
Distribution of Certificates, CRLs and Address

Attestations in the Secure Border Gatew SACHIrSTITrE
OF TECHNOLOGY

Protocol
by ~JUL. i 1 ?'f1?byJU

Kavita Baball LIBRARIES
Submitted to the Department of Electrical Engineering and Computer

Science aARKER
in partial fulfillment of the requirements for the degree of

Masters of Engineering in Electrical Engineering and Computer
Science
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2002

© Kavita Baball, MMII. All rights reserved.
The author hereby grants to MIT permission to reproduce and

distribute publicly paper and electronic copies of this thesis document
in whole or in part.

A uthor

Department of Electrical Engineering and Computer Science
January 25, 2002

Certified by.
Karen Sollins

Research Scientist
Thesis Supervisor

Certified by...
Stephen Kent

Chief Scientist-Information Secuity, BBN Technologies
? f-iVw upervisor

Accepted by...
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Distribution of Certificates, CRLs and Address Attestations

in the Secure Border Gateway Protocol

by

Kavita Baball

Submitted to the Department of Electrical Engineering and Computer Science
on January 25, 2002, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Electrical Engineering and Computer Science

Abstract

The Secure Border Gateway Protocol, S-BGP, was designed to address security problems
in the Border Gateway Protocol (BGP), the standard for inter-domain routing used on
the Internet. S-BGP relies on the distribution of countermeasure information such as cer-
tificates, certificate revocation lists (CRLs), and route and address attestations (RAs and
AAs). In order to provide the efficient distribution of this data, S-BGP makes use of several
replicated, easy-to-access storage sites, or repositories. This thesis describes the design and
implementation of one such repository. This prototype includes a database that is stored
on an S-BGP server, interfaces to access and modify the contents of the database, and
access control for the repository. It provides authentication mechanisms for all clients and
replicated servers that access the repository. It also enforces authorization algorithms for
submitting data to ensure that a client is allowed to upload the information sent to the
repository. The repository supports two main types of data transfer: uploads of certifi-
cates, CRLs and AAs by the clients, as well as downloads of the information already stored
in the database. Finally, servers synchronize on a timely basis to ensure that changes are
propagated throughout the system.

Thesis Supervisor: Karen Sollins
Title: Research Scientist

Thesis Supervisor: Stephen Kent
Title: Chief Scientist-Information Security, BBN Technologies

3

4

Acknowledgments

I would like to acknowledge the following people without whom I could not have

finished this thesis:

o My parents, Seree and Sandra Baball, and brother, Ravi, for their love, prayers

and encouragement.

* My thesis advisor at MIT, Karen Sollins, for her help and support in finishing

this thesis.

o The people at BBN Technologies: my thesis advisor Stephen Kent, Charlie

Lynn, Karen Seo, Jean Duffy and the rest of the Information Security Depart-

ment. In particular, I would like to thank Charlie for all of his time and guidance

in getting this thesis done. I have learned a tremendous amount from him and

am grateful for the opportunity to work with him.

o Janelle Prevost, Geoff Lee Seyon, Kevin McDonald and Keith Santarelli for

reviewing drafts of this thesis and for their suggestions. A special thanks to my

family for their input.

o Petros Boufounos, Ivan Nestlerode and Kevin for their help (and patience!)

with my countless C questions.

o And to all my friends (especially Arin, Joanna and Janelle) for their support,

understanding and threats. Thank you.

5

6

Contents

1 Introduction 15

2 Background

2.1 Routing in the Internet

2.2 Border Gateway Protocol (BGP)

2.2.1 How BGP Works

2.3 The Vulnerabilites of BGP

2.4 Motivations for the Secure Border Gateway

.

.

.

.

Protocol (S-BGP)

3 Secure Border Gateway Protocol

3.1 Security Mechanisms used by S-BGP

3.1.1 Public Key Infrastructure

3.1.2 Use of Attestations

3.1.3 Use of IPsec .

3.2 Distribution of Certificates, CRLs, and Address Attestations

4 Design of the Repository

4.1 O verview .

4.2 Requirem ents .

4.2.1 Database Requirements

4.2.2 Upload Requirements

4.2.3 Download Requirements

4.2.4 Data Replication .

7

21

21

22

23

24

26

29

29

30

33

34

35

39

39

41

41

42

43

43

4.2.5 Capacity

4.2.6 Security Requirements

4.2.7 Efficiency

4.3 Repository Structure

4.3.1 Data Storage

4.3.2 Client Interface

4.3.3 Server Interface

4.3.4 Administrative Interface

4.4 Data Transfer

4.4.1 Single Transactions

4.4.2 Uploads to the Repository . . .

4.4.3 Database Downloads

4.4.4 Synchronization

5 Security Mechanisms in the Repository

5.1 Overview

5.2 Authentication Mechanisms

5.3 Confidentiality

5.4 Integrity and Data Origin Authentication

5.4.1 Digital Signatures

5.4.2 Storing the Server's Private Key .

5.5 Access Control for the Repository

5.5.1 S-BGP Certificate Extensions . .

5.5.2 Boolean Inherit

5.5.3 Validation using the Certification

5.5.4 Authorization Mechanism

5.6 Logging

5.7 Other Concerns

5.7.1 Physical Protection for the Server

5.7.2 Backups

8

43

44

45

46

47

49

49

50

51

51

54

57

59

63

63

64

64

64

65

66

67

68

70

71

73

75

77

77

Path

. 78

.

.

6 Implementation Details

6.1 Overview

6.2 Server Details

6.3 Database

6.4 Client Interface

6.5 Administrative Interface

6.6 Uploads to the Repository . . .

6.7 Database Downloads

6.8 Synchronization

6.9 Security

7 Future Work and Conclusion

7.1 The S-BGP Repository

7.1.1 Possible Additions to the

7.1.2 Client-Server Integration

7.2 S-BGP: The Project

7.3 Conclusion

Repository

A S-BGP ASN.1 Specifications

A.1 S-BGP Upload and Download File Formats

A.2 S-BGP Extensions .

B Database Implementation

B.1 Creating the Database

B.2 Adding and Deleting Objects

B.2.1 Higher Level Functions

B.2.2 Postgres Functions .

B.3 Other Database Functions .

9

79

79

80

80

80

81

82

83

83

84

87

87

87

90

91

92

97

97

99

103

103

104

104

106

108

. .

. .

. .

. .

. .

10

List of Figures

2-1 Simple BGP Model

S-BGP Address Allocation

S-BGP AS Number Hierarchy

An UPDATE message with Attestations

Repository Design

Structure of the Repository

S-BGP Server Data Transfers

Synchronization

Synchronization Example

SBGPIpAddrBlock Example

SBGPASNum Example

SBGPIpAddrBlock: Inherit = TRUE .

SBGPASNum: Inherit = TRUE

6-1 Screen Shot of Web Interface

6-2 Select Screens from the Administrative Interface

11

. 23

32

33

34

3-1

3-2

3-3

4-1

4-2

4-3

4-4

4-5

5-1

5-2

5-3

5-4

. 4 0

. 4 6

. 5 2

. 6 0

. 6 2

. 6 9

. 7 0

. 7 0

. 7 1

. 81

. 82

12

List of Tables

4.1 Certificate Table . 48

4.2 CR L Table . 48

4.3 Address Attestation Table . 48

4.4 Certification Path Table . 48

4.5 Structure of the Upload Files . 55

5.1 S-BGP Private Extensions Present in S-BGP Certificates 68

5.2 Examples of Upload Data . 76

13

14

Chapter 1

Introduction

As the number of users on the Internet grows, the amount of data transmitted also

increases. In order for this data to get to its intended recipient, it must be cor-

rectly routed. Internet routing is based on a distributed system composed of many

routers grouped into management domains called Autonomous Systems (ASes). The

Border Gateway Protocol (BGP) is the standard scheme used to distribute routing

information between these autonomous systems through UPDATE messages. These

UPDATEs are used to propagate changes made to the routing tables on the BGP

routers throughout the network. Despite being a critical part of Internet infrastruc-

ture, the BGP protocol is highly vulnerable to a variety of attacks as it has no secure

means of verifying the authenticity and legitimacy of BGP control traffic.

Secure Border Gateway Protocol

The Secure Border Gateway Protocol (S-BGP), an extension to BGP, was specifically

designed by BBN Technologies to address the security problems associated with BGP.

S-BGP adheres to the principle of least privilege' and uses countermeasures that

create an authentication and authorization system that addresses most of the security

problems associated with BGP. To facilitate adoption and deployment, S-BGP is

designed to minimize the overhead (processing, bandwidth, storage) added by its

'This principle requires that a user be given no more privilege than necessary to perform a task.

15

countermeasures and to be interoperable with the current BGP so that it can be

incrementally deployable on the Internet.

The S-BGP architecture uses three mechanisms to provide security. First, a Public

Key Infrastructure (PKI) is used to authenticate the ownership of IP address blocks,

AS numbers, identities of ASes and BGP routers and to determine whether or not

a particular router is authorized to represent an AS. Second, a new, optional, BGP

transitive path attribute containing attestations has been introduced. These attes-

tations enable BGP speakers, when they receive route advertisements, to verify that

each AS along the path has been authorized by the preceding AS to advertise the

route, and that the originating AS has been authorized to advertise those prefixes.

There are two types of attestations: route attestations, which are used to express a

secure route, and address attestations, which contain information about the owners

of address prefixes, and the ASes that are authorized to advertise these prefixes. Fi-

nally, IPsec [3] is used to provide data and partial sequence integrity for BGP peering

sessions, and to enable BGP routers to authenticate each other for exchanges of BGP

control traffic.

Security Mechanisms in S-BGP

The security approaches used by S-BGP rely heavily on the distribution of counter-

measure information. We therefore need to design and implement a repository that

supports efficient distribution of the certificates, certificate revocation lists (CRLs)

and address attestations (AAs) in S-BGP. Each S-BGP speaker must have access to

the public keys required to validate UPDATEs. An S-BGP speaker receives updates

from all reachable ASes and needs certificates for the speakers in each of these ASes.

This can amount to the full set of certificates encompassing all address space owners,

AS owners, and some of the S-BGP speakers. Incorporating certificates in UPDATE

messages is infeasible because of the limited size of UPDATE messages. Instead,

the S-BGP architecture proposes to build a repository at the Network Access Points

(NAPs). Since the NAPs are connected directly to the ISPs, they are accessible even

without inter-AS routing and are good candidates for housing the repository. Addi-

16

tionally, processing the data at the Network Operations Centers (NOCs) simplifies

the operations of the routers as the objects in the database can be validated and put

in a more compact form before distribution to the S-BGP speakers.

S-BGP Server Repository

The goal of this thesis is to design and implement this repository, which is used

to solve the S-BGP countermeasure distribution issues. The repository consists of

server-replicated, easy-to-access storage sites. It handles the projected growth and

usage of the Internet, and enforces access control based on the data source and the

data submitted. The repository leverages off the existing Internet infrastructure and

uses available technology that can be incrementally deployed.

The first stage of this project was the actual design of the repository. The repos-

itory needs to handle over 200,000 certificates, CRLs and AAs based on initial es-

timates. It also needs to store certification path objects, which are used to allow

continued operation should some client, such as an operator at a Network Operation

Center (NOC), prematurely delete a certificate in a certification path. If this occurs,

objects that need this path for verification can still be uploaded or downloaded until

they have been replaced by ones using a new path. The use of certification paths in

the repository is discussed in Section 5.5.3. This requirement for storage was fulfilled

by using a database that contains four tables, each of which holds objects of one of

the following types: certificates, CRLs, AAs and certification paths. The repository

must also allow for the secure download of these objects, as well as for the ability to

upload new items and make changes to data already in the databases. There must

also be a data replication mechanism to allow changes made at one site to propagate

to the replicated copies of the repository.

The repository also has security requirements that need to be addressed. All

accesses to the repository must be authenticated in order to ascertain that a NOC

operator is who he claims to be, and the integrity of the data transferred must be

verified. Furthermore, we also need to ensure that a client is authorized to upload the

data submitted to the repository. All authenticated NOCs are authorized to perform

17

downloads from the repository.

Repository Structure

In order to provide these functions, we designed an Upload Processor, a Download

Processor and a Synchronization Processor. The actual uploads and downloads are

done by the NOC through a web interface. In order for a NOC to connect to this

interface, it must have an SSL certificate issued under the S-BGP public key infras-

tructure to authenticate itself.

All upload files and reply files transferred to and from the repository are signed.

This allows for any data corruption to be detected by performing the necessary sig-

nature validation. The Download Processor generates one file for each database table

that contains all the objects of a given type, which the NOC can then retrieve. For

uploads, the NOC provides a batch file which contains all the database transactions

that it would like to perform. All the batch files are initially placed in an "Input"

directory, from which they are sequentially retrieved by the Upload Processor. The

signature on the file is then checked. If it is valid, the Processor extracts the indi-

vidual transactions and runs an access control algorithm on them. It then performs

the actual database function if the algorithm produced no error. This access control

algorithm checks that the NOC operator is allowed to manage the object associated

with the specific transaction. Finally, when a batch file is successfully processed, its

filename is written to an Incremental Changes Table (ICT). The ICT is a file contain-

ing the names of all the files uploaded within a given time period. It is used during

synchronization. During this process, the ICTs and upload files are copied between

servers. Each server then goes through the ICTs in the order they were received, and

processes the batch files listed in each ICT using the Upload Processor. NOCs can

also download all of the objects in the database by retrieving the four database files

that are generated by the Download Processor. Each file corresponds to one of the

database tables and contains all of the objects stored in it.

The second stage was the implementation of the repository. This involved creating

the PostgreSQL database that is used to store the objects, and setting up the directory

18

structure for the data transfers. It also included writing the software for the Upload,

Download and Synchronization Processors, including the validation of the signatures

on the files, as well as the access control checks for the uploads.

Thesis Outline

This thesis describes S-BGP and its advantages, as well as how the certificates, CRLs

and address attestations are efficiently distributed in this system. Chapter 2 provides

the reader with an overview of the BGP protocol and its vulnerabilities. Chapter 3

describes the architecture of the Secure Border Gateway Protocol and includes a

discussion of the Public Key Infrastructures, the introduction of Attestations, and

the use of IPsec. Chapter 4 describes the requirements and design of the repository,

including its individual components and how data is transferred both to and from it.

Chapter 5 presents the security aspects of the repository and the mechanisms used to

fulfill them. Chapter 6 gives a more detailed description of the actual implementation.

Chapter 7 presents possible additions to the repository, as well as the future of the

S-BGP project, and concludes the thesis.

19

20

Chapter 2

Background

The Border Gateway Protocol (BGP) is the current standard for inter-domain routing.

This chapter starts out with a discussion of routing in the Internet followed by a

description of how BGP works. It discusses how BGP speakers store paths to a

particular network in a routing table, and the use of UPDATE messages to advertise

route changes. The vulnerabilities of BGP are then presented as a prelude to the

motivation for the Secure Border Gateway Protocol (S-BGP) project.

2.1 Routing in the Internet

One important aspect in a large heterogenous internetwork such as the Internet is

finding efficient paths to route information among the smaller component networks.

Each of these networks consists of gateway nodes and host nodes. The hosts are

computers that support users and run application programs, while the gateway nodes

control traffic and route packets. Gateway computers forward packets to other gate-

way computers in different networks. For users to connect to the Internet they must

connect to a router, which transmits the traffic to a gateway node if the destination

is not in the same network. Gateway nodes use routing tables to route the packets to

the different hosts. There are many schemes that node computers can use to route the

packets to their destination. The Internet standard for inter-domain routing is the

Border Gateway Protocol (BGP), which exchanges routing information between the

21

gateway nodes in the different routing domains, also known as autonomous systems

(ASes). An autonomous system can be defined as an internetwork in which all the

routers are under the same administrative control[10]. For example, Internet Service

Providers (ISPs) and Downstream Providers (DSPs) are ASes. Currently, all ISPs use

BGP, while only 10% of DSPs and approximately 5% of their customers (subscribers)

are BGP users1 . The others are singly connected to the Internet i.e., singly-homed

and use "default" routing.

Figure 2-1 shows a simple BGP model, with both BGP and non-BGP routers.

The Network Access Point (NAP) is a interconnection point in the Internet backbone

which ties all the ISPs together by a high speed local area network (LAN). The NAPs

provide network access for users. Most Internet traffic is handled using private peering

arrangements between the largest ISPs, such as the direct connection between ISP

1 and ISP 2 in the figure. This connection is used not only for routing and other

control traffic, but more importantly for data traffic.

2.2 Border Gateway Protocol (BGP)

The Border Gateway Protocol Version 4 (BGP-4), which is documented in RFC 1771

[13], is the protocol used to exchange routing information among different ASes in

the Internet. Unlike distance-vector algorithms which keep track of particular nodes

and the cost of their links to their neighbors, BGP keeps track of complete paths to

a destination as an enumerated list of ASes to assist in routing loop detection.

BGP uses TCP as its transport protocol. It maintains routing tables, transmits

routing updates, and makes routing decisions based on routing metrics. The primary

function of a BGP system is to exchange network reachability information, including

information on the list of AS paths, with other BGP systems. This information can

be used to construct a graph of connectivity among the autonomous systems that can

be used to prevent routing loops and to enforce AS-level policy decision.

'As reported in the presentation by Stephen Kent at http://www.net-
tech.bbn.com/sbgp/KentCIP.ppt

22

Organization X) ISP 1 ISP 2 DSP B

NAP Organization Z

ISP 3 ISP 4 DSPC

DSP A

BGP Router

Snon-BGP Router

Organization Y

Figure 2-1: Simple BGP Model

2.2.1 How BGP Works

The administrator of an AS designates at least one node to be the spokesperson for the

entire AS called the "BGP speaker". The BGP speakers are used to establish sessions

with BGP speakers in other ASes and exchange routing information. Additionally,

the AS also has one or more border "gateways" which are the routers through which

packets enter and leave the AS. Usually a BGP speaker is the border gateway.

Each border gateway that implements BGP maintains a routing table that lists

all feasible paths to a particular network. This routing table contains a list of next-

hop routers, addresses they can reach, and the cost metric. However, the router

does not refresh the routing table. Instead, routing information received from peer

routers (other routers that it is directly connected with) is retained until an update is

received. At the start of a connection, BGP peers exchange complete copies of their

routing tables, which can be quite large. After these initial transfers, only changes

are then exchanged in the form of UPDATE messages. These UPDATE messages

23

are used to advertise routes between a series of ASes. The destination is the network

whose IP address is reported in the Network Layer Reachability Information (NLRI)

field, and the path is the information reported in the path attribute field of the same

UPDATE message. UPDATE messages are sent via TCP to ensure reliable delivery,

and make long running BGP sessions more efficient than shorter ones.

If a BGP speaker chooses to advertise the route, it may add to or modify the path

attributes of the route before advertising it to a peer. BGP provides mechanisms

by which a BGP speaker can inform its peer that a previously advertised route is no

longer available. There are three methods by which a given BGP speaker can indicate

that a route has been withdrawn from service [5]:

1. The IP prefix that expresses destinations for a previously advertised route can

be advertised in the WITHDRAWN ROUTES field in the UPDATE message,

thus marking the associated route as being no longer available.

2. A replacement route with the same Network Layer Reachability Information

can be advertised.

3. The BGP speaker-speaker connection can be closed, which implicitly removes

from service all routes which the pair of speakers had advertised to each other.

2.3 The Vulnerabilites of BGP

Security for BGP may be defined by the correct operation of BGP speakers [5]. This

definition is based on the observation that a successful attack against BGP should

presumably yield incorrect operation of the protocol. Correct operation of BGP

depends upon the integrity, authenticity, and timeliness of the routing information

it distributes, as well as each BGP speaker's processing, storing, and distribution of

this information in accordance with both the BGP specification and with the local,

possibly confidential, routing policies of the BGP speaker's AS. The primary correct

operation features of BGP, as reported by Kent et al [5], are:

24

" Each UPDATE received by a BGP speaker from a neighbor was sent by the

specified neighbor, was not modified en-route, and contained routing informa-

tion that is no less recent than the routing information previously received for

the indicated prefixes from that neighbor.

" The UPDATE was intended for the neighbor that received it.

" The neighbor that sent the UPDATE was authorized to act on behalf of its AS

to advertise the routing information contained within the UPDATE to the BGP

speakers in the recipient AS.

" A neighbor that is withdrawing a route is the one authorized to advertise that

route.

" The owner of an address space corresponding to a reachable prefix advertised

in an UPDATE was authorized by its parent organization to own that address

space.

" The first AS in the route was authorized by the owners of the address space

corresponding to the set of reachable prefixes to advertise those prefixes.

* The neighbor that sent the UPDATE correctly applied the BGP rules and its

AS's policy in propagating the UPDATE, in selecting the route, and in deriving

forwarding information from it.

" The BGP speaker that received the UPDATE correctly applied the BGP rules

and its AS's routing policies to determine whether to accept the UPDATE.

BGP has a number of vulnerabilities that can be exploited to cause its correct

operation, as characterized above, to be violated.

Communication between BGP peers can be subject to active and passive wire-

tapping [5]. BGP uses TCP/IP for transport and this protocol can be attacked. A

speaker's BGP-related software, configuration information, or routing databases may

be modified or replaced illicitly by unauthorized access to the routers, or to servers

from which router software is downloaded, or even via a spoofed distribution channel.

25

Most of these attacks can transform routers into hostile insiders. Effective security

measures must address such Byzantine attacks [9].

Further exploitation of these vulnerabilities allows a variety of attacks [5]. For

example, spoofing might occur by injecting fake BGP messages into a link. It is

also possible for authentic BGP messages to be captured and either modified and

re-injected into the link, combined incorrectly, or suppressed altogether. A compro-

mised BGP speaker could generate UPDATEs for routes that do not legitimately

pass through that speaker. Additionally, a compromised BGP speaker could gener-

ate UPDATE messages too frequently, or the selection of routes and distribution of

UPDATEs could violate the local routing policies.

2.4 Motivations for the Secure Border Gateway

Protocol (S-BGP)

As described previously, BGP is vulnerable to numerous attacks due to the lack

of a scalable means of ensuring authenticity and legitimacy of BGP control traffic.

BGP is a critical part of the Internet and errors can have adverse effects on message

throughput. We may reduce some of these vulnerabilities by better physical and

procedural security for network management facilities, BGP speakers, and commu-

nication links. We may also use encryption of the traffic at the inter-router (BGP

speaker) links, or the end-to-end encryption of management information. However,

some aspects of such security approaches are economically unattractive or infeasible

e.g., they may require additional equipment. Moreover, accidental misconfiguration,

which has proved to be a source of several significant Internet outages in the past,

would not be prevented by such measures. Any security approach that leaves BGP

vulnerable to such benign "attacks" leaves the protocol vulnerable. We thus try to

implement countermeasures that would be strong against malicious attacks as well as

accidents. A scalable system that ensures the integrity and authenticity for each BGP

routing UPDATE, as well as the authorization of the initial speaker to advertise the

26

address space that is in the UPDATE is needed. Furthermore, as suggested by the

end-to-end argument [14], lower layer mechanisms can make it easier or more efficient

to do the upper layer end-to-end functionality, but cannot be an end-to-end alter-

native for the layer in question. Thus S-BGP was designed using end-to-end checks

to minimize the adverse effects of compromise of any part of the BGP architecture,

including the speakers and the BGP management system.

27

28

Chapter 3

Secure Border Gateway Protocol

Secure Border Gateway Protocol (S-BGP), an extension to BGP-4, was designed to

address the security shortcomings of BGP. S-BGP adheres to the principle of least

privilege and uses countermeasures to create an authentication and authorization

system that removes most of the security problems associated with BGP. To facilitate

adoption and deployment, S-BGP is designed to minimize the overhead (processing,

bandwidth, storage) added by its countermeasures, and to be interoperable with

the current BGP so as to be incrementally deployable. This chapter begins with

a discussion of the security measures employed by S-BGP including the private S-

BGP certificate extensions for Address Allocation, Autonomous System numbers and

Router Identifiers. It also describes Route Attestations and Address Attestations, as

well as the use of IPsec. Finally, it talks about the need for the efficient distribution of

the S-BGP countermeasures and how the introduction of repositories helps to address

this issue.

3.1 Security Mechanisms used by S-BGP

The S-BGP architecture employs three security mechanisms: a Public Key Infras-

tructure, a new BGP transitive path attribute containing attestations, which enable

each BGP speaker to verify information about route advertisements that it receives,

and the use of IP security (IPsec) protocol suite [5]. These security measures are used

29

by a BGP speaker to check the authenticity and integrity of the BGP updates that it

receives and to verify the identity of the senders. While S-BGP cannot prevent an or-

ganization (ISP or DSP) from doing something detrimental to itself or its customers,

it allows the ISP or DSP to detect detrimental actions from other entities.

3.1.1 Public Key Infrastructure

As described in Kent et al, Public-Key Infrastructure for the Secure Border Gateway

Protocol (S-BGP) [6], a new Public Key Infrastructure (PKI) is used to support the

authentication of ownership of IP address blocks, ownership of Autonomous System

(AS) numbers, an AS's identity, and a BGP router's identity and authorization to

represent an AS. It is based on X.509v3 certificates [2] that are used to achieve the

authentication, and it mirrors the existing IP address and AS number assignment

delegation system, thus avoiding many of the complications that may be encountered

in the creation of a PKI.

Address Allocation

One private S-BGP certificate extension is for Address Allocation. The S-BGP PKI

uses a certificate containing this extension, SBGPIpAddrBlock, to bind a public key

to an organization and to a set of IP address families and prefixes. This certificate,

in conjunction with address attestations, is used to verify that the IP address space

owner has authorized one or more ASes to advertise the address space [5]. The details

of this extension, as well as how the extension is used in the authorization process,

are described in detail in Chapter 5.

The certificates containing this extension are arranged into a singly-rooted hier-

archy [5], as shown in Figure 3-1, that parallels the existing IP address allocation

system, and is issued through the same chain of entities that is responsible for ad-

dress allocation in the existing environment. ICANN (or historically IANA) is the

root of this tree. ICANN issues certificates for the address space ownership to the

regional registries. Since the SBGPIpAddrBlock extension specifies the address space

30

being delegated, the validation of these certificates is constrained by the IP addresses

in this extension. The proposed system does not require that address assignments be

certified all the way to the subscriber, but only as far as the ISP/DSP from which its

address is allocated, and similarly for DSPs that receive their address-space assign-

ments from ISPs. The reason is that the subscriber's address is included in that of the

ISP/DSP with which it is affiliated. Also note that a subscriber (or a DSP) who does

not participate in BGP exchanges need not be issued a certificate if the subscriber's

address space is derived from that of an encompassing ISP or DSP. Finally, only a

single certificate' containing a list of address blocks is assigned if an organization owns

multiple ranges of addresses so as to minimize the number of certificates needed to

validate an UPDATE. Holders of these certificates can create an address attestation

authorizing an AS to advertise the specified address space on their behalf.

Assignment of AS Numbers and Router Associations

Three types of certificates are used to support the authentication of ASes and BGP

speakers, and the relationship between speakers and ASes in the S-BGP PKI [5]. A

second S-BGP certificate extension is for the assignment of AS numbers and a third

is used to bind a router to an AS. A certificate containing the second extension,

SBGPASNum, binds a public key to an organization and a set of AS numbers. The

second type binds an AS number and its public key (issued by an organization and

signed using the private key corresponding to the public key in the certificate of the

first type), and a certificate containing the third extension, SBGPRouterId, binds

a public key to an AS number and to a BGP router's name, ID and public key.

Together, these certificates allow BGP speakers to authenticate one another, and to

verify that a given speaker is authorized to represent a specified AS. The details of

these extensions, as well as how the extension is used in the authorization process

are described in Chapter 5. Here too, the ICANN is the root of the hierarchy and

the second tier consists of registries (see Figure 3-2). ICANN issues certificates for

'New certificates are issued to reflect the increased scope of ownership whenever organizations
acquire additional address blocks.

31

ISP

DSPs

Subscriber
Organizations

Figure 3-1:

ICANN/IANA

Registries
ARIN/RIPE/APNIC

DSPs

Subscriber
Organizations

S-BGP Address Allocation

32

Subscriber
Organizations

AS ownership to the registries, which then issue certificates to the ISPs, DSPs, and

organizations that run BGP. AS operators issue certificates to routers as their AS

representatives. Holders of router (or AS) certificates can generate route attestations

(which are described in the next section), which authorize advertisement of a route

by a specified AS.

APNIC
AS Numbers

Subscriber
Organizations

AS #W

ARIN
AS Numbers

DSPs

DSP 1 DSP 2
AS #X AS #Y

AS#Y Routers in AS#Y
AS#Y, Router BGP ID

RIPE
AS Numbers

IS~

ISP 1 ISP 2
AS numbers AS #Z

AS# Z Routers in AS# Z
AS# Z, Router BGP I D

Figure 3-2: S-BGP AS Number Hierarchy

3.1.2 Use of Attestations

S-BGP introduced attestations in order to secure UPDATE messages. Figure 3-3

shows the structure of this new, secure UPDATE message as described in Kent et

al [5]. The attestations are carried in a new, optional, transitive path attribute

for route authorization that contains digital signatures, which protect the transitive

routing information. The attestations are signed and verified using the keys and

certificates. They enable each BGP speaker that receives a route advertisement to

verify that each AS along the path has been authorized by the preceding AS along

the path to advertise the route, and that the originating AS has been authorized by

the owner of each IP address prefix contained in the UPDATE to advertise those

33

ICANN
All AS Numbers

prefixes.

There are two types of attestations [5]:

* Route attestations (RAs) - where the issuer is a router authorized to represent

the AS (or is the AS itself) and the subject is a transit AS. Route attestations

are used to express a secure route as a sequence of AS hops. To sign the RA,

the private key that corresponds to the public key of the certificate that binds

the router to the AS is needed.

" Address attestations (AAs) - where the issuer is the organization that owns the

address prefixes that it contains and the subject is one or more ASes that are

authorized to advertise these prefixes e.g., the organization's ISPs. To sign the

AA, we need the private key that corresponds to the public key of a network

end-entity (EE) certificate that is issued by the certificate which assigns that

address space to the organization.

UPDATE Message

Path Attribute
for Attestations

Route Attestation

Signed Information

BGP Addr Blks of Rtes BGP Path Dest Addr
Header Being Withdrawn Attributes Blks (NLRI)

Attribute Route Attestations
Header

ttestation Issuer Certificate Algorithm ID Signed
Header ID & Signature Info

Validity AS Path Other Protected NLRI
Dates Subject Info Path Attributes Info

Figure 3-3: An UPDATE message with Attestations

3.1.3 Use of IPsec

IPsec is used to provide data and partial sequence integrity, and to enable neighbor

BGP routers to authenticate each other (two way authentication) for exchanges of

34

BGP control traffic. It also prevents an active wiretapper from spoofing UPDATE

messages or replaying valid ones.

BGP-4 has means for carrying authentication information, but no key manage-

ment scheme or sequence numbering facility. IPsec supports automated key manage-

ment and so is well suited for used with BGP. Furthermore, IPsec is now being put

into routers by vendors and so it is becoming more readily available.

3.2 Distribution of Certificates, CRLs, and Ad-

dress Attestations

The S-BGP architecture pays close attention to the performance and operational

costs of introducing the proposed countermeasures. While previous work in the area

of routing security has focused on the impact of generating and validating digital sig-

natures, analysis suggests that bandwidth and storage requirements associated with

signatures, certificates, and CRLs are much bigger issues [4]. This section describes

how we propose to deal with the issue of the distribution of certificates, certificate

revocation lists (CRLs), and Address Attestations (AAs) in S-BGP.

The security approach used by S-BGP relies on the distribution of countermeasure

information [5]. Each S-BGP speaker must have access to the public keys required

to validate UPDATEs. For non-leaf S-BGP speakers that receive updates from all

reachable ASes, this can amount to the full set of certificates encompassing all address

space owners, AS owners, and some of the S-BGP speakers.

While putting certificates in UPDATEs ensures that all BGP speakers get the

data required to validate the attestations in an UPDATE, this process may be very

redundant and make UPDATEs too big. Additionally, BGP updates are limited in

length to 4096 bytes and so may not be big enough to carry all the certificates re-

quired to verify most UPDATEs. Alternatively, a new type of BGP message could be

introduced for transmitting certificates and CRLs to address the packet size problem.

This would still waste bandwidth, however, and would not be backward compatible

35

with BGP.

The proposed solution uses out-of-band distribution for certificates, CRLs, and

AAs to all S-BGP speakers [5]. This database is relatively static and is thus a good

candidate for caching and incremental update. Moreover, the certificates can be

validated and processed against CRLs and only the necessary information such as

the public key, subject, and selected extensions can be extracted and distributed to

S-BGP speakers by ISPs/DSPs. This avoids the need for each speaker to perform the

large number of signature verifications required for a certificate path validation, and

thus saves both bandwidth and storage space. Although memory is inexpensive, most

commercial routers that are currently deployed do not possess sufficient memory to

store all of these certificates and attestations. Therefore, either additional memory

or auxiliary systems are needed, even with preprocessing.

We make use of two tiers of repositories from which one can download the entire

certificate, CRL and AA database [5]. The top tier is a system of several repli-

cated, easy-to-access storage sites. These sites are housed on servers at Network

Access Points (NAPs), which are interconnection points that tie the Internet Service

Providers (ISPs) together. The reason for this is that if routing were to collapse, an

ISP/DSP may still need to get to the repositories without using inter-AS routing.

Therefore, the only points it would be able to reach in this situation are a neigh-

boring AS or an attached NAP. The second tier of repositories is operated by the

ISPs/DSPs, to provide local access for the S-BGP speakers within each AS. The sec-

ond tier repositories request new certificates, CRLs, and AAs from the top tier. This

allows an ISP/DSP to retrieve certificates before it actually needs them. However,

the ISP/DSP-operated databases always push the extracted data to the routers in

their ASes in order to minimize the propagation delay of this information. These

repositories will allow us to avoid the dependency loop that would occur if the solu-

tion required inter-domain routing in order to access this database. Transfers of all

the objects of each type in the database from the first to second tier repositories can

also be carried out. Furthermore, in the first tier, the certificates, CRLs and AAs

are signed so there is no need for additional integrity mechanisms of the individual

36

objects in the transfer. In order to minimize processing and storage overhead, the

NOCs should validate certificates and AAs, and send processed extracts to routers.

However, because this transfer involves extracted objects, an explicit signature is re-

quired. The ability to verify the signature for this transfer is a local one, i.e., the

routers need know only a public key (or certificate) for the NOC.

This thesis seeks to design and implement the top tier of these repositories, which

can be used to solve the distribution issues.

37

38

Chapter 4

Design of the Repository

Chapters 2 and 3 describe the background and the work done by BBN Technologies

in designing the Secure Border Gateway Protocol. As mentioned in Chapter 3, the

Secure Border Gateway Protocol (S-BGP) requires the efficient distribution of certifi-

cates, CRLs and address attestations (AAs). The rest of this thesis presents a design

for the repository, and seeks to address the security issues that are relevant to its

deployment.

The repository is used to store the certificates, CRLs and AAs that are used in

S-BGP. We have multiple repositories at different sites, which are synchronized on a

regular basis. This chapter begins with a description of the requirements that were

used in designing the repository and then presents the repository structure, which

includes the interfaces and the data storage. It then discusses how data is transferred

to and from the repository. The clients, Network Operations Centers (NOCs), upload

changes to the repository by providing new objects to add and copies of existing

objects to delete. The NOCs also download the whole database, process the data,

and upload the extracted pieces to their routers.

4.1 Overview

Figure 4-1 shows the structure of the repository. In this system, there are three inter-

faces: an Administrative Interface through which the system administrators access

39

the data, a Client Interface and a Server Interface through which the daemons run

on the NOCs and the other S-BGP servers, respectively, can access the data. These

interfaces allow for easy interaction between the system and anyone uploading data

or retrieving the data stored. We assume that a NOC connects to the same repository

on every occasion, i.e., the repository used by a NOC is configured into its client host

with fallbacks, similar to the Domain Name System (DNS) configuration scheme. If

a NOC attempting to connect to Repository A discovers that it is unavailable, it can

then learn from a fallback table which it stores that the next preferred server for

connection is some other Repository B. The NOC sends the connection message to

Repository B and continue performing transactions as necessary at this site.

Client

:
Client Interface

Database
Server Interface

Files-

Other Servers

Database Administrative Interface

Figure 4-1: Repository Design

All NOC interaction with the repository uses the Client Interface, which supports

a small number of fundamental operations. Thus there is a clearly defined, open

interface for the repository that allows others to write client-side applications and

higher level interfaces. A server's Incremental Changes Table simply contains the

names of all the new files uploaded to the repository that other servers need to

obtain. Servers contact each other every day to get the new objects that have been

added to the repository.

The repository enforces access control based on what data is involved and who

40

accessed or submitted it. Each object is verified 1 by making sure that it is signed by

the purported and authenticated organization. The repository can store certificates,

CRLs and AAs, and Certification Paths.

4.2 Requirements

This section discusses some of the specific functions that need to be addressed by the

repository.

4.2.1 Database Requirements

The database must support the storage of the following types of data objects in

separate database tables:

" X.509 Certificates

* Certification Revocation Lists (CRLs)

* Address Attestations (AAs)

* Certification Paths

The first three types of objects are required by the S-BGP system. The fourth ta-

ble contains certification path objects, which are used in the access control mechanism

for the first three types. Instead of storing the actual paths, we could store certifi-

cates only and recreate the certification path whenever it is needed for verification.

However, we choose to store the whole certification path to prevent other NOCs from

not being able to validate the objects that they download because of a premature

deletion. NOCs can look up the whole path in certification path table, even if one

of the certificates constituting this path had been deleted from the database before

other objects that need the path have been replaced by ones using a new path.

The repository must also support Additions and Deletions, which allow NOCs

to modify the repository as new certificates, CRLs and AAs are generated, and old

'The actual signature is verified by the NOCs.

41

ones expire. While a search function is not required, it would help to increase the

usability of the repository by the administrators. For example, an administrator

might use the search function to determine if an object were in the database without

downloading the whole database table. Search functions are not supported for the

NOCs as explained in Section 4.4.1.

The repository is not going to handle life cycle requirements such as CRL replace-

ments or certificate expirations. The NOCs have the responsibility of deleting any of

their objects that expire and adding new objects.

4.2.2 Upload Requirements

The upload files (batch files) from the NOC have security requirements, as well as

requirements for the correct processing of individual transactions included in the files.

The repository must be able to retrieve the batch file signer's certificate, which con-

tains the public key corresponding to the private signing key, and verify the signature

on the file. It also has to be able to store the batch files which were uploaded until

they can be processed. The uploaded files must be saved in a directory until the other

servers have copied them during synchronization as described in Section 4.4.4.

The repository must be able to extract the individual transactions from the batch

file and perform all these transactions. When a transaction fails, it must return an

error code depending on the type of failure, which can then be incorporated into a

reply message. These errors must be noted in the Log File as discussed in Section 5.6.

If a transaction is error-free, the reply message must also include a "Successful" code

to indicate this. A summary of transactions performed must be written to the Audit

log, also described in Section 5.6. The repository also needs a mechanism for the

reply message to get back to the NOC that uploaded the file about whether the

addition or deletion of the particular items were successful. Each transaction may

have a dependency transaction list. This list contains the IDs of all the transactions

upon which the current transaction is dependent, i.e., the current transaction must

not be performed unless all the transactions on which it is dependent have succeeded.

Therefore, we must be able to check the status of all dependent transactions, and

42

ensure that they were successful before doing the current transaction. Furthermore,

it must ensure that all previous uploads from a given NOC have been processed before

performing the transactions in a later upload, due to dependency restrictions.

4.2.3 Download Requirements

The repository must support full database downloads. The webserver must also be

able to identify which object files have been requested for download: certificates,

CRLs, AAs, or certification paths. The Download Processor must be able to generate

download files daily, each of which contains all the objects of a particular type in the

database. The download files are saved on disk and transferred to the authenticated

NOCs when they are requested.

4.2.4 Data Replication

The repository must also support the replication of data among multiple physical

sites for load balancing potential and also for robustness in case of failure for any

reason such as Denial-of-Service attacks, Operating Systems failures, power failures

etc. It therefore must have a synchronization process for the servers, so that each

server can be updated with transactions that were submitted to other sites.

4.2.5 Capacity

The following figures apply to the S-BGP database based on estimates of the Internet

environment given in Secure Border Gateway Protocol (S-BGP) - Real World Per-

formance and Deployment Issues by Kent, Lynn, Mikkelson and Seo [4]. This paper

states that in February 1999 it was estimated that there would be about 58,600 cer-

tificates in total: 4 for Internet registries, 44,000 for organizations that owned address

prefixes, 1,800 for organizations that had been assigned AS numbers, 5,300 for au-

tonomous systems, and 7,500 for BGP speakers. We expect 1 AA per organization

that owns an address prefix, and 1 CRL per autonomous system. Since we anticipate

43

that this number will grow each year, the database must therefore be able to handle

this number of objects in each of its tables:

* 100,000+ certificates

* 100,000+ AAs

0 10,000+ CRLs

CRLs are expected to be replaced daily, whereas certificates and AAs are likely to

be valid for one year. We therefore expect all of them to be replaced every year, and

we assume that these replacements are spread out over the whole year. Therefore we

have, number of adds and deletes to be approximately:

200,000 objects * 2 (add and delete) / (5 work days/week * 50 work weeks a year) =

1,600 objects/day. The paper also estimated that there would be 175 new certificates

a year. So in total, we estimate that less than 15,000 objects will be uploaded every

day. However, since each NOC will upload its own objects, and we have over 5,000

NOCs, each upload file will contain only about 3 transactions per day.

4.2.6 Security Requirements

The repository needs access control mechanisms to restrict who can access what data.

The access control encompasses authentication and authorization. Authentication

mechanisms are needed for NOCs uploading and downloading data, and for servers

during synchronization, as well as for remote access by an administrator, whereas au-

thorization checks are needed for individual objects in the upload files. The measures

taken to obtain these security requirements is described in detail in Chapter 5.

As described in previous chapters, the repository provides storage for 4 types of

objects: certificates, CRLs, address attestations (AAs) and certification paths. The

repository supports both downloads and uploads of data items. Furthermore, all

of the objects transferred to and from the repository are individually, intrinsically

digitally signed, i.e., the signature is a part of the actual object. Upload files, ICT

files and Reply files, are also signed as blocks. The motivation for the storage of the

certification paths in the database is discussed in Section 4.4.2.

44

Download transactions are authorized for all authenticated members of the S-BGP

community. This means that any user identified as a NOC operator or a repository

administrator is authorized to perform a download. The identification is based on the

possession of an SSL client certificate issued under the S-BGP PKI. This requirement

is imposed primarily to prevent Denial-of-Service attacks against repositories through

unauthorized download requests.

Upload requests must also be authenticated based on proof-of-possession of a

SSL client certificate issued under the S-BGP PKI. In addition, it is necessary for

transactions in upload files to be authorized correctly to prevent destruction of data

in the repository by overwriting. Only users identified as NOC operators with one of

these SSL certificates are allowed to initiate uploads. When an upload file is received

from an authenticated user, the repository must verify that the set of data items to

be uploaded is within the responsibility of the user, i.e., that the user is authorized

to "manage" this data. These items include the certificates, CRLs, and address

attestations that are associated with the portion of the address and AS number space

that the user represents. This scope of authorization is inferred from the user's

certificate, specifically the S-BGP extensions.

4.2.7 Efficiency

Time constraints are important for S-BGP so that data gets distributed within the

system without significant delay. Repository interactions performed by the web server

should therefore be optimized. It should only take a few minutes for a NOC to up-

load files or download the whole database. Synchronization of the servers should

occur within reasonable time intervals (approximately 24 hours) in order to propa-

gate changes within the system in an acceptable time period. This time period is

considered reasonable as we expect NOCs to provide uploads on a day-to-day basis.

45

4.3 Repository Structure

The high level repository design is very simple. The components of the repository are:

the database and database files (the download files) for data storage, the Client Inter-

face through which the NOC interacts with the repository, and the Server Interface

through which synchronization occurs. We now describe each of these components,

as well as the Administrative Interface. Figure 4-2 shows how the Administrative

Interface and the components of the Client Interface, the Apache Server, the Upload

Processor and the Download Processor, fit into the repository structure. The Server

Interface is shown in Figure 4-4 in Section 4.4.4 on Synchronization.

Administrator

NOC Z

Repository https

Ap 8
Reply

Directory

In Out
Processed Directory Directory
Directory/

ICT

Reject I Upload t' Download
Directory Processor , . Processor /

,Nsshd Remote PostgreSQL
Access Database

Figure 4-2: Structure of the Repository

46

4.3.1 Data Storage

Information in the repository is held in the persistent store (database). The imple-

mentation of the database is completely hidden from the outside and is accessed using

the Client and Administrative Interfaces only.

The data in the repository is organized according to the object type. The database

thus contains four database tables. There is a certificate table, a CRL table, an AA

table, and, finally, a certification path table, which stores the certification paths from

the batch files uploaded by the NOCs. These paths will be used for validating the

certificates, CRLs and AAs when they are downloaded by the NOCs. Within each

table, we store the fields needed to identify a particular object, as well as perform all

the functions that our repository supports (mainly authentication, add, delete, and

access control). These fields are outlined in Tables 4.1-4.4. The actual objects are

also stored in the database tables. They are encoded because the database does not

support the inclusion of the null bytes that appear in a DER-encoded object2 . The

first three tables also contain a reference to the sequence number of the certification

path so that its references to the count can be easily maintained when these objects

are deleted from the database. This is described further in Section 4.4.2.

For each table there are also fields that are used to give unique identifiers for

the objects. For the certificates, we use the hash of the issuer name and the serial

number since certificates issued by an entity have unique serial numbers. The hash of

the issuer name is enough for the CRL database since we only store the most recent

CRL per issuer distinguished name, while for the last two databases we use the hash

of the objects (aaHash and cpathHash) as these have a very high probability of being

unique (since the chance of collision with SHA-1 hash is very small'). In the rare

occurence that a collision does occur, both objects are written to the database with

the same key. This means that if either of the objects is to be deleted, the database

would return both records instead of just the one intended for the operation. The

database then does a byte-by-byte comparison of the object to be deleted and the

2 Distinguished Encoding Rules (DER) is a type of encoding used for ASN.1 objects.
3The probability of collision for a 160-bit hash with 1 million objects is (1oo ooo)/216o < 22120

47

Field Name Description
seq Index Number (generated when the object is added)
sn Serial Number
iHash Hash of Issuer DN (distinguished name)
iDns Issuer DN - DNS form
cert text Actual Certificate (encoded)
cpath-seq Index Number of the Associated Certification Path

Table 4.1: Certificate Table

Field Name Description
seq Index Number (generated when the object is added)
iHash Hash of Issuer DN (distinguished name)
iDns Issuer DN - DNS form
crl text Actual CRL (encoded)
cpath-seq Index Number of the Associated Certification Path

Table 4.2: CRL Table

Field Name Description
seq Index Number (generated when the object is added)
aaHash Hash of the address attestation (AA) object
aa text Actual AA (encoded)
cpath.seq Index Number of the Associated Certification Path

Table 4.3: Address Attestation Table

Field Name Description
seq Index Number (generated when the object is added)
cpathHash Hash of the certification path object
count Number of references to that certification path
cpath text Actual certification path (encoded)

Table 4.4: Certification Path Table

48

objects in the records returned, and then only deletes the record that was requested

for deletion.

4.3.2 Client Interface

The Client Interface is the part of the repository that interfaces with the outside

world i.e., where the NOCs request services from a repository. The Client Interface

implements all accesses to the data stored, converts between the internal and external

forms of objects, and manages rights and permissions. A web server is at the front end

of the Client Interface. The web software provides a user-friendly interface to a NOC

for uploading and downloading objects. It also performs authentication of all the

users connecting to the repository. Authentication is based on proof-of-possession

of an SSL certificate issued to the NOC operator under the S-BGP hierarchy, as

described in the next chapter. The Client Interface also includes the Upload Processor

and the Download Processor, which are the functions used to process the upload and

download files. The Upload Processor performs the individual transaction in the

batch file, and does authorization checks for the objects presented by the NOC. The

Download Processor generates the database files for the NOCs to retrieve. The NOC

interacts directly with the web interface only, but the web interface accesses the same

directory structure as the Processors.

4.3.3 Server Interface

This interface is used for server-to-server communication. The methods it supports

are for the sole purpose of synchronization. The files received during synchronization

are processed by the Synchronization Processor, which is described in Section 4.4.4.

The Server Interface also performs server-to-server authentication during this pro-

cess. The process is automated and is scheduled to run at certain times. We are

using a "pull" mechanism in which the servers ask for the updates on a regular basis.

If it becomes necessary, "push" methods can be implemented later on to propagate

changes. The pull model allows the server to request the Incremental Change Tables

49

(ICTs) and batch files on a scheduled basis and so it can keep track of which others it

receives information, and decreases the load on the overall system since there would

be less server-to-server connections made. Additionally, it is used to prevent unex-

pected interruptions or errors. For example, Server A may "push" data to Server

B while Server B is running its Synchronization Processor. Server B may get the

ICT and begin processing it before the batch files have been received. In this case,

Server B gets a number of "File not found" errors, and so does not get synchronized

properly. Otherwise, servers can be configured not to receive "push" data while their

Synchronization Processor was running. If this were the case, Server A would have

to keep trying to send the files to Server B until Server B was ready to receive them.

4.3.4 Administrative Interface

The administrator has an account on the system that is used to log into a particular

repository remotely and to manage any problems that might come up. He or she must

be able to perform all the standard functions, i.e., additions, deletions and searches,

in addition to being able to view the audit file and the log file.

The Administrative Interface connects the administrator to the database and thus

any changes made are written directly to the database tables. It is therefore very im-

portant that only authorized people are allowed to use this interface. The administra-

tor logs into the server and provides an SSL certificate. Authentication is therefore

based on proof-of-possession of the SSL certificate. These mechanisms allow us to

track who accessed the data at which points in time. Each administrator also needs

an Operating System account, and the use of a password could be optional, depend-

ing on the requirements for a particular repository. For example, if the administrator

always connects via SSL, he or she does not need a password, whereas if he or she

logs in to the server from the console, a password may be required. All transactions

performed by the administrator also have to be logged. Furthermore, the Upload

or Download Processors must not be run while an administrator is doing anything

on that server, with the exception of viewing the audit log. The reason for this is

that the administrator may be changing the data in the database, which can impact

50

both uploads and downloads. However, access to the repository by the NOCs is not

affected since the web interface is used to access the directory structure that holds the

download files for retrieval by the NOCs and the upload files until they are processed,

but not the actual database.

4.4 Data Transfer

Figure 4-3 shows the flow of data between the S-BGP server and the NOC, and among

the S-BGP servers. The distribution of data, i.e., the certificates, CRLs and AAs,

occurs in the following ways:

1. Uploads of the data items to the S-BGP server after they are generated by the

NOCS.

2. Downloads of the entire database from the S-BGP server.

3. Synchronization among S-BGP servers in which uploads made to one server

are copied by the other servers, which minimizes the effects of outages on the

repository. For example, if one repository site cannot be accessed, NOCs can

simply be routed to another server using a fallback table which it stores. This

fallback table is an ordered list of the repository servers to which it can connect,

so if one is not available, it can go down the list to find an alternative.

4.4.1 Single Transactions

This section gives a brief description of the additions, deletions and searches transac-

tions that can be executed by the repository. However, for upload files, only additions

and deletions are currently supported. For a replace operation, the NOC needs to

perform a deletion of the old object and then addition of the new one. Before doing

a transaction from the batch file, we need to verify that the NOC that uploaded the

file is authorized to perform this transaction. The algorithm used for this authoriza-

tion process is described in Section 5.5. The signatures of the individual objects that

51

3. Synchronization

S-BGP Server S-BGP Server

1. NOC 2. Database
Upload Download

NOC

Figure 4-3: S-BGP Server Data Transfers

are added and deleted are not checked since the batch file is signed and the Upload

Processor can verify the integrity of its contents by validating this signature (by the

end-to-end argument [14]). Whenever a transaction generates an error, it is written

to the Log File. All transactions performed and their results are noted in the Audit

File. These are described in Section 5.6.

Additions

Additions are performed by providing the new object to be entered. First, the object

being added is checked to ensure that it is issued by the authenticated organization,

and the authorization algorithm is run. If these checks are successful, any additional

information that is needed is calculated (such as iHash for certificates and CRLs).

A query containing all the information to be put in the database is then built. The

"Add" first checks that the object is not in the database. If a match is found, the

object is already in the database. If this happens, we check that the record in the

database has the same certification path as the object we are presenting. In this case,

we do nothing. However, if the certification paths are different, we delete the old

record in the database and add a record with the new certification path reference. If

the object is not found, the appropriate record (containing the new object) is added

to the database. The reference to the certification path count is updated as described

52

in Section 4.4.2. A reply is generated based on the results of the transaction. These

reply codes are given in Appendix A.2.

Deletions

Deletions are performed by providing a copy of the object to be deleted. The first

step is to verify that the purported operator is authorized to delete the particular

object. Next, any additional information is calculated as needed and the database

query is built. The "Delete" checks if there is any such object in the database. If

there is a match, the object is then deleted. The reference to the certification path

count is updated accordingly as described in Section 4.4.2. If there is no match, there

is no object to delete. A reply code is then generated as for the Addition.

Searches

Searches are performed by providing a copy of the object. As currently implemented,

searches can only be performed by an administrator and they confirm whether or

not an object is in the database. Since all administrators are allowed to search

for objects in the database without any restrictions, there is no need to perform

any verifications on the object submitted to the search. Currently, the additional

information is calculated as for the Addition and the database query is built. The

"Search" checks if there is any such object in the database. If there is a match, then

an "object found" message is returned. Otherwise a "not found" message is returned.

Searches based on certain criteria will be supported by the repository in the fu-

ture, as mentioned in Section 7.1.1. This functionality will be supported only for

administrators. Since it is very unlikely that administrators will have copies of all

the objects in the database, if there is any problem, they would need to search by

some other criteria, most probably the issuer name and serial number. However,

the repository does not allow the NOCs to perform searches as this adds too much

overhead to the servers. If the NOC does want to search for a specific item, it can

search in its local database or the database files that it downloaded. Although we

expect that all objects should be available in the downloaded files a long time before

53

they are needed by the routers, the repository does not need to invest resources to

handle this case as the NOCs may simply change the router configuration to accept

the "missing" object, and use the next day's download files to fix the problem.

4.4.2 Uploads to the Repository

NOCs could make uploads to the repository in two ways: update the repository with

additions and deletions as single transactions, or use an upload file (batch file) which

would contain all the transactions that a NOC wants to upload. In our design, we use

the batch file format for uploads as this is more efficient than using single transactions.

Single transactions could be sent from the NOC to the S-BGP server in a syn-

chronous fashion. This allows for the result to be made available immediately instead

of in a reply file. Thus when a transaction fails, the operator is notified and so can fix

the transaction so that others that list this transaction as a dependency do not fail

as well. However, doing things this way would lead to longer sessions with the server.

Also, having the operator check these results would likely mean that uploads would

have to be done during the work day when response times may be longer (net conges-

tion). This also includes the human factor i.e., users could become frustrated easily

by long delays, which may lead to requirements for faster server hardware. Changes

to the server are therefore made in a batch file format. Note that if a NOC only has

one change to upload, it still produces a batch file containing that single transaction.

Upload Files (Batch Files)

Table 4.5 gives the structure of the Upload file and a brief description of each of the

fields it contains. The serialNumber is used to uniquely identify each batch file from

a particular submitter. The certificationPath from the upload file is extracted

and used as described in the Section on Certification Paths on page 57.

The batch file also contains a list of all the transactions that a NOC wants to

upload to the repository. The file is signed, and the signature must be verified. Each

transaction in the upload file contains an add or delete indicator which directly re-

54

Batch File Field Name Description
serialNumber The Serial Number of the Upload File
submitter The Issuer Distinguished Name of the NOC operator that

submitted the file.
keyIndentifier Key Identifier of the submitter.
email This is an optional field for the email address of the NOC

operator.
certif icationPath The certification path for the upload file.
transaction-list List of transactions to be processed.

Table 4.5: Structure of the Upload Files

lates to the type of transaction to be performed, an object type (certificate, CRL, or

AA) which identifies the database table relevant to the transaction, and the objects

to be added or deleted. The transaction also has a list of dependency transactions

that are only valid for the duration of the interval during which the batch file is being

processed. Before doing a transaction, we first ensure that the NOC is authorized

to add or delete the particular object from the database, and, if so, we check our

dependency transaction list, which contains all the transaction IDs in the current

batch file upon which this transaction is dependent, to make sure that all the trans-

actions listed there were successful. To do this check, the NOC operator must order

the transactions in the Upload file such that transaction IDs that occur in the depen-

dency list of a given transaction represent entries that precede it in the batch file. If

this ordering is correct, the transaction can proceed. Otherwise, the reply code for

a dependency failure is generated and the next transaction is processed. Similarly, if

there is any other error in a transaction, the appropriate reply code must be returned

before the rest of the batch file is processed. The ASN.1 specification of the Upload

file (S-BGP-Repository-Transactions) is included in Appendix A.1.

If the upload file is not in the correct format or the signature on the file is invalid,

then we have an intolerable error (as defined in Section 6.6) and the file is moved to

a reject directory. This way it is not propagated throughout the system. However if

there are no fatal errors but one of the transactions within the batch file fails while

being processed, the file is still considered "good" and it is moved to a directory

55

where it is made available to other servers during synchronization. The file name is

also written to the Incremental Changes Table as described later in this Section.

Reply Files

The reply file is constructed by the Upload Processor after it processes a batch file.

The file contains the same serial number and submitter as the original batch file, the

name and key identifier of the repository, and the certification path for the repository.

It also includes a list of replies. Each entry in the list contains a transaction ID, the

type of operation performed, the object type, and the corresponding reply code that

was generated on performing that single transaction. The reply file is then signed and

placed in a special directory from where it can be retrieved by the NOC. The NOC

is able to identify the reply due to the naming of the files. The reply files have the

same name as the upload file, with the suffix reply added. The ASN.1 specification

for the reply file (S-BGP-Repository-Replies) is given in Appendix A.1.

Incremental Changes Table

At each repository, an instance of the Incremental Changes Table, ICT, keeps track

of the upload files that have been processed at that particular location. It is used for

synchronization and is modified every time the server processes a batch file. Each

item in the ICT is the full name of a batch file. Whenever a server processes a batch

file, if there are no intolerable errors then the server writes the full pathname of the

batch file to the ICT. If the synchronization period on the system is set to x hours,

i.e., the servers retrieve data from other servers once every x hours, then a new ICT

should also be started every x hours. The old ICT is then signed by the server using

the private key corresponding to the public key in its Repository end-entity (EE)

certificate, and placed in a special synchronization directory from which other servers

can obtain it. We can configure the servers to keep more than one ICT (and not

just the latest one) in this directory. This is useful if a server is down at the time it

would have normally synchronized with another server, since it can now retrieve not

just one ICT but all the ICTs that it missed. The old ICTs can then be deleted after

56

a few synchronization periods have passed since it is assumed that they would have

been retrieved and processed by then. Note that the synchronization period will be

standardized for the servers.

Certification Paths

The certification paths stored in the database are constructed by the NOC and are

included in the Upload files. As mentioned earlier, the retention of certification paths

is to prevent problems if a NOC deletes a certificate that is needed to validate another

object that is still in the database. Certification paths are not explicitly added to the

database, i.e., they are never added by a NOC. Instead, they are added to the database

as part of the Upload Processor functions. If the path already exists in the database,

then its sequence number is found, while, if the certification path does not exist in

the database, it is added and its sequence number is returned. For every "Add"

transaction in the batch file, the count related to that seq number is incremented,

and for every "Delete" transaction, the count is decremented. In this way we can

keep track of when a certification path is still being used (its count is greater than

zero). When the count becomes zero, the certification path is no longer needed to

verify the signature on any object in the database and so it is deleted. Furthermore,

objects added at the Administrative Interface have no certification path associated

with them so the cpathLseq for those records are NULL. The certification path count

is decremented when objects that reference that path are deleted.

4.4.3 Database Downloads

A NOC could obtain all changes made in a given time period by obtaining all the

relevant changes that were made at a repository since it last synchronized its database

or by downloading the whole database (certificates/CRLs/AAs). In the repository,

we support full database downloads.

Allowing the server to obtain relevant changes can be performed in two ways:

allowing the NOC to query for changes made to the repository since its last set of

57

downloads, or by generating incremental download files on a daily basis. Files that are

generated on a daily basis containing changes to the database (incremental download

files) may be used in the future as described in Section 7.1.1. While getting the

changes may be more efficient than processing the whole database, it may cause a

strain on the server as each NOC would have to query the server for the transactions

since its last connection, and the server would then need to generate the appropriate

file. This also opens the door for potential errors with time inconsistencies, which

could lead to the NOCs not getting all the objects. To prevent this, we therefore

use full database downloads. At a specified time every day, the server generates four

files, one for each type of object stored in the database (certificates, CRLs, AAs

and certification paths). The files contain the time, the name of the repository, the

object-type, and all the objects in the database of that type concatenated together.

The NOCs then download these files from the repository. These files are not signed

since the objects they contain are individually signed and each signature is verified by

the NOC after the download. Also, the download takes place over an SSL connection

which ensures data origin authenticity and connection-oriented integrity. Note that

this is due to our requirement that database downloads should only take a short

time. The ASN.1 specification for the download file (S-BGP-Repository-Downloads)

is given in Appendix A.

Methods of Secure Download File Transfer

We use HTTPS as it is the most popular and widely available of the three options

investigated, gives comparable performance to the other options, and can be used

with a simple web interface. HTTPS also uses SSL, the same protocol employed for

uploads, and that the use of this protocol is consistent with the PKI that S-BGP

employs. The NOC therefore connects securely to this web interface and proceed to

download the database files.

In choosing this method, we considered HTTPS and two alternatives for transfer-

ring the database download files from the server to the NOC.

1. A "secured" FTP: FTP clients do not encrypt a connection automatically

58

before asking for a password. Therefore we would need a special FTP client

which was modified to authenticate and protect the FTP session. This could be

done using IPsec (in which case the certificates for authentication would have

to be passed in the IKE exchange4 that sets up the security association), or

Kerberos (as in Kerberized FTP).

2. SCP: scp is a secure alternative to the regular UNIX rcp command for copying

files between hosts. scp uses SSH for authentication and data encryption. It

can be used it between hosts with SSH installed.

3. HTTPS: The last alternative was one in which the NOC does an HTTPS GET

request for the download file.

In each option, the NOC sends an HTTP response immediately, indicating whether

or not the operation succeeded.

4.4.4 Synchronization

The repository uses multi-master replication i.e., any server may accept modifications

for a given entry. There is no need for conflict resolution because each object is

not being identified by a sequence number but by some other handle that is unique

globally. As noted in Section 4.3.3, we adopt a "pull" model in which the servers

query for the changes instead of forwarding any changes made to the other servers

("push" model).

Synchronization between servers must be done fairly often to ensure that routers

can get changes made to the repository by the upload files before the routes that

require this new information are propagated, and also to minimize inconsistencies.

All batch file updates within a certain time period on a given server can be received

by another server simply by retrieving the Incremental Changes Table of that server

and the batch files that it specifies. The ICT, as mentioned earlier, is signed using

the private key of the server that generated it. Other servers can therefore validate

4The Internet Key Exchange protocol given in RFC 2409. http://www.ietf.org/rfc/rfc2409.txt

59

Server

Figure 4-4: Synchronization

60

epository https

Apach

ICT Out ICT In/Serverbfs

Directory Directory

'Synchronization
Processed .. Processor
Directory/ - - -

ICT

Upload
Processor

Reject --- -

Directory

PostgreSQL
Reply Database

Directory

R

the signature on the ICT to verify the integrity of its contents. Server-to-server

authentication must be performed before any information is transferred.

The Synchronization Processor and the directories used during this process are

shown in Figure 4-4. For synchronization, the other servers get the batch files from

the "Serverbfs" directory, and can validate their signature without actually checking

the signatures on all the digital objects that they contain. When all the files (ICT

and batch files) are received by the server, the Synchronization Processor processes

all the batch files in the ICT in the order in which they are listed, if they have not

previously be processed. It checks whether or not each batch file listed in the ICT

has already been processed by comparing the names of the files to minimize the time

wasted on going through transactions that were already done.

Consider Figure 4-5, which gives an example of synchronization among 3 servers,

A, B, and C:

1. Server B gets Server A's ICT. It processes all the files contained in that ICT

and adds those new batch files to its current ICT. Server B's ICT now contains

all the uploads at both Server A and Server B up to that specific time.

2. Server C gets Server B's ICT and makes all the changes in that ICT. Its current

ICT now contains all the uploads at both Server B and Server C, as well as the

uploads at Server A up to the time that Server B got Server A's ICT.

3. Server C then gets Server A's ICT. Server C will already have processed some

of the uploads in this ICT since it received them from B's ICT. However there

may have been objects added since Server B got A's ICT. Server C can now get

these batch files immediately instead of waiting for the next time it synchronizes

with Server B at which point B should have received A's new batch files.

4. Server A gets Server B's ICT at a later point in time. When processing this ICT,

it checks if a batch file has already been processed as described in Section 6.8 and

only performs the transactions in the files that it had not received previously.

61

5. Server A gets Server C's ICT. Again, Server A ignores all batch files that it has

previously processed.

6. Server B gets Server C's ICT. Similarly, Server B ignores all batch files that it

has previously processed.

Server A Server B

4

ICT N , ICT

3 2 F

5 6

Server C

Figure 4-5: Synchronization Example

Since we anticipate only 10-15 servers in the system, it is feasible for each server to

get updates from all others during every synchronization period, as outlined above.

Alternatively, the system administrators for the S-BGP system can specify some

subset of servers that any particular server needs to synchronize with. This subset can

be carefully chosen to ensure that changes propagate throughout the whole system.

These accesses should be done in the same order every day, and should be staggered.

Note that the NOCs are not affected in this process since they are still be able to

access the web interface. Initially, our servers synchronize with all the other servers.

62

Chapter 5

Security Mechanisms in the

Repository

While Chapter 4 described the requirements and overall design of the repository,

this chapter discusses the security mechanisms that are employed. It begins with

Authentication and Confidentiality and then goes on to Integrity and Data Origin

Authentication, which includes the use of digital signatures and storing the server's

private key. It then gives a detailed discussion of the repository's Access Control

mechanism. It details the S-BGP private extensions, how the certification path is

used, and gives an algorithm for the authorization mechanism, which used the IP

address space and AS identifier subset relationships. The chapter concludes with a

description of logging and other security concerns.

5.1 Overview

When a NOC connects to the repository, it is authenticated by the web server by

presenting an SSL certificate issued under the S-BGP hierarchy to the server. If this

is successful, the NOC can now download files or upload files. For uploads, the batch

files are processed by the Upload Processor. The Processor first validates the signature

on the batch file. If the signature verifies, it then checks that the certification path

provided in the batch file is also valid. When processing each individual transaction,

63

it runs the authorization algorithm on the particular object to ensure that the NOC

operator is allowed to upload the data. This algorithm uses the S-BGP private

extensions SBGPIpAddrBlock, SBGPASNum and SBGPRouterId that were introduced in

Chapter 3 to perform these checks.

5.2 Authentication Mechanisms

In the repository, a multi-phase authentication scheme is used for uploads. First

the upload session needs to be authenticated. This is done to prevent unauthorized

upload sessions. When a client, i.e., a Network Operations Center (NOC), wants

to upload files, it is authenticated by the web server using an SSL client certificate.

These authentication tools are built in to the Apache OpenSSL server that we are

using. Second, the uploaded file has to be authenticated. This is done during the

actual processing of the file by verifying its digital signature. If the signature is

invalid, this is treated as a fatal error and the file is rejected.

5.3 Confidentiality

Confidentiality refers to the disclosure of data in the system by policy only. Most

policies restrict who can see the information within the system. In our repository,

confidentiality is not a key concern as most of the data transmitted is public domain

information. Instead, we are more focused on ensuring that the data transmitted

to or from the repository, or stored within it, cannot be altered undetectably, either

maliciously or by an error.

5.4 Integrity and Data Origin Authentication

Data integrity refers to ensuring that any data received by a NOC or server in the

repository have exactly the contents that were sent. Data can be altered through

a malicious attack or through an unintended communication error. The repository

64

therefore aims to prevent modifications by unauthorized users, as well as improper

modifications by authorized users. Preventing unauthorized modifications is achieved

by data origin authentication through the use of a certificate, which is presented to the

web front-end. Each authenticated NOC is authorized to manage only a specific set

of objects in the database and these modifications are controlled by the Authorization

Algorithm described in Section 5.5.4.

5.4.1 Digital Signatures

Most of the data transferred to and from the repository must be signed. This includes

the individual certificates, CRLs, and AAs in both the upload and download files,

the actual upload files, the reply files generated when a batch file is processed, and

the Incremental Changes Table (ICT that is used in synchronization). Integrity is

achieved by having a NOC operator sign the upload files using a private key that

is authorized for digital signature usage, which can then be verified using an end-

entity certificate for the operator. The download files are not signed by the server.

Instead, SSL ensures that the NOC operator is retrieving a file from the repository

in question and protects the integrity of the file during download. The download

files are validated using a number of checks including validating the signatures on

each certificate, CRL or AA, checking the revocation status of the certificates, and

verifying IP address space and AS number delegation.

Generating the Digital Signature for the ICT and Reply Object

In order to generate the digital signature, we use the server's private key. The server's

public and private key pairs are generated at the time that the server is set up. Again,

there may be two server certificates: an RSA certificate for the SSL session and a

DSA certificate for signing the ICT files and the Reply object generated by the Upload

Processor on processing a batch file. The private key of the DSA certificate is used to

sign the data in the ICT and the Reply object, and the public key is used for verifying

the signature by other servers and NOCs respectively. To sign the ICT, we supply

65

the software used for signing with the data, i.e., the file to be signed, generate the

signature, and save the signature and the public key in files. Signing the Reply object

is carried out in a similar manner; we supply it with the software and the reply data

to be signed, generate the signature, and save the signed object to the Reply file.

Verifying the Digital Signature on the upload file

In order to verify a digital signature, we need:

" The data i.e., the SignedTransactions object from the batch file (see Appendix

A.1 for ASN.1 specification)

" The signature (which is in the batch file)

" The public key corresponding to the private key that was used to sign the data

(from the NOC operator's certificate, usually a DSA key)

We first get a signature object and initialize it with the public key for verifying

the signature. We then supply it with the data whose signature is to be verified, and

verify the signature. The NOC operator's certificate also needs to be verified using

the certification path and trusted root certificate as discussed in Section 5.5.3.

5.4.2 Storing the Server's Private Key

As described earlier, certificates are used both for authentication and for verifying

the integrity of the data. However, these certificates may not necessarily be the

same. For instance, the operator certificate that is used for web authentication may

not be the same certificate used for signing upload files. The reason for this is that

common browsers (e.g., Netscape and Microsoft Internet Explorer) require that the

subject have an RSA key, and the private key in the browser cannot be used to sign

arbitrary objects such as the upload file. Therefore another certificate that typically

contains a DSA key may be associated with the signature on the upload file i.e., a

second operator end-entity certificate may exist. Similarly, the server also may have

two certificates: an RSA certificate to authenticate itself to the NOC through the

66

browser, and a DSA certificate to sign the data in the reply and ICT files. Thus the

server also has two key pairs.

The server must be able to store its public and private keys securely and must be

able to keep the private key secret. It is recommended, where possible, that hardware

be used to protect the private keys, and the reply files can be signed off-line or on a

separate box and then transferred to the server. While this hardware protection is

good, it has not been implemented for the repository. Furthermore, the compromise

of the server could cause the hardware to sign bad data structures anyway.

If the private keys are compromised, then an adversary can use the SSL key to

impersonate a server, and use its DSA key to fraudulently sign invalid download or

ICT data. If a server is impersonated, a NOC could be fooled into "uploading" its

data to the compromised server. The changes that it intended to make would therefore

never be seen by the repository, and thus routers would never see the data needed to

validate any routes that require this new information. Similarly, if the DSA key is

compromised, a NOC can be tricked into downloading invalid data which it would then

try to verify, or other S-BGP servers can get bad ICT data during synchronization,

and pass the data on to all the NOCs that connect to them. Furthermore, if the keys

were compromised, it is possible for an unauthorized deletion of data to occur, which

is more difficult for the NOCs to detect.

5.5 Access Control for the Repository

In the Repository, we want to ensure that a NOC operator is authorized to perform

the add/delete transactions that it has submitted for processing. When a NOC wants

to upload files, it is authenticated by the web server using SSL, and then uploads a

file. The file is placed in an input directory, a holding queue that is accessed by the

server management software. The checks for whether or not the NOC is authorized

to perform a given transaction are done by the Upload Processor and not the web

server. Thus there is no requirement for the web server or client browser to interpret

S-BGP certificate extensions.

67

Type of Certificate S-BGP Extensions contained
Repository admin certificates SBGPIpAddrBlock and SBGPASNum
Server EE certificates SBGPIpAddrBlock and SBGPASNum
NOC operator certificates SBGPIpAddrBlock and/or SBGPASNum
ISP/DSP/Org CA certificates SBGPIpAddrBlock and/or SBGPASNum
Network EE certificates SBGPIpAddrBlock
Router certificates SBGPRouterId

Table 5.1: S-BGP Private Extensions Present in S-BGP Certificates

There are three S-BGP private certificate extensions: the IP address extension,

the AS identifier extension, and the Router identifier extension. As mentioned in

Chapter 3, the S-BGP PKI uses certificates with these extensions to convey autho-

rization to use IP address blocks, AS numbers, or to bind a BGP router identifier to

a specific AS. This authorization is done by checking the subset relationship, which

refers to the prefixes for one of these extensions in one certificate being also included

among the prefixes for that extension in another certificate. This is discussed in

Section 5.5.4, but first we describe the S-BGP extensions in more detail.

5.5.1 S-BGP Certificate Extensions

Table 5.1 characterizes the certificates used in the S-BGP PKI, based on the use of

both standard certificate fields and extensions, plus S-BGP-specific extensions.

The BasicConstraints extension contains the cA flag which is set to TRUE for

the ISP/DSP/Org CA certificates. All other certificates in the table are end-entity

certificates, and so the cA flag is set to the default FALSE. The S-BGP extensions

provide methods for associating additional attributes with users or public keys and

for managing the S-BGP certification hierarchy. There are three S-BGP private

certificate extensions: the IP address extension, SBGPIpAddrBlock, the AS identifier

extension, SBGPASNum and SBGPRouterId, the Router identifier extension. The ASN.1

specification of these extensions is given in Appendix A.2.

68

SBGPIpAddrBlock ::= {
{ addressFamily '000101'H -- IPv4 unicast
ipAddressChoice addressesOrRanges { addressPrefix = '080A'H } -- 10/8

}
}

Figure 5-1: SBGPIpAddrBlock Example

IP Address Extension

The IP address extension, SBGPIpAddrBlock, in a certificate consists of a sequence

of AFI or Address Family Identifier (usually IPv4 or IPv6) and SAFI or Subsequent

Address Family Identifier (SAFI 1 - unicast, SAFI 2 - multicast, and SAFI 3 - both)

entries. The root has all IP address blocks that can be allocated. However, there are

some that cannot be allocated e.g., net 10 is for general use, while others e.g., nets

0 and 127 are reserved. Therefore these nets are not in the root certificates. Each

registry's certificate contains the ranges for which that registry is responsible. Each

AFI/SAFI entry contains either an "Inherit" flag or a sequence of address blocks.

For example, we can have a sequence of address blocks as shown in Figure 5-1, which

asserts that the operator can manage upload files containing certificates and AAs with

IPv4 unicast prefixes 10/8 i.e., addresses through 10.0.0.0 through 10.255.255.255.

AS Number Extension

The AS identifier extension consists of a sequence of AS numbers as well as RDI

(Routing Domain Identifier) entries. As for IP address blocks, the root has all AS

numbers that can be allocated. Each registry's certificates contain the AS number

ranges for which that registry is responsible. Each entry contains either an "Inherit"

flag or a sequence of AS numbers. For example, we can have an extension as shown

in Figure 5-2. This extension asserts that the operator can manage upload files that

have certificates with AS number 1 in their SBGPASNum or SBGPRouterId extensions

but that have no RDIs.

69

SBGPASNum ::= {
asnum asNumbersOrRanges { num : 1 -- AS Number 1

}

Figure 5-2: SBGPASNum Example

Router ID Extension

The Router identifier extension is used to identify router end-entity (EE) certificates.

Any certificate containing a Router identifier extension does not contain either an

IP address or an AS identifier extension and indicates that the certificate binds a

public key to an AS number and to a BGP router's name and ID. Instead, the Router

identifier extension has an AS number or an RDI that must be in the SBGPASNum

extension of the operator certificate that is authorized to manage any certificate with

this extension.

5.5.2 Boolean Inherit

Inherit is a boolean, which specifies whether or not a certificate is allowed to inherit

a particular AFI/SAFI sequence, AS Number sequence, or RDI sequence from its

issuer. Inherit is used only in NOC operator and repository related certificates i.e.,

the repository operator and repository CA certificates. If set to TRUE, then the

subject associated with the certificate e.g., a NOC operator, is authorized to manage

files containing certificates and AAs that have a subset of the AFI/SAFI entries and

the ASnumber/RDIs that are in its (the operator's) issuer's certificate.

Figure 5-3 shows an example of an IP address extension which specifies the inher-

itance of IPv6 unicast addresses, so the operator can manage any objects containing

IPv6 unicast prefixes (or their sub-nets) that are in the issuer's certificate.

SBGPIpAddrBlock :: = {
{ addressFamily '000201'H -- IPv6 unicast
ipAddressChoice inherit { TRUE } -- Inherit from issuer

}

Figure 5-3: SBGPIpAddrBlock: Inherit = TRUE

70

Similarly, for the AS Identifier, we can have a sequence as shown in Figure 5-4.

This sequence specifies the inheritance of AS numbers, so the operator can manage

objects that have AS numbers that are contained in the SBGPASNum extension in its

issuer's certificate, but not any containing certificates with RDIs.

SBGPASNum ::= {
asnum inherit { TRUE } -- Inherit AS numbers

}

Figure 5-4: SBGPASNum: Inherit = TRUE

5.5.3 Validation using the Certification Path

Certification paths are used in two forms in the repository: (1) when the SSL client

certificate is presented to the web server for authentication, and (2) for upload files.

While these two certification paths may be the same, we treat them differently since

we are potentially considering two different certificates: an RSA certificate for au-

thentication at the server, and a DSA certificate which is used to sign the upload

files. Also, the paths are used by different processes.

When the web server is presented with an SSL client certificate, it needs to validate

the certificate. The repository may not yet hold either an assured copy of the public

key of the CA that signed the client certificate (since none of the certificates in

the database are validated) or the CA's name and related information. It might

therefore need the CA's certificate to obtain that public key. In general, we use a

chain of multiple certificates that comprises a certificate of the client (the end entity)

signed by one CA, and possibly one or more additional certificates of CAs signed by

other CA certificates (which also become part of the chain). This chain is known

as a certification path. Processing the certification path includes verifying basic

information for each certificate, checking that the certificate has not been revoked,

and ensuring that the issuer of the ith certificate in the chain was the subject of the

(i - 1)h certificate in the chain.

The certification path in the upload file is the one that is stored in the database.

The certification path in the upload file may work for both the NOC operator's SSL

71

certificate as well as the NOC operator certificate used to sign the upload file. It is

constructed by the NOC and is never explicitly added to the db-cpath table. Instead,

the Upload Processor makes changes to this table when it performs the transactions

from a batch file that contained this path. The CA certificate that issued the operator

certificate used to sign the batch file may not always be in the database. For example,

when an ISP/DSP/Organization is first issued a CA certificate, this is not the case.

For this reason, the certification path is included in the upload file. One benefit of this

is that we never need to access objects in the database when checking authorizations,

and so our process is quicker. Additionally, as we state in Section 4.4.2, this avoids

any errors that may otherwise be generated if a certificate that should be in the

certification path is not in the database.

Certification path validation for the path included in the upload file also utilizes

the SBGPIpAddrBlock and SBGPASNum extensions in the certificates that are described

in Section 5.5.1. In the validation process, we must check that each preceding cer-

tificate in the certification path has an SBGPIpAddrBlock extension that contains all

of the IP address prefixes in the certificate being verified, recursively, until a trusted

certificate has been verified. Similarly, each preceding certificate in the certification

path must contain an SBGPASNum extension that contains all of the AS numbers and

RDIs being verified, recursively, until a trusted certificate has been verified.

The certification path validation tool has been developed in the NOC tools suite

and is used in the repository to validate the certification paths. The validation tool

uses the Certificate Management Library (CML), which is government-sponsored free-

ware currently being maintained by Getronics [1]. One loads a set of trusted root cer-

tificates into the CML, and sets initial path validation policy parameters per S-BGP

requirements. This function takes either a single ASN.1-encoded X.509 Certificate

or a complete ASN.1-encoded CertificationPath as its parameter. It then outputs

the validated public key and parameters returned by the CML, and returns either

SUCCESS or an error code.

72

5.5.4 Authorization Mechanism

After the certification path is validated, the following additional checks are applied

as part of the S-BGP extended validation process:

e IP address space subset relationship for certificates that bind a public key to

an organization and to a set of IP address families and prefixes.

* AS identifier subset relationship for certificates that bind a public key to an

organization and a set of AS identifiers.

The subset relationship refers to all prefixes for an S-BGP extension in one certifi-

cate, X, being also included among the prefixes for that extension in another certificate

Y. To check the subset relationship, each AFI/SAFI entry in the SBGPIpAddrBlock

extension and each AS number/RDI entry in the SBGPASNum extension is processed

separately. For an operation to be authorized, we must check that each of the

AFI/SAFI entries and each AS number/RDI entry or router identifier is valid. Only

if all of these components are acceptable, then the operator certificate is allowed to

perform database transactions using that object.

For the purpose of repository access control with regard to uploading, the following

algorithm is applied to determine whether an operator certificate, X, is authorized to

upload the data in question:

1. Check that the issuer of X (the issuer of the certificate that uploaded the batch

file) is the same as the issuer of the certificate that signed the batch file.

2. Validate operator certificate using S-BGP extended validation algorithm.

3. For each certificate being uploaded,

(a) If Y is the certificate belonging to X's CA, check that the subject name in

Y is the name of the CA that issued X. Otherwise check that the issuer

name in the certificate being uploaded, Y, is the name of the CA that

issued X.

73

(b) If INHERIT = FALSE for any AFI/SAFI or AS number/RDI, then X

is not authorized to upload any object containing that AFI/SAFI in the

SBGPIpAddrBlock extension or that AS number/RDI in the SBGPASNum or

SBGPRouterId extensions.

(c) If INHERIT is not present,

i. Check that the AFI/SAFIs prefixes in Y are all subsets of the

SBGPIpAddrBlock extension in X.

ii. Check that the AS numbers/RDIs in Y are all subsets of the SBGPASNum

extension in X.

iii. Check that any Router ID extension in Y contains an AS number/RDI

that is one of the AS numbers/RDIs in the SBGPASNum extension in X.

(d) If INHERIT = true for X,

i. Check that the AFI/SAFI prefixes in Y are all subsets of the

SBGPIpAddrBlock extension that X inherits from its issuer's certifi-

cate.

ii. Check that the AS numbers/RDIs in Y are all subsets of the SBGPASNum

extension that X inherits from its issuer's certificate.

iii. Check that any Router ID extension in Y contains an AS number/RDI

that is one of the AS numbers/RDIs in the SBGPASNum extension that

X inherits from its issuer's certificate.

4. For each address attestation being uploaded,

(a) Check that the network certificate, Z, that signed the AA has the same

issuer as the issuer of X

(b) If Inherit is not present, check that the network prefixes in the AA are all

subsets of the prefixes in X,

(c) If INHERIT = TRUE, check that the network prefixes in the AA are all

subsets of the prefixes that X inherits from its issuer.

74

5. For CRLs, check that the issuer name in the CRL is the name of the CA that

issued X.

Table 5.2 gives some examples of valid and rejected upload data for the IP address

extension. Consider the following certificates:

" Certificate A: A CA certificate, with subject A and issuer R, and an

SBGPIpAddrBlock extension containing all addresses with IPv4 unicast prefixes

18/8 i.e., addresses 18.0.0.0 to 18.255.255.255.

* Certificate B: An Operator EE certificate, with issuer A and subject B, and an

SBGPIpAddrBlock extension with inherit : TRUE.

* Certificate C: An Operator EE certificate, with issuer A

an SBGPIpAddrBlock extension with inherit not present,

unicast prefix 17.18/16.

" Certificate D: An Operator EE certificate, with issuer A

an SBGPIpAddrBlock extension with inherit not present,

unicast prefix 18.10/16.

and subject C, and

and containing IPv4

and subject D, and

and containing IPv4

" Certificate E: A Network Certificate, with issuer A, and network prefixes 18/8.

" CRL K, with issuer name A.

* CRL L, with issuer name M.

* AA Y, signed by E, with network prefix IPv4 unicast 18/16.

5.6 Logging

All transactions in the repository are logged on disk. These include:

* Administrative logins and changes.

* Accesses by NOC operators.

75

Operator Certificate Object to be Uploaded Status
B Certificate A Valid
B Certificate C Reject
B Certificate D Valid
B Certificate E Valid
B CRL K Valid
B CRL L Reject
B AA Y Valid

Table 5.2: Examples of Upload Data

" Individual object Additions/Deletions.

" Downloads by NOC operators.

" Retrievals of Incremental Change Files by servers for synchronization.

Logging in the repository involves two separate files: an audit log and an error log.

The audit log records the transactions done at the server while any errors generated

at the repository are written to the log file. Ideally, in order to ensure the security of

these logs and make them tamper-proof, we would use a write-once media. However,

this is too expensive for our purposes so we try to minimize security issues by only

allowing administrators of the repository access to them after they are authenticated

by the system.

When a transaction is about to be performed on a server, an entry is made to

the audit log indicating this. This entry consists of a "Begin Transaction" message,

the type of transaction, the entity carrying out the transaction, the handle(s) of the

object(s) involved, the first 16 bits of the hash of the object and a timestamp. After

the transaction is complete, a new message is entered into the log saying "Transaction

Complete". Since our Processors only perform a single transaction at a time, there is

no need to worry about multiple NOCs performing many different transactions simul-

taneously. Note that this is different from the web front-end which allows multiple

processes for uploading and downloading files to the "Input" directory and to the

"Download" directory.

76

The audit log also has a secondary function. It is used to record valid additions

and deletions. For these transactions, an entry exists in the log. In this way, if an

administrator needs to determine if a transaction was valid, he or she can simply check

through the entries in the log until he or she finds an entry for that particular object,

and ensure that it was indeed legitimate. This may occur if there are inconsistencies

among the servers, and the administrator wants to determine which object is valid.

The error log is used to record all failed transactions on the system. This allows

the administrator to know what went wrong on the system. Failed attempts are also

important because they may signal attacks on the repository. The error log contains

short events that need attention and so should be examined every day.

5.7 Other Concerns

While the earlier part of this chapter detailed the mechanisms in the repository de-

signed to provide authenticity, integrity of data, and access control, we also need to

consider other aspects of the system in order for it to be truly secure.

5.7.1 Physical Protection for the Server

Physical access to the servers must be controlled. The servers should be placed in an

access-controlled room so that only authorized personnel can gain physical access to

them. This way, we avoid Denial-of-Service attacks in which an unauthorized user

deliberately shuts down the system, as well as decrease the probability of any unau-

thorized modification of the data. Operations staff with the necessary authorization

can then perform any maintenance needed by the servers. It is noteworthy that the

server is apt to be located at an unmanned facility so administrators need secure,

remote access. For example, SSL can be used since it use of certificates, which are

consistent with the S-BGP PKI.

77

5.7.2 Backups

The data on the servers should be backed up to off-line storage on a regular basis.

Backups help with recovery and data integrity through the use of redundancy. Since

we have multiple copies of the repository, backups of the database are not critical.

Furthermore, since there is no one to physically supervise the backup, they also need

to be done remotely and securely. The backup process should include copying the

audit file and the log file.

78

Chapter 6

Implementation Details

This chapter gives some of the implementation details associated with building the

different pieces of repository. It includes the specifics related to the pieces of the

repository including the database, the interfaces, and the actual server that hosts it. It

also talks about the data transfers including uploads, download and synchronization.

Finally it gives a recap of the Security Implementation which has been described in

Chapter 5 in detail.

6.1 Overview

Figure 4-2 on page 46 shows the Client Interface and Figure 4-4 on page 60 shows the

Server Interface of the repository, including the specific Processors and directories

that would be used. Files uploaded at the web interface go to the "In" directory.

From there, they are retrieved by the Upload Processor and processed. If the file is of

an incorrect format, or the signature is invalid, it is put in the "Reject" directory, and

an appropriate reply file is generated and sent to the "Reply" directory for retrieval

by the NOC that uploaded the file. Otherwise, the transactions in the batch file are

processed, the batch file is placed in the processed directory, and its name is written

to the ICT. The Download Processor builds the download files and places them in

the "Out" directory where the NOC can access them from the web interface.

79

6.2 Server Details

As mentioned in the previous chapter, the server used for the repository needs support

for two-way SSL authentication. The Apache HTTP server does not have security

built in, but there are packages that can be added to it to provide this support.

We use OpenSSL [15], which is a cryptography toolkit that implements the Secure

Sockets Layer (SSL) and related cryptography standards. In this way we provide

a server with built-in security and capability for authentication. The clients (NOC

operators) access the server using secure HTTP (HTTPS) from web browsers, e.g.,

Netscape (TM) or Microsoft Internet Explorer (TM).

6.3 Database

PostgreSQL database [11] is a powerful relational database. It is an enhancement

of the original postgres database management system that retains the data model

and rich data types of postgres, but replaces the PostQuel query language with an

extended subset of SQL. This database is able to manage large numbers of objects,

thus making it very useful for the S-BGP implementation. However, the objects are

not stored in their binary formats in the database. Instead, six-bit encoding is used

since PostgreSQL, like most other relational databases, has limitations on the type

of object it can store as it cannot handle the null byte that appears in several places

in a DER-encoded object.

Existing PostgreSQL database methods were modified to reflect the database

schema that was used, as well as to give added functionality needed for the data

objects. These methods are listed in Appendix B.

6.4 Client Interface

The NOC connects to the repository via a webpage. It uses an SSL certificate installed

in a client web browser to authenticate the NOC to the Apache server and allow it

to upload and download files. The web server also has an SSL certificate, which is

80

validated by the web browser. A screen shot of the web interface is shown in Figure 6-

1. It shows the main functions offered by the Client Interface: "Upload Transaction

Files" and "Download Objects". The Client Interface also encompasses the Upload,

which is used to process the files that are uploaded, and Download Processors, which

generates the download files.

Figure 6-1: Screen Shot of Web Interface

6.5 Administrative Interface

The Administrative Interface is implemented as a command line interface. Figure 6-2

shows some of its screens. As required, it allows for viewing the audit and log files and

for performing the database functions of add, delete and search when presented with

a copy of the object. As mentioned in Chapter 4, an extended search mechanism will

be implemented in the future. The interface returns a message to the administrator

to indicate whether or not his operation was successful (Screen 4).

Currently, there is no way for other servers to get changes made by an administra-

tor. While this may be implemented later, we currently specify that any modifications

made by an administrator must be done at every single server on which he or she

wants the change to be made. We expect that administrators do not make frequent

changes, and since each transaction should take less than 30 seconds, changing the

data at every server is feasible. However, Chapter 7 describes a mechanism in which a

file similar in structure to a batch file is built and propagated during synchronization.

81

SCREEN 1 SCREEN 2

Please choose one of the following: Enter name of file to add: certs/GF0200004E

1- Certificate Database Get pieces of DN name: GRANDFATHER.SBGP.ARIN.ORG
2 - CRL Database Cert added to database
3 - AA Database
4- Certification Path Database

Enter a selection: 1

SCREEN 3 SCREEN 4

Figure 6-2: Select Screens from the Administrative Interface

6.6 Uploads to the Repository

The NOC operator uploads a file to the repository after the necessary authentication

checks. These files are placed in an "In" directory. The Upload Processor then goes

through that directory, sorts the files in order of arrival, and then processes them one

at a time, the earliest first.

The upload files have the following name structure:

yyyymmdd.hhmmss.m .<DC1>.<DC2>... <DCn>.hashhashhashhash

The date and time is placed into yyyymmdd.hhmmss.mmm, the NOC operator's

certificate's ISSUER name is in the DCs which together give the DNS name, and the

first 8 octets of the SHA-1 hash of the signed transactions are appended. The date

and time help to sort the files in the directory so we can process them in order of

upload, while the issuer name and hash can help to detect "replays" from a NOC i.e.,

if the same file is uploaded at different times.

If the file is good, it is renamed and placed into a "Processed" directory. The file

name is also written to the ICT. However, if the batch file gives an intolerable error,

82

Please choose one of the following:

1- View Audit Logs
2 - Edit Database
3 - Quit

Enter a selection: 2

Please choose one of the following:

1- Add Object to Database
2 - Delete Object from Database
3 - Search Database

Enter a selection: I

i.e., is of an incorrect format, or the signature is invalid, it is put in the "Reject"

directory and no entry is written to the ICT. This prevents bad files from being

propagated to other servers in the system. In both cases, a reply file is generated

containing the same structure as described in Section 4.2.2. Replies to these files

are named by appending a ".reply" for easy retrieval by the NOC, assuming that

the NOC remembers the name of the files it uploads. Note that good files may

also generate error reply codes if single transactions within that file fail. We do not

attempt to remove those bad transactions but just leave the file as is. When the NOC

retrieves the reply file, it sees the error codes for the particular transactions and so

has the responsibility of fixing them.

6.7 Database Downloads

A secure HTTP mechanism is used for the NOC to get the database downloads. The

NOC uses the web interface to request the database files which are stored in a special

"Out" directory on the server. The database files are generated using the Download

Processor which goes through a particular database and builds a single file containing

all the objects from that database. The files are then moved to the "Out" directory

and replace the older files that were there.

6.8 Synchronization

During synchronization, server A requests the ICT file and the processed upload files

from server B. This process is authenticated as described in Chapter 5. When server

A gets the ICT, it puts it in an "ICT-in" directory, and puts the batch files in a

"serverbf" directory. It then goes through all the ICTs in the ICT-in directory and

uses the Synchronization Processor to process them serially. It does this by retrieving

each file name from the ICT, checking if it had been processed before and if not, using

the Upload Processor to process that particular file. We make use of the fact that

batch file names are unique in order to perform this check for duplicate batch files.

83

First, we try to open the file with that file name in the Processed Directory. If the

file is successfully opened, then it has already been processed and there is no need to

do it again. However if it has not yet been processed, an error is returned, and we

then process the file. If we get a fatal error when we process a batch file listed in an

ICT, then that file is placed in the Reject directory and no entry is written to the

server's own ICT. Otherwise, the batch files are placed in the Processed directory.

When an ICT is processed, it is then placed in the "ICT-processed" directory. Note

that when a batch file is processed, its name is written to the server's own ICT, so

the ICTs from other servers do not need to be propagated to other servers. In this

way, Reply files are generated at each server for every file uploaded, whereas in reality

the replies are only retrieved from one server. Again we assume that the files can be

deleted some fixed time after being processed to preserve disk space.

The connection between the servers for synchronization is very much like the

client-server SSL connection that the NOCs use to upload and download files. If

Server A is getting files from Server B during synchronization, then Server A acts as

the "client" and Server B acts as the "server". Server A then fetches the ICT and

batch files from the "server" using the same HTTPS GET mechanism that a NOC

would use to download files from the repository.

6.9 Security

Chapter 5 describes the mechanisms in detail. Access control for the data in the

repository consists of both authentication and authorization mechanisms. When a

NOC accesses the repository, it is authenticated by the web server using an SSL client

certificate. These authentication tools are built-in to the Apache OpenSSL server.

The web server also validates the certification path of the NOC's SSL certificate,

which does not come from the path in the upload file, but instead is built by the SSL

engine and passed as part of the SSL handshake. After the NOC is authenticated, it

is allowed to retrieve any of the database download files since these can be accessed by

anyone. To upload data, however, the NOC presents a signed file containing all the

84

transactions it wants to perform. First, the signature on the file must be validated

by the server (this is done in software). Second, we check that the issuer of the

uploader's certificate of the file is the submitter as listed in the batch file. Next, the

certification path from the upload file must be validated. This certification path may

be different from the path verified by the web server for the SSL certificate. This is

done using software tools developed for the S-BGP project. If there is no error, the

access control algorithm that is described in Chapter 5 is used to determine whether

the file signer's operator certificate is allowed to perform database transactions for

each of the objects in the batchfile. If all these checks are completed without error,

the server processes the batch file and generates the reply file which it then signs.

Again, this is carried out in software.

85

86

Chapter 7

Future Work and Conclusion

This chapter gives an overview of the future work related to the S-BGP repository

and in the S-BGP project. It discusses possible additions to the repository including

incremental downloads, better search capabilities, the use of an email option for reply

files, and allowing administrator changes to propagate during synchronization. It

then gives the next steps for the integration of the client and server parts of the

repository, as well as activities intended to enable the deployment of S-BGP on the

Internet. Finally, it gives a conclusion for this thesis.

7.1 The S-BGP Repository

Future work on the repository can be separated into two areas. The first area involves

possible ways in which the functionality of the repository can be improved while the

second area deals with the integration of the current implementation of the NOC

tools and the server functions.

7.1.1 Possible Additions to the Repository

The current implementation of the repository is limited in certain aspects. It has the

minimal functionality needed to perform the tasks that it must support. There are

enhancements that could be made to the system in order to make it more efficient

87

and user-friendly including: (1) incremental downloads to improve performance, (2)

search capabilities, (3) email as transport for Reply files, and (4) improvement in

synchronization. Each is addressed individually here.

Incremental Downloads

Currently, when a NOC wants to download data from the repository, it must retrieve

each of the four database files. Each of these files contains all of the objects of a

given type that is stored in the database. It is reasonable to allow NOCs to download

incremental changes to the repository instead of the whole database. Incremental

downloads are only useful if the Upload Processors process the changes to the repos-

itory more often than the download files are generated. Otherwise, if there are no

new changes, then the incremental files would be empty.

Incremental downloads could be done in two ways: (1) allow NOCs to only down-

load changes to the database since the last time it downloaded data from the reposi-

tory, or (2) generate incremental files similar to the full database files but which only

contain the objects that were modified within a given period. The first method will

significantly decrease the number of items in each download file, and thus the actual

downloads, as well as NOC processing of these files, will take less time. Also, it gives

the NOC control over how often it can get the changes made to the repository, i.e.,

the NOC can choose to do incremental downloads three times a day, whereas in (2)

or in full database downloads, any changes made to the repository after the download

files are generated cannot be obtained by other NOCs until the next set of files are

made. Again, this assumes that the Upload Processor is run frequently so that batch

files are processed more frequently than the NOC retrieves the download files. The

overall system will therefore be more efficient. One drawback to incremental down-

loads, however, is that the download file has to be generated after it is requested by

the NOC. It is possible that we can have as many as 500 NOCs connecting to a single

site everyday (since we estimate 5,000 clients and approximately 10-15 servers), which

leads to more processing time on the part of the server. The second method is very

similar to the full database downloads, except that the files contain fewer transactions

88

and are smaller. This makes the overall system more efficient since they will be faster

to download and the NOC will have fewer items to validate on a day to day basis.

However, the download file formats would need to be changed to keep track of what

types of transactions were performed, i.e., adds or deletes.

Better Search Capabilities

The search capability implemented by the repository is minimal. It takes an object

(certificate, CRL, AA or certification path) and checks whether or not the object is in

the database. This can be extended to search for objects by particular fields without

producing a copy of the object. This provides the ability to retrieve all objects with

a given attribute, which can be useful to the NOC. For example, we can extend

the Administrative Interface to allow administrators to search for certificates in the

database by issuer name and/or serial number. In this way, we use the search function

to locate all of the certificates issued by a particular organization without having to

download the whole database and sorting through it. This search capability can be

implemented through the use of the Lightweight Directory Access Protocol (LDAP)

[7]. LDAP can be used as a front-end interface to the PostgreSQL to retrieve objects

based on the attributes (in this case the search indices). The objects can then be

returned to the administrator.

Email Option for Reply Files

Another possible extension to the repository is to support email error messages for

upload files. This can be used instead of waiting for the NOC to retrieve the reply

files. Email replies would potentially allow NOCs to receive notification of errors more

quickly since email would be almost instantaneous after the Upload Processor is run.

It also gives the added benefit of convenience since the NOC no longer has to connect

to the repository and download the replies. This feature should not be difficult

very implement since the upload file already contains an email field as mentioned in

Section 4.4.2 that can be used as the email address to which we send the replies that

are generated. However, it does require an additional step of base64 encoding the

89

reply message for transport via SMTP.

Synchronization Changes

One attribute that can be added for synchronization is to allow changes made by an

administrator on a single server to be propagated to the other servers during this

process. This can be achieved by making a special file with a similar structure to the

upload files, except with the administrator's name in place of the client's name as the

submitter. The file can then be signed by the server as it would sign an ICT. During

the synchronization process, this file is transmitted with the other batch files, and

processed in the same way as each of them. We therefore gain the advantage of not

needing the administrator to make the changes at every server in the system.

7.1.2 Client-Server Integration

This thesis discusses the server-side design and implementation of the S-BGP repos-

itory. The client-side tools and applications are also being developed simultaneously.

These tools will be used to actually generate the certificates, CRLs and AAs that are

to be stored in our databases, as well as the upload files that provide these objects and

other changes to the repository. The NOC tools will also be able to process download

files which are retrieved from the database, and to generate the certificate and AA

extraction files which are used by the routers. The next step will be to integrate the

repository and the NOC tools.

Performance Analysis

The system needs to be tested as a whole to ensure that all the requirements are

indeed met, as well as to determine its actual performance with "real" uploads and

downloads. The transfer of data between the NOCs and the server needs to be

relatively short. We also need to determine how efficiently the NOC can generate

AAs and certificates and upload them, and how quickly the server can process them,

as well as how well the NOCs process the download files. It is worthwhile to note

90

that this task is dependent on the actual data for the certificates and AAs, which

have not yet been made available by the registries.

7.2 S-BGP: The Project

In order to provide a proof of concept demonstration, BBN developed a prototype

implementation of S-BGP and deployed it in DARPA's CAIRN testbed. Real Internet

BGP control traffic was fed to the testbed routers via replay of a recorded BGP

peering session with an ISP's BGP router. The results of the tests supported prior

analysis which suggested that the overhead added by the S-BGP countermeasures

needed the CPU/memory equivalent of a desktop PC (see [4] for more details on

S-BGP performance in these tests).

However, getting the relevant organizations to accept and use S-BGP has a number

of challenges. Firstly, deployment of S-BGP on the Internet requires the participation

of various types of organizations including the registries such as ARIN, RIPE and

APNIC, router vendors, and ISPs. Since there are not significant security benefits

unless a few of each type of the organizations adopt the protocol, we need to find

ways to encourage each organization to invest in this new technology.

Therefore, the next step in the S-BGP project towards the deployment of the

protocol involves closely working with these organizations. One aspect of this plan is

to work with the Internet registries and ISPs to set up the Public Key Infrastructure

described in Chapter 3, and gain experience with the relevant policies and procedures.

A Certification Authority (CA) will be set up at an Internet Registry, ARIN, including

the installation of the CA system, and training for operations staff. ARIN will also

provide its database of IP addresses and AS numbers which would allow for the

creation of an initial set of certificates and attestations to cover the existing address

and AS number allocations that would allow the organizations to begin using the

repository. We would then work with all the different organizations to replace these

certificates that are stored with valid ones. ARIN will also specify how the requests for

IP addresses and AS numbers would work, and how and when these new certificates

91

would actually be generated.

The project team also plans to work with router vendors to integrate S-BGP

countermeasures into their products. Additionally, BBN will also perform outboard

tests with ISPs. This means that before routers that support S-BGP are available

for ISP evaluation, the protocol will be tested with existing routers and a PC system

running the S-BGP software. This will help the ISPs to integrate the tools, policies

and procedures that have been developed to support the NOC operations which are

needed for S-BGP. Policies also need to be developed for how S-BGP will work while

in the incremental deployment stage. There must be some consistent way for routers

to handle path information in which some of the ASes use S-BGP, and others do not.

7.3 Conclusion

The Border Gateway Protocol (BGP) is a critical part of Internet routing infrastruc-

ture. However, it is vulnerable to many attacks as it has no secure means of verifying

the authenticity and legitimacy of BGP control traffic. The Secure Border Gateway

Protocol (S-BGP) introduces Public Key Infrastructure technology, a new BGP path

attribute containing "attestations" and IPsec. It uses these mechanisms to create an

authentication and authorization system that addresses most of the security problems

associated with BGP.

The security approaches used by S-BGP rely on the distribution of countermeasure

information. Since putting certificates in UPDATE messages is inefficient, and storing

the database of certificates, CRLs and AAs on S-BGP speakers is difficult due to

memory restrictions, we therefore design and implement a repository that provides

for the storage and efficient distribution of certificates, CRLs and address attestations

(AAs) in S-BGP.

The repository consists of server-replicated, easy-to-access storage sites. Each

site consists of a database which is used to store the actual objects, as well as a

web interface through which the NOCs interact with the repository. All objects

transferred to and from the repository are signed. The repository supports two forms

92

of transactions: uploads and downloads. Downloads transfers the whole contents of

each of the databases in the repository, i.e., all the objects of a particular type, and

are authorized for all members of the S-BGP community. Uploads are performed in

the form of batch files which contain a set of data items associated with a specified

NOC. Checks are made using our access control algorithm to determine whether

or not a NOC is authorized to upload the data in question, and then individual

transactions are performed. Synchronization among the servers is achieved by using

an Incremental Change Table which keeps track of all the uploads performed within

a specific time period. Furthermore, accesses to the repository are denied unless the

NOC is authenticated, i.e., the client must have an SSL certificate issued under the

S-BGP PKI.

In conclusion, the repository satisfies the requirements for storage, uploads, down-

loads and synchronization. It also provides the necessary authentication and access

control mechanisms for the enhancements introduced by the new S-BGP counter-

measures. Overall, it is feasible to build such a repository that enables the efficient

distribution of the S-BGP countermeasure information, and thus supports the de-

ployment of S-BGP.

93

94

Bibliography

[1] Getronics Web site. http://www.getronicsgov.com/hot/cml-home.htm. May

2001.

[2] R. Housley, W. Ford, W. Polk, and D. Solo. RFC 2459: Internet X.509 Public

Key Infrastructure Certificate and CRL Profile. Technical report, MIT LCS

TR429, October 1998.

[3] The IP Security Protocol Working Group Web site.

http://www.ietf.org/html.charters/ipsec-charter.html. May 2001.

[4] Stephen Kent, Charles Lynn, Joanne Mikkelson, and Karen Seo. Secure Border

Gateway Protocol (S-BGP) - Real World Performance and Deployment Issues.

Technical report, BBN Technologies, 2000.

[5] Stephen Kent, Charles Lynn, and Karen Seo. Secure Border Gateway Protocol

(S-BGP). IEEE Journal on Selected Areas in Communications, 18(4):582-592,

April 2000.

[6] Stephen Kent, Charles Lynn, and Karen Seo. Public-Key Infrastructure for the

Secure Border Gateway Protocol (S-BGP). Technical report, BBN Technologies,

2001.

[7] Innosoft Internation Inc., Lightweight Directory Access Protocol (Version 3)

Specification. http://www.critical-angle.com/ldapworld/ldapv3.html. May 2001.

[8] Charles Lynn, Joanne Mikkelson, and Karen Seo. IETF Internet Draft, Secure

BGP (S-BGP). Technical report, BBN Technologies, 2000.

95

[9] R. Perlman. Network Layer Protocols with Byzantine Robustness.

report, Network Working Group, January 1999.

[10] Larry L. Peterson and Bruce S. Davie. Computer Networks, A Systems Approach.

Morgan Kaufmann Publishing, 1999.

[11] PostgreSQL Web site. http://www.postgresql.org/. May 2001.

[12] RSA Web site. http://www.rsasecurity.com/rsalabs/pkcs/pkcs-8/index.html.

May 2001.

Y. Rekhter and T. Li. RFC 1771: A Border Gateway Protocol 4 (BGP-4).

Technical report, Network Working Group, March 1995.

[14] J. H. Saltzer, D.P. Reed, and D. D. Clarke. End-to-End Arguments in System

Design. ACM Transactions on Computer Systems, 1984.

[15] OpenSSL Web site. http://www.openssl.com. May 2001.

96

[13]

Technical

Appendix A

S-BGP ASN.1 Specifications

A.1 S-BGP Upload and Download File Formats

-- File: s-bgp.asn
-- Contents: ASN.1 specification - S-BGP Repository Batch Files
-- System: S-BGP Repository.
-- Created: 14-Dec-2000
-- Author: Kavita Baball

-- COPYRIGHT 2000-2001 BBN Technologies

DEFINITIONS ::= -- explicitly encoded
10

IMPORTS
AlgorithmIdentifier FROM Algorithms IN Algorithms.asn,
Certificate FROM Certificate IN certificate.asn,
CertificateRevocationList FROM CertificateRevocationList IN v2crl.asn,
CertificationPath FROM CertificationPath IN certificate.asn,
KeyIdentifier FROM KeyIdentifier IN extensions.asn,
Name FROM Name IN name.asn,
SerialNumber FROM SerialNumber IN serial-number.asn;

EXPORTS S -BGP -Repository-Transactions, 20

S -BGP -Repository-Replies,
S-BGP-Repository-Downloads;

S - BGP -Repository-Transactions ::= SIGNED SignedTransactions

SignedTransactions ::= SEQUENCE {

97

serialNumber
submitter
keyldentifier
email
certificationPath
transaction-list

SerialNumber,
Name,

KeyIdentifier, -- of submitter
IA5String OPTIONAL,
CertificationPath,
Transactions

30

}

Transactions ::= SEQUENCE OF RepositoryTransaction

RepositoryTransaction ::= SEQUENC
transaction-number
dependency-transaction-numbers
operation-type
object-type
object

}

INTEGER,
Dependencies OPTIONAL,

OperationType,
ObjectType,

ANY DEFINED BY object-type

Dependencies ::= SEQUENCE OF INTEGER

OperationType ::= ENUMERATED { addObj (1), deleteObj (2) }

ObjectType ::= ENUMERATED { cert (1), crl (2), aa (3), certpath (4) }
-- certpath only in download 50

S - BGP -Repository-Replies ::= SIGNED SignedReplies

SignedReplies ::= SEQUENCE
serialNumber
submitter
repository
keyIdentifier
certificationPath
reply-list

}

Replies ::= CHOICE {
repository-reply
file-reply

}

FileReply ::= ENUMERATED
bad-signature (1),
wrong-format (2),
bad-user (3),

{
SerialNumber,

Name, -- from SignedTransactions submitter
Name,
KeyIdentifier, -- of repository
CertificationPath, -- of repository
Replies -- Transaction reply codes 60

SEQUENCE OF RepositoryReply,
FileReply

{
-- Bad signature on file

-- File format not valid
-- Unauthorized user

70

98

40

-- Invalid certification path

}

RepositoryReply ::= SEQUENCE {
transaction-number INTEGER,
operation-type OperationType,
object-type ObjectType,
response TransactionReplyCodes

}

TransactionReplyCodes ::= ENUMERATED {
ok (1), -- Successful
duplicate (2), -- Transaction previously done
dep-failure (3), -- Dependency Failure
exists (4), -- Key in use
access-denied (5), -- Insufficient permissions
invalid-operation (6), -- Invalid Operation
invalid-obj-type (7), -- Invalid Object Type
bad-object (8), -- Invalid Object Format
database-error (9) -- Other

}

S-BGP-Repository-Downloads ::= SEQUENCE {
databaseTime GeneralizedTime,
repository Name,
object-type ObjectType,
objects Objects

}

Objects ::= SEQUENCE OF RepositoryObject

RepositoryObject ::= ANY DEFINED BY object-type IN
S - BGP - Repository- Downloads

A.2 S-BGP Extensions

-- File: extensions.asn
-- Contents: ASN.1 specification - X.509 certificate (version 3)
-- System: S-BGP server development.

-- PKIX Object Identifiers
id-pkix OBJECT IDENTIFIER ::= { 1.3.6.1.5.5.7 }

99

80

90

100

invalid-cpath (4)

OBJECT IDENTIFIER ::={ id-pkix 1 }

id-pe-sbgp-ipAddrBlock OBJECT IDENTIFIER ::= { id-pkix-pe 7 } 10
id-pe-sbgp-autonomousSysNum OBJECT IDENTIFIER ::= { id-pkix-pe 8 }
id-pe-sbgp-routerdentifier OBJECT IDENTIFIER ::={ id-pkix-pe 9 }

SBGPIpAddrBlock

IPAddressFamily
addressFamily
ipAddresses

::= SEQUENCE OF IPAddressFamily

SEQUENCE {
OCTET STRING (SIZE (2..3)), -- AFI & opt SAFI

IPAddressesOrRanges }
20

IPAddressesOrRanges ::= SEQUENCE OF IPAddressOrRange

IPAddressOrRange
addressPrefix
addressRange

IPAddressRange
min
max

IPaddress

::= CHOICE {
IPaddress,

IPAddressRange }

SEQUENCE {
IPaddress,
IPaddress }

BIT STRING

-- IPAddress collision

30

SBGPASNum
asnum
rdi

SEQUENCE {
[0] IMPLICIT ASNumbersOrRanges OPTIONAL,

[1] IMPLICIT ASNumbersOrRanges OPTIONAL}

ASNumbersOrRanges ::= SEQUENCE OF ASNumberOrRange

ASNumberOrRange
num AS
range AS

::= CHOICE {
Number,

Range }
40

ASRange ::= SEQUENCE {
min ASNumber,
max ASNumber }

ASNumber ::= INTEGER

SBGPRouterId ::= SEQUENCE OF OwningASNumber
50

OwningASNumber
asnum [0]

::= CHOICE {
IMPLICIT INTEGER, -- autonomous system number

100

id-pkix-pe

rdi [1] IMPLICIT INTEGER } -- routing domain identifier

101

102

Appendix B

Database Implementation

These are descriptions of the database functions that were written or modified for the

repository.

B.1 Creating the Database

Function: void create-tables update-config

Descrition: This routine creates tables for the database and updates the config file

if operation is successful. Otherwise, exits if operation fails.

Arguments: config-file and database name passed globally.

Return Value: None; Exit for failure

Function: int db-create-table db-cert

Description: This routine creates the table db-cert for the database.

Arguments: Database name passed globally.

Return Value: SUCCESS if no error; PGNULL-DATABASE if no database name

is given; DBOPEN_ERROR if cannot open the database ; FAILURE for other fail-

ures.

Function: int db-create-table-db-crl

Description: This routine creates the table db-crl for the database.

103

Arguments: Database name passed globally.

Return Value: Same as for int db-create-table db-cert

Function: int db-create-tabledb-aa

Description: This routine creates the table dbaa for the database.

Arguments: Database name passed globally.

Return Value: Same as for int db-create-table_db-cert

Function: int db-create-table_db-cpath

Description: This routine creates the table db-cpath for the database.

Arguments: Database name passed globally.

Return Value: Same as for int db-create-table db-cert

B.2 Adding and Deleting Objects

The higher level functions were called directly by the Adminstrative Interface and the

Upload Processors. These in turn used the Postgres functions to build and execute

the query to give the required modification to the database.

B.2.1 Higher Level Functions

Function:int write-certto-database

Description: This procedure writes a certificate to the database.

Arguments: conn - Pointer returned from DBIOPEN, hashIssuerP - hash value of

issuer DN, issuerP - issuer DN in DNS format, snP - serial number, cpath-seq - se-

quence number of the certification path associated with the object, cert - Certificate

passed in globally

Return Value: SUCCESS if a certificate is successfully written to the database, or

appropriate negative values for errors; FAILURE for other errors

104

Function:int write crlto-database

Description: This procedure writes a CRL to the database.

Arguments: conn - Pointer returned from DBIOPEN, hashIssuerP - hash value of

issuer DN, issuerP - issuer DN in DNS format, cpath-seq - sequence number of the

certification path associated with the object, crl - CRL passed in globally

Return Value: Same as for int write-certto-database

Function:int write-aa-to-database

Description: This procedure writes an AA to the database.

Arguments: conn - Pointer returned from DBIOPEN, aaHashP - hash value of AA,

cpath-seq - sequence number of the certification path associated with the object, aa

- AA passed in globally

Return Value: Same as for int write-cert-to-database

Function:int write cpatht o-database

Description: This procedure writes a certification path to the database.

Arguments: conn - Pointer returned from DBIOPEN, cpathHashP - hash value of

certification path, cpath - certification path passed in globally

Return Value: seq if a certification path is successfully written to the database, or

appropriate negative values for errors; FAILURE for other errors

Function:int delete-cert

Description: This procedure deletes a certificate from the database.

Arguments: conn - Pointer returned from DBIOPEN, hashIssuerP - hash value of

issuer DN, issuerP - issuer DN in DNS format, snP - serial number, cpath-seq - se-

quence number of the certification path associated with the object, cert - Certificate

passed in globally

Return Value: SUCCESS or FAILURE

Function:int delete-crl

105

Description: This procedure deletes a CRL from the database.

Arguments: conn - Pointer returned from DBLOPEN, hashIssuerP - hash value of

issuer DN, issuerP - issuer DN in DNS format, cpath-seq - sequence number of the

certification path associated with the object, cr - CRL passed in globally

Return Value: Same as for int delete-cert

Function:int delete-aa

Description: This procedure deletes an AA from the database.

Arguments: conn - Pointer returned from DBLOPEN, aaHashP - hash value of AA,

cpath-seq - sequence number of the certification path associated with the object, aa

- AA passed in globally

Return Value: Same as for int delete-cert

Function:int delete-cpath

Description: This procedure deletes a certification path from the database.

Arguments: conn - Pointer returned from DBLOPEN, cpathHashP - hash value of

certification path, cpath - certification path passed in globally

Return Value: Same as for int delete-cert

Function:int update-cpath-count

Description: This procedure updates the count field for a certification path in the

database.

Arguments: conn - Pointer returned from DBLOPEN, seqP - seq of certification

path entry, +N (for increment) or -N (for decrement) Return Value: count of

certification path entry

B.2.2 Postgres Functions

Function:int DBILwriteCertEntry

Description: This procedure writes a cert to the db-cert table in the database.

Arguments: conn - Pointer returned from DBIOPEN, DB-cert - database record

106

to be written to the database, hashIssuerP - hash value of issuer DN, issuerP - issuer

DN in DNS format, snP - serial number, cpath-seqP - sequence number of the certi-

fication path associated with the object

Return Value: 0 for SUCCESS or FAILURE for failure

Function:int DBI writeCrlEntry

Description: This procedure writes a CRL to the db.crl table in the database.

Arguments: conn - Pointer returned from DBIOPEN, DB-crl - database record to

be written to the database, hashIssuerP - hash value of issuer DN, issuerP - issuer

DN in DNS format, cpath-seqP - sequence number of the certification path associated

with the object

Return Value: 0 for SUCCESS or FAILURE for failure

Function:int DBI-writeAAEntry

Description: This procedure writes an AA to the db-aa table in the database.

Arguments: conn - Pointer returned from DBIOPEN, DBaa - database record

to be written to the database, aaHashP - hash value of AA, cpath-seqP - sequence

number of the certification path associated with the object

Return Value: 0 for SUCCESS or FAILURE for failure

Function:int DBI-writeCpathEntry

Description: This procedure writes a certification path with a particular count

value to the db-cpath table in the database.

Arguments: conn - Pointer returned from DBIOPEN, DB-cpath - database record

to be written to the database, cpathHashP - hash value of cpath, countP - count

value

Return Value: seq of cpath entry for SUCCESS or FAILURE for failure

Function:int DBI-readCpathEntry

Description: This procedure reads a certification path entry from the db-cpath ta-

107

ble in the database.

Arguments: conn - Pointer returned from DBIOPEN, DB-cpath - database record

to be written to the database, cpathHash - hash value of cpath

Return Value: seq and count of cpath entry for SUCCESS or FAILURE for failure

Function:int DBldeleteEntry

Description: This procedure deletes an entry in the database specified by the conn

and rec-type argument. The entry to be deleted in the databse is specified by the seq

argument. It should identify one entry from the database to be deleted.

Arguments: conn - Pointer returned from DBIOPEN, wherebuffer - specifies

the qualification clause, rec-type - a cert, CRL, AA, cpath record (valid values are

CERTREC, CRLREC, AAREC, CPATH-REC)

Return Value: SUCCESS or FAILURE

Function:int DBrec-exists

Description: This procedure determines if a entry exists for the key specified.

Arguments: conn - Pointer returned from DBIOPEN, wherebuffer - specifies

the qualification clause, rec-type - a cert, CRL, AA, cpath record (valid values are

CERTREC, CRLREC, AAREC, CPATH-REC)

Return Value: SUCCESS - record exists, FAILURE - on errors, NO-MATCH - no

record found

B.3 Other Database Functions

Functions: int make dn-dns-cert and int make-dn-dns-crl

Description: make dn-dns cert and make-dn-dns-crl is called by

write cert-to-database and write-crl-to-database respectively to parse the ufn

notation of an issuer DN to get it in the dns format to write to DB-cert.iDns and

DB-crl.iDns field.

108

Arguments: dnP - issuer DN in ufn notation

Return Value: 0 for SUCCESS or appropriate negative value for failure

Outputs: DB-cert.iDns and DB-crl.iDns - DN string to put into database record

Function:int check-dup-cert

Description: This routine is called to determine if a entry already exists in the cer-

tificate table for the keys specified.

Arguments: conn - Pointer returned from DBIOPEN, hashIssuer - hash value of

issuer DN and snbuf - serial number (key of the record), cert - Certificate passed in

globally

Return Value: DBIENTRYEXISTS if object is found in the db, NOMATCH if

no record found; FAILURE for other errors

Outputs: seq of the record

Function:int check-dup-crl

Description: This routine is called to determine if a entry already exists in the CRL

table for the keys specified.

Arguments: conn - Pointer returned from DBIOPEN, hashlssuer - hash value of

issuer DN (key of the record), crl - CRL passed in globally

Return Value: Same as for int check-dup-cert

Outputs: seq of the record

Function:int check-dup-aa

Description: This routine is called to determine if a entry already exists in the AA

table for the keys specified.

Arguments: conn - Pointer returned from DBIOPEN, aaHash - hash value of aa

(key of the record), aa - AA passed in globally

Return Value: Same as for int check-dup-cert

Outputs: seq of the record

109

Function:int check-dup-cpath

Description: This routine is called to determine if a entry already exists in the cer-

tification path table for the keys specified.

Arguments: conn - Pointer returned from DBIOPEN, cpathHash - hash value of

cpath, key of the record, cpath - certification path passed in globally

Return Value: Same as for int check-dup-cert

Outputs: seq of the record, count of record

110

