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Abstract
Noncoding RNAs have emerged as important key players in the cell. Understanding their
surprisingly diverse range of functions is challenging for experimental and computational biology.
Here, we review computational methods to analyze noncoding RNAs. The topics covered include
basic and advanced techniques to predict RNA structures, annotation of noncoding RNAs in
genomic data, mining RNA-seq data for novel transcripts and prediction of transcript structures,
computational aspects of microRNAs, and database resources.

1. Introduction
Noncoding RNAs (ncRNAs) are transcripts that are not translated to proteins but act as
functional RNAs. Several well-known ncRNAs such as transfer RNAs or ribosomal RNAs
can be found throughout the tree of life. They fulfill central functions in the cell and thus
have been studied for a long time.

However, over the past years a few key discoveries have shown that ncRNAs have a much
richer functional spectrum than anticipated1. The discovery of microRNAs for example
changed our view of how genes are regulated2,3. Another surprising observation revealed by
high-throughput methods is that in human 90% of the genome is transcribed at some time in
some tissue4. Although the full extent and functional consequences of this pervasive
transcription remains highly controversial5,6, the vast amount of transcripts produced
suggests that many important ncRNA functions are yet to be discovered.

In particular, long noncoding RNAs (lncRNAs) – transcripts that can be several kilobases in
length, spliced and processed like mRNAs but lack obvious coding potential – seem to be a
rich source of novel functions7. All these ncRNAs have been suggested to form a hidden
layer of regulation that is necessary to establish the complexity of eukaryotic genomes8.

Prokaryotic genomes also contain many surprises. Riboswitches9, small regulatory RNAs10,
or completely unknown structured RNAs11 suggest that ncRNAs also form an important
functional layer in bacteria.
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Understanding the function of ncRNAs – in particular in the age of high-throughput
experiments – is clearly not possible without computational approaches. Algorithms to
annotate, organize and functionally characterize ncRNAs are of increasing relevance. In this
paper, we give a broad overview of programs and resources to analyze many different
aspects of ncRNAs (Fig. 1).

2. Structural analysis
For many RNAs there is a close connection between structure and function. Having a good
model of the structure of an RNA is thus critical and often the first clue towards elucidating
its function. Determining the complete three dimensional structure (“tertiary structure”) of
an RNA is a tedious and time-consuming undertaking. Computational methods – either
completely de novo or assisted by experimental data – are therefore routinely used to predict
structure models. A strong focus lies on the prediction of the secondary structure, i.e. the
pattern of intramolecular base-pairs (A·U, G·C and G·U) typically formed in RNAs.

2.1. Secondary structure
2.1.1. Thermodynamic folding of single sequences—In RNAs, the secondary
structural elements are responsible for most of the overall folding energy and can be seen as
a coarse-grained approximation of the tertiary structure. This important biophysical property
in combination with the fact that secondary structure can easily be formalized as a simple
graph (Fig. 2), led to secondary structure being widely studied early on. One of the first
attempts to approach the RNA folding problem (i.e. predicting the secondary structure from
the primary sequence) was by Nussinov and Jacobson12. They proposed an algorithm to find
the secondary structure with the maximum number of base pairs. It is one of the classical
examples of dynamic programming algorithms in computational biology and all modern
variants of folding algorithm essentially use the same principle (Box 1).

In practice, however, finding the structure with the maximum number of pairs does not give
accurate results. Ideally, we want to find the structure of minimum folding energy. Since
most of the folding energy in RNAs is contributed by stacking interactions between
neighbouring base pairs, counting single base pairs is not sufficient. Therefore, current
folding algorithms use a “nearest neighbour” or also called “loop-based” energy model. A
structure is uniquely decomposed into substructural elements (stacked bases, hairpin-loops,
bulges, interior-loops, and multi-way-junctions, Fig. 2A). The structural elements are
assigned energies which add up to the total folding energy of the structure (Fig. 2B). The
energy values are established empirically and typically come from systematic melting
experiments on small synthetic RNAs. An up-to-date set of energy parameters is maintained
by Douglas Turner’s lab13,14.

A dynamic programming algorithm to find the minimum free energy (MFE) for this more
complex energy model was proposed by Zuker and Stiegler15 and forms the basis for
modern prediction programs. The most common implementations used are UNAFold16,
RNAfold of the Vienna RNA package17 and RNAstructure18. The accuracy of MFE
predictions depend on the type of RNA. Although some RNAs can be predicted with high
accuracy, in general one has to expect that roughly a third of the predicted base pairs are
wrong and one third of true base pairs are missed. It is thus important to keep in mind that
even the best currently available prediction methods only give a rough model of the
structure. Tertiary interactions, protein context and other inherent limitations of the energy
model are all sources of potential errors.

At room temperature, RNAs usually exist in an ensemble of different structures and the
MFE structure is not necessarily the biologically relevant structure. There are different
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algorithms to predict suboptimal structures close to the MFE structure19,20. McCaskill’s
algorithm21 allows one to calculate the partition function over all possible structures and
subsequently the probability of a particular base pair in the thermodynamic ensemble.
Considering the pair-probability matrix of all possible base pairs gives a more
comprehensive view of the structural properties of an RNA than just the MFE prediction. It
is also possible to obtain individual structure predictions from the pair-probability matrix,
either by sampling22 or by finding a structure that maximizes the expected accuracy
considering a weighting factor between sensitivity and specificity23,24.

2.1.2. RNA folding using probabilistic models—An alternative to the
thermodynamic approach of RNA folding is a probabilistic approach based on machine-
learning principles. Instead of using energy parameters, folding parameters can be estimated
from a training set of known structures and are used to predict structures of unknown
sequences. There are several probabilistic frameworks to accomplish parameter estimation
and prediction. Stochastic context-free grammars (SCFGs) are a generalization of Hidden
Markov models that are widely used in bioinformatics (Box 2). SCFGs allow one to
consider nested dependencies, a prerequisite to model RNA structure. They have been used
successfully for homology search problems and consensus structure prediction (see below).
Although SCFGs can be used for single sequence structure prediction25 they are not widely
used for this problem. CONTRAFOLD23, an alternative machine learning approach based
on conditional random fields, however, could establish itself as a serious alternative to
thermodynamic methods. There are also hybrid approaches that try to enhance the
thermodynamic parameters by training on known structures26,27.

2.1.3. Incorporating structure probing data into folding algorithms—Structure
probing experiments typically use enzymatic or chemical agents that specifically target
paired or unpaired regions28. Most implementations of thermodynamic folding like
UNAfold or RNAfold allow for the incorporation of this type of information by restricting
the folding to structures consistent with the experimental constraints. As an alternative,
experimental information can also be incorporated as “pseudo-energies” into the folding
algorithm enforcing regions to be preferentially paired or unpaired reflecting the
experimental evidence29–31. Recently, high-throughput sequencing techniques were used to
scale up structure probing experiments massively32–34. Dealing with inherently noisy data of
this type turned out to be challenging and is still an active field of research.

2.1.4. Secondary structure prediction for homologous sequences—Another way
to improve secondary structure prediction is to consider homologous sequences from related
species. If two or more sequences share a common structure but have diverged on the
sequence level, typical base substitution patterns that maintain the common structure can be
observed (Fig. 3A). A consistent mutation changes one base (e.g. A·U ↔ G·U) while
compensatory mutations change both bases in the base pair (e.g. A·U ↔ G·C or C·G ↔
G·C). Clearly, these patterns provide useful information to infer a secondary structure.

The simplest way to exploit this signal is to calculate a mutual information score to find
columns that show highly correlated mutation patterns. This method led to surprisingly
accurate structures for rRNAs as early as 30 years ago35. Since we rarely have such large
datasets of RNAs with extremely conserved structures it is natural to combine co-variance
analysis with classical folding algorithms. RNAalifold36 extends Zuker’s folding algorithm
to multiple sequence alignments by averaging the energy contribution over the sequences
and adding co-variance information in the form of “pseudo-energies”. A probabilistic
alternative is Pfold37, which uses a simple stochastic context free grammar combined with
an evolutionary model of sequence evolution to infer a consensus structure. PetFold38

extends Pfold by incorporating pair probabilities from thermodynamic folding and thus
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unifies evolutionary and thermodynamic information. A more recent program, TurboFold39

also uses thermodynamic folding and iteratively refines the energy parameters by
incorporating pair probabilities from homologous sequences.

2.1.5. Structural alignment—Even unaligned RNAs can provide more information about
their common structure than a single sequence. Low sequence homology below of 60%
sequence identity40 prohibits the sequence alignment-based approach of the previous section
(Fig. 3B), since correct alignment requires information about the structure. Since structure
predictions for single sequences are unreliable, folding the sequences followed by structure-
based alignment can also fail.

Therefore, the most successful strategies fold and align the RNAs simultaneously. The first
such algorithm41, by Sankoff, simultaneously optimizes the alignment’s edit distance and
the free energies of both RNA structures applying a loop-based energy model. However,
only recent advances made this strategy applicable to practical RNA analysis.

The first complete pairwise Sankoff-implementation Dynalign42 implements a loop-based
energy model, but employs a simple banding technique for increasing efficiency. A further
pairwise Sankoff-like tool is Foldalign43. Computing a loop-based energy model during the
alignment, these algorithms are accurate but computationally expensive; in practice, they
compensate this by strong sequence-based heuristic restrictions.

Several less expensive Sankoff-like algorithms are based on simplifications introduced by
PMcomp44. PMcomp replaces the loop-based energy model by assigning “pseudo-energies”
to single base pairs. This reduces the computational overhead significantly. By computing
the pseudo-energies of base pairs from their probabilities in the structure ensembles of the
single RNAs, accurate information from the loop-based energy model is fed back into the
light-weight algorithm.

Approaches following this idea are LocARNA45, foldalignM46, RAF47, and LocARNA-P48;
All these tools additionally employ sparsity in the structure ensemble of the single
sequences.

The sparsified PMcomp-like approaches are sufficiently fast for multiple alignment and
large scale studies, performing e.g. clustering45,46 and de novo prediction of structural
RNA49.

2.2. Prediction with pseudoknots
Pseudoknotted structures follow the same rules as other secondary structures, but allow non-
tree like configurations, e.g. due to an additional level of nested base pairs or pairing
between different hairpin loops (kissing hairpin) (Fig. 4). Pseudoknots are prevalent in many
ncRNAs; still, most algorithms ignore them for technical reasons: pseudoknot-folding is
computationally expensive and accurate empirical energy models are missing.

2.2.1. Algorithmic challenges—The run-time of pseudoknot-free structure prediction
grows only with the cube of the sequence length. Unfortunately, when general pseudoknots
are allowed, the computation time grows much faster, namely exponentially with the
sequence length50. Consequently, finding exact solutions is intractable for all but very short
RNAs. Note that the “principle of optimality”, which allows dynamic programming (Box 1)
in the pseudoknot-free case, is not applicable in the case of general pseudoknots. By this
principle, every optimal structure can be composed from optimal structures of its
subsequences.
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In practice, often heuristic methods are applicable. Among the numerous approaches are
ILM53, HotKnots54, KnotSeeker55, and IPknot56. ILM53 applies the classic principle of
“hierarchic folding”; it constructs a pseudoknotted structure by iteratively predicting a most
likely stem, using pseudoknot-free prediction, which is then added to the structure.
HotKnots54 refines the construction of the pseudoknotted structure from likely more general
secondary structure elements. TurboKnot57 even predicts conserved pseudoknots from a set
of homologous RNAs. Applying a topological classification of RNA structures58, TT2NE59

guarantees to find the best RNA structure regardless of pseudoknot complexity; however,
this limits the length of treatable sequences.

Other algorithms restrict the types of pseudoknots, such that dynamic programming can be
applied50–52,60–63. These algorithms differ in their computational complexity and the
complexity of considered structures. Fig. 4 shows pseudoknots of different complexity.

Rivas and Eddy51 proposed the most general such algorithm. It predicts three-knots (Fig.
4C), but cannot predict more complex pseudoknots such as the one shown in Fig. 4D. Its
large time and space requirements prohibit its application to large scale data analysis. The
most efficient such algorithm52 has only the same space requirements as pseudoknot-free
prediction; its run-time grows with the fourth power of the sequence length, adding only a
linear factor over pseudoknot-free folding. However, it predicts only canonical pseudoknots
(Fig. 4E), which are formed by two canonical stems: such stems are (i) composed of
canonical base pairs (ii) “perfect”, i.e. they do not contain interior loops or bulges, and (iii)
maximally extended, i.e. they cannot be extended by canonical base pairs. Further such
algorithms are tailored for specific interesting pseudoknot-classes (Fig. 4A and Fig. 4B63).
Möhl et al.64 recently managed to speed up such algorithms non-heuristically.

2.2.2. Energy models for pseudoknots—A further challenge of pseudoknot prediction
is to find an accurate energy model. The established loop-based energy models for RNA are
tailored for pseudoknot-free structures; to date, there are no empirical energy parameters for
pseudoknotted structure elements.

Consequently, some algorithms consider only the simplistic case of base-pair
maximization65,53. Although some authors argue that important entropy contributions in
pseudoknots cannot be covered by a loop-based energy model66, most approaches extend
the loop-based energy model for pseudoknot-loops51,67.

2.3. Tertiary structure
While secondary structure is strongly stabilizing the three-dimensional structure, the tertiary
structure depends on stabilizing non-canonical base pairs and van-der-Waals interactions.
Furthermore, pseudoknots impact the tertiary structure. Therefore, deriving the tertiary
structure in a hierarchic way from predicted secondary structure is not straightforward.

There are two main ways to model tertiary RNA structure. One, template-based modeling,
employs homology to other RNAs with known structures. The other, de novo prediction,
computes structures from physical and knowledge based rules. For example, the MC-fold/
MC-sym pipeline68 (Fig. 5) assembles fragments of experimentally determined three-
dimensional structures. Based on such structures, the approach builds a library of frequent
small secondary structure loop-motifs, called Nucleic Cyclic Motifs (NCMs), together with
their three-dimensional configurations. Given a RNA sequence, MC-Fold constructs
probable secondary structures by merging NCMs; in this process it assigns likely NCMs to
subsequences. MC-sym assigns concrete 3D-structures to the NCMs to generate a consistent
three-dimensional structure. The approach has been tested on 13 RNAs of an average size of
30 nucleotides. Running several hours per prediction, the known 3D-structures have been
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reproduced within 2.3Å at average68. Similar to MC-Fold, the recent RNAwolf69 predicts
extended secondary structures considering non-canonical base pairs; the same work reports a
more efficient, dynamic programming-based reimplementation of MC-Fold, which improves
parameter estimation. A more detailed review and a systematic performance comparison of
RNA tertiary structure prediction programs is provided by Laing et al.70.

2.4. RNA/RNA interactions
Many ncRNAs interact with other RNAs by specific base-pairing; most prominently,
microRNAs target the untranslated regions of mRNAs. Predicting RNA/RNA interactions
can thus elucidate RNA interaction partners and potential functions.

Most generally, one aims to predict the secondary structure of the interaction complex of
two RNAs consisting of intramolecular and intermolecular base-pairs (Fig. 6). Alkan et al.71

formalized the problem and showed that – similar to pseudoknot prediction – it cannot be
solved efficiently. Therefore, several simplifications and heuristics have been proposed.

Most approaches restrict the possible structures of the interaction complex to enable
efficient algorithms using dynamic programming. Fig. 6 shows interaction complexes from
several restriction classes. The simplest approaches ignore intramolecular base-pairs and
predict only the best set of interacting base-pairs (Fig. 6A); examples are RNAhybrid72 and
RNAduplex73.

A more general approach optimizes intra- and intermolecular base-pairs simultaneously in a
restricted structure space. “Co-folding” of RNAs, for example implemented by
RNAcofold73, concatenates the two RNA sequences and predicts a pseudoknot-free
structure for the concatenation. Co-folding leads to a very efficient algorithm but strongly
restricts the space of possible structures, such that only external bases can interact (Fig. 6B).

The dynamic-programming algorithms71,74 that predict more general structures (Fig. 6C),
forbidding only pseudoknots, crossing interaction, and zig-zags (Fig. 6D), are
computationally as expensive as the most complex efficient pseudoknot prediction
algorithm51; they are therefore rarely used in practice, albeit their efficiency has been
improved recently75.

Several fast methods71,76,77 assume that interactions form in two steps: First, the RNA
unfolds partially, which requires certain energy to open the intramolecular base-pairs.
Second, the unfolded, now accessible, RNA hybridizes with its partner forming
energetically favorable intermolecular base-pairs. RNAup76 computes the energies to unfold
each subsequence in the single RNAs and combines the unfolding energies with the
hybridization energies to approximate the energy of the interaction complex. IntaRNA77

optimizes this approach and extends it to screen large data sets for potential interaction
targets.

Finally, several approaches predict conserved interactions between multiple sequence
alignments78,79.

2.5. Kinetic folding
Common structure prediction methods assume that the functional RNA structure can be
identified solely based on the thermodynamic equilibrium without considering the dynamics
of the folding process. Although the true impact of kinetics on functional RNA structures is
still unknown, for example RNA-switches80 show the importance of understanding the RNA
folding process.
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Several groups have studied the folding process of RNAs (reviewed in66,83). The RNA
folding process is commonly modeled using energy landscapes84. Such landscapes assign
energies to single structures, or states, and define neighborship between states. RNAlocopt85

enables studying the Boltzmann ensemble of local optima in an RNA energy landscape. The
folding process iteratively moves from one state to a neighbor; the move probability depends
on the energy difference. Studying folding by simulation83 is expensive since it requires
averaging over many trajectories. Because the exact model of folding as a Markov process
can be solved only for small systems, many methods coarse-grain the energy landscape to
enable the analysis of the process. For example “barrier-trees” represent the energy
landscape as a tree of local minima connected by their saddle points82. BarMap81

generalizes coarse-graining to non-stationary scenarios like temperature changes or co-
transcriptional folding.86 predicts RNA folding pathways based on motion planning
techniques from robotics. Kinefold87 simulates single folding paths over seconds to minutes
for sequences up to 400 bases.

3. Annotating ncRNAs in genomic data
Another major challenge in understanding the function of ncRNAs is to find and annotate
them in complete genomes. We distinguish homology search, i.e. trying to identify new
members of already known classes of ncRNAs, and de novo prediction with the aim to
discover novel ncRNAs.

3.1. De novo prediction
Although a general de novo ncRNA finder remains elusive, some progress has been made in
the identification of structural RNAs, i.e. ncRNAs that rely on a defined secondary structure
for their function.

As a first attempt, one could use normal folding algorithms such RNAfold and hope to find
structural RNAs to be thermodynamically more stable than the genomic background.
However, although on average structural RNAs are more stable than expected this approach
is generally not significant enough to reliably distinguish true structural RNAs from the rest
of the genome88,89. Comparative approaches that make use of evolutionary signatures in
alignments of related sequences can improve the signal considerably.

The first program that used pairwise alignments to find structured RNAs was QRNA90.
Based on stochastic context free grammars it could successfully identify novel ncRNAs in
bacteria91,92. MSARI was the first algorithm applying the idea of finding conserved RNA
structures to multiple sequence alignments93.

To screen larger genomes higher accuracy was necessary. RNAz94 analyzes multiple
sequence alignments and combines evidence from structural conservation and
thermodynamic stability. EvoFold95 searches for conserved secondary structures in multiple
alignments using a phylogenetic stochastic context-free grammar. Both programs were used
to map potential RNA secondary structures in the human95,96 and many other genomes
(e.g.97).

Another approach that was used to detect conserved RNA secondary structures in bacteria98

is implemented in CMFinder99. CMFinder builds a covariance model from a set of
unaligned sequences by iterative optimization.

3.2. Homology search
Pure sequence based search algorithms like BLAST quickly reach their limits when used to
identify distant homologues of RNAs100,101.
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A solution is to include structure information in the search. Several motif description
languages have been developed that allow one to manually specify sequence and structure
properties and subsequently use these patterns to search databases or genomic data.
Examples of such descriptor based search algorithm are RNAMOT102 and RNAmotif103.

Another class of programs automatically create a description of a structural RNA from a
structure annotated alignment. The most commonly used program of this class is
INFERNAL that uses covariance models, a full probabilistic description of an RNA family
based on stochastic context-free grammars104. The Rfam database (see below) is based on
INFERNAL and provides a curated collection of such covariance models.

In addition to these generic homology search tools, there are several specialized programs
for finding ncRNAs of a particular family such as tRNAs105, rRNAs106, snoRNAs107–109,
tmRNAs110, signal recognition particle RNAs111.

3.3. Coding potential
A complication during ncRNA annotation is the fact that many transcripts appear to be
noncoding but in fact have the potential to code for a protein112. For example, short open
reading frames can be easily missed and biological ambiguities of transcripts that act both
on the level of the RNA and protein can make the annotation difficult113,114. A good
overview of different methods to assess the coding potential of RNAs is given by Frith et al.
The benchmark study115 found comparative analysis to be one of the most promising
approaches. Purifying selection on the protein sequence turned out to be a reliable indicator
of coding potential and several programs were developed to exploit this feature90,116,117.

4. Mining RNA-seq data for noncoding RNA transcripts
The advent of high-throughput RNA sequencing has provided a robust platform for the
development and expansion of several transcriptome-level analyses. RNA-seq is the highly
parallelized process of sequencing individual cDNA fragments created from a population of
RNA molecules. Here we discuss three challenges that must be addressed to mine RNA-seq
data for noncoding transcripts: (i) read mapping to a reference genome (or transcriptome)
(ii) transcriptome reconstruction from mapped reads, and (ii) quantification of transcript
levels.

4.1. Short read mapping
The first stage in short-read sequencing data analysis is the alignment of the sequenced reads
to a reference genome. The algorithmic details of short read mapping is beyond the scope of
this review. Here, it is important to note that transcript reconstruction, requires so-called
“spliced aligners”. Spliced aligners such as TopHat118, GSNAP119, and SpliceMap120

identify and map short reads that span exon-exon junctions. From these spliced alignments
novel splicing events and subsequently new transcript models can be identified.

4.2. Reconstruction of transcript models
A key advantage of RNA-seq over traditional forms of RNA expression analysis is the fact
that little to no a priori information on the presence of an RNA sequence is required and, in
principle, all required information can be learned directly from the data. This advantage,
however, is dependent on the ability to re-construct a transcriptome fragmented into millions
of short reads. Common approaches to solving this jigsaw puzzle-like problem focus on one
of two different strategies: (i) reference-guided assembly, or (ii) de novo assembly (Fig. 8).
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With a reference-guided assembly, reads are initially aligned using a spliced aligner to a
reference genome sequence. The requirement for gapped alignments allows for discovery of
putative splice junctions at the locations in which a read maps to the reference with a gap
across an appropriately sized genomic interval. The two most popular reference-guided
transcriptome assembly tools, Scripture121 and Cufflinks122, both treat these gaps as
candidate splice junctions, and use this information to construct a graph representation of the
transcriptome. In the case of Scripture, the graph represents the exonic connectivity potential
of the reference genome. Cufflinks creates independent graph models for each independent
genomic interval assumed to be a putative “gene”. In eithercase, the various paths through
these connectivity graphs represent independent transcript isoforms. Scripture will attempt
to identify all possible paths through the graph that can be explained by the mapped reads
for a given gene and in this regard is useful for identifying lowly expressed isoforms, but
tends to produce more noise in highly spliced structures. In contrast, Cufflinks produces a
set of isoforms that represent the most parsimonious paths that can explain the given
mapped reads, which may not report some redundant (but true) isoforms, but does not
overburden the results with false positives. Additionally, Cufflinks estimates the read
coverage across the paths to assist the selection of the most parsimonious isoforms. The
result of either of these two approaches is a reconstructed transcriptome, the detail of which
is supported by the read sequences, abundance, and mappability to a reliable reference.

In contrast to these reference-guided approaches, Velvet123 and transABySS124 use the
short-read sequences directly and attempt to construct contig-like transcripts124. This
approach tends to be significantly more computationally intensive, but is essential in species
that do not have a reliable reference genome, or in the case when the expected transcriptome
can deviate significantly from the reference genome due to rearrangements.

4.3. Quantification and differential expression
In RNA-Seq, the number of individual sequenced fragments from a given transcript is used
as a proxy for its abundance. Determinations of expression level can be coarsely determined
at the gene-level125,126 using a pseudo-model that consists of either the most-abundant
isoform model, an intersection model quantifying only the regions present in all predicted
isoforms, or a union model. The intersection model has been shown to to reduce the ability
to accurately determine differential expression and the union model can under-estimate
expression for those genes with alternative splicing127,122. More accurately, gene-level
estimates can be determined as the sum of isoform-level abundance estimates122,128

involving a likelihood function to model the various effects encountered in the sequencing
process129. The result of fitting these models to the data is a maximum likelihood estimate
of the isoform-level abundances for each gene. Gene-level abundance estimates are easily
determined by summing the expression levels of individual isoforms.

RNA-seq expression values must be normalized to correct for inherent biases in the data.
The “Reads Per Kilobase of transcript per Million mapped” (RPKM) has emerged as a
standard metric for reporting of estimated abundance levels. This metric has the advantage
of correcting for the two main sources of variability in RNA-seq data: the length of the
transcript, and the depth of the libraries.

The robust quantification of transcript levels also allows one to study differential expression.
Since most gene-level projections of abundance estimation result in a single RPKM value
for each gene, it would be reasonable to directly use most of the many differential
expression tests that have been developed for microarray analysis over the past few years.
There are, however, additional benefits that can be gained from using RNA-seq data such as
the ability to derive a distribution of abundance estimates from a given sample or set of
samples. Short read mapping to a given genomic interval can be considered a counting
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problem, and many differential expression analyses initially attempted to fit read counts to
either Poisson or Binomial distributions to determine enriched transcripts. These methods,
however, fail to incorporate any information about biological variability. Several more
recent applications such as Cuffdiff122, DESeq130, and EdgeR131 incorporate variance
information from biological replicates in their differential expression models leading to
more rigorous statistics.

5. MicroRNAs
MicroRNAs (miRNAs/miRs) are short endogenous regulatory non-coding RNAs found in
eukaryotic cells, whose primary function is to post-transcriptionally repress genes132.
miRNAs inhibit translation and promote mRNA degradation via sequence-specific binding
to the 3′ UTR regions and coding sequences133–135. They are produced from hairpin
precursors (pri-miRNAs) that are processed by Drosha to form a pre-miR hairpin and then
by Dicer to generate one or more 18- to 23-nt mature microRNAs136. Mature microRNAs
are then incorporated into RISC where they hybridize with target sites of the mRNA, which
are complementary to the microRNA seed (positions 2-8), leading to post-transcriptional
repression. Since their discovery, there has been much interest in the computational
identification of miRNAs at a genome wide level using some combination of evolutionary
conservation, hairpin structure, thermodynamic stability, genomic context, and more
recently the presence of the mature miRNA in sequencing data137.

5.1. Identification of miRNAs
5.1.1. Evolutionary conservation—Some of the first approaches such as miRScan and
snarloop use conservation and similarity to known microRNAs for the prediction new
examples138,139. Other approaches such as miRSeeker incorporate microRNA-specific
patterns of conservation, such as stronger conservation in the hairpin stem compared to the
loop140. Additionally, patterns of conservation of target sites have been used to identify
novel microRNAs141 and to refine annotations of known microRNAs142. Other approaches
combine both sequence and structural alignments to find microRNA homologs143,144.

5.1.2. Structural properties—The secondary structure and thermodynamic stability are
important features for the prediction of miRNAs, especially when they are not conserved or
orthologs do not exist in known species. Because miRNAs need to form stable hairpins for
their processing, many studies have used structural features for their prediction. It has been
demonstrated that miRNAs are significantly more stable than randomized sequences of the
same nucleotide or dinucleotide composition145, and many studies have used programs like
RNAz to predictnovel microRNAs based on this characteristic feature146,147. Other studies
have developed machine learning approaches that train classifiers on known miRNAs and
subsequently identify novel, and in many cases nonconserved, microRNAs148–150.

5.1.3. Genomic context—Other approaches have looked for features in the surrounding
genomic context for the prediction of novel miRNAs and for refining other predictions.
Some early work helped to filter predictions with a characteristic motif upstream of and
patterns of conservation flanking the pre-miR151. Other studies have used the fact that
microRNAs tend to reside within polycistronic clusters of more than one miR to identify
novel miRNAs3,152. Some approaches also make use of the fact that regions proximal to
microRNAs tend to be devoid of other non-miR small RNAs and when they are flanked by
other small RNAs such as miRNA offset RNAs (moRs) the separation from mature
microRNA sequences is minimal153.
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5.1.4. Next generation sequencing—The analysis of the sequencing of size-selected
cDNA libraries has proved to be the most reliable method for the identification of novel
microRNAs, in most instances coupled with other features such as structure and
conservation to enhance predictions, because it provides validation that the mature sequence
is expressed. In addition to novel miRNAs, the analysis of high-throughput sequencing data
of small RNAs has led to the elucidation of many other classes of small RNAs including
endogenous siRNAs154, piRNAs155,156, and moRs157 among others. There are now a few
publicly available software tools for the prediction of microRNAs from high-throughput
sequencing data such as miRDeep, MIReNA, and miRTRAP158,153,159.

5.2. miRNA target prediction
MicroRNA target prediction is another lively area of computational analysis related to
microRNAs. Early approaches such as targetScan identify evolutionary conserved seed
matches and later approaches such as PicTar have incorporated target site stability160,155.
The topic is related to the problem of predicting RNA/RNA interactions, discussed above.
For a comprehensive review on target prediction, see Bartel161.

6. Databases
There are many databases related to ncRNAs and we cannot cover all of them here. A more
specialized review162 and the yearly database issue of Nucleic Acids Research163 are good
resources to get a more detailed overview.

There are many highly specialized databases that collect RNAs of a specific class. Basically
for all well known “classical” RNAs like tRNAs, rRNAs, snoRNAs, SRP RNAs, tmRNAs,
group I or II introns a database is available162.

All newly identified ncRNA sequences are usually deposited in general sequence database
such as Genbank. However, typically they are not systematically annotated in these
databases and consequently a few other databases have emerged that systematically collect
ncRNAs (NONCODE164, RNAdb165 fRNAdb166 lncRNAdb167).

Rfam is an important resource for structured RNAs and also includes structured regulatory
elements in mRNAs168. It collects hand curated covariance models (see above) that are used
to systematically search sequence databases for new members. As of writing this review,
Rfam contains 1973 families with a total of 2,756,313 members (Fig. 9). All RNA families
in Rfam are manually annotated.

The most extensive database for microRNA sequences, hairpins, and target sites is miRBase
(http://www.mirbase.org)169. miRBase has seen rapid growth over the past few years (Fig.
9) and is the official repository and naming authority for newly discovered miRNAs. Other
related databases include Tarbase, which is a database of experimentally verified target
sites170, and miR2Disease, which is a database that maintains a manually curated set of
disease associated microRNA target sites171.

6.1. Conclusions and outlook
The wide variety of topics covered in this paper reflects the increasing complexity of the
field. It also clearly demonstrates the interdisciplinary effort that is necessary to address
these problems. It is safe to predict that computational problems related to ncRNAs will
remain challenging for the coming years. In particular elucidating the functions of lincRNAs
will require new approaches. Many methods for structural analysis, for example, were
developed for rather short structured ncRNAs and cannot be directly applied to lncRNAs
that can be kilobases in length. Prediction of long range intramolecular interactions within
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lncRNAs or prediction of intermolecular RNA/RNA or RNA/DNA interactions of lncRNAs
will require extensions and improvements of established algorithms. Also the problem of
predicting protein-RNA interactions will be of high relevance given the increasing number
of examples of lincRNAs that act as scaffolds for protein complexes. Also more accurate
and efficient analysis of high-throughput data will be a challenge for the field. We have
mentioned analysis of RNA-seq data, but next generation sequencing can also used for a
variety of other ncRNA related problems such as high throughput RNA secondary structure
probing or mapping RNA/protein interactions. Also new approaches to organize ncRNA
data will be important and there is need for new centralized databases and specialized
resources172.
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Box 1

Dynamic programming

The Dynamic Programming (DP) paradigm is used for many algorithms related to RNA
folding. DP breaks down a problem in smaller sub-problems to find the overall solution
efficiently. Nussinov’s algorithm is a classical example of a DP algorithm. Let’s assume
we want to find the minimum free energy E i,j between the positions i and j of a sequence
and already know the solution for a sequence from i + 1 to j, i.e. a sequence that is one
base shorter. The new base i can either be unpaired or forms a base-pair with some
position k:

The base-pair k divides the problem into two smaller sub-problems, namely finding the
solution for Ei+1,k−1 and Ek+1,j. We thus can find the solution using a recursive algorithm:

βi,k is the energy contribution for the base-pair i, k in this simplified energy model.
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Box 2

Stochastic context free grammars

Context free grammars (CFG) are concepts from formal language theory. In most simple
terms, a CFG is a set production rules V → w where V represent a so-called nonterminal
symbol that produces a string of terminal or non-terminal symbols w. An example of a
simple RNA grammar would be S → aSâ∣aS∣Sa∣SS∣∊. The grammar has one type of non-
terminal symbol S and one type of terminal symbols a ∈ A, C, G, T representing the
bases. The grammar consists of production rules for unpaired and paired bases (aâ
represent two complementary bases). This simple rules allow to produce all possible
RNA secondary structures. A stochastic context free grammar (SCFG) extends CFGs by
assigning probabilities to all production rules. In the case of our RNA grammar, a full
parametrized SCFG would thus describe the probability distribution over all structures
and sequences.
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Figure 1.
Outline of the main topics covered in this review. Many topics overlap, depend on each
other or share similar concepts. The most important of these interconnections are shown by
arrows.
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Figure 2.
Principles of RNA structure prediction (A) RNA secondary structure can be represented as
an outerplanar graph (right). The backbone is arranged as a circle and base pairs are
represented as arcs. The faces of this graph correspond to different structural elements. This
formalization is the basis for most structure prediction algorithms. Any structure can be
uniquely decomposed into these basic elements which are independent from each other. This
allows for efficient folding algorithms based on the “dynamic programming” principle that
breaks down the problem into smaller sub-problems (see also Box 1). (B) Example of
energy evaluation of a small RNA structure. Thermodynamic folding algorithms assign free
energies to the structural elements. In the example shown, two stacks and a symmetric
interior loop stabilize the structure (negative free energy) while the hairpin loop destabilizes
the structure (positive free energy). The total free energy of the structure is the sum of the
energy of all structural elements.
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Figure 3.
Principles of comparative analysis for RNA structure prediction. (A) A short sequence that
can fold into a hairpin is aligned to three other sequences with different mutation patterns.
Mutated bases are indicated by a lightning symbol. The affected base pair is shown in blue,
green and red for the case of a consistent mutation, a compensatory double mutation, or a
inconsistent mutation that destroys the base pair. (B) Sequence based alignment vs.
structural alignment. Consensus structure predicted for two aligned sequences. First, the
alignment is optimized to match the sequences resulting in a poor consensus structure with
few conserved base-pairs (green). Second, the two sequences are aligned to optimize a
common structure, resulting in a much better consensus structure with more conserved pairs.
(All structures are shown in “dot/bracket” notation, in which base-pairs are indicated by
brackets and unpaired positions are shown as dots.)
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Figure 4.
Pseudoknot types. (A) The simplest type of pseudoknot (H-type) formed by two crossing
stems. The most efficient algorithms predict only this most common form of pseudoknot.
(B) Three-chain or kissing hairpin. Two hairpin loops are connected by one or more base
pairs. (C) Three-knot. Three stems cross each other. This configuration is predicted only by
the expensive algorithm by Rivas and Eddy51 (D) Four-chain, closed by a fifth stem. This
complex motif cannot be predicted by the algorithm of Rivas and Eddy, but would require
an even more costly algorithm. (E) Canonical pseudoknot. A pseudoknot formed by two
perfect stems of canonical base pairs that are maximally extended, i.e. they cannot be
extended further by canonical base pairs; the figure indicates the latter by the dashed
“conflict”-arcs between non-canonical base pairs AA, GA, CA, and CC (from left to right).
The most space-efficient pseudoknot prediction algorithm52 predicts only canonical
pseudoknots.
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Figure 5.
Tertiary structure prediction. Example prediction from the MC-Fold and MC-Sym
pipeline68. (A) Secondary structure including canonical (bold lines) and non-canonical base-
pairs (non-bold lines) as predicted by MC-Fold. (B) Tertiary structure predicted from
secondary structure (A) by MC-Sym. The prediction (blue) is compared to the experimental
structure (gold).
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Figure 6.
RNA/RNA interactions. (A) Simple hybridization, no internal structure of RNAs. The
simplest interaction prediction approaches predict only the hybridization at a single site
without considering internal structure. (B) Hybridization and restricted internal structure as
in the co-folding model. Interactions can occur at several sites, however only between
external bases. When concatenating the two interacting RNAs, the structure of all inter- and
intramolecular base-pairs is pseudoknot-free, such that it can be predicted from the
concatenation by (a variant of) Zuker’s algorithm. (C) Interaction structure as predictable by
the most complex dynamic programming algorithms. Such structures are free of
pseudoknots, crossing interactions, and zig-zags (see D). (D) Zig-zag. Intramolecular stems
in each RNA cover a common interaction as well as interactions to the outside of the stems.
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Figure 7.
Kinetic folding pathways. (A) Schematic energy landscape and associated barrier tree. A
barrier tree shows the local minima and the minimum energy barriers between them
(adapted from81). (B) Barrier tree of the small RNA xbix. (C) Exact folding kinetics of xbix
starting from the open chain. Probability of local minima over time. While the minimum
free energy (MFE) structure is finally most prominent, other “intermediary” structures (2, 3,
and 4) are temporarily more probable (adapted from82).
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Figure 8.
Reconstructing transcript models from RNA-seq data. Two splice isoforms of RNAs are
shown for which the RNA-seq experiment generated short sequence fragments. One
approach (left) to reconstruct the transcript is mapping the fragments to a reference genome.
Spliced reads that span exons boundaries can be used to infer the connectivity graph. The
paths through this graph correspond to the different isoforms. Alternatively, the transcripts
can be re-constructed by de novo assembly of the reads into transcripts (right). If available,
the assembled RNA transcripts can be mapped to a reference genome afterwards to obtain
the intron-exon structure of the isoforms.
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Figure 9.
Growth of miRBase and Rfam over the past 8 years. For miRBase the number of
microRNAs are shown, for Rfam the number of structure families and the number of
sequences found to be member of an Rfam family. (The drop of the number of Rfam
sequences in 2011 is the result of the re-organization of some large families and the
elimination of pseudogenes.)
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