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Abstract

A tremendous amount of compiler research effort over the past ten years has been devoted
to compensating for the deficiencies in hardware cache memory hierarchy. In this thesis,
we propose a refocus of these energies towards compilation for memory hierarchy which
is exposed to the compiler. With software exposure of memory hierarchy, not only can
replacement policies be tailored to the application, but pollution can be minimized or elim-
inated, allowing programs to achieve memory reference locality with less local memory
than would be needed by a cache. Additionally, prefetch latencies are fully exposed and
can be hidden by the compiler, thereby improving overall performance.

We have developed a technique we call Compiler Controlled Hierarchical Reuse Man-
agement (or C-CHARM), implemented using the Stanford SUIF compiler system, which
gathers compile time reuse information coupled with array dependence information, rewrites
loops to use a truly minimal amount of local memory, and generates the necessary explicit
data movement operations for the simple, software exposed hierarchical memory system of
the M.I.T. RAW machine.

Thesis Supervisor: Saman Amarasinghe
Title: Assistant Professor
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Chapter 1

Problem Statement

The performance gap between processors and main memory is a fundamental problem in

high performance computing systems. According to Hennessy and Patterson [4], processor

performance since 1986 has improved 55% per year while latency of memory accesses

has improved only 7% per year. Figure 1-1 illustrates this nearly exponentially increasing

performance disparity. The result is that with each new computing generation, the processor

must effectively wait longer for each memory reference.

The solution to the processor-memory performance gap is memory hierarchy. Instead

of having the processor access main memory directly, a series of intervening memories

are placed between the processor and the main memory. As one moves from the main

memory to the CPU, the memories get progressively smaller and faster (See Figure 1-2).

By keeping as much of the data needed in the near future as close to the processor in the

hierarchy as possible, the user program would receive most of the performance benefit of a

small memory and the storage capability of a large one. Making memory hierarchy useful,

however, requires understanding any underlying patterns in the memory accesses made by

the program. Ascertaining these access patterns requires knowledge of the program's future

memory behavior. The effect of these access patterns can be expressed as properties of the

program in question, namely if the program data exhibits reuse and locality.

A memory stored value has the reuse property if it is used more than once in the course

of the execution of the program. Locality is the property of programs that whatever data

they access in the recent past, they are likely to access again in the near future. Obviously,
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the set of all references to data which is reused in a program is a superset of all references

which exhibit locality. A hardware based memory hierarchy management system built on

the premise that all programs contain large amounts of locality would naturally perform

well on such programs.

A cache is a hardware device which maps a subset of the main memory address space 1

into a local memory. The cache receives address requests from the memory level above it.

If the cache holds the requested address, the access is said to hit in the cache. Otherwise, the

access is a miss and a lower level in the hierarchy must be consulted for the requested value.

The size difference between local and main memory necessitates that each main memory

address is mapped to a small set of possible local locations when it is in the current level

of hierarchy. The associativity of the cache is the number of possible local locations for a

particular main memory address to be located. The cache replacement policy is the method

by which the cache chooses which item to evict to a lower level in the memory hierarchy

in favor of another value.

Caches turn reuse into locality by attempting to hold onto a value requested by the level

above for as long as possible. This is taking advantage of temporal locality, or the reuse

of the same address over a short span of time. Caches may also fetch values nearby the

requested address, assuming that if a value is used now, values near it in memory are likely

to be used in the near future. This is called spatial locality.

Caches are dependent on a string of past access requests in order to choose the subset

of main memory to map locally. Therefore, there is a period of misses at the beginning of

the execution of the program when nothing is mapped locally. These cold start misses are

essentially the result of the cache's inability to predict any access pattern as it has no past or

future access information with which to predict. The many-to-few mapping which chooses

the local location for a main memory address may map multiple addresses with locality to

the same local location. Accesses to such data are said to be conflict misses because reuse

is not being turned into locality due to the happenstance of the addresses where the values

in conflict reside in main memory and the inflexibility of the cache's address mapping

function. Finally, there may simply be more locality than can be held by the amount of

'The address space is the set of all storage locations in a memory.
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memory controlled by the cache. The cache must then evict a value back to a lower level

in the hierarchy, ending any possible continued locality for the evicted value in favor of the

assumed locality to be found in the most recently requested address. The next access to the

evicted value would be known as a capacity miss.

Caches have been quite successful for a long time, but they are limited in their ability

to turn reuse into locality in a variety of ways. The predefined many-to-few mapping used

by the cache to choose the local location for a main memory address must necessarily be

an arbitrary function because it is in hardware. If the input program does not happen to

distribute its often reused addresses in the way the hardware is designed to take advantage

of, conflict misses may severely degrade the memory performance of programs that exhibit

large amounts of short term reuse that would otherwise be easily convertible to locality.

Additionally, since the cache has no information about which piece of data will be needed

the furthest in the future (and therefore the ideal item to evict from the cache), the replace-

ment policy, in the best case, will evict the item used least recently to estimate this missing

information. Often, this is precisely the data item needed next. Therefore, the cache has

done exactly the opposite of what is optimal, even in situations where the memory access

pattern is simple and well behaved. Further, with this lack of reuse information, the cache

methodology of holding on to a value as long as possible can cause the cache to hold on to

many data values which do not exhibit locality in order to gain locality for those data values

which do. This artifact of the speculative nature of caches is known as cache pollution. The

result of this pollution is that for many programs, a large portion of the memory at any one

level in the hierarchy is wasted, thereby exacerbating the problem of capacity misses.

A great deal of work in compiler technology over the past ten years has been devoted to

the problem of making up for these deficiencies in caches. Many domains of programs have

compile-time analyzable reuse patterns. This includes the multimedia and other streaming

applications which have become of great importance in recent years. Software controlled

prefetching [9] uses this reuse analysis to push a data value up the hierarchy. By overriding

the standard replacement policy, prefetching can minimize the performance impact of poor

replacement choices while improving overall performance by bringing items into the cache

before they are needed. By analyzing the boundaries of array variables, array copying [12]

14



restructures the data at run time to prevent the replacement policy from making ultimately

bad decisions. Work in loop transformations to improve locality of references [10, 14]

restructures the operations in loops to limit pollution and maximize the number of reuses

of a data value before it is evicted. These loop transformations can be further optimized as

in [5] to further minimize the negative impact of replacement policy on performance, but

at a cost of some locality.

Now that we posses the knowledge and ability to better analyze and understand pro-

grams at compile time, we have gained the capacity to do far better than caches at con-

verting reuse into locality. Up until this point, however, this information has been used to

perform complex code and data transformations to second guess and circumvent the dy-

namic behavior of caches. We believe compiler technology has matured to a point where a

reevaluation of the interaction between the compiler and the memory hierarchy is needed.

Instead of developing methods to thwart the cache or reorganize the program such that

some predicted cache behavior will produce the best memory performance, we believe it is

time to remove the cache altogether.

We propose an architecture where the memory in the hierarchy is exposed to software

and is directly addressable in a fine grained manner. Exposure of memory hierarchy is not

an entirely new idea. Multiprocessor machines such as the Intel Paragon and the Cray T3D

and T3E are global address space machines where data in other processors' memories must

be explicitly moved to the local portion of the address space in order to gain performance.

We propose going a step further to a machine with separate address spaces for main (or

global) memory and hierarchy (or local) memory and a fine-grained, compiler controlled

hardware interface for explicit movement of data objects between levels of the memory

hierarchy.

Before we can remove the cache entirely, however, there is one thing that caches (or dis-

tributed global address spaces) give us which static analysis does not: a safety net. Caches

may not always execute the program in question with the optimal memory performance,

but at least they will guarantee correctness. A compiler which explicitly manages the hier-

archy but cannot analyze the input program perfectly is in danger of executing the program

incorrectly. In such an event, we must have some fall-back mechanism based on runtime

15



program analysis and dynamic memory hierarchy control [8].

We present here a first step towards a compiler for explicit static memory hierarchy

management. Through a combination of dependence analysis, array analysis and static

reuse analysis, we present a method for completely static memory hierarchy management

of the reuse in the restricted domain of streaming and stream-like programs. Programs can

be globally transformed to statically move data from main memory into local memory just

in time for it to be accessed, then retired back to main memory when it is no longer needed,

all with a minimal amount of software overhead.

In Chapter 2 we will discuss the background in program analysis necessary to under-

stand our technique. The algorithm is presented in Chapter 3. Chapter 4 demonstrates and

evaluates our technique. Chapter 5 discusses some related work. Chapter 6 will conclude.
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Chapter 2

Background

2.1 An example program.

Before discussing the algorithm for compiler management of the memory hierarchy, there

is a significant amount of background in compiler analysis which must be understood.

Throughout this chapter and Chapter 3 we will be using the program in Figure 2-1 as an

example. This program takes the average of five array values forming an X shape and

writes the result back into the center of the X.

2.2 Iteration Space Graph

An Iteration Space Graph (or ISG) is a graphical representation of a FOR style nested loop.

The axes of the loop are represented by the axes of the graph and are labeled with the

corresponding loop index variable. Each node in this integer lattice represents a particular

iteration of the loop nest and can be identified by its index vector '7 (p1, P2, ... , p)

for(i = 1; i <
for(j = 1; j

A[i][j] =

64; i++)

< 64; j++)
(A[i] [j] + A[i-1] [j-1] + A[i-1] [j+1] +

A[i+1][j-1] + A[i+1] [j+1])*0.2;

Figure 2-1: Our example program.
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Figure 2-2: Iteration space graph and execution order of example.

where pi is the value of the loop index for loop i in the loop nest, counting from outermost

loop to innermost loop, when the iteration would be executed.

For our example in Figure 2-1, each node would be visited in turn along the horizontal

j axis through a full row of the lattice before moving up to the next row along the i axis as

in Figure 2-2.

2.3 Memory Dependence Analysis

A complete discussion of memory dependence analysis is beyond the scope of this thesis.

The concept of iteration dependencies and the dependence vector [14], however, is critical

to understanding our technique.

Given two iteration index vectors jand "4is said to be lexicographically greater than (,

written j > if and only if p, > qi or both pi = qi and (p2,... ,Pn) > (q 2 ,.- , q,) [14] -

Given iterations jand q' which both access the same memory location, if p' >- q there is

said to be a data dependence between the two iterations. If the data dependence represents

a write at iteration q which is read by iteration , it is called a true data dependence. Oth-

erwise, it is called a storage related dependence because the dependence only exists due to

the reuse of the memory location, not the value stored at that location.

A dependence vector is a vector in the iteration space graph of a loop which represents

'This definition of lexicographical ordering assumes a positive step for the loops in question. If the step

is negative, the comparison of p and q along those loop axes should be reversed.

18
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Figure 2-3: A graphical representation of the dependence vector stencil for our example.

a data dependence. In particular, if there is a data dependence between iteration ' and q as

above, the dependence vector d - . The iteration represented by the node at the tail

of the vector must execute before the iteration represented by the node at the head of the

vector in order to maintain program correctness.

An alternate, and in the context of this thesis more appropriate, view of a dependence

is that the iteration at the head of the dependence vector will reuse a storage location used

by the iteration at the tail of the vector. If we include all dependences, including the often

overlooked ones where two iterations may read the same memory value 2 we can get a clear

picture of how memory stored values are passed between iterations.

For most regular loops, the dependencies flowing out of a particular iteration form a

fixed pattern that repeats throughout the iteration space. This stencil of dependencies rep-

resents the regular and predictable interaction between any given iteration and the iterations

which depend on it. See figure 2-3 for our example's dependence vector stencil.

2.4 Reuse Analysis

Array reuse analysis [9, 14] is a means of statically determining how and when array ele-

ments will be reused in a loop nest. The basis of reuse analysis is conversion of affine array

accesses 3 into vector expressions. By solving for properties of these vector expressions,

2Dependence analysis does not usually talk about these "Read After Read" dependences because they do
not inhibit the reordering of the loop iterations in any way.

3 An affine array access is one which is a linear function of the loop index variables, plus some constant.
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O 0 000000

Figure 2-4: An iteration space vector.

A[i][j] =A *0
0 1 0

+ 0
A[i][0] =A* .+

0 0 0
2 0+ 0

A[2*i][j-1] = A 2
0 1 3-

Figure 2-5: Example vector array access functions.

we can gain understanding about the reuse patterns for the corresponding array access.

An iteration space vector i is a vector in iteration space which points from the beginning

of the loop at the iteration space origin to a node in the ISG. It has dimensionality n equal

to the the number of axes in the loop and its elements consist of the values of the loop index

variables, in order of nesting, at the node at the head of the vector. See figure 2-4 for an

example.

An affine array access can be thought of as a function f (T) which maps the n dimensions

of the loop into the d dimensions of the array being accessed. Any affine array access

function can be written as

f-() = Hz + C

where H is a d x n linear transformation matrix formed from the coefficients in the in-

dex expressions, i is again an iteration space vector, and ' is a vector of d dimensionality

consisting of the constants. See figure 2-5 for some examples.

In cache parlance, a reuse is associated with a dynamic instance of a load. This dynamic

load is said to exhibit locality in one of two ways:

20



" temporal : A dynamic load uses a location recently used by some other dynamic

load. These loads may or may not be instances of the same static instruction.

" spatial: A load uses a location very near another recently used location.

Reuse analysis defines four types of reuse and gives information about which category each

array reference is in. Unlike when one is talking about caches, these classifications apply

to the static reference, not just some dynamic instance. The four types of reuse are

" self-temporal : The static array reference reuses the same location in a successive

loop iteration.

* self-spatial : The static array reference accesses successive locations in successive

loop iterations.

" group-temporal: A set of static array references all reuse the same location.

" group-spatial: A set of static array references access successive locations.

A full discussion of self reuse can be found in [14]. Only group reuse is of significance to

the technique presented here.

Both forms of group reuse can only be exploited for a set of references which are unifor-

mally generated [3]. A uniformally generated set of references are a group of references for

which only the constant terms in the access expressions differ. In reuse analysis terms, two

array accesses are in the same uniformally generated set and therefore exhibit exploitable

group reuse if and only if

IT': Hi = c3 -C2

For example, given the references A[i][j] and A[i-l]j-1] from our example program,

1 0 i 0
A[i][j] = A * + ,and

0 -1 j 0

1 0 i-
A[i-l][J-1] = A * +.

0 1 j-

21



These references belong to the same uniformally generated set if they access the same array

and there exists some integer solution (ir, jr) to

1 0 zr I

0 1 J .r

Since the vector (1, 1) is such a solution, these references are in the same uniformally

generated group reuse set. In fact, all six array accesses in our example program belong to

this same set.

Since, by definition, each element of a group reuse set accesses the same array elements

in turn, there must be some member of the set which accesses each data object first. This

access is known as the leading reference. Its dual is the trailing reference or the last access

in the set to access each particular array element.

2.5 Occupancy Vector Analysis

Once all the iterations dependent on a value initially accessed or produced in a given it-

eration q have executed, there is no need to continue storing said value in local memory

as it will not be accessed again for the remainder of the loop. An iteration p occurring at

or after this point in the program can therefore use the same local storage. If we were to

overlap the storage for these two iterations, their vector difference OV = p - q is called

the occupancy vector. Occupancy vector analysis [11] can be used to separate iterations

into storage equivalence classes. Members of the same storage equivalence class are itera-

tions separated by the occupancy vector and their storage can be overlapped in memory by

introducing a storage related dependence based on OV.
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Chapter 3

Our Algorithm

In this chapter, we will present our algorithm for transforming group reuse programs to do

explicit management of the memory hierarchy.

3.1 Precise Problem Definition

Explicit management of memory hierarchy means that the compiler controls all aspects of

data movement between local and global memory.

Envision a machine with the following properties:

1. A large global memory connected to the processor. Latency of accesses to this mem-

ory are considerably longer than to any processor on-chip resource.

2. A small local memory. This memory is insufficient in size to hold the data for any

reasonably sized program. It has an address space completely independent of the

global memory address space.

3. A set of architected primitive memory hierarchy control instructions. These primi-

tives would allow the compiler to explicitly copy a data item from the global memory

address space to an arbitrary local memory location, and vice versa.

Our problem consists of finding a methodology by which the compiler can understand

the input program well enough to transform it for execution on just such a machine. Simul-

taneously, the compiler must choose a tailored replacement policy for the program which

23



maximizes memory locality. The compiler must decide when a value must be moved to

local memory, inserting the necessary instructions to accomplish this. It must then decide

how long it can afford to hold that value in local memory in order to maximize local-

ity. When the value can be held locally no longer and the value has changed since it was

brought to the local address space, the compiler generates instructions to copy the value

back to the global memory.

3.1.1 Reuse Analysis and Uniformally Generated Sets

The array references in the loop must be broken down into uniformally generated sets, each

of which will have group reuse. Recall from Section 2.4 a uniformally generated set is a

set of array references which differ only in the constant parts of the access expressions.

The abstract syntax tree for the body of the loop nest is traversed and all array references

are noted. They are then sorted by which array they reference. The linear transformation

matrix H and the constants vector J are then calculated for the vector form of each array

access. The accesses are further classified by equality of their H matrices. A solution for

the uniformally generated set qualification, namely

El : H K = &1 - 2

is then sought for each pairing of elements in the H equality sets, segregating the accesses

into the final uniformally generated sets. As the reuse in these sets is the only kind this

technique considers, we refer to these sets at this point in the algorithm as reuse groups.

Recall from Section 2.4 that our example program contains a single reuse group consisting

of all six accesses to the array A.

3.1.2 Dependence Analysis

Reuse analysis gives us the reuse groups, but it gives us little information about the memory

behavior within the group and how the members interact. Dependence analysis gives us this

information.
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Figure 3-1: Our example's dependence vectors.

For each reuse group, we must find the set of all dependences. The elements of each

reuse group are dependence tested in a pairwise fashion and the results from all the tests

are collected. Any duplicates are removed. The result is the so-called stencil of the depen-

dences for each iteration of the loop.

For our example program, this set of dependence vectors can be seen graphically in

Figure 2-3 or in Figure 3-1 in column vector notation.

3.1.3 Find Leading and Trailing References

In order to do fetches and replacements to the correct locations, we must figure out which

members of the reuse group correspond to the leading and trailing reference. By defini-

tion, a reuse group forms a uniformally generated set of references. Therefore, the group

members differ only in the constant portion ' of the access function fI). The reference

which will access array elements first is the one whose ' vector is last in lexicographic

order. Likewise, the trailing reference is the one whose ' vector is first in lexicographic

order. Lexicographic ordering is discussed in Section 2.3.

By sorting the Jvectors for each reuse group into lexicographic order, we have found the

leading and trailing references. In our example program in Figure 2-1 the trailing reference

is A[i-l][j-1] and the leading reference in A[i+l][j+l].

3.1.4 Occupancy Vector Analysis

For each iteration of the loop, there is some minimum number of array elements that must

be in local memory to correctly execute the loop body. It is clear that this number is equal

to the number of independent array references in the loop body; every separate location

accessed by the loop body must be brought into local memory before the loop can be ex-

ecuted. For our example, this would be five locations. While choosing such a mapping
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would result in a correctly executed program, this storage mapping would not take advan-

tage of group reuse. Every locally allocated location would be reloaded every iteration.

Therefore, we want to choose a storage mapping which converts the maximum amount of

reuse into locality while at the same time using as little local memory as possible.

We want to create a set of storage equivalence classes for local memory. We use the

term storage equivalence class to mean a set of iterations which can have their local storage

overlapped. A storage dependence based on an occupancy vector over the entire reuse

group is precisely what we need. We choose an OV which indicates an eviction for the

element brought in at the tail of the OV exactly when that element will no longer be needed

for the remainder of the loop. This maximizes the reuse of that element while guaranteeing

that local memory will never be polluted.

We can look to the stencil of dependencies for the reuse group in order to ascertain on

which iteration ' a value produced on iteration q is no longer needed by the loop. If we

think of dependences as representing communication of a value between iterations, a value

produced on iteration q is dead once it has been communicated to all the iterations which

will receive it. This is a generally complicated relationship between iterations which is

vastly simplified by two assumptions of our algorithm:

1. The dependencies form a repeated, regular stencil.

2. No loop transformations are performed. The loop executes in its original iteration

order.

By the first assumption, we know that whichever iteration jis, the vector difference j- q

will be a constant over the entire execution of the loop. By the second assumption, we

know the dependencies in the stencil will be satisfied in lexicographic order because the

iterations at the other end of the dependencies will be executed in lexicographic order.

Therefore, communication of -s value will be complete immediately after the execution of

the iteration which satisfies the last lexicographically ordered stencil dependence.

Consequently, we choose the shortest vector which is longer than the longest depen-

dence in each reuse group to act as the minimal occupancy vector. This longest dependence

corresponds to the dependence between the trailing and leading references in the set. The
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Figure 3-2: The minimal OV which maximizes reuse for our example's dependence stencil.
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Figure 3-3: The boundary array elements not accessed by the trailing reference.

chosen vector for our example is pictorially demonstrated in Figure 3-2. The solid vector is

the occupancy vector and it implies that the iterations at the head and tail are local storage

equivalent. As one can see, all possible dependences and reuses will be incorporated into

the space under this occupancy vector.

Since the longest dependence for the example in Figure 2-1 is the vector (2, 2), the

minimal occupancy vector is (2, 3).

3.1.5 Boundaries

The definition of group reuse implies that every element of the group accesses the same

memory locations in turn. This is not precisely accurate. If we again consider our example

program from Figure 2-1, at the end of an iteration of the j loop the trailing reference will

be accessing the array element shown in Figure 3-3. Therefore, by virtue of the reference's

position in the reuse group, the elements marked with X's will be accessed by some member
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of the group, but never by the trailing reference. This is generally true of any element

of any reuse group along the loop boundaries. Therefore, we must make sure that the

entire rectilinear space encompassing all array elements accessed by the group is prefetched

and written back to main memory correctly. One can observe that the rectilinear space in

question is the space which has the longest dependence in the group mapped from iteration

space into array data space as its corresponding longest diagonal. We will refer to this

boundary vector as BV.

The boundary vector in our example is (2, 2).

3.1.6 Space Under the Occupancy Vector

Allocating enough local storage for each reuse group is equivalent to the problem of finding

the amount of space required by all iterations under the group's occupancy vector. The

iterations under the occupancy vector are all iterations executed by the loop between the

iteration at the tail of the vector and the iteration at the head.

Given that we are considering regular, FOR style loop nests, the access pattern of any

particular member of a reuse group must be strictly monotonic. This means that each

reference accesses a different array element each iteration. By the definition of group

reuse, ignoring boundary conditions for now, all members of the reuse group are accessing

array elements already accessed by the leading reference. Therefore, the group as a whole

accesses one new array element on each iteration of the loop and that value is accessed at

the leading reference. Likewise, the trailing reference accesses a different element each

iteration and that element, by the properties of group reuse, is being accessed for the last

time in the loop. Therefore, a reuse group also retires one array element each iteration and

that element is retired at the trailing reference. If a reuse group must fetch a new value

each iteration and retires a value each iteration, then the space required to map the group

is a constant equal to the number of iterations under the OV times the size of each array

element.

To compute the number of iterations executed under any iteration space vector, we

introduce the concept of the dimension vector. The dimension vector of a loop is a vector
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of dimensionality n where n is the depth of the loop, and whose elements consist of the

number of times the body is executed for each execution of the respective loop. More

precisely, if we number the loops from outer most to inner most and we use Li to indicate

the lower bound of loop i and Uj to indicate the upper bound of loop i, the dimension vector

is

DV = ((dvo,. . . , dv) dvi = U - Li + BVi2 )

Note that we have added in elements of the boundary vector BV discussed in Section 3.1.5,

offset by one loop axis, to compensate for the boundary elements not accessed by the

trailing reference and thereby rectilinearizing the space. Once DV has been computed for

the loop, finding the number of iterations under an iteration space vector is trivial. The

number of iterations I under a vector j is

I = -DV

where "-" represents standard Cartesian dot product.

For our example program, DV = (65, 1).

3.1.7 The Difficulty of Mapping Between Iteration Space and Array

Space

The above algorithm assumes a one-to-one correspondence between points in iteration

space and array elements in each reuse group. This assumption makes mapping iterations

to array elements trivial. The mapping function is the original array access function before

it is rewritten by the algorithm. This assumption is also the basis for finding the space under

the occupancy vector in Section 3.1.6.

One is still safe as long as there is a one-to-one correspondence between the iterations

of some innermost subset of the loops in the nest and the array elements. This represents

a self reuse which occurs along the boundary between the innermost subset and the rest of

the loop.

If the mapping is not one-to-one for any loop subset, however, deciding what data is
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0; i < 64; i++)
= 0; j < 64; j++)
S. A[i+j ] .

Figure 3-4: Array reference without iteration space correspondence.
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Figure 3-5: ISG for example without iteration space / data space correspondence.

needed when and how much space to reserve can become extremely complicated. The

program in Figure 3-4 is represented in Figure 3-5 as an ISG where the iteration points

are marked with the element of the array A accessed on that iteration. As one can see,

the reference exhibits self reuse, but it reuses a sliding subarray of A; the set of elements

reaccessed by the reference in Figure 3-4 changes in every iteration of every loop in the

nest. To correctly manage this reuse, the iteration space would need to be projected along

the direction of the reuse, the vector (-1, 1). Generating a mapping function from iteration

space to data space, therefore, requires solving a complex linear algebra problem to define

the space over which the one-to-one correspondence does exist, and then understanding the

original array accesses in terms of this new vector space. Solving this problem is left for

future work.
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000 00
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Figure 3-6: The circular buffer in local memory.

3.2 Program Transformations

3.2.1 Memory Hierarchy Interface

Before discussing how the compiler goes about transforming our example program to ex-

plicitly manage the memory hierarchy, an interface to the memory hierarchy must be out-

lined. We assume there are only two levels in the hierarchy, global memory and local

memory. The primitive operations for moving a value in the hierarchy are

" laddr = CopyFromGlobal(gaddr): CopyFromGlobal assigns the value currently stored

in the global memory location gaddr to the local address laddr.

" CopyToGlobal(gaddr, value) : CopyToGlobal assigns value to the global memory

location gaddr.

We assume these are represented as function calls which are later converted to the corre-

sponding architectural primitives in the backend. We also assume some cooperation be-

tween the compiler and the assembly level linker to map the local arrays into the local

memory address space.

3.2.2 Rewrite Array Accesses

All array accesses must be rewritten to access the local memory space allocated for each

reuse group. The local memory is managed as a circular buffer (see Figure 3-6) where on

each iteration the value at the trailing reference is replaced with the next value to be read

by the leading reference. This complicates the array accesses because it requires a modulus

operation to be performed with a base equal to the space requirement of the group. It is

this modulus operation that introduces the storage related dependence which implements
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A [i][j] - A,[(65 * i + j)%133]
A[i - 1][j - 1] -+ A[(65 * (i - 1) + (j - 1))%133]
A[i + 1][j + 1] -A 4[(65 * (i + 1) + (j + 1))%133]

Figure 3-7: Examples of remapping our example global accesses to local ones.

the storage equivalence classes. Two addresses separated by the storage requirement of the

group will be mapped to the same location in local memory by the mod. In Section 3.3.1

we discuss a method for removing many of these mods in order to make the local array

accesses affine.

Consider the standard method by which a multidimensional array access generates an

address in one dimensional memory space. The array access function f(i) can be seen as

the dot product of the iteration space vector z and a vector S which is a function of the sizes

of each array dimension. If the array has dimensionality d, each array dimension size is

denoted by the constant sj, and the array is accessed in row major order, then

S = ((S2, S3, . d I s ) (S3, s4, ... ,s ), . ... , (sd), 1

numbering array dimensions from 1. The address a for an access to array A with access

function f I) on iteration jis therefore

a = A j- S.

Linearizing the accesses into the locally allocated storage, therefore, is simply a matter

of choosing a new S. Given that this storage is allocated and laid out based on the loop

dimension vector DV discussed in Section 3.1.6, it is clear that this vector is the ideal

choice to replace S in the above calculation. Therefore, the local linearized address a, into

a given reuse group's local memory allocation A, on iteration jis

a, = A, +j -DV.

To remap the global accesses to local ones, arrays are allocated in local memory for

each group and the array access base addresses are changed to be that of the local storage.
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for(i = 1; i < 64; i++)

for(j = 1; j < 64; j++)
A_local[(65*i + j) % 133]

(Alocal[(65*i + j) % 133] +
A_1oca1[(65*(i-1) + (j-1)) % 133] +
A_1oca1[(65*(i-1) + (j+1)) % 133] +
A_local[(65*(i+1) + (j-1)) % 133] +
A_local[(65*(i+1) + (j+1)) % 133])*0.2;

Figure 3-8: Our example program with remapped array accesses.

for(tempO = 0; tempO < 133; tempO++)

A_1oca1[(65*(i-1) + (j-1)) + tempO % 133]

CopyFromGlobal(&A[i-1][j-1] + tempO * sizeof(A[G][0]));

Figure 3-9: Example preload loop.

Then the above transformation is applied to all the array accesses in each reuse group in the

loop. The modulus operations with base equal to the space allocated to the group are added

to the access functions in the new array accesses, completing the remap. See Figure 3-7 for

some examples from our sample program and Figure 3-8 for the text of our example loop

after remapping has been done.

3.2.3 Generate Preload Loop

Before execution of the loop originally in question can begin, the values under the occu-

pancy vector for each group starting from the origin must be loaded into local memory. To

do so, a preload loop is generated just before the original loop, which preloads the required

number of elements (call this number SR for space requirement) under the occupancy vec-

tor. If we assume row major order, the elements of the global array in question are simply

the first SR elements after and including the trailing reference.

The preload loop body consists of a request for the global address of the trailing ref-

erence, plus the current offset into the circular buffer, and writes that value into the local

trailing reference location, plus the offset, in the local memory. Figure 3-9 demonstrates
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for(i = 1; i < 64; i++)

for(j = 1; j < 64; j++)
{
A_local[(65*i + j) % 133]

(A-local[(65*i + j) % 133] +

A_1oca1[(65*(i-1) + (j-1)) % 133] +

A_1oca1[(65*(i-1) + (j+1)) % 133] +

A_local[(65*(i+1) + (j-1)) % 133] +

A-local[(65*(i+1) + (j+1)) % 133])*0.2;

CopyToGlobal(&A[i-1][j-1],

A_1oca1[(65*(i-1) + (j-1)) % 133]);

A_1oca1[(65*(i-1) + (j-1)) % 133]) =

CopyFromGlobal(&A[(i-1) + 2][(j-1)

}
+ 3]);

Figure 3-10: Our example loop with prefetch and writeback.

the preload loop.

3.2.4 Prefetch and Writeback

During the execution of the actual loop body, we must prefetch the value needed by the

next iteration and possibly commit a no longer needed local value back to global memory.

The value to be written back is obviously the value at the local trailing reference location

at the end of each iteration. One might be tempted to say that the address to be prefetched

is the global leading reference plus one, but this is incorrect if we choose an occupancy

vector which is not minimal. One might choose an occupancy vector which is not space

minimal if some other property of the program needed optimizing. Such a situation is

discussed in Section 3.3.1. Therefore, we instead prefetch the global address corresponding

to the trailing reference plus the occupancy vector. The prefetched value overwrites the no

longer needed value at the local trailing reference. The transformed example program body,

including prefetches and writebacks, can be seen in Figure 3-10.
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for(i = 1; i < 64; i++)

{
for(j = 1; j < 64; j++)
{

A_local[(65*i + j) % 133] =

(Alocal[(65*i + j) % 133] +
A_local[(65*(i-1) + (j-1)) % 133] +
A_local[(65*(i-1) + (j+1)) % 133] +
A_local[(65*(i+1) + (j-l)) % 133] +
A_local[(65*(i+1) + (j+1)) % 133])*O.2;

CopyToGlobal(&A[i-1][j-1],

A_local[(65*(i-1) + (j-1)) % 133]);

A_local[(65*(i -1) + (j-1)) % 133]) =
CopyFromGlobal(&A[(i-1) + 2][(j-1) + 3]);

}

CopyToGlobal

CopyToGlobal

A_local[(65*

A_local[(65*

((&A[i-1][j-1]) + (1 * sizeof

A_local[(65*(i-1) + (j-1)) +
((&A[i-1][j-1]) + (2 * sizeof

A_local[(65*(i-1) + (j-1)) +
(i-1) + (j-1)) + 1 % 133]) =
CopyFromGlobal(&A[(i-1) + 2]

(i-1) + (j-1)) + 1% 133]) =

CopyFromGlobal(&A[(i-1) + 2]

(A[0] [0])

1 % 133]

(A[0] [0])

2 % 133]

[(i-I) +

[(j-1) +

Figure 3-11: Our example loop with boundary operations.
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for(templ = 0; tempi < 133; templ++)

CopyToGlobal(&A[i-1][j-1] + templ * sizeof(A[0][0]),

A_1oca1[(65*(i-1) + (j-1)) + tempi % 133]);

Figure 3-12: Example postsave loop.

3.2.5 Boundary Prefetches and Writebacks

As discussed in Section 3.1.5, the trailing reference, and for that matter the trailing refer-

ence plus OV, does not access all the elements needed by the group. Therefore along the

loop boundaries in the nest, additional prefetches must be added to guarantee the entire

rectilinear space under the OV is in memory before the next iteration is executed. These

prefetches are inserted at the end of the respective loop in the nest and the number of

prefetches needed is equal to BVi+ 1 where i is the current nesting depth 1. If the group

contains a write, these boundary elements must also be written back at the same time.

In our example, the second element of BV is 2, indicating we must do two additional

prefetches and writebacks at the end of the i loop before returning to the next execution of

the j loop. These correspond to the elements marked with the X's in Figure 3-3. These

additional prefetches and writebacks can be seen in Figure 3-11.

3.2.6 Generate Postsave Loop

The final code transformation that must be made is the dual to the preload loop. If the

group contains a write, the last SR data objects must be written back to global memory.

This postsave loop is constructed precisely the same way as the preload loop. Our example

postsave loop can be seen in Figure 3-12.

The completely transformed program appears in Figure 3-13.

1No prefetches need be done after the loop has finished executing, therefore BVi+1 is always a valid

member of the boundary vector.

36



for(tempO = 0; tempO < 133; tempO++)

A_1oca1[(65*(i-1) + (j-1)) + tempO % 133]
CopyFromGlobal(&A[i-1][j-1] + tempO * sizeof(A[0][0]));

for(i = 1; i < 64; i++)

{
for(j = 1; j < 64; j++)
{
A_local[(65*i + j) % 133] =

(A-local[(65*i + j) % 133]
A_1oca1[(65*(i-1) + (j-1)
A_1oca1[(65*(i-1) + (j+1)
A_local[(65*(i+1) + (j-1)
A_local[(65*(i+1) + (j+1)

CopyToGlobal(&A[i-1][j-1],

A_1oca1[(65*(i-1

A_1oca1[(65*(i-1) + (j-1)) %

}

CopyToGlobal

CopyToGlobal

A_local[(65*

A_local[(65*

+

%-
%0

%0

%0

133] +
133] +
133] +
133] ) *0.2;

(j-1)) % 133]);

133]

CopyFromGlobal(&A[(i-1) + 2][(j-1) + 3]);

(&A[i-15[j-1]1) +

A_1oca1[(65*(i-1)

((&A[i-1][j-1]) +

A-local[(65*(i-1)

(i-1) + (j-1)) + 1

CopyFromGlobal(&A

(i-1) + (j-1)) + 

CopyFromGlobal(&A

(1 * sizeof(A[0][

+ (j-1)) + 1 % 1
(2 * sizeof(A[0][

+ (j-1)) + 2 % 1
% 133]) =

[(i-1) + 2][(j-1)
% 133]) =
[(i-1) + 2][(j-1)

01)

33]
0])

33]

+ 3]);

+ 3]);

for(templ = 0;

CopyToGlobal

tempi < 133; templ++)

(&A[i-1][j-1] + tempi * sizeof(A[0][0]),

A_1oca1[(65*(i-1) + (j-1)) + tempi % 133]);

Figure 3-13: Final transformed example.
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3.3 Optimizations

3.3.1 Eliminating the Modulus Operations

Removing the integer mod operations from the local array accesses is desirable primarily

for two reasons:

1. Integer mod operations are often expensive, vastly increasing the cost of the address

computation.

2. Array accesses containing mods are not affine. Other array-based optimizations in

the compiler most likely cannot analyze non-affine array accesses.

To remove the mods, we make heavy use of the optimizations for mods presented in [1].

The optimizations presented use a combination of number theory and loop transformations

to remove integer division and modulus operations. The number theory axioms already

understood by the above system were limited in their understanding of expressions with

multiple independent variables, so we added the following.

Given an integer expression of the form (ai + f ())%b, where a and b are integers and

f() is some arbitrary valued function

(ai + f ()%b = (a(i + x))%b + f(

if and only if a \ b and ax < f () < a(x + 1) for some integer value x.

Simply put, variables whose coefficient divides the base of the mod can be factored out

of the mod expression if the above criteria are met. This allows the system in [1] to simplify

the expression into a form which its other axioms can operate on.

The a in the above corresponds to the element of the dimension vector for the loop

whose index is i. We cannot change any of the elements of the dimension vector as DV is

a property of the loop 2. On the other hand, b corresponds to the space requirement SR of

the reuse group in question. Since SR is a function of the occupancy vector, and we have

control over the choice of OV, b can be arbitrarily increased. The magical value for SR is

2One could transform the loop, but we do not consider that option at this time.
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the smallest multiple of the least common multiple of the elements of DV which is larger

than the minimum value of SR required by the dependences in the group. In our example,

the LCM of the elements of DV = (65, 1) is, of course, 65. The smallest multiple of 65

greater than the minimum value of SR, which is 133, is 195. Therefore, if we were to

lengthen the OV in our example from (2, 3) to (3, 0), we would consume 62 additional

elements of local memory but the mods would become candidates for removal.
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Chapter 4

Results

4.1 Evaluation Environment

Before discussing any experimental results, we need to introduce the environment we are

using for evaluation.

4.1.1 Benchmarks

The benchmarks we have used to evaluate our technique are simple kernels with clear group

temporal reuse patterns.

Convolution: A sixteen tap convolution.

Jacobi: Jacobi relaxation.

Median Filter: Filter which finds the median of nine nearby points.

SOR: A five point stencil relaxation.

4.1.2 The RAW Machine

Our target is the RAW microprocessor [13]. Figure 4-1 depicts the features and layout

of the RAW architecture. The basic computational unit of a RAW processor is called a

tile. Each tile consists of a simple RISC pipeline, local instruction and data memories,
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Figure 4-1: The RAW Microprocessor.

and a compiler controlled programmable routing switch. The memories are completely

independent and can only be accessed by the tile on which they reside; the hardware does

not provide a global view of the on chip memory. The chip consists of some number

of these tiles arranged in a two-dimensional mesh, each tile being connected to each of

its four nearest neighbors. The switches in the mesh form a compiler controlled, statically

scheduled network. For communication which cannot be fully analyzed at compile time, or

for communication patterns better suited to dynamic communication, a dimension ordered,

dynamic wormhole routed network also interconnects the tiles.

The programmable switches allow for high throughput, low latency communication be-

tween the tiles if the compiler can deduce all information about the communication and can

statically schedule it on this static network of switches. Connections to off-chip resources,

such as global memory, are also made through the static network. Main memory control

protocol messages are routed off the chip periphery and the responses routed back on chip

by a switch along the chip boundary. This organization completely exposes control of any

external main memory to the compiler. It is the combination of this exposure of main mem-

ory and the separately addressable local data memories on each tile that makes RAW an

excellent candidate to evaluate our technique.
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The programmable switches also provide the interface to the off chip global memory.

Off chip pins are connected directly to the static network wires running off the edge of the

chip. In this way, the switch can route to any off chip device just as if it were routing to

another tile.

The global memory we modeled is a fully pipelined DRAM with a latency of three

processor cycles. This model is consistent with the DRAMs we expect to use in our RAW

machine prototype. Currently, we are only modeling a single off chip DRAM. In the future,

we plan to model multiple DRAMs and study the affects of global data distribution in

conjunction with our technique.

The results presented here were taken from execution of our benchmarks on a simulator

of the RAW machine.

4.1.3 RawCC

Our standard compiler for the RAW architecture is known as RawCC [2, 7]. RawCC is an

automatically parallelizing compiler, implemented with the Stanford SUIF compiler sys-

tem, which takes sequential C or Fortran code as input, analyzes it for parallelism and static

communication, and maps and schedules the resulting program for a RAW microprocessor.

The parallelism sought by RawCC is instruction level. Loops are unrolled to generate large

basic blocks and then each basic block is scheduled across the tiles of the RAW machine.

However, RawCC makes an important simplifying assumption, namely that the RAW tiles

have infinitely large memories. By using RawCC to parallelize and schedule the output

of our compiler, as we have in our experiments, we gain the more realistic model of local

memory from our technique and the power of an autoparallelizing compiler.

4.2 Experimental Results

4.2.1 Single Tile Performance

Figure 4-2 shows the execution time of our benchmarks, normalized to the execution time

using RawCC alone, running on a single RAW tile. This graph demonstrates the cost of
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Figure 4-2: Execution Times on a Single Tile Normalized to RawCC.
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our technique relative to the infinite memory case and versus a dynamic, software based,

direct-mapped caching scheme [8]. Due to the static mapping we have done, our software

overhead is significantly lower than that of the dynamic scheme. With the addition of our

tailored replacement policy, our scheme always does better than the dynamic one on our

benchmarks.

The cost of having accesses to a memory which is off chip are still significant when we

compare our technique to one which assumes infinite local memory. The overhead is quite

respectable in comparison to this unrealistic model, ranging from 7% for median filter, up

to 60% for SOR.

4.2.2 Multi-tile Performance

We analyzed the scalability of our benchmarks in an attempt to better understand the source

of the overhead. Figure 4-3 shows the speedup of each benchmark with infinite local mem-

ory and with our C-CHARM technique, ranging from one to sixteen RAW tiles. Each point

in each curve is the execution time of the benchmark on the respective number of tiles nor-

malized to that benchmark's execution time on a single tile. For convolution, jacobi, and

SOR, the speedup is quite comparable up to four processing tiles. Above four processors

however, the C-CHARM speedup quickly reaches a plateau while RawCC continues to im-

prove. Median filter performs as well as RawCC alone, but there is little speedup because

RawCC fails to find instruction level parallelism.

Our initial assumption was that this plateau affect was due to the new sharing of the

off chip bandwidth to main memory. Figure 4-4 shows this not to be the case. We define

pin utilization to be the ratio of cycles in which the pins are used to the total number of

execution cycles. The top portion of the ratio (the number of times the pins are utilized)

is a constant for each program, only the number of execution cycles changes. For our

benchmarks convolution, jacobi, and SOR, the utilization of the pins running from on chip

to the DRAM 1 is well below 15%. The pin utilization for median filter is so low it is

'The pins running from on chip to the DRAM are far more heavily utilized than the corresponding pins
running from the DRAM onto the chip. This is because of the memory interface protocol request messages.
The DRAM to on chip path is only used by the data being returned by main memory.
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Processors RawCC cycles C-CHARM cycles C-CHARM / RawCC
1 16887490 18128421 1.07
2 18872244 19129609 1.01
4 17050038 17240383 1.01
8 16425922 16536251 1
16 14757724 14893168 1

Table 4.1: Comparison of Execution Times for Median Filter

almost immeasurable. Even if there were network contention resulting from the fan-in of

requests to the single set of pins used to communicate with DRAM, those pins should still

be far more heavily utilized than 15%.

The answer lies in understanding the results for median filter. The primary difference

with regards to our technique between median filter and the other three benchmarks is that

median filter has significantly more work in the inner loop. The inner loop of median filter

is dominated by a bubble sort of the nine element stencil while the other codes mostly con-

sist of a small series of multiplies and adds. Even though RawCC fails to find parallelism

in median filter, it is able to cover the latency of the DRAM operations with this extra work.

Table 4.1 shows the absolute execution time in cycles of median filter with infinite local

memory and with C-CHARM. The difference is negligible, indicating that DRAM latency

is not impacting performance. This means the techniques employed by RawCC for finding

instruction level parallelism are not sufficient to hide the long latency of DRAM accesses.

However, when the latencies are hidden, our technique can potentially perform extremely

well.
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Chapter 5

Related Work

5.1 Software Controlled Prefetching

No work is perhaps more closely related to the work presented in this thesis than that of

Todd Mowry's work in software controlled prefetching [9]. Mowry uses reuse analysis to

ascertain when an affine array access in a nested FOR loop is likely to miss the cache. An

architected prefetch instruction is used to inform the cache of the likely miss, modifying

the cache's default fetch and replace behavior in favor of knowledge gathered at compile

time. This work also makes attempts to schedule these prefetches sufficiently in advance

of the need for the data object to overlap the latency of memory with useful computation.

Our technique also assumes an architected method for affecting the use of local mem-

ory, but all aspects of the data movement is exposed as opposed to providing a simple

communication channel to the cache. Instead of altering the existing cache replacement

policy with the information gathered at compile time, our compiler uses similar informa-

tion to set the policy directly. We also schedule the prefetch of a data item before it is

needed by the computation, but not on a previous iteration.
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5.2 Loop Transformation for Locality

Extensive work has been done to alter loops and loop schedules 1 in order to maximize data

locality. Allan Porterfield used an analysis similar to ours as a metric for locality improving

loop transformations [10]. He was looking for what he called an overflow iteration, or the

iteration at which locations in the cache would likely need to be reassigned new main

memory locations because the cache was full. To find this overflow iteration, he looked

at how iterations communicated values and attempted to put a bound on the number of

new values brought into local memory on each iteration. He was using a variant on reuse

analysis plus dependence analysis to minimize capacity misses. We use this information to

generate a mapping to local memory which is conflict free.

Michael Wolf's formulation of dependence and reuse analysis form the core of our

analysis [14]. He used the information found at compile time to reorder the loop schedule,

including use of the tiling transformation, to maximize the locality achieved by scientific

codes running in cache memory hierarchy.

5.3 Array Copying

Lam, Rothberg and Wolf observed in [5] that although loop transformations such as tiling

work well to limit capacity misses, conflict misses are still a significant problem. In fact,

small factors can have major affects on the performance of tiled codes. Temam, Granston

and Jalby developed a methodology for selectively copying array tiles at run time to prevent

conflict misses [12]. By remapping array elements to new global locations, they could be

assured that the cache replacement policy would not map multiple reused values to the

same local memory location.

Our technique takes an approach with similar results to [12]. One could look at our

local memory mapping methodology as copying the portion of the global memory array

currently being actively reused into consecutive, non-interfering local memory locations.

By exposing the local memory, this task has been made significantly easier. We do not

'The loop schedule is the order in which the iterations of the loop nest are executed.
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have to calculate what the cache will decide to do and choose global addresses which will

not conflict at run time. We know the global addresses do not conflict because we chose a

replacement policy which maps them into different local locations.
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Chapter 6

Future Work and Conclusion

The most important future work which needs to be undertaken is solving the problem of

finding complex mapping relationships between iteration space and data space as alluded

to in Section 3.1.7. Applying the solution to this linear algebra problem, once the solution

is found, will almost certainly involve transformations of the input loop schedule. Such

loop transformations are a problem that has not yet been studied in conjunction with our

work to date. Solving these problems will significantly increase the range of programs over

which our ideas can be applied.

Once the above problems have been solved, methods for further covering the latency

to DRAM should be studied. We have considered two possible means to this end. One

could unroll the loops some number of times before performing the C-CHARM analyses

and transformations. This would place more work between the prerequisite prefetch at

the beginning of each iteration and the receive at the end. The significant disadvantage

to this approach is that by putting more references in each iteration, the reuse groups can

become much larger, requiring more local memory to be devoted to the group. Software

pipelining [6] the loop after the C-CHARM transformations would allow us to place the

prefetch some number of iterations before the receive. This would allow us to overlap the

latency of the global memory fetch without increasing local memory pressure, but has the

disadvantage of additional compiler complexity.

In conclusion, we have detailed and demonstrated a technique for explicit compiler

management of the memory hierarchy. Our compiler takes programs with group reuse
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and explicitly maps the currently active subset of addresses into local memory. All main

memory fetches and writebacks are compiler generated. We rely on software exposure of

the memory hierarchy by the underlying architecture and some simple architected prim-

itives to handle the data movement operations. We demonstrated that our technique one

achieves excellent performance on a uniprocessor. A combination of our completely static

technique and a runtime controlled dynamic scheme to fall back on may well perform on

equal footing with modern caches for many programs. On machines with a large number of

processors, however, overlapping the latency to main memory requires more sophistication

than we currently have.
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