
Statically Determining Memory Consumption of

Real-Time Java Threads

by

Ovidiu Gheorghioiu

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2002

® Ovidiu Gheorghioiu, MMII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part. MAW-XHUSMS IaNSITUTE
OF TECHNOLOGY

JUL 3 1 2002

LIBRARIES

A uth or ..
Department of Electrical Engineering and Computer Science

May 10, 2002

Certified by..

Accepted by..........

Martin Rinard
Associate Professor

7,hesjs Supeyvisor

ArthuC. Smith
Chairman, Department Committee on Graduate Students

0aF? TR

Statically Determining Memory Consumption of Real-Time

Java Threads

by

Ovidiu Gheorghioiu

Submitted to the Department of Electrical Engineering and Computer Science
on May 10, 2002, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In real-time and embedded systems, it is often necessary to place conservative upper
bounds on the memory required by a program or subprogram. This can be difficult
and error-prone process. In this thesis, I have designed and implemented two (re-
lated) compile-time analyses to addresses this problem. The first analysis computes a
symbolic upper bound on the maximum number of allocations of each object, showing
undetermined facts about the program as symbols. The second analysis determines
objects in the program that may be allocated statically, without changing the seman-
tics of the program. The symbolic expression is then simplified by removing factors
for statically allocated objects. The overall result is a simplified procedure for com-
puting conservative upper bounds on memory. Results on a number of benchmarks
are provided.

Thesis Supervisor: Martin Rinard
Title: Associate Professor

2

Acknowledgments

First and foremost, I have to thank my supervisor, Martin Rinard, for providing me

with the opportunity to work on this challenging project. Martin's unique combi-

nation of energy and patience, more than anything else, propelled this project to

completion. I also owe big thanks to Alexandru Salcianu, whose competent advice

and prompt feedback were immensely useful.

More thanks go to all of the FLEX group members, who were there to answer my

questions, and to my friends and family for supporting me through this challenging

period. A special "thank you" goes to my mother, for her constant interest and

support for my work in a field as remote for her own calling as possible.

3

Contents

1 Introduction

1.1 Symbolic Upper Bounds

1.2 Static Object Allocations.

1.3 Implementation and Experience

1.4 Document Structure

2 Background

3 Computing Symbolic Upper Bounds on Memory Consumption

3.1 O verview .

3.2 Basic algorithm

3.3 Constants

3.4 Operators

3.5 Primitives

3.5.1 Allocations

3.5.2 Array allocations

3.5.3 Variable primitives

3.5.4 Loop execution times

3.5.5 Recursion

3.5.6 Allocation Record . .

3.6 Summary

4 Computing Static Allocations

4

8

9

10

11

12

13

16

16

. 17

. 17

. 19

. 20

. 20

. 2 1

. 2 1

. 23

. 24

. 24

. 26

27

.

.

.

.

4.1

4.2

4.3

4.4

4.5

O verview .

Object Liveness Analysis .

Computing the Incompatibility Pairs

Computing Static Allocations and Static Allocation Classes .

Simplifying Symbolic Upper Bounds on

Memory Consumption .

. 27

. 30

. 33

. 35

. 36

5 Experimental Results

6 Future Improvements

6.1 Improvements to the Symbolic Upper Bound Analysis

6.2 Static Allocation Analysis Improvements

6.3 Usability Improvements .

7 Related Work

8 Conclusions

38

43

43

44

44

46

48

5

List of Figures

2-1 Instructions relevant for the analysis. 15

3-1 Algorithm for symbolic expansions 18

3-2 Expansions for the maxval and minval operators 20

3-3 looptimes expansions for f or-loops 24

3-4 Computation of instralloc(lb) . 25

4-1 Constraints for the object liveness analysis. 32

4-2 Constraints for computing the set of incompatibility pairs. 34

4-3 Constraints for computing AN, AE- ----........................... 35

6

List of Tables

5.1 Analyzed Applications . 40

5.2 Size of the Analyzed Applications . 41

5.3 Compound Analysis Results by Allocation Sites 41

5.4 Compound Analysis Results by Number of Unknowns 41

5.5 Static Allocation Analysis Results . 42

7

Chapter 1

Introduction

When writing Java programs for embedded or real-time systems, there is often the

need to accurately determine a conservative upper bound on the memory consumption

of a program or program part before it executes. Embedded systems usually have a

small, fixed amount of memory, and we want to know whether that amount will suffice

for running a certain program. In many such systems, the correctness of such upper

bounds is especially important, since errors may result in real-world consequences,

such as a critical control system failing.

In the case of real-time systems, a second problem arises due to the Java's garbage

collection, as the operation of the garbage controller conflicts with the strict con-

straints on the time required for critical operations. The Real-Time specification for

Java [8] allows one to avoid garbage collection by having dynamic allocations in real-

time threads done in preallocated, fixed-size "memory regions" . This means that in

order to use that feature the programmer must determine how much memory each

real-time thread will require in the worst case.

Currently, the only way to find an upper bound on the memory the program uses

is by hand, through visually examining the source code. This can be difficult and

error-prone, due to a number of reasons:

* Implicit object allocations: Many allocations, and calls leading to alloca-

tions, are implicit in Java, i.e., they are not readily visible in the source code.

8

Objects such as exceptions, strings and StringBuf f ers are often allocated im-

plicitly.

" Many allocation sites: Java relies heavily on objects and dynamic allocations,

so the sheer number of allocation sites can be overwhelming.

" Global reasoning: To compute memory consumption, one needs to know how

many times control reaches each method or allocation site during the execu-

tion of the whole program. This may violate abstraction boundaries between

different parts of the program.

This paper presents two, related, static analyses which address these issues.

1.1 Symbolic Upper Bounds

The goal of the first analysis is to determine a symbolic upper bound on the memory

dynamically allocated within a given program or program part. Finding numerical

upper bounds is infeasible, for two reasons: 1) the amount of memory allocated

may depend on run-time information that we do not know at compile time, such as

values read from external input, and 2) we can prove that determining whether a

conservative, finite upper bound exists is undecidable in the general case, as implied

by the Halting Problem, even when all the inputs are known in advance.

Therefore, the analysis returns an expression representing the upper bound. The

expression contains, as symbols, those aspects of the program which the analysis could

not determine. These might include:

" bounds on inputs,

" bounds on the number of times complex loops are executed,

" bounds on the number of times recursions are executed, or

" bounds on other variables in the program (such as the result of a complex

calculation).

9

With this analysis, calculating memory consumption becomes much easier and

safer, as the programmer need only replace the unknowns with numerical values to

obtain the desired bound. In some cases, when the analysis is able to determine every

relevant aspect of the computation, we even provide a numerical value directly.

1.2 Static Object Allocations

The goal of the second analysis is to eliminate some of the dynamic allocations in

the program by making them static, while preserving correctness. We accomplish

this by conservatively constructing a symmetric "incompatibility" relation between

allocation sites; essentially, two sites are incompatible if two objects allocated at those

sites may be live at the same point in the execution of the program. In particular,

when an allocation site is compatible (i.e., not incompatible) with itself, objects at

that site can be safely allocated statically, in the same memory space, since no two

such objects can be alive at the same time.

In practice, many object allocations in Java are "short-lived", that is, they are

only used within a limited region of the program (for example, exceptions, iterators,

StringBuffers and sometimes collections). Our analysis is able to correctly make

most of these allocations static. As a result, the symbolic upper bound computed in

the first analysis is greatly simplified - unlike dynamic allocations, static allocations

consume a constant amount of memory, regardless of how many times control flow

reaches the allocation site. This is true even in the absence of garbage collection.

One additional goal for this analysis is to reduce the memory required by static

allocations, since that memory will not be freed. Fortunately, our "incompatibility

relation" approach readily enables that. If two different allocation sites that have been

made static are mutually compatible, then objects allocated at the two sites can share

the same statically allocated memory space, without altering program semantics.

Optimizing the total memory for static allocations is, in fact, similar to the graph

coloring problem; therefore, we use one of the known heuristics for minimal graph

coloring to obtain a nearly-optimal static allocation scheme.

10

1.3 Implementation and Experience

I have implemented these analyses using the FLEX compiler infrastructure [1]. This

has necessitated a thorough (and welcome) familiarization with the concepts and code

base of FLEX.

The results of this implementation on a number of benchmarks have been encour-

aging. With the analysis in place, the burden the programmer faces is substantially

reduced, and the task of determining accurate bounds on the memory footprint be-

comes largely automated. We can think of the compound of these two analyses as a

single tool for computing such bounds. A typical usage pattern for this tool might

consist of the following steps:

1. The programmer needs a conservative approximation of the memory his/her

program will require.

2. The programmer runs our tool on the program, obtaining the desired approxi-

mation in symbolic form.

3. The programmer visually examines the program and reasons about numerical

bounds on the unknowns in the symbolic expression (note that we indicate

filenames and line numbers for each of those symbols). As mentioned, he or she

might have to:

" Determine lower/upper bounds on values read from external input.

* Determine upper bounds on the number of times loops are executed.

" Determine upper bounds on the number of times recursions are executed.

" Determine lower/upper bounds on other values in the program that affect

memory allocations.

4. Finally, the programmer replaces the unknowns with numerical values in the

symbolic expression, obtaining the desired numerical bound on the memory

footprint of the program.

11

This approach is clearly better than the unassisted examination of the source code,

for several reasons. By reducing the problem to a number of well-defined unknowns

in the program (we the relevant file and line number for each symbol), we give the

programmer a goal-directed way of achieving the desired result. We lessen the need

for global reasoning, thus making better use of abstractions; the only cases such

reasoning is still needed is when placing bounds on global variables and on mutual

recursions between two or more methods (however, note that mutual recursions are

unlikely to cross abstraction boundaries). Finally, our static allocation analysis makes

many program unknowns irrelevant (i.e., they no longer have an effect on memory

footprint).

The two analyses have been integrated into the FLEX infrastructure for future

use and enhancement by the group.

1.4 Document Structure

The rest of this document is organized as follows. Chapter 2 presents aspects of the

FLEX compiler infrastructure relevant to the analysis. Chapter 4 presents the in-

compatibility analysis. Chapter 3 presents the symbolic analysis. Chapter 5 presents

statistics of our analysis' performance on a number of benchmarks. Chapter 6 shows

possible improvements to the analysis. Chapter 7 presents related work, and chapter 8

concludes.

12

Chapter 2

Background

The FLEX compiler infrastructure for Java [1] aims at providing comprehensive sup-

port for a range of compiler analyses and optimizations. It is almost completely

implemented in Java, with native C code where required. The infrastructure has,

among others, the following capabilities relevant to this project:

" Reading and linking Java compiled classes (as bytecode)

* Transforming Java bytecode into Intermediate Representations (IRs) amenable

to efficient program analysis.

" Computing reasonably accurate call graphs for specified Java methods. It should

be noted that Java's heavy use of dynamic dispatch poses significant challenges

to the generation of accurate call graphs. By call graph accuracy we mean the

ability to eliminate as many variants for dynamic dispatch as possible, while

preserving program semantics.

* A number of already-implemented analyses (such as liveness, use-def chains and

pointer analysis).

" A number of general data structures and algorithms, such as extensions to the

Java Collection API (in particular, our implementation relies heavily on multi-

maps), computation of strongly connected components, etc.

13

Of the IRs that FLEX provides, we use exclusively the quadruple-based SSI repre-

sentation (QuadSSI). The instructions, in this representation, are in quadruple form

(as presented, for example, in [3]), having the general form a +- b @ c. b and c are

source operands, either constants or variables, a is the destination operand, always

a variable; finally, E is some binary operator. Quadruples also contain information

about control-flow edges.

In a quadruple-based representation, variables do not directly correspond to pro-

gram variables (although there is some overlap); instead, they represent storage for

intermediate values of the computation, quite similar to registers.

The SSI (Single Static Information) form [4] is an extension of the more widely-

used SSA (Single Static Assignment) form [5]. SSA simplifies program analysis by

transferring some of the control flow information to variables; in particular, every use

of a variable in the SSA form has a single reaching definition. To accomplish this,

SSA form assigns unique names to unique static values of a variable, and introduces

"variable-merging" #-functions at program join points when necessary.

SSI adds further control-flow information to variables, by generating different

names for the same variable on different control-flow paths. Thus, it "provides us with

a one-to-one mapping between names and information about the variables at each

program point" [4]. To preserve program semantics, SSI form requires the insertion

of "variable-splitting" c--functions at branches, in addition to the SSA #-functions.
To further familiarize the reader with our Intermediate Representation, we show,

in Figure 2-1 a list of quadruples relevant to our analysis.

14

Figure 2-1: Instructions relevant for the analysis.

15

Name Format Informal semantics

Copy VI V2 copy a local variable into another
New v new C create one object of class C

create a k-dimensional array of
New Array v =anew C[vi][v 2] . . . [Vk] bs ls n ie 1 ... ,Vbase class C and sizes V1, ..., 7 V

Store v1 .f V2 assign a value to a field
Get VI = v2 .f read a value from a field
Return return v normal return from a method
Throw throw v exceptional return from a method
Call (VN, VE) v1 .mn(v 2 , -.- , Vk) method invocation
Phi V = O(vI, .. , Vk) SSA # nodes in join points
Typeswitch (vi, v2) = typeswitch v C "instanceof" tests

switch v : c1, ... , Ck_1

Switch .. ., Vik) -- (vi) branch on the integer value of v
(with o--functions)

(vi, . ,Vnk) - U(Vn)
cjmp V

Conditional (VII, v 1 2) = -(vi) branch on the boolean value of v
jump (with o--functions)

(vni, vn2) = -(Vn)

Operation V V2 brop V3, or arithmetic/logic operation
v 1 = unop V2

Chapter 3

Computing Symbolic Upper

Bounds on Memory Consumption

In this chapter, we show a method of computing symbolic upper bounds on the

memory required by a program or program part. Note that we currently do not take

stack frames into account.

3.1 Overview

As mentioned in the introduction, obtaining an conservative, finite upper bound on

the memory consumption of a program is, in general, undecidable, even when the

inputs are known (and they are generally not). A short proof of this statement

follows.

Consider a Java program P1 . Let P2 be another Java program obtained from P

by adding an trivial Object allocation after each instruction. Clearly, P2 run on any

input x allocates a finite amount of memory if and only if P1 , run on the same input

x, terminates after a finite amount of time. Hence, if we had a way to decide whether

a Java program allocates a finite amount of memory on a given input, that would give

us a way to decide the halting problem on any Java program (the choice of P, was

arbitrary). The latter problem is known to be undecidable, which means the former

is undecidable as well.

16

Therefore, we have not attempted to provide a numeric upper bound for the

memory footprint of the analyzed program. Instead, we provide a symbolic upper

bound, in terms of those characteristics of the program that we could not determine

statically, such as inputs or potentially unbounded loops.

3.2 Basic algorithm

The main idea of the algorithm is rather simple: given the entry method of the pro-

gram or thread that needs to be analyzed, we start with a generic symbolic expression

that corresponds to an upper bound on the memory footprint of that method. If Mm

is the entry method, the starting expression is alloc-record(Mm). alloc-record is a

symbolic primitive which is detailed in one of the following sections. We progressively

expand the starting expression according to a set of rules, until there is nothing more

we can determine, and output the result. We use an expression cache (a table map-

ping expressions to their expanded equivalents) to avoid expanding sub-expressions

more than once, and also to detect recursive expressions.

Symbolic expressions are arbitrary combinations of constants, primitives, and op-

erators. Each of these, along with the rules we use for expanding them, is presented

the following sections.

Figure 3-1 shows a pseudocode representation of the algorithm we use. The algo-

rithm operates as follows. First, it initializes the expression cache to the empty table.

Then,

3.3 Constants

The constants we allow in our symbolic expressions are values of the 32-bit Java int

type and its shorter variants, short and byte. We do not, as of yet, consider the long

type and the floating point types. In practice, values of these types seldom intervene

in memory allocations.

A constant value is not expanded any further. However, operators involving con-

17

procedure symbolic-bound)(M : Method) : Expression

cache := <empty;
E := expression(alloc-record(M, <none>));

E-exp := expand(E);

return E-exp;

}

procedure expand(E : Expression) : Expression

{
E_cached := cache-lookup(cache, E);
if Ecached != <none> return Ecached;

// prevent looping with recursive expansions

cacheadd(cache, E->recursion-value(E));

// apply expansion rules

E-exp := expand-onelevel(E);
// recursively expand each subexpression

for each E-sub subexpression of E-exp

{
E_sub-exp := expand(E-sub-exp);

subexpression-replace(E-exp, E-sub->E-sub-exp);

}
// avoid recursive expressions, leave them undetermined

if E subexpression of E-exp return E

// add final form

cacheadd(cache, E->E-exp);

// return final form

return E-exp;

}

Figure 3-1: Algorithm for symbolic expansions

18

stant value can undergo simplification, as shown in the next section.

3.4 Operators

Expressions can contain seven mathematical operators, namely +, -, *, /, max, min

and abs, which retain their usual sense, and three pseudo-operators, maxval, minval

and subst

The maxval and minval pseudo-operators are needed because of our focus on

determining an upper bound, instead of an exact representation, of the program's

memory consumption. For example, suppose we have determined that a method

which takes two parameters, vi and v2, will allocate v, - v 2 objects of type Object.

Then, the upper bound of that method's memory consumption is linear in the maxi-

mum value of v, minus the minimum value of v2. The maxval and minval operators

express the notion of the maximum and minimum value of a subexpression throughout

the execution of the analyzed subprogram.

The remaining operator, subst, is used to perform variable replacement when

encountering method calls. It has the general form subst (E, vi -+ E1, ..., on -+ En,

denoting that the variables v, through v, should be replaced in the "body" expression

E with the corresponding expressions El through En.

The seven mathematical operators are not expanded any further; however, they

undergo one extra simplification step (for example, by replacing 0 * E with 0, or by

combining constants). The maxval and minval pseudo-operators, are expanded in

certain cases, according to the rules in Figure 3-2.

Note that the expansions for maximum and minimum of * and / operators are

expressed in terms of the absolute values of their arguments. This is because we have

no way of knowing the sign of the arguments in advance, if they are symbolic.

Finally, the expansion of the subst operator is obtained by replacing every occur-

rence of the variables in the "body" expression, after the latter has been expanded.

19

Figure 3-2: Expansions for the maxval and minval operators

3.5 Primitives

Primitives are symbolic placeholders for aspects of the program that must be ana-

lyzed. Whenever possible, the analysis expands primitives to more accurate symbolic

constructs. Those primitives that cannot be further refined will appear as such in the

final symbolic expression corresponding to the memory footprint of the program.

We use six types of primitives: allocation, array-allocation, variable primitives,

looptimes, rectimes and alloc-record.

3.5.1 Allocations

The simplest primitive is allocation. It stands for a single, non-array object allocation

of a given class (for example, allocation(String) represents an allocation of a String

object).

The allocation primitive is not further expanded. Two allocation primitives refer-

ring to the same class C are considered equal, and may undergo simplification on that

basis. For example, the expression Ei * allocation(C) + E2 * allocation(C), becomes,

after simplification, (El + E2) * allocation(C).

20

Expression Expansion
maxval(El + E2) maxval(E1) + maxval(E2)
minval(E1 + E2) minval(E1) + minval(E 2)
maxval(El - E2) maxval(E1) - minval(E 2)

minval(Ei - E2) minval(E1) - maxval(E 2)

maxval(E * E2) abs(maxval(E 1)) * abs(maxval(E 2))
minval(E * E2) -abs (maxval(E 1)) * abs (maxval(E 2))
maxval(E1/E 2) abs(maxval(El))/abs (minval(E 2))
minval(EI/E 2) -abs (maxval(El))/abs(minval(E 2))

maxval(max(El, ... , E,)) max(maxval(E 1), ... ,maxval(E))
minval (max (El,., E,,)) max (minval (El), .. ,minval (E,))
maxval (min (E1, ... , E,,)) min (maxval (E1), .. ,maxval (E,))
minval (min (El, ... , E,,)) min(minval (El), ... , minval (E,))

3.5.2 Array allocations

array-allocation primitives are similar to allocation primitives, with one important

difference: they also contain information about the dimensions of the allocated array.

As such, the general form of this primitive is array-allocation(C, Ei, ..., En). C is the

runtime type of the array being allocated, which in FLEX encapsulates information

about the number of dimensions (for example, int [] [1). E 1 through En are sym-

bolic expressions for each of the n dimensions of the array. See section 3.5.6 for an

explanation of how we create array-allocation primitives.

Just like allocation primitives, we do not expand array-allocation primitives.

However, we expand their expression arguments, if possible. In this respect,

array-allocation primitives are similar to regular operators, like + or max, and in fact

use the same implementation as these.

We consider two array-allocation primitives equal, for purposes of simplification,

if and only if they refer to the same type and their expression parameters are equiv-

alent.

3.5.3 Variable primitives

A variable primitive stands for the integer value of an intermediary variable a certain

point in the program. Because we use the SSI form, a variable encapsulates infor-

mation about the program point. Hence, a variable primitive simply points to the

corresponding variable.

We expand a variable v by looking at the single definition (denoted by def, of the

corresponding FLEX Temp, as follows:

" If deft is a copy instruction, v = v', then the expansion of v is v'.

" If deft is a binary operator, v = v, binop v 2 , where binop E {+, -, *, /}, then

the expansion of v is vi op v 2.

" If deft is a const instruction, v = const C, then the expansion of v is the

integer constant C.

21

*If v is defined in a o function (vi, ... , v, ... , Vk) = 0-(vo), contained in deft, we have

several sub-cases, since we are aiming to use the single-information property of

SSI for a more accurate expansion:

- If deft is a switch instruction, and its index variable is v0 , then we expand

v to the integer constant corresponding to the branch that defines v.

- If def, is a cjmp instruction, and its condition is a comparison between v,

and some other variable Vcomp, then we expand v to either max(v,, Vcomp)

or min(v,, Vcomp), on the type of the comparison. and the cjmp branch

which corresponds to v. For example, if the condition is v, < Vcomp and v

is defined on the positive branch of deft, we expand v to min(va, Vcomp)

- Otherwise, we expand v to v,.

A special case occurs when v is the result of a # function, v = #(vI, ... , Vk).

Note that the above expansions are all exact (we know that v is necessarily equal

to the expansion); however, the exact value of a q function is not easily expressed

symbolically. Instead, we want to take either the minimum or the maximum of the #
function's arguments, depending on what kind of bound (lower or upper, respectively)

we are currently trying to place on v. Since that information is expressed by a minval

or maxval operator that is above v in the symbolic expression, we do not expand v

by itself, instead defining two more expansions for maxval and minval:

maxval(v), where V = (v1 , ... , vk) - max(maxval(vi), ... ,maxval(vk))

minval(v), where V = (vI, ... , Vk) -+ min(maxval(vi), ... ,maxval(vk))

Note that the # expansions presented above may lead to recursive expansions of

maxval or minval operators. Without going into details, a loop with a non-trivial

induction variable, v = f(v), but with a condition that does not depend on v, will

cause an expansion like maxval(vi) -- + max(maxval(vo), maxval(vi)), where vo cor-

responds, in SSI form, to the initial value of v, and vi corresponds to the value of v

within the loop. To avoid unbounded growth of symbolic expressions, we do not allow

22

recursive expansions, that is, we do not allow an expansion E -+ E' if E' contains

E as a subexpression. In the above example, the expression minval(vi) will not be

expanded and will be reported unknown.

3.5.4 Loop execution times

The looptimes primitive serves as a symbolic placeholder for the maximum number

of times a loop is executed, once control flow reaches that loop (note that the upper

bound is implicit in the definition, as we never need lower bounds on loop execution

times). By loops we mean natural loops, as defined in [3]. FLEX allows us to break

a method into a hierarchy of natural loops, such that two loops are either disjoint or

one of them is entirely contained in the other, with the method itself as the top-level

loop. The looptimes primitive will always be expanded to 1 for the top-level loop.

See section 3.5.6 for an explanation of how we create looptimes primitives.

We are currently able to determine integer for loops and loops similar to for,

that is, loops that satisfy the two conditions below:

" The condition for continuing the loop is a comparison between an induction

variable of integer.type (the loop index) and a fixed final value variable whose

value is not modified throughout the loop).

" During every loop iteration, the loop index is incremented exactly once, by a

fixed increment.

For such a loop L, with the index variable v, an initial value vo (in SSI, vo is a

variable corresponding to v before the loop), a final value v, and an increment of

vi, we expand looptimes(L) to an symbolic expression in vo, v, and vi, as shown in

Figure 3-3. Note that we use max(O, E), where E is a possible expansion, to ensure

that the expansion of looptimes is positive (a loop cannot execute a negative number

of times).

23

Loop condition j Expansion

V < v1 max(0, maxval(vi) - minval(vo))/minval(vi)
V <= v1 max(0, maxval(vi) - minval(vo) + 1/minval(vi)
v > v1 max(0, maxval(vo) - minval(vi))/minval(vi)

V >= v1 max(0, maxval(vo) - minval(vi))/minval(vi)
v! = Vi max(O, (maxval(vi) - minval(vo))/minval(vi)

Figure 3-3: looptimes expansions for f or-loops

3.5.5 Recursion

We handle recursions through the addition of a special primitive, rectimes.

As the first step in our analysis, we use the call graph corresponding to the en-

try method to find groups of mutually recursive methods. These correspond to the

strongly connected components of the call graph. Let SCC denote the set of strongly

connected components; each component C c SCC is in turn a set of methods that

belong to that component.

The rectimes primitive takes as its single argument a strongly connected com-

ponent C, and stands for the maximum number of times any method M E C might

recursively enter itself once control flow enters that component.

We only expand rectimes(C) in one case, namely when C consists of a single,

non-recursive method. In this case rectimes(C) expands to 1, since the method will

only execute once. We do not currently have a way of determining any "proper"

recursions; in case the analyzed program contains such a recursion, the corresponding

rectimes primitive will be reported as undetermined.

3.5.6 Allocation Record

The alloc-record primitive stands for the maximum number of allocations that might

occur when a method is called. Its general form is alloc-record(M, C), where M is a

method and C is the strongly-connected component from which NI was called. We

need the C parameter to avoid multiple rectimes primitives for the same strongly

connected component.

24

Instruction at label lb instralloc(lb)

v = new C allocation(C)
v = anew C[v1][v2]. ... [vkl array-allocation(C, maxval (vi),.. , maxval(vk))

max {subst(allocrecord(m, CM), pi - vi,... ,Ap --+ Vk)

(VN, VE) - vi.mn(v2 , - - , Vk) mCG(lb)

, where pi, ... , Pk are the declared parameters of m.
all others 0

Figure 3-4: Computation of instralloc(lb)

This primitive is always expanded, by analyzing the method it refers to (since we

cache expansions, each method is analyzed at most once). To compute the expansion,

we scan the method for instructions that may cause allocations, directly or indirectly,

and for each of those we add to the expansion a symbolic expression describing the

allocations that take place at that site, multiplied by a looptimes expression for each

loop that contains that instruction.

More formally, let instralloc(lb), with lb E Label(M), denote a symbolic expres-

sion describing an upper bound on the allocations caused by the instruction at label

lb. Also let Cm E SCC denote the strongly connected component of M. We compute

instralloc according to the table in Figure 3-4. Then we expand alloc-record(M, C)

as follows:

alloc-record(M,C) -- (instralloc(lb) - 7J looptimes(L)
lbELabel(m) LELoops(M),L9 lb

Furthermore, if M's strongly connected component CM differs from the C argument

of alloc-record(M, Cm), the expression above is multiplied by an additional factor of

looptimes(C), to account for multiple executions of M due to recursion.

25

3.6 Summary

The symbolic upper bound analysis we have presented in this chapter greatly reduces

the work required from the programmer to compute worst-case memory consumption.

It takes as input a program or program part, specified by its entry method, and

outputs a symbolic expression specifying a conservative approximation of the memory

footprint of that portion of code. The expression contains, as symbols, unknown or

hard-to-compute facts about the behavior of the program that affect its memory

consumption. By replacing those symbols with appropriate numerical values, the

programmer can obtain a safe, numerical upper bound.

26

Chapter 4

Computing Static Allocations

This chapter presents a static analysis that finds object allocation sites that can be

transformed to static allocations, without changing program semantics'. Further-

more, the analysis groups preallocated sites into a small number of classes, such that

all of the objects in a class can use the same preallocated memory, again while pre-

serving program semantics. In our benchmarks, the analysis is able to identify, on

average, over 60% of the allocation sites as static. Grouping those sites into compat-

ible classes resulted in a reduction of over 80% in the amount of memory needed for

static preallocations.

Note that this analysis only considers single object allocations. We do not attempt

to statically preallocate arrays, as this would require exact knowledge of the size of

the array.

4.1 Overview

Given a subprogram P, the analysis identifies all pairs of incompatible allocation

sites, i.e., pairs of sites such that one object allocated at the first site and one object

allocated at the second one may be live at the same time in some possible execution

of P. An object is live if any of its fields/methods is used in the future. It is easy to

'The text in this chapter borrows heavily from an article submission by myself, Alexandru
SAlcianu and Martin Rinard to the Static Analysis Symposium 2002. The tile of the article is
"Interprocedural Incompatibility Analysis for Static Object Preallocation".

27

see that two allocation sites are incompatible if one object from one site is live in the

program point that corresponds to the other site.

To identify the objects that are live at a program point, the analysis needs to

track the use of objects throughout the program. This is a difficult whole-program

analysis. First, we have an interesting abstraction problem: the program may create

an unbounded number of objects, that need to be abstracted by a bounded number of

analysis objects. Next, some parts of the program might read heap references created

by other parts. Tracking objects through the heap requires an expensive pointer

analysis. Here are the simplifications we do, in order to obtain a more approachable

problem:

" We use the object allocation site model: all objects allocated by a given state-

ment are modeled by an inside node2 attached to that statement / program

label. INode is the set of all inside nodes; n, is the inside node for the alloca-

tion site from label lb.

" The analysis tracks only the objects pointed to by local variables. Nodes whose

addresses may be stored into the heap are said to escape into the heap. The

analysis conservatively assumes that such a node is live for the rest of the

program.

" To simplify the object liveness analysis, we conservatively assume that any

object returned from a method is used after the method returns.

With these assumptions, a node is live at a given program point if it is pointed

to by a variable that is live at that program point. Variable liveness is a well-studied

data-flow analysis [3, 5] and we do not present it here. As a quick reminder, a variable

v is live at a program point iff there is a path through the control flow graph that

starts at that program point, does not contain any definition of v and ends in an

instruction that uses v. It should also be noted that the SSI form seems to require

linear time in practice [4].
2We use the adjective "inside" to make the distinction from the "parameter" nodes that we

introduce later in the chapter.

28

Additionally, a node that escapes into the heap is live at a program point lb if the

above condition is true, or if lb is accessible on a control flow path from any of the

program points where the node escapes.

The analysis has to process call instructions accurately. For example, it needs to

know the nodes returned from a call and the nodes that escape into the heap during

the execution of an invoked method. Re-analyzing each method for each call instruc-

tion (which corresponds, conceptually, to inlining that method) would be inefficient.

Instead, we parameterize the results that the analysis computes for every method

by introducing parameter nodes. A method with k parameters of object type' has

k parameter nodes: n,.,n; these nodes are placeholders for the nodes passed

as actual arguments. When the analysis processes a call instruction, it replaces the

parameter nodes with the nodes sent as arguments. Hence, the analysis is composi-

tional: a method is abstracted by some analysis results that are computed once and

used multiple times. PNode is the set of parameter node and Node = INode U PNode

is the set of all nodes. When analyzing a method M, the analysis scope is the method

and all the methods it transitively calls. The inside nodes models the objects allo-

cated in this scope, while the parameter nodes models the objects that Al receives as

arguments.

The analysis has two steps, each one an analysis in itself. First, it computes the

objects live at each relevant label. Next, it uses the liveness information to compute

the incompatibility pairs. The labels that are relevant for the second step (the object

liveness analysis) are those labels that appear in the constraints for the second step,

i.e., those corresponding to new, call and get instructions4 .

Each of these analyses is formulated as a group of set constraints, and examines

the methods in a bottom-up way, starting with the leaves of the call graph. For

each method M, we examine the relevant instructions, generate a set of constraints

and then we find their least fixed point by using an iterative fixed point algorithm.

The analysis results for M use parameter nodes to abstract over the calling context.

31.e., not primitive types such as int, char etc.
4The object liveness analysis is able to find the live nodes in any label; however, for efficiency

reasons, we want to study only the relevant ones.

29

Normally, each method is analyzed once. However, some of the constraints for M may

use the results of the analysis for the methods called from M. Therefore, each set of

mutually recursive methods requires a fixed point algorithm. For a given program,

the number of nodes is bounded by the number of object allocation sites and the

number of parameters. Hence, as all our constraints are monotonic, all fixed point

computations are guaranteed to terminate.

Once we have computed the incompatibility relation, we mark as static every

whose corresponding node to a node is self-compatible, i.e., not incompatible with

itself. Based on the incompatibility relation between different nodes, we group nodes

into compatible classes, such that all allocation sites corresponding to nodes in the

same class use the same preallocated memory.

4.2 Object Liveness Analysis

Consider a method M a label/program point lb inside it, and let live(lb) be the set

of inside and parameter nodes that are live at that point. We conservatively consider

that a node is live at lb if it is pointed to by one of the variables live at that point,

or if it escaped at a point 1b' such that control flow path from Ib' to lb exists.

live(lb)=P Uv live in Ib Pv U U E(lb')
lb'eLabel(M)

lb'~s*lb

where P(v) is the set of nodes that may be pointed to by v, and E(lb') is the set of

nodes that may escape at the instruction at 1b'; finally, lb' -~> lb is the reachability

relation, true iff there is a path from lb' to lb in the control flow graph.

To be able to process the calls to M, we need to compute the set of nodes that

can be normally returned from M, RN(M), the set of exceptions thrown from M,

RE(M), and the set of parameter nodes that may escape into the heap during the

30

execution of M, E(M). More formally, here are the functions we want to compute:

P : V -+ P(Node)

RN, RE : Method ->P(Node)

E : Method - P(PNode)

Suppose we analyze method M E Method, which has k parameters Pi, p2, , Pk.

At the beginning of the method, pi points to the parameter node nr'. A COPY

instruction "vi = v2" sets vi to point to all nodes that v2 points to; accordingly, the

analysis generates the constraint P(v1) = P(v 2) '. The case of a PHI instruction is

similar. A NEW instruction from label ib, "v = new C", makes v point to the inside

node njb attached to that allocation site. The constraints generated for RETURN add

more nodes to RN(M); similarly, the constraints generated for THROW add nodes

to RE (M). A SET instruction "v 1.f = v 2 ", causes all the nodes pointed to by v 2 to

escape into the heap. Accordingly, we add the nodes from P(v2) to E(M).

A TYPESWITCH instruction "(vi,v 2) = typeswitch v : C" works as a type

filter: vi points to those nodes from P(v) that may represent objects of a type that is

a subtype of C, while v 2 points to those nodes from P(v) that may represent objects

of a type that is not a subtype of C. In Figure 4.2, ST(C) denotes the set of all

subtypes (i.e., Java subclasses) of C (including C). We can precisely determine the

type type (n) of an inside node n, by examining the NEW instruction from label lb.

Therefore, we can precisely distribute the inside nodes between P(vi) and P(v2). As

we do not know the exact types of the objects represented by the parameter nodes,

we conservatively put these nodes in both sets6 .

A CALL instruction "(VN, VE) vi.mn(v 2, ... , Vk) sets vN to point to the

nodes that may be returned from the invoked method(s). For each possible callee

M' E CG(lb), we have to include the nodes from RN(M') into P(vN). As RN(M') is

'As we use the SSI form, this is the only definition of v1 ; therefore, we do not lose any precision
by using "=" instead of "D".

6A better solution would be to consider the declared type C of the corresponding parameter and
check that C, and C have at least one common subtype.

31

Instruction at label Generated constraints
lb in method M

method entry P(pi) = {n4}, V1 < i < k,

where pi, ... Pk are M's parameters.

V1 = V2 P(vI) = P(v 2)

Vr = Vi, ... , Vk) P(v)i=U 2)

v 1 .f = V2 E(lb) = P(v 2)

(VN, VE) vi.mn (v 2, .-- , Vk)

P(VN)= U RN(M)<P(vl), ... ,P(vk)>

ME CG(lb)

P(VE)= U RE(M)<P(v1),...,P(vk)>
ME CG(lb)

E(lb)= U E(M')<P(vi), . . . , P(vk)>
M'E CG(lb)

v=new C P(v) = {fn }

(vI, v 2) typeswitch v : C

P(v1) = {n' E P(v) | type(n') c ST(C)} U {nP C P(v)}

P(v2) = {n' E P(v) I type(n') g ST(C)} U {U t P(v)}

return v RN(M) D P(v)

throw v RE(M) ; P(v)

E(M) UlbELabel(M) E(lb)

Figure 4-1: Constraints for the object liveness analysis.

32

a parameterized result, before using it, we have to instantiate RN(M') by replacing

each n' with the nodes from P(vi). The case of VE is analogous. The execution of

the invoked method M' may also cause some of the nodes passed as arguments to

escape into the heap. Accordingly, the analysis generates a constraint that adds the

set E(M)'<P(v1), ... , P(vk)> to E(M).

Below is a formal definition of the previously mentioned instantiation operation:

if S C Node is a set that contains some of the parameter nodes np,..., n (not

necessarily all), and Si, ... , Sk C Node, then

S<S1,...Sk>= -- r E S} U UPcs Si

4.3 Computing the Incompatibility Pairs

Once we have computed the object liveness information, the analysis detects the

set of incompatible allocation sites IG C INode x INode 7. As previously noted,

the incompatibility pairs are required for making allocation sites static and for the

construction of the compatibility classes.

Figure 4-2 presents the constraints used to compute IG. An allocation site from

label lb is incompatible with all the allocation sites whose corresponding nodes are

live at that program point.

However, as some of the nodes from live(lb) may be parameter nodes, we cannot

generate all incompatibility pairs directly. Instead, for each method M, the incom-

patibility pairs involving one parameter node are collected into a set I(M) that we

instantiate at each call to M, similar to the way we instantiate RN(M), RE(M) and

E(M):

I(M)<S 1,. . . , Sk> = U<nPny)GI(M S x {Tn}

(Si is the set of nodes that the ith argument sent to M might point to). Notice that

some Si may contain a parameter node from M's caller. However, at some point

into the call graph, each incompatibility pair will involve only inside node and will
7 Remember that there is a bijection between the inside nodes and the allocation sites.

33

Instruction at label Generated constraints
lb in method M Generatedconstraints

v =new C live(lb) x {nb} J(M)

(VN, VE) vi. mn (v2 , - -,k) VM E CG(lb),

\ , I (M) <P (V1), ... P(V)> C_ J(M)
SUCCN(lb) SUCCE(lb) (live(lb) n live(succN(lb))) x AN(M) C J(M)

(live(lb) n live(succE(lb))) x AE(M) C J(M)

VM G Method,
J(M) n (INode x INode) C IG
J(M) \ (INode x INode) C I(M)

Figure 4-2: Constraints for computing the set of incompatibility pairs.

be passed to IG-

To simplify the equations from Figure 4-2, for each method M, we compute the

whole set of incompatibility pairs J(M). After J(M) is computed, the pairs that

contain only inside nodes are put in the global set of incompatibilities IG; the pair

that contains a parameter node are put in I(M). For efficiency reasons, our imple-

mentation would does this separation "on the fly", as soon as an incompatibility pair

is generated, without the need for J(M).

In the case of a CALL instruction, we have two kinds of incompatibility pairs.

We've already mentioned the first one: the pairs obtained by instantiating I(M), VM E

CG(lb). In addition, each node that is live "over the call" (i.e., before and after

the call) is incompatible with all the nodes corresponding to the allocation sites

from the invoked methods. To increase the precision, we treat the normal and the

exceptional exit from the called method separately. Let AN(M), AE(M) C INode be

the sets of inside nodes that may be allocated during an invocation of the method

M that returns normally, respectively with an exception. We describe later how to

compute these sets; for the moment we suppose the analysis computes them right

before starting to generate the incompatibility pairs. Let succN(lb) be the successor

corresponding to the normal return from the call instruction from label lb. The nodes

from live(lb)n live(succN(lb)) are incompatible with all nodes from AN(M). A similar

34

Instruction at label lb Condition Generated constraints
in method M __ _ _

v = new C lb ,return ni'b E AN(M)
lb - throw nr c AE(M)

(VN, VE) = vi.mn (V2 , --- , Vk)

succN(lb) > return AN(M) C AN(M), VM E CG(lb)

sucCN(lb) - throw AN(M) C AE(M),VM E CG(lb)

succE(lb) - return AE(M) C AN(M), VM E CG(lb)

SuccE(lb) - throw AE(M) C AE(M), VM E CG(lb)

Figure 4-3: Constraints for computing AN, AE-

relation holds for AE(M).

Computation of AN(M), AE(M)

Given a label lb from the code of some method M, we define the predicate "lb -* return"

to be true iff there is a path in CFGM from lb to a RETURN instruction (i.e., the

instruction from label lb may be executed in an invocation of M that returns nor-

mally). Analogously, we define "lb - throw" to be true iff there is a path from lb

to a THROW instruction. Computing these predicates is a trivial graph reachability

problem. For a method M, AN(M) contains each inside node n' that corresponds

to a NEW instruction at label lb such that lb --- return. In addition, for a CALL

instruction from label lb in M's, if succy(lb) -> return, then we add all nodes from

AN(M) into AN(M), for each possible callee M. Analogously, if succE(lb) --* return,

AE(M) C AN(M). The computation of AE(M) is similar. Figure 4-3 formally

presents the constraints for computing the sets AN(M), AE(M).

4.4 Computing Static Allocations and Static Allo-

cation Classes

Let S denote the set of self-compatible nodes, as per the incompatibility relation

computed above:

35

S= U {nI}

nI E INode

(n',n')fIG

Allocation sites corresponding to nodes in S can safely be made static, since we

can prove no two objects allocated at one of these sites are live at the same time.

To make multiple static allocations use the same preallocated memory in an opti-

mal way, we need to compute a set Classes of "compatible" classes that satisfies the

conditions below, and has minimal cardinality:

UCE Classes C = S

VC1 ,C2 EClasses, C1 UC 2 = 0

VC E Classes, Vni, n E C, (ni , nI) IG

Consider a graph G(V, E) such that its vertex set V is the set S of self-compatible

nodes, and its set of edges E is given by the incompatibility relation between these

nodes: (ni, n) E E iff (n, nr) E 1G. We can see that computing "compatible classes",

as per the requirements above, is the same as determining an optimal8 graph coloring

of G; the compatible classes are simply the sets of inside notes marked with the same

color.

The graph coloring problem is provably NP-complete; however, a number of fast

heuristics are known to give nearly optimal results in practice. Our implementation

uses the DSATUR heuristic [9], and achieved in our benchmarks more than 80%

reduction in the memory needed for static allocations.

4.5 Simplifying Symbolic Upper Bounds on

Memory Consumption

The analysis we have presented in this chapter safely reduces many dynamic alloca-

tions in a program or program part to static allocations. This enables us to simplify

8 I.e., using the fewest number of colors.

36

the symbolic upper bound we compute using the symbolic analysis in the previous

chapter, by reducing those terms corresponding to dynamic allocations made static

to 1.

However, we cannot perform this simplification on the final symbolic expression,

since we have no way of distinguishing between terms corresponding to different

allocation sites. Rather, we simplify the symbolic expression as we build it: when the

symbolic analysis encounters an allocation site that has been marked static, it is not

added to the symbolic expression, but to a separate expression describing only static

allocations. This expression, denoted by Estatic is computed as follows:

Estatic = allocation (type (n'))

nI ES

With the optimization technique show in the previous section, the symbolic ex-

pression denoting static allocations becomes:

Estatic = E max allocation(type(n'))
Ce Classes n'EC

Finally, once the symbolic analysis is complete, we add Estatic, as computed above,

to our symbolic expression.

In practice, allocation sites that can be made static using the method presented

here are surprisingly many (over 60% of all the allocation sites). By keeping the

contribution from those sites to the symbolic upper bound minimal, we are able to

greatly simplify that upper bound.

37

Chapter 5

Experimental Results

In this chapter we present results of our analyses on several benchmark programs.

Table 5.1 presents a description of the benchmarks. Most of the them are from

the SPECjvm98 benchmark suite; in addition, we analyze JavaCUP and JLex. For

reference, Table 5.2 indicates the size of these programs in methods, Java bytecodes

and elements of the SSI Intermediate Representation.

Table 5.3 shows our results in terms of the allocation sites we analyze and the

precision of our analysis on these sites. We present two sets of results, the first

with static allocations disabled and the second with static allocations enabled. The

numbers are to be interpreted as follows:

" S: the number of allocation sites that only execute once

* Le: the number of allocation sites in exact loops (i.e., loops whose bounds we

have determined numerically)

* L,: the number of allocation sites in symbolic loops (i.e., loops whose bounds we

have determined symbolically; the symbolic expression corresponding to such a

site contains at least one variable primitive)

" L,: the number of allocation sites in unbounded loops (i.e., loops whose bounds

we could not determine; the symbolic expression for such a site contains at least

one looptimes primitive)

38

* R: the number of allocation sites in unbounded recursions (i.e. recursions whose

number of executions we could not determine; the symbolic expression for such

a site contains at least one rectimes primitive.

Note that the last four of the above categories may overlap (for example, we can

have allocations contained in several nested loops and several nested recursions). Also,

FLEX contains an optimization that reduces the number of exception allocation sites

by allocating and throwing all exceptions of the same type in a method from a single

location in the method. If an exception check fails, the generated code branches to

the single throw site for the corresponding exception. Thus, the number of exception

allocation sites is (in some cases considerably) lower than the number of exception

check sites.

Table 5.4 shows our results in terms of the unknown symbols of different types

that we could not determine. It is meant to illustrate the amount of effort required

from the programmer to provide our analysis with the bounds it could not determine.

Again, the table contains two sets of numbers, with the static allocation analysis

disabled and enabled, respectively. The columns should be interpreted as follows:

* NR: the number of recursion bounds the analysis could not determine

* NL: the number of loop bounds the analysis could not determine

" N,: the number of bounds on variables the analysis could not determine.

Finally, Table 5.5 presents the results of our static allocation analysis indepen-

dently of the symbolic analysis; we show the total number of allocation sites, the

number of sites that we have identified as static and the corresponding percentage.

These results entail several important conclusions:

* Substantial effort would be required from an unassisted programmer to deter-

mine a memory upper bound, as many of the allocation sites are enclosed in

non-trivial loops or recursions (Table 5.3 shows that). The programmer would

have to keep track of all enclosing loops and recursions to determine the number

of times objects are allocated at a particular site.

39

Application Description

compress File compression tool (SPECjvm98)
jess Expert system shell (SPECjvm98)
raytrace Single thread raytracer
db Database application (SPECjvm98)
mpegaudio Audio file decompression tool (SPECjvm98)
jack Java parser generator (SPECjvm98)
JLex Java lexer generator
JavaCUP Java parser generator

Table 5.1: Analyzed Applications

" Our symbolic analysis of upper bounds can focus the programmer's effort on

the specific parts of the program that he or she needs to analyze by hand (see

Table 5.4). We believe this information will substantially reduce the amount of

programmer effort required to determine the worst-case memory usage. But as

the numbers in Table 5.4 indicate, for some of our applications, there is still a

significant amount of analysis left to the programmer.

" By making some allocation sites static, based on object liveness, we considerably

simplify the computation of upper bounds. Table 5.5 shows that a majority of

allocation sites can be made static using our method.

We view these results as providing a positive indication that our analysis may

provide substantial assistance to a programmer attempting to determine an upper

bound on the amount of memory that a program requires to execute successfully.

One interesting aspect of our experimental results is that, because of our inability to

find Java programs written for devices with limited memory, our benchmarks may not

be representative of programs with strict memory usage constraints. In particular,

we speculate that our analysis may provide much more precise information for these

kinds of programs.

40

SSI IR
Application Analyzed Bytecode size

methods instrs (instr.)
compress 274 7643 13311
jess 727 25725 46935
raytrace 94 2101 3502
db 353 12153 21041
mpegaudio 471 17341 33865
jack 573 22957 43100
JLex 445 21995 36221
JavaCUP 584 19674 38865

Table 5.2: Size of the Analyzed Applications

Application Without static allocs With static allocs
SjLe[LsJ Lwj R S[Le[Lsj Lj_ R

compress 9 0 107 33 13 83 0 33 1 0
jess 37 0 111 581 850 526 0 20 119 355
raytrace 18 0 3 0 0 20 0 1 0 0
db 80 0 0 79 13 143 0 0 10 0
mpegaudio 7 58 421 318 313 300 3 128 55 52
jack 15 0 104 181 265 329 0 4 119 58
JLex 233 0 49 169 79 333 0 11 39 16
JavaCUP 256 5 13 460 76 495 0 2 182 22

Table 5.3: Compound Analysis Results by Allocation Sites

Application Without static allocs With static allocs
NR NL N NR NL Nv

compress 2 8 5 0 1 5
jess 21 70 68 20 38 43
raytrace 0 0 5 0 0 4
db 2 11 3 0 6 3
mpegaudio 1 20 20 1 19 11
jack 16 51 39 14 32 32
JLex 2 50 34 2 30 24
JavaCUP 6 72 20 5 47 20

Table 5.4: Compound Analysis Results by Number of Unknowns

41

Application Allocation Static Allocation %
sites Sites__________

_201_compress 117 80 68%
_202_jess 902 526 58%
_205-raytrace 21 17 63%
_209-db 162 122 75%
222_mpegaudio 428 304 71%

_228_jack 459 341 74%
jlex 388 302 78%
javacup 771 536 70%
Total 3248 2218 68%

Table 5.5: Static Allocation Analysis Results

42

Chapter 6

Future Improvements

A number of improvements can be made to both analyses to improve their perfor-

mance. Additionally, there are several ways to improve the usability of our analyses.

6.1 Improvements to the Symbolic Upper Bound

Analysis

The main direction of improvement for this analysis, is adding more cases of program

constructs and computations that the analysis can determine. Below are several

examples of such improvements:

" Handling iterator loops, a common construct in Java, which are clearly bounded

by the size of the collection underlying the iterator. Following the symbolic

analysis technique we use currently use, we would add a primitive that expresses

collection size and use it to bound iterator loops. The harder part, of course, is

to place a bound on the collection size itself. We would need pointer analysis

to trace the collection through the program, and a way of reasoning about the

maximum number of objects that might have been added to it.

" Handling some cases of induction (for induction variables and recursive meth-

ods), for example using the techniques highlighted in [11] and [12].

43

6.2 Static Allocation Analysis Improvements

For the second analysis, the main improvement would be to add a way of tracking ob-

ject pointers through the heap, using some form of pointer analysis (in fact, a pointer

analysis from Alexandru Salcianu [14] is available in FLEX). This would greatly im-

prove the precision of our liveness computation in the case of heap-referenced objects,

which is currently very primitive (as a reminder, we consider a heap-referenced object

as alive from the point it was defined until the end of the program).

At the very least, we could add a conservative approximation of the live-region of

a heap-referenced object as the total live-region of all its possible references, including

both local variables and heap references.. While we have not studied this enhancement

in great detail, it may be hard to do it while keeping our analysis compositional.

One special case, that of an object holding the sole reference to another objects,

is important in practice, as it mirrors the "has a" relationship from object-oriented

design. The most ubiquitous example is String objects that hold a pointer to a

character array. This special case might well be the most approachable instance of

pointer analysis for our object liveness computation.

It should also be noted that the precision of our analysis depends in no small part

on the accuracy of the call graph we are using. Therefore, improvements in FLEX's

call graph implementation will positively affect our static allocation analysis.

6.3 Usability Improvements

Currently, we do not have a code transformation to account for static allocations.

Static allocations have to be explicitly supported by the generated code for our bounds

to be correct. More specifically, the code generated every allocation site must use a

well-specified portion of a statically allocated region of memory. This will be imple-

mented in the future using FLEX's support for code transformation.

In addition, we want to add an automated way of incorporating manually com-

puted numerical bounds into the symbolic expression. Ideally, this would work by

44

prompting the user once for each unknown bound, then reducing the expression to a

numerical values using the bounds entered.

45

Chapter 7

Related Work

There has been significant work in the field of worst-case execution timing analysis,

especially in connection to embedded systems and real-time programming. Worst-

case execution time (WCET) is a problem related to the one we are addressing, since

we need the same type of reasoning on the number of time control flow passes to parts

of the program. Some proposals involve computing parameterized WCET expressions

that are instantiated at run-time to make scheduling decisions, without programming

intervention [16]. Others require the program to insert constructs in the code to

help the reasoning of the analysis, and use a similar, symbolic analysis approach [13].

However, such research typically focuses on detailed modeling of low-level details such

as the operation of the real-time scheduling and cache hits/misses rather than the

high-level computation of memory bounds that we propose.

As for our static allocation analysis, we present, to our knowledge, the first use

of a pointer analysis to enable static object preallocation. Other researchers have

used pointer and/or escape analyses to improve the memory management of Java

programs [17, 7, 6], but these algorithms focused on allocating objects on the call

stack. Researchers have also developed algorithms that are designed to correlate the

lifetimes of objects with the lifetimes of invoked functions, then use this information

to allocate objects in different regions [15]. The goal is to eliminate garbage collection

overhead by statically deallocating all of the objects allocated in a given region when

the corresponding function returns.

46

Of these analyses, the analysis of Bogda and Hoelzle [7] is closest in spirit to our

analysis. Their analysis is more precise in that it can stack allocate objects reachable

from a single level of heap references, while our analysis does not attempt to maintain

precise points-to information for objects reachable from the heap. Our analysis is

more precise in that it computes live ranges of objects and treats exceptions with

more precision. In particular, we found that our predicated analysis of type switches

(which takes the type of the referenced object into account) was necessary to give our

analysis enough precision to statically preallocate exception objects.

Our combined liveness and incompatibility analysis and use of graph coloring to

minimize the amount of memory required to store objects allocated at unitary al-

location sites is similar in spirit to register allocation algorithms [5, Chapter 11].

However, register allocation algorithms are concerned only with the liveness of the

local variables, which can be computed by a simple intra-procedural analysis. We

found that obtaining useful liveness results for dynamically allocated objects is sig-

nificantly more difficult. In particular, we found that we had to track the flow of

objects across procedure boundaries to obtain results precise enough to enable useful

amounts of static preallocation.

47

Chapter 8

Conclusions

Placing conservative bounds on memory consumption is important in many resource-

limited environments, because of the strict constraints on memory (embedded sys-

tems) and execution time (real-time systems) that have to be met. It is a difficult and

time consuming process for a human programmer to compute such bounds unassisted.

'This thesis presented a symbolic analysis that significantly reduces the complexity

of this task, asking the programmer to reason only about those aspects of the pro-

gram that could not be determined automatically. A second analysis uses a different

approach - making dynamic allocations static based on object liveness - to improve

on the performance of the first, further reducing complexity.

Personally, I have gained a lot of useful experience on the course of this project.

Having the opportunity to investigate some of the concepts and trends in modern

program analysis was more than welcome. Also, it was new and challenging to me

to tackle a problem infeasible in general, with the goal of reducing cases of that

problem to a minimum of unknowns. Finally, the experience of building on a large

and evolving code base such as FLEX is one I regard as very useful for the future.

Without doubt, there still exists significant room for improvement. We have

mentioned two main directions: more sophisticated symbolic reasoning in the first

analysis, and more precise computation of object liveness during the second. Still,

our results show that our combination of two analyses is, in its current state, an

effective tool for automating the computation of memory upper bounds.

48

Bibliography

[1] The MIT Flex Compiler Infrastructure for Java.

http://www.flex-compiler.lcs.mit.edu/Harpoon.

[2] 0. Agesen. The Cartesian Product Algorithm. In Proceedings of the 9th European

Conference on Object-Oriented Programming. Springer-Verlag LNCS, 1995.

[3] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and

Tools. Addison-Wesley, Reading, Massachusetts, 1988.

[4] C. S. Ananian. The Static Single Information Form. S.M. thesis, Mas-

sachusetts Institute of Technology, September 1999. Available from

http://www.flex-compiler.lcs.mit.edu/Harpoon/thesis.pdf.

[5] A. Appel. Modern Compiler Implementation in Java. Cambridge University Press,

1998.

[6] B. Blanchet. Escape Analysis for Object Oriented Languages. Application to Java.

In Proceedings of the 14th Annual Conference on Object-Oriented Programming

Systems, Languages and Applications, Denver, Colorado, November 1998.

[7] J. Bogda and U. Hoelzle. Removing Unnecessary Synchronization in Java. In Pro-

ceedings of the 14th Annual Conference on Object-Oriented Programming Systems,

Languages and Applications, Denver, Colorado, November 1999.

[8] G. Bollela, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and M. Turnbull. The Real-

Time Specification for Java. Addison-Wesley, Reading, Massachusetts, June 2000.

Available from http: //www.rtj .org/rtsj-V1..0 .pdf.

49

[9] D. Brelaz. New Methods to Color the Vertices of a Graph. Communications of

the A CM 22, 1979, pp. 251-256.

[10] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F.K. Zadeck. An

efficient method of computing static single assignment form. In Proceedings of the

16th ACM Symposium on Principles of Programming Languages (POPL), Austin,

January 1989 pp. 26-35.

[11] M. R. Haghighat and C. D. Polychronopoulos. Symbolic Analysis for Parallelizing

Compilers. In ACM Transactions on Programming Languages and Systems, 18-4,

July 1996, pp. 477-518.

[12] T. Fahringer, B.Scholz. Symbolic Evaluation for Parallelizing Compilers. In Pro-

ceedings of the 11th International Conference on Supercomputing, 1997, pp. 261-

268. Conference

[13] P. Puschner and C. Koza. Calculating the Maximum Execution Time of Real-

Time Programs. In Journal of Real-Time Systems, 2-1, September 1989, pp. 159-

176.

[14] A. Salcianu and M. Rinard. Pointer and Escape Analysis for Multithreaded Pro-

grams. In Proceedings of the 8th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, Snowbird, Utah June 2001.

[15] M. Tofte and L. Birkedal. A Region Inference Algorithm. In ACM Transactions

on Programming Languages and Systems, 20(4), July 1998.

[16] E. Vivancos, C. Healy, F. Mueller and D. Whalley. Parametric Timing Analysis.

In Proceedings of the ACM SIGPLAN Workshop on Languages, compilers and

tools for embedded systems, Snow Bird, Utah, 2001.

[17] J. Whaley and M. Rinard. A Compositional Pointer and Escape Analysis for

Java Programs. In Proceedings of the 14th Annual Conference on Object-Oriented

Programming Systems, Languages and Applications, Denver, Colorado, November

1999.

50

