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ABSTRACT

In an attempt to obtain robust machine translation system, a part-of-speech tagger sys-
tem was explored. A rule based tagger system was selected to be used and the perfor-
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Chapter 1
Overview

1.1 Introduction

For telegraphic military message communication, Information Systems Tech-

nology Group at Lincoln Laboratory has developed an interlingua based English to

Korean machine translation system[l][2][3]. The system utilizes a meaning represen-

tation in the form of semantic frame as the interlingua. It carries out language transla-

tion in two steps; analysis of source language to produce a semantic frame, and

generation of target language from the semantic frame. TINA[6] and GENESIS [7][2]

are the analysis and generation subsystems. Both TINA and GENESIS were devel-

oped at Laboratory for Computer Science, MIT.

Early versions of the translation system achieved high quality translation by

limiting the domain to be translated and lexicalizing grammar rules defined in terms

of semantic categories. However, highly lexicalized grammars have relatively low

coverage, and resulted in low parsing coverage over all. This caused the system to fail

upon encountering sentences with words or constructions unknown to the system.

An obvious solution to the unknown word problem is to extend the lexical and

syntactic knowledge of the system by increasing the size of the lexicon. However, this

solution is problematic in that most unknown word are open class items such as
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nouns, verbs, adjectives and adverbs, which is not limited in number. Therefore, it is

almost impossible to come up with a lexicon which covers every possible word.

Another solution which has been pursued by the Group at Lincoln Laboratory,

and which is the topic of this thesis, is to utilize an automatic part-of-speech tagger.

By using such tagger, the system can inexpensively identify the parts-of-speech of

unknown words or words in unknown construction, and by doing so the system can

have an improved parsing coverage. In this approach, the system replaces each

unknown word by its part-of-speech, instead of the actual words, to the analysis gram-

mar. The replaced parts-of-speech are handled by a combined syntactic/ semantic

grammar augmented for generic open class items. The replaced parts-of-speech are

handled by semantic grammar augmented for generic open class items. The technique

is to include just enough semantic information to solve ambiguities, by anchoring

words that have high semantic relevance within the domain. However, the current

grammar is left intact since it efficiently parses even highly telegraphic messages. For

more detailed information on this method, refer to reports [4] and [5].

The approach of utilizing a tagger system to enhance the machine translation

system poses two questions. One is in the selection of a tagger system. Since the per-

formance of the enhanced machine translation system for sentences with words and

constructions unknown to the system heavily depends on the accuracy of the part-of-

speech tagger, a tagger system which is adaptable to the translation domain is crucial

in achieving high quality parsing. A desired tagger system should be trainable to
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extract rules specific in the domain, and should achieve high accuracy from the

learned rules.

A rule based tagger developed by Brill[8][9] was evaluated to get an assess-

ment of the usability in the domain of telegraphic messages. The system was initially

trained and evaluated, and showed good performances. The tagger uses both lexical

rules and contextual rules to find the appropriate parts-of-speech of unknown words.

The system is trained through transformation-based error-driven learning. More about

the transformation-based error-driven learning is discussed in Chapter 2. The system

extracts critical linguistic information and captures the information in a set of rules.

The learned rules are small in numbers. They are simple, yet powerfully effective.

Given a tagger system, the next question is how to incorporate the tagger sys-

tem to enhance the machine translation system. The incorporation involves multiple

steps. First, the usability of the tagger system for machine translation system should

be investigated. The overall usability of the system in the domain was tested, and the

system tagged each word in high accuracy. However, in order to incorporate the sys-

tem into machine translation system, a thorough analysis of each functionality of the

tagger system is necessary. Through the analysis, complete abstract representations of

each functionality can be constructed, and usability of each functionality can be iden-

tified in the context of the intended application. The functionalities identified needing

changes for use in the machine translation application should be modified to obtain an

overall system that behaves within the desired specification. These steps are captured

in the software reengineering approach[11]. The approach consists three parts;
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reverse engineering, change, andforward engineering. The reverse engineering, also

called understanding is constructing abstract representations of the system being

reengineered. Change is to add new functionality or to modify existing functionality

to adapt to new application or to modify the system architecture. Forward engineering

is taking requirements of completing the system and obtaining an executable system.

The current thesis is focused in the first and second steps of reengineering of the rule

based tagger system.

The analysis of the tagger system revealed a problem in integration of the sys-

tem interface with the machine translation system. The tagger system is comprised of

two subsystems interfaced with an unidirectional stream. The subsystem interface is

organized such that the whole tagger system starts running when given a file of input

sentences and completes after processing the file. When the system starts, the system

initializes tables of fairly large sizes. The target machine translation system, however,

requires an interface that enables the system to process one sentence after another

efficiently. Since the ultimate target application is speech to speech translation[1], the

waiting time for the tagger system to initialize its tables for every sentence is too

costly. A system interface better suited for the target application is bidirectional

streams between the machine translation system and the tagger system. In this way,

the tagger system can be initialized once at the start of the machine translation system,

and can return a string of a sentence tagged with parts-of-speech to the machine trans-

lation system whenever the machine translation system fails to parse due to unknown

words or construction. As in a client/server system, the tagger system provides tagged
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sentences as a service to the request the machine translation system makes when the

machine translation system fails to parse.

The integration of two systems into client/server system by modifying the sys-

tem interface is discussed in detail in chapter three. In chapter two, the analysis of the

tagger system is presented, and a complete abstract representation of each functional-

ity of the tagger system is described.

In the following sections of this chapter, a brief description of each subsystem

of the machine translation system and the rule-based tagger system is presented. The

thesis concludes with a discussion of potential future directions for the research.

1.2 Subsystems

1.2.1 TINA

TINA is the subsystem for language understanding. The system is based on

context-free grammars, augmented transition networks, and the unification concept.

The system utilizes a context free grammar augmented with a set of features used to

enforce syntactic and semantic constraints, providing a seamless interface between

syntax and semantics through grammar rules which incorporate syntactic and seman-

tic categories. Augmented transition networks are converted from the rules using a

straightforward process. The unifications are performed in a one-dimensional frame-

work[6].

Previous versions of the analysis portion of the translation system utilized

highly lexicalized grammar rules to resolve the lexical ambiguities, which are inher-
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ent in highly elliptical sentences of telegraphic messages. However, highly lexicalized

grammar rules are time consuming to construct, and have low parsing coverage except

in narrow domains. In order to achieve higher grammar coverage, the system has been

enhanced with grammars which deploys lexicalized semantic rules for ambiguity res-

olution and resorts to more general rules for unambiguous cases. If an input sentence

fails to parse on the basis of the lexicalized semantic grammar rules due to unknown

words or constructions, parsing of the part-of-speech sequence corresponding to the

input word sequence will be tried[4][5].

1.2.2 GENESIS

The GENESIS system is a table-driven language generation system with mech-

anisms handling inflectional endings. The system is composed of three modules; lexi-

con, message, and rewrite rules[2][7].

Lexicon provides the surface form of a semantic frame entry including the

inflectional ending. Each entry in the table is followed by the part of speech, stem of

the word and derived forms. If necessary, grammatical attributes such as articles or

auxiliary verb can be specified.

Rewrite rules captures the surface phonological constraints and contractions of

the target languages.

Message templates are primarily used to recursively construct phrases describ-

ing the each nodes in semantic frame. A message template consists message name and

sequence of one or more strings of key words.
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1.2.3 TAGGER

For years, Markov-model based stochastic taggers have received more atten-

tions from the researchers in automatic part of speech tagging, due to a number of

advantages over the manually built taggers. As large corpora became available, sto-

chastic taggers captured useful linguistic information, even indirectly in large tables

of statistics, which human engineers fail to notice. These taggers also eliminated the

need for laborious manual rule construction. However, Brill[5] described a trainable

rule-based tagger that achieves comparable performance to that of stochastic taggers,

and captures linguistic information directly in a set of simple non-stochastic rules.

The tagger is based on a transformation-based error-driven learning enhanced with

lexicalization and unknown word tagging.

The mechanism of the transformation-based error-driven part-of-speech tagger

will be discussed in detail in Chapter 2.

The original tagger system is optimized for a corpus of moderate size. In con-

sequence, the tagger is very inefficient for processing a sentence, which our applica-

tion requires. So, The tagger system has been modified for enhanced interface with

the translation system. The new tagger system is comprised of two processes with an

Unix domain socket residing in a local file system, /tmp, as an interprocess communi-

cation pipe. The two processes resemble their respective predecessor in functionality,

but with capability to process one sentence at a time. In chapter 3, the design and

implementation of the modified tagger, which takes in input sentence from stdin and

prints out output tagged sentence to the stdout, is illustrated in great detail.
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1.3 Incorporation

To improve the performance of the Machine Translation system, the tagger

system is incorporated into the existing translation system. The tagger system is

reused to serve as tagger module in the translation system. The reuse of the software

was achieved by software reengineering approach, where the system was analyzed for

reusability, made modifications for adoption, and integrated into the translation sys-

tem. The translation system begins by making connection to the tagger system, which

is implemented as a server system utilizing UNIX Domain socket. The implementa-

tion of tagger system with inter-process interface is discussed in detail in Chapter 3.

The translation system consults the tagger system upon failure of parsing. The

tagger system returns to the translation system the sentence tagged with its most likely

part of speech. The translation system checks each word against the table of fre-

quently occurring words, and annotate the word with an asterisk(*), and puts all words

in a format of word\*pos.

For example, the following string is prepared for reentry for parsing from the

unparsed input sentence. Sterett, a name of a ship, is unknown word, and assume fire

is present in the frequently occurring words table.

input sentence:Sterett taken under fire

* retry stringSterett\*NN taken\*VBN under\*IN *fire\*NN.
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1.4 Evaluation

At the end of each following chapter, an evaluation of the system is described.

A rule-based tagger system is evaluated both before and after training on the MUC-II

database.
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Chapter 2
Part-Of-Speech

Tagger

2.1 Introduction

The tagger described in [8] was evaluated as being well-suited for application

in our translation domain. The benchmark result of the performance with respect to

the MUCH Data' displayed high rates of tagging accuracy. The adoption of part-of-

speech tagging technique has proven to be effective in enhancing the parsing coverage

of the translation system, and the incorporation of the tagger into the existing transla-

tion system has been further studied.

In the following sections of this chapter, the mechanisms of the transforma-

tion-based part-of-speech tagger are explored in detail to help readers better under-

stand what procedures were taken, and what was changed, in order to incorporate the

tagger system with the Machine Translation System. Section 2.2 describes the tagger

in detail, and in section 2.3, the training of the tagger system in MUCH Data is illus-

trated in detail.

2.2 Transformation-based part-of-speech tagger

1 MUC-II stands for the Second Message Understanding Conference. MUC-II messages were originally
collected and prepared by NRaD(1989) to support DARPA-sponsored research in message understanding
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The tagger system is comprised of two subsystems; the start-state-tagger and

the final-state-tagger. Each system can run independently, but when the two systems

are run together, the output of the start-state-tagger is pipelined to the input of the

final-state-tagger. Such interface between the two subsystems is not suitable to be

incorporated into the Machine Translation System. Chapter 3 describes the modifica-

tion to the interface. However, before making modifications, the functionality of the

tagger system should be analyzed in detail. This section provides comprehensive anal-

ysis of the start-state-tagger and the final-state-tagger.

initial tagging contextual transformation

lexicon file

bigramn file stdout tagged output stdin stdout output with

lexical rule file>

start-state-tagger final-state-tagger

FIGURE 2-1 Data Flow of Tagger

The brief overview of the system is as follows. The start-state-tagger assigns

every word its most likely tag in isolation. Each word, if it is a member of a lexicon

provided to the system, has a lexical entry consisting of a partially ordered list of tags,

indicating the most likely tag for that word, as well as all other tags seen with that

word in no particular order. The start-state-tagger only looks for the most likely tag.

Other tags are used by the final-state-tagger. Since it matters only that a tag is seen
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with a word, the final-state-tagger does not care for the frequency that the tag appears

with the word, and the tags do not need to be ordered.

For unknown words, i.e. words not in the lexicon, a list of transformations is

provided to the start-state-tagger to determine the most likely tag. Unknown words are

first assumed to be nouns, and then, cues based upon prefixes, suffixes, infixes, and

adjacent word co-occurrence are used to modify the initial assumption

The final-state-tagger uses contextual transformations to improve accuracy of

the tagged corpus.

The following sections describe the detailed functionality of the two sub-

systems.

2.2.1 The start-state-tagger

The start-state-tagger needs four files as arguments: LEXICON, CORPUS,

BIGRAM, and LEXICALRULES. LEXICON consists of words and a list of tags for

each word. The most frequent tag for the corresponding word comes first, and the rest

in no particular order. CORPUS contains the text of sentences to be tagged. BIGRAM

has a list of frequently occurring adjacent words. Finally, LEXICALRULES contains

cues such as prefixes, suffixes, infixes, and adjacent word co-occurrences, to find the

most likely tags of unknown words.

The start-state-tagger operates in three stages: preparation, rule application,

and print out. Figure 2-2. describes the stages and the functionalities.
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Preparation

Apply Rules

Print out

* lexicon hash: hash(word)= most frequent tag

* left-hash: hash(left bigram word) = bigram

* right-hash: hash(right bigram word) = bigram

* lexical rules array

* unknown corpus and tag array (tag-arrayjkey and tag-array-val, respectively)

For Each Rule

For Each word
in corpus array

next word assign tag value
next tag

* taghash: hash(wordjin tag-arrayjkey)= tag-array-val

for Each Line of Corpus_

* Tokenize into words

For Each Token
* if (word lexiconhash)

then strcat(outstr,"%s/%s ",word,lexicon-hash(word));
else

strcat(outstr,"%s/%s ",word,taghash(word));

FIGURE 2-2 Start-State-Tagger

In the preparation stage, the program reads all the files and creates appropriate

tables and arrays. Hash tables are used to minimize search time. For each line read

from LEXICON, the program registers the most frequent tag with the entry name

word to the lexicon table, referred to as lexiconhash hereafter. When the

lexiconhash is complete, the program starts reading CORPUS. Each word in the cor-

pus is then looked up in the lexiconhash. If not found in the lexicon-hash, the word
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is registered to another table called ntothash. If found, the word is discarded. Each

BIGRAM is registered to the appropriate hash tables, left-hash and right-hash, only

when either the first word is in lexiconhash and the second word is in ntothash, or

the first word is in ntothash and the second word is in lexiconhash. The rules read

from LEXICALURULES are read and stored in a dynamic array for faster access,

since the rules will be applied in order. After all the tables and the array are prepared,

the words registered in ntot_hash, which are the words not found in LEXICON, are

emptied into a dynamic array called tag-array-key, which has a corresponding array

called tag-array-value. The two arrays are related so that the tag for the word in the

nth element of tag.array-key is found in the nth element of tag-array-value. After all

the arrays and registers are completed, the tagger is ready to find the most likely tag

for each word not found in LEXICON.

The rule application step finds the most likely tag for words not found in LEX-

ICON. This procedure is simple and straightforward. Each element of tag-array-key

is initially tagged as NN or NNP depending on the case of its first letter. When apply-

ing rules, for each rule, every element in tag-array-key is tested for the condition of

the rule and, if it matches, the corresponding tag in tag-array-value is updated. The

rules are applied in order, so that if there are multiple rules whose condition match a

word, the last rule examined decides the tag. Some examples of LEXICALRULE are

as follows. For the description of each tag2 , refer to table 2 in Appendix A.

2 The tag set is from the University of Pennsylvania Treebank Tag-set.
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- NN s fhassuf 1 NNS

Change the tag from NN to NNS if the word has the suffix s

" ed hassuf 2 VBN

Change the tag to VBN if the suffix is ed regardless of current tag

" ly addsuf 2 JJ

Change the tag to JJ if adding the suffix ly results in a word

" un deletepref 2 JJ

Change the tag to JJ if deleting the prefix un results in a word

When every element of tagarray-key have been tested with all the rules, the

words in tag-array-key and their corresponding tags in tag-array-value are registered

to a newly created hash table, called taghash, which has the same format of

lexiconhash. Since every element of tag-array-key is a word not found in

lexiconhash, lexiconhash and tag-hash are mutually exclusive, and collectively

exhaustive.

The output is generated by reading the words from CORPUS and finding the

tag for each word from either lexiconhash or tag-hash. The system prints the word

and tag to stdout in the format "word/tag."

2.2.2 The final-state-tagger

The final-state-tagger reads the tagged corpus from stdin and improves the tag

accuracy using contextual transformation. It requires five arguments: CONTEXTUAL

RULEFILE, LEXICONFILE, corpus size, number of entries in LEXICONFILE, and

number of tags found in LEXICONFILE.
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Preparation

Apply Rules

Print out

* WORD: hash(entry in LEXICONFILE) = I

* SEENTAGGING: hash(entry tag) = 1

* contextual rules array

* word and tag array (word-corpus-array and tag-corpus-array, respectively)

ForEach Rule

For Each word
in corpus array

next word C
next tag

RESTRICTIV
dition.

Change tag to ne

for Each Element in word coPus aray
0 sprintf(outstr, "%s/%s", wordsCorpus-array[nth],

tag-corpus-array[nth]);

0 printf(outstr);

FIGURE 2-3 The final-state-tagger

CONTEXTUAL RULEFILE is read and used for contextual transformation.

The corpus size is needed to allocate arrays for word-corpus-array and

tag-corpus-array. Every word in corpus is copied to word-corpus-array and the cor-

responding tag is stored in tagcorpus-array of the same index. LEXICONFILE is the

same file used for initial tagging in the start-state-tagger. LEXICONFILE, the number

of entries, and the number of tags are all used only for the RESTRICTMOVE mode.

In this mode, the rule of "change a tag from x to y" will only apply to a word if:

- the word was not in the training set or
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* the word was tagged with y at least once in the training set

When training on a very small corpus, better performance might be obtained

by not using this mode and setting preprocessor definition RESTRICTIVEMOVE to

0, since not many possibilities of tags would have been encountered, the contextual

rules may be effective to find correct tags that have not been encountered. In our

application, the RESTRICTIVEMOVE mode is used to prevent side effects, as in the

following examples:

a) I/PRP ami/VBZ going/VBG to/TO hospital/NN.

The sentences are initially tagged in the start-state-tagger. Since, in the start-

state-tagger, every word is annotated only with its most frequent part-of-speech, to is

always annotated as TO. It is the final-state-tagger's job to resolve the contention

among the most likely part-of-speech and other possible parts-of-speech.

Suppose that there exists a contextual rule for preposition to. Since preposi-

tions come before nouns, one plausible rule may be,

TO IN NEXTTAG NN (change TO to IN if the next word is tagged as NN).

Suppose further that there is another rule to identify verb that comes after

infinitive to. Suppose the rule states

NN VB PRETAG TO(change NN to VB if the previous word is tagged as

TO).

If RESTRICTIVEMOVE mode is not used, the final-state-tagger will blindly

apply the rules. The outcome will differ depending on which rule was applied first. If
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the rule of TO IN NEXTTAG NN is applied first, the annotation b will result. If the

other rule is applied first, the annotation c will result.

b) I/PRP am/VBZ going/VBG to/IN hospital/NN.

c) I/PRP am/VBZ going/VBG to/TO hospital/VB.

However, if the program runs in the RESTRICTIVEMOVE mode, the tag of

hospital can change to VB only when hospital was found to be tagged as VB in the

training set. Since the only possible tag of hospital is NN, it won't be changed to VB

even if both rules are found in the rule table. In RESTRICTIVEMOVE mode, the

only possible annotation is c.

The final-state-tagger works in three stages as in the start-state-tagger. The

final-state-tagger starts by preparing hash tables and arrays. If the program runs in the

RESTRICTIVEMOVE mode, it creates two hash tables: WORDS and SEENTAG-

GING. The program registers all the entries found in LEXICONFILE to WORD, and

all the tagging seen with the entries in LEXICONFILE to SEENTAGGING. The sizes

of the tables are initialized with the number of entries and the number of tags, which

are provided to the program as arguments. The transformation rules are read from

CONTEXTUALRULEFILE to a dynamic array called rule-array. The corpus, which

is the output of the start-state-tagger, is read from the stdin until the EOF is encoun-

tered, and each word and tag are stored in wordcorpusarray and tag-corpus-array,

respectively. The size of the arrays are the corpus size, provided as an argument to the

program.
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In the rule application stage, each element in word.corpus-array is tested for

each rule. If condition matches, the candidate tag is stored in new. The corresponding

tag of the element is changed to new if one of the three following condition meets.

- The program does not run in the RESTRICTIVEMOVE mode,

" the program runs in the RESTRICTIVEMOVE mode and the word is
unknown, i.e. not registered to WORD, or

" the program runs in the RESTRICTIVEMOVE mode, the word is regis-
tered in WORD and the new is registered in SEENTAGGING.

After applying all the rules, the final-state-tagger constructs the output by

placing each element of word-corpus-array and tag-corpus-array in the format word/

tag. The output is printed to stdout.

Figure 2-3 shows the abstract representation of the final-state-tagger.

2.3 Training Transformation-based Part-of-speech Tagger

2.3.1 Error-Driven Learning

The stochastic tagger, based on the probabilities of empirical results, achieves

high tagging accuracy, with information contained in a large number of contextual

probabilities and the result of multiplying different combinations of these probabili-

ties together. However, the transformation-based tagger system uses corpus-based

error-driven learning algorithm that captures linguistic information in a set of simple

contextual rules.

Transformation-based error-driven learning works in an iterative process by

applying rules learned to annotate text, comparing the result with the truth, and deriv-

ing a list of rules that can be applied to the text to make it better resemble the truth
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which, used as the reference, is a manually-annotated corpus. Thus, to define a spe-

cific application of transformation-based learning, one must specify

- the initial state annotator

" the space of allowable transformations

" the objective function for comparing the corpus to the truth and choosing a
transformation

The unannotated text is first passed to the initial-state annotator, which can

range in complexity, doing anything from assigning random structure, like labelling

all the words naively as nouns, to doing the work of a sophisticated annotator which

labels all words with their most likely tag as indicated in the training corpus. Once the

text passes through the annotator, the text is compared to the manually-annotated text.

A list of rules that scores the highest is learned and applied. The iteration goes on

until no more rules with higher score than specified can be obtained[9][10].

The transformation rules learned are composed of two parts: a rewrite rule and

a triggering environment. Taken together, each rule states change x to y(rewrite)

when(triggering environment).

2.3.2 Evaluation of the Tagger on MUC-I Data

To find out the performance of the transformation-based error-driven learning

tagger system for our application, the system was trained and evaluated with respect

to the MUCH data corpus, our translation domain. MUCH is an acronym for the Sec-

ond Message Understanding Conference. The MUCH data corpus includes a number

of samples of naval operation transcripts. Due to the nature of operations, the mes-

sages are highly elliptical, and contain many incomplete and run-on sentences.
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Some examples of MUC-II sentences are as follows.

- spencer lock on to contact with fire control radar and initiated radio commu-
nication in unsuccessful attempt to identify.

- estimate heavy damage.

- vid confirms badgers unarmed.

The messages are equivalent to

" spencer locked on to the contact with her fire control radar and initiated radio
communication in an unsuccessful attempt to identify it.

- spencer estimated there was heavy damage.

" visual id confirms the badgers were unarmed.

As noted in above examples, MUC-II sentences often leave out articles, link

verbs, etc.. In order to assess the influence of such omissions, it is important to train

the rule-based tagger on the MUC-II domain and evaluate its performance.

In order to train the rule based tagger system on the MUCH Data, the corpus

was divided into three parts, which we can call sets A, B, and C, respectively. Sets A

and B were manually annotated to generate a lexicon and transformational rules. Set C

was used for three types of evaluation. Set C was annotated with the tagger system

with

1. the lexicon and transformational rules acquired from the BROWN CORPUS and the
WALL STREET JOURNAL CORPUS.

2. the lexicon and transformational rules acquired from the training on data sets A and B.

3. the lexicon obtained from the BROWN CORPUS, the WALL STREET JOURNAL,
and data sets A and B; and transformational rules acquired from training on data sets A
and B.

The evaluation result is summarized as follows.
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TABLE 2-1. Evaluation on MUCH Data

Evaluation Total Words Mistagged Percentage of Mistagged

1. 2753 267 9.7

2. 2753 127 4.6

3. 2753 125 4.5

As shown in the table above, the tagger system performs reasonably well in the

MUCH data domain. Most of the mistagging were effects of the highly elliptical

nature of the sentences in the MUCH data, where the link verb be and the auxiliary

verbs have are often omitted. Note that most previous experiments have been per-

formed on more natural English texts. The tagger often mistagged when distinguish-

ing between a past verb and a past participle verb.
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Chapter 3
Integration of
Transformation-
based Part-of-
Speech Tagger

3.1 Introduction

A primary concern when constructing multi-module application is coordinat-

ing the behavior of each module with others. Coordination is achieved through the

means of interface and synchronization. Poorly suited interfaces between two systems

reduces efficiency of the application. Poorly designed synchronization is as disastrous

if not worse. The application may not guarantee correct operation in most of the times

without well designed synchronization.

In the integration of the tagger into the translation system, our primary concern

is the interface between the two systems. The system interface between start-state-tag-

ger and final-state-tagger is customized to the processing of text files containing many

sentences, and is inefficient in our primary target application, real time speech trans-

lation system. The tagger system is organized such that each system, start-state-tagger

and final-state-tagger, terminates upon completion of processing the corpus. Since

each system needs to load tables of large sizes which involve reading and processing

large files such as LEXICON.initially before processing the corpus, activation of the
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tagger system for a sentence that contains unknown word or construction is ineffi-

cient.

In order to provide a interface between the start-state-tagger and final-state-

tagger for efficient processing of sentences of unknown words and constructions, an

attempt at utilizing a TCP/IP socket interface was made. TCP/IP provides reliable

connections, and stream like interface. The synchronization is done by blocked read

or write operation. With blocked read/write operation the system is blocked until the

system receives desired messages back.

The same method of interface is utilized between the tagger system and the

translation system. The desired tagger should work as a background process to the

translation system. The tagger reads in necessary files and build tables when initial-

ized. The tagger carries out the infinite loop of receiving input sentences from the

translation system, processing and giving back the result of tagging to the translation

system. The tagger can interface with the translation system using an appointed tem-

porary file. However, a pipe, a widely used interprocess communication stream, pro-

vides a robust and fast means of communication with easier synchronization between

the two systems.

The part-of-speech tagger implemented as a server, receives a sentence and

returns the sentence with each words tagged with its most likely part of speech in the

sentence. The translation system then prepares the tagged sentence into a format legit-

imate as the input to the understanding system, the grammar for which has been

adapted to handle the input consisting of part-of-speech sequences. Then the under-
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standing system tries the parsing of the part-of-speech sequence corresponding to the

input word sequence on the basis of the augmented grammar rules.

MUCH sentence
tinapipe

parFof speech tagged MUCH senteno

runjtina system tagger system

tinapipe:: UNIX Domain Socket

FIGURE 3-1 The interface between the two system using UNIX Domain Socket

3.2 A Multiprocess Tagger System

The tagger system which is comprised of two programs used pipelined stdout

and stdin as the interface. This requires one program to terminate so that the stdout

stream is closed and return EOF when read operation is tried on the stream. This inter-

face between the two programs optimizes the system performance with modestly

sized corpus. However, for the purpose of our application where the system has to

process a sentence at a time, it is at our best interest to keep both programs running

and provide a interprocess stream other than stdin/out. A socket, a kind of stream

between processes, provides a robust means of interface between the two processes.

Figure 3-1 shows the interface, and Figure 3-2 shows the multiprocessor tagger with
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modified processes. The two processes are named after its predecessor with prefix 11_,

in order to denote the modification.

initially tagged sentence

taggerpipe
contextually retagged sentence

IIst -s te-tagger BIfinal-state-tagger

taggerpipe UNIX Domain Socket

FIGURE 3-2 Multiprocess Tagger

Each process resembles its predecessor in functionality. lLstart-state-tagger

generates initially tagged sentence either with the most frequently occurring tag asso-

ciated with the word, or assigned tag based on cues such as prefix, suffix, etc. 11_final-

state-tagger then updates the tag with contextual transformations. However, to support

the new interface, each program is modified accordingly. The system mimics server/

client application, and 11_final-state-tagger plays the role of server, since 11_start-

state-tagger consults 11_final-sate-tagger after it initially annotate each sentence.

11_start-state-tagger also works in three stages. In preparation, it first forks, and

creates another process just like it, which will replaced by 11_final-state-tagger with

system call. If it succeeds in forking and 11_final-state-tagger process has started suc-

cessfully, the ll_start-state-tagger process establishes an UNIX Domain socket con-

nection to taggerpipe, which has been setup by 11_final-state-tagger. Initializing the

hash tables follows the communication setup. Most tables are created with the same
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method as its predecessor's. Also, for the start-up taghash, the start-up corpus is pro-

cessed once under the same method with start-state-tagger. For processing each line,

the process now executes infinite loop of getting sentence from stdin, applying rules,

write the intermediate result on the taggerpipe, reading final tagged sentence from the

taggerpipe, and writing it out to stdout.

Since 11_final-state-tagger plays the role of a server, it starts from setting up

the UNIX Domain socket, /tmp/taggerpipe, that will be shared with 11_start-state-tag-

ger. After 11_start-state-tagger makes the connection, 11_final-state-tagger go through

the same preparation stage, reading tables, and rules. Then it goes into a infinite loop

of receiving a tagged sentence from 11_start-state-tagger via /tmp/taggerpipe, applying

rules, and sending the final tagged sentence back to 11_start-state-tagger by writing it

onto /tmp/taggerpipe.

Operating in a multiprocess mode requires a little bit more attention to the

error handling. If appropriate error handling has not been provided, and one of the

processes exits abnormally, the other process stays on the CPU unproductive unless

manually killed. This is the motivation to have the 11_final-state-tagger process as the

child of the other process. With parent-child process model, each process has access

to the process ID number of the other process, and has more leverage on announcing

its status to the other. For example in our application, the signals defined in <sig-

nal.h> have been utilized for emergency announcement. Each process send SIGINT to

the other process, and to itself when any failure is returned from reading and writing
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on sockets. Each process implemented with SIGINT handler, then take an appropriate

action to the event, such as removing /tagger/pipe.

3.3 Integration with the Translation System

So far, we have discussed the client/server model of the multi-process tagger

using stdin/stdout as the user interface. In order to be integrated with the translation

system, it requires just a little bit of modification of the tagger discussed above, since

it is only change of user from human operator to the translation system. The multi-

process tagger becomes ultimately a server to the translation system, by providing ser-

vices if tagging a sentence to the translation system when requested. Hence, modifica-

tion of the interface stream suffices the purpose. Again, an UNIX Domain socket, /

tmp/tinapipe, has been used to provide the stream between the translation system and

the tagger.
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Chapter 4
Conclusion

An effort to increase the robustness of a machine translation system has been

made. Advantages and problems with highly lexicalized grammar rules have been

identified, and a technique utilizing grammar rules based on part-of-speech tagging

has been studied, and proven effective. Therefore this work was directed at integrating

a part-of-speech tagger with the machine translation system.

A transformation-based error-driven learning tagger has displayed the capabil-

ity to be trained in our translation domain effectively. The tagger has been adapted to

the robust translation system.

The system interface within the tagger system is customized toward processing

of text files containing multiple sentences, and was inefficient for the ultimate appli-

cation of our translation system, real time speech translation, where our system needs

the tagger to efficiently process one sentence at a time.

A more efficient interface has been implemented utilizing TCP/IP socket con-

nections. The system was modified around the interface. The tagger system which

receives requests from the translation system when the translation system encounters

sentences containing unknown words or constructions.

The new implementation achieves efficiency for sentence-by-sentence pro-

cessing by eliminating the need to initialize large tables for each sentence. All table
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initialization is done once at start-up, and therefore there is no need to re-initialize the

tables for each sentence.
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Chapter 5 Future Direction

Since this work was completed, the Group at Lincoln Laboratory has continued

to utilize the part-of-speech tagger with substantial success.

Future work might include extending this approach to translation of other lan-

guages, for example, to Korean-to-English translation. This would require both a

Korean understanding system and a Korean part-of-speech tagger.
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Appendix A

TABLE A-1. Description of Tags Used in Examples

Tag Description

NN noun, common, singular or mass

NNS noun, common, plural

IN preposition or conjunction, sub-
ordinating

JJ adjective or numeral, ordinal

PRP pronoun, possessive

VBZ verb, present tense, 3rd person
singular

VBG verb, present participle, or ger-
und

VBN verb, past participle

VBD verb, past tense
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