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Abstract

Image-guided surgical systems are becoming widespread throughout the medical com-

munity. Several companies currently offer commercial, FDA-approved systems that

track surgical tools and provide the surgeon with real-time computer visualizations

of some aspect of the surgery at hand. A fundamental limitation of most of today's

image-guided surgical systems is that they rely on data from imaging studies that

were collected pre-operatively. Since the purpose of surgery is generally to alter the

patient's anatomy in some way, such models often quickly become outdated as the

surgery progresses. There is a clear need for systems that can update or replace the

pre-operative data to reflect the changes that occur throughout the surgery.

We have developed an active-stereo imaging system that 'uses two monochrome

charge-coupled device (CCD) video cameras and a laser diode line generator in order

to make accurate surface measurements. These measurements can then be used by

algorithms that model tissue deformation in order to update the pre-operative models

to reflect the state of the tissue as the surgery progresses.

Thesis Supervisor: W. Eric L. Grimson
Title: Bernard Gordon Professor of Medical Engineering
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Chapter 1

Introduction

1.1 Medical Imaging

A large array of diagnostic imaging modalities have been invented in the past century.

For a long time diagnostic images were acquired directly onto film, which was then

developed and viewed directly on a light box. In the past twenty-five years a number of

computerized diagnostic modalities have arisen such as X-ray Computed Tomography

(CT) and Magnetic Resonance Imaging (MR or MRI). Both CT and MRI acquire

data from sensors and use a computer to reconstruct data from a slice of the body.

A series of slices is acquired and the slices are stacked together. This more-or-lessi

creates a three-dimensional (3D) dataset that describes a volume of tissue that was

imaged. Despite the digital start to this data, standard practice has been to print the

images, as a series of consecutive slices, onto film that is then developed and viewed

on a light box in the same manner as a traditional X-ray.

Decades ago physicians, engineers, and computer scientists realized that many of

the inherently digital images that were being printed on film could be viewed and

analyzed on a computer workstation. Such displays of digital images have several

advantages over film:

'Traditional CT acquires consecutive two-dimensional slices that are as thin as the ring of X-rays
that created them. MR, on the other hand, actually images a volume at a time and slice images
have an associated "width" or thickness.
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1. A film copy can only exist in one place at a time, while a digital image can be

transmitted and copied, as many times as necessary, without noise, degradation

of quality, or risk of loss. These copies are made and transmitted at limited

cost.

2. Static displays of slice images offer only a single view of the data and portray

tissue in a manner that does not mimic the three-dimensional tissue that a

physician is used to seeing in vivo. Part of the job of the surgeon is to integrate

a series of slice images into a mental 3D picture of the associated anatomy.

3. Measurements made on film are generally made by hand. A wide variety of

computer algorithms have been developed in the past several decades for making

measurements, planning surgical routes, and detecting anomalies.

While these systems have become more common during diagnosis, they were most

often not available in the operating theater itself, and surgeons would rely on the

use of conventional films, notes, memories and recordings of plans made on medical

image workstations.

1.2 Image-Guided Surgery

Recently, electronic image display and analysis systems have started to enter the op-

erating room and have given rise to the field of image-guided surgery. Image-guided

surgical systems combine techniques from computer vision and computer graphics in

order to provide useful displays that help guide the surgeon through the task at hand.

In its simplest form, such a system could duplicate the functions available in a surgical

planning workstation, only with an interface that is tailored to the surgical environ-

ment. More advanced solutions make use of vision algorithms, computer graphics

and visualization technologies, and some sort of real-time input about the state of

the surgical procedure underway. Such input generally takes the form of position and

orientation of one or more trackable surgical instruments and the computer display

generally updates to reflect those parameters as they change. A typical example is

14



a system such as Xplan [19, 28], which displays preoperative MR or CT data along

with both three-dimensional (3D) models of the relevant anatomy and an icon of the

surgical instrument being tracked. The location of the icon changes in real time as

the surgeon moves the instrument, and the other displays change to reflect a certain

viewpoint with respect to the position of the surgical instrument.

Image-guided surgery (IGS) is desirable for several reasons. Medical imaging in

general is fascinating because it allows one to see inside the body in a non-invasive

manner, but even during an invasive surgical procedure image data can offer views

of some physical or physiological parameter that does not alter the appearance of

the tissue. An example is Positron Emission Tomography (PET) and Single-Photon

Emission Computed Tomography (SPECT) which each show the distribution of a

radioactive tracer compound within the body and can depict blood flow, glucose

utilization, receptor occupancy, and various other physiological parameters unseen

to the naked eye. More recently researchers have successfully used functional MRI

(fMRI) to depict blood flow changes in the brain [2].

The boundaries of a tumor are not always visually apparent. The surgeon is

balancing the desire to remove as much (if not all) of the cancerous tissue with the

need to keep eloquent areas, such as those responsible for speech, locomotion, or

sensory perception, intact. Since the tumor boundaries are not always apparent, this

becomes a game of estimation that usually either results in the removal of extra, non-

malignant tissue or classification of a tumor as "inoperable" and a refusal to do the

surgery at all. IGS allows the surgeon to incorporate boundary information visible

on various images with the actual process of tissue removal, allowing more precise

visualization of a tumor and better navigation around eloquent areas.

Surgery is generally a slow process of careful movement through layers of tissue

until the desired place is reached. The surgeon is able to visualize obstacles along her

route, such as nerves and blood vessels, but in the absence of an IGS system must

mentally connect what is happening in the physical world with what is visible on

a light-box. An IGS system makes this connection absolute without relying on the

surgeon's memory or estimation of how the two-dimensional slices on the light box

15



correspond to the three-dimensional person before her.

The typical stages of image-guided surgery are depicted in Figure 1-1.

Acquisition of Images MRI, CT, Ultrasound, X-ray, etc.

Image Registration Additional image meta-data

Model Generation
------- - - - --- -- Radiologist, surgeon, or skilled technician

Surgical Planning

Patient Registration Tracking system data

Dynamic Display Patient tracking
a Re-registration

Instrument Tracking Instrument tracking
Data Collection Input devices (mouse, button, video)

Review
A Post-op Comparison Post-operative images

Figure 1-1: The various stages of image-guided surgery. The source of any additional
input to each stage is shown in italics.

Once a diagnosis has been made, additional images may be taken in order to facilitate

treatment (e.g. surgery). For instance, a two-dimensional X-ray angiogram may show

clear evidence of a malformed blood vessel and be sufficient for diagnosis, but a three-

dimensional MR angiogram might be desired in order to plan a surgical route. Even

though a tumor may be a solely physical manifestation, various functional images

might be taken in order to hunt for eloquent areas to avoid. If a diagnosis is made

from a CT scan that generally shows bony structures far better than soft-tissue, a

subsequent MRI may be done in order to provide skin surface data for the IGS system.

When data acquisition is complete, the next step is to register the various data

data sets to bring them into a common coordinate system. One problem is that each

16



scan may have been taken in a different machine, on a different day, with the patient in

an arbitrary position. This problem is dealt with by using rigid registration methods

to bring these images into alignment with one another (e.g. [24, 53]). A more difficult

problem is when the various images depict different morphologies instead of simply

different positions and orientations. An example is soft abdominal organs that move

with postural changes. A different example is rigid structures, such as vertebrae,

which retain their shape but articulate with respect to each other. These are more

difficult problems that are still being addressed. For this reason, IGS has been most

often exploited in the head (brain, sinuses) where there is little movement of tissue

between scanning and surgery.

At this point in the process, several data sets co-exist in the same coordinate

frame, generally as a volume-elements or voxels (the 3D equivalent to image pixels).

Methods exist for the direct display of such volume data (e.g. [29]), however greater

flexibility is offered when structures within the volume data are identified and turned

into surface models. Such models, usually represented as a mesh of polygon edges

and vertices, are a compact representation of the boundary of an object (Figure 6-

5). Polygon mesh models are generally quicker to display and much smaller to store

than the entire image volume. Typical 3D computer graphics effects such as coloring

of models, shading (to give a sense of 3D on a 2D screen), and transparency can

be rapidly changed and updated on-screen. The process of generating these models,

however, requires either a human or programmed (algorithmic) decision about where

the boundaries of the object of interest are. Labeling of objects within the images

is known as segmentation and generally some combination of manual (e.g. freehand

drawing with a computer input device such as a mouse), semi-automated, and fully

automatic segmentation are used. The end result is a set of polygon-mesh models

representing various structures such as skin, brain, tumor, blood vessels, etc. In

addition, surgical route planning or even simulation can be done and markers for the

surgical route can be left in the data. At this point the pre-operative imaging work

is done.

Once the patient is in the operating room (OR) and prepared for surgery, a second
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registration process must occur. While the pre-operative data has been registered to

one another and is now in a common coordinate system, there is no relationship

between the physical patient and his data. The IGS system has some tracking device

that provides positional information about surgical instruments or other objects that

have been specially labeled. Typically a trackable instrument will be used as a pointer

to touch various fiducial points on the patient. The corresponding points are then

identified in the image data either manually, or in some semi-automated fashion if

the fiducials in the image data can be detected by software. Fiducials can either

be explicit markers that are implanted or attached to the skin, or can be implicit

features of structures that are both visible on the patient and in the image data (e.g.

the auditory meatus, the bridge of the nose, the canthus of the eye, etc.) After the

fiducials are identified, software then calculates the position and orientation of the

patient relative to his scan data.

As the surgery progresses, the IGS system typically dynamically updates the dis-

play on screen. Our group's IGS system, Xplan, uses a four-panel approach. Three

panels show orthogonal sections through one of the original image data sets and the

fourth panel shows a computer graphics rendering of the polygon-mesh models. When

a trackable surgical instrument is being used, the three-panel display updates so that

the images shown are the orthogonal planes that intersect where the tip of the probe

is pointing on the patient. In addition, the fourth panel has a computer graphics

arrow that simulates the position and orientation of the surgical probe over time.

As the surgeon moves the probe, the computer graphics arrows moves accordingly.

Generally, before a craniotomy procedure the surgeon will explore the surface of the

head with the surgical probe while looking at the on-screen display. This allows the

surgeon to visualize where the tumor is and to plan where to make her incisions. This

dynamic display continues throughout the surgery.

If the patient's anatomy of interest moves with respect to the tracking sensors,

the patient registration is no longer valid. For this reason the patient himself may

be tracked and a re-registration process may occur throughout the surgery to keep

the patient registration valid. Additionally, as the surgery progresses the surgeon
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may wish to record various landmarks. This may be for research purposes, to allow

post-op measurements to be done, or to mark where an implantable object has been

left in order to guide subsequent retrieval. The surgeon generally uses some sort of

hands-free input device, such as a foot pedal, although research is being done into

alternate input methods such as recognition of facial and hand gestures.

After surgery, the IGS system leaves the OR and may be used to review what

happened during the procedure. If a measuring device such as a cortical EEG grid

was implanted, then data may be collected and visualized on the models and recorded

landmarks in the system. Additionally, post-operative images may be taken over

time and compared to the images used for surgery. The IGS system can facilitate

visualization of the new dataset and measurements between the sets.

1.3 Problem Statement

A fundamental limitation of most of today's IGS systems is that they rely on models

that are generated from scans that were taken prior to the start of surgery. Once

a major surgical procedure has begun, however, these models can quickly become

outdated due to combinations of forces that change the configuration of the body

part of interest.

One source of change that occurs in the body is the physiological functioning of

the part being examined. Probably the most obvious example is the beating of the

heart, which not only causes deformation of the heart muscle itself, but also leads to

dilation and contraction of peripheral blood vessels such as those in the brain. This

leads, quite literally, to a visible pulsing of the organ during surgery. This motion and

deformation is normally neglected during a brain imaging study, however the cardiac

cycle can be taken into account by gating the image acquisition to a signal from the

patient's electrocardiogram. Of course, the resulting images are then only "valid"

during that point of the cardiac cycle, but at least they do not suffer from motion

artifacts. Such gated image acquisition is standard procedure in static imaging of

the heart itself, where the motion is greatest. A different example of physiological
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deformation is the peristaltic motion of the intestines.

While the brain suffers slight deformation from the beating of the heart, it is

less subject to the effects of gravity and postural changes than, say, soft abdominal

organs. The dura mater (the outer covering of the brain and spinal cord), a cushion

of cerebrospinal fluid, and the bony skull all work to keep the brain in roughly the

same place regardless of the position of the patient 2 . An interesting middle ground

between these two extremes is the motion of articulating joints between bones or of the

spinal vertebrae. Here there are parts that move with respect to each other but that

individually retain their shape. One can foresee (and many have) computer models

that articulate in a planned manner with respect to each other during a computerized

registration or segmentation process.

A third source of anatomical change that occurs between scanning and surgery is

the surgical procedure itself. By definition a surgical procedure involves modification

of the anatomy in a more or less drastic manner. Surgery results in topological

changes due to the removal or implantation of tissue or prosthetics as well as swelling

or shrinking due to mechanical injury and/or chemical changes. These are possibly

the most difficult sources of change to track and control as they incorporate positional

and shape change as well as the possibility that structures will disappear entirely (e.g.

during tumor resection) and that other structures will appear (e.g. an implanted hip

joint.)

The problem is how to update these pre-operatively generated models as the

surgery progresses. The ultimate solution to this is intraoperative imaging of some

sort. Until recently, this had been mostly limited to two-dimensional X-ray images,

ultrasound, and fluoroscopy. Each imaging method has limitations that restrict its

usefulness. A more recent, if expensive, development is the advent of intraoperative

or irterventional MRI [25]. The ability to generate three dimensional MR images

during surgery provides an incredible advantage, although it challenges the current

state of the art in segmentation and model generation to be able to generate useful

intraoperative 3D models "on the fly" during surgery.

2 As we will see, all of this changes once the skull and dura are opened.
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Figure 1-2: Massive shift of cortical surface after resection of a large, deep tumor
mass. Toward the upper left the pearlescent white inner surface of the skull is visible
where the brain has pulled away. Clearly, data from a pre-operative scan is no longer
valid.

We are interested in whether some inexpensive hardware, combined with conven-

tional computer vision techniques, could be used to generate intraoperative surface

measurements. If a sufficient surface model could be generated and combined with

knowledge of how the anatomy deforms, it is possible that such measurements could

be used to guide either a rigid registration process to account for the rigid motion

of organs or a non-rigid (i.e. warping) process to account for the deformation of or-

gans. This thesis concentrates on the design and construction of a surface acquisition

system that could be used in a surgical environment.
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1.4 Requirements for a Surgical Environment

A neurosurgeon once remarked that working in surgery is a game of "hurry up and

wait." [39] This is rather true and of necessity. The cost of running an operating

theater is enormous and requires the coordination of a number of people from surgeons

to nurses to the people who clean the operating room (OR) floor. More recently this

list has included computer technicians to operate an image-guided surgical system.

Each of these individuals costs a certain amount of money and a team that works

well together is worth much more than the sum of its parts. This is often literally a

life and death game with subtle exchanges and interactions playing a large role. For

any system to be usable in the OR, it must integrate smoothly with this team.

1.4.1 Speed

For a surgical tool to be useful it must be usable quickly. The cost of the OR itself,

as well as the people in it, makes speed essential.

1.4.2 Sterility

The majority of the space within a typical OR in the United States is considered

"sub-sterile." There are strict requirements for general cleanliness which prohibit

people from wearing street clothes, but the floors, walls, and machinery are not, in

general, kept in a sterile, germ-free state.

Once the patient is in place and ready for surgery, a sterile field is created around

him. The site of entry into the body is cleaned and disinfected as best as possible

and a sterile paper and plastic barrier is erected separating this clean area from the

rest of the body. Those who will be directly interacting with the patient's body in

the sterile field are also kept sterile with hand-washing, plastic gloves, and plastic

and paper sterile gowns that cover the sub-sterile surgical garb worn around the OR

suite.

It is important that any intraoperative surgical appliance not contaminate any

part of the surgical field, either on the patient, on the staff, or on any instruments or
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tables touched by those keeping sterile.

1.4.3 Accuracy

For obvious reasons, the information presented by a surgical system must be accurate.

How accurate depends on the surgical application. In some cases, it is acceptable for

the system to be inaccurate as long as the operators are notified of such and in others,

a certain degree of accuracy must be guaranteed at all times. The latter situation

could be foreseen when using a surgical robot to actually perform some surgical

procedure such as the insertion of a biopsy needle. For our purposes, it is enough

that the system be accurate to within a few millimeters and that the users have

knowledge about this accuracy either through bounds placed on possible inaccuracy

or some dynamic assessment method.

1.4.4 Problem Summary

While medical imaging has been around for a number of years, image-guided surgery

is still in its infancy. Most of today's image-guided surgical systems rely on scans

and models that were collected pre-operatively. For this reason, most image-guided

surgery is restricted to organs that remain relatively fixed within the body, such as

the brain. Even for these structures, pre-operative scans quickly become invalid as the

surgery progresses. Arguably the ultimate solution to this problem is intraoperative

MRI, however these are costly, hardly unobtrusive, and by nature restrict the surgeon

to non-ferromagnetic tools and instruments. What is needed is an inexpensive way to

update pre-operative models as a surgery progresses. We propose the use of a stereo

camera/laser scanner that measures surfaces for this purpose. Figure 1-3 shows how

intraoperative measurements of a surface could be integrated into an existing IGS

system. Intraoperative surface measurements would be processed by an algorithm

that models the appropriate kind of tissue deformation and updates the pre-operative

data to match how the surface has changed.
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Figure 1-3: Integration of intraoperative data into an image-guided neurosurgery
system. The dashed-box houses components of a traditional image-guided surgery
system that does not have any intraoperative imaging technology.
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Chapter 2

Related Work

2.1 Introduction

The primary motivation for this work is to develop a low-cost, low-risk method for the

acquisition of intraoperative data in order to allow for adjustments to pre-operatively

acquired data that no longer correctly represents the anatomy. This requires two

components:

1. A system for gathering appropriate measurements of tissue position

2. A model or interpolation scheme that is capable of updating a complete pre-

operative dataset using possibly sparse data collected from step 1

Step 2 is necessary because step 1 will likely not contain a full dataset. Even in

intraoperative MR, the imaging time required makes it impractical to repeatedly

acquire a full dataset that could simply replace the pre-operatively generated models.

Since most of the image-guided surgery to date has been in neurosurgery of the

brain, we concentrate on this problem. It has been known for some time that the

process of opening the cranium and dura for access to the brain causes the brain

to move significantly (e.g. [40, 32]). The exact reason for this is still unknown,

however it is thought to be a combination of factors including: gravity and pressure

changes, draining of the CSF, drugs infused during surgery, and mechanical reactions
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to the manipulation of the tissue. To date it is still an open question whether such

a model exists for brain deformation (called brain shift) that can predict subsurface

deformations solely from measurements taken from the surface.

In the next section we review work that is being done at several academic cen-

ters. While the research for this work was completed in January, 2000, since we are

submitting it in 2002 we include here a review of current progress made by other

groups in the intervening time, as well as the initial work of other authors. This is

by no means an exhaustive list even within a particular group, but we believe that it

represents a large cross-section of the work done in the community.

The strategies that these groups are pursuing can be parameterized by our two

components listed above. For measurement, groups are using intraoperative MR, ul-

trasound, probing with a tracked surgical probe, and video/laser/vision systems such

as the one described here. For model updating, groups are pursuing two strategies.

One strategy uses an intrinsic image property model that attempts to fit the mea-

sured (sparse) data to the pre-operative model based solely on image properties and

then interpolates the entire pre-operative model based on the measured parameters.

Such an interpolation scheme might fit a polynomial to the data [52] or might give

the data the properties of some non-biological material such as a thin metal plate

[4] or a rubber sheet. A second strategy being pursued attempts to create a suitable

biomechanical model that more closely resembles the tissue being studied and the

forces being applied to it. The latter is clearly more challenging, but obviously more

physically realistic and may prove to be worthwhile.

This subject has overlap with the surgical simulation community which is also

attempting to characterize tissue properties for the purpose of making realistic sim-

ulations to train physicians (e.g. [6, 46, 13]). Note, also, that some groups are using

a simulation/model updating scheme not explicitly for use in surgery, but rather to

facilitate understanding and visualization of the nature of the tissue deformation.
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2.2 Other Groups

We have defined and named these groups primarily by clustering co-participation

of various authors in the particular sampling of papers found during our literature

review. We make no claims about seniority of authors or academic affiliation of all of

the authors. The reader is encouraged to to obtain the actual cited works in order to

properly understand author affiliations.

2.2.1 King's College - Maurer and Hill, et al.

In [32], the authors provide a detailed analysis of brain shift during twenty-one cran-

iotomy procedures. A surgical probe tracked via an infrared localizer was used to

record points along the dural surface and then along the surface of the cortex at two

time-points after the dura was opened. Those measurements were compared against

the pre-operative MRIs and showed a shift of several millimeters up to 1.5 centime-

ters. This study was one of several that provided hard evidence that brain shift was

a significant problem for image-guided surgery procedures. The authors also imaged

two subjects without craniotomy in both a supine and prone position in order to

quantify the brain shift that occurs simply from positional changes. The study con-

cluded that orientation with respect to gravity, in the absence of a craniotomy, causes

less than 1 mm of shift.

2.2.2 Yale - Skrinjar and Duncan, et al.

In [49], the authors propose to model the brain deformation as linear visco-elastic.

Discrete nodes within the brain volume are assigned model parameters depending on

their weight and assumed tissue class. Interaction between neighbors is a spring and

dashpot model varying inversely with distance between the nodes and varying with

relative "velocities." The interaction with the skull is assumed to only affect nodes

within a neighborhood of the skull and then in a way that varies with the square

of the distance to the outer edge of this neighborhood. Gravity is factored into the

model. The authors show results on simulated 2D and 3D data. The experiments
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assumed homogeneous tissue throughout the brain, although their model allowed for

local tissue properties to be set. There was no validation of the method. The authors

indicate that processing time is an issue, but they suggest ways that this could be

rectified.

In [50], the authors propose a total system for updated IGS, and substitute a new

model for the brain-skull interaction. Here they no longer use the brain-skull interac-

tion in the model equations, but introduce a boundary condition limiting movement

of model nodes once they reach the skull. The authors claim that the end-result was

similar to their earlier work, but in runtime compatible with use during surgery. The

rest of the model was left intact. The authors still used homogeneous model param-

eters reportedly due to the difficulty of estimating them and conflicting reports in

the literature about the different mechanical properties of the brain. The authors use

six surface landmarks, recorded repeatedly in time during surgery, presumably with

a trackable probe, to guide the evolution of the deformation model as well as a sepa-

rate experiment in which the deformation model evolves from initial conditions. The

residual error for both models is compared and the "guided" model, which received

updates, converges rapidly. A validation was done using a portion of the measured

points to guide the model and the remaining measured points for validation. The

final result was a measured surface movement of 3.29 mm and residual error in the

corrected model was 0.49 mm. An interesting contribution here is the idea of using a

deformation model which is iteratively updated with intraoperative data as opposed

to a model that attempts to, in one step, calculate the total deformation given a

single time-point of measurements.

In [48], the authors develop a system for using a stereo camera system for the

measurement of the surface of the deforming brain. They have also abandoned the

spring and dashpot mesh model for a model based on continuum mechanics and solved

using a finite element method. Model parameters are still homogeneous in this work,

however the deformation is restricted to the hemisphere in which the craniotomy

occurs. A unique contribution here is that instead of using the stereo images for

surface reconstruction, they iterate through a range of possible deformations for their
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model, simulate the images that such a model would project, and then compare, using

a normalized mutual information scheme, the results with the actually acquired stereo

pair of images. The authors also report a separate experiment using data from an

intraoperative MR system in order to validate the assumption that measuring surface

deformations is enough to guide their model to a solution for how to shift the entire

brain volume. They reported reduction of a 4mm error due to brain shift to less than

1.5mm (near the resolution of the images.)

2.2.3 Dartmouth - Miga, et al.

In [36], the authors present an initial 3D model of brain deformation that describes

the brain as a biphasic material with a solid linearly elastic component and a fluid

component. The primary actor in this model is fluid load around the solid and not

gravity. The authors use a finite element method to calculate their model simulation

and compare simulated and actual measured deformations from a porcine model that

consists of implanted radio-opaque beads and a balloon catheter, inflated near the

midline, in order to simulate surgical load. Two numerical simulations of fluid effects

such as drainage of cerebrospinal fluid (CSF) and administration of volume-reducing

drugs were also performed. The simulations predicted deformation trends within 15

percent of the measured value for the radio-opaque beads. A second study [35] shows

results for a similar experiment with a temporally positioned balloon and predicted

results within 6.6% of the measured values.

In [37], the authors incorporate the effects of gravity versus lost buoyancy (due to

fluid loss) into the model previously described. Here they cite using a homogeneous

model for elastic properties and a heterogeneous model, with respect to gray matter

and white matter, for hydraulic properties. They test their model in four human

subjects who underwent surgeries that the authors felt would result in brain shift pri-

marily due to gravity. Data was gathered using an intraoperative stereotactic system

and having the neurosurgeon identify homologous landmarks as surgery progressed.

The authors also performed updating of pre-operative MR images using the results

of the simulation. The end result was an accounting, on average across subjects, for

29



approximately 79% of the calculated deformation.

In [34], the authors conduct two experiments. First, they show their experiences

outside of the OR using a commercial laser scanner (RealScan 3D, 3D Digital Cor-

poration, Bedford Hills, NY, USA) to digitize surfaces. The authors conclude that

the scanner provides accurate surface measurements and provides for registration ac-

curacy comparable to other "3D digitization technologies." In the rest of the paper

the authors investigate the difference between using gravity-induced deformations to

drive their model, using applied surface deformations (e.g. from a measured surface),

and using a combination of applied surface deformations and applied ventricular de-

formations (e.g. from a modality, such as intraoperative ultrasound, that measures

subsurface structures.) The model here also uses separate parameters for gray matter,

white matter, CSF, and tumor. The authors conclude that the three methods under

comparison show significant differences in the computed deformations and that sur-

face measurement alone may not be sufficient to accurately update subsurface model

features.

Much of the work described thus far has focused on physiologic and gravitational

brain shift and has not taken into consideration the actual physical changes imposed

upon the tissue by the surgeon. In [43] and [42] the group investigates models for

dealing with tissue retraction and resection.

2.2.4 Brigham and Women's - Ferrant et al.

In [12], the authors propose and evaluate a method based on surface matching and

finite elements. The authors have access to an intraoperative MRI (iMRI) and use it

for the experiments. Throughout the surgery, images are acquired at various times

and both the external surface of the brain and the interior surface of the ventricles

is extracted. A finite element algorithm matches corresponding surfaces between

timepoints and then a second finite element algorithm produces a deformation field

for the entire image volume based on the deformation of the surfaces. The brain

itself is modeled as a homogeneous linear elastic material using parameters taken

from Miga, et al. The algorithm tracks the surface deformation and reduces surface
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fiducial errors of up to 10mm to less than 1mm and sub-surface errors from "up to

6mm to 3mm or less." The algorithm has difficulty at the mid-sagittal plane, but

the authors attribute this to defects in the modeling of the ventricles. The surface

tracking and finite element models are described in greater detail in [10] and methods

for visualizing the deformation field are presented in [11].

2.2.5 University of Western Ontario - Gobbi, et al.

We have so far discussed work using surface measurement techniques as well as MRI

intraoperatively to measure brain shift. Another measurement modality being used

is ultrasound imaging. Ultrasound is popular because of its low cost, portability,

and lack of ionizing radiation. Disadvantages of the technique include noise in the

images and the fact that ultrasound generally provides a 2D sector of information

at a time. 3D ultrasound requires careful tracking of the freehand ultrasound probe,

but hardware capable of doing such tracking is becoming more prevalent and has

alternate advantages as seen below.

Gobbi, et al., in [15] present a method for using tracked ultrasound co-registered

with pre-operative MR to visualize brain shift. The authors use an optical tracking

system to track the ultrasound probe and, in real time, display an overlay of the

ultrasound image with corresponding data from the pre-operative MR. The authors

claim accuracy for their technique at a millimeter or less at depths of less than 7 cm.

In [14] the authors describe the same system, but with 3D ultrasound.

A problem with all of the techniques mentioned is finding points/surfaces/volumes

in the pre-operative data and the corresponding features, if the features still exist, in

the intra-operative data. In [26], the authors propose use of the cerebral vasculature,

as seen in pre-operative MR angiography (MRA) and intra-operative power Doppler

ultrasound, to provide correspondences. They present a preliminary algorithm for

matching vessels in the MRA with the ultrasound, though the algorithm has difficulty

with small vessels close together.

Finally, in [16] the authors describe the latest incarnation of the system, which

does real-time 3D reconstruction of the ultrasound as the volume of interest is swept

31



with the transducer. They also describe updating of the pre-operative models using

a thin-plate spline warping as described in [5]. The system requires that landmark

points be identified in both the final 3D ultrasound image and the original MRI. The

authors point out that this can be difficult and indicate that extending the algorithm

to matched contours is a priority for their future work.

2.2.6 McGill University/MNI - Audette, et al.

Audette, et al. in [1] use a commercial laser/CCD range sensor to acquire the cortical

surface intraoperatively. They use a novel iterative closest point (ICP) algorithm

for doing an initial rigid registration between the range image and the baseline MRI

and later for doing non-rigid registration between successive range images of the

deforming surface. A finite element model is used to interpolate the determined

surface deformation to the entire MR volume. The algorithm and hardware described

is tested on a custom polyvinyl alcohol cryogel (PVA-C) phantom, a technique used

by several other groups for validation. The authors also present a level-set based

segmentation. Some rigid and non-rigid alignments of MRI and range image data are

shown, but validation of the FEM model had not yet been done.

2.3 Conclusion

A great deal of work has been done concordantly and in the several years since ours

was completed. It is clear that, at least in the case of brain surgery through a cran-

iotomy, organ shift is a serious problem that compromises the integrity of IGS systems

that operate solely on the basis of pre-operatively acquired images. Work has been

done using intraoperative MRI, laser/video range scanners, and ultrasound for intra-

operative data gathering. Some experiments with model updating have been com-

pleted successfully with some authors using relatively simple interpolation schemes

and others attempting to create and validate a biomechanical model of the deforma-

tion of the brain.

What we describe in this thesis is a low-cost solution for making intraoperative
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surface measurements. It remains to be seen whether such measurements can be

accurately used to predict sub-surface deformations, however the results from other

groups doing such simulations is promising. Our system was developed to work in

conjunction with the IGS system described in [28].
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Chapter 3

Our Approach

3.1 Solution

In order to provide accurate surface measurements that would not require contact with

the sterile field, we decided to use an optical system that relies on the differences in

the view seen from two cameras in order to reconstruct a surface. Given a small

patch on an object in the world that is visible from both cameras, the patch will

project an image into one part of the image plane of one camera and a different part

of the image plane of the other camera. There is a direct and well defined geometry

that relates how the distance of a patch on the object from the camera affects the

disparity between the location of the patch's projection into each of the two image

planes [7]. We will exploit this geometry in order to recover distance from the camera,

or depth, from the two projected images. The major difficulty in implementing such

a system is in defining correspondences between parts of the view in one camera

and the analogous parts in the view from the second camera. This is the so-called

correspondence problem [23], and it is not easily solved in general. We set up an

artificial situation, however, where this correspondence can be easily solved.

This will be explained in detail in chapter 4, but an introduction here is warranted.

If a point on an object of interest is visible in each of our two cameras, we can derive

it's depth, relative to either camera, within the scene. In order to do so, we need to

know:
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1. Where the point of interest appears in each of the two cameras' image planes

(correspondence).

2. The spatial relationship between the two cameras, or relative orientation.

3. The model for the camera that relates how a point in space will project into

the image plane of each camera.

Given a point found in one image plane, the corresponding point in the image

plane of the other camera must lie along a line, known as the epipolar line. Given

the known relative orientation of the two cameras, and a single image point, we can

calculate where the epipolar line is in the other camera's image plane. We must search

for our correspondence along this line. Furthermore, if we illuminate our scene with a

laser line generator and only "pay attention" to points imaged from this line, then our

correspondence must also lie on the projection of our laser line into the image plane.

The intersection of the laser line with the epipolar line is where our correspondence

must lie.

Our system operates by moving a laser line incrementally along the surface of

interest, pausing long enough to take a single image from each of the two cameras for

each position of the laser.

3.2 System Architecture

The system comprises modules performing the following functions

1. Software control

2. Video acquisition

3. Laser line generation and movement

4. Camera calibration

5. Surface reconstruction
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Figure 3-1: System Overview

3.3 Software Environment

The primary software environment for this system is The Visualization Toolkit (VTK)

[30]. VTK comprises a series of C++ classes that implement a software framework for

the processing and visualization of multi-dimensional data. The framework embodies

a data-pipeline architecture with data sources (data files, direct interfaces to data

acquisition systems, etc.), sinks (data file writers, on- and off- screen renderers, etc.),

modules with side-effects (e.g. our laser control module that does not process any

data), and filters. While the modules are implemented as C++ classes, bindings are

available to allow a data pipeline to be constructed in Tcl (Tool Command Language),

Python, or C++.

We have found it convenient to implement core functionality within VTK C++

classes and then to glue these modules together into an application-specific data

pipeline using scripts written in Tcl. Tcl is an interpreted language that is well
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suited to the task and allows live interaction, via the Tcl command interpreter, with

the various VTK classes. In this way, the application can be built and debugged

interactively while live. In addition, Tcl is paired with Tk, a graphical widget set that

allows for rapid construction of graphical user interfaces. At the time of this writing

the reconstruction has been implemented in Matlab (The Mathworks, Natick, MA,

USA) solely for convenience. Implementation of reconstruction as a VTK class could

lead readily to a near-realtime acquire, reconstruct, visualize/interact loop.

3.4 Hardware Components

The primary computational resource for this project is an Ultra 30 workstation with

the Creator3D graphics subsystem (Sun Microsystems, Sunnyvale, CA, USA). Images

are being acquired by two monochrome charge coupled device (CCD) video cameras

(TM-9701, PULNiX America, Inc., Sunnyvale, CA, USA) feeding an NTSC video

signal into a SunVideoPlus video capture card (Sun Microsystems).

The laser stripe was generated by a laser diode (3mW, 670nm, Applied Motion

Systems, Eugene, OR, USA) and was moved across the object of interest using a

stepper motor (Applied Motion Systems) and a motor controller. A housing was built

containing the stepper motor controller and providing a centronics-type parallel port

connection, a connection for an external 1000 mA power supply, and power switches.

An extra switch was added immediately prior to the laser in order to provide a rapid,

absolute cutoff of the laser. The motor controller accepted TTL level signals. Input

was provided by the printer port on the Sun workstation and was buffered prior to

delivery to the motor controller. Since the motor controller did not provide a means

of tracking the laser position between power losses, a switch was added on one side of

the assembly that is closed when the laser reached a certain position. Our procedure

for using the laser would "zero" its position by moving it in a certain direction until

the switch was contacted. The "paper-out" indicator on the Sun's printer port was

used for transmitting the switch state.

A custom assembly was machined out of aluminum and attached to the sensor
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array of an existing image-guided surgery system. The assembly consists of an alu-

minum plate to which the pair of cameras is attached. Between the cameras a small,

adjustable ball-joint is attached with the laser assembly at it's head. The ball joint

allows adjustment of the laser assembly relative to the cameras. The laser assembly

is simply an aluminum shell to which the stepper motor and the zero position switch

is attached. The laser diode itself is held in an aluminum clamp that is attached to

the motor spindle. Since the laser assembly contains moving parts, it was wrapped

with a clean plastic bag prior to each use in surgery as an extra precaution. Portions

of the laser stepper motor assembly and switch were made by Michael Leventon as

part of [28].

Figure 3-2: Image guided surgery system in the OR
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Figure 3-3: Close up of sensor array and laser/camera assembly

Figure 3-4: Close up of laser assembly
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Chapter 4

Scanning and Reconstruction

4.1 Camera Model

The majority of this work assumes a simple pinhole camera model under perspective

projection. The single-camera geometry is shown in figures 4-1 and 4-2. Objects, such

as the sphere shown in the figure, exist in a right-handed world coordinate system the

origin of which is labeled in the figure with the axes W , Wv, W2. Objects in the world

which are visible to the camera, are projected into the image plane which resides in

the z = f' plane of the camera coordinate system (axes C2, Cy, C2).

In actual practice, a glass lens performs the task of focusing light rays so that

they roughly intersect at a focal point that is in front of the lens (figure 4-1). The

resulting image on the camera sensor plane is flipped upside down. A mathematically

equivalent geometry can be achieved by placing the focal point an equal distance

behind the sensor plane and considering the image on the sensor plane to be right-

side up (figure 4-2). The image plane is considered to be coincident with the sensor

plane, however image pixels do not, in general, correspond with sensor cells. In the

horizontal direction, the signal from sensor cells is smoothed into an analog signal that

is then re-sampled into framebuffer pixels. A scalefactor, sx/y, is used to adjust the

horizontal position to specifically where this sampling takes place. This parameter

'f is the focal length
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can be calculated once for the imaging system and then used as-is [47].

The task at hand is to build an imaging system that can make accurate measure-

ments about the world in front of the camera. The pinhole camera model, as we've

described it, gets us surprisingly far. Assuming, for the moment, that we are working

in the camera centered coordinate system, we can relate the coordinates of a point on

a object in front of the camera, to the corresponding point in the image plane, using

the standard perspective projection equations:

i fc(4.1)
zc
Yc

zc (4.2)

where f is the effective focal length of the camera, (xe, Yc, ZC) are coordinates in the

camera-centered coordinate system, and (xi, yi) are 2D image plane coordinates [23].
Image plane coordinates can be related to frame buffer coordinates (zero-based)

as follows:

Xi n Xi 1 nxX.-nx--nx
sWsx/Y 2 2

= yi 1 n~
Yi = Y - + ny

Sh 2 2

(4.3)

(4.4)
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where n, and ny are the number of framebuffer pixels in the horizontal and vertical

directions, sw and Sh are the sensor width and height, and s-jI is the horizontal

scalefactor discussed earlier.

We now have a correspondence between a world coordinate and the framebuffer

pixel to which it will project. Further refinement of this model can be done by

correcting for radial lens distortion and the offset of the image center with respect to

the center of projection [47].

4.2 Stereo Algorithm

Our discussion so far has been centered around a camera oriented coordinate system.

With multiple cameras, a common reference frame is needed and can be expressed

as a rigid transformation between the cameras. This problem is known as relative

orientation [22]. In our case, we would also like to interoperate between an existing

surgical guidance system that utilizes a Flashpoint 5000 3D localizer. The Flashpoint

provides coordinates, updated several times a second, of instruments and objects

equipped with infrared LED's. For convenience, we use the Flashpoint's coordinate

system as the "world" coordinate system and localize our cameras within it. Our

calibration procedure provides a rigid transformation between each of our cameras

and the world coordinate system.

With what has been laid out so far, we are able to move from world coordinates

to camera coordinates and then into the image plane. Or, in the other direction, we

can move from image plane points to rays in the camera or world coordinate systems.

A point in the image plane is the projection of a point somewhere along the ray from

the image plane pixel through the focal point (or center of projection) of the camera.

Our real interest is in the measurement of a surface, so for each pixel (or for many

of them) in the image plane we would like to be able to assign a depth at which the

object of interest exists along the ray from the image plane through the center of

projection. Doing so requires some additional information.

In our application, we chose to use the view from a second camera in order to tri-
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angulate the position of points on the surface of interest. If we can find corresponding

points in each of the two image planes for a given spot on the object of interest, then

we can produce a ray from each camera. The geometrically ideal situation is that

our knowledge of the positions of each camera is perfect, that the image sampling

is infinitely fine, and that we've correctly chosen corresponding points in each of the

camera's images. In this case our rays from each camera would intersect each other

at the object's surface as shown in figure 4-3.

Since we can't be certain that our camera matrices are precise and there will

always be some error in our measurements, we can't be certain that our rays intersect

precisely. We solve for what seems to be a reasonable compromise: we take the points

of closest approach on each of the two rays and use the midpoint between them.

We'll leave estimation of the camera matrices until chapter 5, but we're still left

with the problem of finding the pixels in each of the two stereo images that correspond

with one another. This is known in the literature as the correspondence problem, and

is often the most challenging stage of doing this kind of reconstruction (23]. While

human beings have a relatively easy time looking at two photographs taken from

different angles and creating correspondences, it is difficult to write software that

will work in the general case. Fortunately the geometry of the problem introduces a

constraint and we further constrain the problem through our use of the laser.

The geometry relating two cameras and an object of interest is shown in figure

4-3. As can be seen, point 0 on our object is visible to each of our cameras. The

image of point 0 projects into each camera's image plane along a ray that extends

from point 0 to the camera's center of projection (Cicop, C2cop). This geometry is

exploited to constrain our search for correspondences. Given a pixel of interest in

Image Plane 1 we would like to find finding the corresponding pixel in Image Plane

2. Since both pixels will be images of the point 0, we know that the point 0 must

exist somewhere along the ray Ci, 0o0. Therefore, the image of point 0, the pixel in

Image Plane 2 that we are trying to find, must lie somewhere along the image of ray

C1 OO projected into Image Plane 2. That image is called the epipolar line and is

shown as a dashed line in Image Plane 2. Likewise the image plane point in Plane 2
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Epipolar line

Cicop C2cop

Figure 4-3: Two cameras showing image planes, corresponding points, and projected
rays intersecting at the surface point of interest

has a corresponding epipolar line in Image Plane 1.

Up to this point we have been discussing working solely with images. In order to

provide one more constraint we use a laser line generator to draw a stripe of light

on the scene, as is shown in figure 4-5. The laser line is fairly easily segmented out

of the image using only intensity thresholding and we can adjust the room lighting

to help in an unusually bright scene. Color cameras could be used to attempt some

color based segmentation or a notch filter matched to the laser's output spectrum

could also be of use. Choosing a point in the first image that was illuminated by the

laser, we know that the corresponding point must lie somewhere on the corresponding

epipolar line in the other image. But we now also know that the corresponding point
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Figure 4-4: Left and right camera views with epipolar lines overlaid. The image on
the right has a cross (dark lines) at the image plane pixel of interest. Both images
have a white horizontal line showing the epipolar line for that pixel.

must be one that crossed the laser stripe. Both lines would cross in a single point

were it not for the thickness of the laser line. Once correspondences are found, the

depth is easily computed as shown below.

One additional note is that our laser is used solely for the purpose of providing

focused, easily segmentable, and positionable illumination of the object of interest.

The position of the laser is entirely uncalibrated. Our group tried earlier experiments

in which a single camera was paired with a laser that was carefully calibrated [28].

This technique has the advantage of requiring only a single camera, however the appa-

ratus itself was extremely sensitive to mechanical disruption during transport to the

operating room and the stepper motor used was not ideal for accurate repositioning

of the laser. A more accurate, and likely more expensive, motor control system would

most likely solve these problems suitably well.

4.3 Operational and Algorithmic Details

4.3.1 Video Acquisition and Laser Control

Video was captured using a SunVideoPlus image capture board. The board provides

two RCA-style NTSC color inputs as well as one S-Video. We used one RCA input

for each of our two cameras. The cameras used were monochromatic and had a
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sensitivity that extended below the visible spectrum into the infrared. The output of

our red diode laser was significantly more visible on the captured images than with

the unaided eye, probably due to greater red sensitivity of the cameras.

Figure 4-5: Left and right camera views of a subject illuminated by the laser stripe.
Each stripe represents a single image of the laser in a particular position as it moved
across the subject.

The SunVideoPlus board captures 640x480 color pixels in an interlaced fashion.

The video board had an odd problem in that it would lose sync of the interlaced

fields causing the odd and even rows of the images to be periodically swapped. We

developed a simple metric for detecting this situation and were able to correct for it.

This is described in Appendix A.

A VTK/Tcl/Tk applet was written to provide control over the laser and acquisi-

tion of images. The scanning protocol was as follows:

1. Zero the laser position with the laser diode off. This caused the laser to move

in a specific direction until a switch was contacted.

2. Move the laser to the straight-down position and turn on the laser diode.

3. Move the laser to one side of the object of interest. For convenience, the ap-

plication uses the left mouse button to move the laser in single steps, while the

middle and right buttons move in larger increments.

4. "Mark" the current laser position as a boundary.

5. Move the laser to the other side of the object and mark the second boundary.
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6. Perform the scan. The laser moves to the first boundary and the system cycles

through capture from camera 1, capture from camera 2, move laser, until the

second boundary is reached.

The dataset now consists of a number of raw, grayscale images 11 - I,. A region-

of-interest mask, R, was produced indicating which parts of the scene were to be

processed. The images were masked, thresholded, and combined into a map for each

camera:

.A4 (x y) iif R (x, y) = I and _Tj(x, y) > t for some i = L..n, (4.5)
0 otherwise

Here R is a binary mask image of the region-of-interest (ROI). M is automatically

zero where R is zero. Where R is not zero, then M at (x, y) is the index (i) of the

laser stripe image that exceeds the threshold (t) or zero if no supra-threshold pixel

is detected. Note that the laser lines don't overlap, so there should not be more

than one image exceeding the threshold at that pixel. The result is a composite map

assigning laser-line indices to pixels where a laser stripe was found.

A second composite image is produced that contains the original grayscale data

for pixels greater than zero in the map:

( (x, y) where M(x, y) = i and i > 0 (4.6)
0 otherwise

Here g has the grayscale value from the corresponding pixel in I§ in places where

M has a value other than zero. So g shadows M providing the grayscale values to

match the laser-line indices in M. A similar result is obtained for the second camera

before processing continues. A pair of images (! 1 , 92) for two cameras is shown in

Figure 4-5.
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4.3.2 Finding Correspondences

At this point we are ready to locate correspondences from which depth will be com-

puted. The input to this stage of the algorithm is as follows:

M 1, M 2  Map images for cameras one and two with pixel values

equal to either zero or an index into the original data set.

g1 , g2  Grayscale images with pixel values equal to the pixel

value in original image Ii at points where M is equal

to index i. Zero where M is zero.

C1 , C2  Matrices describing the position and orientation of each

of the two cameras within the world (common) coordi-

nate system. This is one of the results of the calibration

process described in the next chapter.

fi, f2, Si, 52x The focal length and horizontal scalefactors for each of

the two cameras. This is also found during the calibration

process. Note that the focal length and the camera ma-

trix together lead to the center of projection for a given

camera: CicoV, C2cop.

The output of this stage of the algorithm will be a list of corresponding image plane

points from each of the cameras. Each pair of correspondences represents the projec-

tion of the same point of the surface being imaged into each camera's image plane.

As depicted in figure 4-6, the standard stereo geometry has a point on the object

of interest projecting along a ray through the centers of projection into each of the two

image planes. Several points of interest lie within a plane: the point on the object of

interest (S), the image points in each of the two image planes (pI, P2), and the centers

of projection of each of the cameras (cic0 p, c2cop) are all coplanar. Furthermore, the

intersection of this plane with each of the image planes yields the epipolar line for

each image plane.

Our algorithm finds corresponding points within each image plane, to subpixel

accuracy. This is possible because the laser line image falls off in intensity as a

Gaussian as one moves away from its center line. For our purposes, the laser line
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Figure 4-6: Epipolar geometry: corresponding image plane points (P1,P2), centers of
projection (Clcop, C2cop), and the surface point S are all co-planar

image is sampled sufficiently to determine its peak. Figure 4-7 shows a sample laser

line image with a small path traced across it. Figure 4-8 shows pixel values sampled

along the path traced in figure 4-7. The "center of gravity" is the weighted center

point of the line:

fC p(i)i
S f tp(i)

(4.7)

where i is a parameter that describes the path across the laser line image and p(i) is

the pixel value at that point.
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Figure 4-7: Image of a laser line with a Figure 4-8: Plot of grayscale value versus
sample path drawn across it distance along the path shown in figure at

left. The center of gravity of the grayscale
values is labeled

The actual algorithm for finding correspondences proceeds as follows:

foreach row in M 1

scan row for a laser line

find the center of the laser line (rounded) to a pixel

define a plane using our pixel of interest, c1eop, and C2cop

Intersect this plane with each of the two cameras' image planes

to yield the epipolar lines

Sample from g1 along camera 1's epipolar line and compute the center

of gravity, in two dimensions, for pixel values on the laser line

originally found

repeat for camera 2 (using 9 2)

mark this as a pair of correspondences

next laser line

next row

4.3.3 Depth

As stated earlier, since we can't be sure that our measurements are precise, we don't

know that rays extending out from corresponding pixels will actually intersect. To

compute an estimate of depth, we take the points of closest approach on each of the
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two rays and use the midpoint between them. The points of closest approach were

found as [17]:

(w 2 - wi)T

Pi = n/1fti x fn2 1 (4.8)

(fi x f2)T

where w, and w 2 represent the world coordinate image-plane points in camera one

and camera two (the origins of our rays) and ni and n2 are unit vectors in the direction

between wi, w 2 , and the centers of projection of camera 1 and camera 2, respectively

(i.e. the direction of the rays.) P2 is found similarly and we use the midpoint between

pi and P2 as our solution.

4.3.4 Surfaces

At this stage in our processing pipeline we have a list of surface points in our world

coordinate system. For certain uses, this is sufficient. For instance, the registration

procedure used with our image guided surgery system matches such surface points

to (usually) skin points segmented from an MR image. The algorithm minimizes the

distance between measured points and the MR image points and does not operate on

a surface, per se, despite the fact that the collection of point emanates from one.

For other purposes, especially for visualization, it is desirable to have an approx-

imate description of the surface described by the measured points. We chose to use

two-dimensional Delaunay triangulation [3, 31, 30]. At first glance this would appear

to be a three-dimensional problem as we have a collection of points in R3. The na-

ture of the acquisition process, however, constrains these points. We have measured

a series of points from a surface, or surfaces, that successfully project onto the image

plane of a camera.2 The measured points describe a surface akin to what one would

see throwing a blanket out from the image plane onto the scene and allowing it to

drape over the objects within the camera's field of view.

2In our case, the points measured must have projected onto two cameras, but this second pro-
jection adds nothing to the current argument.
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Since each point on the image plane has the potential to map to only one point on

the object's surface, we need only to define neighbor relationships in two dimensions.

We assume that there cannot be portions of the measured surface behind other por-

tions as they would not have been seen by the camera. We use VTK's two-dimensional

Delaunay triangulation[31] to define the neighbor relationships between our measured

surface points and to output a triangular mesh. The triangulation happens on a plane

parallel to the image plane and the depth data is carried forward to represent each

particular vertex's height either above or below the plane. The result is a surface

"draped" over our measured points.
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Chapter 5

Camera Calibration

5.1 Background

In order to infer the position of objects in the 3D world based upon the projection of

points into the 2D image plane, it is necessary to have both an adequate camera model

and to know, to some level of precision, the position and orientation of the cameras.

We have discussed our camera model in an earlier chapter and will not review it

again here, but we will concentrate on the measurement of the camera orientation

and position (extrinsic parameters) and certain parameters for the camera model

(intrinsic parameters) [23]. Both sets of parameters are often lumped into a single

calibration problem.

The camera calibration software that we use (implemented from [20]) takes as

input a list of 3D world coordinates and the corresponding 2D image plane projections

of those coordinates and produces an estimate of the camera pose, focal length, and

an intrinsic aspect ratio parameter, referred to as sy, that essentially corrects for

non-square pixels.1

These points are generally taken from a calibration object of known geometry

with high contrast features that can be easily segmented and recognized in images.

Other solutions exist which make use of object or camera motion without providing

'See [27] for a good description of this parameter and its determination.
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images of a specific test object, however for simplicity, speed, and accuracy reasons

we chose to use a fixed geometry calibration object. Earlier work by this group

found that camera calibration performed outside of the OR was often disturbed by

mechanical shock while transporting the camera system. For this reason, one goal of

this thesis project was to implement a calibration scheme that could be performed

rapidly (within about five minutes) inside the operating room.

We use the object shown in Figure 5-1 for our calibration process. As was de-

scribed earlier, we are using a FlashPoint 5000 infrared localizer that is capable of

reporting the coordinates of an infrared light emitting diode (IR LED) to within

several millimeters. Four of these are at the edges of the target and are used to de-

termine the pose of the target in world coordinates. A paper target is glued to the

frame to mark fiducial locations. The pattern is designed to be easily identifiable in

a monochrome video image and is discussed further in a later section.

The calibration procedure is outlined below:

1. Measure the relative 3D relationships between fiducial markings and the Flash-

point LEDs on the calibration object. Call the seven fiducial coordinates f 7l... 7

and the four LED coordinates 4.

2. Present the calibration object to the camera, record the image and the corre-

sponding 3D pose of the calibration object, and repeat several times to record

a number of poses of the calibration object.

3. Examine the recorded images and calculate the 2D image coordinates of the

fiducial markings on the calibration object.

4. Infer 3D positions of each of the fiducial marks based on the recorded 3D pose

of the calibration object and the known relationship between the fiducial marks

and the LEDs (from step 1). Calculation of the current fiducial mark posi-

tions (f,.,) from the reference positions (f , ), the reference LED locations

(Iref1.4), and the current LED locations (lcuri .) is discussed below. Repeat

this process for each pose of the calibration object recorded in step 2.
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5. Feed the lists of image and world coordinates and the known camera parameters

to the calibration routine for estimation of the camera pose.

5.2 Fiducials in 3D World Coordinates

Figure 5-1: Calibration object showing infrared LEDs.

Given that the Flashpoint reports estimated current positions of the four IR

LEDs, 1'.l .ur, 4 we can extrapolate the current coordinates of the fiducial rings,

fCur,I ... as follows:

fcur

where 7

T{fref}

= AbsOrientation{l ref 4, 1 }cur.4 1

T is the best transformation, in a least-squares sense, that brings the four reference

LED coordinates 'ref,1... 4 into alignment with the four current LED coordinates cur,1 ...4
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So the LEDs define a dynamic coordinate system and T is the transform between a

reference coordinate system and the current coordinate system.

The problem of solving for the transformation equivalent to some rigid motion of a

set of points is known from the photogrammetry literature as the absolute orientation

problem [23]. Horn provides a direct solution based on the use of unit quaternions

in [21] and an implementation of this algorithm is used here. Three points, both in

their initial and final positions, lead to a unique solution as long as the points are not

all on a line. More points, in our case four, contribute to a least squares solution and

help minimize the total error due to uncertainty in the measurement of the individual

points. It is assumed that the actual configuration of the points does not change, i.e.

rigid transformation, and any change in the relative positions of points is due to noise

in the measurements.

5.3 Fiducials in 2D Image Coordinates

At this point we have a list of 3D world coordinates and some corresponding images

from which 2D coordinates must be extracted. It is not difficult to extract the coor-

dinates with subpixel accuracy. Figure 5-2 shows a typical scene with our calibration

object visible. The goal is to uniquely identify the seven black rings and precisely

locate their centers. This is accomplished by an initial algorithm that detects and

localizes the rings and a second algorithm that applies a unique labeling to the rings.

We use the algorithm presented and validated in [33] for localizing the fiducial

rings. The algorithm proceeds as follows:

1. Scan across each row in the image for a line profile similar to the one shown

in figure 5-3. This is done using a threshold on the slope of the profile. A

transition from light to dark is expected as the scan line enters the ring followed

by a transition from dark to light as the scan line exits one side of the ring

into the center. A similar pattern is expected after the center portion of the

ring. Interwoven with the slope thresholding are several exclusion criteria that

reject the candidate fiducial if the transitions are not spaced as expected. Most
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Figure 5-2: A typical scene with the calibration object

notably, the two sides of the ring must be nearly the same width (symmetry)

and the center must be almost double that distance. A list is kept of detections

that pass all of the tests.

2. Repeat step 1 vertically down columns of the image.

3. Consolidate intersecting detections in the list as well as adjacent rows and adja-

cent columns. Boundaries for the fiducial are accumulated during the detection

process and merged during the consolidation process.

4. Extend the bounding box for each fiducial to account for possible extremes of

eccentricity of the ellipse.

5. Calculate the center of the detection using zeroth and first order weighted mo-

ments.
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Figure 5-3: Profile of a line through the middle of a fiducial in an image

Quoting from [33], the ellipse moments are calculated as follows:

x2 y2

mo = 1 p(x, y)
x=xl y=yl

x2 y 2

m = EZ p(x, y)x
x=x1 y=yl

x2 y 2

MY = Z p(x, y)y
x=x1 y=y1

p(x, y)

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

0 if v(x, y) > tupper

1 if v(x, y) <; tiower

S SX/y MO

y = 3 (5.6)

(5.7)

Where v(x, y) is equal to the image value at location (x, y) and (xl, yl), (x2, y2)

represent diagonally opposite corners of the bounding box of the computation. The
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image coordinates of the center of the fiducial are (T, V). The aspect ratio parameter

sl is estimated by our calibration routine. [27] shows how this parameter arises from

the video acquisition process and how it can be determined. It is not likely to change

from time to time, so we are using a value that was previously determined by our

calibration routine using manually identified fiducial centers. The parameters tupper

and tiowe, refer to thresholds that serve to exclude noise and to weight the value of

pixels that lie inside an intensity transition. The thresholds are collected separately

per ring in order to correct for intensity variations across the image. An image-wide

pair of thresholds would not work.

We extended the algorithm presented in [33] in one important way. Close inspec-

tion of the image in figure 5-2 shows dark banding through the bright image of the

lower right LED (not the fiducial). This is the result of the video scanning process

which scans first odd image lines, followed by the even image lines (or vice-versa).

The two sets of scans are referred to as fields. In this image the LED was likely

illuminated for one field and dark for the other. This confused code in our original

implementation that was attempting to consolidate tupper and tiower values from sep-

arate detections from the same ring. While the fiducial rings are actually more than

a centimeter away from either of the LEDs, close inspection of the image intensity

values shows that stray, time-varying light from the LEDs affects the area around

several fiducial rings.

Mellor suggests using the Euler number of the region inside the bounding box

of the fiducial to test that a single hole is present and to verify the correctness of

the thresholds[33]. We extend this idea and use it for the actual calculation of the

thresholds. This lower threshold, trower, is calculated by searching the intensity space

from the darkest value upward until an object is detected with Euler number zero and

remains that way for several consecutive threshold values. An analogous computation

is done for tupper, only starting at the brightest intensity value and working downward.

This has worked well in practice and was easier to implement than an alternative

solution, which would require computation and maintenance of multiple threshold

pairs for each fiducial ring.
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Computation of the Euler number is actually done quite rapidly using the method

outlined in [18]. Gray shows how the Euler number can be calculated using entirely

local computations that perform on "quads" of neighboring image intensity values

throughout the image region of interest. This proceeds rapidly enough to allow search-

ing of image intensity space for t upper and tlse, in negligible time.

Figure 5-4: A typical calibration image scene and the results of the fiducial detection
and localization algorithms.

Figure 5-4 shows the result of processing of a single calibration scene by the fiducial

detection and localization code. The fiducial centers are estimated with subpixel

accuracy. Color coding of a group of four neighboring pixels is used to depict the

location of the center. The four pixels that most nearly bound the center are colored

based on their distance to the center. Brighter indicates a closer position relative to

the center, while darker shows the opposite. If, for instance, the estimated fiducial

center is located on the vertical division between two columns of the image, then both

left and right pixels of each of the top and bottom pairs will be colored the same.

This is easier to understand by looking at the fiducial close-up shown in figure 5-5.

The estimated bounding box of the fiducial is shown. This boundary is used to limit

the weighted moment calculations that estimate the center. Once this is done, the
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bounding box is discarded.

Figure 5-5: A close-up of a region around a detected fiducial mark and indication of
its subpixel center.

It should be mentioned that the method used for estimating the center of the
fiducials assumed that the center of the original circular fiducial projected directly
onto the center of the ellipse that results from imaging a circular fiducial not perfectly

parallel to the image plane. [33] provides a detailed exploration of this error as well
as calculations of the ranges of errors possible for a typical set of imaging parame-
ters. The numerical example closely parallels the conditions under which we image
(approximately 1 meter distance, focal length of 25mm, fiducial rings about 0.5cm
in radius.) The maximal error is shown to be less than 0.025 pixels. This is small
enough to be neglected in our application.

5.4 Correspondence between 2D and 3D points

Our 3D localization procedure calculates positions for each of the seven fiducials on
the target, however our 2D procedure thus far only provides an unordered list of
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seven coordinates. We need to establish a correspondence between the 2D and 3D

coordinates before they can enter into the calibration problem. This is accomplished

fairly easily because of the asymmetric shape of the target. The algorithm is more

easily appreciated when referring to a picture of the target (e.g. figure 5-4) and

proceeds as follows:

1. Identify each of the possible sets of four points and regress a line through them.

Choose the set with the minimum residual error and flag an error if the residual

is too high (the points should be nearly a line.) There is only one line of four

in the target.

2. Sort the points in the line of four. It's not important which "end" is where in

the list as long as they are ordered.

3. Identify each of the possible sets of three points (out of the entire group of 7)

and regress a line through each of them. Choose the two with the minimum

residual and sort the points within each of the two sets of three.

4. One of the end fiducials of one of the two lines of three is also on the line of

four. This allows us to disambiguate the two different orderings for the line of

four as well as the two different orderings for that line of three.

5. The middle fiducial of the same line of three that starts on the line of four is

also one end of the other line of three. This disambiguates the two possible

orderings for the other line of three.

Figure 5-6 shows the correct labeling as the software displays it.

5.5 Confirmation of the Calibration

Once a list of sufficiently many 2D and 3D correspondences is obtained, 2 we use an

iterative routine that solves for the optimal camera orientation. Since the orientation

2 In our experience 49-70 points is sufficient
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Figure 5-6: The calibration target with rings detected and numbered. All views of
the same object will use the same numbering.

is calculated based on the projection of our sample points into the image plane, it is

important that the sample cover the space in which we plan to do our measurements.

It is difficult to obtain ground truth with which to assess our calibration efforts,

however in the end all that matters is that the solution provides an accurate way to

relate points in the image plane to points in the working volume within the world. In

order to provide a rapid means for assessing the accuracy of a given solution, we have

developed a module that allows the system operator to explore the working volume. A

surgical probe, tracked by the Flashpoint 5000, is moved around the working volume.

Simultaneously video is acquired and a visual marker is overlaid on the screen at the

point where the tip of the probe should be, based on the current camera parameters

(what we are testing) and the 3D position of the probe as seen by the Flashpoint.

This technique allows verification of the camera parameters over the space in which

they will be used. See Figure 5-7.
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Figure 5-7: A surgical probe is dynamically tracked. The software uses the calibration
results to decide where to overlay a cross (+). The cross should reside where the tip
of the probe appears in the image.
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Chapter 6

System In Use

6.1 Surface Acquisition

In keeping with our interest in neurosurgery, much of our data is taken from heads

(both real and phantom). One of our research assistants agreed to pose for a scanning

session. The camera was calibrated in the usual manner and a 25mm lens was used.

The images shown in Figure 6-1 show the view from the left and right cameras with

the images slightly obscured to conceal the subject's identity.

Figure 6-1: Left and right images of a subject. Note that the actual data was acquired
upside down due to positioning of the cameras and has been rearranged here.

For compactness, the original images do not need to be retained for surface recon-

struction. Two pairs of images can be created iteratively as the scanning is underway

and only those four images need be passed onto the reconstruction (M 1, M 2 , g1 , 92).
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Figure 6-2 shows a pair of index images (M 1, M 2). Each of these is a map of where

the laser stripe was in the image at a given point in time. The pixel values in these

images represent the index number of the laser sample being represented. All pixel

values within a given stripe are the same. Figure 6-3 shows the other pair of images

necessary for reconstruction (!i9, 2). These images are populated spatially in the

same manner as the index images, however the pixel values are the grayscale values

of each laser stripe as segmented out of the original images. This scheme provides a

compact representation of the data comprising only four images from raw data that

consists of images that number twice the number of laser lines (49 in this case).

Figure 6-4 shows a shaded surface representation of the reconstructed model.

Figure 6-5 shows a closeup of the polygon mesh that underlies the shaded model in

6-4.

Figure 6-2: Left and right index images of laser samples.

Figure 6-3: Left and right map of grayscale values of the laser samples.
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Figure 6-4: Shaded surface image of poly- Figure 6-5: Closeup of the polygon mesh
gon mesh created from reconstructed sur-
face of subject scanned

Figure 6-6: Two views of the model with a single still frame's grayscale data overlaid
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6.2 Registration

One of the most compelling uses of the system developed for this thesis is for patient

registration. A typical tumor resection surgery done with our group's image-guided

surgery system, Xplan, utilizes data that was collected pre-operatively. Generally

the data comprises a standard structural MRI followed by MR images taken with

different pulse sequences and/or an injectable contrast agent, in order to increase

contrast between the tumor and the surrounding tissue. From the acquired MR data

several polygon-mesh models are made. Separate models describe the outside skin of

the head, the cortical surface of the brain, and the tumor itself. Often several models

of the tumor are made in order to differentiate between types of abnormal tissue such

as solid tumor and edematous surrounding tissue. The MR images themselves define

a coordinate system in which the models exist.'

On a subsequent day soon after the acquisition of the MR images, the surgery is

scheduled and the patient is immobilized with a metal frame that literally clamps the

patient's head to the operating table. The image-guided surgery system is wheeled

into the operating room and the sensor array is extended, on its boom, over the patient

(see figure 3-2). At this point the Xplan system is tracking specially labeled surgical

probes within a coordinate system defined around the sensor array itself. In order

to make use of the pre-operative data such as the MR images and the polygon-mesh

models, an association needs to be made between the coordinate system of the sensor

array and the one defined around the MR images. This registration process, described

in [28, 24, 9], results in a rigid-body transformation between the two coordinate

systems.

The registration process operates by aligning the skin model from the MRI with

points measured from the skin of the subject in the OR. An initial registration is

done using several fiducial points that are pointed to with a trackable surgical probe

on the actual patient and then identified on the 3D model itself within the software.

'A number of excellent algorithms exist to perform a rigid registration in order to correct for
patient motion between scans. We assume this isn't an issue here.
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This provides a rough alignment of the two coordinate systems. The operator then

swipes the probe back and forth over the patient's head, acquiring data points from

fairly rigid landmarks on the skull such as the forehead, orbits, the bridge of the nose,

the top of the skull, and the bony ridge between the occipital region and the base of

the skull.

While this process works well, it does suffer from several drawbacks:

1. The process acquires redundant data.

2. The process is subject to the choices the operator makes about where on the

skin to acquire data and requires some amount of practice before an operator

can do it reliably.

3. The process is time consuming and can be unnerving for the operator who is

often being rushed by the surgical staff.

4. While not painful, the patient's skin generally gets scratched by the surgical

probe and the experience of being approached with a sharp pointed object is

generally unpleasant.

We experimented using our scanning system on a skull phantom in order to do

registration as describe above. The process acquires a dense map of data that rarely

contains redundant points. Furthermore, the only operator intervention needed is in

positioning of the laser (i.e. setting the angle through which the laser will sweep) and

in creating a mask image that defines the region of interest in one of the video images.

The latter step removes measured surfaces, such as the operating table itself, that do

not have corresponding skin points in the MRI. In the case of the experiment done

here a plastic skull was used along with a model generated from an X-ray Computed

Tomography (CT) dataset of the skull2. Figures 6-7 show the experimental set-up.

The black and white patterned board underneath the skull will serve to confound the

registration.

2The plastic skull would not show up well, if at all, on an MRI
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Figure 6-7: Left and right camera views of the registration set-up with the skull
phantom.

For this experiment, thirty-four pairs of images, each showing a single laser stripe

as seen from two cameras, were acquired. The twenty-fifth such line is shown in figure

6-8. Figure 6-9 shows the composite grayscale data that is fed to the reconstruction

algorithm.

Figure 6-8: Left and right camera views of a single laser line projected onto the skull.
This was part of the actual data acquisition.

The first attempt at registration fails because the data acquired from the black

and white plate underneath the skull has no analogous data on the polygon-mesh

model made from the skull CT. Figure 6-10 shows this result as seen in Xplan. Each

surface point is shown as a colored marker ball, with the markers color-coded based

on their distance from the surface of the skull. Green (or light) represents a distance

in the neighborhood of Omm, yellow (or gray) represents 2.5mm, and red (or dark)

represents 5mm. Note that some of the markers are sunken into the skull, while
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Figure 6-9: Left and right composite views of the grayscale data from all of the laser

stripe images

others represent points on the white portion of the plate beneath the skull.

Figure 6-10: The registration fails because of the non-skull portions of the acquired

surface.

Figure 6-11 shows two different views of a properly registered skull. The acqui-

sition software was modified to allow the operator to interactively draw a region-of-

interest on the video image. In this case, such a region was traced around the skull

itself in several seconds. Note that the region only needs to be traced in a single cam-

era's image as data visible to only one of the cameras is ignored during processing.

Data from outside of the traced region is discarded and the registration performs as
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expected. Note that the red points on the jaw line are likely from articulation and

removal/replacement of the skull phantom's jaw since the original CT was acquired.

Figure 6-11: Two views of the properly registered skull image.
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6.3 Intraoperative Measurement

We had the opportunity to take some images during a craniotomy operation to resect

a tumor. Unfortunately, we used a 16 mm lens instead of the longer 25 mm lens

that we used subsequently. At approximately 1.1 meters from the subject, the field

of view with a 16 mm lens was approximately 60 cm. The reconstructed data comes

from an area approximately 6 cm x 6 cm, so it represents limited resolution. Still

the experiment worked fairly well. Figure 6-12 shows the exposed cortical surface

and, moving right, a ridge where the edge of the still-intact portion of the skull is.

Again, moving to the right, is another ridge where there is an interface between the

peeled-back skin/muscle tissue and the skull bone. These edges are clearly visible

both in the image (Figure 6-12) and reconstructed models (Figure 6-13).

Figure 6-12: Portion of a still image of a craniotomy showing the exposed cortical
surface and the transition to skull and then skin and muscle.
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Figure 6-13: Models created from the surgery data shown in figure 6-12. The right

image has the grayscale data from the picture overlaid.
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6.4 Viability for Routine Surgical Use

We believe that this technique has merit for both initial patient registration and

for updating models as surgery progresses (re-registration.) There are certainly con-

founds to this and areas that require further work.

6.4.1 Lighting and Image Confounds

The scene in an operating room is extremely bright and contains a large number of

reflective surfaces. We enlisted the help of the surgical staff and dimmed the lights

during scanning in order to increase the contrast of our laser images. This is not

an entirely unreasonable restriction for initial patient registration and occasional re-

registration procedures. Indeed the surgeon will usually need to pause the procedure

and step back in order to allow clear access to the surface being measured, so asking

that the lights be dimmed does not significantly increase the burden. Our image

pre-processing consisted of masking and thresholding. Masking is extremely effec-

tive and it is probably not worth the effort necessary to attempt to adapt to all of

the background noise in the images when a 30-second procedure of drawing a mask

boundary solves the problem. Thresholding, however, is rather simplistic and the

system would likely benefit from more advanced filtering. As was mentioned earlier,

either a notch filter tuned to the spectrum of the laser or full-color image acquisition

coupled with software filtering on color would be helpful. Also, a one-dimensional

Gaussian low-pass filter would would be selective for the laser line profile, which falls

off as a Gaussian over several pixels. The laser width varies with the distance between

the camera and the patient, as well as with the in-plane angle of the laser line, but

the angle is fixed and our experience was that the distance between the cameras and

the patient didn't change much between procedures. Since the laser line varies as

a Gaussian only off-axis, a one-dimensional filter working somewhat perpendicular

(probably along scan lines) would be more suitable than a two-dimensional filter.
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6.4.2 Occlusion of Critical Surfaces

For re-registration purposes, the critical surface (e.g. the exposed cortex) will virtually

always be facing up toward the surgeon, the lights, and the camera. For initial patient

registration, however, the critical landmarks could easily be facing away from the

cameras. In the case of of a craniotomy, the critical landmarks are on the head and

mostly around the face: the ridge above the brow line, the bridge of the nose, the

orbits, etc. For surgery to remove an occipital tumor (in the back of the head),

the patient would likely be prone, with his face pointed toward the floor. Critical

registration landmarks would not be visible to the camera system hovering above.

This scenario argues for some mobility of the cameras. One can envision such a system

where the camera/laser complex is actually hand-held during scanning. The tracking

system used as part of the current IGS system could be used to associate a pose in

3D with each set of camera images. We considered doing this, but thought that the

update rate of the Flashpoint 5000 tracker would be too slow, in our configuration,

to allow accurate localization of a hand-held camera array. Other systems do exist on

the market which allow for much higher update rates and these likely could be used.

While this work was being completed Polhemus (Colchester, VT, USA) released a

product that appears to work in this manner [44]. Northern Digital (Waterloo, ON,

Canada) also makes several systems that appear to have the required speed [41].

6.4.3 Tissue Deformation Modeling

The ultimate goal that we have been discussing has been a re-registration process

that updates models made with pre-operative data to reflect the changing state of

the anatomy during a procedure. We are proposing, however, to do this solely based

on surface measurements made with our device. The missing component here is an

interpolation scheme that takes the measured surface deformation and infers the sub-

surface deformation not measurable by the laser. It remains to be seen whether this

is a reasonable thing for which to ask.
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6.5 Error Analysis

More work needs to be done characterizing the accuracy of the system described here.

The Flashpoint 5000 tested originally with a mean error in localizing an infrared LED

of 0.22 mm (standard deviation of 0.26 mm.) Calibration tests done in [28 cite a

maximum error 0.87 mm. This is important because the localization of LEDs is used

to provide data for the automatic camera calibration. At a typical operating distance

of 1500 mm for our system, each pixel horizontally or vertically represents a distance

side to side of at most 1.31 mm using the wider of our two lens sets. We are able

to localize a laser line to sub-pixel accuracy, however the resolution of the system

is limited parallel to the laser stripes by the image pixel size and perpendicular by

the center to center distance of the laser stripes themselves. We are satisfied with

the resolution given the subtle detail in the surfaces that we acquire. The calibration

method itself was run through over ninety separate sets of data and routinely provides

a residual RMS error of less than 0.05 mm. This should provide an upper bound on

the re-projection error within the volume of the convex hull of the 3D points sampled

for the calibration. There is potential for millimeter accuracy overall, however future

work will need to quantify this in routine use.

6.6 Speed

As was stated earlier, the current reconstruction code is implemented in Matlab,

for convenience. Recoding the reconstruction in C/C++ should make it significantly

faster. Current reconstruction depends highly on the number of reflected laser points,

but is on the order of several minutes. With recoding and optimization, it should be

possible to do the reconstruction in under a minute.

6.7 Conclusion

We have developed a system for measuring surfaces and have demonstrated its use

for registration. We have also successfully measured a brain surface during an open
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craniotomy procedure. The primary contributions of this work are a camera calibra-

tion procedure that takes several minutes and is therefore compatible with surgery

and demonstration that such a system could be used to measure surfaces during a

craniotomy procedure.
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Appendix A

Detecting Swapped Scanlines

Shortly after our first reconstructions were compete we noticed a zig-zag or sawtooth

pattern within the generated models. After much investigation it was found that

under certain (often occurring) conditions the video acquisition board would swap

even and odd fields causing even and odd rows to be swapped in the captured image.

We had some success understanding when it occurred and "tracking" the abnormality

in our acquisition software, but were ultimately unable to make this work reliably and

needed a post-hoc method of detecting affected images.

We use a very simple metric that is appropriate for our configuration and seems

to work quite well. We operate on thresholded, binary laser-line images, detect those

whose rows are swapped, and swap even and odd rows in images that suffer from this

problem. Figure A-i shows a closeup of a proper laser line image on the left, and an

anomalous one on the right.

The high frequency noise, seen as comb-like edges, in the righthand image is indicative

of the problem. The metric we used is defined as follows. Given a binary image with

n rows, we define 1i as the column of the left edge of the laser line in row i, while ri

is the column of the right edge in that row. Our metric is:

n

Es = >(li - li-1)2 + (ri - ri-1)2
2

which is clearly higher when the laser line moves a greater distance between successive
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Figure A-1: Close-up of an unaffected image (left) and an affected one (right)

rows. Note that we skip rows in which the laser line does not appear. For a given

laser-line image we measure this scan-line entropy (EI) both for the normal image and

the image with the rows swapped. The image with the lower Esj is the correct one, so

we replace any image where the row-swapped version has a lower value. Figure A-2

shows results for a series of laser line images where the camera swapped rows between

scan indices 34 and 57. The circles represent the 4S value for images as they came

off of the camera and the crosses represent the measured value for the row-swapped

images.

Figure A-3 shows a similar graph for a dataset where none of the images were

row-swapped.

The measure seems robust within our system, but clearly depends on the fact that

our laser line has a greater than forty-five degree slope so that swapped, successive

rows tend to lead to larger column variations. Since the laser orientation was fixed

for our experiments, this wasn't a problem.
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Figure A-3: Scan-line entropy measures for 41 images and their row-swapped coun-
terparts. All of the images were acquired correctly and no s value for a row-swapped
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