
MIT Open Access Articles

Standards opportunities around data-bearing Web pages

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Karger, D. “Standards Opportunities Around Data-Bearing Web Pages.” Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, no.
1987 (February 18, 2013): 20120381–20120381.

As Published: http://dx.doi.org/10.1098/rsta.2012.0381

Publisher: Royal Society, The

Persistent URL: http://hdl.handle.net/1721.1/87043

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/87043
http://creativecommons.org/licenses/by-nc-sa/4.0/

Standards Opportunities around
Data-Bearing Web Pages

David Karger

January 17, 2013

Abstract

The evolving web has seen ever-growing use of structured data, thanks to the way it enhances
information authoring, querying, visualization, and sharing. To date, however, most structured data
authoring and management tools have been oriented towards programmers and web developers. End
users have been left behind, unable to leverage structured data for information management and
communication as well as professionals.

In this article, I will argue that many of the benefits of structured data management can be
provided to end users as well. I will describe an approach and tools that allow end users to define their
own schemas (without knowing what a schema is), manage data, and author (not program) interactive
web visualizations of that data using the web tools with which they are already familiar, such as plain
web pages, blogs, wikis, and WYSIWYG document editors. I will describe our experience deploying
these tools and some lessons relevant to their future evolution.

1 Introduction
The web dramatically simplified, and thus democratized, information authoring and sharing. Anyone
whose organization was operating a web server could author content and make it available for all web
users to access with a single click. Unlike the plain-text content of Usenet newsgroups, this content
could be beautified by the user who managed format and layout and embedded images. Users could
control not only their content but also how it was presented. The result was an explosion of end-user-
authored content that became available to others throughout the world.

The web has evolved to make authoring even easier. Blogs allow users to post content for themselves
and wikis help them to manage content collaboratively. WYSIWYG HTML editors abound, freeing
users of the need to see, understand, or edit HTML source code. Even prior to such editors, in the early
days of the web, many users managed to publish without learning HTML (or CSS) as they could simply
copy someone else’s document and modify small portions of the content.

But the continuing evolution of the web has left end users behind in an important way. Professional
web sites make liberal use of structured data, which is often easier to author, manage, query, and reuse,
and which supports powerful interactive visualization and manipulation interfaces. The tools typically
used to support this work—databases, templating web engines, and programmatic visualization APIs—
are beyond the reach of many end users. Such users remain limited to plain (however nicely formatted)
text and images. They cannot manage their data or communicate it as effectively as professional sites.

In this article, I will argue that we can close this gap. By framing the problem properly, defining the
right web standards, and giving users the right tools, we can enable end users to manage and publish
structured data via already familiar workflows, without acquiring advanced programming skills. The

1

results can rival the web interactions offered on professional sites. I will describe several prototype
tools that we have created to pursue this objective, our experience deploying them, and some of the
lessons we have learned and questions that have arisen from the experience. With a fully fleshed out set
of these end-user data-oriented tools, it may be possible to spark a simplification and democratization
of structured data authoring on the web that could imitate the web’s original, text-based revolution.

Many articles on the Semantic Web tout its value of the web as a whole—the benefits of creating
“open linked data” that fits standardized schemas and can be connected and aggregated in powerful
ways. These benefits generally accrue to the consumers of the data. Often unaddressed are motivation
(other than altruism) for owners and authors to publish this data. This article takes a complementary
perspective, emphasizing the benefits that can accrue to authors independent of the behavior of other
web sites. Such an approach can provide incentives that do not suffer from the “chicken and egg”
problem faced by some Semantic Web efforts—where the benefits accrue only if all others adopt the
same approach. By providing individual incentives, end-user authoring tools may help accelerate the
adoption of structured data and a move towards the Semantic Web that will ultimately yield substantial
social benefit.

2 The Power and Pain of Structured Data
In their effort to provide users with high-quality information interaction, many modern web sites exploit
structured data. Precisely defining structured data would require a substantial investment of philosoph-
ical energy, so I’ll work by example instead. Information in tables is structured, because you can refer
to the contents of a particular cell at a certain row and column. Another structured data representation
is entity-relational models, where each entity has a number of named properties that receive values.
In contrast, I’ll refer to text data as unstructured, since decomposing it into its intended entities and
relations requires understanding of the words of the language itself and not just the format. A key re-
quirement and benefit of structured data is that one can address and define operations on all instances
of some part of the structure—sorting a spreadsheet’s rows by the values in some column, or filtering
entities according to the value of a given property. In contrast, given the complexity of grammar and
pronouns, it is relatively difficult to select all sentences whose subject is a particular entity.

Structured data can dramatically simplify the process of maintaining a web site. In a web site of
static pages, adding a new information item means laboriously copying and pasting web page elements
to create new content that looks like the rest. If instead information objects are stored in a database, the
web author can create a single template that describes how a given class of information objects should
be presented, and rely on a templating engine that automatically fills the template with values from the
properties of any item being presented. The author can then can bulk-update a database table using
specialized forms or a spreadsheet editor, and leave it to the templating engine to show the modified
information. Conversely, with a single modification to the template the author can update the way every
single item is presented on the site. Even if the same information is presented in multiple locations,
the author can update it once and know that the change will propagate; in contrast, each assertion of
a given fact in an unstructured document must be separately and manually updated. Data updates can
immediately show up in faceted browsing interfaces, without the author needing to rebuild static index
pages.

Structured data also improves the experience of a user interacting with a site. For example, a user
seeking cell-phones at a web site like CNET will find a list of candidate cell-phones that is highly
structured, with attributes such as price, rating, size, carrier, weight, and presence or absence of features
such as camera and keyboard. A user can sort on any of these features. He can also filter on combinations
of them using the now-pervasive paradigm of faceted browsing—a list of values for each attribute is
shown, and the user can select a set of values to filter the items to those having those values of the

2

attribute. Faceted browsing cues users about ways they can explore the collection, instead of presenting
them with a dauntingly blank text-search box and leaving it up to them to determine which searches
actually yield results [YSLH03]. The presentation of all items in a consistent template makes it easier
for the user to understand and scan the content (for example, by recognizing that the number in a specific
region of the template is the item’s price). Users can quickly assess the big picture of a large data set
by examining aggregate visualizations, such as a price-performance chart showing tradeoffs of two key
properties of microprocessors.

Much the same is true of most review or shopping sites, as well as others presenting large collections
of information items such as libraries, scientific data repositories, museums, and directories.

It’s clear that structured data is essential for these uses. One cannot offer faceted browsing unless
the data has some properties to populate facets; templates place certain pieces/properties of the data in
specific slots in the output; maps can only show things that have latitudes and longitude, and so on.

Unfortunately, it seems that many of these structured-data benefits can only be attained by the adop-
tion of relatively sophisticated tools. Nearly every structured-data web site is backed by a database;
someone needs to install and maintain that database, implement the database schema, and design the
queries that produce the results that need to be shown. Someone has to program the pipeline that pulls
data from the database and feeds it into the templating engine (where someone needs to program the
templates). For rich visualizations, someone has to learn the API for the visualization tool and program
the connection that feeds the data into it. All of these skills are beyond most users.

Thus, if users have structured data, they use ad-hoc solutions to manage it [VHAA11]. If they
publish it to the web at all (often they do not) they are limited to plain tables [BMHK10], instead of the
rich interactive visualizations offered by professional sites.

A notable demonstration of this phenomenon can be found in the world of journalism. Many jour-
nalists make heavy use of structured data to investigate their stories. But while these journalists will
liberally quote anecdotes and aggregate summaries from these stories, they rarely incorporate the whole
data set or a visualization of it. Instead, we have seen the emergence of a new class of news app devel-
opers—programmers in the news room who design and build one-off interactive visualizations for use
with a single data set.

2.1 Approach
To address these problems, we draw insight from the design of HTML. This language recognized that
the structure of a document could be described using a vocabulary of common elements—paragraphs,
headings, italic or boldface sections, quotations, tables, lists, and so forth. HTML gives a syntax of
tags for describing, not programming, the structure of a document using this standard vocabulary. This
structured description can be used to automatically generate a layout of the document for visual presen-
tation.

This article argues that there is a similar common vocabulary suited to the description of data vi-
sualizations and interactions, and that the HTML vocabulary can naturally incorporate these common
visualization elements. Browsers (and other user agents) can then interpret these visualization descrip-
tions to produce interactive visualizations, just as they currently interpret more basic document-structure
tags to produce layouts of text documents.

I describe a particular prototype visualization vocabulary called Exhibit which has been deployed
since 2007 and is currently in use on roughly 1800 web sites. Exhibit defines a data collection associated
with a given HTML page (this data can be specified in table, or by linking to an external source such
as a CSV (comma separated values) file or a Google spreadsheet). Exhibit offers view tags that specify
aggregate visualizations of the data—such as maps, timelines, lists, and charts; lens template tags that
specify the presentation of individual items; and facet tags that specify interactive filtering and search

3

functionality. The Exhibit Javascript library interprets these tags to produce an interactive visualization
of the page’s data.

This declarative-visualization approach offers several benefits.

Declarative specification. HTML is a declarative language: the user describes what the layout should
be instead of specifying the computation for creating the layout. A structured-data visualization
language extension inherits the same benefits. It’s far easier to indicate that a map should go in a
certain place in a document by putting a map tag there, than it is to describe a computation that
will initialize a map and place it in a specified place in the document. More people can author such
“put this here” specifications than can write imperative programs in Javascript or other languages.

Pure client-side authoring. Because the view description is part of the page content, it can be handled
entirely client side, as it is for example using our Exhibit library. Thus, nobody wishing to author
a visualization has to worry about installation or management of server-side infrastructure. As
with the regular web (now that web servers are pervasive) a user can simply author an HTML
document and put it in a public location.

Page integration. An author can incorporate many distinct visualization tags on the same page, all re-
ferring to that page’s data. She is in complete control of how the visualization elements interleave
with the text and structural content of the page. She can place views side by side or at widely
separate parts of the page. She can place facets in whatever relation she likes to the data views.
Authors thus have full control of the presentation of their information narratives.

Low Startup Cost. Authors need learn almost nothing in order to create an Exhibit. A minimial exhibit
can be created by adding three tags to an existing html document. Even better, authors can copy
any HTML document containing a working exhibit and immediately have a working exhibit of
their own. They can then begin incrementally adapting the exhibit to their own purposes, learning
only as much about exhibit as they need to for their specific objectives.

Application independence. The use of an HTML vocabulary extension means that Exhibit descriptions
can flow transparently through any application that handles HTML. As I will discuss below, this
makes it easy to incorporate Exhibit editing as part of any HTML editor, or as part of a blogging
framework.

Separating content and presentation. HTML recognized the importance of separating the description
of a document’s content from the decision about how to present the document. This meant that
different tools could make their own decisions about optimizing the presentation of the given
content. A mobile phone browser with a small screen might present the same data visualization
differently from a desktop browser. A browser for the blind can use the structural description of a
visualization to prepare an audio presentation of the content and leverage the structure to help its
user navigate the content.

Longevity. Visualizations described using Exhibit can outlast specific implementations of Exhibit. The
Exhibit vocabulary is quite small and well defined. Just as new browser implementations are
frequently developed for interpreting the HTML vocabulary on new platforms, new Exhibit-
vocabulary interpreters can be implemented at need. Contrast this with, for example, cloud-based
visualizations that generally become useless when the cloud-service providing those visualiza-
tions shuts down.

4

3 Related Work

3.1 Declarative Visual Languages
Exhibit grew out of our previous work on declarative visual languages for structured data. The Haystack
system [HKQ02] was a “semantic desktop” application that aimed to let end users manage their personal
information using their own custom schemas and visualizations. Haystack used a declarative language
for specifying how certain data should be laid out—for example, which properties of an email message
should be shown, how those should be formatted, and how the set of all email messages should be ar-
ranged in a sorted list. These layouts declarations were specified by statements in the Resource Descrip-
tion Framework (RDF), an entity-relation model defined as part of the Semantic Web effort [Con04].
Haystack’s visualization ontology included the concepts of views, lenses, and facets that later appeared
in Exhibit. Haystack used the layout declarations to construct visualizations within its desktop applica-
tion.

Following this work, we developed the Fresnel ontology [PBKL06]. Like Haystack’s, Fresnel’s vi-
sualization declarations are given using an RDF ontology. Fresnel benefitted from a more methodical
consideration of what the right ontology should be, and careful attention to designing a declaration lan-
guage that was device and application independent. Still, its core consisted of the same lens, view, and
facet concepts that appeared in Haystack and earlier, for example in the OVAL system [MLF95]. Sev-
eral different tools were built that understood the Fresnel vocabulary and used it to create visualizations.
Longwell [PBKL06] used Fresnel specification to turn data into HTML documents, while IsaViz [Pie06]
used the same declarations to present specialized network layouts of the data.

What differentiates Exhibit from these tools is our choice of HTML tags as the declaration language
for visualizations. One can see this as a step backwards: the Exhibit language makes sense “only” to
those applications that work with HTML. But this is its strength. HTML has become the pervasive lan-
guage for presentation of information on the web. Far more tools and individuals can work with HTML
than with more esoteric languages like RDF. Given that HTML is likely to be the target presentation
language, it makes sense for visualizations also to be specified in HTML, eliminating the need for some
extra process that transforms a different specification into HTML output.

3.2 Cloud Visualization Tools
An alternative to incorporating data and visualization as part of the web’s HTML vocabulary is to
offer desktop or cloud applications that build visualizations that can be embedded as “figures” in a
web page. ManyEyes and Tableau are just two examples of this broad class. ManyEyes [DVWK08]
(http://www.many-eyes.com/) is a web site where users can upload data and author visualizations of
it, collaborate to discuss them or “clone” previous data and visualizations to create their modifications.
ManyEyes offers diverse beautiful visualizations and has been applied to data from a wide variety of
sources. Tableau (http://www.tableausoftware.com/) is one example of commercial “business intelli-
gence” software. Tableau is a widely deployed commercial desktop application that lets users build a
variety of data visualizations; these can then be exported to servers on the web. Both ManyEyes and
Tableau are able to read a variety of structured data formats and offer simple yet powerful interactive
interfaces for authoring visualizations.

Like many other platforms, ManyEyes and Tableau allow users to “embed” the data visualizations
they create in their own web pages. Thus, to first order they meet the goal of letting end users publish
data visualizations on the web. However, the embedding approach suffers from severe limitations.

The visualizations are not truly part of the containing web page—inside the embedded box, one can
interact only with the visualization, while outside it, one can interact only with the containing page. This
limits the ability of the author to interleave the layout of visualization and interaction elements with the

5

rest of their page. Imagine a web where all images in a web page had to coexist in a single “image
browser” frame that had to appear in one specific location on the page. This would obviously negatively
impact the author’s control of their presentation!

In a similar vein, from the perspective of the web page the embedded visualization is a single opaque
region it cannot control. Thus, no styling of the containing page will propagate into the visualization.
In the best case, the author will need to go through two separate styling processes to unify the styling of
the containing page and the contained visualization. In the worst case, it will not be possible to style the
two components consistently.

Another serious drawback of cloud visualization tools is that the author is often hostage to the
continued existence of those tools. Many cloud services are high risk startups; they can disappear and
take a user’s visualizations with them.

3.3 Vertical Data Repositories
Although end-users rarely contribute generically structured data to the web, they are actively engaged in
authoring structured data on a variety of domain specific sites that each manage data fitting a particular
schema. Examples include restaurant reviews on Yelp, movie data on IMDB, book reviews on Amazon,
recipes at Cooks.com, photo metadata on Flickr, and so on. Under this paradigm, the site owner chooses
the schema, designs data input and visualization interfaces specific to the chosen schema, and installs
and operates the database and templating engines. End users can author and the consume the data fitting
the schema.

This approach is popular, well understood, and easy to implement. But it also comes with severe
drawbacks. I argued above that the creation of such a content vertical is beyond the capabilities of end
users. Thus, end users wishing to share content are at the mercy of the site developers. If the user
wants a schema different from that chosen by the developer—for example, to record the “spiciness” of a
recipe—they are out of luck. That information can go in comments, but cannot be used for visualization
or faceted search. Similarly, it is impossible for the user to link data between distinct sites, associating
“Greece” as a recipe origin with “Greece” on a travel site.

Even worse, vertical sites have only been created for relatively common data schemas. For a user
with an unusual data set, there may be no appropriate site at all. This is a natural consequence of the
fact that a developer is required to create these sites—developers are a scarce resource, and are deployed
only when there is a sufficiently large user population.

4 Exhibit
Exhibit refers both to a particular prototype data-visualization extension to the HTML language, and
to the Javascript library we created and deployed in 2007, which interprets tags from the visualization
language and generates the specified visualizations. In this section I sketch the Exhibit language and
library; more details can be found in our paper on Exhibit [HMK07]. A sample Exhibit can be seen in
Figure 1; others can be seen in Figure 2. Once I have described Exhibit, I will describe how the first
example is authored.

4.1 Data Model
Exhibit models data as a set of items, each of which has arbitrary properties that take on arbitrary values.
For simplicity, Exhibit generally treats all values as text strings, although it interprets those strings as
other things, such as numbers, dates, or URLs, when the context calls for it. This data can be presented

6

Figure 1: An exhibit of U.S. Presidents. A timeline view (color-coded by presidential party) is shown
above a map of birthplaces. The left pane contains facets for filtering by religion, party, and whether the
president died in office, as well as text search.

7

Figure 2: Other sample exhibits we created: a faculty directory using a thumbnail view, world population
data presented using a scatter plot, and a set of senate bills presented in a tabular view

to Exhibit in a variety of formats: JSON, a comma- or tab-separated values file with one row per item,
a Google spreadsheet, an html table, or various other formats.

To indicate the data he wishes to visualize, the author creates a reference to their data file by placing a
standard HTML link tag in the document head, with the special additional attribute rel="exhibit/data"
included to tell Exhibit that the given link points to a data file. Alternatively, the author can embed data
in some formats, such as html tables, directly in the presentation document.

When authors create properties and values of items in their data files, they are implicitly defining
schemas. Exhibit does not require that these schemas be defined explicitly or enforced—different items
can have entirely different properties.

4.2 Visualization Elements
Exhibit defines visualization elements matching the categories already described: views of aggregate
collections, lenses that template the presentation of individual items, and facets that filter the collection.
Exhibit’s interaction model is very straightforward: it presents, using the specified views, the collection
of items that matches the current configuration of the facets. Individual items shown in the view are
presented using the specified lenses.

Exhibit’s view elements are described by adding an ex:role="view" attribute to an HTML tag
such as a div. The author can specify a particular type of view using a ex:viewclass attribute;
types of views include Tile (a list of items), Thumbnail (a set of thumbnail images), map, timeline,
scatterPlot (where a dot on the plot is created for each item), tabular (a dynamic HTML table) and so
on. A viewPanel can be used to multiplex several views; it provides tabs allowing the reader to select
among the provided views.

Many of the views take additional attributes specifying their configuration. For example, the map
view requires a ex:latlng attribute specifying which property of the data items should be looked at
to find a latitude and longitude for plotting that item on a map, and allows an (optional) ex:colorKey
attribute that specifies a property that the the map view should use to color code the items presented
on the map. The tile view allows an ex:orders attribute specifying which property should be used
as a “sort key” for ordering the list of items shown, while the tabular view takes an ex:columns
property containing a comma-separated list of the properties of each item that should be shown in
distinct columns of the tabular view. In all attributes, properties are specified by using the name of the
given property in the data file—the column headings from a tabular file, the field names from a JSON
file, and so on.

Facets to filter the data items are specified similarly—using an ex:role="facet" attribute on

8

an HTML tag. Generally, facets filter on a particular property of the data items, which is specified
using an ex:expression attribute that names a property as was done for views. When multiple
facets are set by the reader, the collection is filtered to items that match all the facets—a conjunction
of the constraints. The particular type of facet to use is indicated using an ex:facetClass attribute.
Possibilities include the (default) List facet, which shows a list of values of the property. When the
reader selects some of the values in the list, the collection of items is filtered down to items whose
values for the property match the selected one. Other facet types include the numericRange or
slider facets for filtering items whose property value is a number within the reader’s specified range
and a textSearch facet that filters to items whose text content matches the text query typed in the
facet.

Lens templates are fragments of HTML indicating how an individual item should be displayed. For
the most part they consist of standard HTML; however, any tag can be given an ex:content attribute
that names a property. To display an item, Exhibit uses the lens but replaces each ex:content tag
with the value of the specified property on the item being displayed. Lenses are used to render each item
in a list or a thumbnail view; they are also used to render individual item “popups” when a reader clicks
on a marker on the map, timeline, or scatter plot views.

4.3 Worked Example: U.S. Presidents
I now sketch how the elements we’ve just described can be assembled to produce the U.S. Presidents
exhibit in Figure 1. As we’ve emphasized above, Exhibit uses an extension to the usual HTML vocab-
ulary. Thus, the Presidents exhibit consists of a standard HTML document (plus CSS), augmented with
some of Exhibit’s particular tags. As a first step, the author creates a file containing the presidents’ data.
A portion can be seen in Figure 4.3. In this case, the file is a JSON file; however, it could equally be a
google spreadsheet or a comma-separated-values document. Even without knowing the JSON format,
the basic concept should be clear. Each president has a collection of properties (such as inDate and
birthLatLng) and values for each property. In a spreadsheet or table, there would be a row for each
item and a column for each property, with the value for a given item’s property stored in the cell at the
corresponding row and column.

Once the data file has been created, the author links it to the HTML file by adding a data link tag
in the head of the document: <link rel="exhibit/data" href="presidents.json">.
She also adds a link to the Exhibit Javascript library <script src="exhibit-api.js">.
The page is now prepared to display widgets described by Exhibit vocabulary tags. For exam-
ple, the “Religions” facet on the upper left is specified by the tag <div ex:role="facet"
ex:expression=".religion">. Note that “religion” is one of the properties listed in the
data file; the use of the “.religion” value for the ex:expr attribute in the facet tells exhibit
which property the facet should filter on. Similarly, the text search facet above is specified
using <div ex:role="facet" ex:facetClass="TextSearch">. The TextSearch
value specifies that instead of the default “list of value” facet, the author wants a box where a
text query can be typed; no expression is specified because the text search should apply to the
full content of the items. The timeline at the top is created much the same way, by insert-
ing a tag at the top of the HTML: <div ex:role="view" ex:viewClass="TimeLine"
ex:start=".inDate" ex:end=".outDate" ex:colorKey=".party">. Again, the at-
tributes of the tag specify properties from the data file that should be used to determine the start time
(inDate), end time (outDate) and color (party) of the interval plotted for each item on the timeline.

Below the timeline, the author specifies a view panel by placing a <div ex:role="viewPanel">)
tag. The view panel allows a reader to switch between several different views occupying the same dis-
play space. Multiple view tags can be placed inside the view panel tag; when instantiated, the view

9

{
"items":[
{"label":"George Washington",
"type":"President",
"imageURL":"http://upload.wikimedia.org/wikipedia/commons/thumb/8/88/Portrait_of_George_Washington.jpeg/100px-Portrait_of_George_Washington.jpeg",
"url":"http://en.wikipedia.org/wiki/George_Washington",
"presidency":"1",
"term":["1","2"],
"birth":"1732-02-22",
"death":"1799-12-14",
"inDate":"1789-04-30",
"outDate":"1797-03-04",
"index":"1",
"dieInOffice":"no",
"party":"No Party",
"birthPlace":"Westmoreland County, Virginia, USA",
"deathPlace":"Mount Vernon, Virginia",
"religion":["Anglican","Episcopal","Deist"],
"birthLatLng":"37.585241,-77.497343",
"deathLatLng":"38.707778,-77.086389",

},
{"label":"John Adams",
"type":"President",
"imageURL":"http://upload.wikimedia.org/wikipedia/commons/thumb/3/3d/Gilbert_Stuart_John_Adams.jpg/101px-Gilbert_Stuart_John_Adams.jpg",
"url":"http://en.wikipedia.org/wiki/John_Adams",
"presidency":"2",
"term":"3",
"birth":"1735-10-30",
"death":"1826-07-04",
"inDate":"1797-03-04",
"outDate":"1801-03-04",
"index":"2",
"dieInOffice":"no",
"party":"Federalist",
"birthPlace":"Braintree, Massachusetts, USA",
"deathPlace":"Quincy, Massachusetts",
"religion":"Unitarian",
"birthLatLng":"42.222222,-71",
"deathLatLng":"42.252778,-71.002778",

...

Figure 3: U.S. Presidents data

panel renders tabs that allow the reader to switch among the multiple views.
In this case, the first view placed inside the view panel, and the one display in Figure 1, is a map,

specified using <div ex:role="view" ex:viewClass="Map" ex:latlng=".birthLatLng"
ex:iconURL=".imgURL">. Also inside the view panel (but not displayed in the figure as they are
not selected) are another map view and a tabular view showing a table of the items with columns
selected from the available properties: <div ex:role="view" ex:viewClass="Tabular"
ex:columns=".term,.label,.party,.birth,.death">.

The final step is to specify the lens template for individual items that appears when the reader clicks
on a particular map icon or timeline interval. This template is a fragment of standard HTML with
specific properties filled in. The lens for the map view is specified by placing the following HTML
inside the map view tag:

<div class="map-lens" ex:role="lens">
<div></div>
<div ex:content=".label"></div>
<div ex:content=".birthPlace"></div>
<div ex:content=".birth"></div>
</div>

This fragment specifies which properties go where; in this case an img tag, whose src attribute is filled
with the imageURL property, is placed above a line of text containing the label (name) of the president,
which is above a line containing the birthplace, and another containing the birth year. Each of these
lines refers to a property that can be found in the data file.

For simplicity I have neglected a number of additional parameters from the exhibit tags, such as
parameters specifying heights and widths of various widgets, and have slightly simplified the data file

10

(I will discuss this simplification in Section 6), but this example provides enough detail to construct an
Exhibit generally similar to that found in Figure 1

The process we’ve just described requires that an author directly edit HTML source code; certainly
easier than propgramming, but a skill beyond many users. However, since the overall process is simply
to add some HTML tags to a page, it should be clear that this kind of authoring could also be carried
out by any WYSIWYG HTML editing tool that has been extended to handle Exhibit’s special tags; I
will describe an example of such a tool in Section 5. Equally important, new users need not start from
scratch: they can copy any exhibit they find on the web and make small modifications to meet their
needs, without a full understanding of the vocabulary. We’ll elaborate on the approach in Section 6.3.

4.4 Implementation and Performance
Exhibit is implemented as a pure Javascript library that executes entirely on the client. On current
browsers, it generally offers sub-quarter-second (perceived as “instantaneous”) interaction response on
exhibits of hundreds or even a thousand items. As the database grows (some exhibits have been created
with as many as 27,000 items) Exhibit continues to function correctly but slows down linearly.

There are clearly many data sets that fit comfortably within these Exhibit parameters. So many that
it would be foolish to sacrifice ease of use, flexibility or visualization power in search of performance.
At the same time, there will always be data sets just slightly beyond Exhibit’s comfortable reach, so it
is worth understanding opportunities to improve Exhibit’s scalability.

Three main bottlenecks impact Exhibit’s performance and responsiveness. One is data loading:
fetching data from the server and parsing it at the client can introduce a noticeable hesitation. This might
be significantly improved if we explored “compressed” representations of the exhibit data. Standard
compression could reduce the network transmission cost. Better representations that replace duplicate
strings (there tend to be many, among items that share facet values) with references to a single copy
could also speed parsing. Both compressions would require more work of the author to “prepare” their
data for access.

Before much work is invested here, it is worth noting that, according to the HTTP Archive
(http://www.httparchive.org/) the average number of bytes fetched by a browser when visiting a page
from one of the top 1000 web sites in November 2012 exceeded one megabyte (including HTML, CSS,
images, and script files). Meanwhile, the U.S. Presidents exhibit in Figure 1 uses a data file describing
44 presidents in 41 kilobytes, or less than one kilobyte per president. Clearly, even quite large data
sets are unlikely to add significantly to the bandwidth involved in transmitting a single page. Indeed,
Exhibit offers significant bandwidth optimization, as “pure” data uses far fewer bytes than “rendered”
data. When server-side solutions present data, they run it through a templating engine that wraps each
data item in substantial quantities of presentational HTML, which must then be transmitted. In contrast,
Exhibit generates that presentational HTML on the client, eliminating the cost of transmitting it from
the server.

A second performance bottleneck is database activity. Exhibit runs on its own, pure Javascript,
non-optimized database that traverses hash tables to look up properties and values. There are obvious
opportunities to improve this. Datavore [KPP+12] is a pure Javascript database that uses a packed table
representation and is able to support interactive-time querying of a million data rows. Looking further
ahead, there has already been significant experimentation in incorporating a SQL database, and exposing
a standard API to it, as part of the browser (cf. Mozilla/MySQL). While that effort has been temporarily
derailed by arguments among browser vendors, I believe that it will ultimately bear fruit. Exhibit is a
perfect candidate client of such a native browser database.

In a different approach, recent work on Exhibit version 3 has included Backstage, a server-side
support engine for Exhibit. Backstage is designed to load data on the server side (saving exhibit the

11

work of transmission and parsing). Exhibit then issues necessary queries to backstage, which processes
them in native code on the server.

The final performance bottleneck for Exhibit, which database improvements cannot address, is vi-
sualization rendering. If an exhibit has 27,000 items, then rendering a list of them is going to involve a
substantial amount of DOM manipulation which can be costly. Exhibit ameliorates this particular “list”
problem by giving authors the opportunity to specify that only 10 items at a time should be shown,
with pagination available to access the rest. But this only covers a single instance of the problem; the
same problem arises in a facet that needs to display a large number of possible filtering values. A more
general “frame buffer” approach can be applied to this case, of only rendering the portion of the DOM
that is actually in view at a given time; this approach was explored by Nusser et al. [NCW+07] who
demonstrated its use in a Javascript client offering interactive web browsing and scrolling of tens of
thousands of email messages.

The rendering problem extends beyond lists: placing tens of thousands of items on a map, scatter
plot, or timeline is costly using today’s APIs. It also extends to native visualization tools, where various
approach have been tried such as not rendering until the data is filtered to a smaller set or rendering only
sampled/summary information. These approaches could be applied in Exhibit as well.

As is usual in performance engineering, addressing just one of the three bottlenecks would be
useless—all three need to be tackled to improve scalability. For example, in early testing of Exhibit’s
performance, it was determined that execution time was split almost exactly between database querying
and visualization (DOM) rendering.

5 Extensions
Exhibit’s thesis is that interactive-data authoring can and should be very similar to plain text and HTML
authoring. It is therefore natural to consider adding Exhibit functionality to any environment where
HTML is authored. We have created three demonstrations of this idea: Datapress [BMHK10], which
incorporates Exhibit as a Wordpress extension, Wibit (also [BMHK10], which incorporates Exhibit as
a Mediawiki extension, and Dido [KOL09], which combines Exhibit with a stand-alone WYSIWYG
HTML editor.

Thanks to Exhibit’s declarative HTML-based language, incorporating Exhibit in these tools is straight-
forward: the tools already work with HTML, so all that is necessary is to ensure that they generate or
pass through Exhibit’s scripts and special HTML tags; the application need not know anything about
how those tags will actually be used for visualization. No communication between the application and
the Exhibit library is required.

5.1 Datapress
Wordpress is a popular blogging platform which is used heavily for every imaginable type of text con-
tent. A small study [BMHK10] showed that data was also appearing on many Wordpress blogs, but
almost always as static HTML tables or descriptive text. Rich visualizations could not be found. We
incorporated Exhibit to provide those visualizations. Wordpress already comes with a WYSIWYG edit-
ing environment (tinyMCE), so we incorporated Exhibit editing as part of that editor. We used a wizard
approach, providing a button that, when clicked, takes a user through a series of dialogs where she spec-
ifies the Exhibit she wants. The first dialog asks her to upload a suitable data file to her blog. Subsequent
dialogs let her specify views, facets, and lenses. These dialogs use drop-down menus populated with
property names extracted from the uploaded data file; the user specifies the entire visualization using
point and click, without ever seeing the HTML that describes the Exhibit. After the user saves her page,

12

Figure 4: Using the Datapress wizard to author an Exhibit in Wordpress. Left: the Wordpress editor
with additional “visualization” button. Middle: the “add a view” wizard dialog. Right: the final exhibit
in a blog post.

the Datapress extension generates the HTML that describes the specified Exhibit. Datapress is shown in
Figure 4

5.2 Wibit
Like blogs for individual authoring, wikis have been broadly adopted for collaborative text authoring.
So it is natural to extend them to support collaborative authoring of data visualizations. We created
Wibit, an extension to the popular MediaWiki platform (which backs Wikipedia). Wibit is shown in
Figure 5.

Rather then having users directly author HTML, either in source form or using a WYSIWYG editor,
many wikis have chosen Wikitext as their canonical authoring language. This is an alternate syntax
to HTML (one involving far fewer keystrokes, but plenty of esoteric special-character sequences) that
describes document structure (lists, paragraphs, and tables) and styling (fonts, italics and underlining,
etc.) To fit it in appropriately, we designed an Exhibit-specific extension to Wikitext for specifying
Exhibit views and lenses, and leveraged the existing Wikitext template language for specifying lenses.

Exhibits are designed to present data, and data is not a basic concept of wikis. However, a pow-
erful Mediawiki extension called Semantic Mediawiki introduces data to the system. With Semantic
MediaWiki, structured data entered in “infoboxes” on wiki pages is parsed and stored into databases
where it can be queried. With the Wibit and Semantic Mediawiki extensions in place, authors can create
Exhibit visualizations by authoring a page that contains a Semantic Mediawiki data query together with
an Exhibit visualization description that will present the data returned by the query.

5.3 Dido
Carrying the notion that visualization authoring is like text authoring to its logical extreme, Dido [KOL09]
is a stand-alone HTML document that incorporates Exhibit as well as its own built-in WYSIWYG editor
(see Figure 6. A user opens a Dido document in any web browser and can then interact with it like any

13

Figure 5: (top left) Wikitext is used to describe a query in a Semantic Mediawiki, and (bottom left) to
describe a template (lens) for the individual results. (right) The desired exhibit of the results.

14

Figure 6: Using the Dido WYSIWYG editor to modify an exhibit. The document is shown in editing
mode, with a dialog open for editing a view.

other HTML document or Exhibit. He can also use the built-in editor to modify the text contents of the
document, the data being displayed in the Exhibit elements, or the Exhibit elements themselves. When
finished, the user can simply save the HTML document in order to persist the changes he has made to
the document, the data, and its visualization.

Dido can be used like any other document. The user can store the document anywhere in his file
system, or check it into a version control system. He can email it to a friend or post it on a newsgroup.
No Internet connectivity is needed to make use of its interactive features.1 As no data is stored “in the
cloud,” the user can be confident in the privacy of confidential data.

6 Deployment Experience
Exhibit has been available for public use since 2007. According to access logs, roughly 1800 domains
have made use of the exhibit library hosted at simile-widgets.org. Meanwhile, various companies have
installed their own local copies of the library (to protect data confidentiality) but we have no way to
count them. A healthy community of users participates in the simile-widgets Google group.

1The map view is an exception, as it makes use of map services such as Google maps.

15

Figure 7: Exhibits in the wild. From top left: Foreclosure rates in the Bay Area (San Francisco Chron-
icle), Teacher Bonuses (Tampa Bay Times), Farmers Markets (Minneapolis Star Tribune), gene ex-
pression data from the Allen Brain Atlas, Degree search at the University of Washington, an Ocarina
Catalog, an archive of early manuscripts at Cambridge University, Columbia Law Library electronic re-
source catalog, University of Minnesota list of academic advisors, faculty directory for Atkinson Center
at Cornell University, publication archive for the Education Policy and Data Center, floorball sessions
in Northern Europe, a catalog of maps.

16

6.1 Usage Domains
Even a quick inspection shows that Exhibit presentations are diverse (some appear in Figure 7). Sci-
entists use it to present data sets such as gene expression data, hobbyists to show historical collections
such as breweries and distilleries in Ontario from 1914-1915, libraries to present collections of available
resources, academics to organize their own or their group’s publications or research data, and merchants
to present catalogs. It is clear that many of the data types presented have no natural, existing content
carrier on the web. Even for those that do, the Exhibits include unusual attributes that would not be
available in the standard side. Exhibit is clearly meeting a need which is not being met by other existing
tools and sites.

Some newspapers have made use of Exhibit, presenting articles on teacher merit pay and school
ratings, pension rates for public employees, farmers’ markets in Minnesota and foreclosure rates in the
San Francisco Bay Area (see Figure 7). While most offer some basic faceted browsing, the last is notable
for presenting only a map. The same map could have been constructed directly using the Google maps
API. However, that would have required writing (or leveraging existing) Javascript code to invoke and
instantiate it from the data; Exhibit replaces that effort with a single <map> tag.

6.2 Keeping it Simple
Examination of the published exhibits shows that most users are not leveraging the full power of the
data model. Exhibit offers a general entity-relationship data model. Properties of an exhibit item can
have other items as properties, and queries can “chain” through these relationships. for example, a
person might have a “parent” relationship that refers to another person, and a facet might filter on the
birth country of a person’s parent. In an exhibit, such a chained expression would be represented using
ex:expression=".parent.birthCountry" in the facet tag. However, the vast majority of
exhibits on the web do not leverage this power. Their data model consists only of a single table, with all
properties binding to simple literal (number, date, or text) values.

There are two plausible explanations for this limited data richness. One is that more complex models
are rarely needed. Another is that they are needed, but that they are too complicated for users to think
about or implement. Our experience with Exhibit doesn’t help to choose between these two options.
One might jump to the conclusion that if nobody is using the richer model then nobody wants it. But
discovering that this richer model is available requires either reading the tool’s documentation (which
is rarely done) or discovering and being inspired by existing examples of the richer usage (which don’t
exist, a typical chicken-and-egg problem). And even if users discover it, some challenge in using it may
discourage users from making the effort or complaining to us about their failures.

The first interpretation does raise the possibility that if it made usage easier, Exhibit could comfort-
ably sacrifice its more powerful data model for a flat tabular one. It isn’t clear that this change would
actually allow us to simplify Exhibit’s description language, which is already quite clean. However,
switching to a table-based database implementation could conceivably offer significant performance
improvements, allowing exhibit to scale to larger data sets.

6.3 Learning by Copying
Exhibit’s design means that Exhibits are portable: someone who sees an exhibit page an likes it can
generally download that page (and its accompanying data page) to get her own copy of the exhibit,
which she can then modify to serve her own needs. This copy-and-modify paradigm was a common
way for new authors to begin creating HTML content in the early days of the web, and remains im-
portant today [BGL+09]. Rather than deeply understanding HTML and creating pages from scratch,
authors could download an appealing page and modify only key portions, learning the HTML as they

17

Figure 8: From Nobel prizes to dogs

went. We do have some evidence of this copying behavior in Exhibit. An early version of the Columbia
Journalism Fellows page was a near-exact copy of one of our example exhibits, the MIT CSAIL Prin-
ciple Investigators page. Another exhibit of a collection of dogs showed, through a failure to update its
title, that it had been copied from our example exhibit of MIT Nobel prize winners (see Figure 8).

However, a barrier to this spreading-by-copying has been Exhibit’s invisibility. Someone visiting
an Exhibit has an experience very similar to those provided by database-backed, template driven web
sites. There is no visible sign that the entire functionality is contained in the page itself, and that the
visitor could duplicate that functionality on their own data by downloading and modifying the page.
Thus, users generally need to learn about Exhibit through some other channel before they begin the
experiment of creating their own.

7 Discussion

7.1 The Semantic Web? Linked Open Data?
From the beginning, Exhibit was envisioned as a stepping stone to the Semantic Web. Its design causes
people separate their data from the visualization of that data, and to place the data itself at an easily
accessible URL. At the same time, Exhibit refuses to let the best be the enemy of the good. To keep
authoring simple, Exhibit steered towards simpler data representations, preferring JSON and CSV over
the more powerful RDF. This prevents authors from making use of RDF’s schema annotations or infer-
ence rules. There is no easy way for an Exhibit author to indicate that their “country” property is the
same as a “location” property appearing in some other Exhibit.

A similar move towards simplicity can be observed in the Linked Open Data community, which has
dropped discussions of inference and focused on encouraging authors to use the same URLs to name
entities in different data repositories. But Exhibit steps back even from this, settling for Open Data.
Exhibit authors are permitted to use URLs to identify their items, allowing linkage of entities across
different Exhibits, but are not required to do so. Making URLs a requirement would add to the effort of
publishing data, possibly deterring it. While URLs are valuable to (data) consumers, they offer no clear
benefit to the author.

Our reasoning for this approach is that opening data is a necessary precursor to anything more so-
phisticated, and that it often provides the bulk of the benefit. In the absence of open data, consumers
must either create scrapers that extract information from unstructured sources (which requires program-
ming skills and generally yields imperfect results) or manually extract/transform the information about
every item in a data set. Substantial effort is required.

18

In contrast, given a structured data set, the biggest problem a user is likely to encounter is under-
standing the intent of the various properties. While RDF offers a sophisticated language for describing
these semantics, having the user do so by eyeballing the tens of properties that make up a typical data
set is no great burden.

Even if a user’s goal is to “mash up” multiple sources of data, simply having it structured leaves
him much better positioned. Once the user understands the semantics of properties, he can manually
rename them, or split/merge columns, to align the schemas of distinct data sets. The other challenge,
entity resolution often boils down to string matching on names or other primary-key properties.

In summary, I believe that we should aim low, sacrificing any non-essential requirements in favor
of making it as simple as possible to publish structured data. Should this work, and a broad structured
data ecology emerge, it will naturally generate demand for improvements, such as better alignment of
entities and properties. However, until we reach that point, imposing such requirements can only deter
progress.

7.2 Exhibit and Microformats
There’s been significant recent work on microformats, a standard for representing data unambiguously
in HTML. The HTML 5 standard has introduced elements (particularly the “data-” prefix for attributes)
to support the usage of microformats in valid HTML 5. Various browser extensions have been created
that are able to recognize and extract this data from browsers in useful ways. For example, an extension
recognizing the vCard microformat can easily incorporate the personal information presented in a web
into a contact management application, while a recognizer for the hCalendar microformat can pull event
information into a calendar program. It would be natural and easy for Exhibit to take microformats (and
microdata, and RDFa) as yet another data representation that it should parse.

More ambitiously, Exhibit itself can be seen as a prototype for a visualization microformat, a stan-
dard for describing visualizations separate from implementing them. This can be seen most directly in
Exhibit’s approach to the map view. Exhibit offers three map extensions, one based on Google Maps,
one based on Microsoft Maps, and one based on Open Streetmaps. The author determines which one is
used by choosing which library to link. The exhibit description of the map, using a <map> tag, is the
same in all three cases. This approach can be generalized. There are already multiple implementations
of timelines, of various charting libraries, and of thumbnail galleries. If these were all able to parse
the same visualization microformat, then they could be used interchangeably to produce visualizations.
The same could be done for visualization implementations that have not been invented yet, creating
opportunities for collaborative competition.

The usual challenges to defining standards pertain. The three Javascript mapping APIs that Exhibit
currently “wraps” all offer different interesting options. A rigorously standard microformat would only
offer the options that are available in all mapping extensions. But this would be in tension with the
desire of each map “vendor” to expose the special capabilities of their mapping extension. We may see
the emergence of a situation like that in today’s browsers’ competition over CSS, where each introduces
its own non-compliant vocabulary elements which compete to enter the standard.

Taking this to an extreme, one could imagine incorporating visualization as just another aspect of
CSS—to add parameters like display: map to the CSS vocabulary, and expect browsers to contain
to the logic necessary to create such visualizations. However, the sheer variety of visualizations argues
against this approach; it seems impossible to define a comprehensive characterization of all visualiza-
tions that would need to be implemented by the browsers.

Nonetheless, as with microdata, it seems plausible to define an “extensible standard.” Microdata
describes a syntax that can describe any type of data, then leaves it to a subcommunity to decide on the
specific properties of a given data type that should be expressed using the syntax. Similarly, one could

19

imagine numerous specialized map visualizations emerging that extend the basic map-visualization
type; rendering tools that didn’t understand the particulars of one of these specialized visualizations
could still fall back on a more basic map that accomplished a good part of the visualization goal.

One might ask why competing visualization providers would ever wish to agree on a common stan-
dard for visualizations. While the answer is unclear, what is clear is that it does sometimes happen. The
standardization of HTML has led to the emergence of competing rendering engines such as WebKit and
Gecko that are continuously pushing each other to improve. At schema.org, many of the largest infor-
mation companies are collaborating in the specification of formats and schemas for describing specific
types of data. Presumably, each company perceives more benefit to competing on a large shared playing
field than they do in dominating part of a fragmented domain.

7.3 The Durability of Standards
In addition to providing opportunities for beneficial competition, separating visualization description
from implementation offers the possibility of enhanced longevity for our content. A static HTML
document written in the 1990s still renders reasonably well on modern browsers. Meanwhile, maps
implemented in Javascript using early versions of Google’s or Microsoft’s mapping APIs, or relying
on startups that have since failed, no longer function. We continue to make use of standards defined
decades ago—SMTP, TCP, VNC, AES, RSA—while our software systems become obsolete within a
few years. As technology changes, it is much easier to write new software for old standards than it is to
maintain or replicate large software systems.

Today’s web is filled with cloud-based services providing an amazing variety of rich, interactive
visualizations. But how many of those services will still exist in five years? Many cloud services
offer mechanisms for exporting a user’s data in familiar standard formats. Meanwhile, the only way to
export a visualization is to take a screenshot. A standard for visualizations could offer a mechanism
for exporting visualizations that would let them outlast the sites where they were created. Given the
ongoing attempts by competitors to innovate, we might expect the visualization export to lose some of
the particular attributes it had on a given cloud service, but we could still hope for far higher fidelity
than we currently get from a screenshot. In particular, we could hope to export some of the interactivity
that we have come to expect of modern visualizations.

7.4 Performance Optimization
If our approach is truly able to capture a great deal of the data interaction authors and readers want
to support and experience on the web, then creating a restricted vocabulary opens the opportunity for
significant performance optimizations. Behaviors that are represented in HTML (and CSS) are executed
by browsers using native code that is far faster than Javascript libraries. If in-page data, facets, views and
lenses become a standard part of the HTML vocabulary, there are similar opportunities for performance
optimization. Page data could be stored in a native SQL-style database, which would dramatically
improve the performance of the filtering specified by facets. An appropriate compressed representation
of a page’s data could also be transmitted and loaded far faster than our current representations. Lens
templates could be rendered quickly using an engine similar to the XSLT engine already built into
browsers. I believe that Exhibits of tens of thousands of items could easily be manipulated in user-
interactive time given such native implementations.

20

8 Conclusion
This article has argued that a great deal of interactive data visualization on the web can be captured
in a relatively simple vocabulary of data, views, facets, and lenses, and that this vocabulary can in
turn be effectively represented by a small number of new HTML tags. Such a problem simplification
offers many advantages we’ve discussed above, including better separation of content and presentation,
application independence, longevity greater than that of cloud services, and reduced load on servers.

Perhaps most importantly, doing so transforms what has until-now been a visualization programming
problem into a visualization authoring problem. This in turn makes it possible to create authoring tools
that enable end users to create visualizations rivaling many of those programmed on professional web
sites. With a fully fleshed out set of these end-user data-oriented tools, it may be possible to spark a
simplification and democratization of structured data authoring on the web that could imitate the web’s
original, text-based revolution.

References
[BGL+09] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. Two

studies of opportunistic programming: interleaving web foraging, learning, and writing
code. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’09, pages 1589–1598, New York, NY, USA, 2009. ACM.

[BMHK10] Edward Benson, Adam Marcus, Fabian Howahl, and David R. Karger. Talking about data:
Sharing richly structured information through blogs and wikis. In International Semantic
Web Conference, pages 48–63, November 2010.

[Con04] The World Wide Web Consortium. Resource Description Framework.
http://www.w3.org/RDF/, November 2004.

[DVWK08] Catalina M. Danis, Fernanda B. Viegas, Martin Wattenberg, and Jesse Kriss. Your place
or mine?: visualization as a community component. In Proceedings of the twenty-sixth
annual SIGCHI conference on Human factors in computing systems, CHI ’08, pages 275–
284. ACM, 2008.

[HKQ02] David Huynh, David Karger, and Dennis Quan. Haystack: A platform for creating, orga-
nizing, and visualizing information using RDF. In Semantic Web Workshop at WWW2002,
Honolulu, Hawaii, May 2002.

[HMK07] David Huynh, Robert Miller, and David R. Karger. Exhibit: Lightweight structured data
publishing. In WWW 2007, pages 737–746, May 2007.

[KOL09] David R. Karger, Scott Ostler, and Ryan Lee. The web page as a wysiwyg end-user cus-
tomizable database-backed information management application. In UIST ’09: Proceed-
ings of the 22nd annual ACM symposium on User interface software and technology, pages
257–260. ACM, October 2009.

[KPP+12] Sean Kandel, Ravi Parikh, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer.
Profiler: integrated statistical analysis and visualization for data quality assessment. In
Proceedings of the International Working Conference on Advanced Visual Interfaces, AVI
’12, pages 547–554, New York, NY, USA, May 2012. ACM.

21

[MLF95] Thomas W. Malone, Kum-Yew Lai, and Christopher Fry. Experiments with oval: A rad-
ically tailorable tool for cooperative work. ACM Transactions on Information Systems,
13(2):177–205, April 1995.

[NCW+07] Stefan Nusser, Julian Cerruti, Eric Wilcox, Steve Cousins, Jerald Schoudt, and Sergio San-
cho. Enabling efficient orienteering behavior in webmail clients. In Proceedings of the
20th annual ACM symposium on User interface software and technology, UIST ’07, pages
139–148. ACM, 2007.

[PBKL06] Emmanuel Pietriga, Chris Bizer, David Karger, and Ryan Lee. Fresnel: A browser-
independent presentation vocabulary for rdf. In 5th International Semantic Web Conference
(ISWC), pages 158–171, November 2006.

[Pie06] Emmanuel Pietriga. Semantic web data visualization with graph style sheets. In Proceed-
ings of the 2006 ACM symposium on Software visualization, SoftVis ’06, pages 177–178,
New York, NY, USA, 2006. ACM.

[VHAA11] Amy Voida, Ellie Harmon, and Ban Al-Ani. Homebrew databases: complexities of ev-
eryday information management in nonprofit organizations. In Proceedings of the 2011
annual conference on Human factors in computing systems, CHI ’11, pages 915–924, New
York, NY, USA, 2011. ACM.

[YSLH03] Ka-Ping Yee, Kirsten Swearingen, Kevin Li, and Marti Hearst. Faceted metadata for image
search and browsing. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’03, pages 401–408, New York, NY, USA, 2003. ACM.

22

