2	6.42	1.02
Iceland	469	192	30	45	9	38	70	2,200	21.3	7.00	1.73
Ireland	8.640	3,824	955	887	130	213	1,639	35,200	24.5	10.26	0.61
Italy	66,568	32,883	3,910	2,354	946	5,350	20,323	370,200	18.0		1.45
Netherlands	32,084	13,001	1,440	1,121	960	2,692	6,788	95,400	33.6	10.81	2.82
Norway	8.041	3,147	77	657	108	1,071	1,234	27,800	28.9	7.47	3.85
Spain	85,347	37,984	4,696	5,919	2,717	4,829	19,823	325,600	26.2	10.18	1.48
Sweden	13,551	7,333	513	740	121	772	5,187	52,400	25.9	12.52	1.47
Switzerland	11,084	4,581	775	281	134	421	2,970	39,200	28.3	10.61	1.07
United Kingdom ^d (1999)	121.680	54,990	15,450	10,750	1,260	8,770	18,760	357,800	34.0	12.92	2.45
North America	121,000	34,330	10,400	10,750	1,200	0,770	10,700	337,000	34.0	12.52	2.40
Canada	51,805	25,434	4,470	3,886	644	8,937	7,497	210,000	24.7	7.86	4.26
Costa Rica	1,749	702	58	149	127	107	261	36,200	4.8		0.30
Cuba	5,702	1,802	208	155	267	136	1,036	76,200	7.5	2.19	0.18
Mexico	66,488	28,961	867	5,103	2,499	2,259	18,233	972,000	6.8	2.15	0.23
United States	536,158	197,669	37,966	33,045	9,780	69,558	47,320	1,889,200	28.4	6.78	3.68
Oceania	550,150	137,003	57,500	33,045	3,700	03,550	47,520	1,003,200	20.4	0.70	5.00
Australia	48,187	18,178	3,942	4,214	657	1,872	7,493	137,600	35.0	11.85	1.36
New Zealand	7,572	2,403	1,259	4,214	137	110	632	25,400	29.8	9.03	0.43
New Zealanu	1,312	2,403	1,208	203	157	110	032	23,400	23.0	5.05	0.45

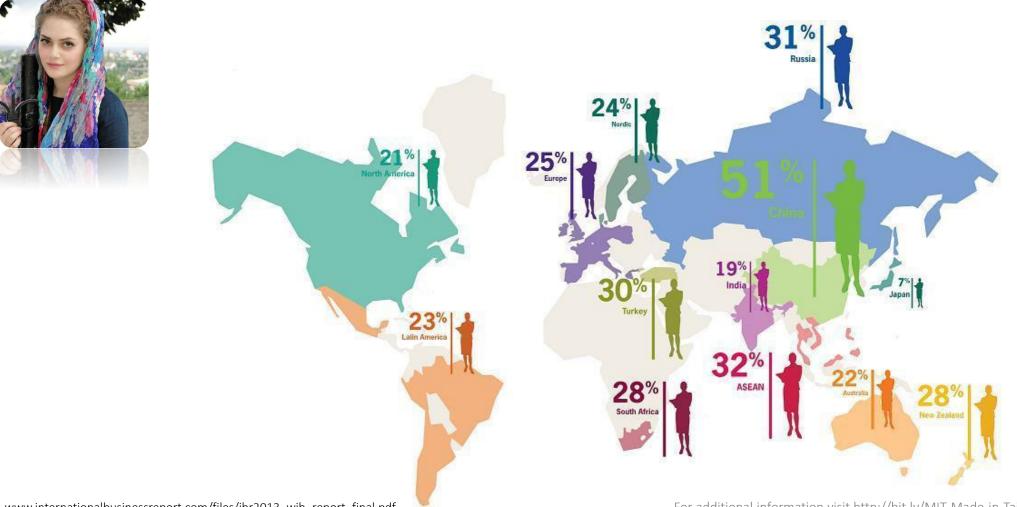
Need current data for number of female engineering graduates in TW

Appendix table 2-35

First university degrees and ratio of first university degrees and S&E degrees to 24-year-old population, by sex, in selected locations, by region: 2000 or most recent year (revised)

Source: US National Science Founda	ation All first university		Natural	lathematics/	Agricultural	Social/ behavioral			First university		Social/ behavioral science
Sex, region and location	degrees	All S&E	sciences®	sciences	sciences	sciences ^b	Engineering	24-year-olds	-	NS&E degrees	degrees
				Numi	ber				Ratio to	24-year-old popu	lation ^c
Female											
Asia											
Cambodia	745	110	39	27	4	39	1	79,200	0.9	0.09	0.05
Japan (2001)	209,632	83,826	4,082	1,204	6,488	60,775	11,277	839,000	25.0	2.75	7.24
Kyrgyzstan	8,839	3,229	1,231	303	65	903	727	43,600	20.3	5.33	2.07
Laos	591	75	21	10	19	8	17	46,600	1.3	0.14	0.02
South Korea	100,925	32,978	6,584	5,010	2,054	5,037	14,293	380,400	26.5	7.35	1.32
Taiwan (2001)	58,339	12,963	1,218	3,123	1,718	3,537	3,367	187,363	31.1	5.03	1.89
Europe											
Austria	7,193	1,691	345	80	98	702	466	44,800	16.1	2.21	1.57
Belgium	11,253	3,159	622	128	206	1,537	666	61,600	18.3	2.63	2.50
Denmark	3,458	1,073	221	64	86	684	18	31,800	10.9	1.22	2.15
Finland	14,950	3,243	563	304	224	996	1,156	32,200	46.4	6.98	3.09
France	156,035	51,513	16,895	5,040	1,226	20,630	7,722	373,600	41.8	8.27	5.52
Germany (2001)	86,909	29,953	5,007	2,603	2,660	16,341	3,342	432,600	20.1	3.15	3.78
Hungary	28,168	3,309	238	89	791	1,155	1,036	81,000	34.8	2.66	1.43
Iceland	971	177	57	13	0	84	23	2,000	48.6	4.65	4.20
Ireland	10,767	2,856	1,276	518	66	577	419	33,800	31.9	6.74	1.71
Italy	84,109	24,380	4,975	2,473	399	9,171	7,362	356,400	23.6	4.27	2.57
Netherlands	37,725	5,192	797	214	451	2,769	961	91,600	41.2	2.65	3.02
Norway	14,380	1,707	63	116	98	973	457	26,600	54.1	2.76	3.66
Spain	122,231	27,829	6,212	3,091	2,022	9,146	7,358	311,600	39.2	6.00	2.94
Sweden	20,546	4,521	743	523	110	1,398	1,747	49,800	41.3	6.27	2.81
Switzerland	7,944	1,564	365	56	39	775	329	37,400	21.2	2.11	2.07
United Kingdom ^d (1999)	142,000	37,390	16,780	3,880	1,600	11.890	3,250	338,800	41.9	7.53	3.51
North America				-,	.,	, = = = =	-,				
Canada	75,326	27,916	5,883	1,538	592	17,723	2,180	200,600	37.6	5.08	8.83
Costa Rica	2,644	372	46	65	40	157	64	34,600	7.6	0.62	0.45
Cuba	11,067	958	187	64	117	272	318	73,000	15.2	0.94	0.37
Mexico	68,745	13.088	834	4,486	738	1.079	5,951	1.007.000	6.8	1.19	0.11
United States	716,963	200,953	45,565	16,078	8,464	118,630	12,216	1,822,200	39.3	4.52	6.51
Oceania		200,000	.0,000	10,070	0,104		12,210	1,022,200	00.0		0.01
Australia	64,558	11,681	4,581	1,551	459	3,046	2,044	131,600	49.1	6.56	2.31
New Zealand	13,396	1,926	1,089	127	59	298	353	24,000	55.8	6.78	1.24
How Zoaland	10,000	1,020	1,000	121		200		24,000		0.70	1.24

Can MOOC shrink TW's gender gap?	All first university degrees	All S&E	M Natural sciences ^a	lathematics/ computer sciences Numl	Agricultural sciences ber	Social/ behavioral sciences ^b	Engineering	24-year-olds	0.018% 24 year old females (11.8% males) have
Asia									engineering degree
Cambodia	1,817	415	67	98	64	109	77	77,800	
Japan (2001)	335,850	275,451	10,110	3,761	7,854	160,525	93,201	880,400	Taiwan's
Kyrgyzstan	7,915	3,281	805	171	297	710	1,298	44,000	
Laos	1,135	314	42	20	81	15	156	47,400	Immense
South Korea	113,573	63,881	6,843	4,289	3,805	6,729	42,215	403,200	Untapped
Taiwan (2001)	59,091	35,661	2,466	6,268	1,482	2,225	23,220	197,531	
Female					-			4	Potential?
Asia									
Cambodia	745	110	39	27	4	39	1	79,200	12 001
Japan (2001)	209,632	83,826	4,082	1,204	6,488	60,775	11,277	839,000	12.66%
Kyrgyzstan	8,839	3,229	1,231	303	65	903	727	43,600	
Laos	591	75	21	10	19	8	17	46,600	of students with
South Korea	100,925	32,978	6,584	5,010	2,054	5,037	14,293	380,400	engineering degree
Taiwan (2001) For additional information visit http://	58,339 /bit.ly/MIT-Made-ir	12,963 n-Taiwan	1,218	3,123	1,718	3,537	3,367	187,363	were female (2001)


Gender Gap vs Collective IQ – MIT Center for Collective Intelligence

7. How can companies make their teams smarter?

Essa suggested taking a look at the research of Thomas W. Malone, a professor of management at the MIT Sloan School of Management and the founding director of the MIT Center for Collective Intelligence. Malone has been researching collective IQ for years. One of his findings? Hire more women. "Just by adding more women to your team, the group IQ will go up," Essa said. http://searchcio.techtarget.com/tip/Seven-data-science-lessons-from-McGraw-Hill-Education-analytics-guru

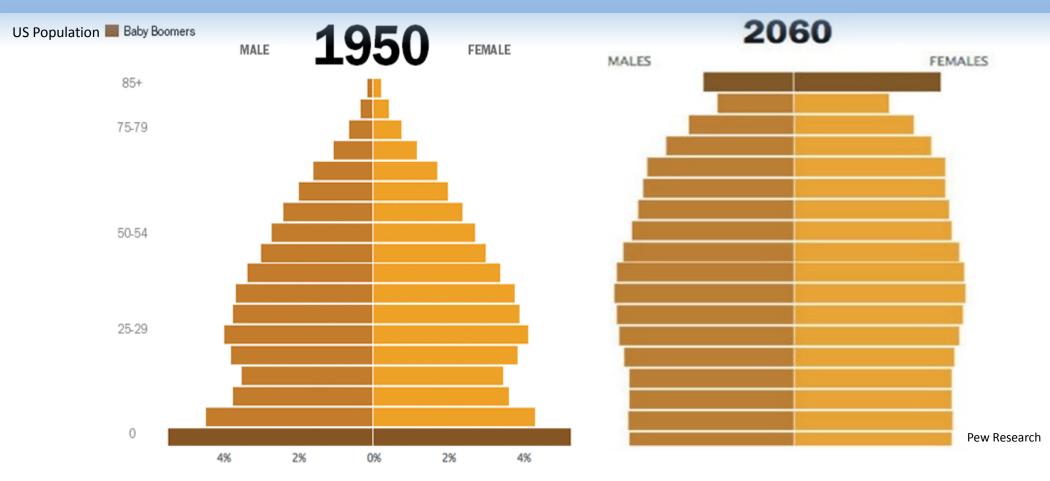
Dr Shoumen Palit Austin Datta SVP, Industrial Internet Consortium Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

Women in Senior Management, 2013

www.internationalbusinessreport.com/files/ibr2013_wib_report_final.pdf

For additional information visit http://bit.ly/MIT-Made-in-Taiwan

Discussion

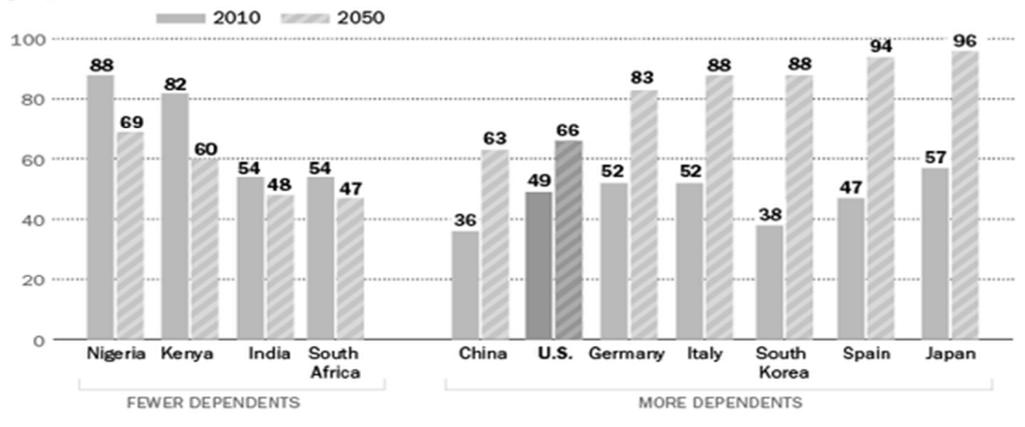

- History
- Context
- Purpose
- Economy
- Denominator
- Data
- Conclusion

We have thus far analyzed the context where MOOC may be instrumental

For additional information visit http://bit.ly/MIT-Made-in-Taiwan

Demographic changes influence the nature of socio-economic growth

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)


Demographics of tertiary education (%) influences workforce availability

55- to 64-year-ol	ds		25- to 34-year-ol	ds
Israel		45	South Korea	63
Russia		44	Canada	56
United States		41	Japan	56
Canada		41	Russia	55
New Zealand	34		Ireland	48
Estonia	33		Norway	47
Australia	29		New Zealand	47
Finland	29		Luxembourg	45
United Kingdom	29		United Kingdom	45
Switzerland	28		Australia	45
Netherlands	27		Denmark	45
Japan	27		France	43
Norway	27		Israel	43
Sweden	27		Belgium	42
Denmark	26		Sweden	42
Germany	25		United States	41
OECD average	22		OECD average	37

Demographic change influences the potential for socio-economic growth

http://esa.un.org/unpd/wpp/index.htm

Number of dependents (younger than 15 and 65 and older) for every 100 people of working age (15-64)

Is education a catalyst for GDP? Then education must complement growth.

Taiwan Economic Indicators

How can MOOC contribute to increase the Gross Domestic Product?

For additional information visit http://bit.ly/MIT-Made-in-Taiwan

GDP - composition, by sector of or	igin:	Exports - commodities:						
agriculture: 2%		electronics, flat panels, machinery; metals; textiles, pla	stics, chemicals; optical, photographic, measuring, and medical i					
industry: 29.4%	11/1 - 22/22	Function and and						
services: 68.6% (2013 est.) US &	UK ~ 80/20	Exports - partners:						
Agriculture - products:		China 27.1%, Hong Kong 13.2%, US 10.3%, Japan 6.4%	, Singapore 4.4% (2012 est.)					
rice, vegetables, fruit, tea, flowers; pi	gs, poultry; fish	Imports:	Exports must serve global					
Industries:		\$268.5 billion (2013 est.) country comparison to the world: 19	demand (sectors projected					
	nation technology products, petroleum refining, chemicals,	\$268.8 billion (2012 est.)						
	rehicles, consumer products, pharmaceuticals	Imports - commodities:	for rapid economic growth)					
Industrial production growth rate:		electronics, machinery, crude petroleum, precision instr	ruments, organic chemicals, metals					
1.8% (2013 est.) country comparison to the world:	129							
	120	Imports - partners:						
Labor force:		Japan 17.6%, China 16.1%, US 9.5% (2012 est.)	GDP (purchasing power parity):					
11.55 million (2013 est.) country comparison to the world:	<u>47</u>	Reserves of foreign exchange and gold:	\$926.4 billion (2013 est.) country comparison to the world: 21					
Labor former bei annun timm		\$414.5 billion (31 December 2013 est.)	\$906.6 billion (2012 est.)					
Labor force - by occupation:	Service economies are	country comparison to the world: 7 \$408.5 billion (31 December 2012 est.)	\$894.7 billion (2011 est.)					
agriculture: 5% industry: 36.2%		\$408.5 billion (ST December 2012 est.)	note: data are in 2013 US dollars					
services: 58.8% (2012 est.)	catalyzed by knowledge	Debt - external:	GDP (official exchange rate):					
Unemployment rate:	and deep analytical skills.	\$146.8 billion (31 December 2013 est.) country comparison to the world: 38	\$484.7 billion (2013 est.)					
4.1% (2013 est.)	and accp analytical skills.	\$130.8 billion (31 December 2012 est.)	GDP - real growth rate:					
country comparison to the world:	<u>33</u>		2.2% (2013 est.) country comparison to the world: 138					
4.2% (2012 est.)		Stock of direct foreign investment - at home: \$62.94 billion (31 December 2013 est.)	1.3% (2012 est.)					
Population below poverty line:		country comparison to the world: <u>51</u>	4.1% (2011 est.)					
1.5% (2012 est.)		\$59.36 billion (31 December 2012 est.)	GDP - per capita (PPP):					
		Stock of direct foreign investment - abroad:	\$39,600 (2013 est.) country comparison to the world: 28					
Household income or consumption	by percentage share:	\$240.3 billion (31 December 2013 est.)	\$38,900 (2012 est.)					
lowest 10%: 6.4%		country comparison to the world: 22	\$38,500 (2011 est.)					
highest 10%: 40.3% (2010)		\$226.1 billion (31 December 2012 est.)	note: data are in 2013 US dollars					

To increase GDP

Match Education to Demand

For service economy – knowledge plus analytical skills

For export earnings – target global projected growth

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

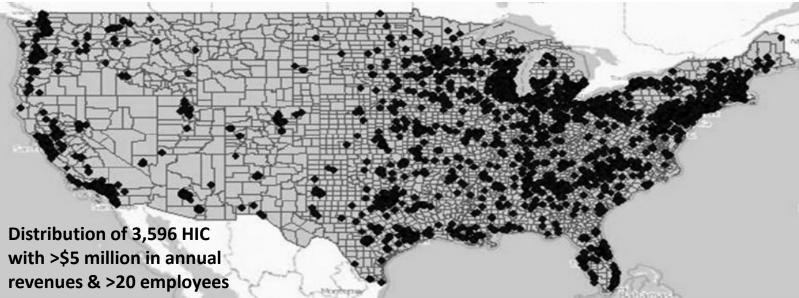
Future Economic Growth

High impact companies (~5%) may be few but are influential

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

High Impact MIT TLO Manufacturing Companies (1997-2008)

Industry	# of Firms Started	% of Total	% Receiving Venture Capital	% Operating^ *	% Closed	% Merged
Advanced Materia and Energy	lls 15	10	33	73	27	0
Biopharma	58	39	59	55	26	19
Medical Devices	31	21	52	65	3	32
Robotics	5	3	0	60	20	20
Semiconductors and electronics	26	17	85	62	19	19
Other	15	10	33	47	27	27
All Production	150	100	55	59	20	21

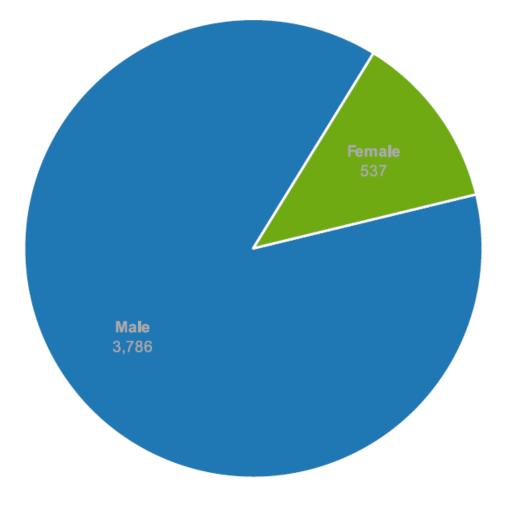

Excludes 39 software companies because they fail to categorize as manufacturing • MIT TLO refers to Technology Licensing Office

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium (www.iiconsortium.org) • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT) • http://bit.ly/S-Datta

	Employee	Size	De	eriod	Tota	al High	Impact		Total HIC
	Segment		re re	inou	Cor	npanie	s (HIC)	J	lob Change
	1.10			4-1998			327,397		3,170,729
	1-19			8-2002			278,190		3,577,111
				2002-2006		359,289		4,041,099	
				4-2008			350,996		4,119,926
				4-1998			23,464		2,788,969
	20-499			8-2002			20,601		2,966,647
				2-2006			16,523		2,001,835
				4-2008 4-1998			16,424		1,845,198
				4-1998 8-2002			1,253 1,182		5,501,049 5,192,558
	500-plu	s		2-2002			793		2,966,826
			2002-2008			842		4,762,494	
			1994-1998				352,114		11,460,747
			1998-2002				299,973		11,736,316
	Total		2002-2006				376,605		9,009,760
www/sba.gov/sites/defau	ult/files/HighImpact	Report.pdf						368,262	
	Period	Total Hig	igh Impact Total H		al HIC	IIC Total US		T	otal US Non-HIC
High Impact	Period	Compar	nies (HIC)	Job C	hange	Jo	b Change		Job Change
Companies:	1994-1998		352,114		11,460,747		11,302,000)	-158,747
Job Creation	1998-2002		299,973		11,736,316		2,824,000)	-8,912,316
JOD CIEduon	2002-2006		376,605		9,009,760		6,690,000)	-2,319,760
is Immune	2004-2008		368,262		10,727,618		5,843,000)	-4,884,618
from Volatility			1994	4-1998	1998-20	02	2002-200	6	2004-2008
of Business	High Impact Co	mpanies		352,114	29	9,973	3 376,60		368,262
	All Other Com	panies	5	5,276,964	5 <mark>,</mark> 57	9,177	5,697,	5,697,759 5,885	
Cycles	HIC Ratio			6.7		5.5		<mark>6.6</mark>	6.3

High Impact Companies: Job Creation is Immune from Volatility of Business Cycles

CDA Degion	Total Reg	gion HICs	Urbar	n HICs	Rural HICs		
SBA Region	HICs	HIC Jobs	HICs	HIC Jobs	HICs	HIC Jobs	
Region 1 – New England	17,202	<mark>652,312</mark>	14,901	604,288	2,301	48,024	
Region 2 – Northeast	28,958	1,735,387	27,642	1,720,998	1,316	14,389	
Region 3 – Mid Atlantic	31,744	889,570	27,111	828,709	4,633	60,861	
Region 4 – Southeast	87,915	1,699,080	73,769	1,535,625	14,146	163,455	
Region 5 – Great Lakes	52,964	1,595,609	42,153	1,436,436	10,811	159,173	
Region 6 – South Central	41,057	1,530,033	34,137	1,442,068	6,920	87,965	
Region 7 – Midwest	15,181	429,093	9,302	355,190	5,879	73,903	
Region 8 – Rocky Mountain	15,658	280,982	10,612	223,160	5,046	57,822	
Region 9 – Southwest	59,888	1,482,878	57,282	1,452,069	2,606	30,809	
Region 10 – Pacific Northwest	17,515	430,103	12,770	366,833	4,745	63,270	
Total U.S.	368,082	10,725,047	309,679	9,965,376	58,403	759,671	



Industrial Productivity of	[:] High Impa	act Compar	nies (top p	anel) and	all other co	ompanies (bottom pa	inel) expre	ssed as (\$)	Revenue p	per Employ	/ee (USD)
Industry	1	994-1998		1	998-2002		2	002-2006	;	2	004-2008	3
muustry	1-19	20-499	500+	1-19	20-499	500+	1-19	20-499	500+	1-19	20-499	500+
Agriculture/Forest/Mining	63,261	190,960	159,502	68,201	246,583	407,686	90,296	637,717	832,423	76,136	467,104	1,146,641
Construction	119,666	199,275	230,306	144,676	159,947	295,062	125,695	210,304	862,301	127,130	226,094	271,751
Manufacturing	110,088	152,111	189,864	117,459	164,352	239,157	124,650	185,090	332,381	125,478	205,941	383,849
High-Tech Manufacturing	141,864	182,385	277,861	137,892	181,061	321,520	120,804	247,600	233,813	161,540	258,818	256,798
Communication/Utilities	170,285	173,002	278,806	150,986	304,959	616,504	138,257	420,215	447,272	135,299	606,389	388,647
Distribution/Wholesale	246,372	363,533	467,522	247,555	388,998	535,783	210,523	409,630	335,306	192,236	418,582	356,458
Retail	118,617	234,587	142,693	142,752	261,964	167,608	113,105	242,743	270,135	118,476	273,013	212,104
Eating/Drinking Retail	28,384	28,851	32,729	29,694	42,453	40,055	27,833	29,396	52,820	26,955	29,541	46,320
Finance/Ins/Real Estate	110,054	247,777	288,713	142,788	242,752	323,609	125,605	396,144	388,101	122,880	301,162	626,156
Services	42,013	58,352	65,247	43,978	51,531	66,536	43,369	84,323	64,560	41,676	83,088	85,897
Professional Services	76,313	74,147	71,295	82,616	114,214	110,006	76,327	113,110	104,370	75,289	101,305	68,184
Total	101,690	156,440	177,123	110,745	168,396	254,923	99,439	224,786	286,082	99,745	225,729	276,634
Industry	1	994-1998		1	998-2002	2	2	2002-2006	5	2	2004-200	8
maastry	1-19	20-499	500+	1-19	20-499	500+	1-19	20-499	5 00+	1-19	20-499	500+
Agriculture/Forest/Mining	1-19 70,556	20-499 111,179	500+ 455,757	1-19 67,556	20-499 79,248	500+ 419,929	1-19 65,961	20-499 96,816	500+ 712,840	1-19 73,077	20-499 107,887	500+ 840,025
Agriculture/Forest/Mining	70,556	111,179	455,757	67,556	79,248	419,929	65,961	96,816	712,840	73,077	107,887	840,025
Agriculture/Forest/Mining Construction	70,556 109,846	111,179 153,937	455,757 196,926	67,556 117,275	79,248 158,409	419,929 228,623	65,961 107,255	96,816 149,299	712,840 226,547	73,077 110,328	107,887 150,562	840,025 301,512 311,310
Agriculture/Forest/Mining Construction Manufacturing	70,556 109,846 92,728	111,179 153,937 119,540	455,757 196,926 230,444	67,556 117,275 93,776	79,248 158,409 123,052	419,929 228,623 223,765	65,961 107,255 90,278	96,816 149,299 131,763	712,840 226,547 299,925	73,077 110,328 90,845	107,887 150,562 124,549	840,025 301,512 311,310 295,517
Agriculture/Forest/Mining Construction Manufacturing High-Tech Manufacturing	70,556 109,846 92,728 120,996	111,179 153,937 119,540 121,763	455,757 196,926 230,444 196,965	67,556 117,275 93,776 125,700	79,248 158,409 123,052 133,755	419,929 228,623 223,765 199,144	65,961 107,255 90,278 118,552	96,816 149,299 131,763 146,213	712,840 226,547 299,925 263,381	73,077 110,328 90,845 118,906	107,887 150,562 124,549 155,616	840,025 301,512 311,310 295,517
Agriculture/Forest/Mining Construction Manufacturing High-Tech Manufacturing Communication/Utilities	70,556 109,846 92,728 120,996 158,279	111,179 153,937 119,540 121,763 162,402	455,757 196,926 230,444 196,965 239,795	67,556 117,275 93,776 125,700 166,682	79,248 158,409 123,052 133,755 167,381	419,929 228,623 223,765 199,144 259,133	65,961 107,255 90,278 118,552 131,806	96,816 149,299 131,763 146,213 175,954	712,840 226,547 299,925 263,381 343,362	73,077 110,328 90,845 118,906 141,227	107,887 150,562 124,549 155,616 184,598	840,025 301,512 311,310 295,517 379,340
Agriculture/Forest/Mining Construction Manufacturing High-Tech Manufacturing Communication/Utilities Distribution/Wholesale	70,556 109,846 92,728 120,996 158,279 226,412	111,179 153,937 119,540 121,763 162,402 269,776	455,757 196,926 230,444 196,965 239,795 285,932	67,556 117,275 93,776 125,700 166,682 225,429	79,248 158,409 123,052 133,755 167,381 262,393	419,929 228,623 223,765 199,144 259,133 251,320	65,961 107,255 90,278 118,552 131,806 190,581	96,816 149,299 131,763 146,213 175,954 259,461	712,840 226,547 299,925 263,381 343,362 378,686	73,077 110,328 90,845 118,906 141,227 193,160	107,887 150,562 124,549 155,616 184,598 271,071	840,025 301,512 311,310 295,517 379,340 412,439 198,614
Agriculture/Forest/Mining Construction Manufacturing High-Tech Manufacturing Communication/Utilities Distribution/Wholesale Retail	70,556 109,846 92,728 120,996 158,279 226,412 99,983	111,179 153,937 119,540 121,763 162,402 269,776 206,568	455,757 196,926 230,444 196,965 239,795 285,932 129,583	67,556 117,275 93,776 125,700 166,682 225,429 100,803	79,248 158,409 123,052 133,755 167,381 262,393 210,192	419,929 228,623 223,765 199,144 259,133 251,320 172,644	65,961 107,255 90,278 118,552 131,806 190,581 96,164	96,816 149,299 131,763 146,213 175,954 259,461 213,054	712,840 226,547 299,925 263,381 343,362 378,686 186,133	73,077 110,328 90,845 118,906 141,227 193,160 93,648	107,887 150,562 124,549 155,616 184,598 271,071 201,671	840,025 301,512 311,310 295,517 379,340 412,439 198,614
Agriculture/Forest/Mining Construction Manufacturing High-Tech Manufacturing Communication/Utilities Distribution/Wholesale Retail Eating/Drinking Retail	70,556 109,846 92,728 120,996 158,279 226,412 99,983 28,239	111,179 153,937 119,540 121,763 162,402 269,776 206,568 26,593	455,757 196,926 230,444 196,965 239,795 285,932 129,583 35,477	67,556 117,275 93,776 125,700 166,682 225,429 100,803 28,645	79,248 158,409 123,052 133,755 167,381 262,393 210,192 26,448	419,929 228,623 223,765 199,144 259,133 251,320 172,644 33,468	65,961 107,255 90,278 118,552 131,806 190,581 96,164 28,909	96,816 149,299 131,763 146,213 175,954 259,461 213,054 27,776	712,840 226,547 299,925 263,381 343,362 378,686 186,133 36,953	73,077 110,328 90,845 118,906 141,227 193,160 93,648 29,486	107,887 150,562 124,549 155,616 184,598 271,071 201,671 26,476	840,025 301,512 311,310 295,517 379,340 412,439 198,614 37,464
Agriculture/Forest/Mining Construction Manufacturing High-Tech Manufacturing Communication/Utilities Distribution/Wholesale Retail Eating/Drinking Retail Finance/Ins/Real Estate	70,556 109,846 92,728 120,996 158,279 226,412 99,983 28,239 115,789	111,179 153,937 119,540 121,763 162,402 269,776 206,568 26,593 189,815	455,757 196,926 230,444 196,965 239,795 285,932 129,583 35,477 338,076	67,556 117,275 93,776 125,700 166,682 225,429 100,803 28,645 121,797	79,248 158,409 123,052 133,755 167,381 262,393 210,192 26,448 204,664	419,929 228,623 223,765 199,144 259,133 251,320 172,644 33,468 351,986	65,961 107,255 90,278 118,552 131,806 190,581 96,164 28,909 113,928	96,816 149,299 131,763 146,213 175,954 259,461 213,054 27,776 181,577	712,840 226,547 299,925 263,381 343,362 378,686 186,133 36,953 376,204	73,077 110,328 90,845 118,906 141,227 193,160 93,648 29,486 115,803	107,887 150,562 124,549 155,616 184,598 271,071 201,671 26,476 184,197	840,025 301,512 311,310 295,517 379,340 412,439 198,614 37,464 415,854

Back-to-Bac	k High Impact Companie	s, by Segment and Indust	try (2004-2008)
Industry	1-19	20-499	500-plus
Agriculture/Forest/Mining	246	23	3
Construction	1,154	82	9
Manufacturing	546	72	4
High-Tech Manufacturing	112	62	11
Transport/Comm/Utilities	176	27	5
Distribution/Wholesale	649	69	4
Retail	513	26	11
Eating/Drinking Retail	73	12	6
Finance/Ins/Real Estate	501	75	12
Services	680	37	6
Professional Services	1,556	176	16
Acquisitions	48	29	7
Deaths	162	13	1
Incomplete Industry Data	3	0	0
www/sba.gov/sites/default/files/HighImpactReport.pdf	6,419	703	95

Segment	High Impact Companies				All Other Companies			
	Woman-Owned		Man-Owned		Woman-Owned		Man-Owned	
	Absolute	Percent	Absolute	Percent	Absolute	Percent	Absolute	Percent
1-19	36,069	12.4	255,965	87.6	1,210,832	13.2	7,975,531	86.8
20-499	6,962	9.4	67,216	90.6	47,493	7.8	563,826	92.2
500-plus	78	3.8	1,972	96.2	418	2.3	17,476	97.7

Silicon Valley's Gender Imbalance – Limits Creativity & Entrepreneurship

Women in Engineering Roles in Leadership and/or Management (updated 02-14-2014)

Emerging Economic Growth

Understanding emerging trends in economic development is essential to develop the structure of educational infrastructure.

5 ECONOMIC GROWTH SECTORS + 12 DOMAINS OF RAPID ADVANCES

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium.org) • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT) • http://bit.ly/MIT-Made-in-Taiwan 107

\$5 million vs. \$400

Price of the fastest supercomputer in 1975¹ and an iPhone 4 with equal performance

230+ million

Knowledge workers in 2012

\$2.7 billion, 13 years

Cost and duration of the Human Genome Project, completed in 2003

300,000+

Miles driven by Google's autonomous cars with only one accident (human error)

3x

Increase in efficiency of North American gas wells between 2007 and 2011

85%

Drop in cost per watt of a solar photovoltaic cell since 2000

2–3 billion

More people with access to the Internet in 2025

\$5–7 trillion

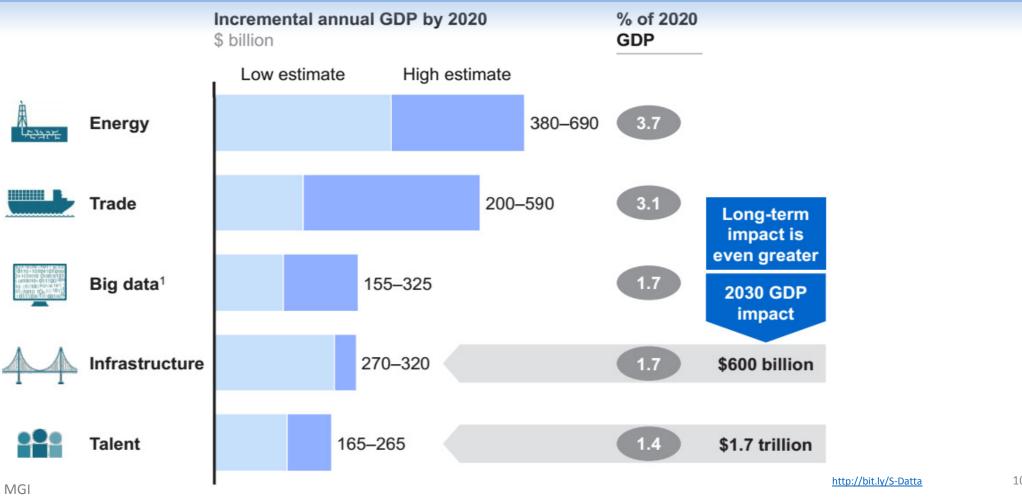
Potential economic impact by 2025 of automation of knowledge work

\$100, 1 hour

Cost and time to sequence a human genome in the next decade²

1.5 million

Driver-caused deaths from car accidents in 2028 potentially addressable by autonomous vehicles


100-200%

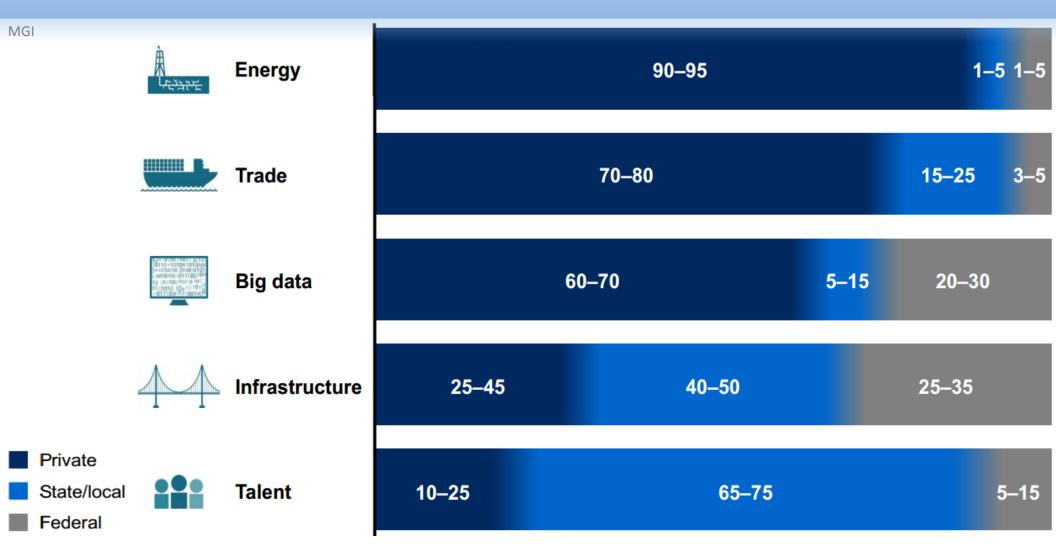
Potential increase in North American oil production by 2025, driven by hydraulic fracturing and horizontal drilling

16%

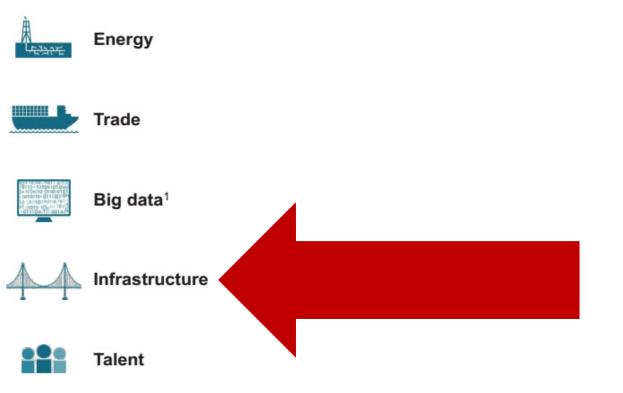
Potential share of solar and wind in global electricity generation by 2025

Sectors Predicted to Influence US GDP Growth over the next few decades

109

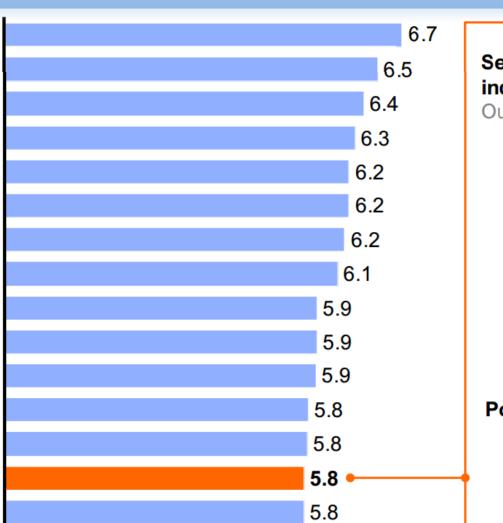

Segments of the US economy likely to be influenced over the next decades

			À		04110-1010-0011010-00 1+10-1010-001010-00 1+10-1010-01100-0101 041000-011100-01		
US Bureau of Labor Statistics	GDP, 2012	Jobs, 2012 ¹	L EXARE		10 crosp 10, 10 10/2 +011:00:10:00100		
Sectors of the economy	\$ billion	Million	Energy	Trade	Big data	Infrastructure	Talent
Resource extraction (e.g., oil and gas, mining, agriculture)	453.8	2.9	•			•	
Knowledge-intensive manufacturing (e.g., autos, aerospace, chemicals)	894.3	4.8	•	•	•	•	•
Resource-intensive manufacturing (e.g., metals, pulp, refinery products)	427.8	3.1	•	•	•	٠	•
Labor-intensive manufacturing (e.g., apparel, furniture)	544.6	4.1				•	
Construction and utilities	863.0	6.3				•	
Retail	949.1	15.0					
Wholesale, transport, and logistics	1,367.2	10.2			•	٠	•
Information and media	690.6	2.7			•		•
Financial, legal, and technical services	2,730.2	15.9	•	•	•		
Real estate	1,926.3	1.9				•	
Hospitality and other services ²	1,466.1	27.5					
Education and health care	1,344.7	20.5					
Government	2,026.2	21.9			•		•


Aassachusetts Institute of Technology (MIT) • http://bit.ly/S-Datta

Socio-Economic Impact			मे प्र <u>द्भन्नरुद्</u> र Energy	Trade	Big data	Infrastructure	Talent
		Impact on GDP by 2020 ¹					
		Increases productivity					
	Economic impact	Improves overall trade balance					
		Stimulates private investment					
		Creates jobs by 2020					
		Stimulates innovation in the economy					
	Societal impact	EnergyTradeBig dataInfrastructureImpact on GDP by 20201Impact on GDPImpact on GDPImpact on GDPImpact on GDPIncreases productivityImpact on GDPImpact on GDPImpact on GDPImpact on GDPImproves overall trade balanceImpact on GDPImpact on GDPImpact on GDPStimulates private investmentImpact on GDPImpact on GDPImpact on GDPStimulates private investmentImpact on GDPImpact on GDPImpact on GDPStimulatesImpact on GDPImpact on GDPIm					
Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium		Builds workforce					MGI

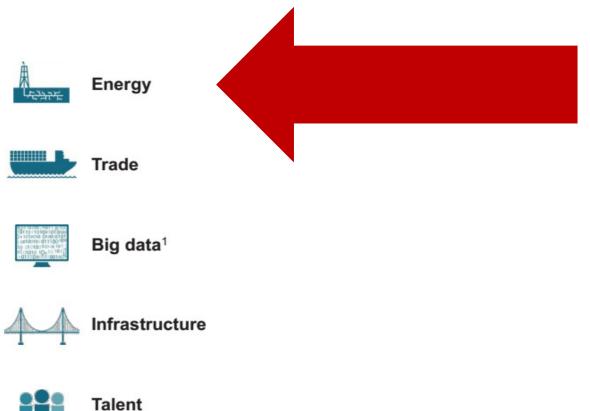
US Growth fueled by investment (%) from federal, state & private sources


FUTURE ECONOMIC GROWTH SECTORS (PROJECTIONS ARE NOT FACTS)

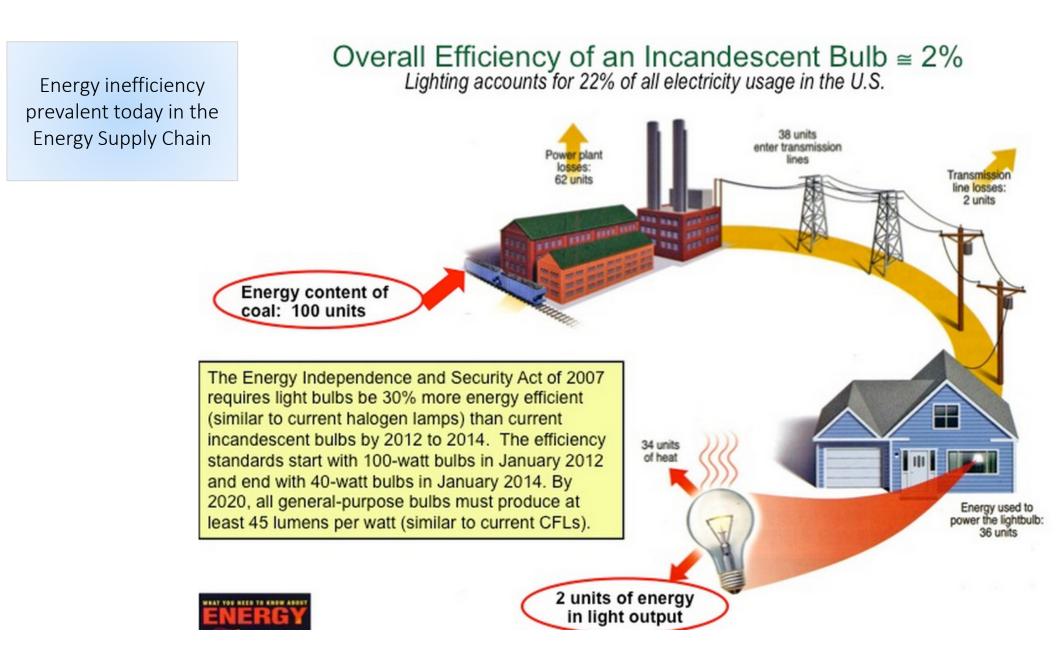
Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

Infrastructure – Where is Taiwan on this list?

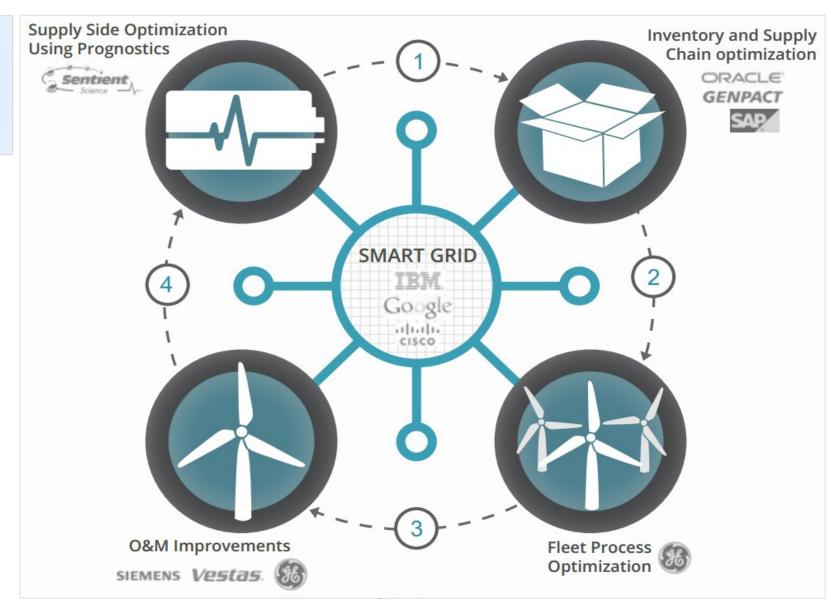
- 1 Hong Kong
- 2 Singapore
- 3 Germany
- 4 France
- 5 Switzerland
- 6 United Kingdom
- 7 Netherlands
- 8 United Arab Emirates
- 9 South Korea
- 10 Spain
- 11 Japan
- 12 Luxembourg
- 13 Canada
- 4 United States
- 15 Austria


For additional information visit http://bit.ly/MIT-Made-in-Taiwan

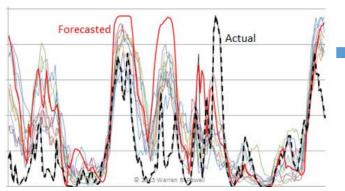
114


Connectivity Cost v Mobile MOOC - The elusive quest for business model

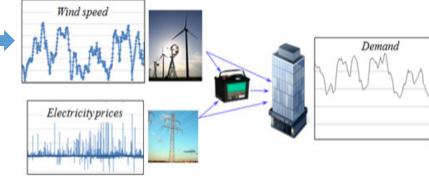
	Total pop. living on less than \$2 per day	Fixed Broadband as % of Income at \$2 per day	Mobile Broadband as % of income at \$2 per day
China 🗡	359,575,234 (~27%)	38.0	25.4
Colombia	7,016,538	30.7	48.9
Nigeria	124,159,302	63.9	21.3
Peru	3,577,091	29.5	23.5
Philippines	38,817,437	37.5	18.9
Zambia	10,444,784 (~87%)	134.9	35.4 ITU


FUTURE ECONOMIC GROWTH SECTORS (PROJECTIONS ARE NOT FACTS)

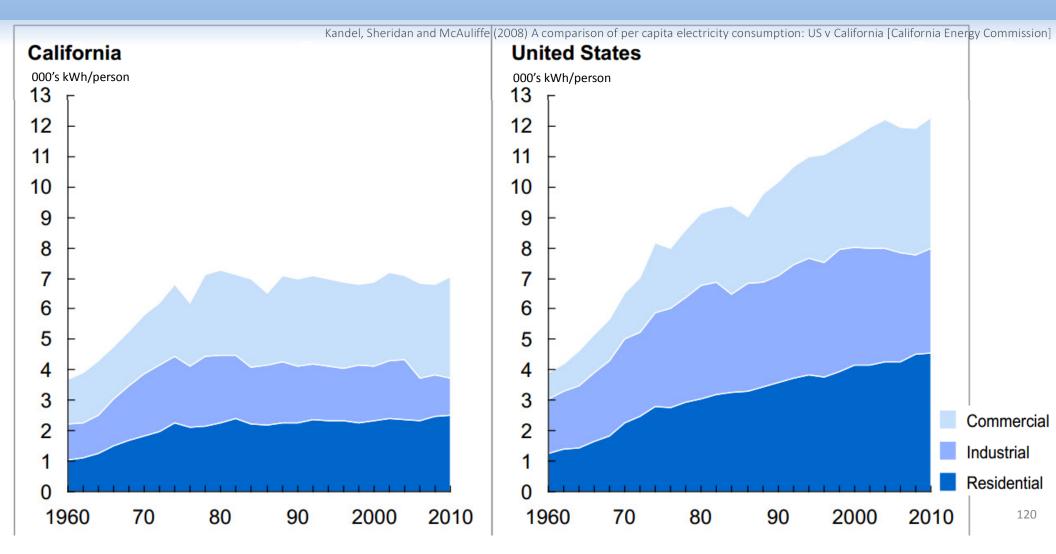
Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

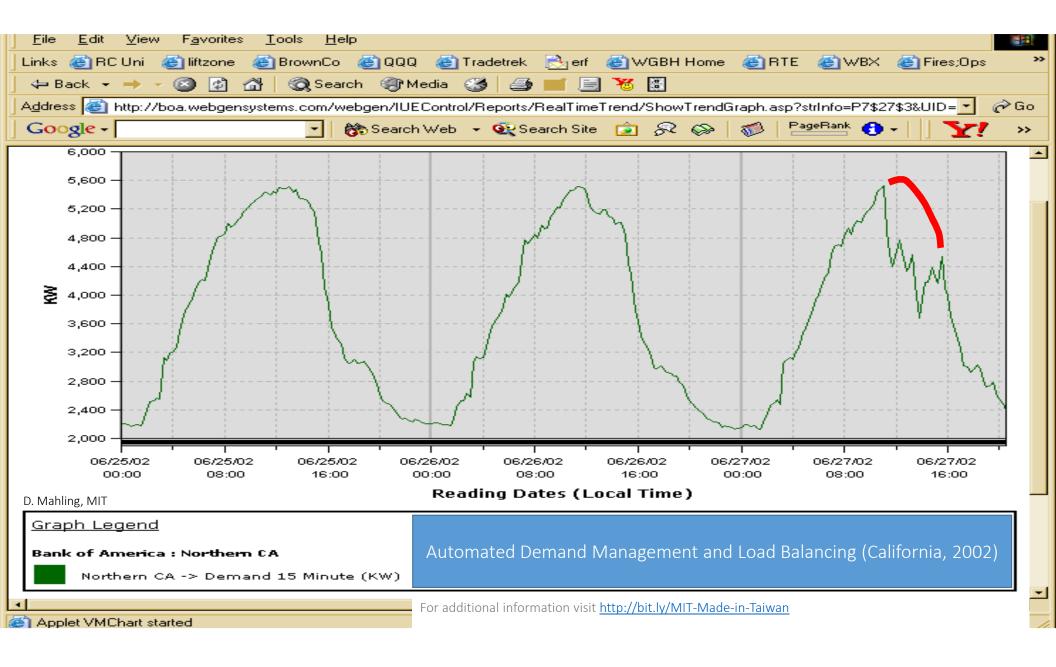


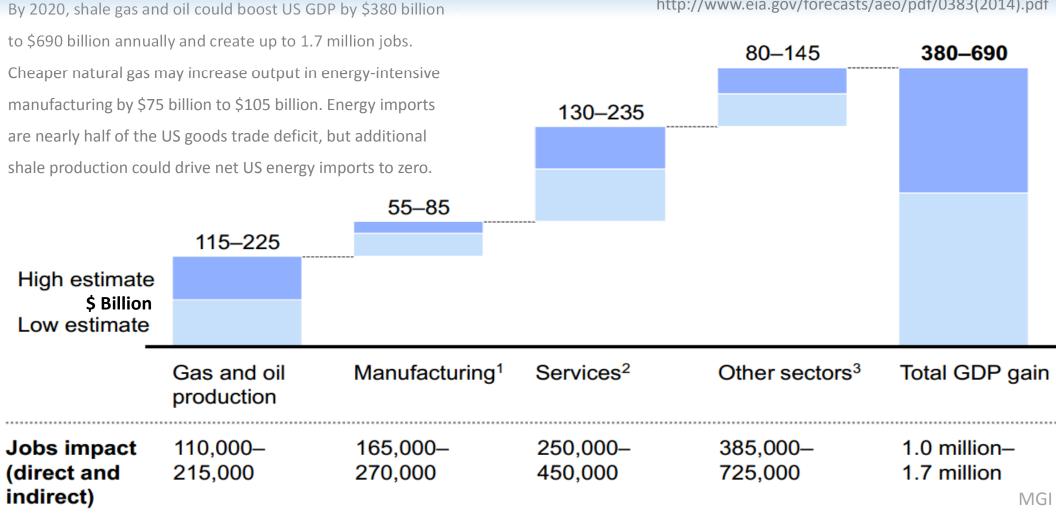
Multi-directional Flow in the future Energy Supply Chain



Load Balancing - energy from wind & grid to meet time-varying demand

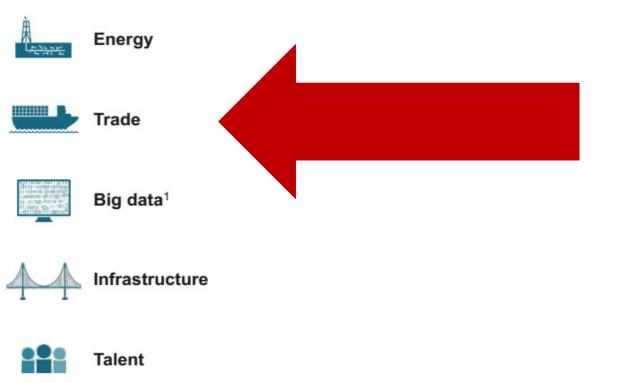



Warren Powell, Princeton University (Stochastic Optimization)


Dr Shoumen Palit Austin Datta SVP, Industrial Internet Consortium Research Affiliate, School of Engineering, Massachusetts Institute of Technology

Using demand management techniques California reduced energy usage

US Energy Sector – Potential Impact of Shale Gas Production by 2020



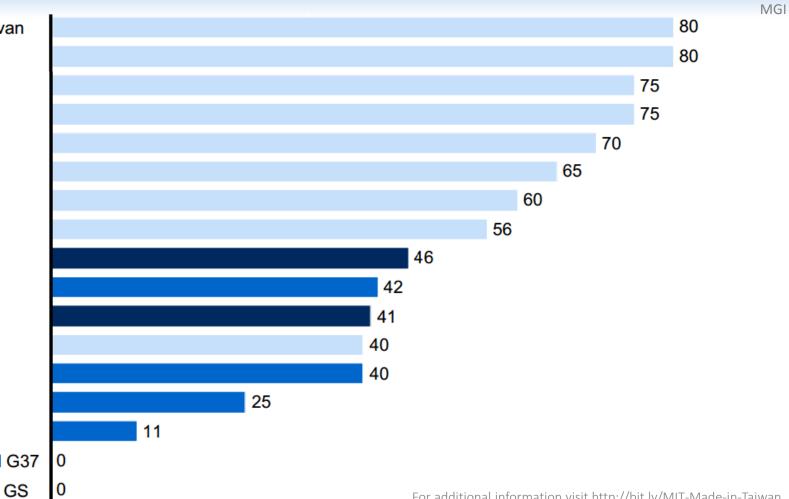
http://www.eia.gov/forecasts/aeo/pdf/0383(2014).pdf

	SE2
US Solar Energy planning for 285,000 acres	<i>Arizona</i> Brenda (Lake Ha Gillespie (Lower
Angeles National Forest Wan Nuys	Total
Los Angeles Rancho San Bernardino Yucca Valley Yucav Vucca Valley Yucav Perris Palm Springs Volume Joshua Tree Long Beach Santa Ana Menifee Palm Deserto Indio National Park	California Imperial East (E Riverside East (I Total
Huntington 74 La Quinta Thermal Blythe 95 Beach San Clemente	Colorado Antonito Southe
http://solareis.anl.gov/documents/docs/Solar_PEIS_ROD.pdf	De Tilla Gulch (Fourmile East (I Los Mogotes Ea Total
Nevida Utah Colorado	<i>Nevada</i> Amargosa Valle Dry Lake (South Dry Lake Valley Gold Point (Batt Millers (Battle M Total
New Mexico	<i>New Mexico</i> Afton (Las Cruc Total
Arizona	Utah Escalante Valley Milford Flats So Wah Wah Valley
Variance Areas Exclusions per #32, Table A-2 * Specific areas are limited to those shown; areas have been identified based on continued consultation with cooperating agencies and Tribes to protect sensitive natural, visual, and cultural resources.	Total Total

SEZ (BLM Office/County)	Approximate Acreage
Arizona	
Brenda (Lake Havasu/La Paz)	3,348
Gillespie (Lower Sonoran/Maricopa)	2,618
Total	5,966
California	5 717
Imperial East (El Centro/Imperial)	5,717
Riverside East (Palm Springs–South Coast/Riverside) Total	147,910
Total	153,627
Colorado	
Antonito Southeast (La Jara/Conejos)	9,712
De Tilla Gulch (Saguache/Saguache)	1,064
Fourmile East (La Jara/Alamosa)	2,882
Los Mogotes East (La Jara/Conejos)	2,650
Total	16,308
Nevada	
Amargosa Valley (Southern Nevada/Nye)	8,479
Dry Lake (Southern Nevada/Clark)	5,717
Dry Lake Valley North (Ely/Lincoln)	25,069
Gold Point (Battle Mountain/Esmeralda)	4,596
Millers (Battle Mountain/Esmeralda)	16,534
Total	60,395
New Mexico	20.044
Afton (Las Cruces/Dona Ana)	29,964
Total	29,964
Utah	
Escalante Valley (Cedar City/Iron)	6,533
Milford Flats South (Cedar City/Beaver)	6,252
Wah Wah Valley (Cedar City/Beaver)	5,873
Total	18,658
Total	284,918

FUTURE ECONOMIC GROWTH SECTORS (PROJECTIONS ARE NOT FACTS)

Commercial aircraft forecast \rightarrow 27,000 to 35,000 over the next 20 years

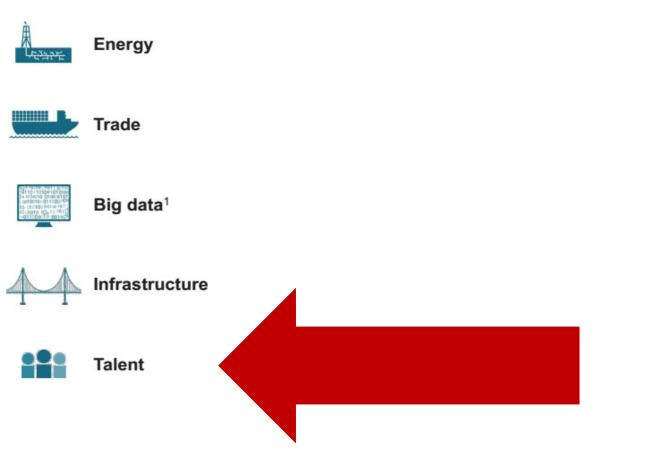

The HondaJet Just Got New Engines. Is the Flying Car Next? May $_{\rm 26,\ 2014}$

For additional information visit http://bit.ly/MIT-Made-in-Taiwan

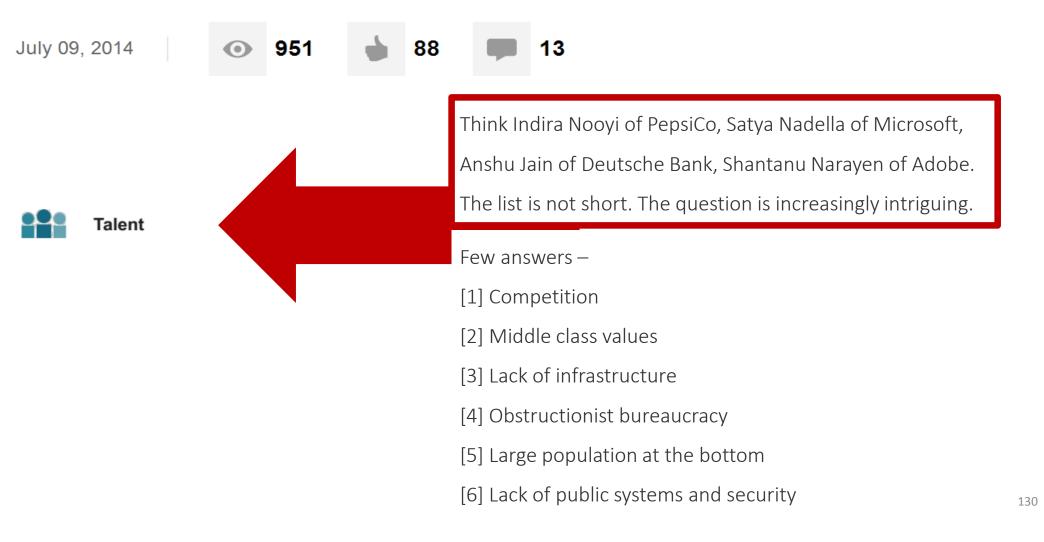
GE Report

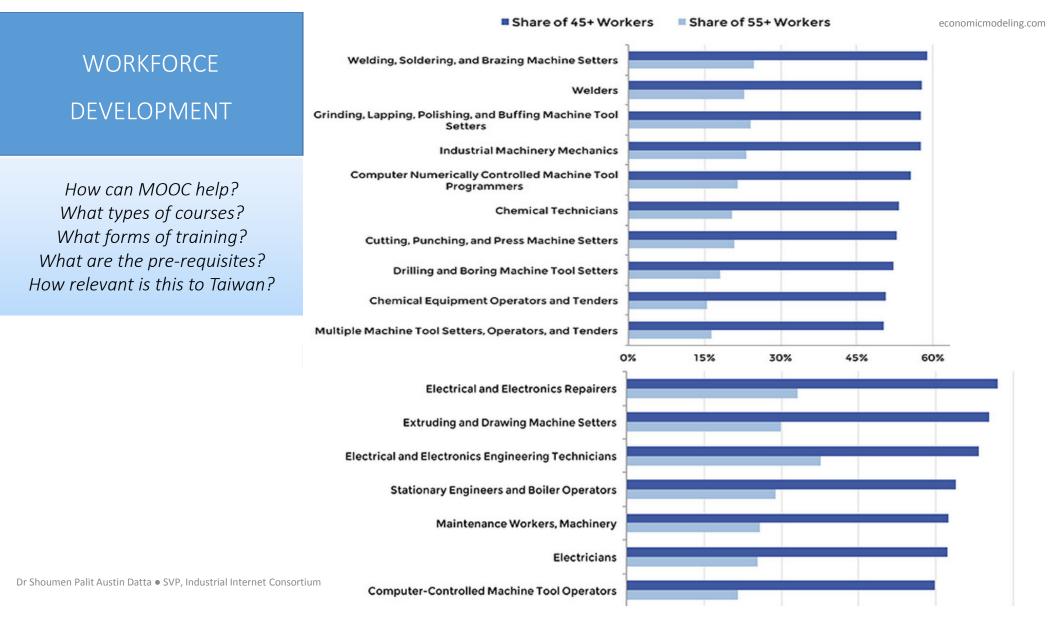
% Share of US and Canadian content in production of autos sold in the US

Dodge	Grand Carav
Ford	Expedition
Chevrolet (GM)	Impala
Toyota	Camry
Toyota	Corolla
Honda	Accord
Nissan	Altima
Chevrolet (GM)	Cruze
Kia	Optima
Mercedes-Benz	ML-Class
Hyundai	Sonata
Ford	Focus 2.0L
Volkswagen	Passat 2.5L
BMW ²	X5 series
Volkswagen	Jetta 2.0L
Infiniti (Nissan)	EX, NX, and
Lexus (Toyota)	ES, LS, and


For additional information visit http://bit.ly/MIT-Made-in-Taiwan

Is there a role for MOOCs in the context of the supply chain of talent?


Temporary Questions


What skill sets and training are necessary for the workforce to unleash the economic potential of the ecosystems that include energy sector, aviation industry and automobile manufacturing?

FUTURE ECONOMIC GROWTH SECTORS (PROJECTIONS ARE NOT FACTS)

Why is India a global Asian CEO factory?

WORKFORCE DEVELOPMENT

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

OCCUPATION	GROWTH RATE, 2012-22	\$	2012 MEDIAN PAY
Physician assistants	38%		\$90,930 per year
Information security analysts	37%		\$86,170 per year
Industrial-organizational psychologists		53%	\$83,580 per year
<u>Health specialties teachers, postsecondary</u>	36%		\$81,140 per year
Physical therapists	36%		\$79,860 per year
Diagnostic medical sonographers	46	%	\$65,860 per year
Genetic counselors	41%		\$56,800 per year
Occupational therapy assistants	43%		\$53,240 per year
Physical therapist assistants	41%		\$52,160 per year
Interpreters and translators	46	%	\$45,430 per year
Insulation workers, mechanical	4	47%	\$39,170 per year
Segmental pavers	38%		\$33,720 per year
Medical secretaries	36%		\$31,350 per year
Skincare specialists	40%		\$28,640 per year
Helpersbrickmasons, blockmasons, stonemasons, and tile and marble setters	43%		\$28,220 per year
Helperselectricians	37%		\$27,670 per year
Occupational therapy aides	36%		\$26,850 per year
Physical therapist aides	40%		\$23,880 per year

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium (<u>www.iiconsortium.org</u>) • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT) • <u>http://bit.ly/S-Datta</u>

WORKFORCE DEVELOPMENT

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

General and operations managers	244,10	00		\$95,440 per year
Registered nurses			526,800	\$65,470 per year
Licensed practical and licensed vocational nurses	182,900			\$41,540 per year
Carpenters	218,200			\$39,940 per year
Heavy and tractor-trailer truck drivers	192,600			\$38,200 per year
Bookkeeping, accounting, and auditing clerks	204,600			\$35,170 per year
Secretaries and administrative assistants, except legal, medical, and executive		307,800		\$32,410 per year
Medical secretaries	189,200			\$31,350 per year
Customer service representatives		298,700		\$30,580 per year
Construction laborers	259,4	800		\$29,990 per year
Office clerks, general	184, 100			\$27,470 per year
Nursing assistants		312,200		\$24,420 per year
Laborers and freight, stock, and material movers, hand	241,900	2		\$23,890 per year
Janitors and cleaners, except maids and housekeeping cleaners	280	0,000		\$22,320 per year
Retail salespersons		4	34,700	\$21,110 per year
Home health aides		42	4,200	\$20,820 per year
Personal care aides			580,800	\$19,910 per year
Maids and housekeeping cleaners	183,400			\$19,570 per year
Childcare workers	184,100			\$19,510 per year

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium (<u>www.iiconsortium.org</u>) • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT) • <u>http://bit.ly/S-Datta</u>

WORKFORCE
DEVELOPMENT

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

(Numbers in thousands)										
		Employment Change Total job opening					job openings due to			
				cent	201		growt	h and replacement	Median annual	
Education, work experience,		nber		bution		2—22		eeds, 2012—22	wage, 2012	
and on-the-job training	2012	2022			Number			Percent distribution	<u>in</u>	
Total, all occupations	145,355.8	160,983.7	100.0	100.0	15,628.0	10.8	50,557.3	3 100.0	\$34,750	
Doctoral or professional degree	4,002.4						-,		· · · · · · · · · · · · · · · · · · ·	
Internship/residency	868.2	2 1,013.1	0.6	0.6	144.9	16.7	364.8	0.7	\$172,270	
Apprenticeship		-	-	-	-	-	-	-	-	
Long-term on-the-job training			-	_	-			-	-	
Moderate-term on-the-job training	-	-	-	-	-	-	-	-	-	
Short-term on-the-job training	43.2								+/	
None	3,090.9								1 1	
Master's degree	2,432.2								+/	
Internship/residency	189.8	3 243.4	0.1	. 0.2	53.6	28.2	93.9	0.2	\$43,340	
Apprenticeship	-	-			-	-	-			
Long-term on-the-job training	-	-	-	-	-	-	-	-	-	
Moderate-term on-the-job training			-	-	-		-	-	-	
Short-term on-the-job training		-	-	-	-	-	-	-	-	
None	2,242.3									
Bachelor's degree	26,033.0				-,				+	
Internship/residency	4,931.1	5,402.5	3.4	3.4	471.4	9.6	1,539.2	2 3.0	\$50,610	
Apprenticeship	-				-	-	-	-		
Long-term on-the-job training	108.0	119.0	0.1	. 0.1	. 11.0	10.2	2 25.3	0.1	\$58,950	
Moderate-term on-the-job training	2,758.7	7 2,990.8	1.9	1.9	232.2	8.4	796.0	1.6	\$67,760	
Short-term on-the-job training	266.3								· · · · · ·	
None	17,969.0									
Associate's degree	5,954.9	7,000.9	4.1	4.3	1,046.0	17.6	2,269.5	5 4.5	\$57,590	
Internship/residency		-		-	-	-	-	-		
Apprenticeship							-	-		
Long-term on-the-job training	51.5	5 54.8	0.0	0.0	3.3	6.4	20.2	0.0	\$69,570	
Moderate-term on-the-job training	207.0	227.8	0.1	0.1	. 20.8	10.0	80.5	0.2	\$42,280	
Short-term on-the-job training	53.2								· · · · · · · · · · · · · · · · · · ·	
None	5,643.2	6,664.8	3.9	4.1	1,021.7	18.1	2,157.9	4.3	\$58,150	

Employment by summary education and training assignment, 2012 and projected 2022 (Numbers in thousands)

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consort

	Postsecondary non-degree award	8,554.2	9,891.2	5.9	6.1	1,337.1	15.6	3,067.2	6.1	\$34,760
	Internship/residency	-	-	-	-	-	-	-	-	-
WORKFORCE	Apprenticeship	-	-	-	-	-	-	-	-	-
DEVELOPMENT	Long-term on-the-job training	704.7	782.7	0.5	0.5	78.0	11.1	256.1	0.5	\$46,100
	Moderate-term on-the-job training	296.7	309.4	0.2	0.2	12.7	4.3	73.8	0.1	\$57,410
	Short-term on-the-job training	1,898.0	2,103.2	1.3	1.3	205.2	10.8	507.1	1.0	\$38,030
	None	5,654.8	6,696.0	3.9	4.2	1,041.2	18.4	2,230.2	4.4	\$31,580
How can MOOC help?	Some college, no degree	1,987.2	2,212.2	1.4	1.4	225.0	11.3	642.6	1.3	\$28,730
	Internship/residency	-	-	-	-	-	-	-	-	-
What types of courses?	Apprenticeship	-	-	-	-	-	-	-	-	-
What forms of training?	Long-term on-the-job training	83.0	87.1	0.1	0.1	4.1	4.9	30.3	0.1	\$42,570
What are the pre-requisites?	Moderate-term on-the-job training	547.7	658.5	0.4	0.4	110.8	20.2	196.9	0.4	\$46,420
How relevant is this to Taiwan?	Short-term on-the-job training	-	-	-	-	-	-	-	-	-
	None	1,356.5	1,466.6	0.9	0.9	110.1	8.1	415.4	0.8	\$24,310
	High school diploma or equivalent	58,264.4	62,895.2	40.1	39.1	4,630.8	7.9	17,667.4	34.9	\$35,170
	Internship/residency	-	-	-	-	-	-	-	-	-
	Apprenticeship	2,336.9	2,855.2	1.6	1.8	518.3	22.2	879.8	1.7	\$45,440
	Long-term on-the-job training	5,562.1	6,012.8	3.8	3.7	450.7	8.1	1,723.9	3.4	\$42,110

16,818.6

21,688.5

38,127.6

367.2

2,429.1

34,979.2

352.1

11,858.4 12,599.8

-

18,003.8

23,423.6

42,286.0

392.3

2,778.2

38,743.6

371.9

11.6

14.9

8.2

26.2

-

0.3

1.7

24.1

0.2

11.2 1,185.3

14.6 1,735.1

741.4

25.1

349.1

19.8

3,764.4

4,158.4

7.8

26.3

-

0.2

1.7

24.1

0.2

7.0

8.0

6.3

6.8

14.4

5.6

4,848.3

6,964.1

3,251.3

107.8

845.4

282.4

10.9 15,914.3

10.8 14,678.6

9.6

13.8

6.4

31.5

0.2

1.7

29.0

0.6

\$35,970

\$28,920

\$46,880

\$20,110

\$26,630

\$26,710

\$19,750

\$18,580

Moderate-term on-the-job

Short-term on-the-job training

Less than high school

Internship/residency Apprenticeship

Long-term on-the-job training

Short-term on-the-job training

Moderate-term on-the-job

training

training

None

None

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consort

Is there a role for MOOCs in the context of GDP growth for Taiwan?

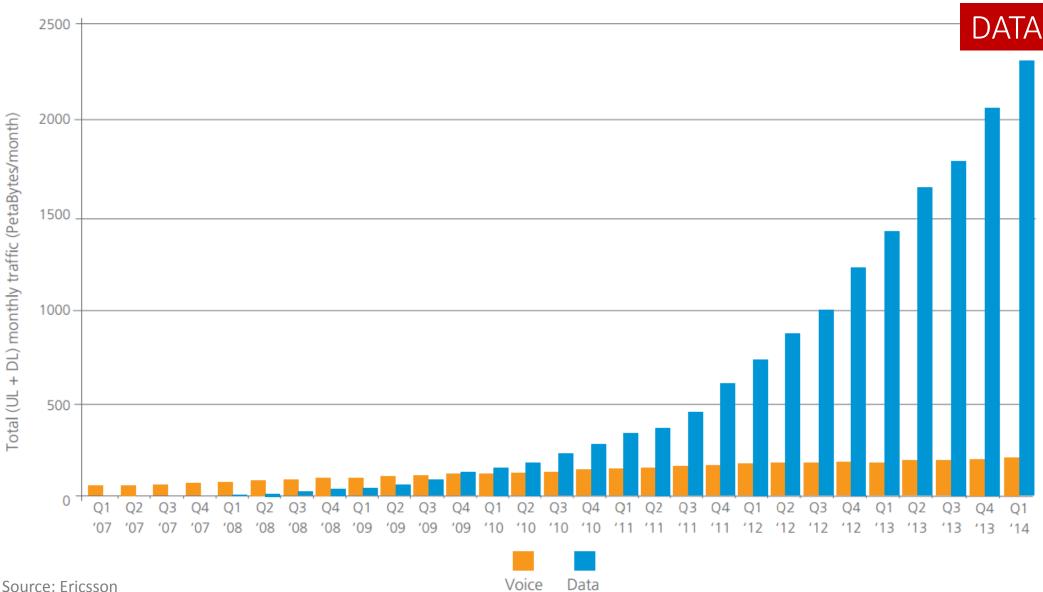

Match Education to Demand

For service economy – knowledge plus analytical skills

For export earnings – target global projected growth

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

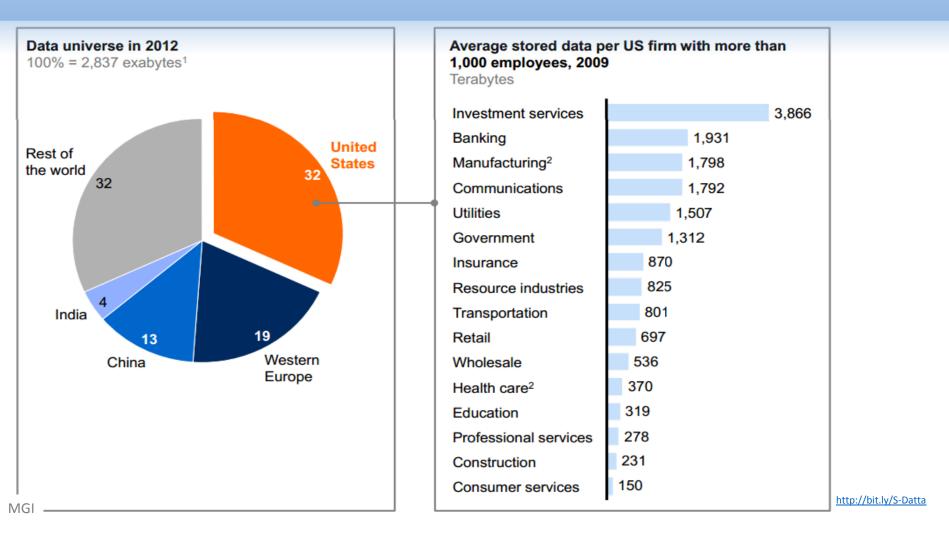
FUTURE ECONOMIC GROWTH SECTORS (PROJECTIONS ARE NOT FACTS)



Identifying new lines of business due to emerging global demand pattern

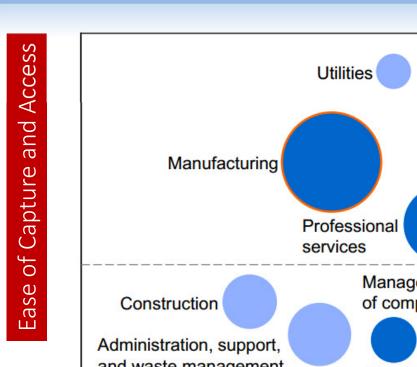
Energy, Trade, Infrastructure, Talent are obvious and well known entities

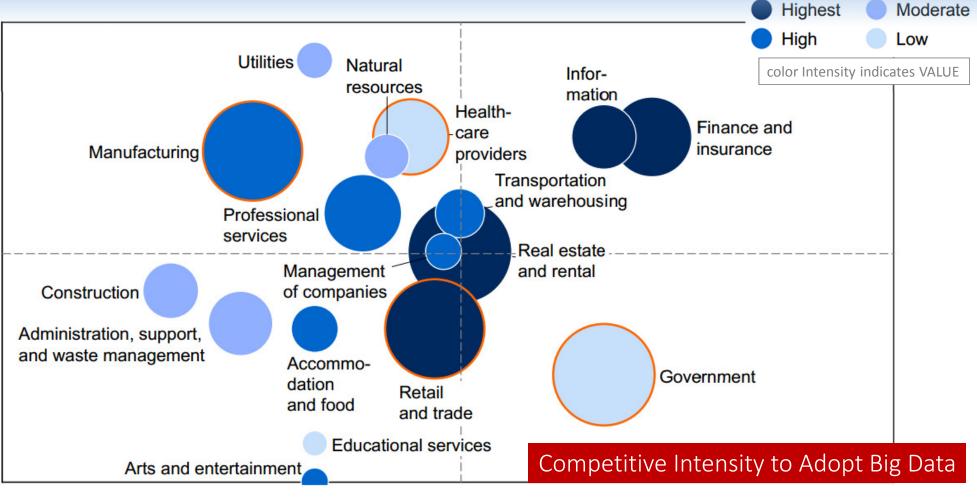
But "data" is gaining momentum as a "new" dimension for economic growth

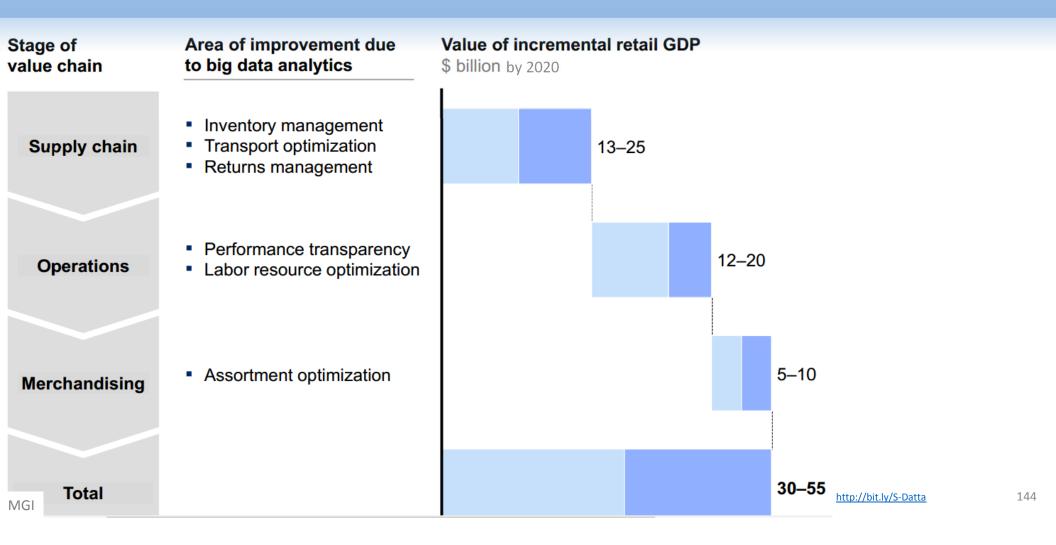


Source: Ericsson

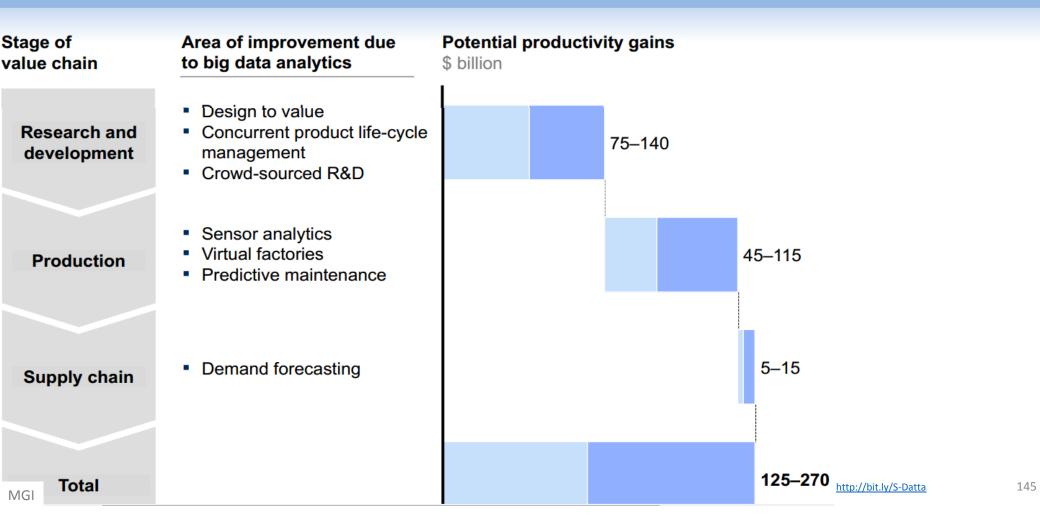
ITU and a number of companies to equip submarine communications cables with sensors to relay data regarding tsunamis or earthquakes.

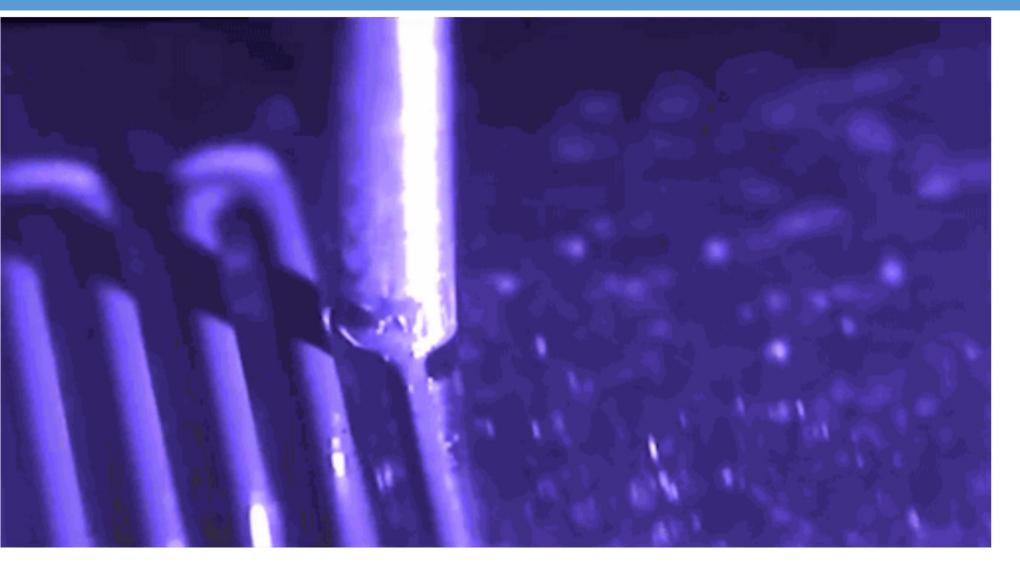



US has about one-third of the world's data ...


142

The term "big data" is mired in hype but it has VALUE if analyzed in context

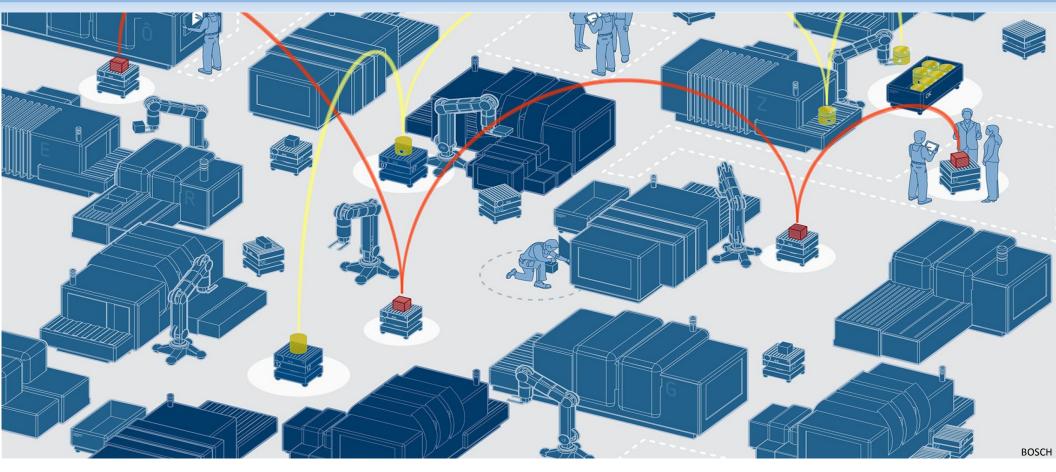



Predicted value of data analytics in the retail supply chain (circa 2020)

Predicted value of data analytics in manufacturing (circa 2020)

Data from inside machines – GE prints sensors deep inside equipment

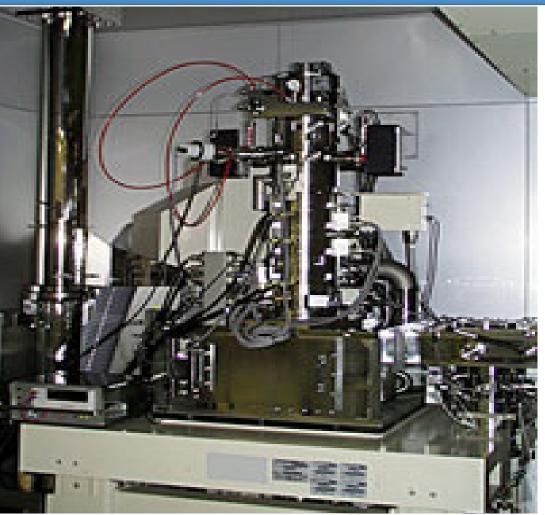
Robotics in manufacturing is nothing new but shop floor data networks?


Dr Shoumen Palit Austin Datta

SVP, Industrial Internet Consortium (www.iiconsortium.org)

Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

http://bit.ly/S-Datta

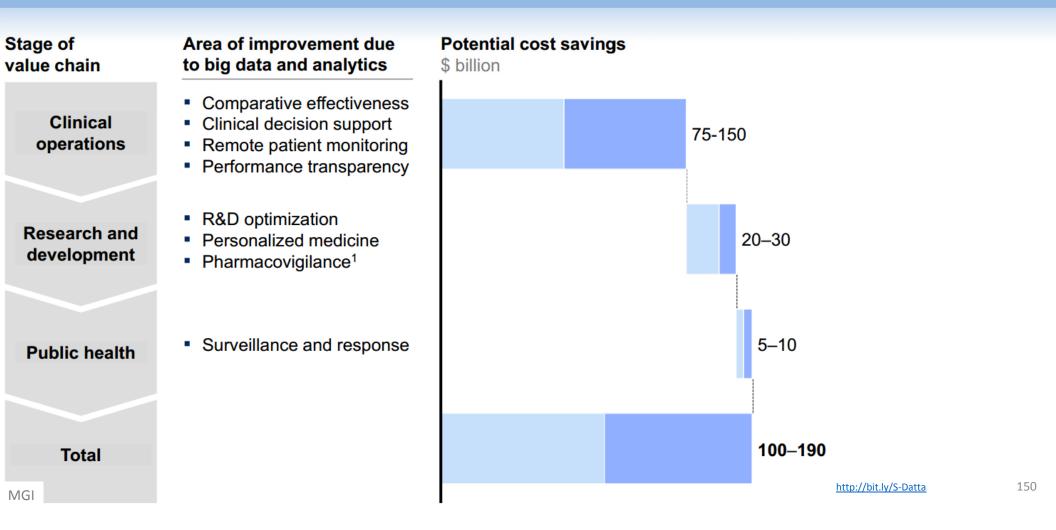

Data networks improve variant configuration and connects to supply chains

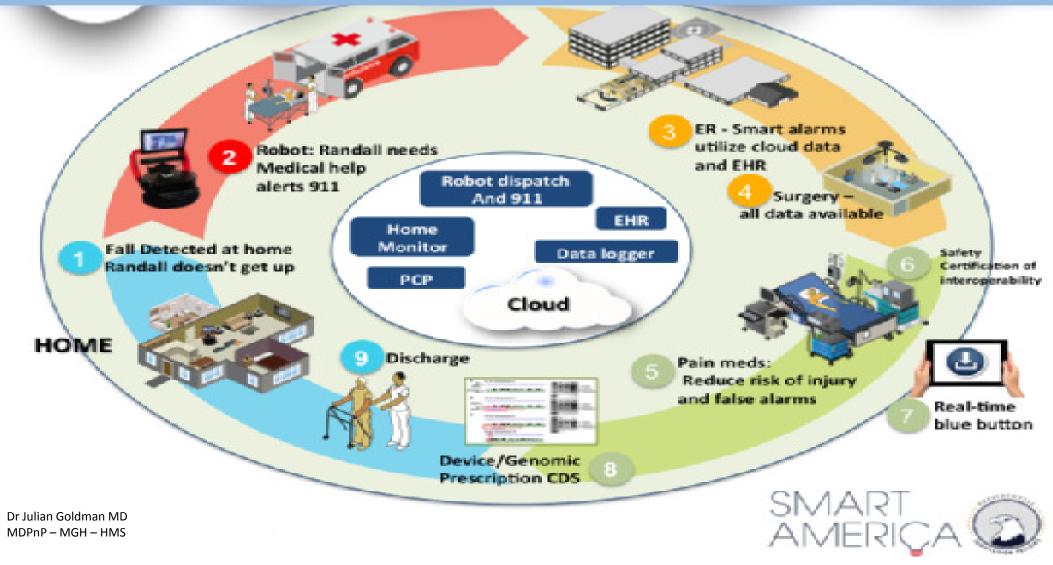
Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium (www.iiconsortium.org) • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT) • http://bit.ly/S-Datta

148

Emma's Omlette Factory – The Kitchen of the Future – i Print on Demand

Move over...Willy Wonka and The Chocolate Factory


Electron Beam Photo Lithograph from the ancient era modified as a domestic food printer connected to commodity pipelines (milk, cheese, eggs)


What skills do you need to transform this idea into reality?

For additional information please visit http://bit.ly/MIT-Made-in-Taiwan

Predicted value of data analytics in healthcare (circa 2020)

Real-time data – acquisition, analytics, decision support, security & privacy

Predictive value of data analytics in healthcare diagnostics and wellness

Pay-Per-Pee Home Healthcare – Wireless Toilet Bowl Connected to Health Informatics System

Weigh-scale, BMI, FOBT, urine sugar & ketone body analysis, blood pressure monitor, pulse oximeter, networked to PC via WiFi and/or Bluetooth with biometric id and face recognition.

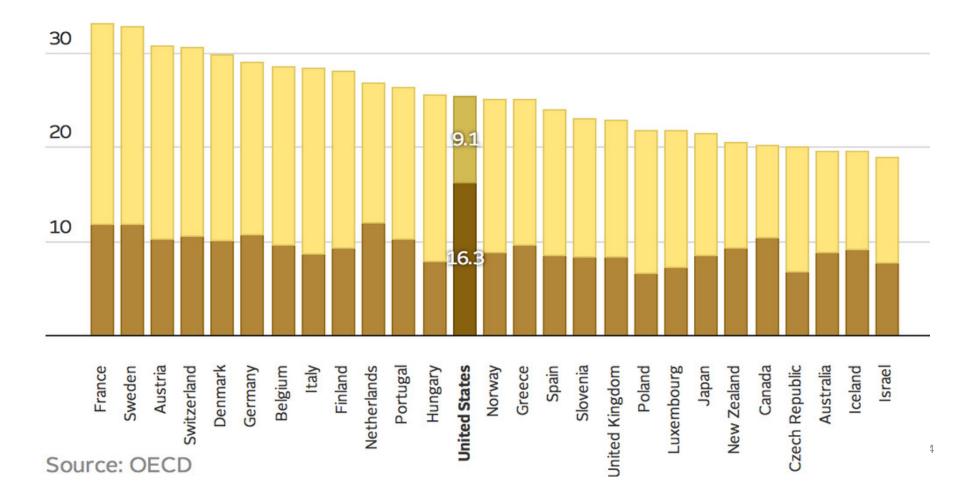
MONITORING, SENSORS, WEARABLES

SENSOR / 3D PRINTING / BANDAGE COMBINATION FOR CONTINUOUS MONITORING

⑤ JULY 18, 2014 ▲ LISAWEINER

<u>Bioscope</u> bandages, developed at the <u>National Taiwan University</u>, wirelessly transmit temperature, heart rate, movement and vital sign data to doctors to monitor or remotely diagnose.

The bandage comes with an integrated thermometer, accelerometer, and sensors to measure electrical activity. A microphone can track organ sound patterns to detect disease. The area holding the modules is 3D printed for easy sensor additions or changes.



Laughter is the best indicator of this disease but the wireless sensors to detect laughter is not covered by your health insurance

The Paradox of US Healthcare – Global Anomaly ? Is social service a stigma ?

Health expenditures as % of GDP

Social service expenditures as % of GDP

Proposed value generation (\$ billions, due to data) in government by 2020

Productivity gains	Higher operational efficiency	35–95 • Monito	ated submissions/processing pring of performance variability prement of service outcomes
Reduced	Reduced improper payments	35-85	matic, multi-level claim checking thms for decision support
expenses	Lower procurement costs	90-140	and service transparency or and provider comparisons
Increased revenue	Improved tax collection	155–235 Correl	ication of collection anomalies ation and statistical analyses r accuracy of record-keeping

Predicted Exponential Increase in Efficiency and Growth of Global GDP

Data in connection with the Internet of Things Industrial Internet

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

Predicted Exponential Increase in Efficiency and Growth of Global GDP

Global Projected Growth includes the IoT and the Industrial Internet

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

5 ECONOMIC GROWTH SECTORS + 12 DOMAINS OF RAPID ADVANCES

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium.org) • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT) • http://bit.ly/MIT-Made-in-Taiwan 158

Modified and adapted from MGI

Industrial Internet

CONVERGENCE CATALYZED ECONOMIC POTENTIAL \sim \$15 to \$50 TRILLION circa 2025

Ŕ	Mobile Internet Cloud of Things	Increasingly inexpensive and capable mobile computing devices and Internet connectivity		Next-generation genomics Healthcare	Fast, low-cost gene sequencing, advanced big data analytics, and synthetic biology ("writing" DNA)	
A CAL	Automation of knowledge Predictive Analytics	Intelligent software systems that can perform knowledge work tasks involving unstructured commands and subtle judgments		Energy storage EV as storage 3D printing	Devices or systems that store energy for later use, including batteries Additive manufacturing techniques to	
	The Internet of Things	Networks of low-cost sensors and		Manufacturing	create objects by printing layers of material based on digital models	
	Privacy, Cyber-Security	actuators for data collection, monitoring, decision making, and process optimization		Advanced materials Manufacturing	Materials designed to have superior characteristics (e.g., strength, weight, conductivity) or functionality	
	Cloud technology Data, Decisions, SCM	Use of computer hardware and software resources delivered over a network or the Internet, often as a service	À	Advanced oil and gas exploration and recovery	Exploration and recovery techniques that make extraction of unconventional	
	Advanced robotics Cyber-Physical Systems	Increasingly capable robots with enhanced senses, dexterity, and		Energy Supply Chain	oil and gas economical	
(((•)))	Cyber-r hysical Systems	intelligence used to automate tasks or augment humans		Renewable energy Smart Grid	Generation of electricity from renewable sources with reduced harmful climate impact	
	Autonomous and near-autonomous vehicles	Vehicles that can navigate and operate with reduced or no human intervention		Aerospace	Maintenance and fault prevention using in-flight monitoring; reduce	
	Transportation + Disaster & Emer	gency First Response Systems in Smart Cities		Locomotives	down-time by auto-tracking metrics; fuel consumption; supply chain	

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium (www.iiconsortium.org) • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT) • http://bit.ly/MIT-Made-in-Taiwan

There is more to the Internet of Things (IoT) than FitBits and smartphonecontrolled thermostats. While consumer goods are some of the IoT's most visible applications, they're just one part of the vast and game-changing phenomenon that could soon encompass 200 billion connected devices and add trillions of dollars to the economy.

In fact, experts estimate that the IoT will resonate strongly in the "invisible" industrial sector, capturing and analyzing data generated by drilling rigs, jet engines, locomotives and other heavy-duty machines.

This network is called the Industrial Internet and it's already helping companies shave costs and boost performance. Union Pacific, America's largest railroad company, has improved productivity by wiring its locomotives with sensors that monitor parts and supply data to algorithms that try to predict whether a component might break down and when. "Industrial data is not only big, it's the most critical and complex type of big data," says Jeff Immelt, chairman and CEO of GE. "Observing, predicting and changing performance is how the Industrial Internet will help airlines, railroads and power plants operate at peak efficiency."

GE is betting big on the Industrial Internet. The company believes the network could add \$10 and \$15 trillion – the size of today's U.S. economy - to global GDP over the next 20 years. Its software arm has developed a software platform called Predix that allows Union Pacific, as well as oil drilling companies, wind farms, hospitals and other customers to perform prognostics, reduce downtime and increase efficiency.

Capturing Big Data and transmitting it to dedicated servers presents its own set of technological and logistical challenges. That's why GE, AT&T, Cisco and IBM teamed up this spring to launch the Industrial Internet Consortium. The goal of this open, not-for-profit group is to break down technology silos, improve machine-to-machine communications and bring the physical and digital worlds closer together.

To do that, member companies will pool their R&D capabilities to develop common server architectures and advanced test beds to standardize key components of the Industrial Internet.

GE Report • July 7, 2014 Dr Shoumen Datta • SVP, IIC

Massive gas turbines are also getting connected to the Industrial Internet.

While the possibilities of the Industrial Internet are just beginning to be harnessed, companies aren't waiting around. In a speech to power company executives, Wall Street analysts and investors at the Electrical Products Group Conference this spring, GE's Immelt said that by the end of the year, he expected GE to launch over 40 "Predictivity" industrial analytical applications, which could generate more than \$1 billion in revenue for the company.

The Internet is no longer just about email, e-commerce and Twitter, says Joe Salvo, manager of the Complex Systems Engineering Laboratory at GE Global Research. "We are at an inflection point," he says. "The next wave of productivity will connect brilliant machines and people with actionable insight."

www.iiconsortium.org

Where is my slice of the pie?

How much of the \$10 - \$15 trillion may be diverted to my bank?

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

Goldman-Sachs Quick Get Rich Insider Information

ompany	TICKER	GS RATING	POSITIONING
RM Holdings	UK:ARM	Buy	Low-power chip designs
tmel Corp.	ATML	Neutral	Exposure to microcontroller growth
roadcom Corp.	BRCM	Neutral	Well-positioned in connectivity/broadband
isco Systems Inc.	CSCO	Buy	IoT thought leader (Wi-Fi, "fog" computing)
reescale Semiconductor	FSL	Buy	Exposure to microcontroller growth
armin Ltd.	GRMN	Neutral	Expanding wearables, connected car portfolio
iemalto NV	NL:GTO	Buy	Digital security expertise to monetize IoT
ivenSense Inc.	INVN	Buy	Early design wins on wearables
Naxim Integrated Products	MXIM	Buy	Exposure to microcontroller growth
Aicrochip Technology Inc.	MCHP	Neutral	Exposure to microcontroller growth
Iurata Manufacturing Co.	JP:6981	Buy	Benefits from Japan upstream supply chain
ualcomm Inc.	QCOM	Buy	Cellular/connectivity leadership
uckus Wireless Inc.	RKUS	Buy	Pure-play Wi-Fi vendor
amsung Electronics	KR:00593	0 Buy	Widest hardware reach in IoT
ilver Spring Networks Inc.	SSNI	Buy	Connected city pure play (smart meters, etc)
E Connectivity Ltd.	TEL	Buy	Increasing focus on sensors
vistron NeWeb Corp.	TW:6285	Neutral	Expert in wireless solutions

The Logical Analysis of Economic Impact

Economy is the art of making the most of life (GBS)

MGI Estimated Potential Annual Economic Impact in \$ Trillion (circa 2025)

- 1. Mobile Internet
- 2. Automation of knowledge work
- 3. Internet of Things
- 4. Cloud
- 5. Advanced robotics
- 6. Autonomous and near-autonomous vehicles
- 7. Next-generation genomics
- 8. Energy storage
- 9. 3-D printing
- 10. Advanced materials
- 11. Advanced oil and gas exploration and recovery
- 12. Renewable energy

In highly successful firms such as McKinsey and Company hundreds of new MBAs join the firm every year and almost as many leave. But the company is able to crank out high-quality work year after year because its core capabilities are rooted in its processes and values rather than in its resources (vision). I sense, however, that these capabilities of McKinsey also constitute its disabilities. The rigorously analytical, data-driven processes that help it create value for its clients in existing, relatively stable markets render it much less capable in technology markets. **Clayton Christensen** (Harvard Business School, 2000) also in his book The Innovators Dilemma

#1 Mobile Internet

Increasingly inexpensive and capable mobile computing devices and Internet connectivity

Potential economic impact in 2025 across sized applications of \$3.7 trillion-\$10.8 trillion

10-20% potential cost reduction in treatment of chronic diseases

through remote health monitoring

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

Component technologies

- · Wireless technologies
- Small, low-cost computing and storage devices
- Advanced display technology, natural user interfaces
- · Advanced, low-cost batteries

Key applications

- · Service delivery
- · Worker productivity
- Additional consumer surplus from use of mobile-Internet services

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

Sized applications of mobile Internet could have direct economic impact of \$3.7 trillion to \$10.8 trillion per year in 2025

Sized applications		Potential econom impact of sized applications in 20 \$ trillion, annually		Estimated potential reach in 2025	Potential productivity or value gains in 2025
			\$15.5 trillion cost of treating chronic diseases	 70–80% mobile penetration among patients accounting for 95% of health-care spending 	 10–20% cost reduction in chronic disease treatment through remote health monitoring
	Health care	0.9– 2.1	\$11 trillion global spending on education	 K-12 adoption of online/hybrid learning Developed world: 80-90%1 Developing: 65-80% 90-100% adoption in post-secondary, corporate, and government education 	 5–15% rise in secondary graduation rates 10–30% productivity gain in post-secondary, corporate, and government education
Service	Education	0.3- 1.0	 \$0.9–1.2 trillion government spending on customer-facing services 	 Adoption by 90–100% of governments for online or mobile services 	 60–75% cost savings on administrative tasks driven by labor efficiency
delivery		0.5	• \$7.2 trillion cost of retail	 30–50% of retail consumption Mobile devices used in 50% of purchases 	 6–15% productivity gain of online hybrid retail versus traditional
	Retail Payments	0.4 0.2- 0.3	 \$3 trillion in global transaction revenue 	 Implementation of advanced electronic payments systems in – 80–100% of advanced economies 65–80% of developing economies¹ 	 50% productivity gain in managing transactions across all stakeholders
Other vorker	Interaction workers	0.9– 1.3	 \$19 trillion in interaction worker salaries 	 80–90% of workers in advanced economies 65–80% of workers in developing economies 	 4–5% increase in efficiency through social technology via mobile
vroduc- ivity ²	Transaction workers	0.1- 0.4	\$15 trillion in transaction worker salaries	 80–90% of workers in advanced economies 65–80% of workers in developing economies Mobile devices needed for 10% of work tasks 	 10–30% productivity gain from time saved accessing information
	Additional consumer surplus Other potential applications	1.0-4.8	• 3.6–4.9 billion mobile users	 100% of users 	 \$500–1,500 per user in developed world \$300–1,000 per user in developing world
	(not sized) Sum of sized potential economic impacts	3.7-10.8			

#2 Automation of knowledge work

Intelligent software systems that can perform knowledge-work tasks

Potential economic impact in 2025 across sized applications of \$5.2 trillion-\$6.7 trillion

Additional labor productivity could equal the output of **110 million–140 million** full-time workers

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

Component technologies

- Artificial intelligence, machine learning
- Natural user interfaces
- Big-data technologies

Key applications

- Smart learning in education
- · Diagnostics and drug discovery in health care
- · Discovery, contracts/patents in legal sector
- · Investments and accounting in finance sector

Sized applications of automation of knowledge work could have direct economic impact of \$5.2 trillion to \$6.7 trillion per year in 2025

WORKFORCE DEVELOPMENT

Potential Potential economic impact of sized Estimated productivity Sized knowledge worker potential reach occupations in 2025 Estimated scope or value gains \$ trillion, annually occupations in 2025 in 2025 in 2025 \$4.4 trillion in 50-65 million \$35,000 value 1.1knowledge worker full-time per FTE of Clerical 1.3 Common additional costs equivalents business 125 million (FTEs) of work productivity Customer service 0.6functions knowledge workers potentially 0.9 and sales automatable -----0.8 -\$2.8 trillion in know-20-30 million \$50.000 value Education Social 1.0 ledge worker costs FTEs of work per FTE of sector 55 million knowledge additional potentially services 0.3workers automatable productivity Health care 0.4 \$2.2 trillion in know-15 million \$60,000 value Science and 0.6-0.7 ledge worker costs FTEs of work per FTE of engineering Technical 35 million knowledge potentially additional professions workers automatable productivity 0.4-IT 0.5 \$2.9 trillion in know-15-20 million \$60,000 value ledge worker costs FTEs of work per FTE of 0.8-Managers 50 million knowledge potentially additional 1.1 workers automatable productivity 0.4-Finance \$1.5 trillion in know-10 million \$65,000 value 0.5 Professional ledge worker costs FTEs of work per FTE of services 25 million knowledge potentially additional 0.2-Legal workers automatable productivity 0.3 Other potential applications (not sized) Sum of sized potential 5.2economic impacts 6.7

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

#3 Internet of Things

Networks of low-cost sensors and actuators for data collection, monitoring, decision making, and process optimization

Potential economic impact in 2025 across sized applications of \$2.7 trillion-\$6.2 trillion

Offers potential to drive **productivity across \$36 trillion** in operating costs of key affected industries: manufacturing, health care, and mining

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

Component technologies

- Advanced, low-cost sensors
- Wireless and near-field communication devices eg, RFID (radio frequency identification tags)

Key applications

- Process optimization, especially in manufacturing and logistics
- Efficient use of natural resources eg, smart-meter and smart-grid control of water and electricity
- Remote health-care delivery, sensor-enhanced business models

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

Sized applications	Potential economic impact of sized applications in 2025 \$ trillion, annually	Estimated scope in 2025	Estimated potential reach in 2025	Potential productivity or value gains in 2025
Health care Manufac- turing	1.1- 2.5 0.9- 2.3	 \$15.5 trillion cost of treating chronic diseases \$400 billion cost of counterfeit drugs, 40% addressable with sensors 50 million nurses for inpatient monitoring — Developed world: \$30 per hour — Developing: \$15 per hour 	 70–80% mobile penetration in patients who account for bulk of health-care spending Counterfeit drug tracking Developed world: 50–80% Developing world: 20–50% Inpatient monitoring Developed world: 75–100% Developing: 0–50% 	 10–20% cost reduction in chronic disease treatment through remote health monitoring 80–100% reduction in drug counterfeiting 0.5–1.0 hour time saved per day by nurses
Electricity	0.2- 0.5	 \$47 trillion in global manufacturing operating costs 	 80–100% of all manufacturing 	 2.5–5.0% saving in operating costs, including maintenance and input efficiencies
Urban infra- structure Security	0.1- 0.3 0.1- 0.2	 27,000–31,000 TWh global electricity consumption \$200 billion spending on transmission lines 300 billion consumer minutes outage 	monitored through	 2–4% reduction in demand peaks in the grid Reduction of total load on grid Operating/maintenance savings; shorter outage time through automated meters
Resource extraction	0.1- 0.2	 200–300 hours commuting time per urban worker per year \$200 billion spent on urban water \$375 billion cost of waste handling 	 40–70% of working urban population living in cities with smart infrastructure 50–70% of large urban regions adopting smart water infrastructure and waste handling 	average travel time through traffic and congestion control 10–20% reduction in water consumption and leaks with smart meters and demand control
Agriculture Retail	0.02-0.10	 \$6 trillion cost of crime 	 Adoption of advanced surveillance by countries accounting for 50–70% o global GDP 	
Vehicles	~0.05	 \$3.7 trillion in global mining operating costs 	 80–100% of all resource extraction 	 5–10% saving in operating costs from productivity gains
Other potential applications		 \$630 billion in automotive insurance premiums¹ 	 10–30% of all insured cars equipped with sensors 	 25% reduction in cost of vehicle damage from collision avoidance and increased security¹
(not sized) Sum of sized		 \$200 billion lost due to stockouts 	 30–80% of retail adopting smart logistics 	 1.5–2.0% increased sales
potential economic impacts	2.7– 6.2	 \$1.2–1.3 trillion in agricultural production (wheat, maize, rice, 	 20–40% adoption of advanced irrigation systems and precision farming 	 10–20% increase in yields from precision application of fertilizer and irrigation

Sized applications of the Internet of Things could have direct economic impact of \$2.7 trillion to \$6.2 trillion per year in 2025

#4 Cloud

Use of computer hardware and software resources to deliver services over the Internet or a network

Potential economic impact in 2025 across sized applications of \$1.7 trillion-\$6.2 trillion

15–20% potential productivity gains across IT infrastructure, application development, and packaged software

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

Component technologies

- Cloud-management software eg, virtualization, metering
- Data-center hardware
- High-speed networks
- Software/platform as a service (SaaS/PaaS)

Key applications

- Cloud-based delivery of Internet services and applications
- · Enterprise IT productivity

Sized applications of cloud technology could have economic impact of \$1.7 trillion to \$6.2 trillion per year in 2025

WORKFORCE DEVELOPMENT	Sized applications		Potential economic impact of sized applications in 2025 \$ trillion, annually		Estimated scope in 2025	Estimated potential reach in 2025	Potential productivity or value gains in 2025	
	Surplus from cloud-based Internet		1.2– 5.5		2–3 billion more Internet users, most in developing economies	Nearly all Internet applications use cloud as a core enabler	\$25–85 surplus per user per month	
	Enterprise productivity ¹	Infrastructure and operating expenses Application development and packaged		0.3– 0.4 0.2– 0.3	\$1.26 trillion or 40% of global IT spending in base scenario ² \$1.68 trillion or	Varying levels of cloud adoption across enterprises All enterprises could have potential to use cloud Most enterprises may use a hybrid	 20–30% productivity gains Reduced infrastructure and facilities footprint Higher task standardization and automation 	
How can MOOC help? What types of courses? What forms of training? What are the pre-requisites?		Software Other potential applications (not sized) Sum of sized potential		1.7-	60% of global IT spending in base scenario ²	cloud The share of public cloud usage may increase as cybersecurity improves	 10–15% productivity gains Standardization of application environment and packages Faster experimentation and testing 	
How relevant is this to Taiwan?	economic impacts		6.2					

#5 Advanced robotics

Increasingly capable robots with enhanced sensors, dexterity, and intelligence; used to automate many tasks

Potential economic impact in 2025 across sized applications of \$1.7 trillion-\$4.5 trillion

Offers potential to **improve the lives** of 50 million amputees and those with impaired mobility

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

Component technologies

- Artificial intelligence/computer vision
- Advanced robotic dexterity, sensors
- Distributed robotics
- Robotic exoskeletons

Key applications

- · Industrial/manufacturing robotics
- Service robots—eg, food preparation, cleaning, and maintenance
- Robotic surgery
- Human augmentation
- Personal and home robots eg, for cleaning, lawn care

Sized applications of advanced robotics could have direct economic impact of \$1.7 trillion to \$4.5 trillion per year in 2025

Potential economic impact of sized Sized applications in 2025 Estimated potential Potential productivity Estimated scope reach in 2025 applications \$ trillion, annually in 2025 or value gains in 2025 50 million amputees and 5-10% of amputees \$240,000-390,000 per Robotic 0.6people with impaired and people with person for extended/ human 2.0 mobility in advanced impaired mobility in improved quality of augmentation advanced economies economies life1 355 million applicable 30-60 million FTEs of 75% potential Industrial 0.6 industrial workers improvement in work potentially robots 1.2 automatable across productivity per unit of work automated key job types 200 million major 5-15% of major 60.000-180.000 lives Surgical 0.2surgeries in countries with surgeries in countries saved per year robots 0.6 developed health care with developed health-50% reduction in sick care systems and inpatient days Personal 0.2-90–115 billion hours spent 25-50% of households 20-50 billion hours and home 0.5 on tasks such as cleaning in advanced saved per year robots \$10 value per hour of and lawn care per year in economies advanced economies time saved 0.1-Commercial 130 million applicable 10-15 million FTEs of 35-55% potential service robots 0.2 service workers work potentially improvement in automatable across productivity per unit of Other key job types work automated potential applications (not sized) Sum of sized potential 1.7 -4.5 economic

WORKFORCE DEVELOPMENT

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

impacts

#6 Autonomous or near-autonomous vehicles

Vehicles that can navigate and operate autonomously or semiautonomously in many situations

Potential economic impact in 2025 across sized applications of \$0.2 trillion-\$1.9 trillion

Could save 30,000–150,000 lives from potentially fatal traffic accidents

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

Component technologies

- Artificial intelligence, computer vision
- Advanced sensors—eg, radar, Lidar,¹ GPS
- Machine-to-machine communication

Key applications

· Self-driving cars and trucks

Sized applications of autonomous and near-autonomous vehicles could have direct economic impact of \$200 billion to \$1.9 trillion per year in 2025

Sized applications	Potential economic impact of sized applications in 2025 \$ trillion, annually	Estimated scope in 2025	Estimated potential reach in 2025	each Potential productivity or value gains in 2025		
Autonomous cars Autonomous	0.1- 1.4 0.1-	 900 million new cars produced in or after 2018 500 hours per year spent in car by average owner 	 5–20% of all driving autonomous 20–30% of cars sold from 2017–20 with potential to be autonomous 50–100% driving time spent under full computer control 	accidents ■ 15–20% gain in fuel efficiency		
trucks Other potential applications (not sized)	0.5	 24 million trucks produced in 2018 or later 	 10–30% of new trucks with autonomous driving capabilities 50% driven by human drivers 	 70–90% fewer accidents 10–40% greater fuel efficiency 1–2 drivers per 10 trucks (for monitoring 		
Sum of sized potential economic impacts	0.2-1.9	 Potential applications not sized include commercial drones, military and/or autonomous and near-autonomous submersible vehicles for such as fossil fuels exploration 				

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

#7 Next-generation genomics

Fast, low-cost gene sequencing, advanced analytics, and synthetic biology (ie, "writing" DNA)

Potential economic impact in 2025 across sized applications of \$0.7 trillion-\$1.6 trillion

Extending and enhancing lives accounts for 75% of potential impact—eg, through faster disease detection, new drugs

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

Component technologies

- Advanced DNA-sequencing technologies
- DNA-synthesis technologies
- Big data and advanced analytics

Key applications

- Disease treatment
- Agriculture
- · Production of high-value substances

Sized applications of next-generation genomics could have direct economic impact of \$700 billion to \$1.6 trillion per year in 2025

WORKFORCE DEVELOPMENT

Potential economic impact of sized Sized applications in 2025 Estimated scope Estimated potential Potential productivity applications reach in 2025 \$ trillion, annually in 2025 or value gains in 2025 Estimated deaths Patients with access to Extended life expectancy from relevant relevant treatment - Cancer: 0.5-2 years² diseases - Cancer: 20-40% - Cardiovascular: Disease 0.5 - Cancer: 12 million Cardiovascular: 1 vear treatment 1.2 Cardiovascular: 15-40% Type 2 diabetes: 23 million Type 2 diabetes: 1 year³ - Type 2 diabetes: 20-40% Value of prenatal 4 million Access to prenatal screening⁴ 160 million newborns genetic screening: - Developed world: Substance 0.1 - Developed world: 100% \$1,000 0.2 production Less-developed: Less-developed: \$200 30-50%¹ 60 billion gallons per Ethanol: 20–40% of world 15-20% cost saving in year of ethanol production ethanol production 0.1 -350-500 billion Diesel: 2-3% of world 150–200% price Agriculture 0.2 gallons per year of production premium for diesel diesel 30–70% CO₂ reduction from fuels over life cycle Other \$1.2-1.3 trillion worth . 60-80% of agricultural 5-10% increase in vields potential of major crops (wheat, production improved due to process applications maize, rice, soybeans, using genomics data optimization (not sized) 20-80% of current 5–10% increase in vields barley, tomatoes) genetically engineered from use of advanced crops to be further genetically engineered Sum of sized enhanced crops 0.7potential 1.6 economic impacts

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

#8 Energy storage

Devices or physical systems that store energy for later use

Potential economic impact in 2025 across sized applications of ~\$0.1 trillion-\$0.6 trillion

40-100% of new vehicles sold in 2025 could be electric or hybrid

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

Component technologies

- Battery technologies eg, lithium-ion and fuel cells
- Mechanical technologies—eg, pumped hydro and pressurized gas
- Advanced materials, nanomaterials

Key applications

- · Electric and hybrid vehicles
- · Distributed energy (including off-grid)
- Utility-scale grid storage

Sized applications of energy storage could have economic impact of \$90 billion to \$635 billion per year in 2025, including consumer surplus

()+ -)

WORKFORCE DEVELOPMENT

Sized applica	tions	Potential e impact of s application \$ billion, an	ized is in 2025		stimated scope 2025		stimated potential each in 2025	р	otential oductivity or alue gains in 2025
				-	115 million passenger vehicles sold Over 1 billion vehicles in the market	-	40–100% of vehicles sold in 2025 could be electric or hybrid	-	Fuel price: \$2.80– 7.60 per gallon 0.22 KWh per mile fuel efficiency for E∨s
Electric and hybrid vehicles		20-415		 13,000 TWh electricity consumption in emerging markets 2–70 hours per month without electricity 		-	35–55% adoption with solar and battery combination 35–55% of companies in Africa, Middle East, and South Asia own	-	\$0.75–2.10 per KWh value of uninterrupted power supply to an enterprise \$0.20–0.60 per KWh value per household
Distri- buted energy	Stabilizing electricity access Electrifying new areas		25- 100 0- 50	-	 60–65% rural electrification rate 1.2 billion people without electricity access 60 KWh monthly 		diesel generators 50–55% adoption based on number of people projected to earn above \$2 per day	•	\$0.20–0.60 per KWh value per household for direct lighting, T∨, and radio benefits
	Frequency		25– 35	-	 electricity requirement of average household 27,000–31,000 TWh global electricity consumption 1.5% electricity 	-	100% technology adoption, more efficient, and cost competitive with	-	\$30 per MWh weighted average frequency- regulation price
Utility grid	Peak load shifting		10– 25	-	production reserved for frequency regulation 2.5% additional reserved for renewable integration		incumbent solutions		
	Infra- structure deferral		~10	 12% of total electricity production possible to shift 850 million tons additional CO₂ release 			10–20% adoption of energy storage, given costs compared with combined cycle gas turbines		\$65–80 per MWh between non- renewable peak and base load \$45–65 per MWh between peak and
q	Other potential applications (not sized)								average wind price \$30–45 per MWh between peak and average solar price
	Sum of sized potential economic impacts		90– 635	-	\$295 billion per year investment in infrastructure T&D deferral 10% spent to reduce congestion	-	15% adoption based on share of transmission lines economical for energy storage	-	Possible deferral of infrastructure investment by 2.5 years

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

#9 3-D printing

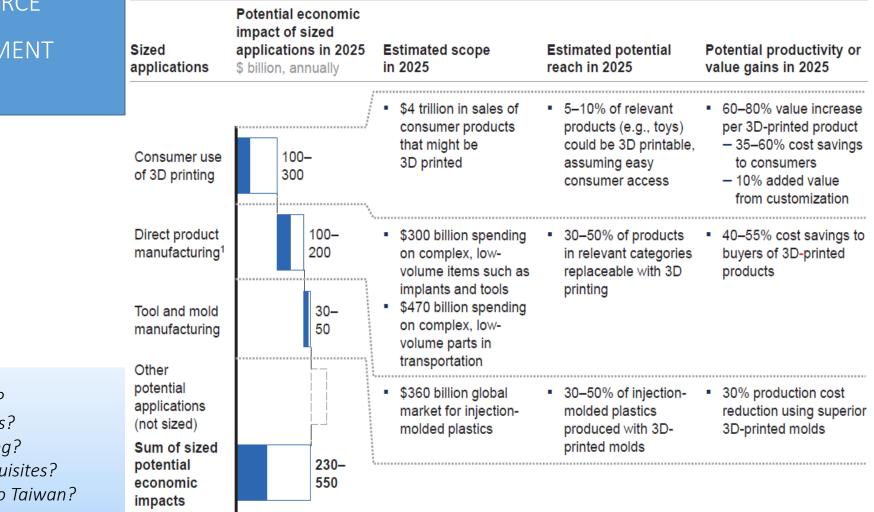
Additive-manufacturing techniques that create objects by printing successive layers of material using digital models

Potential economic impact in 2025 across sized applications of \$0.2 trillion-\$0.6 trillion

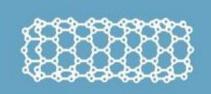
Consumers' use of 3-D printing could save them **35–60% in costs** per printed product, while enabling a high level of customization

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

Component technologies


- Selective laser sintering (SLS)
- Fused deposition modeling (FDM)
- Stereolithography (SLA)
- Direct metal laser sintering (DMLS)

Key applications


- Consumer use of 3-D printers
- · Direct product manufacturing
- · Tool and mold manufacturing
- · Bioprinting of tissue and organs

Sized applications of 3D printing could have direct economic impact of \$230 billion to \$550 billion per year in 2025

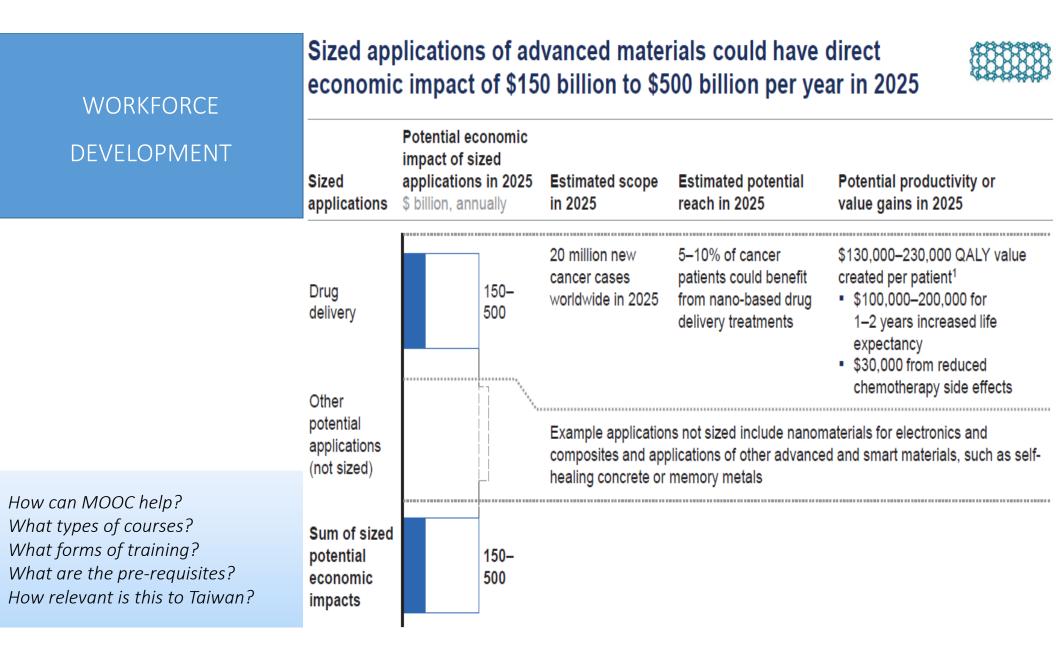
WORKFORCE DEVELOPMENT

#10 Advanced materials

Materials that have superior characteristics such as better strength and conductivity or enhanced functionality such as memory or self-healing capabilities

Potential economic impact in 2025 across sized applications of \$0.2 trillion-\$0.5 trillion

Nanomedicine could be used to **deliver targeted drugs** to 20 million new cancer cases worldwide in 2025


How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

Component technologies

- Graphene
- Carbon nanotubes
- · Nanoparticles-eg, nanoscale gold and silver
- Other advanced and smart materials—eg, piezoelectric materials, memory metals, self-healing materials

Key applications

- · Nanoelectronics, displays
- Nanomedicine, sensors, catalysts, advanced composites
- · Energy storage, solar cells
- · Enhanced chemicals and catalysts

#11 Advanced oil and gas exploration and recovery

Advancements in exploration and recovery techniques that make extraction of additional oil and gas economical

Potential economic impact in 2025 across sized applications of \$0.1 trillion-\$0.5 trillion

Offers potential to supply an **additional 3.6 billion–6.2 billion oil-equivalent barrels** of oil and gas annually by 2025

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

Component technologies

- Horizontal drilling
- Hydraulic fracturing ("fracking")
- Microseismic monitoring

Key applications

- Energy from fuel extraction; includes shale gas, light tight oil, and coal-based methane
- · Coalbed methane and methane clathrate

Sized applications of advanced oil and gas exploration and recovery could have direct economic impact of \$95 billion to \$460 billion per year in 2025

				-		
WORKFORCE DEVELOPMENT	Sized Potential economic impact of sized applications applications in 2025 \$ billion, annually		Currently estimated reserves	Estimated potential incremental annual production in 2025	Assumed price in 2025	
				 71 trillion cubic meters (Tcm) of reserves 60 Tcm in United States 	 145 billion cubic meters (Bcm) 	 \$2-8 per million British thermal unit (MMBtu); nearly \$70-280 million per Bcm
	North America – shale gas ¹	10– 35		 – 11 Tcm in Canada 64 billion barrels of 	■ 5.4–9.0 million	 \$50–150 per barrel
	North America – light tight oil	-	60– 300	 - 57 billion barrels in United States - 7 billion barrels in Canada 	barrels per day	- \$50-150 per barrer
	Rest of the world – shale gas		15– 65	 More than 150 Tcm of reserves 36 Tcm in China 22 Tcm in Argentina 	• 70–220 Bcm	 Regional pricing (per MMBtu) China, Australia: \$8–10 Argentina: \$7–8 Europe: \$6–11
	Rest of the world – light tight oil		10– 60	 More than 130 billion barrels of reserves – 24 billion barrels in 	 0.5–1.7 million barrels per day 	 \$50–150 per barrel
How can MOOC help? What types of courses? What forms of training?	Other potential			Russia — 13 billion barrels in Argentina		
	applications (not sized)			 Potential unsized applications include coalbed methane and methane clathrate 		
What are the pre-requisites? How relevant is this to Taiwan?	Sum of sized potential economic impacts ²		95– 460			

#12 Renewable electricity solar and wind

Generation of electricity from renewable sources with reduced harmful climate impact

Potential economic impact in 2025 across sized applications of \$0.2 trillion-\$0.3 trillion

Potential to avoid emissions of 1,000 million–1,200 million tons of CO₂ annually by 2025

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan?

Component technologies

- Photovoltaic cells
- Wind turbines
- · Concentrated solar power
- Hydroelectric and ocean-wave power
- Geothermal energy

Key applications

- · Electricity generation
- Reduction in CO₂ emissions
- Distributed generation

Sized applications of renewable energy could have economic impact of \$165 billion to \$275 billion per year in 2025

WORKFORCE DEVELOPMENT

Potential economic Potential productivity or impact of sized Sized renewable Estimated scope renewables in 2025 Estimated potential value gains in in 2025 reach in 2025 energy sources¹ \$ billion, annually 2025 1,330-1,570 TWh, 60-65% drop in the levelized cost or 5% of total • 27,000–31,000 Solar 105 electricity generation of electricity TWh global photovoltaics 110 1,100-1,300 TWh (LCOE) over electricity incremental base scenario consumption generation vs. base 8,500-9,500 TWh Cost scenario 40renewables Wind impact 45 generation (wind, 2,700-3,500 TWh, 25-30% drop in solar, hydro) 10-11% of total LCOE over base \$4.5-5.5 trillion 500–550 TWh scenario annual generation incremental - Onshore: Total 145 cost of global 13-15% cost impact 155 generation vs. base electricity scenario - Offshore: 50% 2-degree Celsius maximum 15temperature rise Solar 700-880 million tons \$20-100 per ton target by 2050 photovoltaics 90 of CO₂ avoided Social 450 ppm global impact greenhouse gas (CO_2) concentration limit 280–300 million tons \$20-100 per ton 5avoided) by 2050 Wind of CO₂ avoided 30 Other Potential applications not sized include hydro, biomass, ocean potential thermal and wave energy, geothermal, next-generation nuclear, and applications concentrated solar power. (not sized) Sum of sized potential 165 economic 275 impacts²

IoE enabled examples

How the medium of the internet is generating value

Internet of Everything (IoE) enabled value predictions in the public sector

- 1. Employee productivity (\$1.8 trillion): IoE improves labor effectiveness for new and existing services.
- Connected militarized defense (\$1.5 trillion): IoE generates a fourfold forcemultiplier effect through improved situational awareness and connected command centers, vehicles, and supplies.
- **3. Cost reductions (\$740 billion):** IoE improves labor efficiency and capitalexpense utilization, leading to reduced operational costs.
- **4. Citizen experience (\$412 billion):** loE shortens "search" times, improves the environment, and produces better health outcomes.
- **5. Increased revenue (\$125 billion):** IoE improves the ability to match supply with demand, while also enhancing monitoring and compliance.

IoE enabled value in the public sector – Smart Parking \$41 billion

- New things created: Connected parking spaces, parking meters
- New data flows: Space availability
- **Process innovation:** Pricing/payment; enforcement; finding spaces
- People impact: Traffic wardens; citizens/drivers; city planners
- Value impact: Increases compliance by 30 percent; enables city data sales; reduces traffic congestion/time required to park/fuel usage; dynamic pricing increases revenues

IoE enabled value in the public sector – Water Management \$39 billion

- New things created: Connected water meters
- New data flows: Water meters
- Process innovation: Water usage
- People impact: Citizens, city planners
- Value impact: Reduces labor and maintenance costs; improves accuracy of readings; decreases water consumption by citizens; lowers meter-reading costs

IoE enabled value in the public sector – Gas Monitoring \$69 billion

- New things created: Connected gas meters
- New data flows: Gas meters
- Process innovation: Gas usage
- · People impact: Citizens, city planners
- Value impact: Reduces labor and maintenance costs; improves accuracy of readings; decreases gas consumption by citizens; lowers meter-reading costs

IoE enabled value in the public sector - Disease Management \$146 billion

- New things created: Patient-monitoring systems
- New data flows: Patient statistics
- Process innovation: Treatment protocol, admissions, discharge
- People impact: Patients, clinicians
- Value impact: Reduces admissions; enables shorter hospital stays due to home-monitoring systems; promotes usage of standardized treatments that conform to best practices

IoE enabled value in the public sector – Road Pricing \$18 billion

- New things created: Vehicle payment system
- New data flows: Vehicle records, payment prices
- Process innovation: Pricing, payment
- People impact: Citizens/drivers; city planners; traffic wardens
- Value impact: Increases revenue; reduces traffic congestion, leading to savings in road expansion; reduces CO2 emissions

IoE enabled value in the public sector – Telecommuting \$125 billion

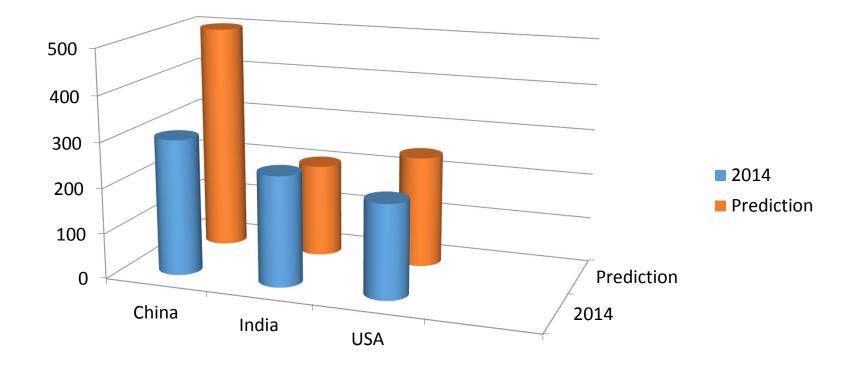
- New things (capabilities) created: Traveling employees
- New data flows: Information and communication
- Process innovation: Connectivity, collaboration
- People impact: Employees, employers
- Value impact: Reduces the real-estate requirement for employers; lowers janitorial and printing costs; improves employee retention and productivity; provides additional employment opportunities

IoE enabled value for DoD - Connected Militarized Defense \$1.5 Trillion

- New things created: Connected command centers, vehicles, supplies
- New data flows: Location of allied and other forces
- Process innovation: Situational awareness
- People impact: Combat personnel
- Value impact: Multiplier effect fourfold increase in combat-mission effectiveness

IoE enabled value for for-profit MOOC driven Digital Learning \$258 billion

- New things (capabilities) created: Connected students, teachers, campuses
- New data flows: Study modules, lectures
- Process innovation: Instruction, learning techniques
- People impact: Students, teachers
- Value impact: 40 percent improvement in teacher utilization through recorded lessons; 50 percent reduction in instructional supplies


How relevant is this to Taiwan?

MOOCs may be valuable due to their ability to deliver factual learning outside of face time in the classroom. Hence, classrooms can serve as project learning or test-bed for activities which transforms theory to practice. Digital learning helps to flip the classroom from a lecture theater to a project based learning (PBL) environment. MOOCs may help promote the principles first practiced by Maria Montessori and her education philosophy. Potential value of data is inextricably linked to connectivity and context

Data and Connectivity

How the medium of the IoT is generating value

With 243 million users by 2014, India exceeds US in internet reach. But, India's digital penetration is only 10% and China is 40%. Rising levels of connectivity presents potentially enormous opportunities for business.

November 14, 2013 (TNN)

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan? Boehringer Ingelheim sponsored a competition on Kaggle (platform for data-analysis) to predict if a new drug molecule may cause genetic mutations. The winning team, from among nearly 9,000 competitors, combined experience in insurance, physics and neuroscience. Its analysis beat existing predictive methods by >25%.

FedEx's SenseAware: Customers place a small device the size of a mobile phone inside packages. Device includes GPS, sensors to monitor temperature, light, humidity, barometric pressure and special criteria which may be critical to biomedical products and/or sensitive electronics. Real-time info about product location and if ambient conditions have changed. The data-rich variation of RFID tags helps companies manage complex and perishable supply chains.

Demand for Analytical Skills

Acxiom offers clients, from banks to auto companies, profiles of 500 million customers. Each profile enriched by more than 1,500 data points gleaned from the analysis of up to 50 trillion transactions.

Data from real-time monitoring of blogs, news and Tweets may detect subtle shifts in sentiment that can affect product and pricing strategy. Advanced analytic software allows machines to identify hidden patterns in massive data flow or documents. This machine "intelligence" means that a wider range of knowledge tasks may be automated at lower cost. As companies collect more data from operations, they may gain new revenue streams by selling sanitized information on spending patterns or physical activities to third parties ranging from economic forecasters to health-care companies.

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan? Clearwell Systems (Silicon Valley) analyzes legal documents for pretrial discovery. Machines scanned >0.5 million documents and pinpointed the 0.5% which were relevant. What would have taken a legal team several weeks took 3 days. Machines are becoming adept at structuring basic content for reports, auto-generating marketing and financial materials by scanning documents and data.

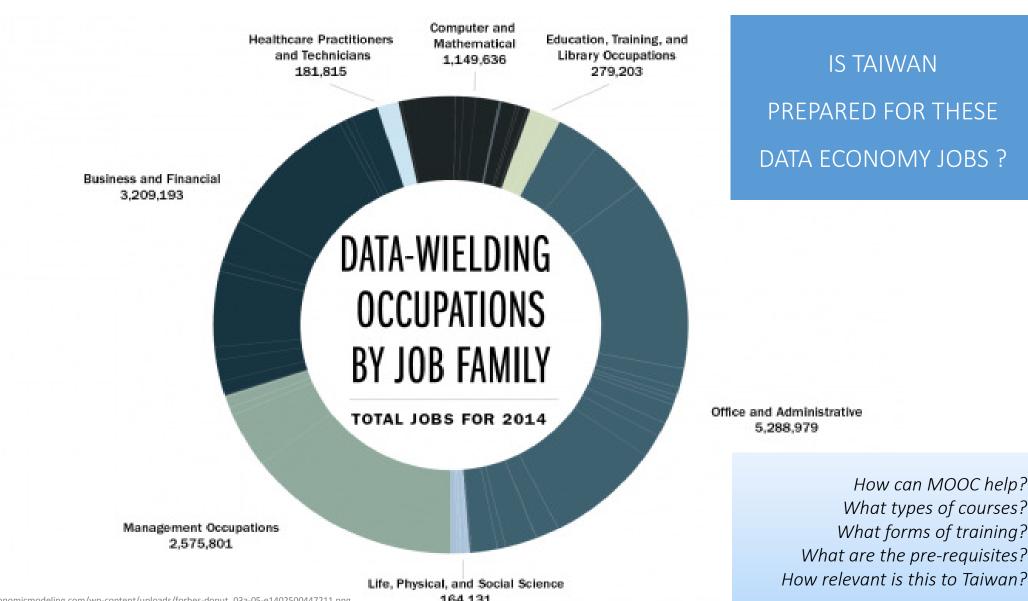
Signaling a new quest for AI based decision support system (DSS), IBM's Watson is tackling cancer research by reading >600,000 medicalevidence reports, 1.5 million patient records and 2 million pages of clinical-trial reports and medical-journal articles. Aids decision-support for oncologists at Memorial Sloan-Kettering Cancer Center, NY.

Demand for Analytical Skills

Food retailers Tesco and Delhaize deployed lifesize store displays at S. Korean & Belgian subway stations. It allows commuters waiting for trains to use smartphones to order groceries, which are shipped to their homes or available for pickup at a physical store location. Other retailers are using similar displays in physical stores so consumers can also order out-of-stock (OOS) products.

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan? India has enrolled 380 million citizens in the largest biometric-identity program (Aadhaar). It plans to use the system to make >\$50billion in cash transfers to the poor (saves \$6billion fraud)

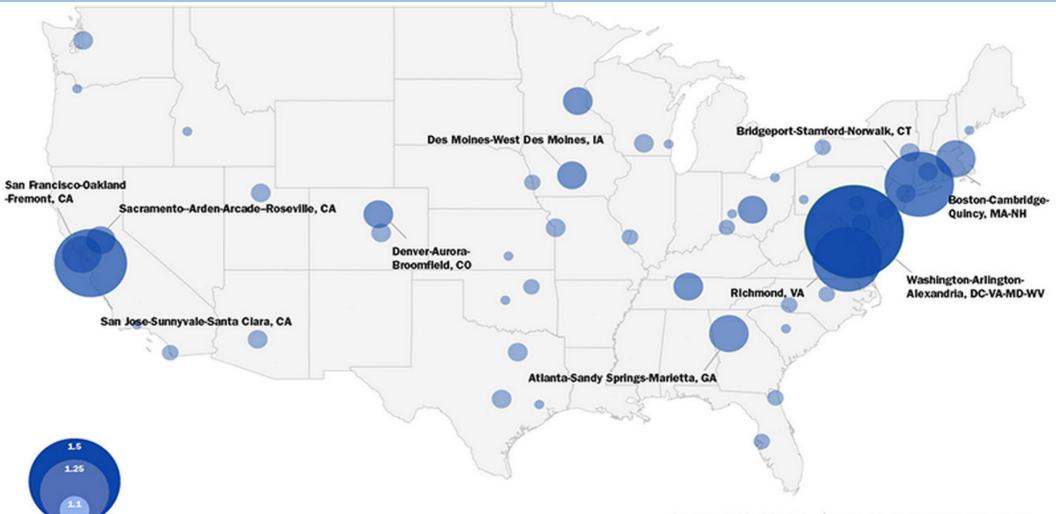
Smartphones and tablets are entering classrooms to deliver personalized MOOC. India is running trials of the sub-\$50 Aakash tablet to link more than 25,000 colleges in an e-learning program.


In rural Bangladesh, 90% of births occur outside hospitals. A mobile-notification system alerts clinics to dispatch nurse–midwife teams.

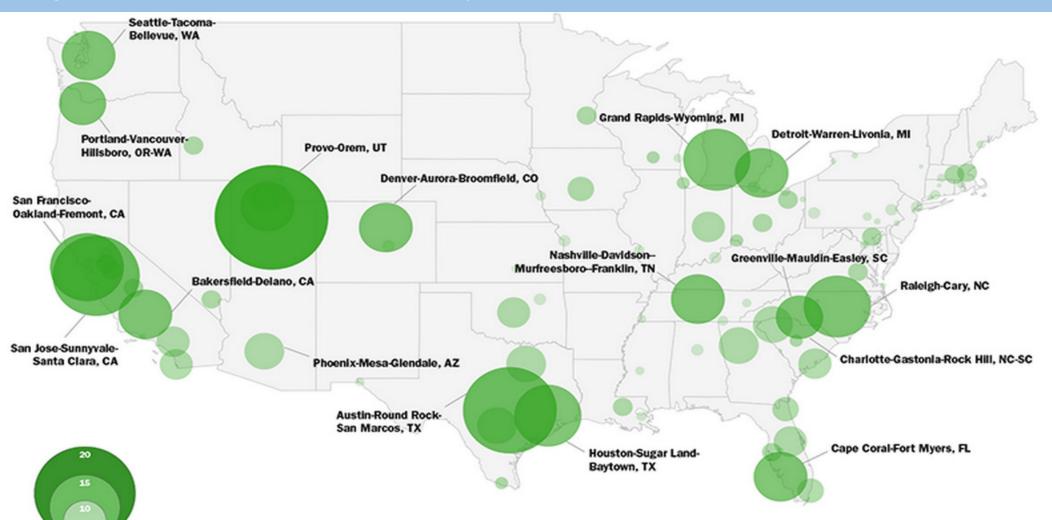
In China, a public-private partnership created a cardiovascular-monitoring system that allows patients to self-administer electrocardiograms and transmit data to specialists in Beijing, who may suggest treatments by phone.

Demand for Analytical Skills

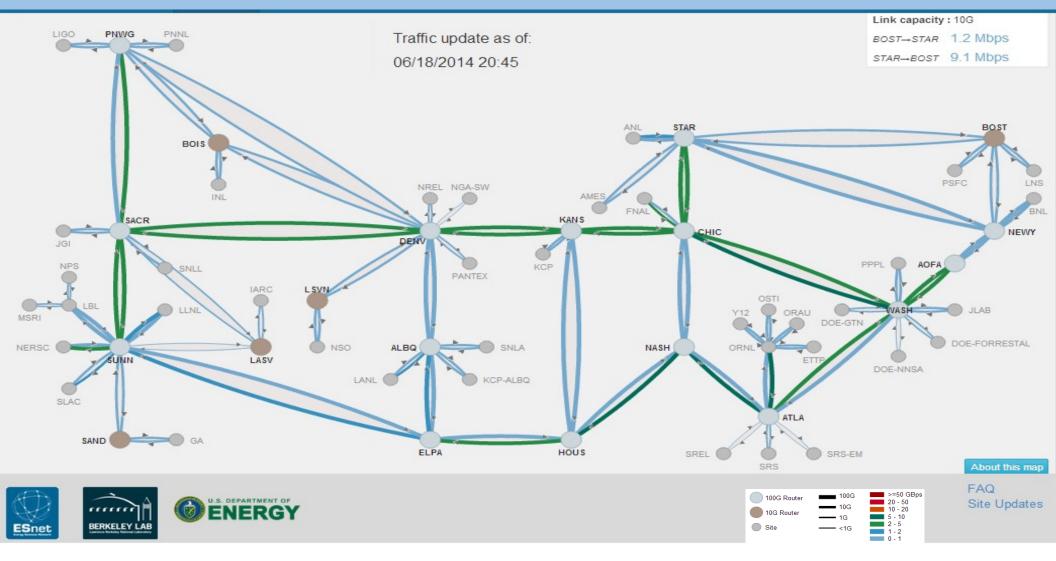
In 2011, US government introduced a Cloud First policy, which laid out a vision to shift a quarter of the \$80 billion in annual federal spending to the cloud from in-house data centers. It may save 20-30% on the cost of the shifted work.


Mt Sinai Hospital (NYC) collaborates with GE to use smart tags to track the flow of hundreds of patients, treatments and medical assets in real time. The hospital estimates may treat 10,000 more patients / year and generate \$120 million n savings and revenues over several years.

economicmodeling.com/wp-content/uploads/forbes-donut_03a-05-e1402500447211.png


164,131

Current Concentration of Data Jobs in the US


Source: EMSI 2014.1 | ECONOMICMODELING.COM

Projected Growth of Data Jobs by Location in the US

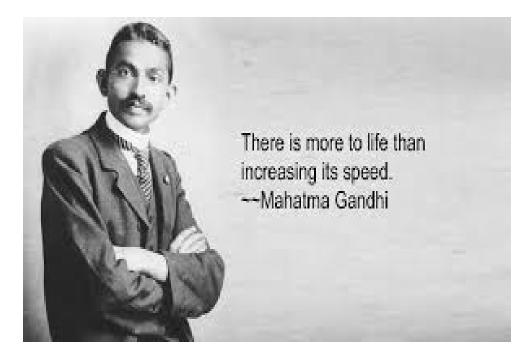
Source: EMSI 2014.1 | ECONOMICMODELING.COM

Speed of Data Transmission in the US – now 100 Gbps (proposed 1 Tbps)

Connection Speed

Global Rank	Country/Region	Q1 '14 Avg. Mbps	QoQ Change	YoY Change
1	South Korea	23.6	8.0%	145%
2	Japan	14.6	12%	29%
3	Hong Kong	13.3	8.5%	24%
20	Taiwan	8.9	6.4%	118%
24	Singapore	8.4	6.1%	28%
42	Australia	6.0	2.6%	39%
45	New Zealand	5.6	5.7%	30%
48	Thailand	5.2	6.8%	31%
69	Malaysia	3.5	16%	30%
79	China	3.2	-6.4%	46%
93	Indonesia	2.4	46%	55%
105	Philippines	2.1	5.7%	49%
107	Vietnam	2.0	12%	47%
118	India	1.7	8.4%	34%

Average Connection Speed by Asia Pacific Country/Region


Global Rank	Country/Region	Q1 '14 Peak Mbps	QoQ Change	YoY Change
1	South Korea	68.5	6.5%	52%
2	Hong Kong	66.0	-3.3%	0.3%
3	Singapore	57.7	-2.5%	32%
5	Japan	55.6	4.7%	17%
7	Taiwan	52.6	2.1%	61%
30	Thailand	34.4	-11%	14%
41	Australia	31.6	-10%	20%
51	Malaysia	27.9	-6.9%	10%
59	New Zealand	24.3	12%	20%
74	Indonesia	19.4	55%	42%
78	Philippines	18.8	-42%	26%
96	China	13.6	-1.2%	43%
110	Vietnam	12.3	-3.2%	-1.9%
112	India	12.0	-1.5%	7.6%

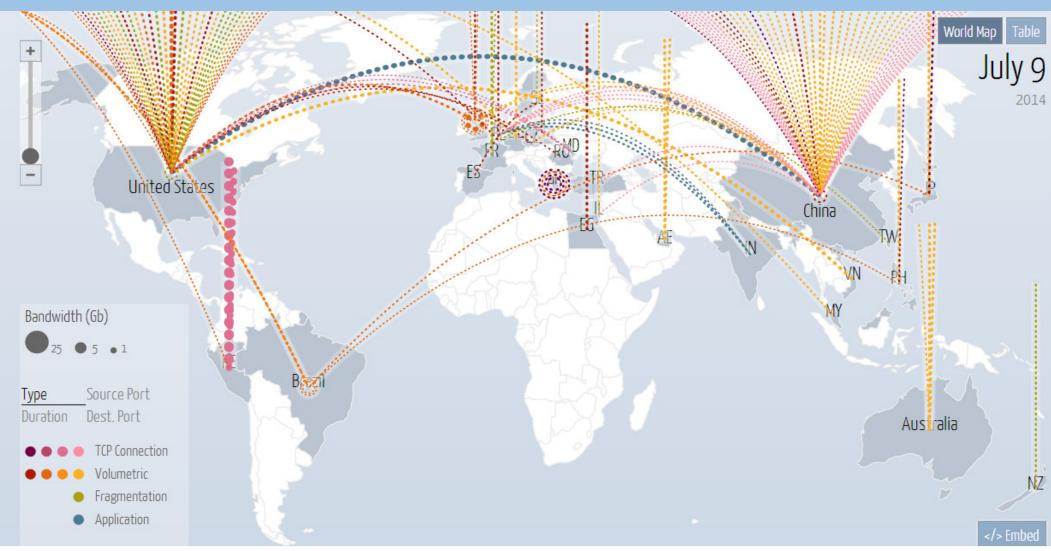
Average Peak Connection Speed by Asia Pacific Country/Region

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology

Source: Akamai Report Q1 2014

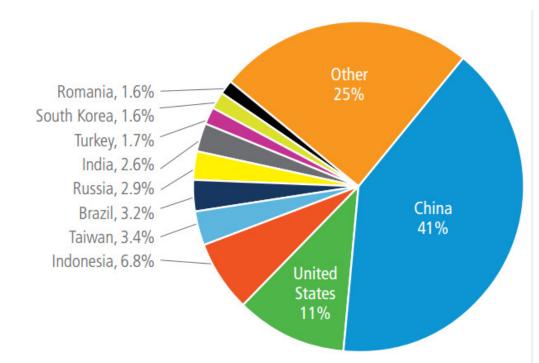
Speed

Dr Shoumen Palit Austin Datta SVP, Industrial Internet Consortium Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)


Is your data secure?

THE RISE OF CYBERSECURITY

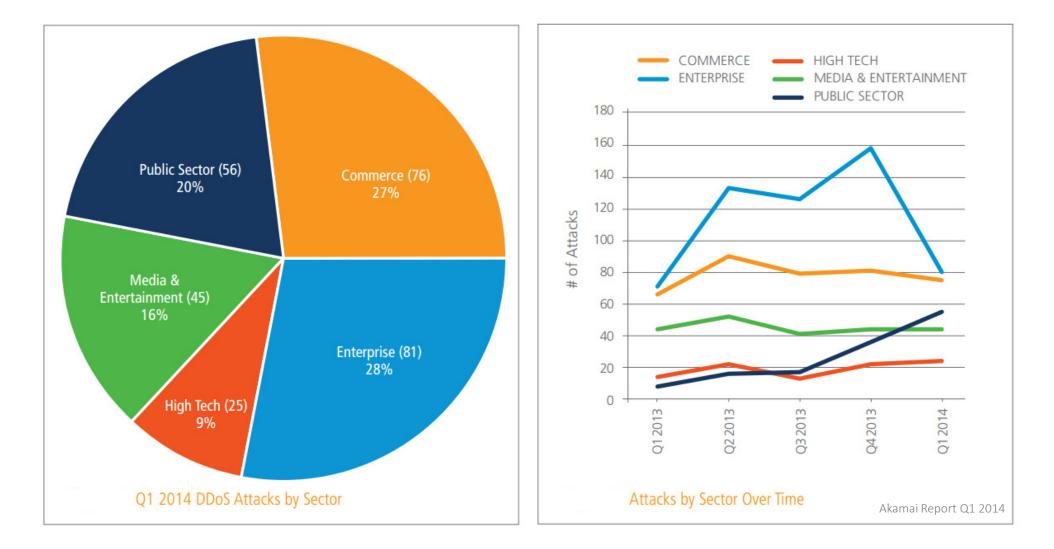
Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)


210

Digital Attack Map – The Prelude to Cyber Warfare

Distributed Denial of Service (DDoS) Attack Traffic (by source IP)

	Country/Region	Q1 '14 Traffic %	Q4 '13 %
1	China	41%	43%
2	United States	11%	19%
3	Indonesia	6.8%	5.7%
4	Taiwan	3.4%	3.4%
5	Brazil	3.2%	1.1%
6	Russia	2.9%	1.5%
7	India	2.6%	0.7%
8	Turkey	1.7%	0.4%
9	South Korea	1.6%	0.6%
10	Romania	1.6%	0.9%
-	Other	25%	12%



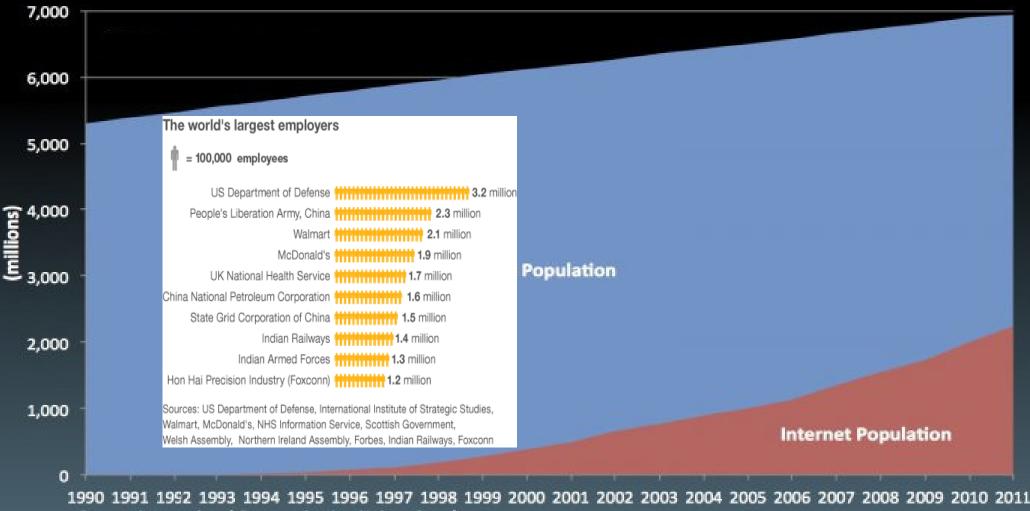
Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology

Source: Akamai Report Q1 2014

212

Distributed Denial of Service (DDoS) Attacks by Sector

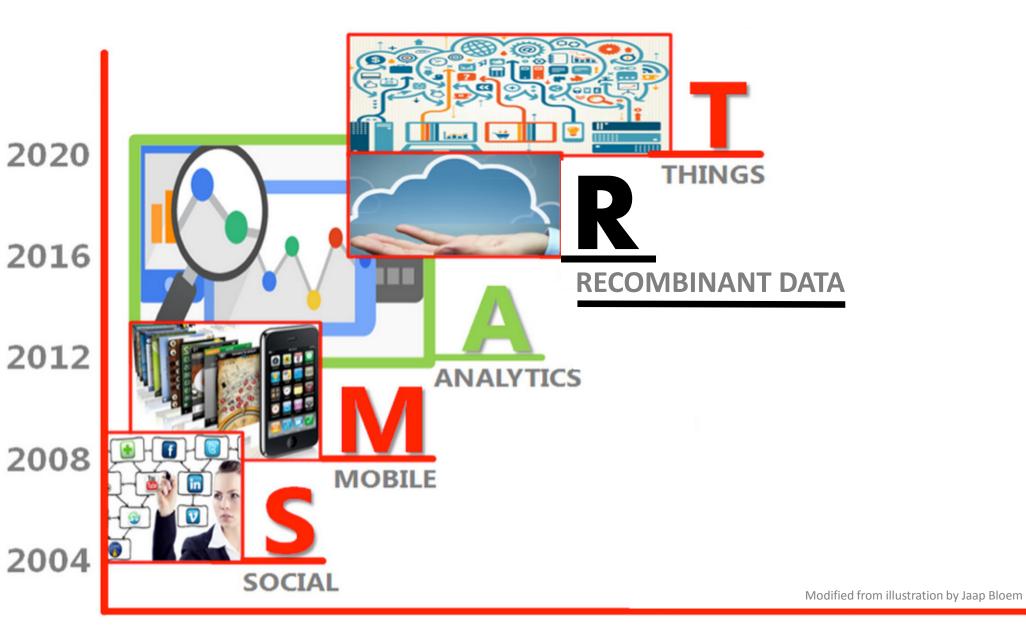
Data Proficiency + Computer Science = Car Hacking (the new car-jacking)

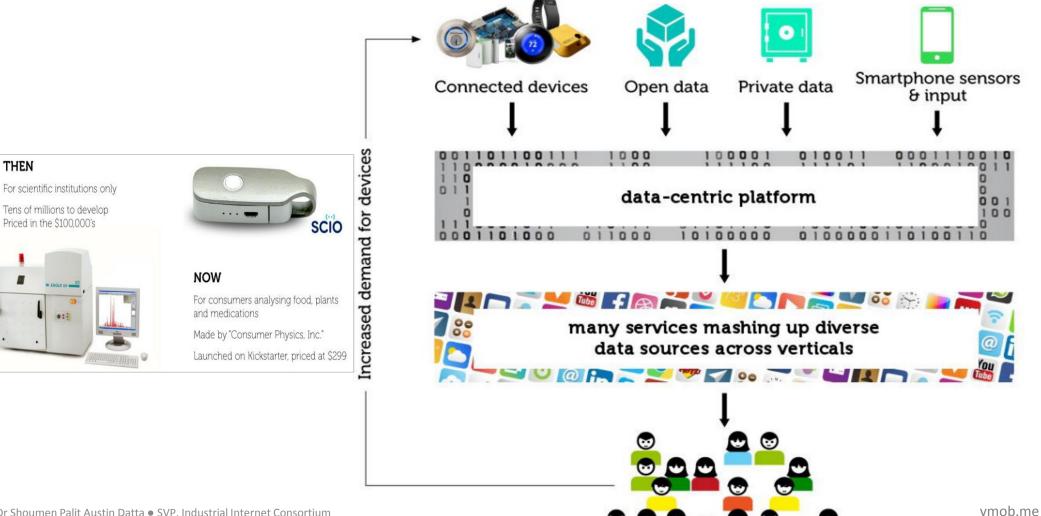

<u>Google Inc.</u> revealed a new operating system for cars, called Android Auto, on Wednesday, laying the groundwork for vehicles to virtually become smartphones on wheels. As more cars become connected to the Internet in some capacity and collect and transmit more data, the question becomes all the more real: Will car-hacking become the new carjacking?

Broad spectrum of data

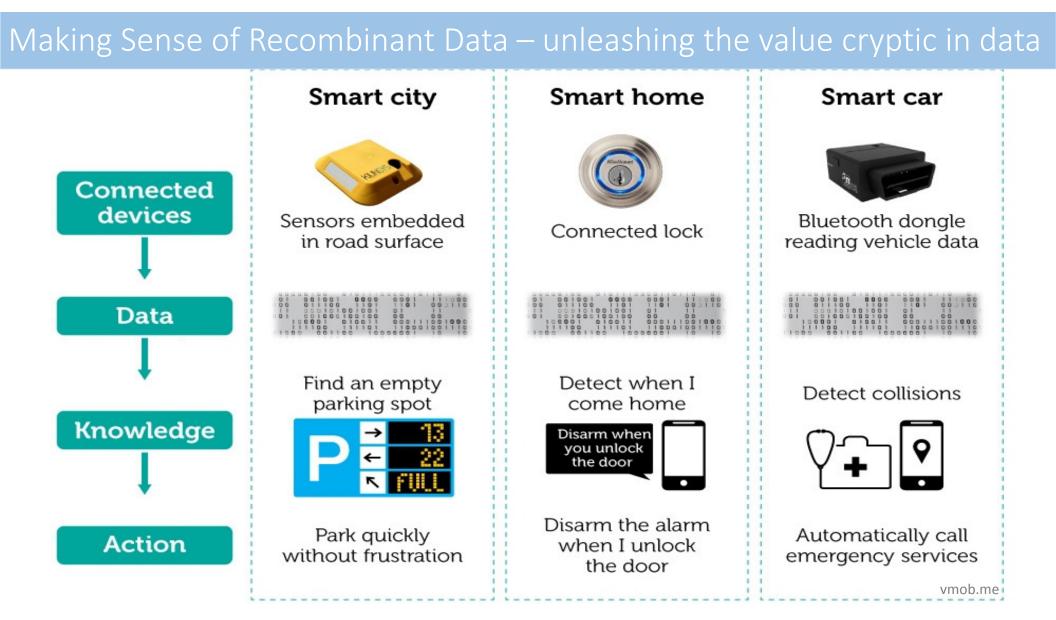
The range of data related applications will stretch our imagination

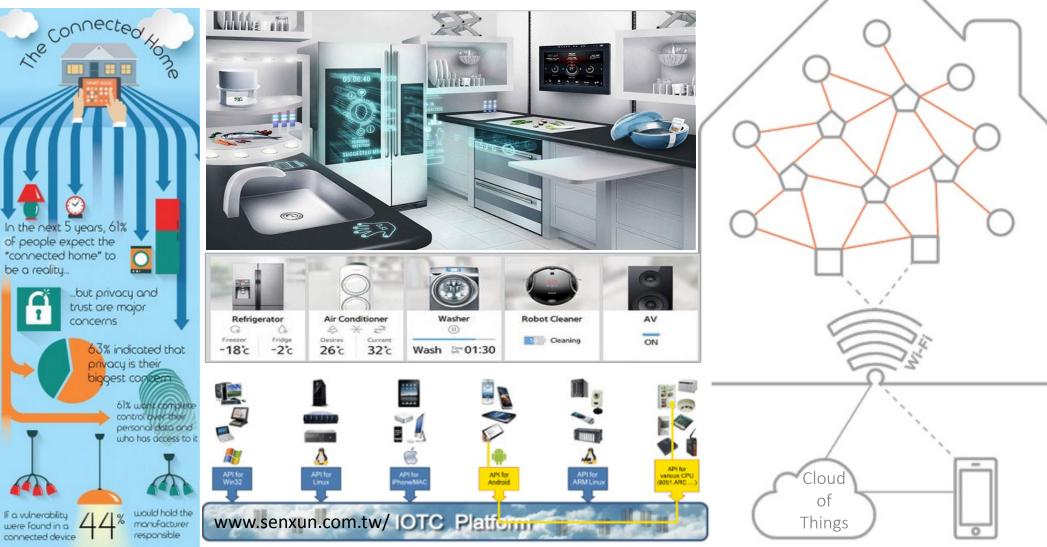
Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

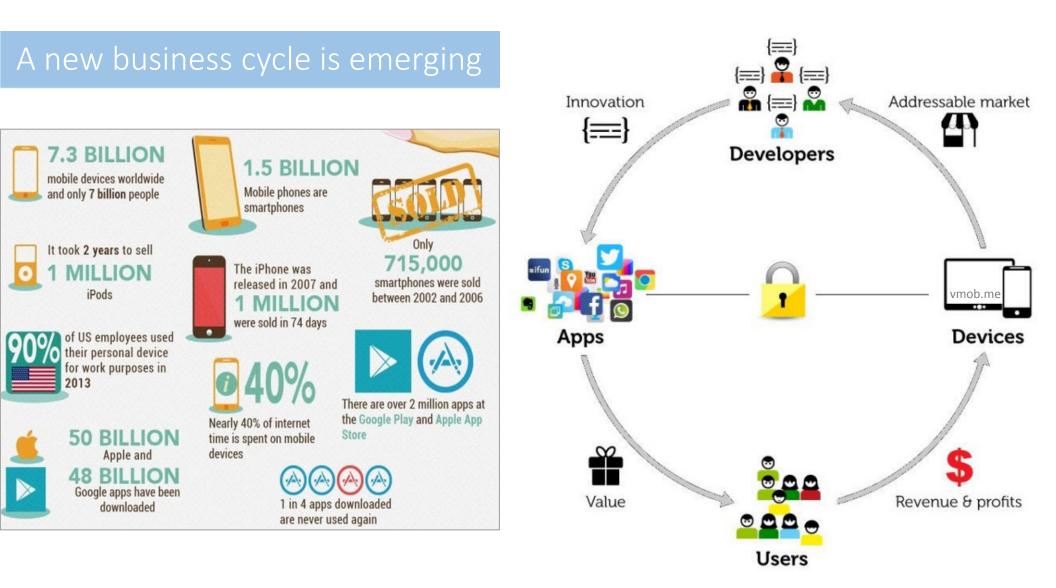

Data – Imagine what happens if 50% of the population were connected


Source: International Communication Union, Google

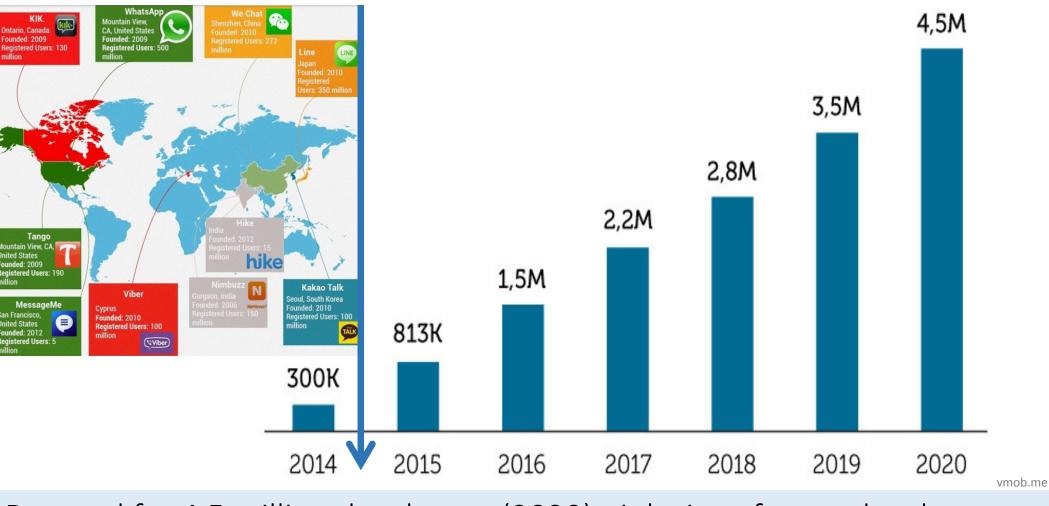
Recombinant Data

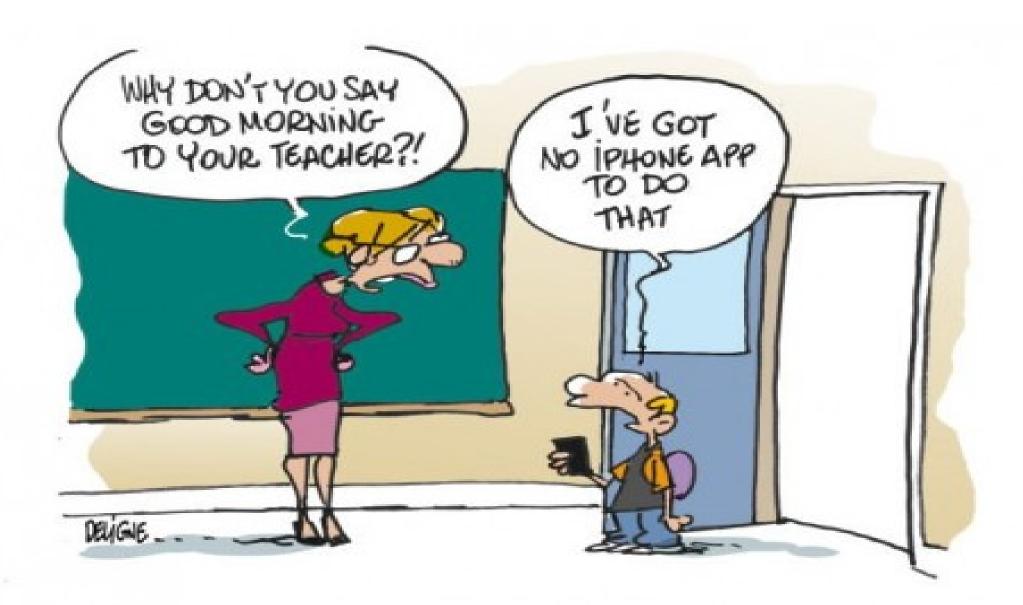

Data (by itself – in one silo) is of limited value unless analyzed in conjunction with other data in context of the application or in context of the problem-question


Recombinant DNA is so yesterday ... the emergence of Recombinant Data

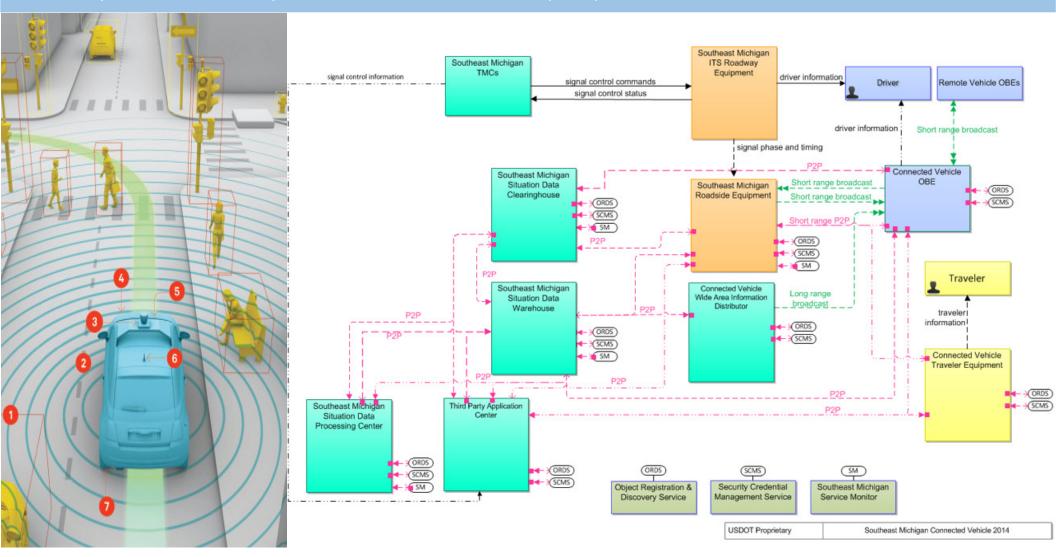


Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium

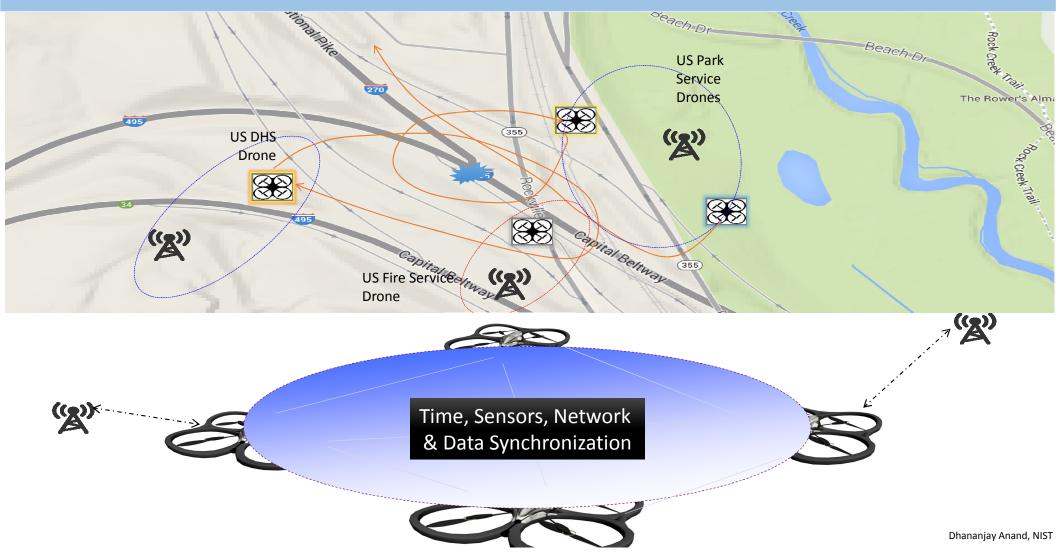

Mesh Network – Is every home a smart home?



Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)


Number of developers will exceed the total number of people employed by US DoD

Demand for 4.5 million developers (2020) - jobs in software development


Exabytes of data per second from deployment of autonomous vehicles

Terrestrial Transportation – Emergency "Crash to Care" Response System

Hellabytes of data from deployment of emergency search & rescue drones

Tectonic Paradigm Shift – Data has gone to the Dogs – Internet of Dogs

Computer Scientists Are Building An Internet Of Dogs For Emergency Rescues

K9 ANALYTICS INC – We are dogmatic about the future of data

The Lassie of the future will not bark for the sheriff. Instead, a wireless sensor on her harness will detect gas in an earthquake-shattered building, then text the drones and first responders on the scene. Or at least that's one team's idea behind a design from this year's <u>SmartAmerica Challenge</u>, a project launched by the White House Innovation Fellow program.


The Internet of Dogs is just one part of <u>a larger emergency response system</u>, explains Justyna Zander, the SmartAmerica team lead. Together with computer scientists from a range of academic institutions and industries, they developed a process by which drones, robots, dogs, and human first responders could communicate with one another automatically.

Dr Shoumen Palit Austin Datta • Research Affiliate, School of Engineering, MIT • Senior Vice President, IIC

Diesel and Simba resting at the feet of Robo-Cop in the Washington DC Convention Center on June 11, 2014 at the SmartAmerica Challenge organized by Presidential Innovation Fellows Sokwoo Rhee and Geoff Mulligan. Has Boeing receded to the background of US innovation?

Data, People and Cities – Grand Decarbonization Plan for City of Chicago

Dr Shoumen Palit Austin Datta = SVP, Industrial Internet Consortium = Research Affiliate, School of Engineering, Massachusetts Institute of Technology

WHAT WILL YOU DO WITH FREE DATA STORAGE FREE COMPUTATION

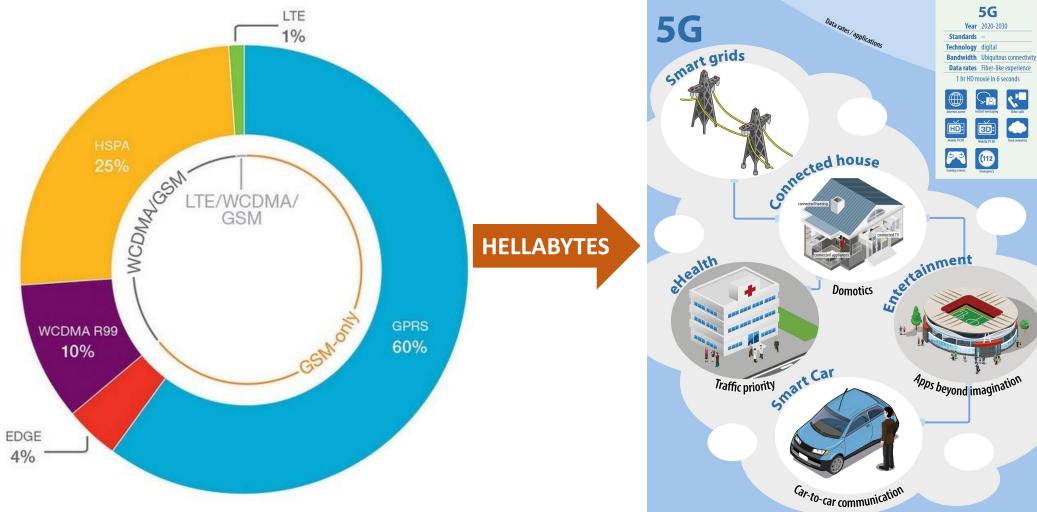
Soogle's Big Data

Monetize data analytics

Posted By Paul Tate, June 13, 2014 at

"What if storage and compute power were free? How would that change the way you look at Big Data and the Internet of Things?" asked Tom Howe, Google's senior enterprise consultant for manufacturing during last week's 10th <u>Manufacturing Leadership Summit</u> in Palm Beach, Fla.

Addressing the annual gathering of senior industry executives, Howe suggested that Google is acutely aware of many of the key issues facing manufacturing today as the company has become a significant global producer itself – from the racks it uses in its data centers around the world, to Google Glasses, Nexus smart phones and tablets, the Project Loon high-altitude balloon networks that connect remote regions to the internet, and its newly launched self-driving cars. Not to mention its acquisition of eight or more robotics companies over the last few months.

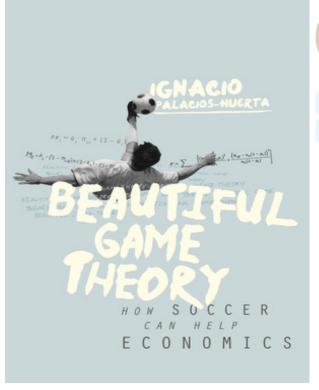

Howe's focus in his talk, however, was not on Google's own manufacturing activities, but on how the Internet of Things (IoT) and Big Data are rapidly becoming strategic game-changers for all types of manufacturing enterprises. Companies must now actively pursue the collection of multiple types of key data about their operations and their products because, he warned the audience, "if you don't collect this data, someone else will!"

The problem with Big Data, he added, is that 'in our perspective there have been a number of significant blockers to progress in the past." These include the storage costs of massive amounts of information; the cost of crunching the data; the right tools to look at and analyse the data; limitations to network availability and speed; and simply "knowing which questions to even ask", he added.

How can MOOC help? What types of courses? What forms of training? What are the pre-requisites? How relevant is this to Taiwan? Google's answer is a 'public cloud' for enterprise IoT. That's where Howe's question to the audience about the potential impact of free storage and compute power comes into play.

He cited different examples of how cloud-based IoT can work in practice - from re-imagining old products such as domestic thermostats that are now connected to the internet, uploading data to the cloud, crunching the results, and sending instructions back down to the device or the owner to create remedial actions; to retrofitting old products like agricultural vehicles that provide real-time location and performance data; to innovative new ideas like smart band aids sending alerts to help to stop the spread of infection in hospitals and medical centers.

Radio capability distribution of M2M devices in measured mobile networks


Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, MIT

3D

Data Driven Decisionmaking

World Cup star Luminoso scores \$6.5M to fund expansion of text analytics business

MIT Media Lab spinoff rolling amidst buzzy World Cup partnership with Sony

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium

By Bob Brown Follow

NetworkWorld | Jul 2, 2014 4:30 AM

analytics Startups

SaaS

Text analytics company <u>Luminoso</u>, a 2010 MIT Media Lab spinoff that helps its customers make sense out of unstructured data, has raised a \$6.5 million Series A round of funding. The 25-person outfit plans to use the funds for new hires in sales, product management and client services as well as to expand its product line.

The fresh funds come via Acadia Woods and Digital Garage, the latter of which is based in Tokyo and was co-founded by MIT Media Lab director Joi Ito. Cambridge, Mass.-based Luminoso, which offers its dashboard service via a software-as-a-service (SaaS) model and also provides APIs that can be incorporated into customers' existing systems, raised \$1.5 million in seed funding in 2012.

Articles by Robots Articles for Robots Articles about Robots

Associated Press

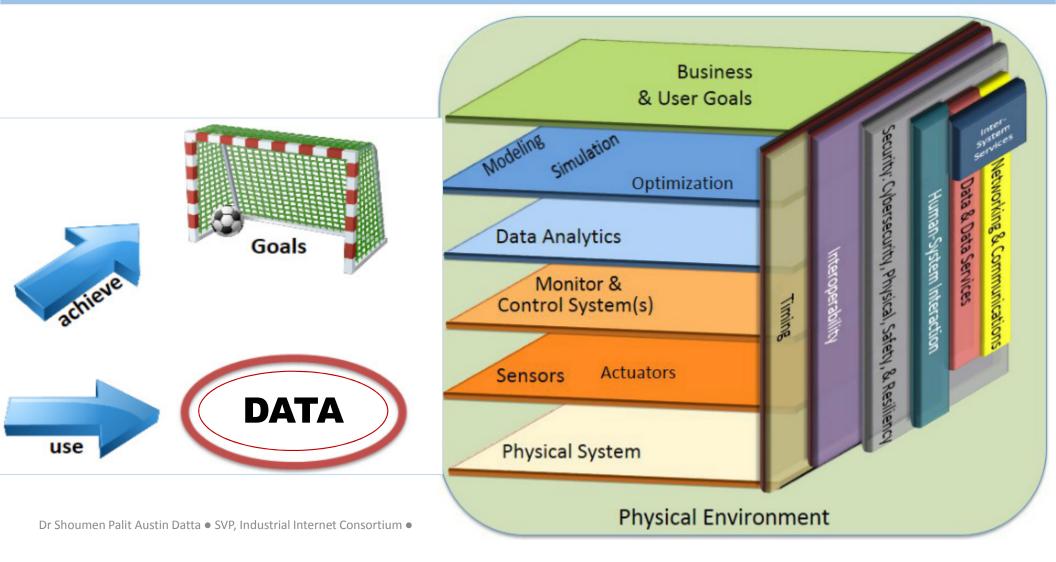
United State	es Patent
Bonissone.	et al.

System and process for a fusion classification for insurance underwriting suitable for use by an automated system

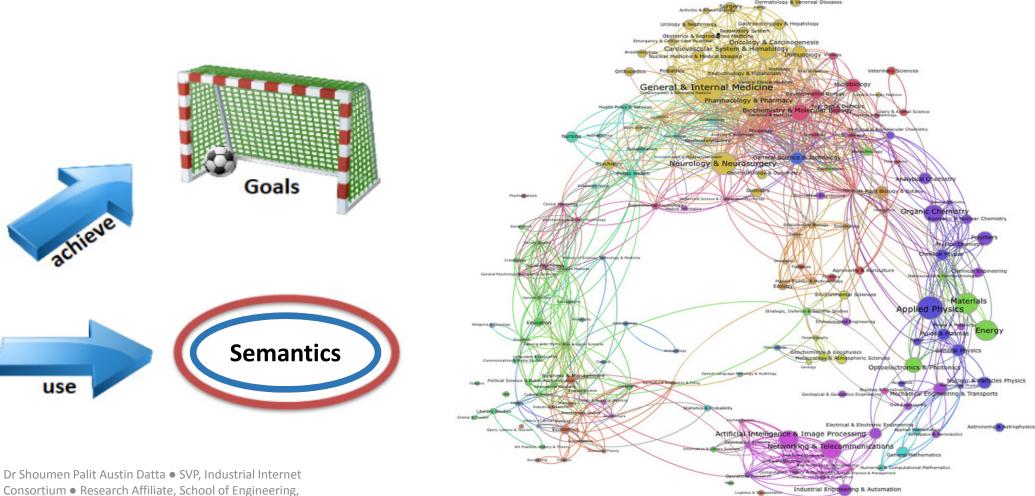
Abstract

A method and system for fusing a collection of classifiers used for an automated insurance underwriting system and/or its quality assurance is described. Specifically, the outputs of a collection of classifiers are fused. The fusion of the data will typically result in some amount of consensus and some amount of conflict among the classifiers. The consensus will be measured and used to estimate a degree of confidence in the fused decisions. Based on the decision and degree of confidence of the fusion and the decision and degree of confidence of the production decision engine, a comparison module may then be used to identify cases for audit, cases for augmenting the training/test sets for re-tuning production decision engine, cases for review, or may simply trigger a record of its occurrence for tracking purposes. The fusion can compensate for the potential correlation among the classifiers. The reliability of each classifier can be represented by a static or dynamic discounting factor, which will reflect the expected accuracy of the classifier. A static discounting factor is used to represent a prior expectation about the classifier's reliability, e.g., it might be based on the average past accuracy of the model, while a dynamic discounting is used to represent a conditional assessment of the classifier's reliability, e.g., whenever a classifier bases its output on an insufficient number of points it is not reliable.

Inventors: Bonissone; Piero Patrone (Schenectady, NY), Aggour; Kareem Sherif (Niskayuna, NY), Subbu; Rajesh Venkat (Troy, NY), Yan; Weizhong (Clifton Park, NY), Iyer; Naresh Sundaram (Clifton Park, NY), Chakraborty; Anindya (Schenectady, NY)
Assignee: Genworth Financial, Inc. (Richmond, VA)
Family ID: 33309734
Appl. No.: 12/131,545
Filed: June 2, 2008

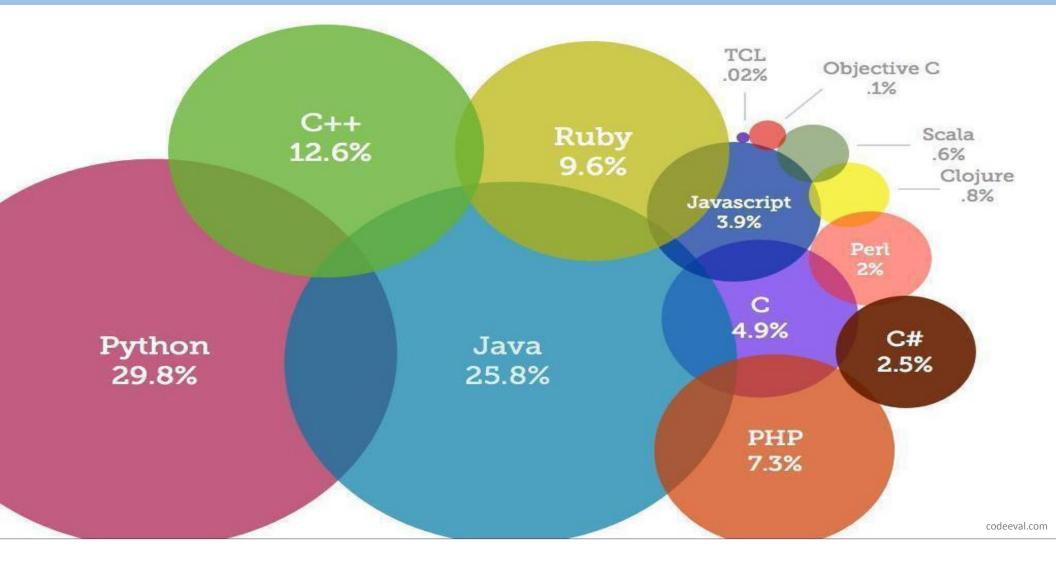

IRDA – building common sense of data into the platforms of the future

Intelligent Recombinant Data Analytics

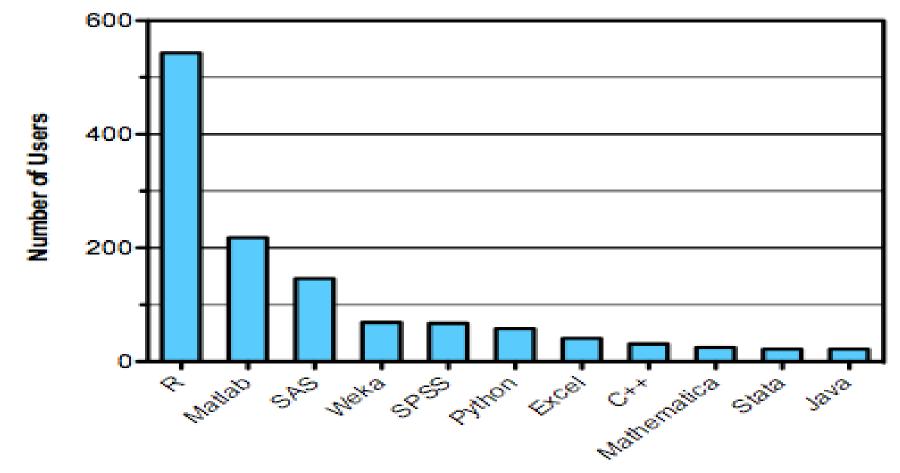

Predictions are very difficult, especially if it is about the future - Niels Bohr (1885-1962)

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

A staple horizontal for any vertical – IRDA & Data Driven Decision-making



Data without context? Context without semantics? Semantics without ontology?



Massachusetts Institute of Technology • shoumen@mit.edu

Data without software ? Girls Who Code </> Common Coding Languages

Software used in data analysis competitions – temporary advantage – R

Data from 2011 but still current for 2014.

© Robert A. Muenchen

Data, Connectivity, Context, Value – Gulf between Principles and Practice

Transparent and innovative business models are in dynamic state with real-time information, instant price discovery and quick problem resolution. The latter is now a basic expectation of consumers, citizens and business customers. Taken together, these changes will force many companies to rethink elements of their business models which are not in pace with these progressive practices. Leaders will need to make their companies more transparent and elevate rapid responsiveness as a core competency. Business models built on transparency and responsiveness will satisfy customers and help companies become more agile and credible with their stakeholders as long as privacy and security concerns are adequately addressed. The key rate limiting step is the availability of skilled workforce.

<u>http://www.ibm.com/analytics/us/en/</u>

- http://hbr.org/2012/10/big-data-the-management-revolution/ar/1
- http://googleblog.blogspot.com/2010/10/what-were-driving-at.html
- http://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
- <u>http://public.dhe.ibm.com/common/ssi/ecm/en/gbe03575usen/GBE03575USEN.PDF</u>
- <u>http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works</u>

How to deliver value from data? Transform the vision of IRDA into reality?

The rising economic and business impact of information technology means that competition will heat up for graduates in science, technology, engineering and mathematics (STEM) where job growth is likely to be several times faster than in other areas. As the automation of knowledge work gains momentum and computers start handling a growing number of tasks now performed by knowledge workers, some mid-level jobs will disappear. People with higher-level skills will become more important. Providing new forms of training to upgrade knowledge workers' capabilities and rethinking the nature of public education, especially in mathematics, will be critical priorities for businesses to invest in and for government leaders to decrease bureaucracy. Education is our key.

Can MOOC catalyze an educated & IRDA-proficient supply chain of talent ?

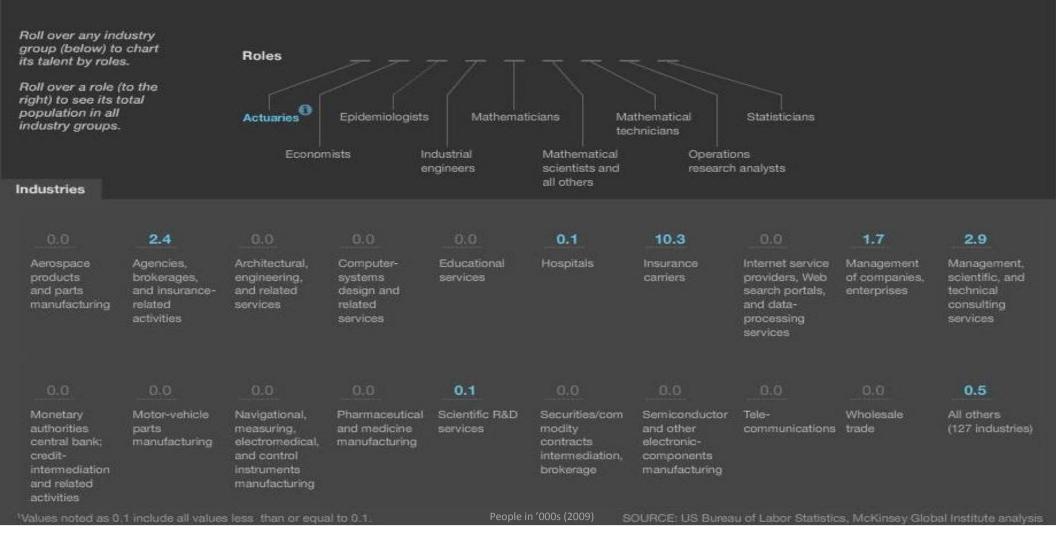
Did we arrive at a conclusion we knew almost since the beginning of time?

Born Raffaello Sanzio da Urbino in 1483 (Urbino, IT). Died April 6, 1520 (Rome, IT) Raphael - The School of Athens

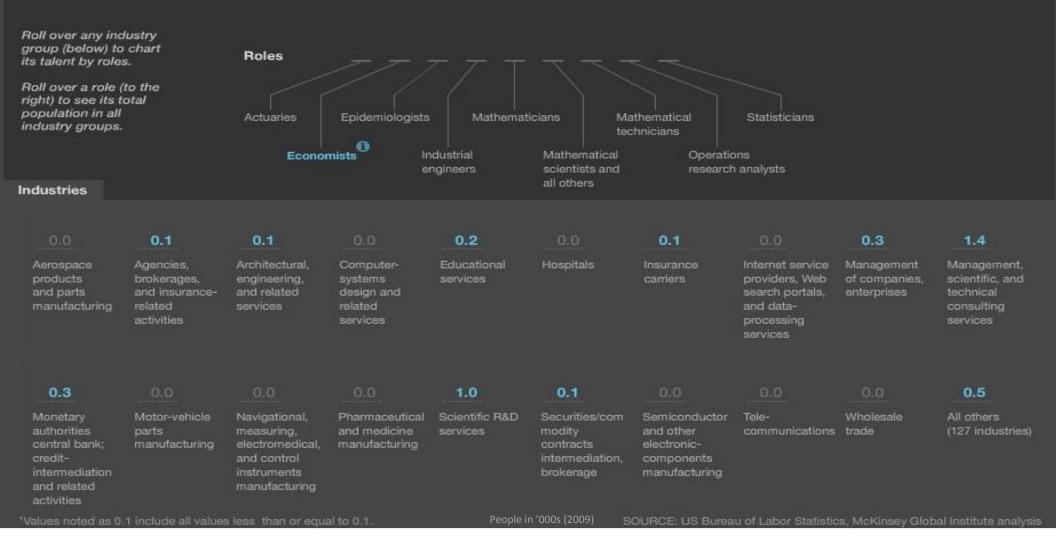
Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT) • http://bit.ly/S-Datta 242

Discussion

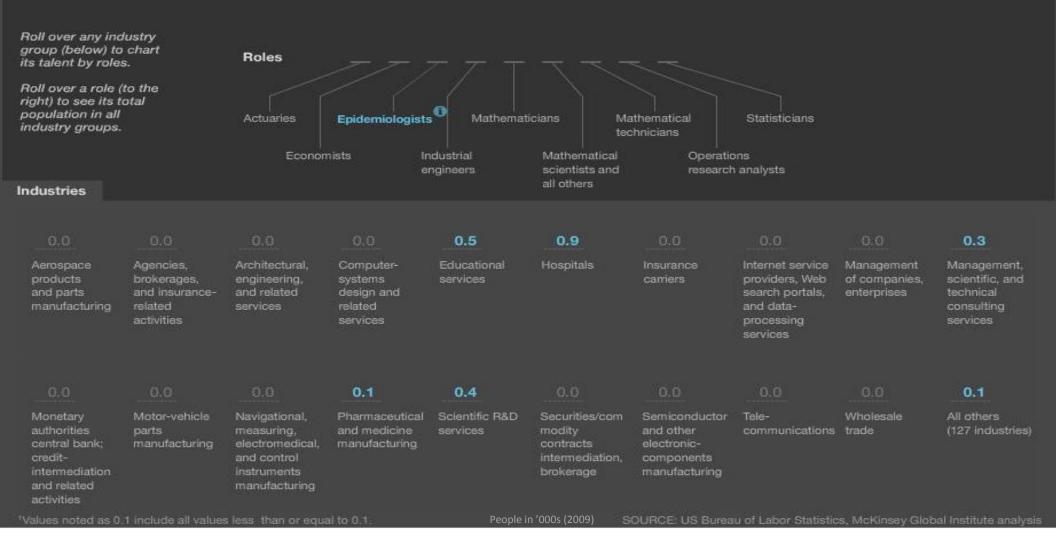
- History
- Context
- Purpose
- Economy
- Denominator
- Data
- Conclusion

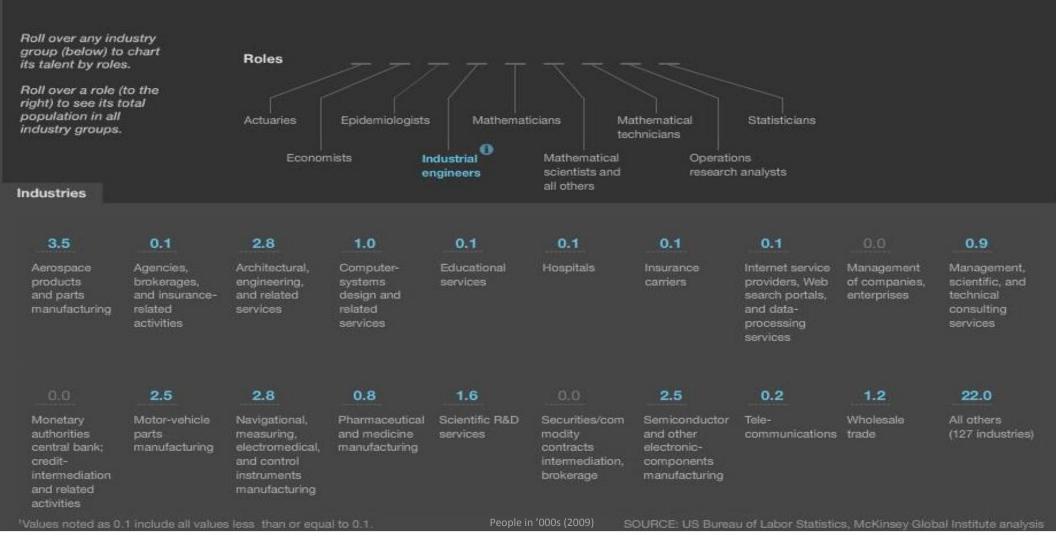

How to connect the data dots? Skilled Workforce – where are they now?

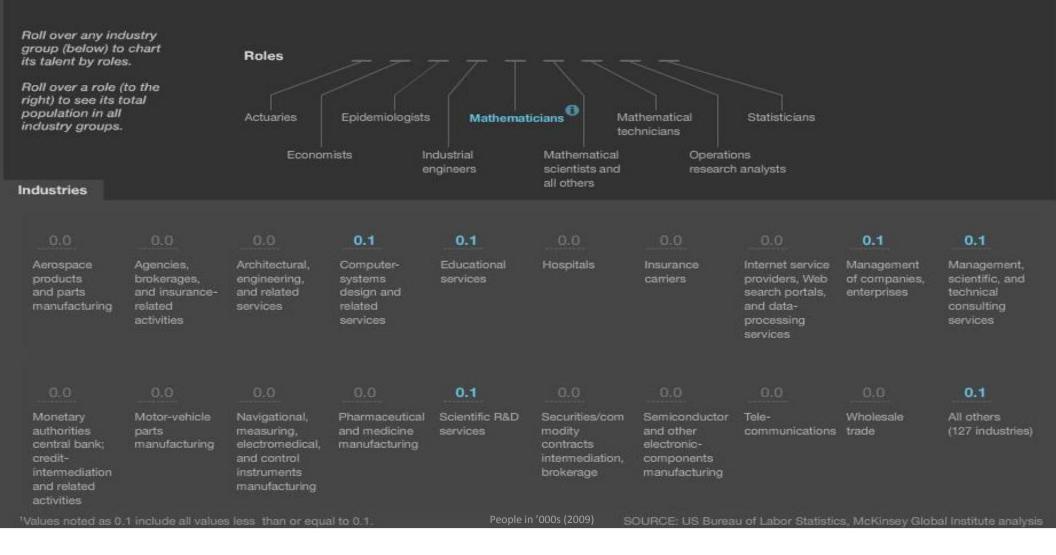
Mathematics

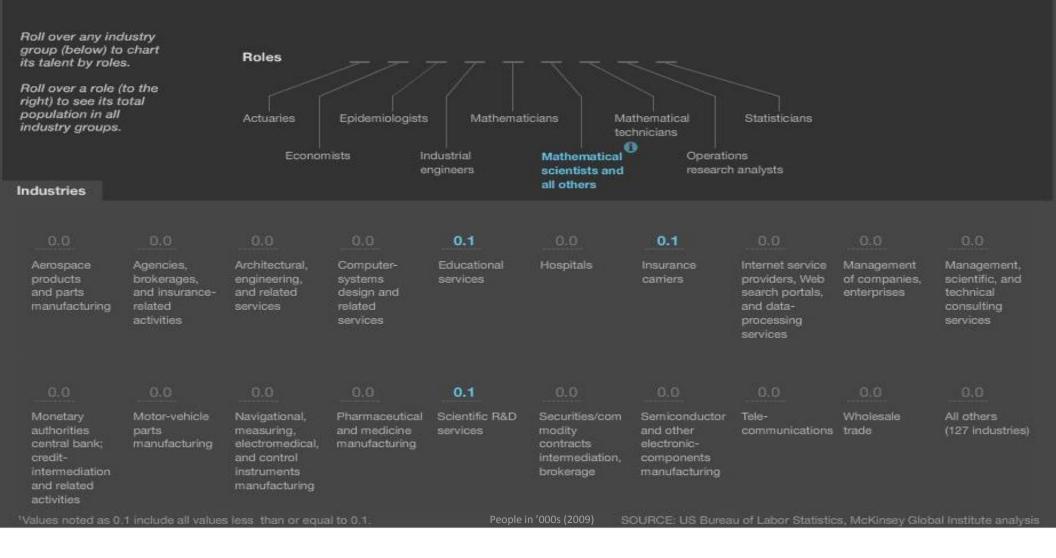

The quintessential denominator

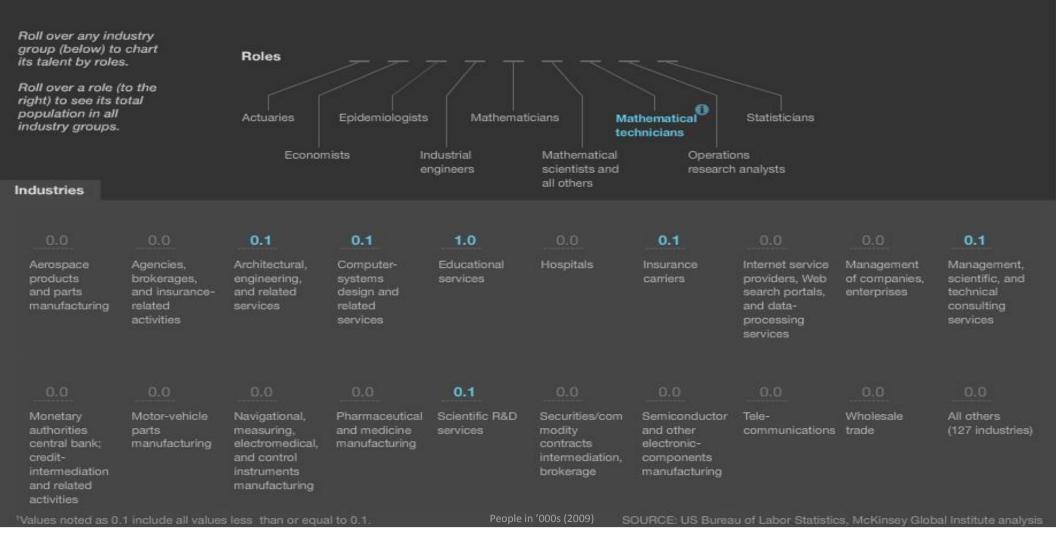
Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT) • http://bit.ly/S-Datta 244

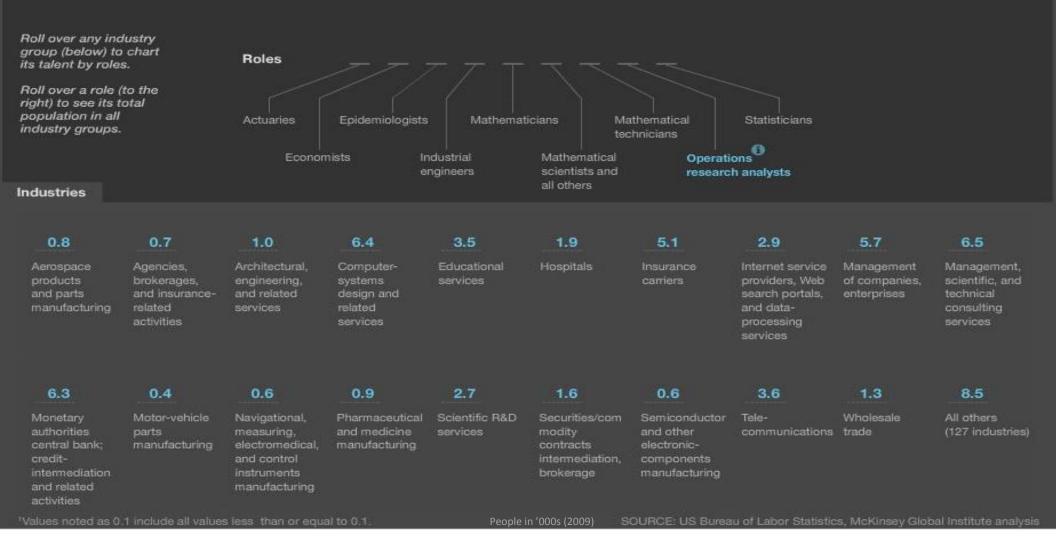

Math-based role: Actuaries

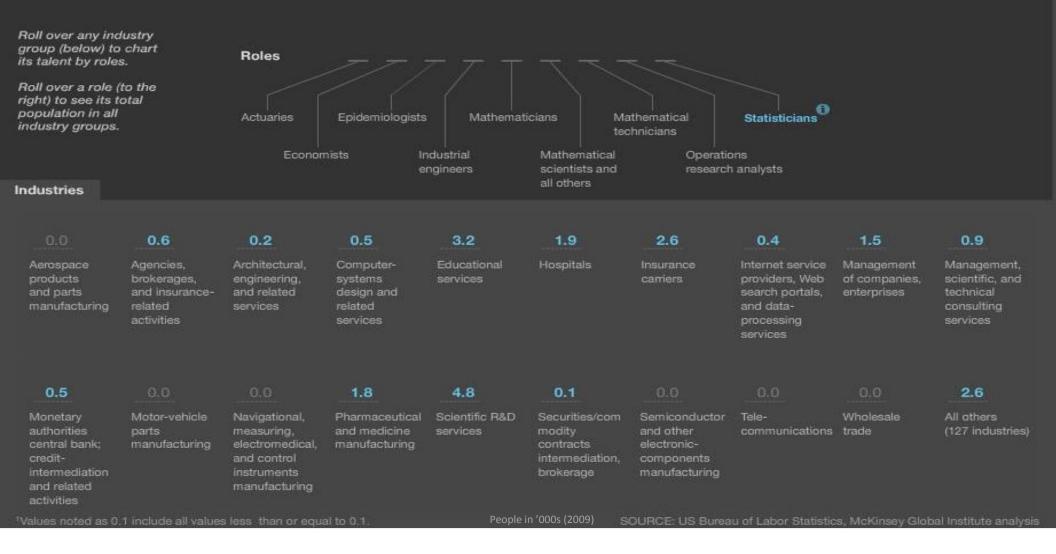

Math-based role: Economists


Math-based role: Epidemiologists

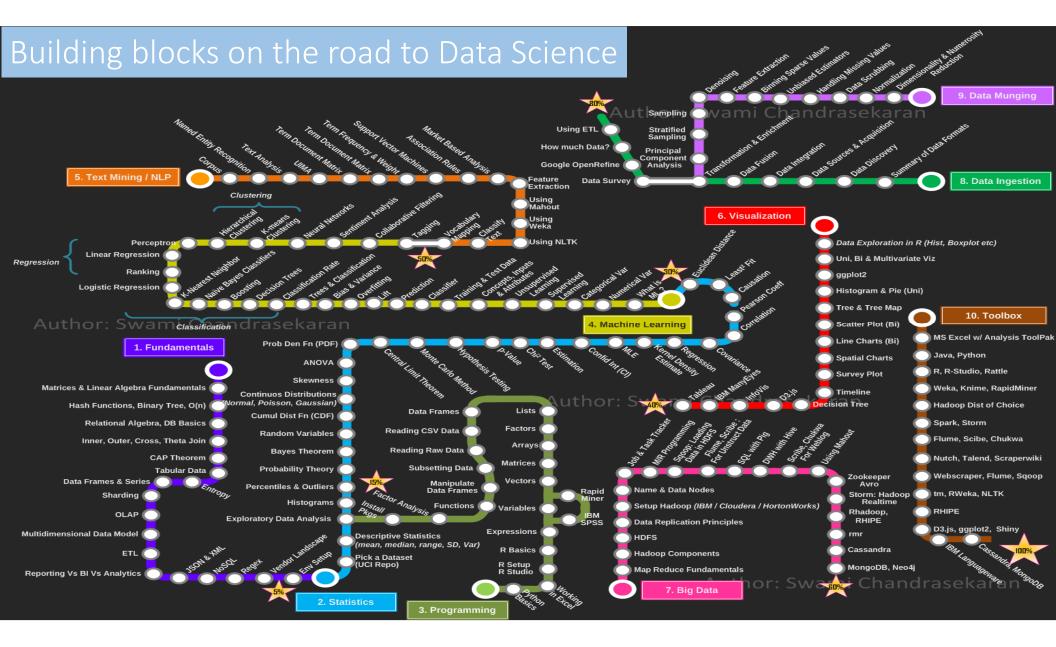

Math-based role: Industrial Engineers


Mathematicians


Math-based role: Mathematical Scientists

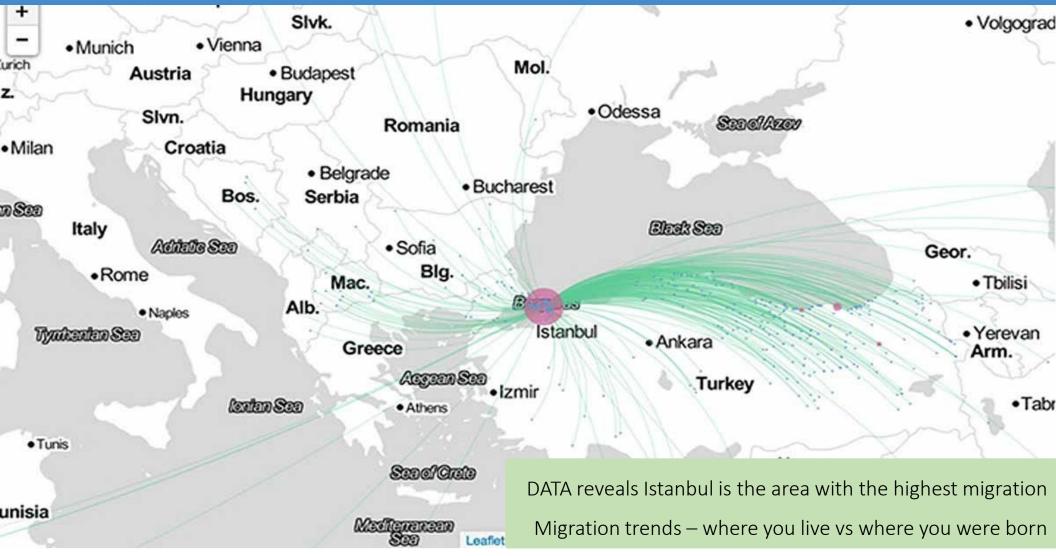

Math-based role: Mathematical Technicians

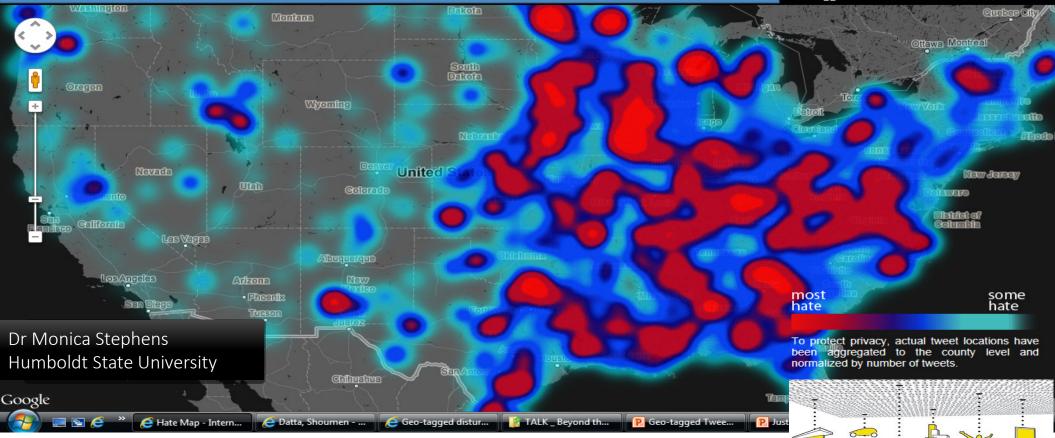
Math-based role: Operations Research


Math-based role: Statisticians

Math-phobia: A grande opportunity disguised as a US skills shortage

By 2018, US will experience a shortage of 190,000 skilled data scientists, and 1.5 million managers and analysts required to reap the actionable insights from the big data deluge. With an estimated 40,000 exabytes of data being collected by 2020 (2,700 exabytes in 2012) the implications of this shortage is a major opportunity. Further driving this explosion in data collection and the demand for skilled practitioners, is the wide range of economic sectors that will leverage big data analytics in the next decade, including retail, manufacturing, healthcare, government & cybersecurity.


http://blog.gopivotal.com/pivotal/news-2/mckinsey-report-highlights-the-impending-data-scientist-shortage#sthash.gBtyRaPg.dpuf


Data Science

The Emperor's New Clothes (it is the same Emperor inside his new clothes)

1.2 billion (of ~7 billion global population) connects via Facebook (2010)

Twitter Data Analytics from Geo Tagged Social Signals

Mapping demand is a variable linked to personality and mobility. Juveniles may tweet each time they pass *McDonald's* but it is unlikely that adults may want to tweet if they want to eat pasta or prawns for dinner. http://senseable.mit.edu/wikicity/rome/

🔙 Shoumen Datta 🝷 🔧

Hate

UNIVERSITY DATABASE, I...

Geography of

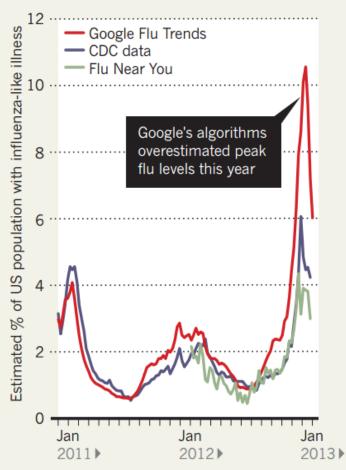
Geotagged Hateful Tweets in the United States

EPIDEMIOLOGY

When Google got flu wrong

US outbreak foxes a leading web-based method for tracking seasonal flu.

BY DECLAN BUTLER


When influenza hit early and hard in the United States this year, it quietly claimed an unacknowledged victim: one of the cutting-edge techniques being used to monitor the outbreak. A comparison with traditional surveillance data showed that Google Flu Trends, which estimates prevalence from flu-related Internet searches, had drastically overestimated peak flu levels. The glitch is no more than a temporary setback for a promising strategy, experts say, and Google is sure to refine its algorithms. But as flu-tracking techniques based on mining of web data and on social media proliferate, the episode is a reminder that they will complement, but not substitute for, traditional epidemiological surveillance networks.

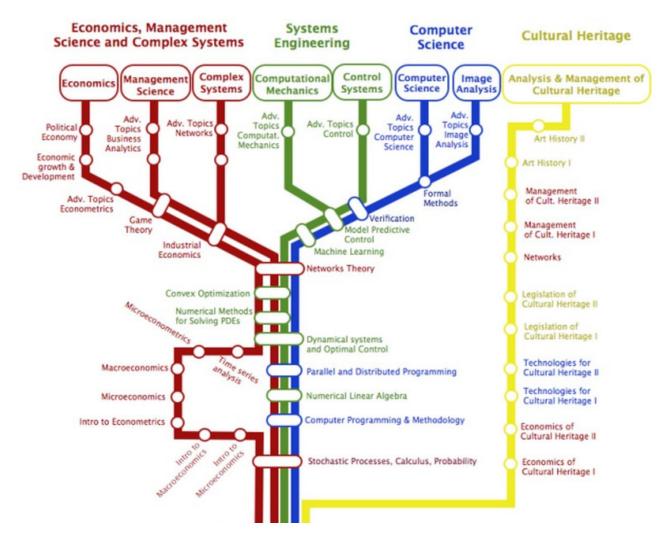
"It is hard to think today that one can provide disease surveillance without existing systems," says Alain-Jacques Valleron, an epidemiologist at the Pierre and Marie Curie University in Paris, and founder of France's Sentinelles monitoring network. "The new systems depend too much on old existing ones to be able to live without them," he adds.

This year's US flu season started around November and seems to have peaked just after Christmas, making it the earliest flu season since 2003. It is also causing more serious illness and deaths than usual, particularly among the elderly, because, just as in 2003, the predominant strain this year is H3N2 — the most

FEVER PEAKS

A comparison of three different methods of measuring the proportion of the US population with an influenza-like illness.

The bottom line – Data must be analyzed in context 14 FEBRUARY 2013 | VOL 494 | NATURE | 155

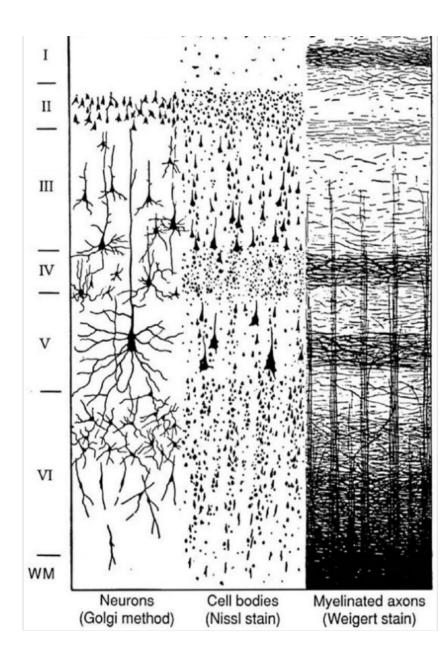

Context of Data Analytics – Environment, Dependencies and Ecosystems

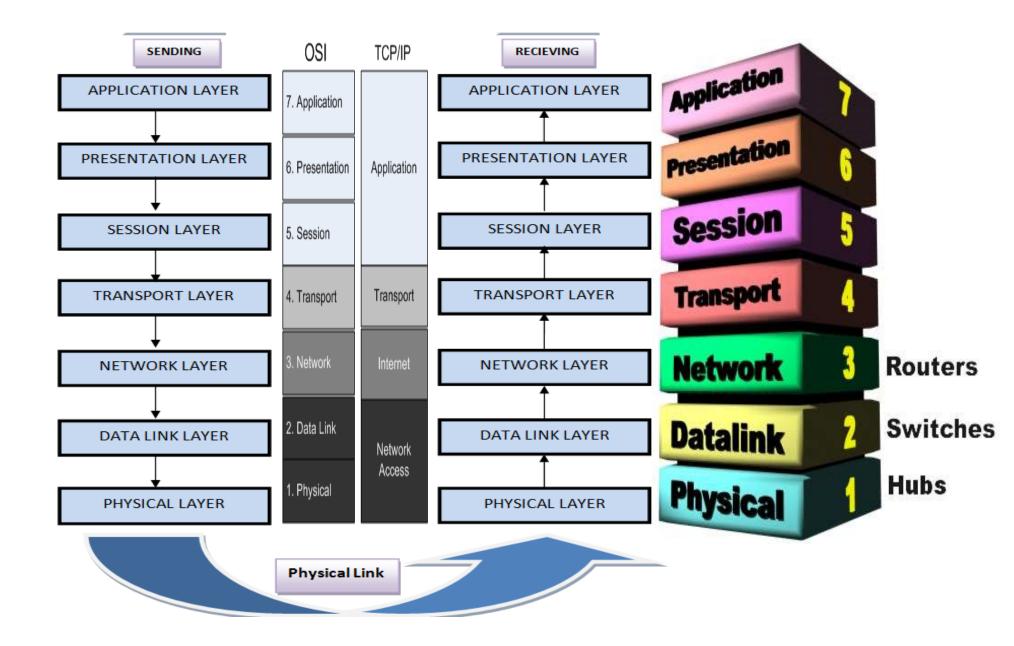
Data science without context is noise, context without measurable data is impotent.

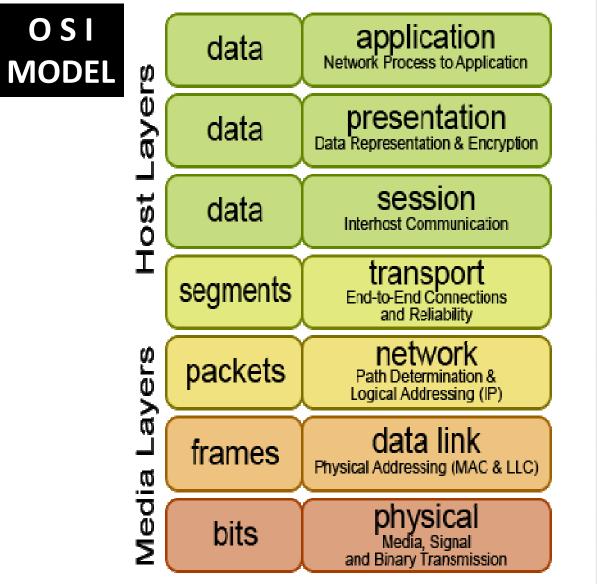
Science without religion is lame, religion without science is blind – Albert Einstein

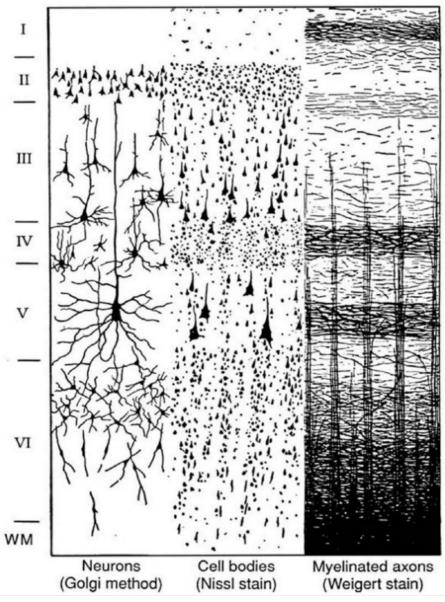
Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium

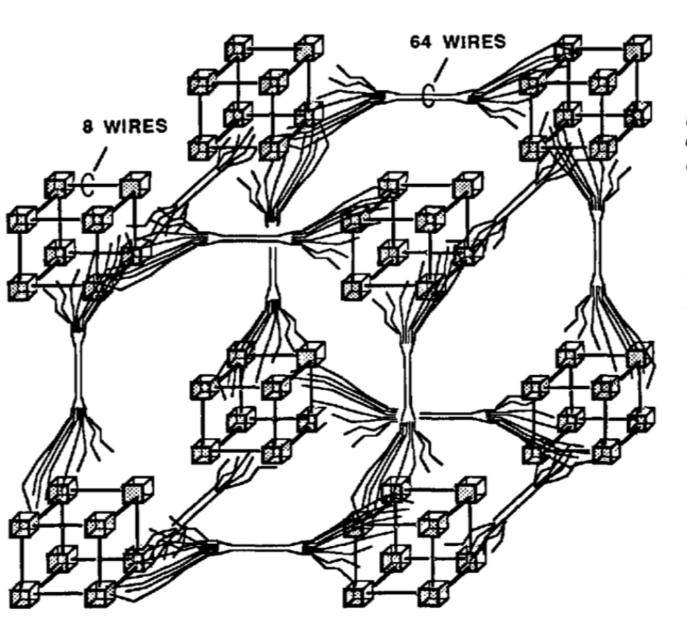
Think and Connect like a Neuron


Extracting value from data analytics to generate information


Santiago Ramón y Cajal




Slice of neo-cortex, as identified by Cajal. Every cubic mm contains about 100,000 neurons and 2-4 km of axons and dendrites. Layers I-VII on the right = 2mm vertical distance.


Born	1 May 1852 <u>Petilla de Aragón</u> , <u>Navarre, Spain</u>		
Died	18 October 1934 (aged 82) <u>Madrid</u> , <u>Spain</u>		

Here, 8 agents make a little cube, and 8 such cubes make a 64-agent supercube.

If we join 8 of these supercubes, we'll have 512 agents. And if we repeat this cube-on-cube pattern ten times, the resulting supercube will contain a billion agents!

But if we link each agent to 30 others instead of only 6, then each agent could communicate with a billion others in only 6 steps.

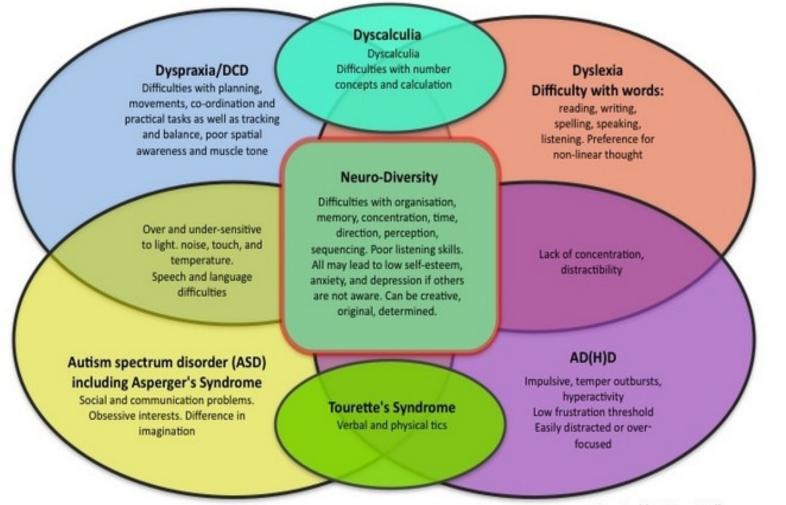
> THE SOCIETY OF MIND Marvin Minsky (1959)

Hierarchical Temporal Memory (HTM) integrates the semantics of time

Section of a HTM region, equivalent to 1 layer of neurons in the neocortical region (layer 3). Each 4-cell column connects to a subset of the input and each cell connects to other cells in the region (connections are not shown). The principle of this connectivity was abstracted in Minsky's cube-on-cube.

Numenta

HTM (CLA) attributes include time and context – essential for many CPS (cyberphysical systems) applications and data analytics (context)


Hierarchical Temporal Memory (HTM) is a machine learning tool to capture the structural and algorithmic properties of the neocortex which is the seat of intelligent thought in the mammalian brain. High level vision, hearing, touch, movement, language and planning are performed by the neocortex. Given such a diverse suite of cognitive functions, the neocortex may be expected to implement an equally diverse suite of specialized neural algorithms. In reality, the neocortex displays a remarkably uniform pattern of neural circuitry. In other words, the neocortex implements a common set of algorithms to perform many different intelligence functions. It may be analogous to an abstraction which is used in a systemic context.

Programming HTM cortical learning algorithms require training through exposure to a stream of sensory data (capabilities are determined largely by exposure). HTM is a memory based ANN system. HTM networks are trained on time varying data and rely on storing a large set of patterns and sequences. A crucial distinction of HTM is embedded in the semantics of time which is an important element in applications relating to cyberphysical systems (CPS). Classic computer memory has a flat organization and does not have an inherent notion of time because the semantics of time are not available in the ISA (instruction set architecture). Therefore, in the classical programming environment, we can implement any kind of data organization and structure on top of the flat computer memory and control how and where information is stored.

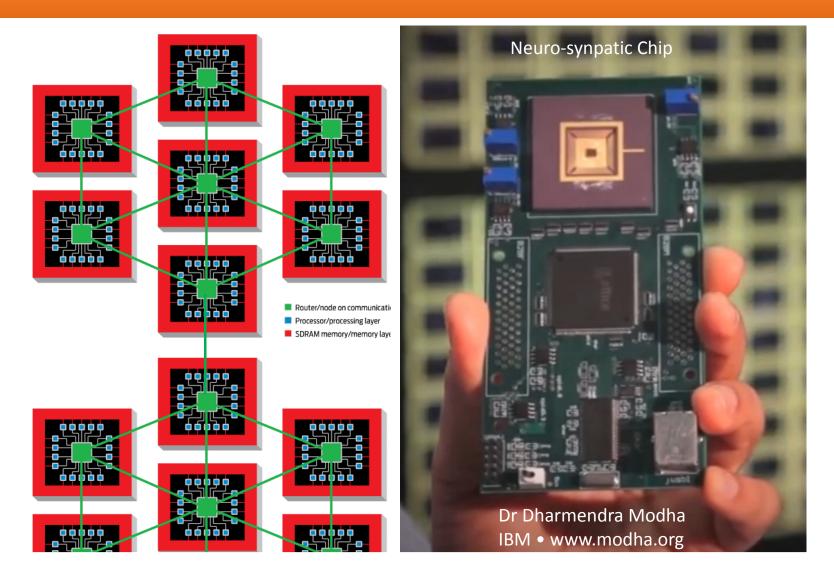
HTM memory is more restrictive. HTM memory has a hierarchical organization and is inherently time based. Information is always stored in a distributed fashion. HTM user is expected to specify the size of the hierarchy and what to train the system on but the HTM controls where and how information is stored (data, patterns, text, sequences). Hence, HTMs are learning and prediction machines that can be applied to many types of problems through the inherent abstractions in the system. Although an HTM region is equivalent to only one portion of a neocortical region (layer 3), it can perform inference and prediction on complex data streams. Hence the significance of HTMs in data analytics in multiple domains or verticals.

Although neurons in the neocortex are highly interconnected, inhibitory neurons guarantee that only a small percentage of the neurons are active at one time. Thus, information in the brain is always represented by a small percentage of active neurons within a large population of neurons. This kind of encoding is called a "sparse distributed representation" where a small percentage of neurons are active at one time. "Distributed" refers to the fact that the activation of many neurons are required in order to represent something. A single active neuron conveys some meaning but it must be interpreted within the context of a population of neurons to convey the full or complete meaning relevant to the context.

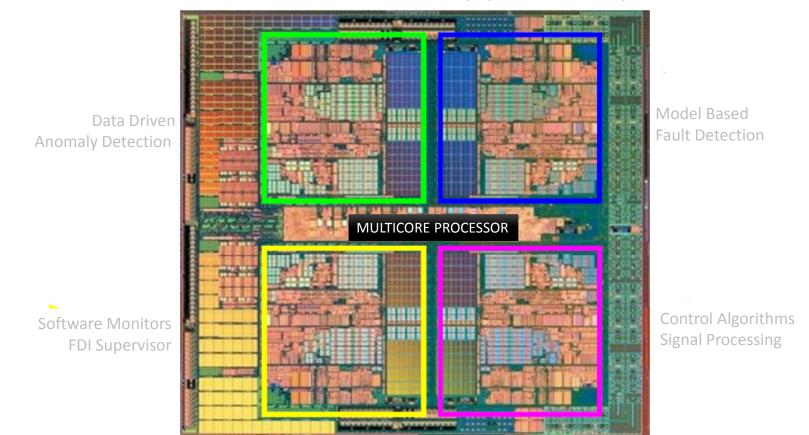
Understanding the neurological basis of certain anomalies provides clues to information/data processing

Created by Mary Colley

Neurons connect to process data and information using the mechanism of pattern recognition



Synapses can connect, converge and coalesce data from various regions to generate precise response



Neuro-Synaptic Chips & Multi-core platforms for parallel processing of noisy, multi-modal, unstructured data

Industrial Internet applications of multi-core platforms: Embedded Fault Detection for Safety-Critical Systems

without reliance on the need for physical redundancy

Aviation Industry • in-flight monitoring data and aircraft maintenance based on data analytics

Design MOOC to offer ANN – HTM Training ?

Lets the MOOCs begin

Workforce Preparation

The Open Source Data Science Masters

Curriculum

This project is maintained by datasciencemasters

Ready?

The Open Source Data Science Curriculum

Start here. Intro to Data Science UW / Coursera

 Topics: Python NLP on Twitter API, Distributed Computing Paradigm, MapReduce/Hadoop & Pig Script, SQL/NoSQL, Relational Algebra, Experiment design, Statistics, Graphs, Amazon EC2, Visualization.

Data Science / Harvard Video Archive & Course

• *Topics:* Data wrangling, data management, exploratory data analysis to generate hypotheses and intuition, prediction based on statistical methods such as regression and classification, communication of results through visualization, stories, and summaries.

Data Science with Open Source Tools Book

- Topics: Visualizing Data, Estimation, Models from Scaling Arguments, Arguments from Probability Models, What you Really Need to Know about Classical Statistics, Data Mining, Clustering, PCA, Map/Reduce, Predictive Analytics
- · Example Code in: R, Python, Sage, C, Gnu Scientific Library

Math

Linear Algebra & Programming

- Linear Algebra / Levandosky Stanford / Book \$10
- · Linear Programming (Math 407) University of Washington / Course

Statistics

- Statistics | Princeton / Coursera
- Stats in a Nutshell Book \$29
- Think Stats: Probability and Statistics for Programmers Digital & Book \$25
- Think Bayes Digital & Book \$25

Differential Equations & Calculus

- Differential Equations in Data Science Python Tutorial
- Problem Solving
 - Problem-Solving Heuristics "How To Solve It" Polya / Book \$10

Capstone Project

- Capstone Analysis of Your Own Design; Quora's Idea Compendium
- Healthcare Twitter Analysis Coursolve & UW Data Science

Resources

- DataTau The "Hacker News" of Data Science
- Metacademy Search for a concept you want to learn
- Coursera Online university courses
- Wolfram Alpha The smart number and info cruncher
- Khan Academy High quality, free learning videos
- Wikipedia The free encyclopedia
- The Signal and The Noise Nate Silver Pop-Sci Data Analysis \$15
- Zipfian Academy's List of Resources
- A Software Engineer's Guide to Getting Started with Data Science
- Data Scientist Interviews Metamarkets
- /r/MachineLearning Reddit

Algorithms

- Algorithms Design & Analysis I Stanford / Coursera
- Algorithm Design, Kleinberg & Tardos Book \$125
- Distributed Computing Paradigms
 - *See Intro to Data Science UW / Lectures on MapReduce
 - Intro to Hadoop and MapReduce Cloudera / Udacity Course *includes select free excerpts of Hadoop: The Definitive Guide Book \$29
- Databases
 - SQL Tutorial w3schools / Tutorials
 - SQL Tutorial SQLZOO / Tutorials
 - Introduction to Databases Stanford / Online Course
- Data Mining
 - Mining Massive Data Sets Stanford / Digital & Book \$58
 - Mining The Social Web Book \$30
 - Introduction to Information Retrieval / Stanford Digital & Book \$56

OSDSM Specialization: Web Scraping & Crawling

- Machine Learning
 - Machine Learning Ng Stanford / Coursera
 - A Course in Machine Learning UMD / Digital Book
 - Programming Collective Intelligence Book \$27
 - The Elements of Statistical Learning / Stanford Digital^A & Book \$80
 - Machine Learning Caltech / Edx
 - Neural Networks U Toronto / Coursera

- Statistical Network Analysis & Modeling
 - · Probabilistic Programming and Bayesian Methods for Hackers Github / Tutorials
 - Probabalistic Graphical Models Stanford / Coursera
- Natural Language Processing
 - NLP with Python (NLTK library) Digital, Book \$36
- Analysis
 - Python for Data Analysis Paper Book \$24
 - Big Data Analysis with Twitter UC Berkeley / Lectures
 - · Social and Economic Networks: Models and Analysis / Stanford / Coursera
- Visualization
 - Envisioning Information Tufte / Book \$36
 - The Visual Display of Quantitative Information Tufte / Book \$27
 - Data Visualization, CS 171 Harvard / Lectures
 - · Data Visualization, CSE512 University of Washington / Slides
 - Scott Murray's Tutorial on D3 Blog / Tutorials
 - Berkely's Viz Class UC Berkeley / Course Docs
 - Rice University's Data Viz class Rice University

Python (Learning)

- Learn Python the Hard Way Digital & Book \$23
- Python Class / Google
- Think Python Digital & Book \$34
- Introduction to Computer Science and Programming MIT OpenCourseWare / Lectures

Python (Libraries)

Installing Basic Packages Python, virtualenv, NumPy, SciPy, matplotlib and IPython & Using Python Scientifically

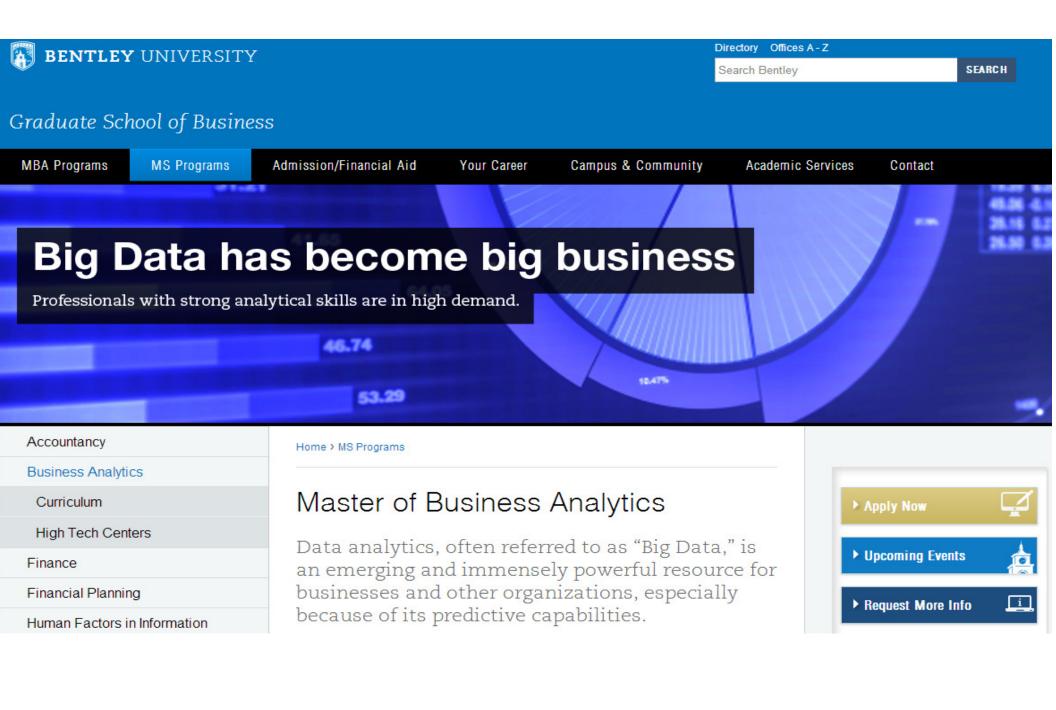
More Libraries can be found in related specialiaztions

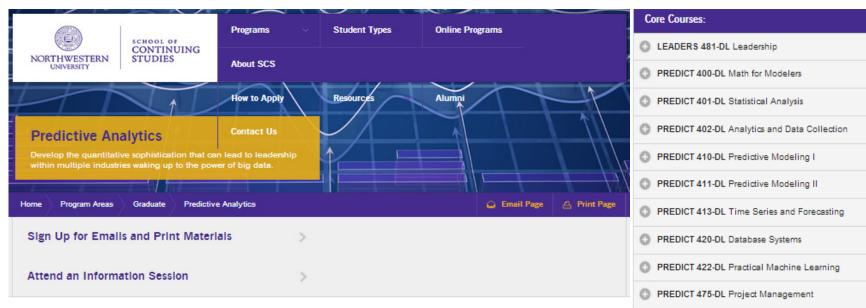
- Data Structures & Analysis Packages
 - Flexible and powerful data analysis / manipulation library with labeled data structures objects, statistical functions, etc pandas & Tutorials Python for Data Analysis / Book

Machine Learning Packages

- scikit-learn Tools for Data Mining & Analysis
- Networks Packages
 - networkx Network Modeling & Viz

Statistical Packages


- · PyMC Bayesian Inference & Markov Chain Monte Carlo sampling toolkit
- Statsmodels Python module that allows users to explore data, estimate statistical models, and perform statistical tests
- PyMVPA Multivariate Pattern Analysis in Python


Natural Language Processing & Understanding

- NLTK Natural Language Toolkit
- Gensim Python library for topic modelling, document indexing and similarity retrieval with large corpora. Target audience is the natural language processing (NLP) and information retrieval (IR) community.
- Live Data Packages
 - twython Python wrapper for the Twitter API
- Visualization Packages
 - Orange Open source data visualization and analysis for novice and experts. Data mining through visual programming or Python scripting. Components for machine learning. Add-ons for bioinformatics and text mining

· iPython Data Science Notebooks

Data Science in IPython Notebooks (Linear Regression, Logistic Regression, Random Forests, K-Means Clustering)

Predictive Analytics	Program Overview:	PREDICT 498-D
Program Overview	Master of Science in Predictive Analytics Online	O PREDICT 590-D
Curriculum		
Course Schedule	"Big Data." You can find the term everywhere in the media tied to growth and innovation across the public and private sectors in nearly every major industry. But what does "Big Data" really mean? More importantly, how can organizations benefit from it? With new data acquisition technologies come vast new sources of	Elective Courses:
Faculty	data that can be analyzed to enhance organizational effectiveness, customer service, returns on investment, and a myriad of other business goals.	PREDICT 412-D
Admission	The Master of Science in Predictive Analytics (MSPA) program, established in 2011, is a fully online part-	
Tuition and Financial Aid	time graduate program, one of the first to offer dedicated training in data science. Fully accredited graduate-level courses cover business management and communications, information technology, and	PREDICT 450-D
Registration Information	modeling. Small class sizes promote extensive online interaction among students and our elite faculty, who possess extensive education and business experience. Students gain critical skills for succeeding in today's data-intensive world, including business case study, data analysis, and making recommendations to	C PREDICT 451-D
Career Options	management. They learn how to utilize database systems (SQL and NoSQL) and analytics software built upon R, Python, and SAS. They learn how to make trustworthy predictions using traditional statistics and	C PREDICT 452-D
Program Overview	machine learning methods. With a wide range of elective courses to choose from, students can customize	-
<u>Change Program</u>	their studies across a variety of data science disciplines, including marketing analytics, risk analytics, text analytics, and web and network data science. Special topic electives are offered each term, providing	PREDICT 453-D
	additional study opportunities, including decision analytics, financial market models and time series forecasting, sports analytics, geographical information systems, operations management, mathematical including the standard state and the first state of the stat	O PREDICT 455-D
Graduate Options	programming, simulation methods, and analytics for total quality management. All courses are available in an asynchronous online format, with recorded lectures and tutorials. Find out more about online learning at	
Featured Faculty	<u>SCS.</u>	PREDICT 490-D

PREDICT 412-DL Advanced Modeling Techniques PREDICT 450-DL Marketing Analytics

PREDICT 498-DL Capstone Project

PREDICT 590-DL Thesis Research

- PREDICT 451-DL Risk Analytics
- PREDICT 452-DL Web Analytics
- PREDICT 453-DL Text Analytics
- PREDICT 455-DL Data Visualization
- PREDICT 490-DL Special Topics

Graduate Dr Shoumen Palit Austin Datta

Berkeley School of Information

ABOUT ADMISSIONS

OMISSIONS ACADEMICS

datascience@berkeley

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium (www.iiconsortium.org) • Research Affiliate, MIT

FOUNDATION COURSES (15 UNITS)	UNITS
Research Design and Application for Data and Analysis	3
Exploring and Analyzing Data	3
Storing and Retrieving Data	3
Introduction to Machine Learning	3
Visualizing and Communicating Data	3

ADVANCED COURSES WILL INCLUDE (9 UNITS)

Really Big Data: Scaling up and Parallelism	3
Experiments and Experimentation with Data	3
Privacy, Security, and Ethics of Data	3

CAPSTONE COURSE (3 UNITS)

Beyond Data

Science and Engineering MOOC

ARIZONA STATE UNIVERSITY

Core Courses:

Students must select seven (7) core courses

- · IEE 556 Introduction to Systems Engineering
- IEE 505 Information Systems Engineering
- IEE 512 Introduction to Financial Engineering
- IEE 530 Enterprise Modeling
- IEE 541 Engineering Administration
- IEE 545 Simulating Stochastic Systems
- IEE 552 Strategic Technologic Planning (management course meeting MEng requirements)
- IEE 572 Design of Experiments (math course meeting MEng requirements)
- IEE 574 Applied Deterministic Operations Research

Elective Courses:

Select two electives from one area:

Software:

- CSE 563 Software Requirements and Specifications
- CSE 566 Software Project, Process and Quality Management
- CSE 561 Modeling and Simulation Theory and Application
- CSE 598 Software Analysis and Design

Hardware

- · EEE 581 Filtering of Stochastic Processes
- · EEE 582 Linear System Theory
- EEE 585 Digital Control Systems
- · EEE 586 Nonlinear Control Systems
- · EEE 587 Optimal Control Systems

Capstone:

· IEE 593 Applied Project - Systems Engineering

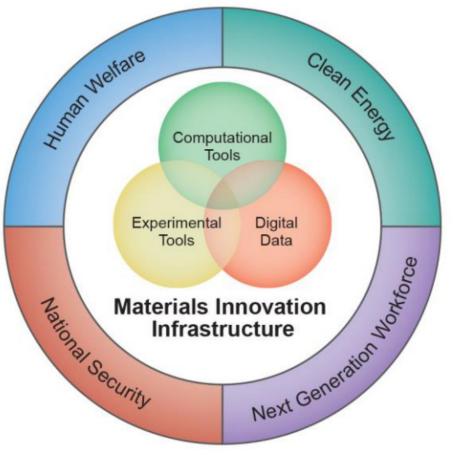
a Nuclear & Radiological Engineering A Medical Physics

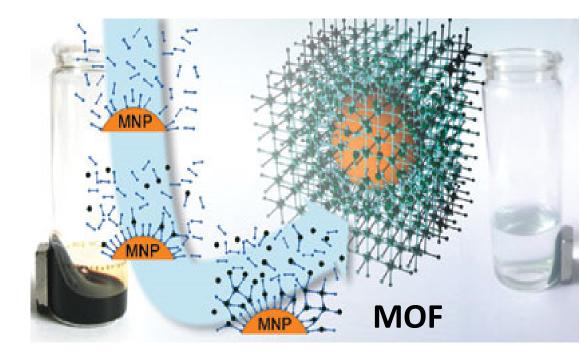
Q Search... The School 🗸 😡

The George W. Woodruff School of Mechanical Engineering

ACADEMICS	RESEARCH	FACULTY & STAFF	ALUMNI	NEWS & EVENTS	GIVING		
Graduate Program > Distance Learning							

Distance Learning


The medical physics degree program is available to distance-learning students at Georgia Tech. All of the required courses and some of the elective courses are offered via distance learning. For most classes video cameras record faculty lectures and student-faculty interaction during regular, semester-long graduate classes. The videotapes and supporting course materials are sent to off-campus students for viewing at their convenience. For classes involving a laboratory component (e.g. MP 6757, MP 6203, MP 6204), distance learning students are expected to travel to Georgia Tech on select weekends to complete the laboratories.


The admission criteria and degree requirements for distance-learning students are the same as those for oncampus students with the exception of the clinical rotation, which is to be fulfilled at a hospital or clinic close to the student's place of residence and as approved by the Georgia Institute of Technology. The internship policy for the distance learning students is detailed on the <u>Clinical Rotation Page</u>.

Procedures and Forms

- · Student Evaluation From (Form A)
- Laboratory/task Substitution Form (Form B)
- · Distance Learning Facility Information Form (Form C)
- Distance Learning Form of Intent (Form D)
- Distance Learning Authorization Form (Form E)
- · Distance Learning Supervisor Agreement Form (Form F)
- Task Completion Form (Form G)
- Task List Approval Form (Form H)
- DL facility MOU

We live in a material world – think graphene, think metal-organic frameworks

Material Genome Initiative (White House, June 2014)

Chemistry is the Central Science – The US Material Genome Initiative

WORKFORCE		National Security	Human Health and Welfare	Clean Energy Systems	Infrastructure and Consumer Goods
	Biomaterials	0	•	0	•
DEVELOPMENT	Catalysts	0	•	•	•
	Polymer Composites	•	•	0	•
	Correlated Materials	•	0	•	•
	Electronic and Photonic Materials	•	0	•	•
	Energy Storage Systems	•	•	•	•
<i>How can MOOC help? What types of courses?</i>	Lightweight and Structural Materials	•	•	•	•
What forms of training? What are the pre-requisites?	Organic Electronic Materials	0	•	0	•
How relevant is this to Taiwan?	Polymers	0	•	0	•
	Primary	o Seconda	ary www.nist.go	ov/mgi/upload/MG	il-StrategicPlan-2014.pdf

Material Genome Initiative (MGI) may mimic nanoHUB Software Network

The development and distribution of software tools by the Materials Genome Initiative could emulate the nanoHUB.org, an online nanotechnology simulation community developed and operated by the US NSF's Network for Computational Nanotechnology at Purdue University.

NanoHUB empowers a worldwide community cloud-based scientific computing and educational resources, providing a library of over 3,300 seminars, tutorials and teaching materials to a global community of 257,000.

NanoHUB's impact on research is demonstrated by more than 1,030 citations in the scientific literature and over 6,000 secondary citations. Furthermore, nanoHUB makes more than 270 constantly evolving simulation and modeling tools universally accessible and useful via fully interactive sessions in the cloud. Some 12,500 users run more than 430,000 simulations annually without any software installation, by using a web browser. Additionally, nanoHUB simulations are used at more than 180 institutions in formal classroom training that has reached 19,000 students to date. The image (next) depicts the 250,000 users participating in nanoHUB as of 02/2013.

Material Genome Initiative (MGI) may mimic nanoHUB Software Network

nanoHUB.org – NSF's online nanotechnology simulation community operated by Purdue University • Red – education • Yellow - simulation

Pharmaceutical **Chemistry Online**

Enroll in a Master's of Science Degree in Pharmaceutical Chemistry from the University of Florida, College of Pharmacy! Join a growing number of scientists who are receiving their graduate science degrees from the University of Florida's prestigious online programs.

Pharmaceutical Chemistry - Educated Inspiration

- Master a challenging field of science
- · Prepare for or enhance a career in pharmaceutical innovation and regulation
- · Contribute to life saving remedies and enhance the speed of delivery of new medications
- · Translate your personal experiences to benefit others

WORKFORCE DEVELOPMENT

How can MOOC help?
What types of courses?
What forms of training?
What are the pre-requisites?
How relevant is this to Taiwan?

10.000	Course # Course Title		Credits			
1	PHA 6432	Fundamentals of Pharmaceutical Chemistry		1		
PHA 6535		Principles of Nucleotide Activity				
	PHA 6417 PHA 6935	Pharmaceutical Analysis 2 <u>OR</u> Organic Structure Elucidation	3			
	VME 6766	Laboratory QA/QC	3			
	PHA 6444	Pharmaceutical Chemistry 1	3			
	PHA 6543	Pharmaceutical Chemistry 2	3			
	PHA 6935	PHA 6935 Metabolic Biochemistry				
	PHA 6425	Drug Biotransformation & Molecular Mechanisms of Toxicity				
	VME 6650	Mammalian Pharmacology		4		
		Synthetic Medicinal Chemistry OR Introduction to Medical Bioethics		3		
		Natural Medicinal Products <u>OR</u> Herbal and Dietary Supplements		3		
	PHA 6936	Special Topics in Pharmaceutical Chemistry		1		
of	of Engineering, Massachusetts Institute of Technology (MIT) • <u>http://bit.ly/S-Datta</u>					

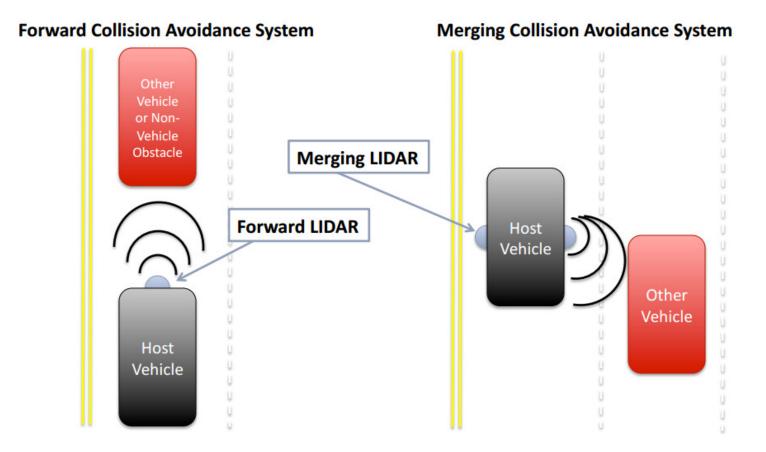
Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium (www.iiconsortium.org) • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT) • http://bit.ly/S-Datta

Can MOOC fast track imagination, invention and innovation?

Learn the basics on your own time, all classes are creative labs, evolve as an entrepreneur

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium • Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

Automobile Collision Avoidance System (ACAS)


Not a class but a handson class project at UMD

Adi Lang, Deepa Jonnagadla, Alex Atahua & Andy Hammond

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium

UMD Mid Term Project – According to the US NHTSA ~40,000 are killed due to automobile collision. We will design a system to avoid collision.

Dr Shoumen Palit Austin Datta

SVP, Industrial Internet Consortium (www.iiconsortium.org)

Research Affiliate, School of Engineering, Massachusetts Institute of Technology (MIT)

http://bit.ly/S-Datta

UMD Mid Term Project – According to the US NHTSA ~40,000 are killed due to automobile collision. We will design a system to avoid collision.


			A	«block» CASystem			
Cost : Dollar Weight : Kilogram							
		4 4 1 4					
«block» SensorNetwork			«block» CPU	«block» Memory	«block» ForwardCAS		«block» MergingCAS
Cost : Dollar Veight : Kilogram	values		values Cost : Dollar Frequency : MH: Weight : Kilogram		values Cost : Dollar Weight : Kilogram	_	vakws Cost : Dollar Weight : Kilogram
			eblo BrakingCom valo Cost : Dollar Frequency : Hz Weight : Kilogra	trolSystem Vibr	«block» atingSteeringWhee values Dollar ion : seconds iency : Hz(unit = herta Amplitude : nm	values Cost : Dollar Frequency : kHz	7
«block» ngular Gyroscope values	<pre>«block» Odometer values Cost: Dollar</pre>	values	«block» Speedometer values ost : Dollar		nt : Kilogram	eblock>	<pre>definition </pre>
ethors + tr(unit = hertz) plution : arcseconds ht : Kilogram	bistance : meter Weight : Kilogram	Frequency : kHz Wavelength : nm Weight : Kilogram	Veight : Kilogram	Weight : Kilogram	AudibleWarning values Cost : Dollar Frequency : kHz Volume : Decibels Weight : Kilogram	VisualWarningIndicator values Cost : Dollar Frequency : kHz Power : Watt Weight : Kilogram	RestrictedSteeringSyste values Cost : Dollar Weight : Kilogram
InertialMeasurementU values AngularRange : Radians Cost : Dollar Weight : Kilogram		r MergingL values cost : Dolla	IDAR KHz				eblocks OnOffButtons valves Cost : Dollar Weight : Kilogram

POST-MOOC panacea or post-modern optimism? Little bit of both ?

Agriculture Classroom

Agriculture Laboratory

Discussion

- History
- Context
- Purpose
- Economy
- Denominator
- Data
- Conclusion

Analysis – The Value of MOOCs depends on context and purpose


Dikran W. Kassabian Published on Monday, June 16, 2014

MOOCs may not yet (and may not ever) be the "game changers" for higher education that some predicted. The chance to pursue university mission goals through a high-profile development in higher education that promotes university image, gives some members of the faculty a much larger audience and is perceived positively by a public seeking increased connection with an otherwise exclusive university, is an opportunity too good to pass up.

The exuberance of 2012 has faded, replaced by the skepticism of 2014, but at the early adopter universities, MOOCs appear poised to play an important role in the higher education picture for at least the next few years, perhaps beyond, with a strong value proposition: supporting the goal of improving on-campus teaching and learning while also promoting the university and its faculty. At the same time, the elite universities connect with the public through educational outreach, demonstrating leadership in an emerging higher education learning technology related to jobs.

Followers of MOOC may find it prudent to discard the penchant for best practices. If you have or if you can create a game-changing potential, then, past development challenges are a poor guide to your future development pathway.

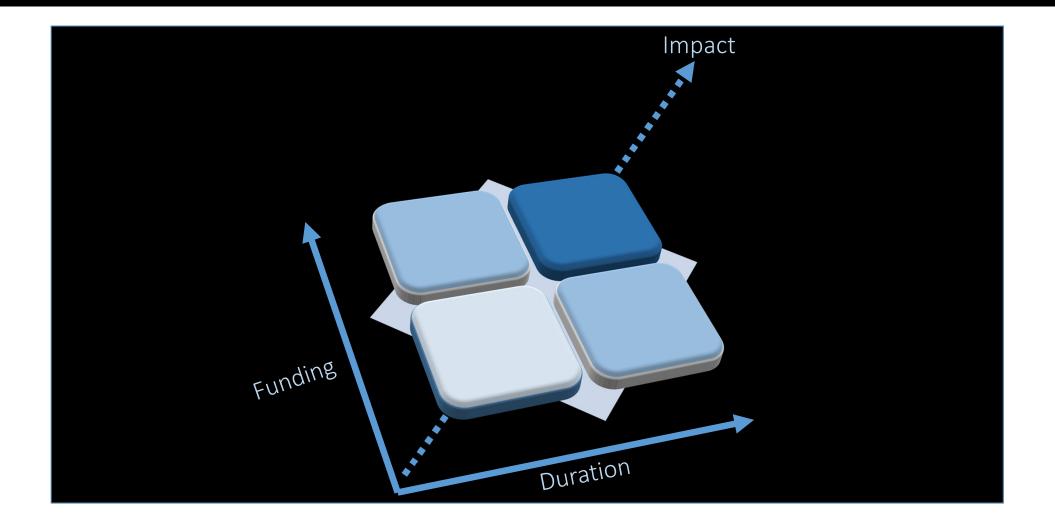
Your Focus – What, Where, How, When vs MOOC, GDP, Jobs, Education

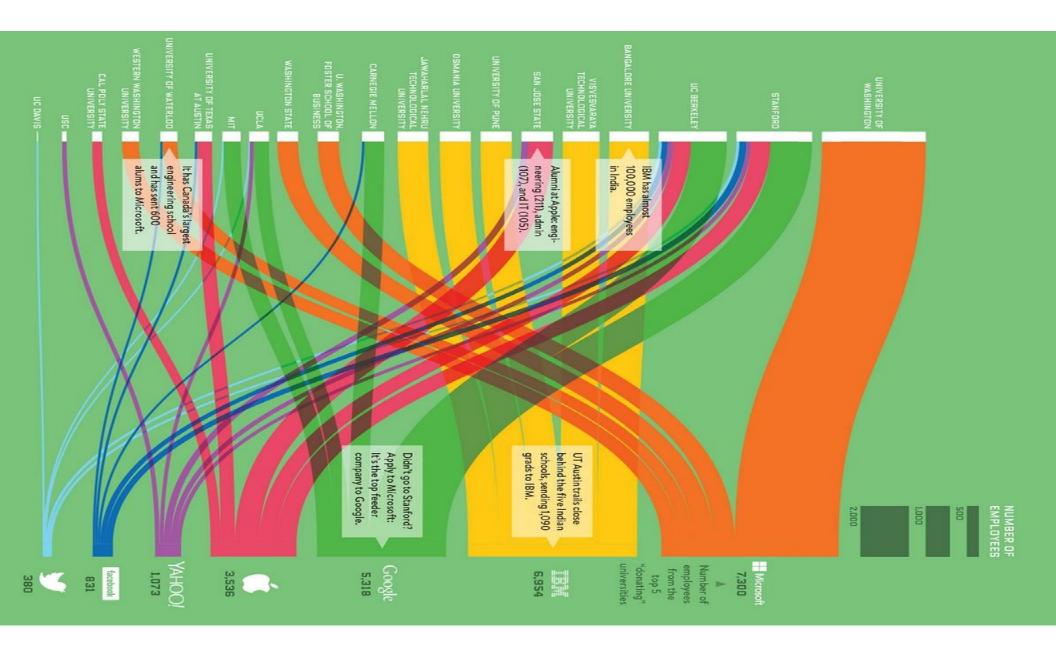
297

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium (<u>www.iiconsortium.org</u>) • Research Affiliate, School of Engineering, Massachusetts Institute of Technology • <u>http://bit.ly/S-Datta</u> • shoumen@mit.edu

Watch and avoid stupidity → *example*

Watch: a viral economics course that can be completed in one sitting


Image Credit: Flickr User LendingMemo


June 26, 2014 11:30 AM Gregory Ferenstein

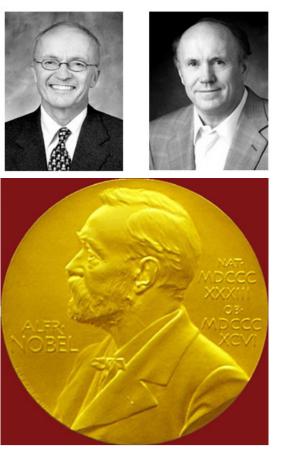
The next frontier in higher education may be viral courses that can be completed in a single day. One of my favorite economists, Tyler Cowen of Marginal Revolution, is out with a new course on "Everyday Economics", complete with short quizzes and eye-candy visual lectures.

Dr Shoumen Palit Austin Datta Senior Vice President, Industrial Internet Consortium Research Affiliate, School of Engineering, Massachusetts Institute of Technology Are you asking the correct questions? There are no quick fixes, there are no rapid returns but there are costly band-aids.

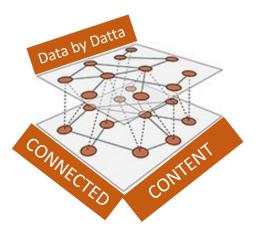
Future-Ready Fiction

Please download this book from http://bit.ly/MIT-Made-in-Taiwan

THANK YOU


CONSCIENCE AND Common Sense

Far Reaching Changes in the Near Future


Shoumen Palit Austin Datta

Prize in Economic Sciences in Memory of Alfred Nobel 2004

Professor Finn Kydland, Mrs Tanya Kydland, Professor JrJung Lyu and Mr Max Webber on 11 October 2006 in Helsinki, Finland edit 💼

For additional information please visit http://bit.ly/MIT-Made-in-Taiwan

Dr Shoumen Palit Austin Datta • SVP, Industrial Internet Consortium (www.iiconsortium.org) • Research Affiliate, School of Engineering, Massachusetts Institute of Technology • http://bit.ly/S-Datta • shoumen@mit.edu