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Abstract

In this thesis, hybrid numerical and analytical methods are developed for solving for-
ward and inverse microwave remote sensing problems. The primary motivation for
using hybrid methods is that many electromagnetic scattering problems cannot be
solved based on purely analytical or numerical approaches because of the complexity
of the problems and limitations of computer resources. Three electromagnetic prob-
lems solved by using hybrid methods are analyzed. First, an electromagnetic model
is developed to calculate the radar cross section of a conducting object on a rough
surface by combining the method of moments (MoM) and the small perturbation
method (SPM). Second, the thermal emission of foam-covered rough ocean surface
with the consideration of atmospheric emission and attenuation is investigated by
using the radiative transfer theory (RT). Finally, the electromagnetic inverse prob-
lem for a plasma medium based on the Gel'fand-Levitan-Marchenko (GLM) integral
equation is solved numerically by matrix inversion.

The electromagnetic wave scattering models based on the method of moments
(MoM) and small perturbation method (SPM) are developed for the microwave re-
mote sensing of a perfectly conducting object on rough surface. The perfectly con-
ducting object is constructed using planar triangular patches, and the basis functions
are defined to yield current continuity and charge conservation and reduction of the
order of singularity of the Green's function in the self-impedance matrix elements.
The integral equations from Huygens' principle are expanded in terms of the rough
surface height function, so that each equation with the same order of roughness is
equivalent to one of an object on a flat surface with an equivalent source.

As an example of the application of hybrid numerical and analytical methods to
passive microwave remote sensing, thermal emission from a wind-driven and foam-
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covered ocean surface is modeled and analyzed. The foam on the ocean surface is
modeled as a layer of randomly distributed water bubbles. The radiative transfer (RT)
theory is used to calculate the polarimetric brightness temperature from the foam and
atmospheric layer, and the small perturbation method (SPM) is used to compute the
scattered field from the ocean surface up to the second order. The numerical results
from the composite model are validated by using measurement data.

In the last part of the thesis, a numerical method using matrix inversion is devel-
oped for solving the Gel'fand-Levitan-Marchenko (GLM) inverse scattering problem
for an arbitrary reflection coefficient of an inhomogeneous plasma medium. A uniform
electron density profile reconstructed from a closed form reflection coefficient is used
to validate the numerical model. It is shown that the numerical method provides an
accurate and efficient solution for the GLM inverse problem.

Thesis Supervisor: Jin Au Kong
Title: Professor of Electrical Engineering

Thesis Supervisor: Y. Eric Yang
Title: Research Scientist, MIT Research Laboratory of Electronics
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Chapter 1

Introduction

Since the fundamental electromagnetic theory was established in the nineteenth cen-

tury, the applications of microwave remote sensing in target detection, meteorology,

and non-destructive profile reconstruction have been greatly developed. The mi-

crowave spectrum band is superior to others such as optics and infrared frequencies

due to its capability to penetrate the atmosphere layer and more deeply into the

earth terrain. However, with the increasing need to consider more complex structures

and media in the microwave remote sensing applications, solving Maxwell's equations

for the theoretical investigation becomes more difficult. Thus the motivation of this

thesis is to develop hybrid/composite methods and increase the range of available nu-

merical or analytical methods to solve more complicated microwave remote sensing

problems, and accordingly to obtain a deeper understanding of the electromagnetic

waves.

17



CHAPTER 1. INTRODUCTION

1.1 Review of Previous Work

Recently, there has been a great interest in studying the microwave scattering of

an object situated near a rough surface [1]-[11]. The problem can be generalized

to the electromagnetic wave scattering of local scatterers near a rough surface from

which a better understanding of how the presence of the rough surface affects the

direct scattering from the object can be obtained. The model was applied to radar

detection and identification of targets near the ground and water surfaces [12].

Electromagnetic wave scattering by arbitrarily shaped objects in free space has

been studied by many researchers. Wire mesh was first used to construct a conduct-

ing object [13]. The wire mesh method is however not suited for calculate the near

field, surface current distribution, and input impedance because of the presence of fic-

titious loop currents in the solution, ill-conditioned impedance matrix, and resonant

problems [14, 15]. Early work using surface mesh model to construct a conducting

object can be found in [16]-[22]. In 1982, Rao developed a triangular patch model to

construct an arbitrarily shaped object in free space [23] and solved the electric field

integral equation ( EFIE) using the method of moments to obtain object surface cur-

rent and scattering field. For numerical purposes, the surface of object is discretized

using planar triangular patches. A set of subdomain-type basis functions is defined

on pairs of adjacent triangular patches which yields a current representation free of

line and point charges at subdomain boundaries.

The theory and numerical approaches associated with a conducting object near

the interface of a layered medium is significantly more difficult than the free space

problems because the Green's function in the integral equation involves Sommerfeld

integrals. Only when the surface is perfectly conducting, can the Sommerfeld inte-

gral be evaluated in a closed form. In the past, problems with a simple 2-D object

in half space with flat interface have been studied by some researchers. A simple

conducting strip residing on a planar interface between two homogeneous half space

media was analyzed by Butler [24]. In his study, it was shown that the kernel in the

18



1.1. REVIEW OF PREVIOUS WORK

integral equation for the induced current is in general a Sommerfeld-type integral,

and can be expressed in closed form when the permeabilities of the two media are

the same. However this simplification of kernel integral cannot be obtained for the

3-D problem with a dielectric interface. Later Butler et al. [25]-[27] used a similar

method to calculate the induced current on an infinitely long perfectly conducting

cylinder located near a planar interface between two homogeneous half space media.

It was shown that the choices of the Sommerfeld-type integral are not unique, and

that they affect the efficiency of evaluation, as was also discovered later by Michalski

et al. [28, 29]. Using a similar Green's function approach, Cottis et al. [11] consid-

ered the problem of electromagnetic scattering from 2-D infinitely long conducting

cylinders located above the ground. The unknown surface current on the conducting

cylinder is determined by solving the integral equation using MoM and the scattering

field is calculated using the steepest descent method of integration. A solution for

the 2-D problem of an infinitely long circular cylinder buried in a lossy half space

was also obtained by Mahmoud [30], who used an iterative scheme and derived the

scattered field as the contribution of induced multipole line sources located at the

cylinder's axis. Both the dielectric and conducting cylinder can be treated using this

scheme, however it is difficult to apply the scheme to a cylinder with arbitrary cross

section. Other works concerning 2-D scattering from infinitely long cylinder can be

found in [31, 32].

The consideration of a rough surface for the interface is a new challenge. Previ-

ously, the problem of scattering from a conducting cylinder above a lossy medium

with a sinusoidal profile interface was studied by Vazouras et.al. [33] using an in-

tegral equation approach with the extended boundary condition method. Since the

rough surface is specified to be sinusoidal, the unknown expansion coefficients in the

integral equation are deterministic and can be solved using MoM. O'Neill et al. [7]

applied standard integral equation methods for 2-D perfectly conducting object near

rough surface of an isotropic lossy dielectric, and performed Monte Carlo simulation

19



CHAPTER 1. INTRODUCTION

for a selection of ensembles of rough surface profiles. Tsang et al. [34] used a similar

method to calculate the scattering field from a 2-D conducting object buried under a

random rough surface and investigated the memory effect of the angular correlation

function of scattering. Ripoll et al. [351 used the 2-D model to study the effect on the

angular distribution of mean far-field intensity due to the presence of an arbitrary

body located over a random rough surface. All these approaches are based on the

method of moments and need to sample the unknowns on the rough surface. There-

fore in the above works, only a two dimensional object has been investigated in order

to speed up the computation. The finite difference time domain (FDTD) method has

been used to compute the scattering from 3-D objects embedded in a homogeneous

medium with a rough surface [36, 37]. The boundary finite element method was also

used to calculate the scattering field from an object buried under a rough interface by

Saillard et al. [38]. However, the FDTD and finite element methods cannot improve

the efficiency of computation, especially when the statistics of the scattering field for

the randomly rough surface is to be computed. In the latter case, the Monte Carlo

simulation must be performed.

In this thesis, we develop a hybrid technique which combines the method of mo-

ments (MoM) for 3-D object and small perturbation method (SPM) for the rough

surface. Numerically, only the surface currents on the object need to be solved. This

leads to a much higher computational efficiency.

In the microwave remote sensing of ocean surface, the use of polarimetric passive

techniques, originally proposed in [39], has shown potential for enhancing the retrieval

of wind speed and directions [40]. The recent theoretical and experimental research

activities have concentrated on studies of polarimetric thermal emissions regarding

the anisotropic ocean surface by assuming a smoothly varying surface profile [40, 41].

However, under high wind conditions, the presence of breaking water waves, foam

patches and water bubbles will significantly affect the polarimetric brightness tem-

peratures of the open ocean surface. The significance of foam on the ocean surface
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was recognized a long time ago [42], and several subsequent experiments performed

have verified its importance [43, 44]. The previous studies of the foam contribution to

the emissivity of ocean surface were based on empirical formulations [45, 46] derived

from experimental data. Although several attempts at modeling the foam theoreti-

cally have been presented [47, 48], it is difficult to incorporate them with rough ocean

surface.

This thesis presents a theoretical study of the polarimetric thermal emission from

foam covered ocean surface based on a composite volume and rough surface scat-

tering model using the radiative transfer theory. For the foam layer, the sea form

is modeled as a layer contains randomly distributed thin-film water bubbles. The

small perturbation method (SPM) is used for random rough ocean surface, where the

bistatic scattering is calculated up to second order. The radiative transfer equations

with a rough interface are solved using an iterative technique. Model predictions are

compared with empirical expressions from [46] for the foam emissivity and with the

WINDRAD measurement data [49].

The Gel'fand-Levitan-Marchenko (GLM) integral equation was derived from the

one-dimensional Helmholtz wave equation for 1-D plasma-like inhomogeneous medium

[50]. It has been shown by Gel'fand and Levitan that given the inverse Fourier trans-

formation of the reflection coefficient, the kernel function in the GLM integral equa-

tion is unique, furthermore the profile of the medium can be determined. In previous

work, analytical solutions for the GLM integral equation were obtained for reflection

coefficients which are rational functions without zeroes [51]. To obtain a numerical

solution to the GLM integral equation for a general reflection coefficient, an iterative

technique has been used by Ge et al. [52]. A reasonable accuracy of the iterative

solution can be achieved by setting low-error criteria with the tradeoff of computing

efficiency. However the iterative solution is divergent for thick layers as shown in [52].

The GLM integral equation for electromagnetic inverse scattering problem was

solved numerically using matrix inversion [53]. For the special case in which the reflec-
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tion coefficient is a rational function, the numerical result has an excellent agreement

with the analytic result. The algorithm can be applied to the GLM integral equation

with general reflection coefficient for which the analytic solution to the GLM integral

equation does not exist. The algorithm can also be used to the GLM inverse problem

given the reflection coefficient from measurement data.

1.2 Overview of the Thesis

This thesis explores the method combining numerical and analytical approaches to

solve electromagnetic remote sensing problems. The particular problems analyzed

in this thesis are (1) the electromagnetic wave scattering by a perfectly conducting

object on a rough surface; (2) polarimetric thermal emission by wind-driven and

foam-covered ocean surface; and (3) electromagnetic inverse scattering method to

reconstruct the electron density profile of a plasma medium.

In Chapter 2, first we discuss the method of moments to solve the electromag-

netic scattering problem by a perfectly conducting body in free space using Rao's

approach [23] where he used the electric field integral equation to set up the matrix

equation and meshed the conducting object using planar triangular patches. The

advantage of using the vector and scalar potential in the EFIE is the reduction of the

order of singularity in the integrand, so that the impedance matrix can be accurately

evaluated. We then employ the method to derive the vector and scalar potential (or

Green's function) for our problem: a conducting object on a flat surface. The main

purpose of the work in this chapter is to develop the zeroth order MoM solver (i.e.

the MoM code for object on a flat surface) which can then be applied to the rough

surface problem in Chapter 3, so that the interaction of the electromagnetic waves

between the object and the flat surface can be easily understood.

In Chapter 3, the rough surface is introduced to the problem in Chapter 2. We

examine the integral equation obtained by Huygens' principle, and expand the un-
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bounded Green's function in Taylor series. We then group the terms in the order of

the rough surface height and try to solve them separately. We find that the equations

of each order represent the problem with flat surface and excited by an "equivalent

source" on the mean surface. Under the assumption of small roughness, we solve the

problem iteratively up to the first order and compare the result with the standard

method of moments, in which the surface of the object as well as the rough surface are

discretized. Comparing the hybrid method with the standard method of moments,

we obtain a good agreement in addition to the much higher computational efficiency.

In Chapter 4, we use the radiation field of the "equivalent source" due to the

rough surface derived in Chapter 3 to show the consistency of the scattered field

by the traditional small perturbation method (SPM) for open rough surface. For

the perfectly conducting rough surface, we show that the radiation field plus the

reflection of the "equivalent source" on the mean surface is exactly the same as that

from traditional SPM.

Chapter 5 studies the polarimetric brightness temperature of ocean surface under

high-wind conditions. In this study, the emissions by foam and atmospheric layers are

taken into account. The ocean surface is modeled as a composite rough surface with

small and large scale waves. The small perturbation method up to second order is

applied to model small-scale waves. Large-scale waves are considered by modulating

the local polar angle and averaging the local brightness temperature weighted by the

slope distribution. The foam layer is modeled using the radiative transfer (RT) theory

by considering the foam as a layer with water bubbles. The atmospheric layer is also

modeled using the RT theory by neglecting the scattering of the particles in the air.

The absorption coefficient of atmosphere is calculated by using Liebe's millimeter

wave propagation model (MPM) [54]. The atmospheric profiles, such as temperature,

pressure and humidity, are obtained from the US Standard Atmosphere [55]. The

couplings among the ocean surface, the foam, and the atmosphere are fully considered

in the formulation. The interaction mechanism is illustrated by examining individual
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terms.

Chapter 6 demonstrates the numerical method of solving the GLM integral equa-

tion for the electromagnetic inverse problem to reconstruct the electron density profile

of a plasma medium. The transient reflection coefficient and the kernel function in the

GLM integral equation are discretized in space and time domains, hence the integral

equation is transformed to a matrix equation. The solution for the matrix equation

exhibits faster convergence, better accuracy, and less computation time in comparison

with other numerical methods, such as the iterative scheme with relaxation [52, 56].

Chapter 7 summarizes the work presented in this thesis, highlights the most sig-

nificant results, and suggests future work and directions for the research related to

this thesis.
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Chapter 2

Electromagnetic Wave Scattering

by Object on a Flat Surface

2.1 Introduction

Before fast computers were available, the electromagnetic scattering by arbitrarily-

shaped conducting object in free space could only be solved with a wire-grid model

or only for some very simple and symmetrical geometries such as a body of revo-

lution [57]-[62]. The wire-grid model for conducting surface was considered as the

state-of-the-art approach before the nineteen-eighties. The current on the wires can

be considered to be one-dimensional which is convenient for programming [13, 14].

However, the wire mesh model for the conducting surface fails when the near field

has to be considered or the current on a patch cannot be simplified along the lo-

cal wires [15]. Before it was able to consider the conducting body to be arbitrar-

ily shaped, the problem of electromaginetic radiation and scattering from perfectly

conducting bodies of revolution was studied as early as 1969 by Mautz and Harring-

ton [57]. An integro-differential equation was obtained from the potential integrals

plus boundary conditions on the body of revolution and a solution was obtained by

the method of moments. Later Wilton and Mittra (1972) solved the electromagnetic
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scattering problem of two-dimensional cylindrical scatterers of arbitrary cross sec-

tion for TM polarization [63]. Perhaps Wang and Papanicolopulos (1979) were the

first to consider the arbitrary shape of conducting body using the planar triangle

patches [64]. In their approach, the amplitude and phase of the current on these

patches are calculated by the method of moments. However the basis functions they

used in the integral equation finally resulted in an impedance matrix that depends

on the incident field. By using special basis functions, Rao, Wilton and Glisson [23]

combined the advantages of triangular patch modeling and the electric field integral

equation (EFIE) to develop a simple and efficient numerical model to calculate the

surface current on an arbitrary conducting body. The EFIE formulation is preferable

to the magnetic field integral equation (MFIE) because the former can be applied to

open bodies, whereas the MFIE can only be applied to closed surfaces [23]. However

in the approach provided by Rao et al. [23], the conducting object is considered only

in free space. If an infinite conducting flat surface is placed near the object and it is

treated in the same way, Rao's method becomes infeasible due to the large number

of patches.

In this chapter, we first consider the electromagnetic wave scattering by an arbi-

trary conducting body in free space, and then reconsider the problem by placing the

object above a perfectly conducting flat surface. Starting from Huygens' principle,

we derive the electric field integral equations to obtain the expression of scattered

field in terms of vector and scalar potentials which reduces the order of singularity of

the dyadic Green's function. In the rest of this chapter, by introducing the layered

Green's function for a perfectly conducting half space, we reformulate the problem

for an object above a perfectly conducting flat surface. The layered Green's function

for vector and scalar potentials will be derived from the layered Green's function for

the electric field.
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2.2. FIELD SCATTERED BY OBJECT IN FREE SPACE

2.2 Field Scattered by Object in Free Space

Consider an electric wave Ei(f) incident upon a perfectly conducting (PEC) object

in free space as shown in Fig. (2-1). Based on Huygens' principle [65], the electro-

magnetic fields outside the surface take the following forms:

Incident wave Ei
Scattered wave B,

Conducting body

Free space

Figure 2-1: An electromagnetic wave incident upon an arbitrarily-shaped perfectly
conducting (PEC) body in free space.

IsdS' (wp, G(f, f')

dS'l{-iweC G(f, f') - [ii(') x E(')] + V x V(f F') -

where S' denotes the surface of the conducting object with normal vector f1(i'), and

U(f, f') is the Green's function in free space. Equation (2.1) is called the electric

field integral equation (EFIE) and Equation (2.2) is called the magnetic field integral

equation (MFIE). The MFIE [Eq. (2.2)] can be derived from the EFIE [Eq. (2.1)]

[fl(f') x N')l + V x (f,f')

I~

(2.1)

(2.2)
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SCATTERING BY OBJECT ON A FLAT SURFACE

by taking the curl on both sides of the EFIE, and using the Maxwell equations

V x E iwpH and V x H -iweE. Since the tangential electric field on the

surface of the conducting object is zero, i.e., ?(i') x E(f') = 0, the integral term that

is referred to as the field E scattered by the object, can be written as

(2.3)dS'

where J(f') is the induced surface current on the conducting object which can be

written as :7(f') = h(f') x H(r').

By using the Green's function

O~ff')=(7 + 1VV g(f, f'),kV
(2.4)

the scattered field is written as

E S dS' {iwuo0

Using the identity

V (u -v) = (Vu) . -+ (Vii) -V,

= - (VV'g (i, ')) -J(')

= -v .J f' V'g(i, 7'))

= -V (7(r') - V'g(, F')) .

Therefore the scattered electric field can be written as

E,(f) = iwpoJ
S/

+ (v7s(7')) - V'g(f, r')

(2.7)

(2.8)dS'g(,I f') - -s(f') - ZW/1V JdS'is(f')
St

r') - -s W) + (Vvg(f,
[g(fI

we obtain

(2.5)

(2.6)
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On the other hand, by using the identity

V - (of) = '- (V) + #V

we get the continuity relation as

is ( ' (f, V') = (9 (fI fl)is (f) -g (i;, r') ' -/ . ')

Using the continuity law for the surface current and charge,

V' -7(if')= pf',

we get

Est) iwpiof is') - V fdS' [V'
S/

-V I dS' [p(r')g(r, r')].1
S/

Since the surface current is normal to the surface vector, we have

V' (g(fi')Js(r')) v';

By using the identity from [66], and assuming that the surface current has no com-

ponent normal to the edge, we arrive at

dS' V' (g (F, ) dl'h , ' ' =f 0

where h, is the unit vector normal to the edge and tangent to the surface. Therefore

(2.14)
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SCATTERING BY OBJECT ON A FLAT SURFACE

the wave scattered by the conducting object can be written as

Es(f) = iwA(r) - VO(f),

where A(T) and 0(f) are vector and scalar potential, respectively, given by

A(f) = o JdS'g(r, r')Js(f')

0 V) = I J dS'g(f, r')p(r')
o S

=[to J/10

I

co S

eikKr -'|
dS' 4 - s(f)

dS' eik_'I _ W)
4-F T - P

By considering the surface current as an unknown, and noticing that the tangential

electric field vanishes on the surface of the conducting object, we obtain the equation

for the surface current (f c S) from Eq. (2.1)

(Ei(f) + Es (f))tan = 0 (2.18)

or

dS' eJk'I) - 1
4r-rF PI 6 Is'

dS'__
4l er -r tan = 0. (2.19)

After the surface current J(r') is solved from the above equation, the scattered field

can be calculated using Eq. (2.15).

2.3 Field Scattered by Object on Flat PEC Surface

Similar to Eq. (2.3), the electric field scattered by object on a flat surface as shown

in Fig. (2-2) can be written as

E(f)= dS' {iLp GL (r, f') -78 (1')}
S/

(2.20)

(2.15)

(2.16)

(2.17)

Is'
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where GL(f, f') is the Green's function for layered media. The total field in the upper

Incident wave Ei

Conducting body

Scattered wave b,

Flat PEC surface

Figure 2-2:
conducting

An electromagnetic wave incident upon an arbitrarily-shaped perfectly
(PEC) body above a flat PEC surface.

half space of the layered medium can be written as

E(f) = Fi(f) + Er(f) + Ts(f), (2.21)

where Er(f) is the field reflected by the layered interface in the absence of the PEC

object. By applying the boundary condition on the surface of the conducting object,

the electric field integral equation is obtained as

(rEi(f() +Er(f) +7S(f)) =) for f E S. (2.22)

2.3.1 Green's Function of Layered Media with PEC Half

Space

Considering an object above a perfectly conducting flat surface, the layered Green's

function can be written as [65, page 473]

GL(r, 7 f) = U'i ~)- =I (f) f' ( ~) I-(.3

31
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where G1 (f , f') is the Green's function in unbounded space. Using the definition of

the dyadic Green's function in free space,

-1r ('= 7+ VV gi(, f'), (2.24)

we write

-
7 g1 (i7') -7 g1 (fi:;I (7 - 222)) + 2g 1 (f, ' (I

+ (VVg1(f, i'))

+2 [Vvgi (F, '(7-222)) - .. (2.25)

Thus the scattered field is

ET(f) dS'{iwpUoL(T,

dS' {I p 0KA(

+ JdS'
S/

Js(fl)}

+J1 dS' {wlopu
S/

0- g,

0

0 0

and

~9' i9 .(7222)

GL(T, f')

1

- 222)) -2

I, f ) - -s(

(Vvg1 (f, f')) - -isf'Iopo

(7 - 222))]

where

(- 222) -Js

KA(r,') =

(2.26)

[q 0

0

(2.27)

(2.28)
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By using the relation in Eq. (2.7), we have

(VVg1 (i,')) -Js(r') -V ps(f') - V'g, '))

- 222))) -22.- Jf') = -V (J8 (r') (v'gi (l , f' (7 - 222)) - (2)),

(2.30)

thus the scattered electric field can be found to be

T, (f)
S/

-- V
V

+k2 V

IS
IS

dS' {(Js(') -

dS'{ ((I - 222) - Js(f') . V'gi (f, I' - (7 - 222)))}.

For the third surface integral in Eq. (2.31), we change the sign of the coordinate of

z' so that the new surface is the image with respect to the flat surface. By letting

(I - 222) - J, (f"), the third surface integral becomes

Es3(f) =2 V fdS" {
S//

Notice that J'(r") - (7

(7' '(i") . V"9 1 (iu'))}. (2.32)

- 222) -J,(F") is the surface current on the image surface

S". This can be shown by defining a normal vector h' = x'z + y'Q + z'2 on the

surface S', such that the corresponding normal vector on the image surface is h"

X'/ + y'f - z'2. Since J,(f') is the surface current on S', J ( h') = 0, therefore

(I - 222) - Js(f") -h"/ J/ (') h ' = 0.

By using the identity

(2.33)
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(2.31)
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and noticing that the surface integral of the first term is zero, we write the term as

Es3 (r) =- V
k/

Using the continuity law for the current and charge distributions

(2.35)

the third term of the scattered electric field can be written as an integral in terms of

the surface charge density

Es3(f) =-V dS"g1i(r,')p(f").

Changing the component z" back to -z', it yields

Es3(r) V-v

(2.36)

(2.37)

Finally, we obtain the electric field scattered by the conducting object on a flat PEC

surface as following:

E&) = iwpoJIdS'KA(f,') J,(f') - V- IS (2.38)

where K0(r, f') = g,(f, f') - gi(f, f"). Defining the vector and scalar potentials

(2.39)A(F) = go fdS'KAJ') -J(f'),
S '

1 i dSIKO~fI ,i')pQY'), (2.40)

the total electric field scattered by the object on a flat PEC surface can also be written

34 CHAPTER 2.
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as

Esi(f) = iA)(f) - VO(r). (2.41)

2.3.2 Formulations for the Solution by Method of Moments

In the electric field integral equation for the conducting object on a flat PEC surface,

the unknown function is the surface current on the object. The charge distribution

ps(r') is related to the surface current by the continuity law V' - js(f') = iap,(f'),

therefore p,(f') is not an independent unknown. In this section, we will use the

triangular patch model introduced by Glisson [67] to formulate the equation used

in the MoM. In the triangular patch model, the surface current on the object is

approximated in terms of the basis function f,(f'), i.e.,

N

= Z Inf,(f'), (2.42)
n=1

where N is the number of interior edges and I,, is the unknown on the interior edge

n. The basis function f,(f') is defined for an adjacent pair of triangles:

+ W ?) f' on T.,no

W) =(') f' on T-, (2.43)

0 otherwise.

One triangle (Ti) of the pair with the area denoted by A+ is named "positive" and

the other (T;) with the area labeled by An is called "negative", and they share a

common interior edge with the edge length in as shown in Fig. (2-3). If the tip of the

position vector f' is located on the triangle Tn, then the local position vector Pn+V')

points from the free vertex V to the tip of the vector F'. If the tip of the position

vector f' on the triangle T-, then the local position vector p (f') points from the tip

of the vector f' to the free vertex V'. For example, the surface current on the triangle
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T + Tn

An A;n

V

Figure 2-3: Triangular patch pair used in the modeling of conducting objects.

is approximated as

N

s') =E Infn W(')
n=1

= a 2a-- ) + Ibl pb(T f + Ic C , (2.44)2AK(~ 2A C2AC

where the subscripts a, b, and c are the labels for the edges. Note that there is a

maximum of 3 terms contributing to the surface current on a triangle patch. There

is no surface current flowing across an open edge because no unknowns are assigned

to such edges. However, if an open edge touches a perfectly conducting surface, the

unknown associated with this edge is treated as the one for a regular interior edge

so that the current crossing this edge is continuous. With the definition of the basis

vector function f,(r'), we also get the surface charge density

() 1 J(') = ' (2.45)
2W n=1



2.3. FIELD SCATTERED BY OBJECT ON FLAT PEC SURFACE

where the surface divergence of the basis functions is constant and is given by'IInin
A

0

i' in T,+,

'' in T-,

otherwise.
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Therefore, associated with the vector basis function, the scattered electric field is

E8~)=iAf #f

= iw J dS' KA(, s ') - VI
S/ S/

N

= iwto EIn dS'
n=1

1 N
-V. 0 E In]

lw'e ,

(2.47)

and the total electric field is

E(f) = Ei(f) + Er(f) + Es(f). (2.48)

By choosing the testing function as the basis function 7m(r), we calculate the inner

product for the total electric field on the surface of the conducting object, and get

dSE() -ftn(;) ISdS [Eif)+ Er (f) +EsT1 f)]m.

Noting that E(f) - fm ) = 0 since the tangential electric field is zero on the PEC

object, we find

I
S

(2.50)

(2.49)

s - 7n(f') =

dS'K0 (f , f') p (r)

KA (f 7nt' (f/t?)

dS'KO(f, f')V ' 7n(f'),

dS Ei (F) + Er (f ) + Ts M ) -7m v) = 0,
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where

dS E (i)+ET ()] -7, i)

S2A dSEif)+ErT(f)] -p(F)+2A+t + MMTt

~ r (fmc) + Er vC+t)] -Prn + IE (2.51)

and the superscript c denotes the centroid of the corresponding triangle. A detailed

derivation is given in Appendix A. The inner product of the scattered electric field

with the vector basis function is

fdSEs(f) .fm(f)

2 + A(f ) -2 2

+lm [O(#Fit) - #(?)] . (2.52)

Thus Eq. (2.50) becomes

+2 [(E) ] -) + E P+ - -2+ ± #( );

ZWlm [q(fm-). - P 7+~ (fm1 + 1m [O7(c+) - 5~]0, (2.53)
L z z

where

N

= 1 N

N

n=1

I1/ N

dS'Ki(ff, f')V'S fnQi') =S : # n
n=1

(2.54)

(2.55)

2A-f dS [Ei M + Er (f)-)
T

(FMC-) + Er (fM )) -M *-.

Aq V, M:)

~iWIM A MC+)
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and

Amn

= to '
S=

IS
Define the element

+ Er (if) M I

and the impedance element

+ A-. - 2 )-(#1, - # I In, (2.59)

for Eq. (2.53), we write the above as a linear equation

N

Vm = Z ZmnIn.
n=1

(2.60)

This is the matrix equation for the MoM with impedance matrix Z = [Zmnl, source

vector V = [Vm], and unknown vector I = [In].

2.3.3 Induced Surface Current and Scattered Field

Surface Current on the Object

Once we solve the unknown vector I = [In] from Eq. (2.60), we can calculate the

induced current anywhere on the object using Eq. (2.44),

N

(2.61)Jse (') = 8 - E Inyn(W),
n=1

where e = x, y or z. There are three terms contributing to the current. The direc-

tion of the local coordinate vectors ,a(i'), pb(f'), and &c(r') are associated with the
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definition of "positive" or "negative" triangle patches as shown in Fig. (2-4).

Ib lb

Ac

(a) The "Positive" triangle patch

1b lb

laA

Pb 1C

(b) The "negative" triangle patch

Figure 2-4: Surface current on triangular patches.

Surface Current on the Flat Surface

The surface current on the conducting flat surface can be calculated by

(2.62)

where Hi(f) and H,(f) are the incident and reflected magnetic fields in the absence

of the object, respectively. H(f) is the magnetic field scattered by the object in the

presence of the flat surface. It is convenient to define the vector

(2.63)

with the unit of the electric field (Volt/meter).

The Field Scattered by the Object

As in Eq. (2.47), the field scattered by the conducting object can be calculated

40 CHAPTER 2.

J (F) = ft x (Hi (f) + H, (f) + 77,(f)) ,

-a(f) = r7 J(f)
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after the unknown vector I = [I ] is solved from Eq. (2.60),

=wiof) - V#(f)
N

= iwpo EInf dS' KA (F 7n (f)
n=1 S

1 N
-V E IJ dS'KO(r, r')VS -7n ').

n-i
(2.64)

In the iterative method for the scattering problem of the object on a rough surface

(Chapter 3), the near field E,(f ) needs to be calculated. However the far field formula-

tion of E(i;) is also useful for each iteration. In the far field region, if - f'I ~ r - f',

we have

(2.65)
ikr eikf-'

47r

and

gi9,1 ' - gi (,7)

KA (f,' 0 (

0

eikr

4rrL2

0

g ' - gi(

0

e-ikf-' - e-ik -"

0

0

0

gi(f,) + gi(f,

0

0
ik r _ik i'

Ko(f , r') = g1(f
/) eikr k-r

f)- gi (, f") eikr
47rr

The far field approximation is important in numerical calculation because evaluation

of If - f'I cannot be carried out correctly if the ratio r'/r is small compared to a

computer's digital accuracy.

(2.66)

- -iki'") .
(2.67)
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2.4 Numerical Results

2.4.1 Validation of the Code against Mie Theory

We first simulate the radar cross section (RCS) of a conducting sphere above a con-

ducting flat surface using the MoM and compare the result with the one from an

approximated Mie's theory [68, 69, 70] as shown in Fig. (2-5). The incident electric

field Ei =Eoeikz is a plane wave with frequency f = 300 MHz normal to the con-

ducting surface coincident xy plane. The bistatic radar cross section is calculated

by

RCS = lim 47rr 2 _ 2 (2.68)
r-oo JEol 2

where E, is the bistatic scattered field of the conducting sphere. The radius of the

sphere is r = 0.5A and the gap between the sphere and the flat surface is 6h = 0.

The small deviation of the simulation result using MoM from Mie's theory may be

due to the discretization of the spherical surface and the asymmetry of the patches.

The number of triangular patches is 528 and the number of unknowns is 792.

2.4.2 Surface Current on a Conducting Object

Figure (2-6-a) and (2-6-b) are the calculated surface current |Jz and |Jx 2 +J 2

on a conducting cylinder above a flat conducting surface, respectively. The surface

current intensity is normalized to gray levels from 0 to 1. The incident wave is TE

polarized with Oi = 40' illuminating the front-end of the cylinder (0i = 0'). The

cylinder is along the x-axis with length L = 2.OA, radius r = 0.5A, and the gap from

the flat surface 6h = 0.1A. The incident wave is tapered with g = 3.OA and 64 x 64

plane waves (see Chapter 3).

Figure (2-7-a) and (2-7-b) are the induced surface current 1JZ and |J 2 2 +1JX1

respectively, by TM incident wave with Oi = 400 and #2 = 00. The cylinder has the

same geometry and orientation as in Fig. (2-7). Notice that the dominant component
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Bistatic RCS from Sphere on Conducting Surface

-M

HH-pol

- -. ...Cgs
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Figure 2-5: Bistatic radar cross section (RCS) of a conducting sphere with r = 0.5A

above a conducting flat surface. The gap between the sphere and the flat surface is
Jh = 0.
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z

x

(a) TE incident wave, IJzI

z

x

(b) TE incident wave, J, = VIJ 2 + -JIy 2

Figure 2-6: The induced surface current on a conducting cylinder above a flat surface
using TE incident wave.
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of the surface current has the same direction as the polarization of the incident wave.

2.4.3 Surface Current on Flat PEC Surface

Figure (2-8) is the simulation result of the x and y components of the surface current

multiplied by the characteristic impedance r/1. The incident wave is tapered with TE

polarization, g = 3.0A, 0, = 40', and Oi = 00. The object is a horizontal cylinder

along the x-axis with the length L = 2.OA, radius r = 0.5A and the gap between the

cylinder and the flat surface 6h = 0.1A.

Figure (2-9) is the simulation result of the x and y components of the surface

current multiplied by the characteristic impedance rio for TM incident tapered wave.

2.4.4 Scattered Field of a Conducting Cylinder above a Con-

ducting Surface

Consider the same perfectly conducting cylinder as in Fig. (2-6) and (2-7) horizon-

tally placed above a PEC flat surface. After the induced current on the cylinder has

been solved, the scattered fields are calculated as shown in Fig. (2-10)-(2-13). The

co-polarized and cross-polarized bistatic scattered fields are calculated by using the

method of layered Green's function in comparison with the standard MoM that con-

siders both the object and the PEC interface as scattering bodies. However, in the

layered Green's function approach, the only unknown is the surface current on the

conducting object above the PEC surface. Therefore a much higher computational

efficiency for the layered Green's function approach can be achieved. Notice that

the scattered fields for TM incident wave agree better than the TE incident wave in

comparison with the standard MoM. This is because the scattered field excited by a

TE wave may cause higher artificial edge currents at the truncated boundary of the
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z

x

(a) TM incident wave,I

I z

x

(b) TM incident wave, J, = Vji 2 +Jy 2

Figure 2-7: The induced surface current on a conducting cylinder above a flat surface
using TM incident wave.
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(a) The x component of the surface current
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Figure 2-8: The x and y components of the surface current on a conducting object
for the TE incident tapered wave.
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IJM(f)I|g

-6 -4 -2 0 2 4 6
x/A

(a) The x component of the surface current

IJ (f)I7

-6 -4 -2 0 2 4

x/A

(b) The y component of the surface current

Figure 2-9: The x and y components of the surface current on a conducting object
for the TM incident tapered wave.
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PEC flat surface in the standard MoM. The large value at 180' azimuthal angle for

the co-polarized scattered fields as in Fig. (2-10) and (2-12) are the specular reflection

from the PEC flat surface. The small but visible non-symmetry in the plots for the

cross-polarized scattered fields as shown in Fig. (2-11) and (2-11) are caused by the

unsymmetry of the triangular patches on the cylinder. An overall good agreement

has been achieved for the scattered field for all polarizations.

2.4.5 Object Half Buried in a Conducting Surface

Figure (2-14) is the gray level plot of the induced surface current on the horizontal

cylinder half buried in a conducting flat surface. The incident wave is TM with the

polar angle 0% = 400 and azimuth angle 1 i = 0'. In Fig. (2-14-a), the total induced

surface current, J, = IJxI2 J i + i J, is plotted. It shows that the largest

amount of surface current is induced at the front end of the cylinder. Figure (2-14-b)

is the plot of the induced surface current in the z direction. Notice that the current

crosses the edges touching the flat surface. The length of the cylinder is L = 2A and

the radius is r = 0.5A. The maximum current intensity is normalized to 1.

Figure (2-15) is the numerical simulation result of the bistatic radar cross section

(RCS) for the conducting cylinder horizontally half buried in a flat conducting surface.

The incident wave is a TE tapered wave with the frequency f = 300 MHz. The g

factor of the tapered incident wave is g = 3.0A. The wave vector ki of the incident

wave is on the xz plane (#i = 0') with the polar angle Oi = 40'. The bistatic scattered

field is calculated for the scattering polar angle 0, = Oi = 400 and the azimuth angle

0, varying from 0' to 3600, so #, = 0' or #, = 3600 is the backscattering direction.

The solid curve is the simulation result by using the method described in this chapter.

The dashed curve is the simulation result by using the standard method of moments

(MoM). In the standard MoM, the flat surface as well as the cylinder are discretized

into triangular patches. The size of the flat surface is chosen as 15A x 15A so that

the illuminating field at the edges is small enough to avoid the edge effect due to
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HH Polarization

180
Azimuthal Angle [deg]

Figure 2-10: The co-polarized bistatic radar cross section (RCS) solved by the layered
Green's function approach for a conducting cylinder above a PEC flat surface in
comparison with the result from the standard MoM.
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VH Polarization

90 180
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Figure 2-11: The cross-polarized bistatic radar cross section (RCS) solved
layered Green's function approach for a conducting cylinder above a PEC flat
in comparison with the result from the standard MoM.
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VV Polarization
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270 360

Figure 2-12: The co-polarized bistatic radar cross section (RCS) solved by the layered

Green's function approach for a conducting cylinder above a PEC flat surface in

comparison with the result from the standard MoM.
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Figure 2-13: The cross-polarized bistatic radar cross section (RCS) solved
layered Green's function approach for a conducting cylinder above a PEC flat
in comparison with the result from the standard MoM.
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z
0i

x

(a) The total surface current J, = J 2 + J2 + J2

0i

a,

(b) The vertical surface current J

Figure 2-14: The induced surface current on a conducting cylinder half buried in a
conducting flat surface by a TM incident electric wave.
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the truncation of the computational domain. The radar cross section (RCS) of a

half cylinder in free space is also calculated and shown by using the dash-dotted line

in comparison with the RCS of the cylinder half buried in the conducting surface.

Notice that, due to the electromagnetic wave interaction between the object and the

surface, the total RCS of the buried cylinder is enhanced in comparison with the RCS

of the half cylinder in free space. Also notice that there is a strong specular reflection

in the forward direction 0, = 1800 for the cylinder half buried in the flat surface. The

dash-dotted curve is calculated by using the standard MoM. The cross-polarization

of the bistatic radar cross section (RCS) is shown in Fig. (2-16). The discrepancy

of the simulation results at q, ~ 0' or 360' may be caused by the edge effect in the

standard MoM calculation where the flat surface is treated as finite. In the layered

Green's function approach, the flat surface is taken to be infinite.

Figure (2-17) and (2-18) are the numerical simulation results for TM incident

wave. In these simulations, all other parameters are the same as in Fig. (2-15) and

Fig. (2-16). Notice that the bistatic RCS patterns are similar to that of a cylinder

half buried in flat surface or in free space. However the RCS for a cylinder half

buried in flat surface is about 10 dB higher than in the free space. In Fig. (2-17) the

enhancement of the RCS with flat conducting surface demonstrates that the dominant

portion of the induced surface current is on the object. This is due to the fact that

the TM incident wave is vertically polarized, and that the image of the vertically

polarized surface current on the object points in the same direction as the original

surface current.

2.5 Conclusions

In this chapter, by modification of the vector and scalar potentials, the EFIE solver

of object in free space was applied to the problem for the object on a flat PEC

surface. By using the vector and scalar potential as in [231, the integration for the
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Figure 2-15: The co-polarized bistatic radar cross section (RCS) of a conducting
cylinder half buried in a conducting surface in comparison with the RCS of a half
cylinder in free space.
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Figure 2-16: The cross-polarized bistatic radar cross section (RCS) of a conducting
cylinder half buried in a conducting surface in comparison with the RCS of a half
cylinder in free space.
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Figure 2-17: The co-polarized bistatic radar cross section (RCS) of a conducting
cylinder half buried in a conducting surface in comparison with the RCS of a half
cylinder in free space.
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Figure 2-18: The cross-polarized bistatic radar cross section (RCS) of a conducting

cylinder half buried in a conducting surface in comparison with the RCS of a half

cylinder in free space.
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scattered field is simplified with lower order of singularity in comparison with the

original integral equation. We have considered the electromagnetic wave scattering

by an arbitrary conducting object above a PEC flat surface by writing the scattered

field as the integral of induced current multiplied by the Green's function for a PEC

half space. The vector and scalar potentials for the object-on-surface problem are

derived from the layered Green's function. We compared the numerical results by

the layered Green's function approach with the standard method of moments, and

good agreements were obtained. In addition, the layered Green's function approach

is much more computationally efficient, since unknowns are only associated with the

triangular patches on the conducting object. This is in contrast to the standard MoM

approach where the unknowns are associated with the patches on the object as well

as the flat surface. The interface we considered in this chapter is flat; it is eventually

the zeroth order problem of a conducting object above a PEC rough surface which

will be discussed in the next chapter.
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Chapter 3

Electromagnetic Wave Scattering

of Conducting Objects on Rough

Surfaces

3.1 Introduction

Recently, there has been a great interest in studying the electromagnetic wave scat-

tering from an object situated above a rough surface [1]-[11]. Simulation techniques

for electromagnetic wave scattering by arbitrarily shaped objects in free space are

well developed using wire [13]-[15] and surface-patch models [16]-[23]. The theory

and numerical approaches associated with objects near flat interfaces of layered media

have also been studied extensively by many researchers [11], [321-[72]. However the

consideration of a rough surface interface is a new challenge, and little work has been

reported. In theory, the standard MoM can be used to solve for the unknowns both on

the object and the rough surface [7, 34, 35]. However, the discretization of the rough

surface significantly increases the computational resource requirements compared to

calculating the scattering from the object alone. Therefore little literature exists on

the study of scattering for full-scale geometry.
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In this chapter, we present a hybrid SPM/MoM technique to calculate the EM

scattering from a 3-D conducting object above a rough surface [73, 74]. In this hybrid

technique, the Green's function and surface variables are expanded in terms of the

surface height function on the mean surface, and the electric integral equations based

on the extinction theorem and the surface boundary conditions are decomposed into

different orders. Each order represents a flat-surface scattering problem with the

same geometry and different equivalent sources, so that it can be solved efficiently

by using the dyadic Green's function for layered media as discussed in the previous

chapter. The separation of the solution into different orders also helps us identify

and characterize the individual interaction terms between the object and the rough

surface.

3.2 Configuration and Formulations

Consider an electric wave E(f) incident upon a perfectly conducting object with

arbitrary shape Si above a rough surface S, as shown in Fig. (3-1). The upper and

lower spaces V1 and V2 are homogeneous, isotropic media characterized by (61, m1)
and (62, 12), respectively. The rough surface profile is defined by the surface height

function f(f') with mean surface S, coincident with the xy plane.

3.2.1 Electric Field Integral Equation

On the perfectly conducting surface of the object, the tangential electric field is zero.

Thus we can write the electric field integral equation for f c Si as

Ei(f) + dS'{ip 1 1 ( , ' [i' x H1(' + ± v x (f , f') - [i(') x E(')] }
+iw)p1Is dS'/Z1 (f , f') J 1(e') x nh(f) = 0. (3.1)
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Incident Wave E

So

z PEC Object
Surface Si

Region V

Rough Surface S,
z=fi)

Figure 3-1: Configuration of the problem: An electromagnetic wave incident upon a
PEC body above a rough surface.

By applying the extinction theorem, we get for f E V2

Ei (f) + j dS' {iwl11 Gl (, f')- [ 1 (') x 1 (f') + V x 1(i, f') -i (F') x Ei (f') )

+iW/It j dS'i , f') - J(f') = 0, (3.2)

and for f E V

j dS' {ioWk 2 G 2 (f, f') - f') x H2(f')] + V x 2 2 ') [ 2 (f') x E 2 (r') } = 0,

(3.3)

where G, and G 2 are dyadic Green's functions for unbounded regions with (El, Ai)

and (E2 , /12), respectively. The vector hi (f') denotes a local normal pointing from the

rough surface S, to the upper region V1. The vector ft2(i') is anti-parallel to ni~(f'),

i.e., n 2 (') = -0h(f'). E1 (f') and H1 (f') are electric and magnetic fields on the rough

surface in region V1, while E2 (f') and H2(f') are surface fields on S,. in region V2.

Jl(f') is the induced surface current on the object. If region V2 is dielectric, the
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tangential fields are continuous, thus

Xi' x1 H(f') = h I(f') X H72(f') ild1a(r'i), (3.4)1 dr'

hi (f') X E1 (f') = hl1(f') X E72(f') = b(f'i), (3.5)
dS' 35

where (i'L) and b(f' ) are new surface variables defined on the mean surface So, /1

is the intrinsic impedance of the upper region V1, i.e., ql = (pu1/e 1) 1/2, and dr'L is the

projection of the infinitesimal area dS' on the mean surface S,. With the new surface

variables, we can rewrite the integral equations as

E (F) + df' {iki G, (f, f') - d(f') + V x 01 (f, f') . b

+iw 1 I dS'G 1(f, f') .71(f')) x no(f) = 0 for r E S1 , (3.6)

E~i~) + j d's {iki C1 (r ,') -Q'I) + V x G, (r, f') - b(f'i)

+iwpu I dS' 1 (tf') -,J(') = 0 for i E V2, (3.7)

j dr' ik 22T 02 (f, i')- a(') + V x G 2 (f, f')- b(f'I) = 0 for f E V1. (3.8)

Theoretically, given the rough surface S, and the object surface profile Sl, the

unknown surface variables 6F'), b(s) and the induced current 71(f') can be solved

from Eqs. (3.6)-(3.8). For the special case in which the interface is flat, the surface

variables (i'L) and b(f' ) have only horizontal components and the local coordinate

f' in the dyadic Green's functions G1 (r, f') and G2 (f, f') can be replaced by f's.
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3.2.2 Expansion of Green's Function and Surface Variables

As shown in Fig. (3-2), the local position vector f' on the rough surface can be

expressed as the sum of the horizontal vector f' and the vertical vector 2 f (f').
Therefore the scalar Green's function g, in region V, (where a = 1, 2) can be expanded

in terms of the surface height function f(f' ) on the mean surface S0,

g0 (r, r')
C iko irr'l

= 47r f - f'|

= g (f, f's + f (f')

= 0 ma !zm g (rr')f M W,1

= ~ ~ ~ c V m! fzl- (, ') (- f ('J)" ,I (3.9)

in which the following property of the scalar Green's function has been used:

( r
azm (3.10)

Thus the dyadic Green's function can be expressed as

2 f (rI)

Rough surface

Figure 3-2: The local position vector F' on the rough surface is the sum of the hori-
zontal and vertical vectors.

+ \
+k2

00 1

= EO M!(f -

am
azm G , r').(=7 (3.11)
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Similarly, the surface variables and induced current can be written as series expansions

as follows:

71(f') = ± (f) (3.12)
m=O

00

)= a() (3.13)
m=O

b(f' /) = b ") (f') + b ") (F's).(.4_iL) _5 z (3.14)
m=O

In Eqs. (3.13) and (3.14), the separation of the z-components for the surface

variables a and b allows the only unknown surface variables to become the tangential

components since the z-components of the m-th order can be expressed in terms of

the tangential components of order (r-1), as we will see below.

By the definition of d and b [Eqs. (3.4) and (3.5)], the following identities hold:

-('L) . 5(f') 0, (3.15)

hi (f'() - K(f') 0, (3.16)

where
-Vif () +2

i(i) = . (3.17)
-VIf (V'1 + |

Substituting the series expansions of Ct and b, Eqs. (3.13) and (3.14), into Eqs. (3.15)

and (3.16), respectively, and assuming that Of(ri)/&x' and Of(f's)/&y' are of the

same order as kf(f'), we then get the m-th order z-components of the surface

variables d and b in terms of their (in- 1)-th order tangential components:

ai")(T') = V' f(i'j W dj"ll(M'1), (3.18)

bm) (f' = V'If(f' )(- 1) (f) (3.19)



3.2. CONFIGURATION AND FORMULATIONS 67

3.2.3 The n-th Order Equation

Substituting the series expansion for the dyadic Green's function Eq. (3.11) and the

surface variables d and b as in Eqs. (3.13) and (3.14) into the integral equations (3.6)-

(3.8), we can derive the following n-th order equations in terms of the surface height

function f(i'):

d' {iki G, (F, f'K) -d Ij(f'1) + V x T1

x hi(f) = 0

dr' iki 0 1 (f, f'cfK ( ) V x

+iwsi dS'C 1 (i, ')

d {ik 2 2=dI i hG

. jfl)(j') - 0 for f C V2,

( ~ ) - (_'_) + V x G 2(rr') bF(I')

for f C V1,

where for n = 0,

and for n > 1,

E(n)

n

M=1

(n-M) / - -(n M)01 b Wazm iki G, (f 7 f _L) . WL (rL) + x _L _L

n I+ E - f df/L [-f (f,
M=1 (M 1)!

() +
's"

+iwIsi

(i, K n)

(n) + 15

for f E Si, (3.20)

01 (,') )

E (i) + f

(3.21)

= 0

(3.22)

-- (O) -

-() = Ei(),

2(')= 0,

(3.23)

(3.24)

J df' [-f (f')

dS 1(r, f') -J V"()
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0k M-1 (. = ') . V'/ f ('-/ (n ) ' (,7' )

+V x G (r, i) -2 [VIff') - m)(r') (3.25)

-12

m 1

+ 1 Jdr [-f ([-')]]

a {k 2  02 (, f') n2 v'If(')

+-V x k2(r, 's) -2 VIf((')f -S"m)(j'I) . (3.26)

Comparing the zeroth order (ri= 0) integral equations with Eqs. (3.6)-(3.8) for

the flat interface (f(f') =0), we see that they are the same except for an additional

superscript (0) to the surface variables di~ and b1 and to the induced current J1.

Therefore, the solutions U7f, b7N, and Jifor the zeroth order equations should be

the same as the ones for Eqs. (3.6)-(3.8) in which the rough surface is considered to

be flat. For the higher order equations (ii > 1), we find that they are also in the same

form as the zeroth order equations, except for the substitution of E% by E ) and the

-(n)

additional "source" term E02 in the lower region. Therefore we only need to solve

the zeroth order equations, i.e., the equations for an object over a flat interface.

Since the equations of any order are equivalent to the ones for a flat interface, they

can be rewritten by introducing the dyadic Green's function for layered media. The

advantage of this approach is that it avoids solving surface unknowns a " and bi" on

-(n) (nTn (,

the interface. Only the induced current J on the conducting body need be solved.

Therefore both the computational time and memory requirement are dramatically

reduced.
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3.2.4 Application to PEC Rough Surface

As an example, we now consider the rough surface to be perfectly conducting. In this

case the zeroth order electric field integral equation (EFIE) can be written as

+ E 0 () -+ iwp dS'CL (f, rf)) =(f) 0 for r E Si,

(3.27)

and the n-th order (n > 1) EFIE can be written as

+E E(n) + iWL1
'Si

dS' 0 L (f, i') (fl) = 0 for f E i 1 ,

(3.28)

E ) (r) = df's - (f' )]m 0 .ki G, (f, f'/)

+ E [d') [-f (F'Am-1
M-1 (M - 1)!

- [ V' ' WJ anm)(i') , (3.29)

and the dyadic Green's function for a conducting interface is [cf. Ch. 2.3.1]

(3.30)

where 01 is the dyadic Green's function in the unbounded medium of region V1. The

singularities of the dyadic Green's functions in Eqs. (3.27) and (3.28) can be reduced

by using a triangular patch model in [23] for the conducting surface of the object.

The surface field di of lower order can be obtained from the lower order scattered

field due to object and equivalent source. For example, the first order surface variable

a1 can be calculated by using the solution of the zeroth order induced current J 1 3

where

ft,(f) x( Ei "(r)

nk(f) x T"(n)

(n-m)
W

I

(iki V1(, ')

GL (f G, (f
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and the incident and reflected magnetic fields in absence of the object,

() =r 2 x > ('i ) + Hri(F') + dS"V' X GL(f',/ f") - i(O) (f) . (3.31)

The higher order (n > 2) surface variable a can be obtained similarly but involves

a lot of manipulations.

Up to the first order, the total returned field can be written as

Es(f) =Er(f) + Eb(f) + E,() + E(f), (332)

where

Eb(') = wfjdS'(,T ')- (R'), (3.33)

Ec~f = E (f)+ E f),(3.34)

Ed(f) = Wt fS1p dS'O (f ')-4 f (3.35)

and

In Eq. (3.32), Er(f) is simply the reflected field from the flat interface in absence

of the conducting object. In the expression for Eb(r) [Eq. (3.33)], the induced current

is obtained by solving the integral equation (3.27) with layered Green's function,

therefore the returned field Eb(f) includes all interactions between object and flat

interface. E7(f) in Eq. (3.34) is the sum of the radiated field from the "equivalent

source" and its reflection, as illustrated in Fig. (3-3). The reflected field of the equiv-

alent source can be obtained by writing the unbounded dyadic Green's function in

integral form as in Appendix B, thus the radiated field of the equivalent source E(



3.2. CONFIGURATION AND FORMULATIONS

Er

0 Equivalent Source

Mean Surface

Figure 3-3: Radiation and reflection of the equivalent source.

is expressed as the sum of plane waves. By using the Fresnel reflection coefficient for

(1)
each plane wave component, it is easy to write the reflected field Er by multiplying

with RTE and RTM to obtain the reflected TE and TM waves, respectively. For a

non-penetrable surface RTE = -1 and RTM = 1, thus we find

Er (f) = Ei (f). (3.37)

Therefore the returned field due to the equivalent source is simply

Ec(f) = 2Ei (f). (3.38)

It can also be shown that the returned field R,(f) as in Eq. (3.38) is the same as the

first order SPM solution for a conducting rough surface if we let the induced current

7 = 0 when evaluating the surface field d (f' ) in Eq. (3.31). Therefore, we call

Ec(f) the "incoherent" returned field from the rough surface under the influence of the

object. The returned field Ed(f) is the radiated field of the first order induced current

71) excited by the "incoherent" field Ec(f). Since the layered Green's function is used

to calculate the induced current 7(1) and its radiated field, the returned field Ed(f)

includes all multiple interactions between the object and the conducting interface.

71
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3.2.5 Object Half-Buried in a PEC Rough Surface

For the case that a perfectly conducting object half-buried in a rough surface, the

change of the equivalent source due to the effect of touching areas on the rough

surface and the surface of the PEC object must be taken into account. As illustrated

in Fig. (3-4) for the general dielectric rough surface, the electric field integral equation

for f G Si and i E S2 can be written as follows, respectively:

Incident Wave Ei

Surface Si

So

PEC Object
Surface S1

Region V1

#1L

Surface S2/

Figure 3-4: A PEC object half-buried in a rough surface.

+ r(f) + dS' (iWp1 i(f, If') [( Iif') x 7i(f')

+V x G1 (, If') - if i(e) Ji) =0

+iW1si fS dS'iG,(f,7 f') - 71 (f')) x fio(f) = 0, (3.39)

(J,-s dS' (iZWp22(f, f'). [i6(f') x H2 (2') + V x 2 (, ') [- x 2 (') x T2

+ 182 dS'G2(f, 7') -~ 2(')) x flo(f) = 0. (3.40)
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By applying the extinction theorem, we get the EFIEs for i E V2 and f E V regions,

respectively,

+ 1 (f')]
S _Si dS' (rZr') , I') . (f) x

+V x Gi1(f, f') - Ii1i(f') x rE1(f')])

+1WP1 JS dS'G1(r /) --J1(f') = 0, (3.41)

[i~j') x 1 i') + V x G2(f, f'/) - [i(') x T1(f')])

(3.42)

In the above equations, S, - Si represents the rough surface outside the object. By

defining the surface variables as in Eq. (3.4) and (3.5), and noticing that h 2(F')=

-h&('), the above integral equations can be rewritten as follows:

+ f

IS1
7i (fl)] x h>(F) = 0, (3.43)

dr' ik2G2(f, r')
\ (

-1 d(f's)
'T1

dS'C 2(f, f')

+ V x G2 (r,')- b(f'))

3 2(')1 x 1 i(f) = 0, (3.44)

df'I (ikii(T, '') -a(') + V x 1(i, L') b(i'L))

dS'=G(f, f') -J1 (f') = 0,

s Si dS'

+zW/I
2 fS

2

[- f
S -Si

+iWP2 
JS

+ ISo-S 10

73

(U)/p2G2(f, f')

dS'G2(f ' 2(' 0.

-Ei(f) d'1 (ikiU1(rf' - a(f's + ?7x 1(f, I ')- f')

dS'G1f f)-

+iWsi fS (3.45)
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- / d?'I (ik 2 2 (r, r') - -((f) + V x C2 (r, r') I(?'s)

+It2 /2 dS'G 2 (f, r')- = 0, (3.46)

where S, - Si, represents the area S, - Si projecting on the mean surface.

To illustrate the equivalent source modified by the buried part of the object, we

consider the rough surface as a perfect conductor to simplify the derivation without

loss of generality. In this case the tangential electric field on the rough surface valishes

and the Green's function in region 2 (conducting media) becomes zero, so the integeral

equations reduce to the follows:

Ei(f) + iki d'ICi (' - (')i dS'G1 (, r') =J(f')
fSo-Sio LG Ip s S G ,fl 1V

x =(f) = 0 for r E Si, (3.47)

Ei(f) + iki j dT'I1 (i, i') a (') + iwpi dS'f 1 (, f') - (r') = 0

for F E S2. (3.48)

By substituting the expanded form of Green's functions and the surface variables

described in Section (3.2.2) into the above equations, and seperating the equations

based on the order of rough surface height function f(f'i), we obtain the n-th order

electric field integeral equations as follows:

J So-Sc G ')--1(

+ i i 1 0 dS ' , f') . _ )(71 )) x ho(i) = 0 for f E 1Si, (3.49)

FZk -V(n)S () +ik dS'Gi, ') -J1 (,' ) 0 (S()

+ZWopif1 dS'G, (f, f') I J _L(f) =0 for f (E S2, (3.50)
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S1

A 

B

s o -- -- - - - - - - - - - -

S o

Figure 3-5: The area notations for object half-buried in a rough surface.

where, as illustrated in Fig. (3-5), S, is the cross-section area (C - D) of the object

with mean surface, and S10 is the surface area of object above the mean surface (area

above C - D). AS 1 and ASi are defined as AS 1 = Si0 - Si and AS, = Sio - Sc,

respectively. In Eq. (3.49) and (3.50) the modified equivalent source E(n) due to the

buried part is given by

E(n)
JJDS1

+iki Z

dS' (r,')-

sscdF

1- (1)

(-f (i' ) r a m

+iki dfI (m !

M= _ s-s. L( - 1)
m- 1

0 - i -G (r , r' ) - V'L I( ) V11(

) n
dfL1 _fV1Tm1

. C1 (, ')- V'f ( )f/ () ,1f;1

with

(3.52)

'n-1

n-i
+ik1 >3

me

lDS 0

IDSio
( 1dI(m - 1)

(3.51)

75

r ' ) ,- m "3)

(n-1-mn)

(o) =E ()
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For example, the first-order equalent source is obtained as

J(0 ((f)
+ i d?'lU (r ')- 'f (f's) -_ If(fs

By comparing this modified equalent source with Eq. (3.36) for an object above rough

surface, we find that there are following changes:

1. In the first two terms in Eq. (3.53), the integration area is S, - S, instead of

the entire mean surface area as in Eq. (3.36).

2. There are two extra terms in Eq. (3.53) due to the "corner effect" arround the

touching area of the object in rough surface. In Eq. (3.53), the third term is the

correction of the equivalent source due to the change of exposed surface area

on the object, and the fourth term is the modification of the equivalent source

due to the projecting area of rough surface on the mean surface.

3.3 Numerical Results

3.3.1 Object above a Conducting Rough Surface

In the numerical simulation, a horizontal conducting cylinder along the x-axis with

2.OA in length and 1.A in diameter is considered. The distance between the bottom

of the cylinder and the mean surface height of the conducting rough surface is 0.1A so

that strong interaction between object and rough surface can be expected. A rough

surface with the well-known Gaussian power spectrum is used for the validation with

the help of the standard method of moments (MoM). The size of the rough surface
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is 15.OA by 15.OA. The deviation and correlation length of the rough surface are

0- = 0.03A and / = l.OA. respectively. The incident wave E is tapered and formed as

a summation of plane waves with Gaussian-shaped footprint on the mean surface:

Ei(f) = JJ dkxdkyei(kxX+kyy-kzz) V; (kr, ky) E (kx, ky), (3.54)

where V) (kx, ky) is the plane wave spectrum and E (kX, ky) is the polarization vector

of the associated plane wave. The plane wave spectrum is the Gaussian function

4'(kX, ky) = 9 exp 9 [(kx - kix)2 + (ky - ky )2  (3.55)
47r 4

where factor g is the control parameter to specify the beam width. This tapered

incident wave satisfies Maxwell's equations and minimizes the edge effect in the nu-

merical calculations. The factor g, which is used to control the beam width of the

tapered wave is g = 3.OA, so that the incident electric field magnitude on the rough

surface has dropped by a factor of 1/e at If', 3.0A.

In the numerical calculation, the radar cross section (RCS) is defined as

Es (O,q#) 2

RCS = lin 47rr2 , (3.56)
r-oo IEO (63, I i) 12

where EO is the maximum magnitude of the tapered incident electric field on the mean

surface So. For monostatic (backscattering) RCS, the scattering angles are 0 = 02 and

0 = i. In the numerical simulations for bistatic RCS, we let the scattering angle 0

be 40' and vary the azimuthal angle 0 from 00 to 360'. = 0' is the backscattering

direction. For the monostatic RCS simulations, the incident ki vector remains in the

xz plane and the incident angle 0, varies from 0' to 90'.

The plots shown in Fig. (3-6)(3-7) and Fig. (3-8)(3-9) are bistatic RCSs for the

individual terms of Eq. (3.32) for TE and TM incident waves, respectively. The plot

labeled as Er is the reflected field of the incident tapered wave from the flat interface

77
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in absence of the object. A peak of co-polarized component of ER, appears in the

specular direction < = 180' as expected. The plot labeled as Eb is the returned field

as in Eq. (3.33). The E, plot is evaluated by using Eq. (3.34), and the Ed plot is

calculated from Eq. (3.35). It can be seen that most of the energy of the "incoherent"

field E, concentrates in the forward scattering direction. The curves shown in the Eb

plot represent the scattering from the object excited by the fields Ei and E, while the

secondary scattering field in the Ed plot is the returned field from the object excited

by the "incoherent" field E, from the rough surface. We note that the cross-polarized

returns VH and HV in the backscattering direction are zero in the Eb plot. This is

due to the symmetry of the geometry and the incident wave. The secondary returned

fields of cross-polarized VH and HV in the plot labeled Ed are no longer zero in the

backscattering direction due to the asymmetry of the "incoherent" field E,. The

"incoherent" field E, as well as the secondary returned field Ed from the object are

both proportional to the surface height function f(i§) of the rough surface. It can

easily be checked that both E, and Ed become zero when the surface height function

is zero.

The sum of the four terms E,+ Eb +E, +Ed as in Eq. (3.32) is the total returned

field up to the first order, and the corresponding RCS are shown in Fig. (3-10) and

Fig. (3-11) for TE and TM incident wave, respectively. The bistatic RCS for the total

returned field with TE incident wave are compared with standard MoM results. In the

MoM simulation, both the rough surface and the conducting object are discretized and

the surface unknowns are solved together by using the conjugate gradient algorithm.

In these simulations, a single rough surface with Gaussian power spectrum is used.

The deviation of the surface height is - = 0.03A and the correlation length is 1 = 1.0A.

Again the results show good agreement with the standard MoM. It is noted that the

curves are no longer symmetrical with respect to the plane of incidence when the

surface is rough.

Monte Carlo simulation results with 100 realizations are shown in Fig. (3-12) and
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wave: Object above a rough surface.
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Fig. (3-13) for TE and TM incident waves, respectively. Statistically independent

rough surfaces with power law spectrum are generated. The method of generat-

ing random rough surface is presented in Appendix C. The power law spectrum is

W(k) = a,/k4 , which more closely represents ocean surfaces than the Gaussian power

spectrum. Here k is the spatial wavenumber of the rough surface and a, = 0.008/2wr

which is the amplitude used for the Durden-Vesecky spectrum [75]. The upper cut-

off spatial wavenumber kh is chosen to be k, = 2.5k, which corresponds to the band

width for 1/5A, spatial resolution of sampling on the rough surface, where k, and A,

are electromagnetic wavenumber and wavelength of the incident wave, respectively.

The lower cut-off spatial wavenumber k, is chosen according to the standard deviation

of the rough surface height using the following relation:

u2 = W(k)d2k = Fao(h - ). (3.57)

In Fig. (3-12) and Fig. (3-13), the deviations of the rough surface k1 -= 0.1, 0.2, 0.4

correspond to the lower cut-off spatial wavenumbers kj/k 1 = 0.6131, 0.3137, 0.1578,

respectively. It is noted that the Monte Carlo simulations converge with respect to

the number of realizations. The averaged cross-polarized RCS increases with the

deviation of the rough surface over a wide range of scattering angles.

Fig. (3-14) and Fig. (3-15) show the Monte Carlo simulation for the monostatic

(backscattering) RCS for TE and TM incident waves, respectively. Here 100 rough

surfaces with power law spectrum and k1 r = 0.4 are used. The backscattering direc-

tion varies from 0 = 0 to 0 = 900 with 45 steps in between. The azimuthal angle

0 remains zero degree. We note that the cross-polarized VH and HV are significant

in the presence of a rough surface. Analytically the cross-polarized returns should be

zero for the considered geometry when the surface is flat. We note that the non-zero

values for flat surface are produced numerically. Changes of co-polarized monostatic

RCS due to the rough surface can be found at some scattering angles. At small

grazing angles, the rough surface effect on co-polarized backscattering RCS is not
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MoM Hybrid
Number of unknowns 17,252 972
CPU time

single bistatic 1 hr 14 min 5 min
100 realizations 5 days (estimated) 40 min
single monostatic 23 hr 3 hr 15 min
100 monostatic 3 months (estimated) 17 hr

Table 3.1: Comparison of computational effort for standard MoM and hybrid codes,
respectively.

significant.

The computational performance of the hybrid technique and the standard MoM

are listed in Table 3.1 for the testing cases discussed above, where we have used a

Microway Screamer 500 workstation which contains a 500 MHz Digital Alpha 21164A

processor with 2 MB L3 Cache and 2 GB RAM. The CPU time for monostatic simu-

lations is based on 45 incident angles.

3.3.2 Object Half Buried in a Conducting Rough Surface

Fig. (3-16) shows the simulation results of individual terms in Eq. (3.32) for the

bistatic RCSs of a horizontal cylinder half buried in a conducting rough surface with

TE and TM incident wave, respectively. The geometry of this problem is the same

as in Fig. (2-14). The rough surface is generated by using the Gaussian spectrum

with rms height - = 0.03A and correlation length 1 = IA. The plot labeled as Er is

the reflected field of the incident tapered wave from the flat interface in the absence

of the object. The Eb plot shows the RCS of the scattered field due to the zeroth

order induced current on the cylinder on a flat surface. It is noticed that the co-

polarized wave has a maximum and the cross-polarized wave a zero minimum in the

specular direction due to the symmetry of the geometry. The E, plot is the result

that shows the radiation field of the equivalent source due to the rough surface. It is

found that the scattered field due to the rough surface is random and the intensity

is significant even though the roughness is small. The E, plot is the result of the
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Figure 3-16: The bistatic RCS of individual terms E, and Eb for TE incident wave.

secondary scattering of the cylinder illuminated by the radiation of the equivalent

source as shown in the E, plot. In this case the secondary scattering is relatively

small in comparison with the zeroth order scattering field as shown in the Eb plot.

The bistatic RCS for the total returned field Er +Eb +E +Ed of the cylinder half

buried in the flat surface with TE and TM incident waves are shown in Fig. (3-18)

and (3-19), respectively. The plots in the top rows of Fig. (3-18) and Fig. (3-19)

are the bistatic RCS of the zeroth order solution using the hybrid technique and the

standard MoM solution. In the simulations shown in the bottom rows of Fig. (3-
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18) and Fig. (3-19), the rough surface with Gaussian power spectrum is used. The

deviation of the surface height is - = 0.03A and the correlation length is I = 1.OA.

The results agree reasonably well with the standard MoM.

3.4 Conclusions

This chapter has presented a hybrid technique of SPM and MoM for electromagnetic

wave scattering from a perfectly conducting (PEC) object above a rough surface. The

formulations are derived for general penetrable rough surfaces (dielectric medium).

With the expansion of the Green's function and surface variables in terms of the

surface height function on the flat mean surface, the electric field integral equations

are decomposed into different orders. The equations of each order represent the EM

scattering problem with the same object above the mean surface and different inci-

dent field from an equivalent source that can then be evaluated by using lower order

solutions. The equivalence with a flat surface problem allows us to use the dyadic

Green's function for layered media, so that we do not need to solve for tangential

fields on the rough surface, leaving only unknowns on the conducting object. Com-

pared to the standard MoM, this hybrid technique demonstrates a dramatic increase

in computational efficiency without loss of accuracy. The separation of the returned

fields into the sum of individual interaction terms allows us to identify the coher-

ent and incoherent returned field, and thus to characterize the rough surface effects

quantitatively.
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Chapter 4

Electromagnetic Wave Scattering

from a Rough Surface using the

Equivalent Source Formulation

4.1 Introduction

Consider the electromagnetic wave scattering by a rough surface with the height

function f (i"'L) as shown in Fig. (4-1). In Chapter 3, we derived the radiation field

Incident Wave Ej

Region 1

Rough Surface S,
Z = f(f

Figure 4-1: Electromagnetic wave scattering by a rough surface.
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from the "equivalent source" and concluded that the field scattered by the rough

surface is the same as the radiation field from the equivalent source. By using the

iterative scheme, we found that the n-th order radiation field from the equivalent

source can be evaluated by using the lower order surface variables d and b, which

represent the tangential magnetic and electric fields on the rough surface, respectively.

In this chapter, we will show that, up to the first order, the radiation field from the

equivalent source on a perfectly conducting (PEC) and small rough surface is the

same as the scattered field derived directly from the conventional small perturbation

method (SPM) when the incident wave is a plane wave. Also we will compare the

numerical result of the radiation field from the equivalent source with the standard

method of moments (MoM) when the incident wave is tapered.

4.2 Formulations of Equivalent Sources

We use the notation E( as in Chapter 3 to represent the n-th order radiation field

from the equivalent source on the mean surface. Therefore, by denoting the corre-

sponding reflected field of the equivalent source on the mean surface as E, and the

transmitted field of the equivalent source in the lower region as E [ Fig. (4-2], we

r t2

0 Equivalent Source

Mean Surface

Figure 4-2: The radiation, reflection and transmission of the equivalent sources on

the mean surface.

obtain the total scattered field from the rough surface excited by the incident wave
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Ei,
C0 Mz(=1 ())

n=z1
+ r (p)) (4.1)+ (n).

n=1

The n-th order radiation fields from the equivalent source are given as following [from

Eqs.(3.25) and (3.26) in Chapter 3],

E ) (n) TlrJ

{iki G,(fI f') . d"" (F'L) + V x 01 (f, f') - b (r's

+ m 1)! j d' [f ( )]m

m-1

+ V X (, ')-

2 [vLf (rI)

(4.2)

Jik2 ) (2(ri ())- )+

- (m - 1)! 1

Zm-1

V xG 2 ( )

2 ) a- m ,/ik2 G2(F, f'i)

+ V x G2(F, 1') .-2 LvIf( ) (f ) 

Consider the first order solutions (n = 1),

= dF' [-

{k , ' )

f (')]

and

E ( ) ==1

E ()

(4.3)
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+ V x f1 (i,') - 2 '(i')}, (4.4)

and

+1 +2 (f, f' ) + V ' G2 (f',)

+V x G2(f, f'i - I 1'ffi 1 fs (4.5)

where 72/71 = k1/k 2 for p, = 2. Since the integrations are conducted along the

mean surface, we can place the equivalent sources on the upper and lower mean surface

which radiate the electromagnetic waves E 1) (f) and El (f) in the unbounded region

1 and 2. Taking the field E(') (F) as an example, if we place the equivalent source

above the mean surface, the total field will be the superposition of E1 (f) and its

reflection Er (f) from the mean surface as shown in Fig. (4-3).

TO))
r

Equivalent Source

Mean Surface

Figure 4-3: The radiation and reflection of the equivalent source on the mean surface

of a PEC rough surface.
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4.2.1 Surface Variables

The surface variables are defined as

a(f' )
dS x

- 71i x (4.6)

(4.7)b(f'L) = dS I x ),

where E(f') and H(f') are the total electric and magnetic fields on the rough surface,

dS' is the infinitesimal area on the rough surface and is related to its projection on

the mean surface by

dS' = dr' /(af(F')/DxI)2 + (of (f' )/Oy') 2 + 1. (4.8)

The normal vector is given by

-- af (F'L)/ax' - &9f (f's)/8y' + 2

\(f (f' )/x')2 + (-f' 1
(4.9)

Therefore the surface variables can be rewritten as

b(f'K)

S(-Vf (f ) + ) x7(f')

(-VIf (r') + 2) x E(i').

(4.10)

(4.11)

Writing the surface variables and the total electric and magnetic fields in series form,

we obtain

(4.12)

=r (-V' f (f' ) + ) x

H(O)(r ) +7(') (F's) +

+ E ) +E(0) (1) (4.13)
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We assume V'If(i') to be of the same order as f(P'), therefore, by matching the

order on both sides, we get the surface variables for each order as follows:

= x H (f'),

= /1 'if w') X 7-(0) + n xH (K'),

= -1 'f (f' L) X 77(n-1) (f'L) +Tj12 x R () ,

)/ = - 'f (f's) X E.O (f's) + xE ('),

V ' f f ' X (n - i ) + x (n ) ,

-(0

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

Note that only the tangential components of the surface variables are used in the

calculation of the radiation fields from the equivalent sources. Therefore

- 7iZ x ( ' 1),

-
7

1
2 x (f') )H0)(

(4.20)

(4.21)

(4.22)= 1 x L vif,(' )Hzn - 1 ) + 77(') ,

(x E (0)

= 2 x [V'if (f')E0)(f')

(4.23)

(4.24)

(4.25)= 2x V If (f' )En- (') f+ E(n)(')]

df (K')

a(n) (r ' )

and

I~0f (f' )

d(0)

af (K')
L(')

aL 1 1

and
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4.2.2 Iterative Scheme

Eqs. (4.2) and (4.3) provide the formulation of the electric field from the equivalent

source in terms of the lower order surface variables. The following is the iterative

procedure to calculate the scattering field from the rough surface:

1. The zeroth order scattered field: Calculate the reflected E,(f) and H9,(f) of

the incident fields Ej(f) and Hi(f) from the mean surface. Thus the zeroth

order scattered field is the same as the reflected field E(0)(f) = E,(f) and

H8(r) = Hr(f).

2. The first order scattered field: Calculate the total zeroth order fields on the

mean surface

E() N
Ho (F)

(4.26)

(4.27)

Then calculate the surface variables

( ')

If(')

-j (0) r)
= r12 x H()'1 )

- zx E(0)'j).

(4.28)

(4.29)

Thus the first order scattered field can be calculated by

E () = -(')( 1) + ()

= H7 () + r (')r + H (r),

(4.30)

(4.31)

where E 1 (F) and () are the fields of the first order equivalent source which

can be calculated by using Eq. (4.4), E 1) (f) and H(1) () are the reflected fields

of the equivalent source in the upper region, and E()t(f and 7() (f) are the

transmitted fields from the equivalent source in the lower region.
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3. Calculate the n-th order scattered field: Calculate the surface variables

(4.32)

(4.33)

2 x V'if(f' )Hz"-)(f'_) +C)()

= x V' f (f' ) Ez - 1)(f' ) + -EC() .

Thus the n-th order scattered field can be calculated by

-E(n)
= E )(n)) +r ( ) + E 2 T (n),

= M (f+ (M)+ t2)(f),

-(n) -7(n)where Ei (f ) and Hi (f~) are the fields of the n-th order equivalent

(4.34)

(4.35)

source,

E(n) and r ()(f) are the reflected fields of the equivalent source in the upper

region, and E5 2)(f) and H2) (f) are the transmitted fields from the equivalent

source in the lower region.

4.3 Integral Representation of Equivalent Source

The integral representation of dyadic Green's function in region 1 and 2 can be written

as [65], respectively,

G1(r, r ) -zz

2 dk 1 k A,(kiz)ei '

dk1 ki A(-kiz)e A-(-)

z > z',

z < z',

(4.36)

and

0 2 (, ') 
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r 1=
d/k1  A2 (k 2z)e ik2(rzV > '

+ 87 2  k (4.37)

8 2 J dk 1  A 2 (-k 2z)e' Z < z'

where we define

A1 (kiz) = 1(kiz)21 (kiz) + h1 (kiz)h 1 (kiz), (4.38)

A 2 (k 2z) = 2 (k 2z) 2 (k 2 z) + h 2 (k 22)h 2 (k 2z), (4.39)

and 1,2 and h1,2 are unit polarization vectors defined in Appendix B. The up-going

wave vectors k and k2 are expressed as I- = ik,+-kv+kiz and k2 = -k,+ ky+ k2z,

respectively, and the down-going wave vectors K 1 and K 2 are expressed as 1 1=

kx + Qky - 2ki2 and K 2 =kz k - , respectively, where k, and ky are

considered as the same in both regions due to phase matching. Defining the dyads

B 1 (k1z) - ki x A 1 (kiz) = -h 1 (kiz)d1 (kiz) + 21 (kiz)h 1 (kiz), (4.40)

B 2 (k 2z) k2 x A 2 (k2z) = -h 2(k 2z) 2(k 2z) + 62(k 2z)h 2(k 2z), (4.41)

we write the expressions for V x C 1,2 (f, F') in terms of the integral of B 1,2 as in

Appendix B. The operator &m/&zm operating on G1, 2 (f, if') and V x0 1,2 (f, f') creates

the following eigenvalues

am  (ik1,2z) m  z > z', (4.42)
Oz'n (-iki,2z)'" Z < z'.

Therefore, the radiation field from the equivalent source on top of the mean surface

can be written as follows:

For up-going wave (z > z')

() = - k I n dF' [-f (f')]87 m !
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_Lc (ikiz)"- A,1(k12)e

+ dkci (ikiz)m- W1(kiz )eik-ff, n M

- ki (m 1)! d?'f ( )]m-

dk1L (ikiz),- 2 A1(kiz)eik 2 [v- f a(n-m)(

+ J dk1 (ik 1 )"-2 Bi(kiz)e - f( ) I ( }
(4.43)

ik 2

- 87r Mz
1

JdK [-f (fl )]

{Th Jdk1 (j -1~ A2 (k 2z )eik2@rf-r'

+ dk 2(k2z)

k2i (m 1f) df' [-f(f)fl1

{TJdk1L (jk2z)m- 2 (ze 2/) [vLf (K)

(ik 2 Z) 2 i 2 (k 2z)e ( -2 ( ) I I [-"

For down-going wave (z < z')

J df' [-f (!;I)]m

{JdkL (-ik 1 z) M- A, (-kiz) eiKl.(f-f)

+v dk 1L (-ik.jz)m-l B (-kiz)eiKl-(rr')

8-2Ml(m - 1) JfI II-(~l

E02) (;)

+Jd

(n-m) (K)]

r(n) (;

(')] }.

(4.44)

1ik,
8w2 1
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2 [V' f (f,) ,nm

+J dk (ik)z) 2 7 1 (-kiz)e - f(f ) . -(n ) )},

(4.45)

ik2 n

87 2 EM=1

+ dk1 ('k2) A 2 (-k 2 z) -Ir'

-i- dk (~k 2 ~ml 2 (k )iK2<'f-) i3 M)

(r ) ) d'i [-f( )fl

- fdk (jk 2) A 2 (k 2 z

2 [VLf v,)

(4.46)

The down-going wave E and up-going wave E 2) will be reflected by and transmit-

ted through the mean surface, respectively.

4.3.1 Reflected Field of Equivalent Source

To calculate the reflected wave of the equivalent source, we decompose E (n into a

sum of TE and TM waves. Recalling the definition for A1 , B1 , A 2, and B 2 , we know

that the product of 81(-k 1I) 1 (-kIz) or 1(-kiz)h1(-kiz) with any polarization will

be a TE wave, and the product of h1(-k 1 z)h 1(-kz) or h1 (-kiz) 1(-k2) with any

polarization will be a TM wave. To get the reflected wave for the down-going wave

E(n) for z < z', we do the following:

1. Multiply the TE wave terms by RTE(klz) and the TM wave terms by RTM(kiz)

{

E (i)

±Ik2 n
+8w 2 m1

{
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- (n)in the integral representation of the down-going wave E ,

2. Change the sign of kiz for the first unit polarization vector in the tensors A1

and B 1, and

3. Change the down-going wave vector K1 to the up-going wave vector 11 in the

exponential terms.

Thus we find

ik1

87w2
M=1

dk1{
df'I [-f(jfM

(-ikiz) - (R TE 1i)$1 1z) 1 -kiz) + RTM(kiz)hi(kiz) 1(-kiz))

e - al(

+ dk 1 (-Zk)ml TM(kiz)hi(kiz)61(-kiz) + RTE(kiz)61(kz)h1(-kiz))

eik-(- In

82 M=1 (M-1)

{JdkI (-kiz)m- 2 (RTE(k 1z) 1(kiz) ,(-kiz) + RTM(kpz)hi(kz)hi(-kiz))

- V'f (f') -d ( ")

+ jdk__L (-ikiz)"'-2 (-R TM(k12)h1(kiz)$1(-kiz) + R TE (kiz) 1(kiz hj(-kiz))

e ~') -2 (4.47)

In the above equation, the Fresnel reflection coefficients are defined as follows:

RTE(kiz)

RTM(kiz)

RTE(k 2z)

k1z - k2z
k1 z + k 2z

62 k1i - ck 2z

E2kz + kk2z

~R T E(kz) =

(4.48)

(4.49)

(4.50)-kz - k 2z
kiz + k2z

-E(n)
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RTNI (k 2z)
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(4.51)TM 6kz- cik 2 z= RT (kz ) = -621 - -k
62kiz + 61k2Z

where RTE(klz) and RTNI(kiz) are the reflection coefficients for TE and TM waves

incident from region 1 to region 2, respectively; RTE(k 2z) and RTK1 (k 2z) are the reflec-

tion coefficients for TE and TM waves incident from region 2 to region 1, respectively.

4.3.2 Transmitted Field of Equivalent Source

To get the transmitted wave from the equivalent source in the lower region, we work

on the up-going wave ETn as in Eq. (4.44):

1. Multiply the terms with 82 as the first vector in the tensors with TTE, and

multiply the terms with h 2 as the first vector in the tensors A 2 and B 2 with

TTM

2. Change the first vectors 2 (k 2z) and h 2(k 22) in the polarization tensors to 1 (kiz)

and h1 (kiz), and

3. Change the up-going wave vector k2 to k, in the exponential terms.

Thus we get

-E(n)

{
ik2 =

87 2 E~

id;

1

rn!

k-L (Zk2z yn- 1 (T TE (k2z) 1(kiz)62(k2z)+T TAY (k2z)hl (kjz)h2(k2z)

jn-m)a. V11

(i k2z ) Tn T TM ( k2z)h1(kiz)6( k2z)+ T TE (k2z)61(kiz)h2( k2z)

b (TI - M)

+±Jdk1_

,ikj (r-')

ik 2  1

8 2
_- (m 1)! JdF' [-f (F' )]m'

dk 1L (ik2z)m- 2 (TTE(k 2z ) (k1z)6 2 (k 2z) TTM(k 2z)h1(k 1z)h 2 (k 2z))1 711

jdr's [-f (F'A)m
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e- 2 vIf('I) - d (f'

+ f dk1 (ik 2z)m 2 (-TM k2z)h1(k z)e2(k2z)+TTE(k2z)1 klz 2(k2z))

eik1 ~ ~ L f 2 f [vf(I
(4.52)

where the transmission coefficients are defined as follows:

TTE (kiz)

TTM (kiz)

T TE (k 2z)

TTM(k 2z)

TE(\ 2k11 + R TE (kiz) - 3 ,z
k1 + k2z

- 2 (i I+ RTM(kiz)) =2 2e 2kiz
7 1 ?71 62kiz + Eik 2z

- 1 + RTE(k 2 z) 2k 2 z
k1 + k 2z

(4.53)

(4.54)

(4.55)

(4.56)RTM (k) T = 2cik 2 .R 2z T/2 E2kiz + 61 k2z

4.4 The First Order Field Scattered by PEC Rough

Surface

For the perfectly conducting rough surface, the tangential electric field is zero, 1o0

0. Therefore the first order field of the equivalent source can be written as [from

Eq. (4.43)]

i k1

87T2

-1 Jdr' J A A,(kiz)e- 2

Al f'oi ata h (f ) .(4.57)

Also notice that the Fresnel reflection coefficients of the TE and TM waves for per-

fectly conducting surface are RTE(k1z) = -1 and RTM(kiz) = 1. Therefore, from

Eq. (4.47), the first order (n = 1) wave of the equivalent source reflected by the

CHAPTER 4.110

= h(

dIf' ) -cL1(kiz)e - WJ(f

b (n-m)_L WJI
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perfectly conducting surface is

E (k) I V (' dJdIa i1(kz) I(kz)

r 72 _ _ ff f+h1(kiz)h1(kiz) e ~-(- a ()

idi 1 I V11
-w2  ' dI (kiz)k1(kik)

82 d'if(') d A (kiz)e 1  .*a (')

-w 2  e 'ik 1 ( kte-'k1f (fl .f (f ' ) . (4..58)-f (0

Notice that the first order wave reflected by the mean surface of the perfectly con-

ducting rough surface [Eq. (4.58)1 is the same as the first order radiated field of

the equivalent source [Eq. (4.57)1. The transmitted field E2 is zero, thus the total

scattered field is

__ -(1 -(1) ( -)

= - 2iki d dk_'s A(k1iz) - Z(')
- 7 + Fi j) 2Ek (it

+2ik/ ef'i(, 'ff')-a fs (4.58)

4.4.1 Comparison with Conventional SPM Result

Consider the plane wave E r(f) = E() = Eeme incident upon a perfectly con-

ducting rough surface. The SPM solution of the zeroth order surface variable f

is [65]

(4.60)CIM(V'/ =~o 52kj)eik_ 'L
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where

a (Ic ) = :4a(0)(k-) +Pia 0)(ki), (4.61)

a( 0 (kIc) 2 [8i - (-kiz)] E ,-

ap0 (kI 1 ) 2 8h - (-kiz) E0 , (4.62)

and the basis vectors are defined as follows:

qi =(kiy - ykix),1
kip

1
pi = x 4i (skix + ykiy),

z. (4.63)

Defining the Fourier transform pair

F(k_ ) = (21)2 d're-ki f (V1), (4.64)

f (W') = dk' ez iLF(k'), (4.65)

and the delta function

6( ) (2 )2 d' i (4.66)

we can write the following relations as

ax, f I dk'iekri k- F(k'), (4.67)

fd9If'e i k' F(k'), (4.68)

Vf () = if dk'ei (k'i + k>y) F(I'). (4.69)
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Making use of the vector products

(ikx + ky) -q

(ikx + ky). P

(.-kki + kiy) -qi

(-,kix + kiy) -Pi

and

the first order scattered field in Eq. (4.59) is obtained by integrating the transverse

wavenumber as follows:

= EJ dkI eikiF(kI -

+Eo dkIeikliF(kI

+Eo f dkielriF(kj -

2k( kixky - k k e

-2 ki ki kx ki - ky ki

k 1  kip
k1 2 k k +k k-2 +ip

k1k, k p J
+Eo J dkseikliF(k1

84i -h(-k z)] .

By rewriting the scattered electric field in matrix form as

E[() =eP) 1
E(1 (f)

- JdkieiklriF(k±- kI-)
fhe

feh

fhhI

(4.72)

, (4.73)
L
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(4.70)

kiyky + kix kx
kpk p

ki ky k-y kx

kp ip

E () 

(4.71)

(2k 1

kiyky + kik ki [e -- kiz)]
kpkip ki )

kxkiv - kvkix
=kip

kxkix + kvkiv

= kip,

1j(k12) -Ai

kI-je1(kjz)

h(-kiz)]- kItje1(kjz)

- (- iz ) Eo

-h( -kiz )Eo

- kI-L)h1( kiz )
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the scattering matrix can be written as

fee feh 1 2k kyky+kixk, ki, 2k 1 kiky-kiyk. 1
f f -2 ~ k 'kiy--kyki. -2 k kki,+ky k'"+2"fhe fhh [ -LL -2 k' 'Y ± 2 k kip(474L kizkp kip k1 zkp kip kz -

Expressing the wavenumber components by using angles 0, q, 0j, and 0j, we find the

scattering matrix

fee feh [2ki, cos (0 - 0) 2k, sin (0 - ) ] (4.75)

fhe fhh_ 2 sin (# - #j) [sin 0 sin Oi - cos (0 - 0j)]_

Notice that the components of the scattering matrix [Eq. (474)] derived above using

the equivalent source formulation are the same as the ones using conventional SPM

as given in [40] for the limiting case of k2 -+ 00.

4.5 Numerical Result

In this section, the backscattering coefficients will be calculated by using the first order

equivalent source formulation and compared with the standard method of moments.

For plane incident wave, the backscattering coefficient of the field scattered by rough

surface is defined as

E5 - (Ea) 12
o-ab = lim 47rr2 2  , (4.76)r-o A |Ei|1

where a, b = h, v denotes the polarizations of the scattered and incident waves, re-

spectively. For an arbitrarily incident wave, the backscattering coefficient is defined

as

s|E - (Ea) 12
gab = lim 47r2(1Ea (477)r-oo Pi

where Pi = Eb 2 dA is the power of the incident wave on the illuminated area with

the integral over the mean surface. For example, on the mean surface, the electric

field of a Gaussian tapered wave can be written as E' = Eoe~r2,/92 where g is a factor
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specifying the beam width. Therefore we get, for the incident Gaussian tapered wave,

00 27I'2e2 2g E 2

P, = rdrJ dobE 0 2 e'1/ = EO 2  . (4.78)
0 0

In the numerical calculation, the expected backscattering coefficient are calculated

by averaging samples of the scattered field, thus

gab lim 47rr 2K ~ - KEa) 12)
r-oo P

lim 47rr 2 ~ i N 1 N 2-
~ imE Es 2- EEar-oo P N-ln=1a N(N-1) n a

47r 2 N 1 N 2 1 N 2-

=lim- E jEs2 - Y Es (4.79)r-oc P N -I N _E N t aJ

where N is the number of realizations in the Monte Carlo simulation and "~" means

statistically estimated. The method of generating random rough surfaces is presented

in Appendix C. It is convenient if we use the standard deviation to normalize the

calculated profile f(x, y). The standard deviation a can be obtained by

00 27r
.2 = j kdk daW (k, o). (4.80)

In the numerical simulation, we use the power law spectrum to generate random

rough surfaces. The power law spectrum function for rough surfaces is defined as

o. 2k2k2m~~kax
W(k, a) = - ax (4.81)

7r (k2 a - k2) k4)'

where a is the rms height, and k, and kmax are the low and high cutoff wavenumbers

of the rough surface, respectively.

Figure (4-4) is the numerical result for the backscattering coefficients of the co-
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Figure 4-4: Comparison of the scattered field calculated by using the equivalent source
(ES) formulation with the result from the standard method of moments (MoM).
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polarized waves Ihh and T,, by using the equivalent source formulation in comparison

with the standard MoM. The rms height of the rough surface is o = 0.01A and the

number of realizations is N = 30. The incident wave is tapered with the factor

g = 3.0A. The central plane wave of the incident tapered wave varies its polar angle

from 200 to 700 in order to avoid the strong specular reflection of the incident beam

close to the normal incident and numerical problems of the standard MoM at low

grazing angles. A comparison of the results demonstrates good agreement between

the two different methods. At low grazing angles, the MoM code does not provide

correct results due to the difficulty to increase the size of rough surface at these

angles [76]. The equivalent source formulation gives reasonable results at low grazing

angles where Uhh drops to zero and o-, tends to a constant when the grazing angle

approaches zero.

4.6 Conclusions

In this chapter, up to the first order, we have proved that the total field of the

equivalent source on a PEC rough surface is the field scattered by the rough sur-

face. The proof for dielectric rough surfaces and for arbitrary orders requires much

more effort since the Sommerfeld integrals are involved. By considering a plane in-

cident wave, we have found that the total field of the equivalent source is the same

as the field scattered by the rough surface obtained by using the traditional small

perturbation method (SPM). From the SPM point of view, we conclude that the n-

th order scattered field is the n-th order field of the equivalent source on the mean

surface. Particularly for the PEC rough surface, the equivalent source formulation

in Eq. (4.59) is more suited for calculating the scattered field than the conventional

SPM, since

1. The incident wave E is arbitrary but not constrained to be a plane wave as in

SPM.
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2. Unlike SPM, the equivalent source formulation can be used to calculate the

scattered field in the near field.

In comparison with the standard MoM, the equivalent source method is much faster

in the case of PEC rough surfaces. In addition to the good agreement in the numerical

comparison with the MoM, the equivalent source method works well at low grazing

angles, while it is hard at these angles to obtain correct results with the MoM, owing

to the difficulty of sampling a large rough surface.



Chapter 5

Polarimetric Thermal Emission

from Foam-Covered Wind-Driven

Ocean Surface

5.1 Introduction

In the microwave remote sensing of ocean surface, the use of polarimetric passive

techniques has shown potential for enhancing the retrieval of wind speed and direc-

tions [40]. Recent theoretical and experimental research activities have concentrated

on studies of polarimetric thermal emissions regarding the anisotropic ocean surface

assuming a smoothly varying surface profile [40, 41, 77, 78]. However, under high

wind conditions, the presence of breaking water waves, foam patches and bubbles

will affect the polarimetric brightness temperatures of the plain ocean surface. The

significance of foam on the ocean surface was recognized a long time ago [42], and

several subsequent experiments performed have verified its importance [43, 44]. Pre-

vious studies of the foam contribution to the emissivity of ocean surface were based

on empirical formulations [45, 46] derived from experimental data. Although several

attempts at theoretically modeling the foam have been presented [47, 48], it is diffi-
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cult to incorporate them with rough ocean surface. The more realistic modeling for

foam-covered ocean surface has been proposed by Huang et al. [79], who consider the

sea foam to be a layer with water particles over a rough sea surface.

However, it is not suited to model the sea foam as the layer of spherical water

particles, since the sea foam is dominated by water bubbles [80]. In this chapter,

we present the theoretical study on the polarimetric thermal emissions from foam-

covered ocean surface based on a composite volume and rough surface scattering

model using the radiative transfer theory. We model the locally foam-covered ocean

surface as a random layer with water bubbles. The small perturbation method (SPM)

is used for random rough ocean surface, where the bistatic scattering is calculated

up to the second order. The radiative transfer equations for foam layer are solved

using an iterative technique. The model predictions are compared with measurement

data [49].

5.2 Formulations for Foam Emission

5.2.1 RT Equations for Foam Layer

Sea-foam is made of spray, small water droplets and air bubbles which are generated

by wind tearing and further processions such as bubble production, bubble downward

entrainment, and droplet produced by bubble bursting as illustrated in Fig. (5-1) [80].

Since the thermal emission from sea-foam is dominated by water bubbles, we simplify

the sea-foam as a water bubble layer as shown in Fig. (5-2). For simplicity, the top

surface of the foam layer is considered to be a flat surface. Above the foam layer

(region 1) is a half free space that is labeled as region 0 with co, p. The foam layer

is specified by a foam thickness d1 , the inner bubble radius R, bubble film thinkness

6 and permittivity Ci, the fractional volume f, of bubbles, the extinction coefficient

K., and the temperature profile T(z). The background of the foam layer is considered

to be free space with 6,, p. The sea water (region 2) is in the lower half space
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Spray produced
by wind tearing

Bubble production

Bubble downward
entrainment

Figure 5-1: The generation of sea-foam.
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Figure 5-2: The configuration of local foam layer on wind-driven rough ocean surface.

with permittivity E2, salinity S, and physical temperature T. The foam coverage is

denoted by F, thus the coverage of the plain ocean surface is 1 - F.

In the foam layer, the radiative transfer equation [81, page 229] is given by

= -ie(, ) - (Oq$,z)

+ f dQ' =(0, , O' 1')
47r

-7(0', , z) + T T(0, #, z),

where P(9, q, 9', #') is the phase matrix which is derived by using Mie theory in

Appendix D. The phase matrix provides the contributions to the specific intensity

d+(
Cos 0 - 1(0, #, z)

(5.1)



CHAPTER 5. EMISSION OF FOAM-COVERED OCEAN SURFACE

7(0, 0, z) in the direction (0, 0) from the direction (0', #'). K, is the extinction tensor.

In this thesis, the specific intensity with the unit of W/m 2 is defined as

-KEv| 2)

1 KjEh12

2(0, #, Z) = 2 (5.2)
'q 2Re (E.Eh)

21m EvE)

where 1 = 11 0p/ 0 is the free space impedance. IT(0, #, z) is the intensity of the

physical temperature and it is written as IT(O, q, z) = a(0, #)CT(z). In this expres-

sion, Ta is the absorption coefficient vector, C = KB/A 2 where KB is the Boltzmann

constant (KB= 1.380658 x 10-23 J/K) and A is the electromagnetic wavelength. We

assume that the scatterers are bubbles and the absorption is isotropic, thus

Ka = Ka [1 1 0 0 ]T. (5.3)

As mentioned in the previous section, the foam layer is modeled as the composition of

spherical water bubbles randomly distributed in the foam layer, therefore the extinc-

tion coefficient =e(O, #5) is a scalar, i.e., Ke(0, #) = Ke. The formulations of calculating

Ie and ra are provided in Appendix D. We assume that the temperature T(z) in the

foam layer is independent of elevation and it is equal to the temperature of the sea

water, i.e., T(z) = T. Thus

IT(O, q, z) = Ra(0, O)CTo. (5.4)

Define the new specific intensities for 0 < 0 < r/2 as

IU(0, 0, z) = 1(0, 0, z), (5.5)

Id(0, 0, Z) = I(7 - 0, #, z), (5.6)

IT(O,1 Z) = IT (, #, Z), (5.7)
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= IT(7F - O, 0, Z), (5.8)

the RT equation (5.1) is split into two:

Cos 0 -!U(0, 0, Z)

+
lower 21r

- cos6 O-d Z(O,, z)
dz

+
lower 27r

I
upper 27r

dQ'/P(, 0, 7r - 0', 0') .I d(O ', Z) + ITu(, ),

(5.9)

I
upper 27r

dQ P(7r - 0,, 0', * - (01', /, z)

(5.10)

We assume that the thickness of the foam layer is much larger than the penetration

depth of the electromagnetic wave. Under this assumption, there is no returned wave

from the bottom of the foam layer. Thus the boundary conditions are:

on the upper boundary (z = di)

(5.11)

on the lower boundary (z = 0)

(5.12)

where d (0, 0, di) is the specific intensity of the atmospheric layer.

123

7Td (0, #0, Z)

dQ' (0, 1 , 0 ', 0') -7u (', 0', z)=-r,,Y (O, 0, Z) +

= -Ked(0,# 01Z) -+-

dQ' P(T - 0, 0, 7T - 0','0').7 Yd(01, 0/i Z) + YTd(Oi 0)-

I d(0, 0, di) = Id (0, 0, di),
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5.2.2 Solution of the RT Equation

To solve the RT equations (5.9) and (5.10), the iterative and numerical methods can

be used. The iterative method is applied to scattering problems with small absorption

which is the case for the foam layer, while the numerical method can be applied for

strong absorption problems.

In the iterative method of solving the RT equations, we consider the integral terms

as known from the lower order solutions, thus the RT equations for each step are in

the form of an ordinary differential equation (ODE). The general form of the first

order ODE is written as
dy(z) + f(z)y(z) = g(z), (5.13)

dz

with the boundary condition y(zO) = yo. The solution of the ODE is

Z d ~

y(z) = W~z)e CZ dz' + y, e z- (5.14)

The zeroth order RT solution

To solve the RT equations for the zeroth order, we first ignore the scattering by

assuming F = 0. Thus we obtain

cos 0  7(0) (0, 0, z) = -e'f (0, 0, z) + ITU( 0 , ), (5.15)
dzu

- the boundar co i(5.16)

with the boundary conditions

7(0 (0, 0, di) = 7' (0, #,di), (5.17)

(5.18)
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From the formula of the general solution (5.14) of the first order ODE, the zeroth

order solutions of the RT equations (5.9) and (5.10) can be derived as follows:

-- () 0) 1 - e-z sec OK,

U (,#,z) =7T.a (0, #) K

-( I - e (di-z)sec Or, _7(0 )(0, 0, z) = Td(0, )+ Id (0,#,de-
-(di- z) sec One

(5.19)

(5.20)

The first order RT solution

Plugging the zeroth order solutions (5.19) and (5.20) into the RT equations (5.9)

and (5.10), and defining the terms from the zeroth order solutions as follows:

I
upper 27r

+

dQ'P(O, , 0', #') - (01' /1, z)

dQ'P(0, #, 7 - 0', #') - 1 O(' /', z) + ITu(O, 0),
lower 27r

(5.21)

=I
upper 27r

+

dQ'P(r- , #, 0',0#)-

dQ'P(7 - 0, #, 7 - 0', O') - 7I, ', z) + ITd (0, ),
lower 2wr

(5.22)

we set up the first order RT equations as

(5.23)Cos j i (0, k, z) = - e71) (0, 0, z) + ]

d -i ( -- (
~COS OTz d (O0, ,Z) Ied (0 01,Z) ±
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Tu (0, 0, z)

ITSd (0, 0, z) 7'0) (0', 0', Z)

Tu (0, 0, z),

70 6 ) , (5.24)
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with the boundary conditions

(5.25)

(5.26)

Again by using the general solution (5.14) of the ODE, the solutions of the first order

RT equations are obtained as

sec 7 (, #, z') ez'sec Oe dz'1

7 (0, , z) =

z
- secO 6 ( , #, z')e-'s* edz' I (dz,

.di

di)e-d, sec /Oe1

The specific intensity in the foam layer we are interested in is the up-going intensity

at z = di. By integrating over the elevation in Eq. (5.27), the first order intensity of

the up-going wave at the top of the foam layer can be written as

-1 -- ed se One

= Irs(0, e

+ sec f
upper 27

dQ' P(, #, 0', /) - ITu(0', ')

( -dsee O e d1 se e _

sec 0 sec 0 -

+ sec J
lower 27r

e-d sec On,

sec 0' )

dQ'F(0, ,1 7 - 0', /)') -ITd(',

( 1 -dlse xe 1 - ed1(secO+secO')e

sec0 sec0+sec0' )

+ sec0 J
lower 27r

dQ'(, c, 0r - 0', #i) 7 ( (0', c', di)

( d1( sec +sec ')ne

( sec 0 + sec 09Kx

-0

e-z sec On, (5.27)

z sec OK,

(5.28)

1

e

1
#e

(5.29)
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70) (0, 0, di) = 7' (0, 0, di),

-1(1)(0, 01 0) = 0.

I(1 (0, 0, di)
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Assuming di'e >> 1, the Stokes vector of the thick foam layer is given as follows

~ - (0, #) + dQ' P(O, 0/, O') -ITu(' 7') 2
upper 27r

2 sec 0lower 27r

Asc se 0 e
loe+ 7 dQ P(Ov/ 0, ' O,/0Y).7d (0', O, d) (sec 0 +se 0') r,'lower 27r

(5.30)

where the first term denotes the direct emission due to the physical temperature of

the foam layer, the second and the third term are the scattering of emission by the

scatterers in the foam layer, and the fourth term is the scattering of the atmospheric

emission. Notice that the up-going and down-going specific intensities due to the

physical temperature in the foam layer are direction independent and they are given

by
13

1
ITu(Oi, #) = Td(, #) =aCTo = riCTo . (5.31)

0

0

5.2.3 Foam Coverage

Let the foam coverage be F, thus the total brightness temperature is [45]

TU,(0, , di) = F -TA(0, 0, 0) + (1 - F) . T (0,,0), (5.32)

-AF A

where TAF(0, q, di) is the emission of the 100% foam as in Eq. (5.30), and T s(0, q, 0)

is the emission of the plain ocean surface with the consideration of the reflection of

atmospheric emission that will be discussed in the following sections. Notice that, at

this stage, we only consider the emission at the zero elevation height (z = 0). We need
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to consider atmospheric attenuation and radiation if we calculate the total brightness

temperature at the height of the radiometer (z = d2). The empirical formula of the

foam coverage F as the function of the wind speed Um, the polar angle 0, and the

operating frequency f was provided by Stogryn [45] and later used by Pandey [46]

among others. The foam coverage is expressed as [45]

F = bo + biUw + b2 U2, (5.33)

where the coefficients bo, b1 and b2 are frequency dependent, and they are given by

bo = 1.707 x 10-2 + 8.560 x 10- 4f + 1.120 x 10 5 f 2 ,

bi = -1.501 x 10-2 + 1.821 x 10 3 f - 4.634 x 10- 5 f 2

b2 = 2.442 x 10-4 - 2.282 x 10- 6f + 4.194 x 10-7f2. (5.34)

In (5.33) and (5.34), the units of the wind speed and the frequency are m/s and GHz,

respectively.

5.3 Thermal Emission from Plain Ocean Surface

In local regions without foam, the thermal emission from the ocean surface is the sum

of the reflection of the atmospheric emission and the thermal emission from the plain

ocean surface, i.e.,

IAS (0, 0, 0) = J dQYR(0, 0, 7r - 0', ) I (0', ', 0) + 7s(0, #, 0), (5.35)
lower 27r

where R is the reflection matrix of the rough sea surface, I(0', ', 0) is the thermal

emission of the atmosphere, and 7S is the thermal emission of the plain ocean surface.

The details of calculating the atmospheric emission i (0', #', 0) will be discussed in

Section 5.3.2.
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Considering that the ocean water is in thermal equilibrium, the Stokes vector is

related to the emissivity E by

UI(O, , 0) K C(0, )TS, (5.36)

where To is the physical temperature of the rough ocean surface. By Kirchhoff's law,

the emissivity vector E(O, 0) is the intensity of incident wave with unit amplitude

minus the total intensity of the reflected waves,

(0, 6) =i - j7r(0, #; Oi, Ii; 0)dQj, (5.37)

where

E'i 1) 1

I 1 -E= . (5.38)
7 2Re (EviEgi) 0

2Im (Evi Egi) 0

The amplitude of the v and h-polarized incident electric fields is unity, and "r is the

reflection Stokes vector of the plane wave with incident angles O6 and 0j.

5.3.1 Stokes Vector of Reflected Wave

We apply the small perturbation method (SPM) to calculate the reflection matrix R

of the rough surface and then calculate the reflection Stokes vector r. The reflection

Stokes vector can be written as

Ir (0, #, Oi, #i;. 0) = R (0, 0, Oi, # O) -1i (0i, #i;1 0), (5.39)

where R is the reflection matrix for the Stokes vector.

In the zeroth order SPM solution, the scattered field is specular and is equivalent

to the flat-surface scattering problem; thus the reflection coefficients of the zeroth
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order solution are the Fresnel reflection coefficients. Using the ensemble average, the

second order solution from SPM is also specular. Therefore we call both the zeroth

and second-order terms coherent. The averaged field of the first order solution by

SPM is zero, hence it is incoherent. By including solutions up to the second order

using SPM, the reflection matrix is the sum of coherent and incoherent parts, R and

R , respectively, so that

R = R + . (5.40)

Since the scattered field from the zeroth and second order SPM solutions is spec-

ular, the coherent reflection matrix of the Stokes vector can be written as

q$,w - Oi, /i)

Rc, Rij2

Rc, R 2

R 1  R3 2

Rc1 RC2

[Rcj 6(cos0 - cos Oi)6(0 - Oi)

RCs RC4

RC RC23  24  6(cos 0 - cos 0)6(#-#).
Rc R34

Rc3 R 44

Note that the subscripts i and j are associated with the scattered

ponents of the Stokes vector, respectively. The element R' (i, J
to the reflection coefficient R, with subscripts a, 3= v, h, where

E FL

Ech

(5.41)

and incident com-

1, 2, 3, 4) is related

R h(Oi, 0i)
(5.42)

R cV ,$I )

Rch , Oi)

and the subscript v and h represent vertically and horizontally polarized waves, re-

spectively. By writing

EV8

-c 1

7 2Re{EvEc*h}

21m{EvsEc*}
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and expressing E,, and E', in terms of Eji and E'j using Eq. (5.42), it can be shown

that

- =R] -7j,U [ 23 (5.43)

where

[Rch]
R cv =2

2Re(RcvR*c)

2Im(RcvR*c)

2Re(RV'hR*,*)

2Im(Rc,,R?* )

Re(RcvR*c)

Re(R R*)

Re (Rv R* + RclR*c)

Im (RcvR* + RcRh )

-Im(R3, R*2V)

-Im(R R*C

-Im (Re R*C - Re R*)

Re (R'vR*c - R R*C)

(5.44)

and the incident Stokes vector I is defined as in Eq. (5.38). Using SPM, R, (a =

v, h) can be obtained as

Rc=[a,3-
R +R 2)

R()+ R (2 i+R I (5.45)

where the zeroth order R(0 ) is the Fresnel reflection coefficient of a flat surface, whichsog

is given by

I1R(0) 62kiz - cik2z
v E2kiz + c1k 2z

R(0- kiz - k2z
k1z + k2 z

R(= R(0 = 0.

The second order reflection coefficient R( is given by

00 00
-RJo dkxdkyW(kxi - kx, ky

(5.46)

(5.47)

where W(kxi - kx, kyj - ky) is the spectral density function of the rough ocean surface,
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and fl is the second-order scattering coefficient as in [40].

The incoherent reflection matrix R(0, #i; Op #b) can be calculated by

the first order SPM solution. By expressing the scattering fields as

[ fvh(0, 0; Oi ) 1eiklr [
considering

, (5.48)
Evi

Ehi

where f,3(0, #; O,# /i) is the polarimetric scattering coefficient (a, = h, v), the re-

flection matrix can be calculated by [82]

= 1 =i
AcosOL (5.49)

2Re ((fvvfX,))

21m K(fvvf*v))

KJfvh12 )

fhh 12)

2Re ((fvhfnh))

21m((fvhfn;1))

Re ((fvfv*h))

Re {(fhvfhh))

Re K(fVMfh+ fvhftv))

Im K(fvvfh + fvh fhv))

-Im K(fvvfvh))

-Im K(fhvflth))

-Im (fvvf'hh - fvhf*v))

Re ((fvvf*nh- fvhf*v))

(5.50)

and A is the illuminated area. The ensemble averaged product of the scattering

coefficients is related to the polarimetric bistatic scattering coefficient as following:

47 Kfa3(0, q; Oi, q5))f*,(0, 0; Oi, i))
A cos Oi

(5.51)

where

L (0, ; 0,i)=
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From expression (5.49), (5.50) and (5.51), it can be easily derived that

cos Oi

4-F cos 0

,.2V

,-n z
l'vhvh

Re -Yhvhh
2 Rev'hv 2 Rev'yhhh Re ('vyl, + 7111,)

2 1minvhv 2Jm' 1 /1 j1 linm ('74vhh + 'Yvihhv)

-Im-ivvvh

-Im (7,thh - -IYhhv)

Re (yvivhh ~ -)hhv)

(5.52)

with

(0, ; oi, /) -

47k2 cos 2 1700[w(o, #; Oi, #2)W(9, 0; Qi, /i)

cos Oi
(5.53)

where f, is the coefficient with explicit form given in [40]. Finally, by knowing the

coherent reflection matrix R from Eq. (5.41) and the incoherent reflection matrix R

from Eq. (5.52), we obtain the total reflection I = RC+ R [Eq. (5.40)1.

the reflection Stokes vector 7, is obtained as

Ir (0, #, oi 0; 0) = + ( -7I,

Therefore

(5.54)

and the emissivity can be calculated from Eq. (5.37) as

7r/2

=i - J sin 00id
0

27r

d#i (R + )

5.3.2 Reflection of Atmospheric Thermal Emission

We write the term representing the reflection of the atmospheric thermal emission

from the rough surface as

-A dQ'R(0, #, r - 0', #/').I7d(', #'; 0).

-7i. (5.55)

(5.56)
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From Eq. (5.40) we know that the reflection of the rough surface can be written as

the sum of the coherent and incoherent parts, therefore

(5.57)

Thus the total Stokes vector in Eq. (5.35) can be written as

-A SIU (01 ; 0) = 'dQ (+c)

+ T - dQi (R (5.58)

Noticing that dQ' = dQi for the down-going Stokes vector from the atmospheric layer,

therefore it can be shown that

-A S (0 ,K0 ) = -

U 7 A2 T7
KB 

TS
A2 di (R+R )RI

AK2 
- A

KBTsI

Converting the Stokes vector to the brightness temperature, the brightness tempera-

ture of the plain ocean surface can be written as

T ASTU (0 1 0;7O)
A 2 

-AS ,-0
KB ( , ;0)

ST - dQR + R) - d (KOi, #i; 0)],

where Ti = Ti, and TA (A ; 0) = A (2 , 'A i; 0) is the down-goingd KB d(i i
brightness

temperature of the atmosphere at the ocean surface. The down-going specific intensity

I (oi, #3; 0) from the atmosphere can be found from Eq. (5.77) and its approximation

can be found in Eq. (5.89) as

-sec0 f a(z")dz"

dl-A
d2

=sec 0 j ia(z')CT(z')e

di

(5.59)

(5.60)
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d2 ~

- sec Of ra(Z")dz"

~CT(z,) " i,(5.61)

where T(z') is the temperature profile of the atmosphere, and ra is the absorption

coefficient. The median elevation zo can be calculated by solving the following equa-

tion:
ZO d2

Ja(z')dz' I 'z (5.62)
r ~ J 2 a(z')dz'.

d1 d1

5.3.3 Power Spectrum of Rough Ocean Surface

The ocean surface spectrum applied in this thesis was proposed by Durden and

Vesecky [75]. This surface spectrum is based on experimental data fitting and thus it

is an empirical model. The Durden-Vesecky surface spectrum is given by

a0W (k, 2) = D (k, q) S (k), (5.63)

where

(D (k, q) (i + c(1 - e-k 2 ) cos 20) , (5.64)

S(k) = e 9 .5 if 0 < k < 2, (5.65)
bku2 alog10 (k/2) if k > 2.

g+1 k2)

The wind friction velocity u, can be found from the following equation

U* h
U11 log (5.66)

0.4 6.84 x 10- 5/U* + 4.28 x 10-32 - 4.43 x 10-4'

where U1, is the wind speed in the unit of m/s at the elevation height h in meters above

the mean ocean surface. k is the ocean surface spatial wavenumber, q is the azimuthal

angle with respect to wind direction, ao, a, b, g, -y, and s are constants with the values

of ao = 0.008, a = 0.225, b = 1.25, g = 9.81, -y = 7.25 x 10-, s = 1.5 x 10-4. The
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parameter c, which serves as the coefficient for the azimuthal-dependent term in the

spectrum, is given by
2 (1 -R) / (1 + R)

1-= (5.67)
1 - D'

where

R 0.003 + 1.92 x 10-U12.5
3.16 x 10 3 U1 2 .5  (5.68)

f dk k2 S(k) e(k/9-4)2

D = 0 00(5.69)
0 dkk 2 S(k)
0

For example, for the wind speed Uh = 12 m/s at height h 19.5 m, it can be calculated

that u, = 0.46388 and c = 0.65139. To consider certain hydrodynamic effects of the

ocean waves, we multiply the parameter c in the spectrum density function W(k, #)
by (1 - do cos #), where the parameter do is determined by data matching. The

hydrodynamic modulation was also modeled differently by multiplying the ocean

surface spectrum with a parameter h' based on the slope of the long waves [75, 83].

The modulated spectrum is written as

W(k, #, Sx) = h' W(k, ),(5.70)

where S. is the slope of the large-scale waves on the ocean surface and h' is calculated

as

h'= 1 - 0.5 sgn (Sx) if JSx/Suj > 1.25, (5.71)
1 - 0.4 S/Su if S/S uj < 1.25,

where S, is the rms upwind surface slope which can be calculated by using Eq. (5.110).

The hydrodynamic modulation of the ocean surface spectrum using the parameter h'

is useful for the two-scale model of the ocean surface. A detailed study can be found

in Section (5.5).
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5.4 Radiative Transfer Equations for Atmosphere

The atmospheric contribution to the brightness temperature of the ocean surface

must be taken into account since (1) the airborne radiometer is usually at a very

high altitude, hence the accumulated thermal emission along the path from the ocean

surface to the radiometer may be significant, and/or the attenuation for the bright-

ness temperature propagating from the ocean surface up to the radiometer cannot be

negligible, and (2) there may be a significant amount of down-going thermal emission

from the atmosphere being reflected by the ocean surface. In clear air conditions,

the main concerns about the atmosphere for passive remote sensing are the atmo-

spheric emission and attenuation due to the contributions from gaseous oxygen (02),

water vapor (H 2 0), and suspended water droplets (hydrosols) [84]. In the adverse

conditions, cloud and rainfall need to be addressed [84, 85]. In clear air and at mi-

crowave frequencies, the electromagnetic wave scattering by atmospheric gases can

be ignored [86], thus the radiative transfer (RT) equations that are used to model

the wave propagation in the atmosphere reduce to uncoupled first-order differential

equations.

The atmosphere can be modeled as an inhomogeneous layer with the extinction

coefficient Ke(z), the absorption coefficient Ia(z), and the temperature profile T(z)

in terms of the height z as shown in Fig. (5-3). We assume that the scatterers such

as water vapor, droplets and gaseous oxygen are small thus the scattering is ignored

(Ke = s + Ka ~ 'a). Therefore the radiative transfer equations for the specific

intensity 7A and 7A have the following simple form [81, 87]

cos (0, , z) -(z)I (0, + kaCT(z) (5.72)

(9- -A
- cos 0 Id (0, 0, z) = -a(Z)Id (0, #, z) + PaCT(z), (5.73)

where C = KB/A 2 , KB is Boltzmann constant and A is the electromagnetic wave-
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0

Atmosphere

Radiometer

A

0 "

0 -A

Foam-covered ocean surface

,0 x

Figure 5-3: The atmospheric layer above a foam-covered ocean surface.

length.

Assuming that there is no thermal emission from the upper space at z = d2 , the

boundary conditions for Eqs. (5.72) and (5.73) are given by

(5.74)

(5.75)Vd (0, , d2) = 0,

where I,(0, 0, di) denotes the emission from the lower boundary at z = d, (the foam-

covered ocean surface). From Eq. (5.14), the solution of the RT equations (5.72) and

(5.73) are obtained as

-A7, (0O 01 d2 )

d2

=sec6 0 Ra(z')CT(z') e

d2

- sec0 f Ka(Z" )dz
Z'

d2

-Sec Of ra(z')dz'

+I (0, #, di) e di

Vd (0 ,,d1)
- sec 0 f Ka (z")dz"

=C( z

dz'

(5.76)
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If(0, 0, di) = 0i6 , di),

d2

=sec 0 I-a (z')CT (z')e
di

(5.77)
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The specific intensity of the down-going wave in Eq. (5.77) can be calculated for any

polar angle 0 from the absorption and temperature profiles. From the equation of the

down-going wave in Eq. (5.77) we find that the assumption that down-going wave at

height d 2 is zero as in Eq. (5.75) is due to the fact that the absorption coefficient ra

at z = d 2 is very small. In the next sections, we will see from the numerical results

for the US Standard Atmosphere [55] that the value of the absorption coefficient is

negligible for altitude larger than 10 km. In the RT theory, if the scattering is ignored

for the propagating wave, the absorption coefficient Ka is two times the imaginary

part of the complex wavenumber,

K, = 21m {k} = 21m (10-6N + 1) ko}, (5.78)

where ko is the wavenumber in free space, and N is the complex refractivity. In the

following sections, we will use Liebe's millimeter-wave propagation model (MPM) [54]

to calculate the complex refractivity in the atmosphere.

The extinction coefficient r, is the sum of the scattering coefficient t, and the

absorption coefficient of the background "a. Quantitatively, we find that K, < ca,

therefore we use Ka to approximate Ke. The dominant scattering in the atmosphere

is due to water vapor and suspended water droplets (hydrosols). The scattering and

absorption coefficient are given by [81, page 157-158]

K, = 2fvk 4a3 Iy12 , (5.79)

c" 3c 2
Ka = fV k -- 2, (5.80)

c c, + 2c

where f, is the fractional volume occupied by the water particles, a is the radius of a

water particle, and

y = 6 (5.81)
E, + 2c

For water droplets in the atmosphere, the typical values are a ~ 5 pim, fv - 5 x 10-7,
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and 6, ~ 30 + i40 for f = 20 GHz. Therefore K, ~ 10-12 rm-' and ra ~ 10-5 M-1,

thus is < K and we can ignore /, and let e ~ K,. The gaseous oxygen (02), water

vapor (H20), and suspended water droplets in the atmosphere are considered as the

principal absorbers in moist air [84].

5.4.1 The Millimeter-Wave Propagation Model

The millimeter-wave propagation model (MPM) model developed by Liebe [54] can be

used to calculate the complex refractivity N that is related to the complex refractive

index n by N = 10 6 (n - 1). By writing the refractive index as n = n' + in", the

effective permittivity of moist air is found as following:

Ce = (n' + in")2 
= (n/2 - n"/2) + i (2n'n") , (5.82)

where k, is the wavenumber in free space. Thus the complex wavenumber is given by

k = wpee, = kon, (5.83)

assuming e = ,. The measurable parameters of atmosphere are (1) barometric

pressure P in kilopascal (1 kPa = 10 mbar), (2) temperature T in degrees Kelvin

(K), (3) relative humidity RH, and (4) mass concentration in grams per cubic meter.

The four measurable parameters can be converted to the internal variables which are

useful in the MPM model as shown in Appendix E.

The typical barometric pressure profile is given in [55] and it is plotted in Fig. (5-

4). As an example, we consider the frequency f = 19.35 GHz and use the US Stan-

dard Atmosphere 1976 temperature, barometric pressure and humidity profiles to

calculate the complex wavenumber k for an electromagnetic wave propagating in the

atmosphere. The numerical result of the absorption coefficient is plotted in Fig. (5-5),

where the real and imaginary parts are plotted separately in terms of the wavenumber

in free space k.
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Figure 5-4: Temperature and barometric pressure profiles in the US Standard Atmo-
sphere 1976.
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Figure 5-5: The complex wavenumber of electromagnetic wave with f = 19.35 GHz
propagating in the atmosphere in terms of the wavenumber in free space.
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5.4.2 Attenuation and Emission of Atmosphere

Once we obtained the key parameter - the absorption coefficient Ka from the MPM

model, the thermal emission of the standard atmosphere and its attenuation for the

propagating waves can be calculated by using the RT solutions (5.76) and (5.77). The

first term in Eq. (5.76) represents the up-going thermal emission of the atmosphere

and can be written as

d?2

P 1(0, #, d2) = sec 0 Raz') CT (z') e
di

d2

- sec of K /z" )dz"
='

The down-going wave in Eq. (5.77) represents the down-going thermal emission of

the atmosphere,

d2e-C

d (0, #, d1= sec 0 j K,,(z')CT (z')e

di

sec0 f Ka(z")dz"

dl dz'. (5.85)

The up and down-going thermal emissions can be calculated using the result of ab-

sorption and temperature profiles from the MPM. We can show numerically that they

are very close to each other quantitatively.

The up-going thermal emission as in Eq. (5.84) can be written as

d2C-z

U1 (, ,d2) = CT (zo) sec 0 f "(Z') C
di

d
2

sec0 f K a(Z")dz"
z/ dz', (5.86)

where zo is between d, and d2. The down-going wave as in Eq. (5.85) can also be

written as

-sec 0 f Ka (Z")dz"

dl

d2

d (0, 0, di) = CT(z') sec 0 Ra (Z')e
di

dz'. (5.84)
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where z' is between d, and d2 but different from z,. It can be shown that

d2 )

dz' = Ka (Z'e

-sec 0 f Ka(Z/)dz"

dl dz'

d2

-- sec 0 f az/ dl
dlcos 0 1 - e (5.88)

Since the temperature profile T(z) does not change much for the entire integral path,

i.e. -T(zo) e T(z'),

CT(zo) " I - e

L

d2

- sec0 f a (Z//")dz"

dl

1'
where zo is the median elevation as defined in Eq. (5.62).

(5.89)

Figure (5-6) shows the

numerical result of the down-going, up-going and approximated brightness tempera-

tures by carrying out the integration for Eqs.(5.84) and (5.85) numerically or using

approximation formula Eq. (5.89) for the standard atmosphere at f = 19.35 GHz,

d2=30km and d1 =0.

In the second term of the up-going wave in Eq. (5.76), the factor

d2

exp sec 0 ' a (z)dz'

di

is the attenuation for the thermal emission from the foam-covered ocean surface. For

the US standard atmosphere at f = 19.35 GHz, d2 = 30 km and di = 0, we can

calculate the attenuation using the numerical Ka from the MPM. Fig (5-7) shows the

attenuation in terms of the polar angle.

After the total brightness temperature on the ocean surface is calculated by [also

d2 -)

jKa (z'e

sec0 f K d (Z" )dz

CHAPTER 5.144
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Figure 5-6: The brightness temperature of down-going and up-going waves and their
comparison with the approximation formula for f = 19.35 GHz.
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Attenuation of the Standard Atmosphere
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Figure 5-7: The attenuation of the standard atmosphere for f = 19.35 GHz, d2

30 km and d, = 0.
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from Eq. (5.32)]

T (0, , d-) = F AF -S T'S(0,

we can calculate the brightness temperature at the height of the radiometer. Between

the ocean surface and the radiometer, the atmospheric emission and the attenuation

must be taken into account. At the radiometer height z = d2 , by dividing the constant

C = KB/A 2 on both sides of Eq. (5.76), the total brightness temperature can be

written as

d2d2 d2
-2 - sec 0 fia (z" )dzT - sec O r ,,(z 6 dz'

T (0, #, d2) - see 0 *ka(z')T(z')e z' dz' + T,(0, q, di)e di
di

(5.91)

where the first term is the thermal emission of the atmosphere and the exponential

factor in the second term is the atmospheric attenuation for the wave traveling from

the ocean surface to the radiometer. In order to study individually the contributions

from the plain ocean surface, the foam and the atmosphere, we re-label the terms in

Eq. (5.90) and Eq. (5.91) as

d2

--sec 0 iia()d'5.2

Ts = (I - F) - Tu (0, # 0) 0 (5.92)

d2

-sec 0 f ra(z')dz'

TF F-TAF (0, , di)e di (5.93)

d2
d2 -sec 0f Ka(Z/)dz"

TA= see 0 a(z')T(z')e z dz'. (5.94)
di

In the above expressions, Ts is the brightness temperature of the plain ocean surface

with the consideration of reflection of atmospheric emission by water bubbles and the

attenuation when the wave travels from the ocean surface to the radiometer. TF is

the brightness temperature of the foam layer with the consideration of scattering of
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atmospheric emission and attenuation. TA is the brightness temperature due to the

thermal emission of the atmosphere.

5.4.3 Equivalent Polar Angle of the Spherical Atmospheric

Layer

Consider a radiometer placed at point A with zenith height H as shown in Fig. (5-8).

We create a flat atmospheric layer to approximate the spherical layer so that it is

easier to apply the geometry for the RT theory. On the flat layer, the equivalent

position of the radiometer is at point C, where we assume AB = BC. It can be

found that in the equivalent flat-layer model of the atmosphere, the polar angle 0' is

different from 0 in the spherical model. By projecting the lines AO and AB on the

x- and z-axis, respectively, we find

AB -sin0 = (R + H) sino, (5.95)

R + AB -cos0 = (R + H)cos00 . (5.96)

By eliminating the angle 0, from Eqs. (5.95) and (5.96), it yields

AB = VR 2 cos2 0 ± 2RH + H 2 - R cos 0. (5.97)

Considering the triangle BCD, it can be shown that

cos 0' = H/-B. (5.98)

Therefore the modified polar angle in the equivalent flat atmospheric layer is

0' cos 1  H
vR2cos2 0 +2RH + H 2 - R cos 0 (5.99)

For example, let the radiometer height H = 30, 000 m, and the earth radius R =
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Figure 5-8: Geometry of the spherical atmospheric layer.
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6.37 x 106 m. For the zero grazing angle (0 = 900), the modified polar angle can be

calculated as

H 3
0' =cos-1  2 cos 1  87.20. (5.100)

v/2RH+ H2 Co /2 x 637 x 3 + 32

5.5 Two-Scale Model of Rough Ocean Surface

In the previous section, we only considered the rough ocean surface with wavenumber

less than 5 times the electromagnetic wavelength by defining the cutoff wavenumber

kd = k,/5, where k, is the electromagnetic wavenumber. For numerical purposes, the

variable I is defined as I 1/k so that the integration for I is from 0 to 1/kd instead

of from 0 to oo for k. Therefore numerically kd cannot be zero, and the waves are

separated into large-scale (k < kd) and small-scale (k > kd) categories. If we only

consider the small-scale waves, the total brightness temperature is not sensitive to the

value of kd (kd around k,/5) that will be demonstrated in Fig. (5-14) in the numerical

simulation section. The large-scale wave operates as tilted facet. The two-scale model

takes care of the tilted polar angle on the local facet due to the large scale or long

waves of the ocean surface. In the two-scale model, the brightness temperature vector

is calculated by averaging the local values over the slope distribution of the large scale

waves [88, 83]. The averaged brightness temperature at the ocean surface is written

as

T (0, #, 0) JdS J dSTi (0', 0) PS (S', S', ) , (5.101)
-00 -cot 0

where T, (0', 0) is the brightness temperature of the local facet at the local looking

angle 0', Ps is the slope distribution of the large-scale waves as viewed at the local

looking angle 0', Sx and S, are the surface slopes along the global x and y axis,

respectively, while S' and S' are the surface slopes with respect to the radiometer

observation direction (0', 0). Notice that Sx is limited to - cot 0 due to shadowing

by large-scale waves [83]. The transformation of the global slopes to the slopes with
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z

k 0

'IxU

Figure 5-9: The local polar angle with respect to the global looking angle and the
slope of the facet.

respect to the radiometer observation direction is given by

S ' S, cos 0 + S. sin 0, (5.102)

S' -SX sin # + Sy cos . (5.103)

To calculate the polar angle 0' with respect to the local facet I for a given looking

angle 0 with respect to the global coordinate (x, y, z) as shown in Fig. (5-9), we write

the unit normal vector of the local facet as

- s,- - Sy ph = , 1(5.104)
I + SX2 + S2

and the unit wave vector with the orientation angles 0 and # as

k = s sin 0 cos 0 + sin 0 sin 0 + 2 cos 0. (5.105)

Thus the polar angle with respect to the local facet is

0' = Cos- , Cos-' -S , sin cos 0 - Sy sin0sin$ + cos 0 (5106)

V I + 3x + Sy
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The slope distribution P, was studied by Cox and Munk [89] by measuring the

ocean surface, and it can be written as

(5.107)

where P(S', S') is assumed to be a Gaussian distribution function

o F (S,' S)
P X Y = 2,-SuSc exp

with the function F(S', S') defined as

=-1-

+ C40
+24

+C04
+24

In the above expression, the coefficients are C40 = 0.4, C22 = 0.12, C04 = 0.23,

C2 1 = 0.01 - 0.0086Um, and C03 = 0.04 - 0.033U., where Um, is the wind speed in

m/s.

The upwind and crosswind slope variances are calculated as follows:

kd 2,r

S = dkJ dqk 3 cos 2 $W (k, ,)
0 0

kd 27r

S2 = fdk dk 3sin2 OW (k, ).
0 0

(5.110)

(5.111)

In the numerical evaluation of Eq. (5.101), the integration limits of S, and S., are trun-

cated as 5 S, and 5 SC, respectively. The local brightness temperature T, is assigned

to be the one of the plain ocean surface TAs as in Eq. (5.60) or of the foam T as in

sx 2(2Su2F-
F(S',Sy)

(5.108)

S I,
Su

C03(

s514

4

C /+ 22 SY,5i3

- 6-
53

SU

+3)

+3)

sx2
-1)

(5.109)
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Sy

SX

Std

SX2 + SV <; St2

SX = - cot o

Figure 5-10: The integration area for determining the slope threshold.

Eq. (5.30) based on the slope of the surface S = XS + S2. To the best of our knowl-

edge, there is presently no literature on the study of the foam assignment according

to the slope of the ocean surface. In this thesis, we assume a threshold Std and assign

the foam brightness temperature T to the local T, if the slope XS + S ;> Std. The

slope threshold Std can be found by calculating the integral within the area [as shown

in Fig. (5-10)] of {(SY, Si) : S2 + 2 <; S X - cot O}, so that the integral value

is equal to the foam coverage F in Eq. (5.33), i.e.

F = J dSyf dSxP, (S', S'X). (5.112)

5.6 Numerical Results

In this section, we calculate the brightness temperature of the wind-driven ocean

surface and compare the simulation results with the data from JPL's WINDRAD

experiment [49]. In the experiment, a K-band (19.35 GHz) radiometer was mounted

on the NASA DC-8 aircraft flying in a circle at the height of 30,000 ft (9,144 m). The
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data was collected in November 1993 near the northern Californian coast. During the

experiment, weather was clear and there was a wind speed of 12 r/s. The brightness

temperatures were measured for the Stokes parameters T., Th, and U with the polar

angles of 30, 40, and 50 degrees. In the simulation, the frequency of the brightness

temperatures is f = 19.35 MHz, the ocean wind speed is U, = 12 m/s at height

h = 19.5 m. The physical temperature of the sea water is T, = 12 'C, and the salinity

is S = 3.5%.

Fig. (5-11), (5-12) and (5-13) show the simulation results of the brightness tem-

peratures by varying the azimuth angle 0 of the observation with nadir looking angle

O = 300, 40' and 50', respectively. The ocean surface spectrum is the empirical for-

mula proposed by Durden and Vesecky [75]. For the foam layer, the internal radius

of water bubble is R = 4.3 mm, the bubble film thickness is d = 0.13 mm and the

fractional volume of water bubbles is ft = 0.01. The extinction and absorption co-

efficients are calculated as re = 8.298m 1 and ra = 2.273m 1 . The permittivity of

the bubble film is the same as of the ocean water, and the permittivity of the back-

ground is 60. The elevation height of the radiometer is 30,000 ft (9,144 in). In these

figures, the open circles are the WINDRAD experimental data. In the plots of the

first and second Stokes parameters T, and Th, the lines (from bottom to top) are the

plots for the numerical simulation considering (1) only the plain ocean surface [Ts

in Eq. (5.92)], (2) plain ocean surface plus the foam emission [Ts + TF in Eq. (5.92)

and (5.93)], and (3) plain ocean surface plus the foam and the atmospheric emissions

[Ts +TF + TA in Eq. (5.92), (5.93) and (5.94)]. In the plots for the third and fourth

Stokes parameters U and V, the total emissions are considered. In comparison with

experiment data, we notice that both the foam and the atmospheric emission are

significant to correct the emission of the plain ocean surface for T, and Th.

The Durden-Vesecky spectrum is similar to the power law W(k) = ao/k 4 that

describes the relative portion of the large scale and small scale roughness of the

ocean surface by specifying the lower cutoff wavenumber kd. The smaller kd is, the
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Figure 5-11: The brightness temperature of wind-driven ocean surface for nadir look-
ing angle 0 = 300 and the lower cutoff wavenumber kd = 80 m-1 .

180

Z_ 160

E

(D

M

140

120

0 WINDRAD

-

0

0
- O0
0 O C

-I O

SF2

E

0

-4
0

155

C



CHAPTER 5.

Tv (0=400)

0 WINDRAD

n mnQDOGDO

Atmosphere
----- -- ~- - - - --

Foam- - O Surface

Plain Ocean Surface

100 200
Azimuth Angle [deg]

EMISSION OF FOAM-COVERED OCEAN SURFACE

Th
150-

140-

130-

120 G

90

80

70

1

0.5[

0

-0.5

0 100 200 300

V

-1 L
0300 100 200

Azimuth Angle [deg]
300

Figure 5-12: The brightness temperature of wind-driven ocean surface for nadir look-
ing angle 0 = 400 and the lower cutoff wavenumber kd = 80 m 1 .
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Figure 5-13: The brightness temperature of wind-driven ocean surface for nadir look-
ing angle 0 = 500 and the lower cutoff wavenumber kd = 80 m- 1.
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higher the long waves. However, in the simulation for the thermal emission from the

ocean surface, the brightness temperatures are obtained by integrating over the entire

reflected waves due to Kirchhoff's law. Therefore there is no significant difference

between the collection of reflected waves from very long ocean waves or from a flat

surface. In SPM, the zeroth and the second order reflected waves are specular, thus

they include the dominant reflections from the long waves. The bistatic pattern of

the field scattered by rough ocean surface is dominated by small scale roughness

(Bragg scattering) which is included in the first order solution in SPM. Therefore

the value of the lower cutoff wavenumber kd is not sensitive to the calculation of the

emissivity from the rough ocean surface. This can be demonstrated by re-calculating

the brightness temperatures shown in Figs. (5-11), (5-12) and (5-13) with lower cutoff

wavenumbers. In Figs. (5-11), (5-12) and (5-13), the lower cutoff wavenumber is

kd = 80 m- which is about 5A of the electromagnetic wave. Fig. (5-14) shows the

brightness temperatures for the polar angle 0 = 40' and the lower cutoff wavenumber

kd = 120 m-. Not much change is observed for the result in comparison with Fig. (5-

12) for kd = 80 m 1 .

With the same simulation conditions as in Fig. (5-11)-(5-13), we compare the

numerical results obtained by using the one-scale and two-scale models as shown in

Fig. (5-15)-(5-17). Notice that the T, and Th terms in these figures match better

with the measurement data in the two-scale model for 0 = 30' and 40', but there is

an irregular offset in Fig. (5-17), which may be due to the shadowing effect at large

polar angles.

5.7 Conclusions

In this chapter, one-scale and two-scale electromagnetic models to calculate the

brightness temperature of wind-driven ocean with foam coverage have been presented.

The one-scale emissivity model is the local thermal contribution by small roughness
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Figure 5-14: The brightness temperature of wind-driven ocean surface for nadir look-
ing angle 0 = 400 and the lower cutoff wavenumber kd = 120 m- 1.
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Figure 5-15: The comparison of the one-scale and two-scale models at 0 = 30'.
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Figure 5-16: The comparison of the one-scale and two-scale models at 0 = 400.
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Figure 5-17: The comparison of the one-scale and two-scale models at 0 = 50'.
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of the foam-covered ocean surface, while the two-scale model is the average of one-

scale emissivity over large-scale slope of the rough ocean surface with the weight

described by the slope distribution function. The overall brightness temperature is

contributed by three portions - plain ocean surface, foam, and atmospheric layer.

The interactions between the different regions are described by boundary conditions.

For the plain ocean surface, the enissivity has been calculated using Kirchhoff's law

by calculating the reflectivity of rough ocean surface. The coupling to the wind speed

is through the power spectrum of ocean surface by which the ocean rough surface

is described. The radiative transfer theory (RT) is used to model the foam layer in

which we assume the scatterers are spherical thin-film water bubbles. The closed

form solution of the RT equations for the foam layer is obtained using the iterative

approach up to the first order. In the RT equations for the atmospheric layer, the

scattering due to the water vapor and other gases in the air is ignored, hence a closed

form of the RT solution is obtained. The simulation results, both from one-scale and

two-scale models, are compared with the WINDRAD experimental data with good

agreements. The results show that both the one-scale and two-scale models agree

well with the WINDRAD data. However the one-scale model is much faster in com-

putation than the two-scale model, since few integrals are involved in the one-scale

model.

It has to be pointed out that, although the foam model with water bubbles is

more realistic than water particles, more studies need to be conducted to model the

foam layer more accurately. For example, it is suggested the multiple scattering

among water bubbles to be considered by using the dense medium radiative transfer

theory [81], and the top foam surface to be rough instead of flat as considered in this

thesis for simplification.
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Chapter 6

Electromagnetic Inversion of

Plasma Medium

6.1 Introduction

Reconstruction of dielectric profiles of one-dimensional inhomogeneous material from

electromagnetic scattered waves has attracted many investigators. In 1961, Kay [50]
developed the inverse scattering theory to reconstruct the scattering potential of a

plasma media with one-dimensional electron density profile. Kay's inverse theory is

applicable to plasma medium with the permittivity E = EO (i - /w2), where wp

is the plasma frequency. The Helmhotz wave equation for plasma medium can be

expressed as the Schr6dinger equation from which the Gel'fand-Levitan-Marchenko

(GLM) integral equation is obtained [90]. If the reflection coefficient is a rational

function of the wavenumber, the GLM integral equation can be solved in a closed form

to get the dielectric profile of the plasma medium [50, 91]. The GLM inverse scattering

for rational reflection coefficient and its applications have been studied extensively

by Jordan et al. [51],[91]- [98]. Theoretically, the GLM integral equation can be

solved analytically if the reflection coefficient is given as a rational function. However

when the number of poles exceeds three or there are zeroes in the rational reflection
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coefficient, the analytical solution of the GLM integral equation becomes difficult. For

non-rational functions of the reflection coefficient, in general, an analytical solution

of the GLM equation does not exist.

In 1982, Kritikos et al.[99] applied an iterative method to solve the GLM integral

equation for an arbitrary reflection coefficient. In 1994 and 1996, Ge et al.[52, 56]

again used the iterative numerical method with relaxation to solve the GLM inverse

problem for the design of optical waveguides. The iterative numerical scheme works

well for small thickness of the inhomogeneous plasma medium, but does not converge

for large thickness with large reflection coefficient [52]. In this chapter, we review

the GLM inverse theory and introduce a new numerical method to solve the integral

equation. The new numerical scheme is based on the discretization of space and

time, and changing the integral equation to a matrix equation. For each step of the

spatial discretization, we solve the matrix equation to get the kernel function. After

solving all kernel functions, we calculate the scattering potential, which is related to

the electron density of the plasma medium.

6.2 Formulations

The geometry of the problem is shown in Fig. (6-1). Region I and III are homogeneous

media characterized by c, , independent of electromagnetic frequency. Region II is

the 1-D inhomogeneous plasma medium, i.e., the electron density N(x) varies in i

direction only. The permittivity of the plasma medium is given by

E1(x,w) =C - W2 , (6.1)

where wp is the plasma frequency

w(x) e2N(x) (6.2)
mc
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A

Incident wave

0

Reflected wave

Eo1 Po

Region I

Figure 6-1: The configuration of an inhomogeneous medium.

In the above expression for w,, e is the charge of electron, N(x) is the electron

density, and m is the mass of electron. Writing the wavenumber in the homogeneous

regions I and III as

k = w - 0 , (6.3)

and the wavenumber in the inhomogeneous region II as

(6.4)ki(x, w) w

we can define the scattering potential of the plasma medium as

q(x, w) = k2 - ki(xw). (6.5)

Since the wavenumber (6.3) in the homogeneous region is proportional to the

frequency w, it is convenient to rewrite the scattering potential as a function of x and

z

x

Co, Ao

Region II Region III
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k

q(x, k) = 2- ki (x, k)= w2(x)Eo1 _o

e 2poN(x)

m
(6.6)

Notice that the scattering potential q(x, k) is independent of the wavenumber k.

Consider an electromagnetic wave polarized in direction normally incident upon

the inhomogeneous plasma medium. The time-harmonic electric wave equation in

the inhomogeneous medium is

2 k
-Ey(x, k) + k (x)Ey(x, k) = 0. (6.7)

Substiting Eq. (6.5) into Eq. (6.7), we get the Schr6dinger-type wave equation

2Ey(X, k) - q(x)Ey(x, k) = -k 2 Ey(x, k). (6.8)

The electric field Ey(x, k) in Eq. (6.8) can be transformed to TF(x, t) by

T(X, t) c JEy (x, k)e-ickdk, (6.9)

where c is the speed of light in the homogeneous media I and III. Plugging Eq. (6.9)

into Eq. (6.8), the wave equation in the time domain for the plasma region can be

written as
_2 1 &2

(x, t) 2 -t9 (x, t) - q(x)'P(x, t) = 0. (6.10)

Let the field '(x, t) in the inhomogeneous plasma region II be

'F(x, t) = XO(x, t) + J K(x, y){o(y, t)dy,
-x

(6.11)

where the total field I'(x, t) in region I is the sum of the incident impulse 6(x - ct)
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and the reflection transient R(x + ct), which can be written as

S t(x, t) = (x - ct) + R(x + ct).a

Substituting Eq. (6.12) into Eq. (6.11) and using the causality condition

R(x + ct) = 0, for x + ct < 0, (6.13)

the integral equation becomes

x

R(x + ct) + K(x, ct) + j K(x, y)R(y + ct)dy = @(x, t) - 6(x - ct).
- Ct

We know that V4'(x, t) is a wave moving in positive i' direction, therefore

(x,t) = 0,

Then the integral equation (6.14) becomes

for x > ct.

R(x + ct) + K(x, ct) + J K(x, y)R(y + ct)dy = 0,
- Ct

(6.14)

(6.15)

for x > ct. (6.16)

Now we prove that if Eq. (6.16) is solved by considering the boundary conditions

(6.17)

(6.18)

then the wave function described by Eq. (6.11) satisfies the wave equation (6.10).

The result is that the boundary condition (6.18) gives the formula to reconstruct the

169

(6.12)

and

K(x, -x) = 0,

dK(x, x)
2 dx = q(x),
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scattering potential profile q(x) once the kernel function K(x, x) has been found.

Proof:

Using the following differentiation relation

K(x, y)R(y + ct)dy =

a2  x
-fK(x, y)R(
t

I 2 K(x, y)R(y + ct)dy

OX22

ct)dy = K(x, y)a0 2

-ct

+ 2 K(x,

R(y + ct)dy,

R(y + ct) -c =0,

we apply the operator

ax2 - ct) 2 - q(x)

to the integral equation (6.16) and use the boundary conditions (6.17) and (6.18).

The result is

a2 K(x, C a2 K(x, ct) - q(x)K(x, ct)C) a (ct)2 J

+ 2 AK y) - K(x, y) - q(x)K(x, y)Ia9Y R(y + ct)dy = 0.

This integral equation is homogeneous for the function in the square brackets. If this

function is unique, it must be zero. This statement yields

ax2 K(x,ct) -
a2

a(ct)2 K(x ct) - q(x)K(x, ct) = 0.

Eq. (6.16) is a Fredholm integral equation for K(x, ct) as a function of t with x as

a constant parameter. According to the uniqueness theorem for Fredholm integral

-t

where

(6.19)

(6.20)

a- R(yat + ct)
y=-ct

(6.21)

(6.22)

(6.23)

(6.24)
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equations, K(x, t) is unique, hence the function in the square bracket in Eq. (6.23)

must be unique, too. Next, with the use of boundary conditions (6.17), (6.18), and

Eq. (6.24), we verify that the wave function (x, t) satisfies the wave equation (6.10).

Assume that the wave function in the homogeneous region I, where q(x) = 0,

satisfies the wave equation

a 2

a'o (x, t) -

1 D2

2at2-0(x, t) 
= 0.

Inserting Eq. (6.11) into Eq. (6.10), we obtain

1 a2

~ 2t2Vb(x,t) - q(x)V(x,t)

Ka2

-3:K~x
y)+o(y, t) dy -

-q(x) V0 (x, t) - q(x) I
-X

1 a2

C2 at2
IK(x, y)o (y, t)dy

K(x, y) V0(y, t)dy.

By using the relation

a
+ -K(xy)'(y,0t)

ax_

+K(x, x) aVo (x, t),Ox

(6.26)

32

2 K(x, y) (y, t)dy + 9K(x, y)o(y, t)JaX2  y ) y 9
-X y=X

+ aK(x, x)4'o(x, t)
x

(6.27)

a2  ia3
a2(xt) c2 a

OX 2 C2

2K02 , y)I OX
-X

2

t2 V)(x, t) - q(x) b(x, t)

-
2

-2 K(x, y) - q(x)K(x, y)] 4o(y, t)dy.

Noticing that the function in the square bracket on the right hand side of Eq. (6.28)

92

1 x,2t)

(6.25)

02 J

-3:2

we get

(6.28)
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is zero according to Eq. (6.24), we then have proved that the wave function <(x, t)

satisfies the wave equation (6.10)

02 1 02

0(X, t) - - 2 4(x, t) - q(x)L(x, t) = 0. (6.29)

Once the kernel function K(x, t) has been solved from Eq. (6.16) with a given

transient reflection coefficient R(x +ct), the scattering potential can be calculated by

using the boundary condition Eq. (6.18).

6.3 Solution of the GLM Integral Equation

6.3.1 Analytical Solution

For convenience, we use T = ct in the rest of this chapter. Note that T has the same

unit as position x. In general, there is no closed form solution of the GLM integral

equation (6.16) for an arbitrary type of function R(x+ r). Perhaps the only exception

is when the reflection coefficient in the frequency domain r(k) has a rational form

M
H (k - pm)

r(k) = " (6.30)
H (k - kn)

n=1

where pm is the location of zeroes, and kn is the location of poles. Jordan and Laksh-

manasamy [93] discussed the method to solve the GLM integral equation analytically

for the reflection coefficient r(k) with the form of a rational function. In their ap-
N

proach, the operator f(p) = (p + ik), where p = 0/T, is applied to the integral
n=1

equation (6.16) to be changed to a differential equation. In the following part of this

section, we will use the similar procedure provided by Jordan and Ahn [92] to solve

the GLM integral equation analytically for the rational r(k) with 3 poles (M = 0 and

N = 3), and use the results to validate the numerical solution in the next section.
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Let the reflection coefficient be

r(k) =

3k - (-/3/2 - /2) [k - (V3 2 -i/2)] (k

ki = - 3 2 -i/2,

k2 = 31 2 - i/2,

k 3 =

The reflection coefficient can also be written in terms of poles and residues

r(k) = +kk1 k-k2 kk

(6.32)

(6.33)

where the residues are

k1 k2k3

(ki - k2 )(ki - k3)
k1 k2k3

(k2 - ki)(k 2 - k3)
kik 2k3

(k3 - ki)(k3 - k2 )

Therefore the transient reflection coefficient is

3

R(x + T) -i E rne-ik(x+T)

n=1

2 -5(c + T)
=-COS 

2

2

3( 3-i)'
2

3( 3+i)'

3

X+7 1 (x+T)

3

Defining the operator f(p) = p3 - 1, where p =D/&T and applying it to the integral

thus

(6.31)
- i)'

(6.34)

(6.35)
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equation (6.16), we can write

f (p)K(x, T) + K(x, -T) = 0,

and by symmetry

f(-p)K(x, -T) + K(x, T) = 0.

Eliminating K(x, -T) from the above equations, it yields

f (-p)f(p)K(x, T) - K(x. T) = 0,

D6

19T6 K(X, T) = 0.

The boundary conditions for the kernel function K(x, T) are

K(X, T) _

K(x,) T

2K(x, 
7)

0T T

T==-X

= -R(0) = 0,

= -- R(x=r)

= 2

09T
2 x+ T)

T=-X

= 0,

= -1. (6.40)

Let the solution of Eq. (6.39) be

K(X, T) = C5 (X)T' + C4(x) r
4 + C3(X)T 

3 + C2 (X)w 2 + CI(x)T + Co(x), (6.41)

where the coefficient functions Co(x), ---, C5 (x) can be obtained from the differential

equations and the boundary conditions. Finally we obtain

x x3 -3 2 3x x±+6x2

8x3 + 12 4x 3 + 6 2x 3 + 3 8x 3 + 12 (6.42)

(6.36)

(6.37)

or

(6.38)

(6.39)
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Thus the scattering potential is obtained as

q =2 ) - 24x(x 3 - 3)
x ' (2X 3 + 3)2 (6.43)

6.3.2 Numerical Solution

In the previous section, we solved the GLM integral equation (6.16) analytically

for the case of a rational reflection coefficient. However for an arbitrary reflection

coefficient, there is no closed form solution of the GLM integral equation. In this

section, we discuss the method of solving the GLM integral equation numerically for

an arbitrary function of transient reflection coefficient R(x + T).

Using T = ct, the GLM integral equation (6.16) is given by

K(x,r) + R(x +T) + H K(x, y)R(y + -)dy = 0, (6.44)

with the boundary conditions

R(x +T) = 0,

K(x, y) = 0,

for x + T < 0,

for y < x or y > -x.

Notice that the lower limit of the integral in Eq. (6.44) is -x instead of -T as

in Eq. (6.16). The consistency of these two equations is ensured by the boundary

condition (6.45). We discretize the time variables T and y into N + 1 grid steps with

equal spacing h = 2x/N, thus the time variables can be expressed by

2x
y = -+ J,

2x
T = + -i,N'

(j=0, 1, 2, - ,N),

(i= 0, 1, 2, - , N).

Notice that x is considered as a fixed parameter for each time step when solving the

(6.45)

(6.46)

(6.47)

(6.48)
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GLM integral equation. For each time step, x is discretized as

Xmax

M

where the total number of grid points for x is MA +1, and xmax is the maximum depth

for the solution. Plugging the discretized time variables T and y, and the spatial

variable x into Eq. (6.44), we get the following equation

(6.49)

N

Kmi + Rmi + E cjhKmjRji = 0,
j=0

K Xmax m,
M m

Xmax + 2 max

M MN

2x""max ,Rmi = R(x± T) = R

m ,y) K M M m

Rjj = R(y + T) =R 2xmax i + j

2 Xmax 
,)

MN /

The coefficient cj, by the trapezoidal rule, has the value

c ={
0.5 for j = 0 or N,

1 otherwise.

Letting Kmi = 6ijKmj, Eq. (6.50) can be rewritten as

N

E [6ij + cjhRji| Kijn =-Rmi,
j=0

which is a matrix equation with the form

A - -im = bm

where

Kjmi = K(x, T) =

(6.50)

(6.51)

(6.52)

(6.53)

(6.54)

(6.55)

(6.56)

(6.57)
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for each spatial sampling point m, where

A = ij + cjhRji,

dm = K, rnj

bm = -Rmi.

(6.58)

(6.59)

(6.60)

Figure (6-2) displays the non-zero entries of matrix A. The zero entries in the plot

are due to the causality condition of R(X + T) = 0 for x + T < 0. The kernel function

K(x, T) can then be solved numerically by

Kj = i, = b - m. (6.61)

Thus the scattering potential can be calculated numerically by

q(xm) = 2 mN -Km-1,N _ 2M (KmN - Km-,N)-
Ax Xmax

(6-62)

6.4 Validation of Numerical Method using the Closed

Form Solution

The advantage of the numerical method is that it can be applied to the inverse

scattering problem for plasma medium by using arbitrary reflection coefficient. To

verify the numerical code, we compare the numerical result of scattering potential

with the closed form solution obtained in Eq. (6.43),

8 24x(x 3 - 3)q(x) = 2 K(x, x) = , (6.63)
&x (2x3 + 3)2
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Figure 6-2: The nonzero entries of the matrix A.
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where the reflection coefficient as in Eq. (6.31) is

-i
r(k) = (6.64)

k3 _

The three poles in the above rational function are located at [Eq. (6.32)]

k = - 3 2 - i/2,

k2 = \/3 2-i/2,

k3 = ,(6.65)

and the transient reflection coefficient is [Eq. (6.35)]

2 3(x +T ) _ - +r 1
R(x +T) = -- cos e 2 + -e (6.66)

3 2 3) 3

In the numerical calculation, the transient reflection coefficient (6.66) is used to fill

the matrix A and the vector Lm using Eq. (6.58) and Eq. (6.60), respectively. Fig. (6-

3) is the numerical result of the reconstructed scattering potential in comparison with

the analytical solution as in Eq. (6.63)

Notice that the agreement of the numerical result and the analytical solution is

excellent. The reflection coefficient r(k) has low-pass characteristics which is shown

in Fig. (6-4).

6.5 Numerical Reconstruction of Plasma Profile

In the previous section, we validated the numerical solution of the GLM integral

equation by using the closed form analytical solution for a given reflection coefficient

in the form of a rational function. In this section, we start from a given plasma profile

to calculate the reflection coefficient analytically and then to solve the GLM equation

numerically to reconstruct the plasma profile. We use the inverted result to compare
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Figure 6-3: Numerical result of the scattering potential in comparison with the closed
form solution for a rational reflection coefficient with three poles.
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with the given plasma profile.

6.5.1 Reflection Coefficient of a Homogeneous Plasma Slab

Consider a plasma slab as shown in Fig. (6-1). Let the depth of the slab be I and

assume that the electron density N(x) is constant. For the normal incident wave

polarized in direction, the wave equation is given by

2
- + q(x) E(x, k) = k2 E(x, k),

where q(x) is zero for region I and III, and q(x) is a constant for region II.

The waves are assumed to be

Ei(x) e ikx + r(k)e-ikx

E 2(x) Aeiklx + Be iklx

E 3(x) = Ceikx

in region I,

in region II,

in region III,

where k1 = w E1(X)/o = /k 2 - k2 and k, = CVo/p. On the boundaries at x = 0

and x = 1, the tangential electric and magnetic fields are continuous, thus

1 + r(k)

k - kr(k)

= A+B,

= k1A - k1 B,

and

Aeikil + Be-ikll

k1Aeikil - k 1Beikil

= Ceiki,

= kCeik1

(6.73)

(6.74)

Solving for r(k) by eliminating A, B and C, thus the reflection coefficient is obtained

(6.67)

(6.68)

(6.69)

(6.70)

(6.71)

(6.72)
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as

r (k) = ,(6.75)
(1 + y2 ) + i2y cot (ki) '

where
k2

-y = ki/k = -(6.76)

The scattering potential of the plasma slab is related to the plasma wavenumber by

Eq. (6.6). Therefore

-i q(x) (6.77)
k k

Using the symmetry property r(-k) = r*(k) , the reflection transient can be calcu-

lated by

00

R(T) = r(k)e-ikTdk
2 r

- 00

00

Re [r(k)] cos(kr) + Im [r(k)l sin(kT)} dk. (6.78)
0

6.5.2 Numerical Results of the Profile Reconstruction

In the numerical simulation, we let q(x) = 2m- 2 and 1 = 1.5 m, thus

v = k . (6.79)

The reflection coefficient r(k) of the homogeneous plasma slab is plotted in Fig. (6-5).

The corresponding transient reflection coefficient is shown in Fig. (6-6). Figure (6-7)

is the numerical result of the reconstruction for the corresponding scattering potential

q(x) with the given profile. The ripples of the numerical result are due to the trun-

cation of the reflection coefficient r(k) in the calculation of the transient reflection

coefficient R(x+r) in Eq. (6.78). In Fig. (6-7), the cutoff wavenumber kmax = 10 m-1

is used for the truncation of r(k). A better numerical reconstruction result can be

obtained by choosing a larger cutoff wavenumber. Figure (6-8) shows the result for
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Figure 6-5: The reflection coefficient of a homogeneous plasma slab with q(x) = 2 m-2
and I = 1.5m.

the cutoff wavenumber kmax = 20 m-1, and we notice that much more accurate results

are obtained. For both cases, the number of sampling points for space and time is

N=M=256.

6.6 Conclusions

In this section, we have studied the Gel'fand-Levitan-Marchenko (GLM) inverse the-

ory and derived its integral equation. The GLM integral equation is solved in closed

form for the reflection coefficient having the form of a rational function with 3 poles.

It becomes very difficult to solve the GLM equation in a closed form when the number

of poles exceeds 3 or zeroes appear in the rational function of the reflection coefficient.
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Figure 6-7: The reconstruction of a homogeneous plasma slab with q(x) = 2 m 2 and
I = 1.5 m. The cutoff wavenumber is kmax = 10 m-1 . The numbers of sampling points
for space and time are N = 256 and M = 256, respectively.
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Figure 6-8: The reconstruction of a homogeneous plasma slab with q(x) = 2 m-2 and
I = 1.5 m. The cutoff wavenumber is kmax = 20 m 1 . The numbers of sampling points
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187



188 CHAPTER 6. ELECTROMAGNETIC INVERSION OF PLASMA MEDIUM

In general, there is no closed form solution for the GLM equation for a reflection co-

efficient with arbitrary form of reflection coefficient. Hence a numerical method has

been developed by discretizing the kernel and transient reflection coefficient function

in space and time, and solving the GLM equation by matrix inversion. In comparison

with the iterative approach with relaxation, this numerical method is faster and much

more accurate. The numerical result of the scattering potential has been validated

by comparison with the analytical solution with closed form, and the reconstructed

electron density profile of a plasma slab. It has been found that the accuracy of the

reconstructed profile is sensitive to the cutoff wavenumber in the transformation of

reflection coefficient r(k) to the transient function R(x + ct). However if the numeri-

cal inversion is directly performed by using the transient reflection coefficient R, the

accuracy of the reconstructed profile is affected only in the region defined by the dis-

tance traveled by a wave corresponding to the time of the truncation of the transient

R. Further study for the accuracy of the reconstruction is suggested when noise is

taken into account in the reflection coefficient.



Chapter 7

Summary and Suggestions for

Future Work

In this thesis, we have presented various analytical and numerical methods for solving

microwave remote sensing problems. First we considered a perfectly conducting object

in free space or on a flat surface, and calculated its radar cross section (RCS-) by

solving the electric field integral equation (EFIE) derived from Huygens' principle.

In the EFIE formulation for a PEC object on a flat surface, we considered the case

of a perfectly conducting flat interface. It is possible to use the same approach and

consider the interface as dielectric, however the computational complexity increases

because of the need to evaluate the Sommerfeld integral in the determination of the

dyadic Green's function [28, 1001.

For the geometry of a PEC object on a rough surface, a hybrid method consisting

of SPM and MoM has been presented. The formulation was derived in a general form

and was applicable to the dielectric rough surface. Using the expansion of the Green's

function and surface variables on the rough surface, the EFIEs were decomposed in

terms of the order of the rough surface height function. The equations of each order

represent the EM scattering problem with the same object on the mean surface but

different incident field radiated from the "equivalent source". The equivalent source
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field can be obtained using the lower order solutions, such that an iterative method

can be applied. The equivalence of the rough surface problem to the flat surface

problem allows us to use the zeroth order MoM solution developed in Chapter 2 to

calculate the RCS of the PEC object on a flat surface by using the different incident

field (equivalent source). In comparison with the standard MoM, this hybrid method

demonstrates a dramatic increase in computational efficiency without loss of accuracy.

Another significant achievement of this hybrid method is that the total returned field,

as the one obtained by the standard MoM, is the sum of individual terms in the

hybrid method, each of which has a clear physical meaning of the electromagnetic

wave interactions between the PEC object and the rough surface.

Furthermore, we have proved that the first order field of the equivalent source

on a PEC rough surface is the same as the one derived from the traditional SPM

by considering a plane incident wave. So the solutions from the traditional SPM are

essentially the radiation field from the equivalent source on the mean surface. The

equivalent source can be evaluated using the lower order solution of the surface field

and the rough surface profile. From the formulation of the equivalent source, we found

that it is not limited to the plane incident wave as in the traditional SPM. By using a

tapered wave as the incident wave, we calculated the radiation field of the first order

equivalent source on a PEC rough surface, and got good agreement in comparison

with the standard MoM. The calculation of the field scattered by PEC rough surface

using the equivalent source is much faster than the standard MoM. In addition, the

equivalent source gives reasonable numerical results at low grazing angles, while it is

difficult for the standard MoM to produce the correct result because of the difficulty

in sampling a large rough surface at these angles. Although the equivalent source has

been used to calculate the first order field scattered by a PEC rough surface, it is

not so obvious that the equivalent source approach will still show its advantage for

obtaining higher order scattered fields or for dielectric rough surfaces in comparison

with other analytical or numerical methods.

190



191

We have also developed composite models in Chapter 5 to obtain the thermal

emission of the wind-driven and foam-covered ocean surface, including atmosphere

contribution. We modeled the foam as a volume with thin-film water bubbles and the

radiative transfer equations were set up in this volume with the boundary conditions

linking the atmosphere and the ocean surface. At the frequency we were interested in,

we assumed the penetration depth of the electromagnetic wave in the foam layer to be

much shorter than the foam thickness, the electromagnetic wave interaction between

the foam layer and the ocean surface was ignored and the formulation was greatly

simplified. The RT equations in the foam layer were solved by using an iterative

method, and a closed form solution was obtained up to the first order. In the solution

of the RT equations in the foam layer, the terms provide the physical meaning of the

wave propagation and interaction between the atmosphere and the water bubbles in

the foam. For the interface of the atmosphere and the open ocean surface, thermal

emission is the sum of the reflection of down-going atmospheric thermal emission and

the thermal emission from the plain ocean surface. The total thermal emission at

the radiometer is the sum of the contribution from the atmosphere-foam interface

and the atmosphere-plain ocean surface interface, weighted by the foam coverage.

In the one-scale model, in which only the small-scale ocean waves are taken into

account, we found that the atmospheric thermal emission is comparable to the foam's

thermal emission for the co-polarized waves. The two-scale model is more realistic in

comparison with the one-scale model, however it requires much more computational

time since two more folds of integration are needed for averaging over the slope of

large-scale ocean waves. Eventhough we included the hydrodynamic model by simply

multiplying an up-wind and down-wind dependent factor to the power spectrum of

the rough ocean surface, a better hydrodynamic model is expected to describe more

accurately the asymmetry of the wind-driven waves and the breaking waves.

The propagation of the specific intensity is also modeled using the RT theory for

the atmosphere. Since the scattering in the atmosphere is ignored, the only existing
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parameter in the RT equations is the absorption coefficient that can be obtained from

the millimeter-wave propagation model (MPM) with the use of standard atmospheric

profile data available in the US Standard Atmosphere 1976. Although it is difficult to

obtain the atmospheric profile data at the particular measurement site, further study

to validate the atmospheric emission model using measurement data is important and

worthy.

In Chapter 6, the GLM inverse theory was studied and a numerical method of

solving its integral equation to reconstruct the electron density profile for a plasma

medium was presented. A numerical method was developed by discretizing the kernel

function and the transient reflection coefficient in the space and time domains, so

that the integral equation was converted to a matrix equation and the solution was

obtained by inverting the matrix for arbitrary form of reflection coefficient. This

numerical method is much faster and more accurate than other methods such as the

iterative method with relaxation. The numerical method was validated by comparing

with the analytical solution for the special case where the reflection coefficient is

rational with respect to the wavenumber. The numerical method was also validated

by solving the GLM integral equation for a reflection coefficient from an assumed

plasma profile. While this numerical model for the GLM inverse problem was proved

to be very efficient and accurate, a sensitivity-to-noise study and the application of

this model to measurement data are suggested.
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Appendix A

The Inner Product of Scattered

Field with the Basis Function

Considering the fact that there is no surface current accumulation and the current

does not cross the open edges, we get

(A.1)
fC

The inner product of the scattered electric field with the vector basis function is

= jdSq(f) -fm(r) -

S

dSA(i) -fm(f) -

dSq(f) . fm(f) +

im

Jr'

I dSVq(f) - n(f)

jdSV . (#(f)m(f)) +
S

j dSOb(fVf()
S1

J dSA(f)
Tm

J dS#(f)V .7rm(f)
S

2Am
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dS$() Im -JdSoQf) I

2+
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Appendix B

The Basis Vectors and Green's

Functions

The polarization basis vectors in homogeneous region 1 and 2 with a flat interface are

defined as

(B.1)k1 x Ji k - Qkx
k1 x V kX2+ k2

k + k2
k1

kiz
x /k1 = -F 1

k1)k +F k2
(ik + ky) +

82(ik22) = iky - ykx,

)k 2+ k'2k -
k2z~k

= 2 (kk kx + ky)
k2k + k2

(B.2)

(B.3)

jk! + k
+2 2

k2
(B.4)

The integral representation of the dyadic Green's function in unbounded space is

given by [65]

G,1(f, r -Z 2

195

h1(tkiz) - ,(±kiz)

h2(ik2z)= -8(ik2z) x k2
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+ {87w2

8w 2

dk1 kjI- [ (kiz)s(kiz) + h(k1 z)h(kiz)] e

dk1L iz [8(-k 1 2) (-kiz) + h(-kiz)h(-ki)] eiK1( #~')

The curl of the Green's function is

V x &c~(F, i~1)
dkLce a , E (kiz)e e 

kiz

dizN(kze

where a = 1, 2.

z > z'

z < z'

(B.5)

1 21

8r2J

z > z',

z < z',
(B.6)



Appendix C

Simulation of Random Rough

Surfaces

To generate the 2-D rough surface for Monte Carlo simulation, we define the Fourier

transform pair

f (x, y)

F(kX, ky)

= F(kX, ky)e-i(kxx+kyy)dkxdky,

(2)2 JJ
(C.1)

(C.2)f(, )ei(kxx+ky)dxdy.

Since the elevation height f(x, y) of rough surface is real, we get

F(kX, ky) (C.3)

(C.4)F(kX, -ky)

Thus we obtain the relations of the real and imaginary parts in the function F(kx, ky)

as follows:

{ FR(kX, kv) FR(-kx, -ky),

Fj(kX, ky) =-F,(-kx, -ky ),
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f FR(kx, -kv) FR(-kx, ku ), (C.6)
F1 (kx, -kv) = -F[(-kx, kv).

Assuming that the rough surface spectrum function W has the following symmetrical

property:

W (kx , kv) = W (tkx, t kv), (C.7)

which is true for the spectrum functions under study in the thesis, and letting

f FR(kx, kyv) a (kx, ky) W (kx, k), (C.8)
FI(kx, kv) =b(kx, kv) W(kx, kv),

we get

(a(kx, k ) = a(-kx, -k ), (C.9)
b(kx, kv) = -b(-kx, -kjj),

where a(kx, kv) and b(kx, ky) are independent random numbers of Gaussian distribu-

tion with zero mean and unit variance. Notice that the average of roughness [65, page

557] is

(F(kx, ky) F*(k' , k') (C. 10)

(a(kx, ky)a(k', k') + bkky)b(k',kk')) W(kxky) W(k',k'), (C.11)

therefore the deviation of the random number must be

6(kx - k', k - k'1)
a(k, ky)a(k', k')) = (b(k, ky)b(k', k')) = 2' (C.12)

Using the symmetrical property in Eq. (C.6), the elevation height of rough surface in

Eq. (C.2) can be.evaluated from

f(x, y) = f F(kx, ky)e-i(kxx+ky)dkxdky
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+ dkx f
0 0

00

+ Jdkx

00
+Jfdkx

00

+J dkx
0

dkv W (kx, k,) a(kx, kv)2 cos (kxx + ky y)

00

00
00

00

fr

dky W(kx, ky)a(kx, -ky)2 cos(kxx - kyy)

dky W(kx, kl,)b(kx, -ky)2 sin(kx x - kyy)

dky W(k, ky)b(kx, ky)2 sin(kxx + kyy).

By changing the coordinates,

k =kcos a,

k = k sin a,

= 2JkdkJdaV W(kca)a(k, a)cosk(x
0 0

+2 fkdkJI
0 0

cos a + y sin a)

do! W(k, a!)b(k, a!) sin k (x cos a! +Ix sin a). (C.-15)
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(C.13)

we get

f (X, y)

(C.14)
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Appendix D

Phase Matrix for Water Bubbles

Consider an electromagnetic plane wave propagating in + ' direction and incident

upon a thin-film water bubble in (x', y', z') coordinates with inner radius R and film

thickness d as shown in Fig. (D-1). Let the wavenumber in the core and outside be

k, the wavenumber in the film be ki, and the polarization angle be 3. On y'z' plane,

,3;

i /3 Bubble

Figure D-1: EM scattering by a bubble in (x', y', z') coordinates.

the scattered field with scattering angles 0' and q$' =900 in radiation zone is given in

a closed form as follows [101]:

iik

Eg = Sicos/3, (D.1)kr
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.ie kr
S 2 sin/3,kr

(D.2)

where

Si = i6(m 2 - 1)G 2 o (i)
m2 - 1 ji(x)

m 2 xII

S2 = (i (m2 -1)a2 j0(x) cos '

m2 1 ji (x) + 1±cos0' ji(x)

m2_ x 2 (x - jo(x))] },
in which m = k1k,

4wr
x = -R sin (0'/2), 6 = 27d/A, a = 27rR/A, jo(x)

A
and ji(x) are

the zeroth and first order spherical Bessel's functions, respectively. The geometry of

the wave scattering in (x', y', z') coordinates is general because of the symmetrical

property of the spherical water bubble.

30;

Ix V
-

Figure D-2: The transformation of coordinates.

In the (x, y, z) coordinate system, the incident wave is written as

,= e Eoeiki'

(D.3)

(D.4)

APPENDIX D.202

Eol

ki
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where 8j = '& or hi, e, = E,, or E 2 , and

Ii = kki = k (i sin 0i cos Oi + sin 6i sin /i + 2 cos 0,)

and the incident angles 02 and /j are with respect to the (X, y, z) coordinates as shown

in Fig. (D-2). The polarization vectors are defined as

fi1 = hi x kI =cos Oi cos 5 + - cos 0; sin 5 - 2 sin O

\hj = =~ -s sin C/j + Q cos #52.

| x k|
In the (x, y, z) coordinate system, we set up the coordinates (I', y', z') so that

(D.6)

ki x k,

x k, x ksl

, Ii x ki x k,

zk x k x kd

k'= I ,

ki (i Is) - ks

ki (k -ks) -k,

where

I= sin 0, cos #, + sin 0, sin , + 2 cos 0,

is the wave vector of the scattered field. Therefore the transformation relation of the

two coordinate systems is

{' = ian

' = ia22

'= ia 3

[di'

H'
[2'

+ )a12 + aia

± Qa2 2 + 2a 23

+ fia 32 + 2a 33

I I

(D.7)

or

(D.8)

(D.9)=A y^
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where a 22 a 2 3
a ll :::::

a 32 a 33

a 12  a3 1 a33  (D.10)
a 21 a 23

a 2 1 a 3 1
a 13

a 22 a 32

A 2 1
a 2 1

QAB1 + Al 2 ± A; 3

A 2 2a22 =(D.11)
2A1 + A 22+AA23

a23  A23

A 1 + A$2 + A23

a 31 = sin 0, cos Oi

a32 = sin Oi sin $5 (D.12)

a 33 = cos OiI A sin 0, sin 0, cos (Oi - 0, ) + cos 0, cos 0,

A 21 = A sin 0; cos Oi - sin0, cos, (D.13)

A 22 = A sin O, sin $1 - sin 0, sin $,

A 23 = A cos O2 - cos 0,.

=-1 =T

By using the identity A = A , the transformation of a vector from one coordinate

system to another can the expressed as

E'= E'T A' =E'TA[Q -E. (D.14)

=T
Thus E = A E' and E' = AE.

By writing the incident field in (x, y, z) coordinates as

Ej = 8&Eoekf = Eo [(8j - i) 2 + (86 -i ) + (8 -) 21 ei
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thus the transformation of the incident field is

[(2 - )

A (8 I - Eo

L(8e z) _

all

a 2 1

a31

a 1 2 a 1 3 ( -

a 2 2  a 2 3  (ci -)

a32 a33 _ _ (82 z)I (D.16)

we can calculate the polarization angle 3 and scattering angle 0' in the (x', y', z')

coordinates as follows:

=cos = Icos -,
C

0' = cos- 1 I cos- 1 [sin 0, sin 0, cos (0, - dj) + cos 0, cos 0,,

where

b3 = a31 ( i z)+ a32 (si . )+ a33 (si- ),

C = b' + b2 + by.

In the (x', y', z') coordinate system, we write the scattered field as

S = Eol 0' + E01' Eo, (f' cos 0' - ' sin 0') - E0,.'

=L-E01

Eo, cos 0'

-Eo, sin 0']

where, by droping out the factor for scattering coefficient calculation,
r

E01= - 1S cos 3,
k

Eof= -S 2 sin3.k

S~ E[ ]
_Ezt

(D.17)

(D.18)

(D.19)

(D.20)

(D.21)

(D.22)

(D.23)

(D.24)

(D.25 )

b2 = a21 (si . i) + a22 (s.i - ) + a23 (si - ) ,I
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The scattered field in the (x, y, z) coordinate system is thus

a 2 1 a 3 ~ 1
a 2 2  a 3 2

a 2 3 a 3 3 .

- E,1

Eo, Cos 0'

-Eo, sin 0'
-Eian + E, cos 0'a 21 - E, sin 'a31 1
-Eo/a 12 + Eo, cos 0'a 22 - Eo, sin 0'a 32

-E0,a 13 + E0, cos 0'a 23 - Eol sin 0'a 33 .

(D.26)

By writing the polarization vectors of the scattered field as

{ s = s x k, i cos0,cos 8 +9 cos0, sinks - 2sin0,

-x sin0, + cos# 8 ,
z x ks

the v and h-components are obtained as follows:

Ev = E8-fs = (-E0,ai + Eo, cos 0'a 21 - E, sin 0'a 31 ) cos 0, cos #1

+ (-Eoia12 + E, cos 0'a 22 - Eo, sin O'a32 ) cos 0, sin /,

+ (E4ia13 - E, cos 0'a 23 + Eo, sin 0'a 33) sin Os,

E18= Es - hs = (E0, ail - Eo, cos 0'a 21 + E, sin 0'a 31 ) sin #

- (E, a12 - Eot cos O'a 22 + Eo sin 0'a 3 2 ) cos Os

(D.27)

(D.28)

(D.29)

Therefore the scattering coefficients are fv = Ev, fl, = E for i = i and E0  1;

fvh =Ev, fhh = Eh for j = hi and E0 = 1. Define the matrix

1fhv 
2

2Re ( fv f*)

2Im (f f f*v)

|fvh 1
2

fhh 2

2Re(fvhfhh)

2Im(fvhfhh)

Re (f fv*h)

Re(fhfhh)

Re(fvvf~hh + fvhfi*v)

Im(fvvf~hh + fvhfhv )

-JM(fvvfvh)

-Im(fhvf,4'h)

-Im(fvvf*h - fvhf*v)

Re(fvvf*h - fvhf*v)

(D.30)

APPENDIX D.206

all

T s = ES= a12
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the phase matrix can be calculated as

(D.31)

where no is the number of bubbles per unit volume.

The extinction coefficient is derived as following [81, page 147]:

4w
e = to k7 Im {fV (0, /, ; O , p)} =

= no 4r -m (m2 - 1)

k 2

a2 _j(X) _

4w
-no k2 Im {iSi}

m 2 - 1 ji(x)
M2 x

2m 2+1

3m+ .)

IX-O}

(D.32)

The absorption coefficient is

Ks = no J dQS (D.33)S( ;i, i) 12 + fhv (OS 6, O; Qi, q$)| 2 ,

which can be evaluated numerically. Due to the symmetry property of the bubble,

K. is independent on the angles Oi and #2. The absorption coefficient is calculated as

Ka = r. - Ks. (D.34)

P(Os, Os; Oj, #i) = no L(O3 s 4 i,
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Appendix E

The Parameters in the

Millimeter-Wave Propagation

Model

The parameters used in the MPM [54] are as follows:

Barometric pressure

P = p + e,

where p is dry air pressure and e is partial water vapor pressure.

barometric pressure is kPa.

Temperature

T = 300/t,

The unit of the

(E.2)

where the unit of the temperature is Kelvin (K), and t is the inverse temperature

parameter. The typical temperature profile is given in [55] and plotted in Fig. (5-4).

Relative humidity

RH= - x
e 9.834

100 = 41.51- ex 107t-m
0c
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where e, is the saturation pressure over liquid phase.

Dry air and vapor densities

u = 11.612pt,

v = 7.217et,

where the unit of the densities is g/m 3

Complex refractivity

N = No + N'(f) + iN"(f),

(E.4)

(E.5)

where No, N'(f) and N"(f) are real and called the frequency-independent term,

refractive dispersion and absorption, respectively. f is frequency in gigahertz (GHz).

Frequency-independent term

No = (2.588p + 2.39e)t + N,, (E.6)

where N, = 41.6et 2 is the contribution from the rotational spectrum of water vapor.

Dispersion term

N'(f) = (SaFa)j + (SbF')b + N' + N',

Absorption term

" = a

N" (f) (Sa Fa")j (SbF") + N" + N,,'

where Sa = alpt3ea2( 1 -) and Sb = biet 3 5 eb2( 1-t) are the line strength in kilohertz for

oxygen and water, respectively. F' and Fb' are the real parts of a line shape function

in GHz- 1 which can be written explicitly as

F- (ff) + 2
X0, YO Vo

+6, 
1

(XO1 (E.9)
S 7 Co

(E.7)

(E.8)

APPENDIX E.210

nb

N' +P

+ N" +



Vao - f
Xa 1 V007

where a = a, b, and

Xce

y (vO +f) 2 + _,

Zc, (v2 + Y2) VO,

Ya = a3 (PtO.8-a 4 + 1.let) ,

-1b b3 (pto.8 4.8et)

6a a5pta6

6b =0.

In the above expressions, Voa and ai (i = 1, 2, .. , 6) are oxygen line parameters, Vob,

and bi (i = 1, 2, 3) are water vapor line parameters.

Dry air continuum

I + (f/0)

[_YO (I + (f /_O) 2) (I + (f /60) 2)]

- 1}pt2'

1 + appt 25 fpt 2,

where ao = 3.07 x 10-4, ap = 1.40 (1 - 1.2f 1.5 10- 5) 10-10, and 'Yo

1.le)to.8 GHz.

Water vapor continuum

N'(f) bof 2 0 5et 2 4 ,

N" (f= (bfp + beet3) fet 5 ,

where bo = 6.47 x 10-6, bf = 1.40 x 10-6 and be = 5.41 X 10-5.

Hydrosol continuum

N,'(f) = 2.4 x 10-3we',

= 5.6 x 10- 3 (p +

(E.13)

(E.14)

(E.15)

211

(E.10)

N'(f) = ao{

N"( f) { 2ao

(E.11)

(E.12)

VafO + f If
Ya _V'O

= (vo -f)2 + 2,
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N"(f) = 4.50w/6"(1 + 2), (E.16)

where T = (2+ 6')/E" and T = 4.17 x 105te(7 13t) ns. c' and E" are the real and

imaginary parts of the dielectric constant of water. They can be calculated using the

following empirical formulas

185 - 113/t
C 4.9 + 1 + (fT)2  (E.17)

(185 - 113/t) fT (E.18)
1 + (fT) 2
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