Software Based Network Optimization for a Large Manufacturer

By

Rajiv Agarwal

B.Tech., Mechanical Engineering (1991) Indian Institute of Technology, Madras (India)

Submitted to the Engineering Systems Division in partial fulfillment of the requirements for the degree of

Master of Engineering in Logistics

at the

Massachusetts Institute of Technology

June 2000

© 2000 Rajiv Agarwal All Rights Reserved

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part.

Signature of the Author..... **Engineering Systems Division** May 5, 2000 $1 \cap \cap$ Certified by..... ······ James M. Masters. Executive Director, Master of Engineering in Logistics Program Thesis Supervisor Accepted by..... Vossi Sheffi Director, Master of Engineering in Logistics Program MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUN 01 2000 LIBRARIES ENG

Software Based Network Optimization for a Large Manufacturer

By

Rajiv Agarwal

Submitted to the Engineering Systems Division in partial fulfillment of the requirements for the degree of Master of Engineering in Logistics

Abstract

With expansion of commerce and boundaries of business, organizations have been working hard at improving processes and bills of material and have reached the bottom already. The focus is therefore, now shifting to the next logical area of optimization of supply chains. The ever-increasing competition is putting pressure on organizations to optimize their supply chains and many organizations are reevaluating their existing supply chain networks. Often, as expected, they realize that it requires a complete overhauling. There may be too many suppliers or too many distribution centers, not quite optimally aligned in the chain. The important issue is not to impact customer service adversely, and yet, make the desired changes in the network.

A member company from the Affiliates Program at MIT's Center for Transportation Studies is one such company, looking at re-configuring their distribution system, questioning the need for multiple echelons in their distribution system. They are looking at reducing the number of Delivery Center locations and the possibility of doing away with the Central Distribution Centers where shipments from the plants are consolidated for shipment to the DCs. This study aims to address the following related issues:

What is the impact of reducing the number of DCs?

What would be the optimal location of a third DC assuming 2 DCs are known?

What would be the customer allocations in the new network with 3 DCs?

How would the assignments change if there was a capacity constraint posed on the DCs?

These issues were approached as a facility location problem with an objective function to meet the customer demand at the minimum cost. In a typical system, the constituents of this cost would be the transportation cost – Plant to DC to Customer, facility operating cost and the cost of carrying inventory at each DC. The number, location and size of the DCs relative to the plants and customer zones would be some of the decision variables that influence these costs.

The study was conducted by structuring the company data from the previous year into a model and using a mixed integer linear programming tool to arrive at the optimal solution. SAILS – ODS, a supply chain network optimization software, was used as the solver for the network model. For the purpose of this thesis, the analysis was limited to a study of the transportation costs as the driver for optimization.

Thesis Supervisor:	James M. I	Masters						
Title:	Executive	Director,	Master	of	Engineering	in	Logistics	Program
	Massachusetts Institute of Technology							

To Gítanjalí & Aníka

Acknowledgements

As I sit here, finishing up the thesis, I am reminded that its time to move on. This thesis is really the continuation of what I learnt at MIT over the past nine months. I wish to thank all my professors and friends who urged me forward in this learning process.

First, I would like to thank Prof. Jim Masters for supervising the progression of this thesis and encouraging me on.

I thank Tony Mirra of Insight for spending many hours with me on the phone, solving all the glitches I faced in running the models.

I would also like to thank all my fellow MLOGers who kept me company in 5-008 during all those late nights. It was fun.

Table of Contents

ABSTRACT	
ACKNOWLEDGEMENTS	
TABLE OF CONTENTS	
LIST OF FIGURES	
LIST OF TABLES	
LIST OF APPENDICES	
CHAPTER 1. INTRODUCTION	10
1.1 DISTRIBUTION NETWORKS:	
1.2 WHY LOCATE FACILITIES OPTIMALLY?	
1.3 MOTIVATION:	
CHAPTER 2. LITERATURE SURVEY	
2.1. Network Optimization Methods	16
2.1. NETWORK OPTIMIZATION METHODS	
2.1.2. Heuristic Methods	
2.1.2. Mathematical Optimization Methods	
2.1.5. Why Not Use a Spreadsheet?	
2.2. MATHEMATICAL OPTIMIZATION TOOLS	
2.3 ANALYSIS OF MATHEMATICAL MODELS:	
2.4 AN OPERATIONS RESEARCH PERSPECTIVE OF THE MODEL:	
2.4.1. Problem Formulation:	
2.4.1.1. Objective Function:	
2.4.1.2. Decision Variables:	
2.4.1.3. Parameters:	
2.4.1.4. Subject to Constraints:	
2.5 INSIGHT SAILS	
2.5.1.1. Introduction to SAILS:	
2.5.1.2. "What If " Questions	
2.5.1.3. Sensitivity Issues	
2.5.2. Description of SAILS	
2.5.3. Modeling using SAILS ODS	
2.5.3.1. The inputs to SAILS	
2.5.3.2. The outputs from SAILS	
2.5.4. The SAILS Solvers	
2.5.4.1. SAILS ODS	
2.5.4.2. SAILS Optima	
CHAPTER 3.: MODEL DATA AND NETWORK DEFINITION	
3.1. DESCRIPTION OF THE OPTIMIZATION MODEL	
3.2 DATA SOURCES	
3.3 THE MODEL	
3.3.1. The Existing Network:	
3.3.2. The Planned Network:	

3.3.3. Products:	31
3.3.4. Transportation	32
3.3.5. Data Collection and Aggregation:	33
3.3.6. The Design Questions and Description of the models developed:	34
Q.1. What would be the customer allocations scenario if there were to be 3DCs in the network	34
Q.2. How do the costs in the new system compare with the existing system?	34
Q.3. If it were possible to select the location for a third DC, assuming that Bethlehem, PA and Ontario, CA were locke	
open, what would that be?	35
Q.4. What if there is a capacity constraint on the DCs?	35
Q.5. How do we know that 3 is the correct number? Should it be 4? Or 5?	36
CHAPTER 4.: RESULTS AND CONCLUSIONS:	37
4.1. What would be the customer assignments if there were to be DCs at 3 predetermined locations in the network?	37
4.2. How do the costs in the new system compare with the existing system?	
4.3. If it were possible to select the location for a third DC, assuming that Bethlehem, PA and Ontario, CA were locked	
open, what would that be?	43
4.5 What if there was a capacity constraint on the DCs?	45
4.6. How could it be known whether 3 was the correct number of DCs to have?	49
CHAPTER 5. SUMMARY AND CONCLUSIONS	53
5.1. Overview:	53
5.2. SUMMARY OF RESULTS	54
5.3. RECOMMENDATIONS	55
5.4. POSSIBLE IMPROVEMENTS TO THE STUDY	56
5.5. FURTHER STEPS	
BIBLIOGRAPHY	
BIBLIOGRAPHY	0V
APPENDICES	61
Appendix-1	62
Appendix-2	72
Appendix-3	76
Appendix-4	83
Appendix-5	88

List of Figures

Fig. 1-1:	Four Major Strategic Planning Areas in Logistics System Design	11
Fig. 1-2:	Interrelationship of Costs	12
Fig. 1-3:	Transportation costs vs facility fixed costs trade-off	13
Fig. 1-4:	Cost Vs Service Trade-Off	13
Fig. 4-1:	Customer Assignment map for 3 decided locations	37
Fig. 4-2:	Share of demand served by each DC in a 3 DC network	38
Fig. 4-3:	Customer Assignment map for the existing 7 DC network	39
Fig. 4-4:	10 Optional locations for selecting 3 DCs	43
Fig. 4-5:	Customer Assignments in 3 DC network	44
Fig. 4-6:	Customer Assignments Map in 3 DC network with capacity constraint of 150M & 1,000 penalty	45
Fig. 4-7:	Customer Assignments in a 3 DC network with capacity constraint of 150M and penalty of \$100,000	46
Fig. 4-8:	Customer Assignment map with 3 DC network at a capacity constraint of \$1,000	46
Fig. 4-9:	Total cost Vs Number of DCs	50
Fig. 4-10:	Customer assignment map for a 4 DC network	51
Fig. 4-11:	Customer assignment map for a 5 DC network	51

List of Tables

Table 3-1:	Manufacturing Plants and Products	32
Table 4-1:	Comparison of system costs between the Old & New DCs	40
Table 4-2:	Comparison of Costs at DC level between Old and New Networks	42
Table 4-3:	Comparison of system costs at different capacity and penalty levels	47
Table 4-4:	Comparison of costs at the DCs for different capacity and penalty conditions	48
Table 4-5:	Comparison of Total Transportation costs at different number of DCs	

List of Appendices

Appendix 1.	Customer Assignment in 3 DC network	62
Appendix 2.	Customer Service Histograms – 3 DC Network	72
Appendix 3.	Customer Service Histograms – existing 7 DC Network	76
Appendix 4.	Customer Service Histograms – existing 4 DC Network	83
Appendix 5.	Customer Service Histograms – existing 5 DC Network	88

Chapter 1. Introduction

The problem of optimizing physical flows in networks has caught the attention of operations research specialists for many years. Customers have always demanded better service at lower costs, requiring logisticians to continually study ways and means to improve the efficiency of product movement from the manufacturing plants to the customers. Over time, many computer based algorithms and procedures have evolved to solve the network problem efficiently.

As these procedures evolved, it has become evident that network flow concepts could be used to address a rich variety of problems, even beyond the logisticians' concerns. This realization led to the development of many other applications such as personnel assignment, project scheduling, production planning and telephone call switching, to name a few.

1.1 Distribution Networks:

Design of the distribution network is a strategic decision that has a long-lasting effect on the firm. In particular, decisions regarding the number, location, and size of warehouses have an impact on the firm for at least the subsequent three to five years of operation.

The design of a distribution network involves many interdependent decisions which can be classified as facility, customer service, transport, and inventory decisions. All four of these areas are economically interrelated and should be planned collectively¹. Location of a facility is often an important decision in the larger frame. Fig 1-1 shows some of the decisions required to be made for each of these strategic decision areas.

¹ Ronald H.Ballou & James M.Masters, Commercial Software for locating warehouses and other facilities – Journal of Business Logistics, Vol.14, No.2, 1993.

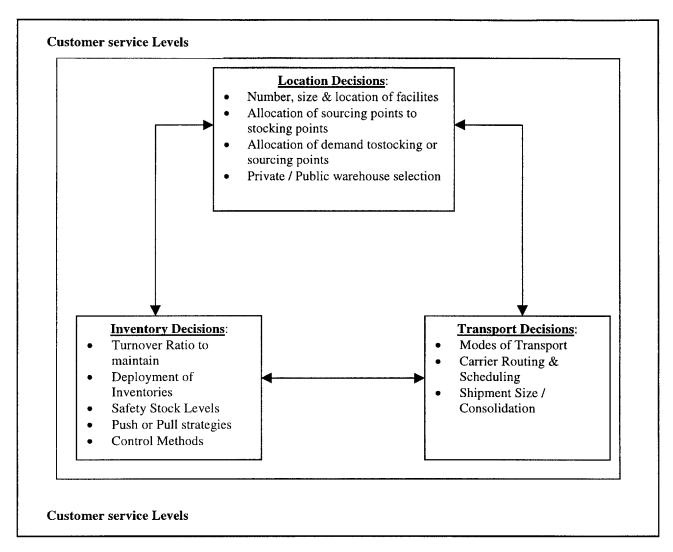


Figure 1-1 Four Major Strategic Planning Areas in Logistics System Design¹

In addition to the interdependence between these four decision components, there is also interdependence between distribution network design and demand. The demand and its geographical distribution affect the optimal design of a distribution network, which in turn affects demand through its effect on customer service. Among the most important distribution network design decisions are those related to warehouse (DC) location.² Typically in the past, when network design optimization was not a popular phenomenon, the distribution network for a company evolved organically with demand. As the product reach spread farther, a new

² {Ho, Peng-Kuan, Univ of Maryland, 1989; Warehouse location with service sensitive demand: AAD90-21511}

warehouse or distribution center was set up whenever the existing one ran out of space or the need was felt for one in new customer areas.

1.2 Why Locate Facilities Optimally?

If the location of the manufacturing plants (source) and the customers (demand) is considered fixed, the issue is to identify locations for the distribution centers or warehouses such that the cost of getting products from the plants to the customers is minimized. The main questions at this point, then become:

- 1. How many distribution centers?
- 2. Where to locate each of those distribution centers?

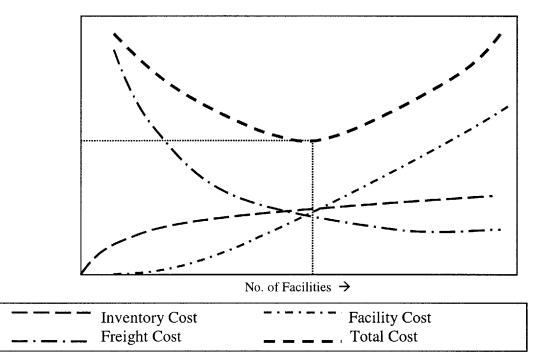


Figure 1-2 Interrelationship of Costs

As seen from the above figure 1-2, the freight costs in the system decrease as the number of facilities increases and, the facility costs increase. Also, as the number of DCs and hence the stocking points increase, the inventory in the system increases. With an increase in the number of DCs, it is possible to put products closer to the customers, reducing the distance to customer and

hence the transportation costs. However, as the number of facilities increases, the total fixed costs also increase as more facilities means more buildings and related expenses. The total cost in the system is the summation of these individual costs and follows a "U" shaped curve. The lowest point on the curve is the minimum cost solution and hence the optimal number of DCs for the system.

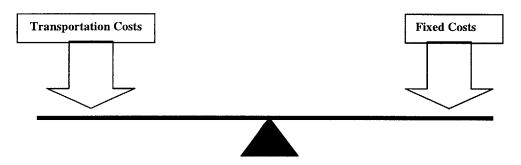


Figure 1-3 Transportation costs vs facility fixed costs trade-off

Figure 1-4 Cost Vs Service Trade-Off

The above trade-off must also be considered when deciding on the number of customer facing points. As goods move closer to customers, they typically have more value added so inventory becomes more expensive. Moreover, the firm loses flexibility to respond to changing demand since it loses its ability to turn its intermediate goods into different end products or product configurations. On the other hand, having goods closer to customers reduces lead times and provides better customer responsiveness. The tradeoffs are important to understand and model.

1.3 Motivation:

A member of the Affiliates Program at MIT's Center for Transportation Studies (CTS), wanted to investigate the benefits of rationalizing their current distribution system. They wanted to understand the means by which they could calculate the cost savings that could be realized from the rationalization.

This company manufactures finished products at seven plants located mostly in the north-eartern part of the country. There are 7 main product types, each product type being manufactured at only one plant. Some of the products have variants of the main product type. Additionally, there are 3 types of product that are outsourced. At the SKU level, there are approximately 4,000 different SKUs.

The company follows a two-echelon distribution system where the products flow from the manufacturing plants to four Central Distribution Centers (CDCs) where the goods are consolidated for shipment to seven customer facing Distribution Centers (DCs).

The products have widespread application from domestic household to industrial use, resulting in approximately 25,000 ship to points for the products. The main customers for the company are:

- 1. Consumer Products Stores like Superstores
- 2. Industrial / Commercial: (e.g. Independent Electrical Distributors)
- 3. Specialty: a) OEMs manufacturers
 - b) Other Manufacturers
 - c) Export
 - d) Specialty Products

The move towards rationalization was based on understanding of the fact that reducing the number of stoppage points in a system lowers the transportation cost of the system. Decreasing

the number of stock points in a distribution system reduces the safety stock inventory held at each point. Based on the above two main issues, it was believed that decreasing the number of DCs from 7 to 3 and removing the middle echelon of the CDCs will reduce the total costs in the system.

This thesis highlights the differences that emerge from a mathematical solution to a real world situation and how the result are modified to give less than optimal solutions. The solutions thus obtained are "optimal" under the constraints and the model that was defined.

The thesis evaluates some of the different ways that the company could arrange their distribution network. If the network were being designed from zero-base, the range of design options would be entirely different. In a greenfield analysis, the solver may allow or shut any warehouse or transportation links. In reality however, as in the case of this study, there were issues of necessarily continuing with some of the existing facilities due to an existing circumstance like lease, labor or other similar issues. In this case, the location of 2 DCs was decided already and the location of the third DC was almost certain.

It was assumed that the plant locations will not change. The product mix was not changed and the demand pattern also remained the same. The objective was to design or reconfigure the logistics network so as to minimize the annual systemwide costs. This includes production and purchasing costs, inventory holding costs, facility costs and transportation costs. Facility costs arise from the fixed costs at the facility, storage and handling of products. These are likely to vary with location of the facility depending on real estate costs in the area, availability of labor, etc. (For the purpose of this study, these costs are assume to be constant over the selection of the location and hence ignored for calculations.) The transportation costs are also likely to vary with location of the facility depending on volume of total freight inbound to and out bound from the area where the facility is planned to be located. The selection of the mode of transportation is key to the cost. (In the model here, the transportation mode is assumed to be constant for a given customer, independent of the location of the DC that customer will be served from)

Chapter 2. Literature Survey

2.1. Network Optimization Methods

A network optimization analysis will typically provide an answer to the classic question: "Given demand for a set of products, either historical or forecast, what is the optimal configuration of the production or distribution network to satisfy that demand at specified service levels and at lowest cost?"³ In the absence of a larger perspective on optimizing the entire supply chain, issue-specific local optimization is more prevalent in the industry as opposed to a system-wide or global optimization.

The common tools employed for network optimization are based on the mathematical techniques, the main techniques being:

- 1. Dynamic Simulation
- 2. Heuristics
- 3. Linear Programming

Modeling techniques are gaining popularity as decision support tools that companies use to analyze their supply chains. Simulation tools are popular, but more companies use optimization models to optimize some part of their chain. Experiences may vary across companies, but with careful and proper implementation, optimization techniques can provide solutions for means of improvement and substantial cost savings.

2.1.1. Dynamic Simulation Methods

³ SAILS Concepts: A Handbook for SAILS Users.

Dynamic Simulation methods provide a detailed emulation of activities over time. In other words, such methods evaluate a modeled solution to the network design problem, rather than providing an optimal solution to the issues at hand. A simulation tool will not provide a recommendation to open or close any facilities in the network under consideration. It is difficult to create a model that can handle issues like fixed costs, capacity and economies of scale.

Sometimes, organizations may want to simulate the solution to a network design problem that has been obtained through optimization tools. This would be a good way to study the robustness of the obtained solution to withstand variations in the modeled parameters. Unfortunately, the software providers in this space have not developed this kind of an integrated tool in their offering that would enable a user to conduct sensitivity analysis on the modeling parameters without actually remodeling the entire network. To adapt the solution from the optimization solver to the simulation tool can be a very difficult and time-consuming task.

2.1.2. Heuristic Methods

Heuristic methods or common sense consideration of alternatives is not guaranteed to provide the optimal solution. The quality and optimality of the solution will depend on the quality of the decision rules considered. Heuristic algorithms take lesser time to solve as compared to optimization algorithms.

Optimization-based algorithms will either implicitly or explicitly sift through all possible choices, while even the most advanced heuristic procedure will investigate only a very small number that appear to be good. The heuristic guesses may or may not be good, but the important point is that there is no way to know for sure unless the true optimum is also established. If the true optimum is not known, the very real possibility exists for a better answer to be proposed externally by an analyst or manager.

A heuristic solver may miss important opportunities for cost savings. In all likelihood, a heuristic will identify some obvious savings; but less apparent sources of cost reduction, those often not

identified by a heuristic procedure, can amount to many times the cost of the most extensive system design study.

A typical heuristics approach could be to assign customer demands to the least expensive node that is linked to the customer, then assign the resulting node to the least expensive to which it is connected, and so on, up to the level of source nodes. An optimization based solver finds the least expensive available flow path through the entire network (from the source to the customer) for a given demand. It does not optimize each level separately as that yields poor results..

A typical approach could be to draw circles around the Distribution Centers and serve all customers that lie within the circle. The radius of the circle would largely be dependent on the service limits set in terms of the maximum distance or time to customer as a company strategy. In such an approach, the customers that lie at the periphery of the circle or in the intersection zone between two circles may be randomly assigned to other closest Distribution Center. The approach does not consider the difference in cost that will factor in due to the changed movement of the product.

2.1.3. Mathematical Optimization Methods

Mathematical optimization techniques provide the capability to evaluate all possible alternative solutions to a given problem and arrive at a solution that is optimal within a specified tolerance range. The most important feature of mathematical optimization tools is that the solver either finds the true optimal (least cost) solution or at a minimum, finds a solution within a specified percentage (solution tolerance) of the optimum. With mixed integer linear programming models, the result obtained is within the specified tolerance percentage of the actual optimal solution. The range, of course, will be the decision of the management. It is important to remember that with a tighter tolerance, the complexity of the model and the run time will increase exponentially. This capability contrasts starkly with an approach like the heuristic based procedures, which can only guess at a better solution. They cannot establish whether the results are truly optimal.

<u>2.1.4. Why Not Use a Spreadsheet?</u>

Network design is a complex task involving large data sets. Spreadsheets are easy to use and widely understood, but network design requires the consideration of more combinations than a spreadsheet can effectively handle. For example, in a simple site-selection problem requiring the identification of 5 optimal warehouse locations from a set of 25 potential sites, 53,130 different combinations must be considered. This is far too many to analyze with a spreadsheet. The number of combinations grows exponentially as potential sites are added to the analysis.

A thorough network analysis solution should consider:

- 1. the optimal assignment of customers to distribution centers,
- 2. manufacturing capacity at the plants,
- 3. warehouse sizes and
- 4. complex transportation cost structures.

It is also helpful to have the ability to analyze different scenarios. By using spreadsheets, too much time will be spent crunching data and too many potential solutions will remain unexamined.

2.2. Mathematical Optimization Tools

The problem features dictate model formulations. A mixed integer-linear programming formulation is required whenever one wishes to deal with fixed costs, capacity constraints, economies of scale, cross-product limitations, and unique sourcing requirements.

A compelling reason for adopting optimization-based solver technology is also that only optimization permits reliable comparisons across runs on different model scenarios. If a heuristic

solver is used, comparisons must be made among solutions whose direction and magnitude of error are unknown. Reliable run-to-run comparisons are essential if one wishes to explore uncertain formulation or data assumptions, evaluate alternative demand, supply, cost, service, or environmental forecasts, and establish the reasons why two different input data scenarios yield alternative solutions.

In sum, optimization results in fewer runs, superior analysis, better solutions, increased savings, and less risk.

The models in an optimization tool and the associated solvers are of the Mixed Integer Linear Program type. They are mixed because they handle and provide solutions to both integer and non-integer types of decision variables:

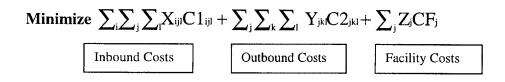
- Mixed Variables (Also called as the Flow Variables): the quantity of a product that flows between two nodes (or on a transportation link), the quantity of product procured or manufactured at a facility.
- Integer Variables: (Also called as the Structural Variables) Decision to open or close a production plant, assign jobs to a production line, select suppliers for a product, assignment of customers to a facility.

The algebraic equations used to specify the underlying mathematical relationships are straight line functions in the solver. This makes it a Mixed Integer LINEAR Program. Non linear relationships such as those that define economies of scale are modeled as piece-wise linear functions to maintain the linear nature of the model to keep it solvable.

2.3 Analysis of mathematical models:

Although modeling tools generally address customer service, inventories and transport selection, treatment is usually at an aggregate level. The fine problem definition and decision making details that are required in the practical world are left lacking due to aggregation⁴.

⁴ Ronald H.Ballou & James M.Masters, Commercial Software for locating warehouses and other facilities – Journal of Business Logistics, Vol.14, No.2, 1993.


A mathematical model will consider the costs associated with the complete movement from the manufacturing plan - to the distribution Center - to the customer zone for each product that goes into the customer zone. Thus it may happen in a mathematical solution that two neighboring customers are assigned to two different distribution centers on the basis of freight costs that arise from the different product-freight combinations that customers frequently demand. The organization will need to be clear on its strategy on the trade off between cost and service. Serving different customer-product-mode combinations from different locations may be more cost effective as against enforcing that a customer be served all products, irrespective of mode from the same location, even though that would provide better customer service.

2.4 An Operations Research perspective of the Model:

2.4.1. Problem Formulation:

From an Operation Research perspective, this is a combination of an assignment problem and a facility location problem. One problem might be to assign customers to a warehouse so as to meet their demands. In such a case, the warehouses are the sources, the customers are the destinations, and the costs represent the per unit transportation costs.

2.4.1.1. Objective Function:

2.4.1.2. Decision Variables:

- X_{ijl} : Quantity of product l flowing from Plant i to DC j
- Y_{jkl} : Quantity of product l flowing from DC j to Customer k
- Z_j : binary variable = 1 if facility j is open, else 0

 w_{jk} : Binary variable = 1 if customer k assigned to DC j, else 0

2.4.1.3. Parameters:

- C1_{ijl} : Cost of transporting one unit of product l from Plant i to DC j
- $C2_{jkl}$: Cost of transporting one unit of product p from DC j to Customer k
- CF_j : Cost of operating Facility j
- d_{kl} : Demand for product l at customer k

m_j : Capacity at DC j

2.4.1.4. Subject to Constraints:

1. All customer demand must be met :

$$\sum_{i} Y_{jkl} \ge d_{kl} \qquad \text{for each } k \text{ and } l$$

2. For outflow, there must be at least that much inflow:

 $\sum_{i} X_{ijl} \ge \sum_{k} Y_{jkl} \qquad \text{for each } j \text{ and each } l$

3. If material facility flows out of a DC, it must be open:

 $\sum\nolimits_k \sum\nolimits_i Y_{jkl} \leq Z_j m_j \qquad \text{for each } j$

4. Number of DCs to be open is fixed

 $\sum_{i} Z_{i} = n \qquad \{ n = \text{desired number of DCs} \}$

5. Bundling of products (restraining one customer to be assigned to only one DC for all products):

$$\begin{split} \sum_{l} Y_{jkl} &\leq w_{jk} \times B \qquad \text{for each } j \text{ and } k \quad \{B \text{ is a large number}) \\ \sum_{i} w_{jk} &\leq 1 \qquad \qquad \text{for all } k \end{split}$$

In the absence of facility data, it may be tempting to ignore the facility costs in the equation. Since the solver seeks a minimum cost solution, it will assign demands to facilities that minimize the transportation costs only. It does not recognize the constraint on the number of facilities to be opened as there is no extra cost attached for opening more facilities. It is essential to assign each facility at least a notional cost so that the solver does not seek a solution where more than the desired number of facilities is open.

The above objective function is formulated for capacitated facilities with a capacity limitation m_j . In reality, a warehouse or DC will have a limit on the annual throughput it can deal with. There will be a limit on the maximum quantity of goods that can be stocked at a given time due to space limitations.

The above set of constraints may give solutions where the capacity constraint is ignored and assignment of customer demands exceeds the capacity. This issue can be addressed by imposing a penalty on any excess throughput at the facility beyond the limit set on capacity. Since the solver seeks a minimum cost solution, any solution with a penalty is likely to be less optimal and hence such a solution will be discarded. It is then very important to select a good value for the penalty. Typically, if there is an option to lease additional space, the cost of leasing the facility may represent the penalty introduced here. The solver will look at this problem as two facilities with different costs, the more expensive facility (the additional space leased) to be chosen only once the less expensive facility (the original DC) has been filled to capacity. Customers will be assigned to this additional facility if the cost of assigning them here is lower than assigning them to another facility. If this is not an option, the solver must be prevented from assigning any demand greater than the capacity to that facility. This may be achieved by assigning a high value to the penalty cost. Adding a penalty clause to the problem formulation results in the addition of more integer variables, making the problem tougher to solve.

2.5 Insight SAILS

2.5.1. Introduction to SAILS:

Insight: It is truly a global optimization model. The system recommends a combined vendor, production and distribution network that minimizes cost or weighted cumulative production and

distribution times, subject to meeting estimated demand and restrictions on local content, offset trade, and joint capacity for multiple products, echelons, and time periods.⁵

The SAILS solvers are computer based procedures designed to find the best possible strategic logistics network design from among several possible alternatives, best meaning least cost, possibly subject to managerially imposed restrictions and constraints.

SAILS is a product of ongoing R & D efforts in large-scale optimization at INSIGHT Inc., a supplier of logistics management support systems. Coupled with INSIGHT's logistics data management modules and graphic user interfaces, SAILS is a capable logistics management support system.

As the logistics management community has become more sophisticated in the use of modeling systems, the logistics systems themselves have become more complex, giving rise to the need for more modeling power. In addition to the classical distribution network issues, new questions are being raised about raw materials options, the scheduling of multi-stage manufacturing operations, and the best use of multi-capability production facilities. SAILS addresses these and the other following complex logistics management issues.

2.5.1.1. Network Rationalization Issues

- 1. Assignments of customers to distribution centers (DCs)
- 2. Number and locations of DCs
- 3. Mission of each DC inventories and service territory
- 4. Assignments of DCs to plants by product
- 5. Number and locations of plants
- 6. Mission of each plant production by product, inventories, and service territory.

2.5.1.2. "What If " Questions

1. Business decision and policy issues

⁵ Supply Chain Optimization – Keely L. Croxton, Thomas L. Magnanti, MIT (Jan, 1996)

Plant capacity expansion New product introduction Shipment planning policy analysis DC capacity expansion or elimination Multi-division distribution system merger.

2.5.1.3. Sensitivity Issues

- 1. Distribution cost vs. customer service
- 2. Distribution cost as function of number of DCs
- 3. Demand forecasts.

2.5.2. Description of SAILS⁶

SAILS consists of user-friendly graphical interfaces, a data management system for model generation, and INSIGHT's proprietary optimizing solver. SAILS is a logistics network modeling tool that can be used for simple models where the data are entered by the user through a graphical user interface as well as for complex models where the data may exist in the form of millions of shipment transactions. The data management features of SAILS permit the user to choose the level of model complexity. A great deal of data generation can be handled automatically such as customer zone definition and freight rate generation.

Once a modeling database has been created, the scenario generation features of SAILS facilitate rapid generation and evaluation of many alternate scenarios for analysis. There are also numerous shipment planning controls which permit the user to evaluate the network impact of various shipment planning options such as pooling, stop-offs, pickups, and direct plant shipments.

When a given scenario has been generated, the optimizing solver selects from among the billions of alternative structures and flows, that one network design which minimizes total cost for that

⁶ SAILS Concepts: A Handbook for SAILS Users, Volumes 1 & 2 (Users Guide)

scenario. The solver is a mixed integer linear program that uses an advanced technique called network factorization to achieve solution speed for large problems.

2.5.3. Modeling using SAILS ODS

2.5.3.1. The inputs to SAILS

- Customer demand can be forecast or last year's historical shipments in either transaction form or in some more highly aggregated form
- Aggregated product and customer identification
- Facility data for plants and DCs includes processing rates, costs, and capacities as well as location
- Transportation options and rates for plant to DC, DC to DC, and DC to customer shipments
- Various policy considerations such as shipment planning rules, customer service requirements, and DC inventory restrictions.

2.5.3.2. The outputs from SAILS

for each scenario generated and optimized include:

Manufacturing

- Which plant should produce which products and in what quantities
- Which distribution centers should be served by each plant.

Distribution Centers

- Which distribution centers should be open and which should be closed
- Which products should be carried in each distribution center
- Which customers should be supplied from each distribution center, given customer service objectives.

Customer Support Patterns

• Map display of customer service area for each distribution center

• Graphical display of number of customers served by distance intervals from distribution centers.

Financial Information

- Total production/distribution system cost
- Transportation cost -- Plants to distribution centers; Distribution centers to customers
- Warehousing and inventory cost (fixed and variable)
- Production cost.

SAILS provides many valuable facilities for dealing with the typically large files of logistics data. The model generator performs all of the tasks commonly associated with the "matrix generator" front end of conventional optimization systems, and also many of the tasks commonly associated with a data base management system.

SAILS is a demand driven model. The aggregate commodity flows in the network are induced exclusively in response to customer demands. Flow on a particular arc may occur either because of favorable economics or capacity limits that must be satisfied. Either way, decisions made by a demand driven model are influenced strongly by product volume. In other words, products with high demands will influence the final solution far more than lightly demanded commodities.

2.5.4. The SAILS Solvers

SAILS consists of 2 solver models that can be used to define and solve a network optimization situation:

- 1. SAILS ODS
- 2. SAILS Optima

2.5.4.1. SAILS ODS

The Optimizer for Distribution Systems (ODS) is a 3-echelon model that can be used to design a straightforward finished goods production / distribution logistics network like the one planned. It

can model Plants, Distribution Centers and Customer Regions as the network location nodes. The corresponding links that are modeled are Replenishment (from Plant to DC) and Outbound (From DC to Customer Region).

2.5.4.2. SAILS Optima

The other solver in the SAILS, Optima, can represent multiple stages of a manufacturing process inside a given plant location, using multiple discrete production lines per stage. It can be used to model networks ranging from finished goods production / distribution to fully integrate supply chain systems. Optima can be used to model a complete supply chain from source of raw materials to finished product customers with any number of echelons.

Due to its complexity, Optima typically requires more human and computer resources for master database preparation and manipulation than does a typical ODS model. For this reason, the ODS was chosen as the solver for this study.

Chapter 3.: Model Data and Network Definition

The objective of this thesis was to examine the various courses of action that the company could follow in their attempts to redesign their distribution network. This chapter describes the data used in the model to define the network.

3.1. Description of the optimization model

<u>3.1.1. The Objective of the Model</u> is to minimize the sum of:

1. Transportation Costs

- Replenishment (from Plant to DC)
- Outbound (From DC to Customer Region)

2. Facility Costs

- Distribution Center
- fixed costs
- variable costs
- Penalties for violation of capacity constraints

<u>3.1.2. The Decision Variables for the model</u> to solve are:

1. Network Flow

- the amount of each finished product that flows through each DC location
- the amount of each finished product that flows on each Replenishment link
- the amount of each finished product that flows on each Outbound link

2. Structural

- Open / Close decision for each DC location
- Single DC assignment for each customer region X customer class X product bundle

3.1.3. The Constraints to be defined for the model (limits on the decision variables) are:

1. Network Flow:

- All customer demand must be satisfied
- Total demand for each finished product is equal to total quantity manufactured.
- Total quantity of each finished product shipped from a DC location is equal to total quantity of the given product shipped to the given DC.

(Mass Balance Equations – Inflow = Outflow to be followed for each DC)

Total quantity of each finished product shipped from a Plant location is equal to total quantity of the given product manufactured as the given Plant. (Mass Balance Equations – Inflow = Outflow to be followed for each plant)

2. Structural:

- each customer region customer class product bundle is assigned to exactly one DC location.
- 3. Facility: (these constraints are optional):
- Capacity limits on production arising from machine or process capacities
- Capacity limits on throughput at DCs arising out of space limitations

3.2 Data Sources

The data used in the analysis in this thesis was based on the company's actual transaction data from the previous year. The basic data sets provided by the company were:

1. Existing Situation:

- Location of plants, CDCs, DCs by 5 digit zip codes
- Location of Customers by 3 digit zip codes
- Product-plant relationship what product is made where
- Product flow quantities -

- Plant to CDC
- CDC to DC
- DC to customer by product, by mode

2. Plans for the Future:

- Location of DCs: How many, what locations locked open and what locations are probable candidates
- Likely Number of DCs

The data was provided in the form of Microsoft Excel sheets and was adapted to the specified formats as required by SAILS ODS.

3.3 The Model

3.3.1. The Existing Network:

Products (4,000 SKUs) are manufactured at 10 geographically dispersed plants. Shipments from these plants are consolidated at 4 Central Distribution Centers which are used as replenishment points for the 7 distribution centers. The present customer base comprises of approximately 25,000 geographically dispersed ship-to points.

3.3.2. The Planned Network:

The future plan is to move from a 3-echelon network to a 2-echelon network. In this network, the middle level CDCs are eliminated and products are shipped direct to DCs from the manufacturing plants. Also, in the new network, the number of DCs is reduced to 3 from 7.

3.3.3. Products:

The range of products made and sold is approximately 4,000 SKUs. However, to simplify the data for the model, 15 product families are considered, each made at only one plant. It is assumed that each product has similar characteristics in terms of product density, packaging, etc.

3.3.4. Transportation

The actual freight movement occurred by 5 modes -

- Truckload (FTL)
- Less Than Truckload (LTL)
- Package
- Expedited
- Pickup

For the purposes of modeling, the above modes were considered at the following rates:

FTL, LTL, Pickup: @ Yellow 500, 1999 rates with a discount of 75%

Package, Expedited : @ UPS Ground, 1999 rates

The built-in library of rates in SAILS was used for the model.

The number of plants modeled was 10 as opposed to the 7 physical plants that the company actually has. This was done to accommodate the outsourced products in the system flows. **Table 3-1** as given below, summarizes the plants and the products that are made there.

<u>Sl #</u>	Manufacturing Plant Location	Product No.
1	Drummondville, Quebec (Canada)	103
2	Manchester, NH	105, 106, 107
3	Maybrook, NY	102
4	St.Marys, PA	100
5	Versailles, KY	103
6	Winchester, KY	101, 121,122
7	Juarez, Mexico	101
8	Elk Grove Village, IL	112, 114 (Outsourced)
9	Eastern Factory Warehouse	104 (Outsourced)
10	Western Factory Warehouse	130 (Outsourced)

Table 3-1: Manufacturing Plants and Products

With the above information, the total customer demand was mapped back to the manufacturing plants to yield a table of outflows from each of the plants.

3.3.5. Data Collection and Aggregation:

A typical network optimization problem requires overwhelmingly large amounts of data collection. For the purpose of this study, data was collected as per the scope of study defined and aggregated so as to have minimal impact on the results, yet simplify the model to manageable proportions.

Aggregation may result in loss of some information and so it is always an issue on how much to aggregate. There are two main reasons for aggregating data:

- The first is that the original data will result in a large model that may be difficult to handle and may take a very long time to solve. The time taken to solve the problem grows exponentially with the number of customers in more complex models.
- The second reason is that aggregation of demand data improves the accuracy of the forecast demand. The ability to forecast demand at an aggregate product and customer level is much better than that to forecast at the individual customer product level.
- 1. Location of customers, plants, existing and proposed warehouses.
- Customer Demand: The 25,000 customer ship-to points were aggregated to 915 3-digit zip code locations. A single customer located at the center of that zip code area represented all customers within the area defined by a 3-digit zip code.
- 3. Products: In order to aggregate the 4,000 SKUs, they were aggregated into product groups, based on the similarity in distribution pattern and product type. In this case, the products were essentially variations in the models and style and differed in type of packing (as in 6-pack vs 8 pack). This enabled the aggregation of products into 15 types, with each type made at only one plant.
- 4. Annual demand for each product by customer location. Ideally, considering the fact that the location decision will impact the firm for the next few years, future changes in customer demand should be taken into consideration while designing the network.
- 5. Transportation rates by mode. The SAILS software has built-in rates for Yellow-500 and UPS with a provision to scale these as required. These rates were used to project the costs for the future network.

- 6. Shipment Profiling: The flows in the model are cost on the basis of the Shipment sizes and mode. The profile into or from a node was based on the how much material passed through the node, in how many shipments and by what mode. The shipments into / from each node were averaged for each mode to give a profile for the shipments. It was assumed that the shipment profile would not change for change in configuration of the network.
- 7. Warehousing and facility costs fixed, labor, inventory carrying, etc. These were assumed independent of location and hence ignored for the study.
- 8. Order processing costs were also considered invariable and hence ignored.

3.3.6. The Design Questions and Description of the models developed:

A series of models were developed and run on the software to study the various issues involved in the network optimization. This section provides a description of the models that were developed to answer the questions posed:

Q.1. What would be the customer allocations scenario if there were to be 3DCs in the network –

- (i) Bethlehem, PA
- (ii) Ontario, CA
- (iii) Versailles, KY

OSNEW3: This model mapped the existing customer demand at 915 3 digit zip codes to the 3 DCs.

Q.2. How do the costs in the new system compare with the existing system?

OS7FTL: Mapped the existing customer demand as flows from the plants to customers through the 7 DCs. Modeling the network including 4 CDCs was beyond the scope of this thesis and these were omitted. The products in this model flowed from the plants to the DCs as truckload.

OSTOLD: This model was developed as a variation with the shipment profile from plants resembling what the company expected it to be for a 3 DC model.

Both these models were used to compare costs between the 3 DC and 7 DC scenarios.

Q.3. If it were possible to select the location for a third DC, assuming that Bethlehem, PA and Ontario, CA were locked open, what would that be?

OSNEW1: It was defined to this model that the required number of DCs was 3, out of which, 2 DCs - Bethlehem, PA and Ontario, CA were locked open. The solver would select the optimal location from 8 other locations identified.

Q.4. What if there is a capacity constraint on the DCs?

How will the customer assignments and the costs in the system change? Would the location of the third DC change?

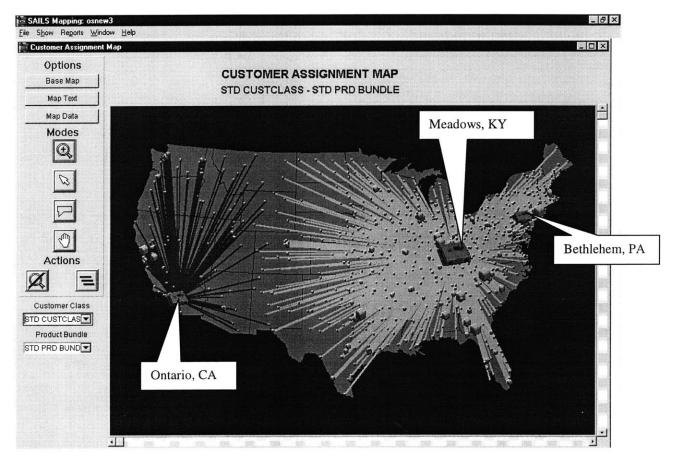
OS3NCAP8: This model was adapted from the OSNEW1 model with addition of a constraint on the maximum capacity or throughput permitted on a DC. This capacity was constrained at 150 Million pounds. A penalty of \$1,000 / CWT was imposed for violating the capacity.

OS3NCAP5: This model was also adapted from the OSNEW1 model and the capacity was constrained at 100 Million pounds. A penalty of \$1,000 / CWT was imposed for violating the capacity.

OS3NCAPBI: This model was adapted from the OS3NCAP8 model with increase in the capacity violation penalty to \$100,000 / CWT.

The lower capacity violation penalty represented a case where it could be possible to expand capacity by leasing extra space. The higher penalty represented the situation where the capacity could not be expanded.

Q.5. How do we know that 3 is the correct number? Should it be 4? Or 5?


OSNEW4: This model was adapted from the OSNEW1 model. With the same set of choices for location for the new DCs, the model was constrained to seek optimal locations for 4 DCs.

OSNEW5: This model was also adapted from the OSNEW1 model, with a constraint for the model to choose 5 optimal locations.

Chapter 4.: Results and Conclusions:

The objective of this thesis was to analyze some of the issues that the company was faced with as they proceeded to change the configuration of their distribution network. The problem identification, data and network modeling aspects were discussed in the preceding chapters. This section focuses on a discussion and analysis of the results obtained through different scenario runs of the model. Some of the main concerns critical to the design of the network were defined in chapter 3. This chapter answers those questions on the basis of an analysis of the results obtained.

4.1. What would be the customer assignments if there were to be DCs at 3 predetermined locations in the network?

OSNEW3

Figure 4-1: Customer Assignment map for 3 predetermined locations

The above customer assignment map shows that the Kentucky facility will be the largest of the three facilities in the 3 DC network. The facility handles the largest volume of the 3 DCs. A detailed text description of the customer assignments generated by SAILS is given at **Appendix.1**.

Customer service Histograms showing the portion of assigned demand covered by each of the DCs are given in **Appendix.2.** Bethlehem, PA has a small service area, meeting all its assigned demand within a radius of 250 miles. Meadows has more densely spread demand upto 1,500 miles. Ontario, on the other hand, serves a lower demand upto 1,500miles, but with most of it being served within 500 miles.

The system costs for this 3 DC model are compared with the 7 DC model in **Table 4-1**. Also, **Table 4-2** gives a comparison between the costs and activities at the various locations under the 7 DC versus the 3 DC situation.

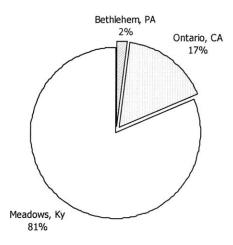


Figure 4-2 Share of demand served by each DC in a 3 DC network

4.2. How do the costs in the new system compare with the existing system?

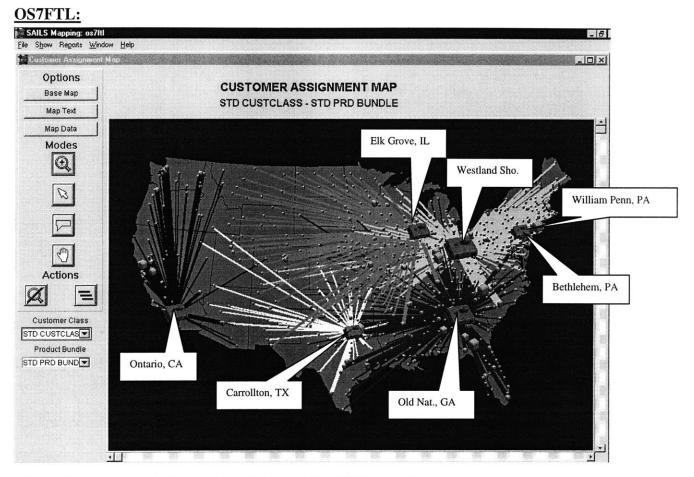


Figure 4-3: Customer Assignment map for the existing 7 DC network

The above customer assignment map indicates that the Carrollton, TX, Bethlehem, PA and the William Penn., PA DCs have fewer customer assignments compared to the others. In fact, the detailed text report indicates that the William Penn., PA DC has no customer assignment whatsoever. All the demand is assigned to the Bethlehem, PA DC as that happens to be co-located with a manufacturing facility. The solver provides a mathematical optimal solution. It indicates that only one of the two - William Penn or Bethlehem may be assigned any customers in an optimal network. The two are located so close that the solver eliminates one altogether, thereby saving on the total facility costs. Locations that are closely located enjoy essentially the same access to available demand, share virtually identical freight rates and usually exhibit

similar cost structures. Hence these cannot be meaningfully differentiated for location decisions. Factors like existing facilities, interstate highway access, rail siding, dock access, EPA regulations, soil conditions, tax laws and other such matters should ideally be considered before the actual modeling. Such issues are beyond the scope of this mathematical model.

OS7OLD:

The company believed that in switching to a direct-to-DC network, many shipments from the plants would become LTL shipments as against the existing truckload shipments from the plants. By eliminating the CDCs, the advantage gained through consolidating shipments to truckloads is lost and this results in an increase in the total costs of the system. In this case, the inbound to DC costs increase because the LTL mode is more costly than the full truckload. There was no substantial change in the outbound costs from the DC to the customers as the profile there was not changing.

	OS7FTL	OS7Old	OSNEW3
	7 Existing @ FTL	7 Existing @ LTL	Planned 3
System-wide			,
Volume Flow (CWT)	2,233,706	2,233,706	2,233,706
Replenishment Cost	\$ 25,554,000	\$ 26,899,000	\$ 23,729,000
Outbound Cost	\$ 23,440,000	\$ 23,400,000	\$ 25,346,000
Facility Costs @1,000 / Facility	\$ 6,000	\$ 6,000	\$ 3,000
Penalty Costs			
Total Cost	\$ 49,000,000	\$ 50,305,000	\$ 49,078,000
Overall Demand Wt Avg	394.02	384.23	543.45
Avg Cost / CWT	21.937	22.521	21.972

Details of the comparison between costs in the three models is given in Table 4-1.

Table 4-1: Comparison of system costs between the Old & New DCs

By changing to a 3 DC network from 7 DCs, the distance to customers is increasing. Table 4-1 indicates that the outbound demand weighted distance for the 3 DC network increases to 543.45 miles from 394.02 in the 7 DC network. This would indicate the possibility of longer lead times and hence reduction in service levels. The outbound costs thus increased substantially as in the new scenario, the demand is being met from a larger weighted average distance.

	OS7FTL	OS7Old	OSNEW3
	7 Existing @ FTL	7 Existing @ LTL	Planned 3
Bethlehem Flow	82,361	64,261	41,974
Cost in	1,110	913	641
Cost Out	814	707	506
Total Cost (1000\$)	1,924	1,620	1,147
Overall Demand Wt Avg	75.36	82.08	93.41
Ontario Flow	346,552	346,487	374,577
Cost in	6,140	6,426	6,980
Cost Out	3,319	3,318	3,754
Total Cost	9,459	9,744	10,734
Overall Demand Wt Avg	439.32	439.32	460.62
Meadows Ky - Flow			1,817,155
Cost in			16,107
Cost Out			21,086
Total Cost			37,193
Overall Demand Wt Avg			570.92
Old National GA	612,090	542,632	· · · · · · · · · · · · · · · · · · ·
Cost in	6,625	6,090	
Cost Out	5,798	5,123	
Total Cost	12,423	11,213	
Overall Demand Wt Avg	395.11	354.57	

Elk Grove Flow	277,429	288,367	
Cost in	972	3,257	
Cost Out	3,555	3,713	
Total Cost	4,527	6,970	
Overall Demand Wt Avg	459.55	478.03	
Carrollton TX Flow	118,646	154,130	
Cost in	1,518	2,156	
Cost Out	954	1,109	
Total Cost	2,472	3,265	
Overall Demand Wt Avg	218.18	175.78	
Westland Shoppoh Flow	796,628	837,829	
Cost in	7,188	8,057	
Cost Out	9,000	9,431	
Total Cost	16,188	17,488	
Overall Demand Wt Avg	409.78	409.89	
William Penn Flow	-	-	
Cost in	-	-	
Cost Out	-	-	
Total Cost	-	-	
Overall Demand Wt Avg			
Indianapolis, IN	82,361	64,261	
Cost in	1,110	913	
Cost Out	814	707	
Total Cost	1,924	1,620	
Overall Demand Wt Avg	75.36	82.08	

Table 4-2 Comparison of Costs at DC level between Old and New Networks

The shift from 7 DC network to 3 DC network also indicates an increase in the weighted average distance for each of the DCs. Even the 2 existing DCs will serve customers at an increased weighted average distance. Customer Service histograms showing the assignment of demand to each of the 7 DCs are given in appendix-3.

4.3. If it were possible to select the location for a third DC, assuming that Bethlehem, PA and Ontario, CA were locked open, what would that be?

OSNEW1:

During its growth phase, a company would have purchased land at various locations as an investment for future use. Land does not depreciate and can be used to build another plant or even storage facilities. In this case, the company had a stretch of land at Meadows, KY and was looking at the optimality of setting up a DC there in the new network under consideration. It was already decided that the DCs at Bethlehem, PA and Ontario, CA would definitely remain open in the new network. The question that remained was to explore whether Meadows was an optimal location. To address this issue, a model was created with 10 possible locations from which the solver was required to select 3 locations that were optimal from the perspective of a supply chain network optimization. Out of the 10, - Bethlehem, PA and Ontario, CA were defined as locations already decided. The 10 locations selected as options were as described in **figure 4-4**.

	tribution Centers													I
	Name	Abbr	Zip	IPLC	Lt De	Lt M	Lg De	Lg M	Echelon	ID #	 			
	THE MEADOWS KY	THE	40505		38	06	84	30	2	405				
	BETHLEHEM-1802PA	BETH	18020		40	38	75	23	2	180				
	ONTARIO INTERNCA	ONTA	91761		34	02	117	37	2	917				
	CINCINNATI OH	CINC	45202		39	08	84	30		1640				
	INDIANAPOLIS IN	INDI	46204		39	47	86	08		3480				
	LOUISVILLE KY	LOUI	40202		36	14	85	43		4520				
	WOODSTOCK IN	WOOD	47274		38	57	85	57		472				
	NASHVILLE TN	NASH	37202		36	05	87	00		5360	 			
	MEMPHIS TN	MEMF	38101		35	09	89	59		4920				
	DES MOINES IA	DES	50318		41	37	93	35		2120	 			
	DC locations to be locked open THE MEADOWS KY BETHLEHEM 1802PA	DC loca be lock THE ME BETHLI	tions to ed close EADOW: EHEM-1	d p S KY 1 802PA E	C locations referred oper HE MEADOV BETHLEHEM	VS 1 1802	PA B	eferr HE M ETHL	ations ed closed EADOWS _EHEM-18	KY BO2PA			Custome	
	be locked open THE MEADOWS KY	DC loca be locks	tions to ed close EADOWS EHEM-1 IO INTE NATI C APOLIS STOCK LLE IIS	d p S KY 1 802PA E RNCA C DH C IN I KY L IN N IN N	referred oper HE MEADOY BETHLEHEM- DITARIO INT CINCINNATI NDIANAPOLI: OUISVILLE YOODSTOCK	VS H 1802 ERNO OH S IN KY IN TN TN	Pr PA B CA O LI LI W N M	eferr HE M ETHL NTAF INCIN IDIAN OUIS' YOOD ASHV EMP	ed closed EADOWS EHEM-18 RIO INTEF INATI O IAPOLIS VILLE K STOCK /ILLE T	I BO2PA NCA H IN Y IN N		Statu Scalin		*

Figure 4-4: 10 Optional locations for selecting 3 DCs

With the above constraints the model selected Meadows as the optimal location for the third DC, from the given set of choices and assigned customers to DCs as shown in **figure 4-5**.

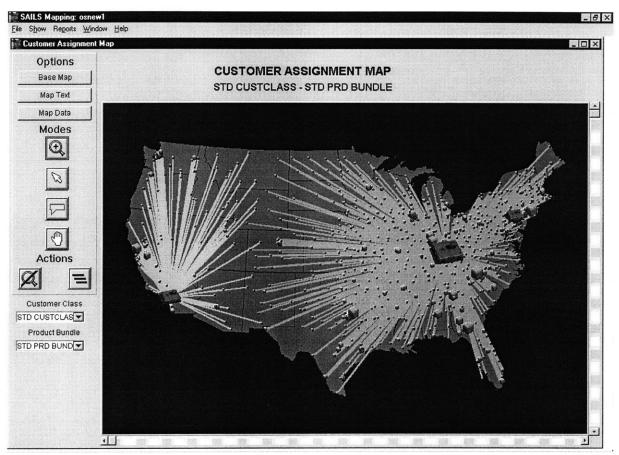


Figure 4-5: Customer Assignments in 3 DC network.

The system costs in this set of assignments were the same as described in **Table 4-1** for model OSNEW3 since the same customer demand is being assigned to the same 3 DCs.

The solver is minimizing the cost of satisfying customer demand from the 10 plants, moving the products through the DCs in different combinations. At Meadows, KY, the largest manufacturing plant is co-located with the DC. The solver automatically selects this as the DC location as a major portion of material movement from Meadows, KY to other DCs can be eliminated.

4.5 What if there was a capacity constraint on the DCs?

The next question was to test the robustness of this optimality. How would the customer assignments and the costs in the system change? Would the location of the third DC change?

To address these issues, the OSNEW1 model was taken as a base and modified to include additional capacity constraints. The results were checked at two levels of capacity constraints -- 150 million pounds and 100 million pounds and two levels of penalty for crossing the capacity limits - \$1,000 & \$100,000. The new models were labeled OS3NCAP8 and OS3NCAP5 for penalty of \$1,000 and OS3CAPBI and OS5CAPBI for penalty cost of \$100,000. At a capacity constraint of 150 million pounds, both runs (OS3NCAP8 and OS5CAPBI) indicated that Meadows, KY was the optimal location for the third DC. With low penalty cost, the solver found that Meadows was the optimal location even after paying a small penalty. With a low penalty cost, the solver identifies a solution with a low transportation cost and an admissible penalty. This could be viewed as the cost of additional space leased to enhance the capacity. A high penalty cost indicates that the capacity may not be increased and so the solver identifies a solution with no capacity violation but a higher transportation cost. The total cost for both solutions is within 1% in accordance with the tolerance limit set for the solver.

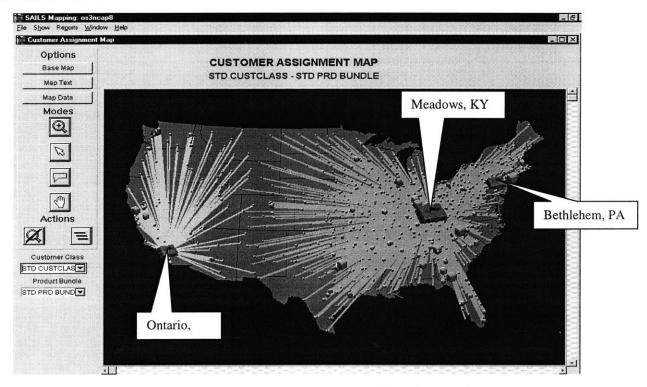


Figure 4-6 Customer Assignments Map in 3 DC network with capacity constraint of 150M & \$1,000 penalty

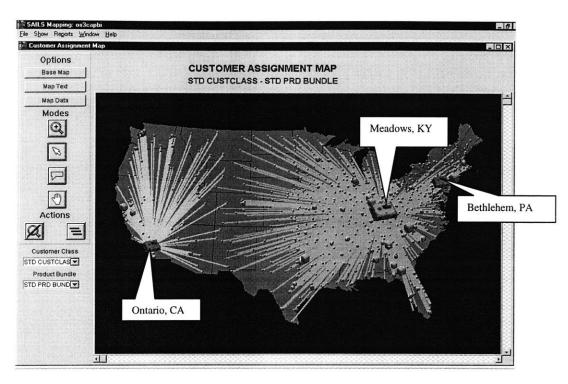


Figure 4-7 Customer Assignments in a 3 DC network with capacity constraint of 150M and penalty of \$100,000

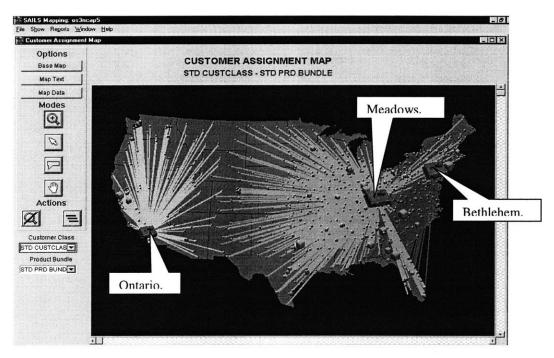


Figure 4-8: Customer Assignment map with 3 DC network at a capacity constraint of 100M

Table 4-3 Compares the costs in the system for the four conditions – no capacity constraint, and the 2 levels of capacity constraint with the penalties.

		OSNEW1	OS3NCap8	OS3CAPBI	OS3NCap5
		Choose 3/10	Cap=150M	Cap=150M	Cap=100M (50%)
			Pnlty=\$1,000	Pnlty=\$100,0000	
System-wide					
Volume (CWT)	Flow	2,233,706	2,233,706	2,233,706	2,233,706
(Pounds)		223,370,600	223,370,600	223,370,600	223,370,600
Replenishment	Cost	\$ 23,729,000	\$ 24,825,000	\$ 24,934,000	\$ 26,805,000
Outbound Cost		\$ 25,346,000	\$ 24,631,000	\$ 24,884,000	\$ 25,095,000
Facility @1,000	Costs	\$ 3,000	\$ 3,000	\$ 3,000	\$ 3,000
Penalty Costs			\$ 811,000	\$-	
Total Cost		\$ 49,078,000	\$ 50,270,000	\$ 49,821,000	\$ 51,903,000

Table 4-3: Comparison of system costs at different capacity and penalty levels

This analysis was conducted to analyze costs from a perspective of transportation costs. The facility costs were taken as the same nominal cost for the different capacity levels, so that the solver did not select more than the number of DCs wanted. In reality, the cost structure for DCs with different capacities would be different. SAILS is capable of including different fixed and variable costs for each candidate facility, but the issue was beyond the scope of this study.

A comparison of the different costs for the 3 DCs under the capacity constraint scenarios is given in **Table 4-3**. As can be seen from the figure ABC as well as TABLE XYZ, the customer allocations changed with available capacity. The service zone of the KY facility reduced with reduction in the allowable throughput. Correspondingly, the service area for the Bethlehem, PA facility increased. As capacity decreased, customer assignments migrated from Meadows KY to Bethlehem, PA. The solver seeks to minimize the total of the system and so it recalculated all the assignments and chose the combination of assignments that was the lowest in costs subject to the capacity constraints. The customer assignments that switched were located closer to the Bethlehem facility and resulted in a lower increase in the total cost as compared to the other customers.

	OSNEW1	OS3NCap8	OS3CAPBI	OS3NCap5
	Choose 3/10	Cap=150M	Cap=150M	Cap=100M
		Pnlty=\$1,000	Pnlty=\$100,000	·····
Bethlehem Flow	41,974	351,017	359,136	859,129
Cost in	641	4,521	4,586	10,866
Cost Out	506	3,561	4,189	9,425
Total Cost (1000\$)	1,147	8,082	8,775	20,291
Overall Demand Wt Avg	93.41	126.35	156.86	370.80
Avg Cost / CWT	27.33	23.02	24.43	23.62
Ontario Flow	374,577	374,577	374,577	374,577
Cost in	6,980	6,980	6,980	6,980
Cost Out	3,754	3,754	3,754	3,754
Total Cost	10,734	10,734	10,734	10,734
Overall Demand Wt Avg	460.62	460.62	460.62	460.62
Avg Cost / CWT	28.66	28.66	28.66	28.66
<u>Meadows Ky - Flow</u>	1,817,155	1,508,112	1,499,993	1,000,000
Cost in	16,107	13,324	13,369	8,959
Cost Out	21,086	17,316	16,941	11,916
Total Cost	37,193	30,640	30,310	20,875
Overall Demand Wt A	Avg		543.90	568.64
Avg Cost / CWT	20.47	20.32	20.21	20.88

Table 4-4: Comparison of costs at the DCs for different capacity and penalty conditions

It was found that changes in the capacity constraint did not switch any customers between Meadows, KY and Ontario, CA. Most production for the products takes place in the eastern part of the country, and the products served out of the CA facility moved there before shipment to customers. The increase in costs for switching customers from KY to CA were higher than the increase due to switching from KY to PA and hence the solver chose to change assignments for the KY to PA pairs.

It was notable that the system costs were lower with the third DC at KY rather than they would be with locating the third DC any of the other 7 options that were considered. In fact, the solver found that it would be more cost effective to pay a penalty for overshooting the capacity limitation as opposed to reassigning a customer to another DC. This also means that the next lowest cost for changing the allocation of a customer was at least equivalent to the penalty amount and to change the assignment of a customer would have increased the transportation costs on that lane beyond the amount.

This exercise was not intended to arrive at the optimal capacity for the DC but only to check the sensitivity of the location selection to capacity constraints. However, the solutions described here are within 1% of the optimal solution.

4.6. How could it be known whether 3 was the correct number of DCs to have?

The next important issue in supply chain network design would be to determine the optimal number of DCs. Should it have been 4? Or 5?

In order to analyze this issue, additional models were formulated to study the costs if the models had to choose 4 or 5 DC locations from the same set of options. For the 4 DC model, the solver chose Meadows, KY and Des Moines, IA in addition to the 2 DCs that were locked open. Interestingly, it still chose to locate a DC at Meadows, KY. Figure 4-10 shows the customer assignment map for a 4 DC network.

In the 5 DC model, Meadows, KY and Des Moines, IA and Nashville, TN were the selected optimal choices for the DC locations in addition to the 2 facilities that were locked open. Figure 4-11 shows the customer assignment map for a 5 DC network.



Figure 4-9 Total cost Vs Number of DCs

Figure 4.9 confirms that there will be an optimal number of facilities that will, minimize the total transportation cost of the system. In this case, a cost of \$ 1 million was taken as the facility cost to illustrate the point. In reality, this figure would be dependent on the location and size of the facility and probably vary from place to place.

As the number of facilities increases, the products are placed farther out into the field and so beyond an optimal minimum, the replenishment costs begin to increase. Simultaneously, Since the products are closer to the customers, the outbound costs decrease. Hence, there is a trade-off between the inbound and the outbound costs. In the given case, the total cost of transportation changes with the number of DCs as per table 4-5.



Figure 4-10: Customer assignment map for a 4 DC network

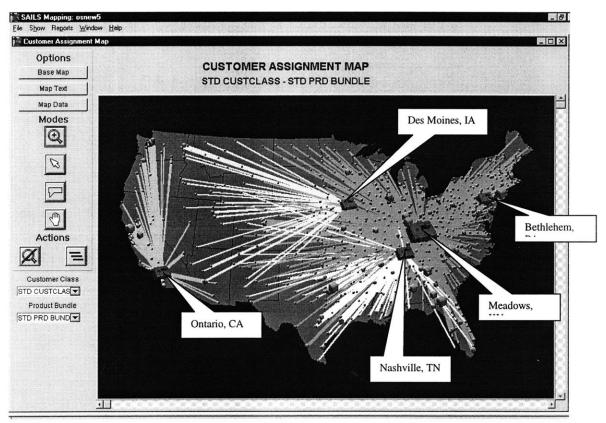


Figure 4-11 Customer Assignment map for a 5 DC network

Increasing the number of facilities increases the facility fixed costs. Although figure 4.9 shows that fixed facility costs are linear, most often they will not be. A larger number of facilities will spread the same demand is spread over a larger number of DCs and this would imply that each facility can now be smaller, making the costs non-linear. Since the general trend will still be increasing, the assumption about linearity can be made here.

The recommendation for a fourth facility is based on the savings from the reduction in transportation and a nominal fixed facility cost of \$ 1 million per facility. In actuality, costs may vary from facility to facility. In order to assess the practical feasibility of the fourth facility, detailed assessment of the costs involved will be required. The facility will be viable only if the savings from transportation are higher than the costs that will be incurred in operating the fourth facility.

	OSNEW1	OS7FTL	OSNEW4	OSNEW5
	Choose 3/10	Existing 7	Choose 4/10	Choose 5/10
System-wide				
Volume Flow (CWT)	2,233,706	2,233,706	2,233,706	2,233,706
(Pounds)	223,370,600	223,370,600	223,370,600	223,370,600
Replenishment Cost	\$ 23,729,000	\$ 25,554,000	\$ 23,445,000	\$ 23,770,000
Outbound Cost	\$ 25,346,000	\$ 23,440,000	\$ 25,414,000	\$ 24,944,000
Total Transportation Cost	\$ 49,078,000	\$ 48,994,000	\$ 48,559,000	\$ 48,714,000

Appendix 4 and Appendix 5 give histograms of customer service in the 4 DC and the 5 DC scenario respectively.

 Table 4-5: Comparison of Total Transportation costs at different number of DCs

Chapter 5. Summary and Conclusions

5.1. Overview:

The study targeted to analyze some of the issues that the company was concerned with, in their initiatives to reconfigure their distribution channels by shutting down some DCs and removing an entire echelon from the chain. The issues that were addressed concerned the impact of the change in network configuration for the manufacturer having a widespread customer base to be serviced from a reducing number of customer facing points. Data from the company was formulated into a network model and the SAILS ODS was used as the solver for optimization. The main questions that guided the study were:

- 1. What is the impact of reducing the number of DCs ?
- 2. What would be the optimal location of a third DC assuming 2 DCs are known?
- 3. What would be the customer allocations in the new network with 3 DCs?
- 4. How would the assignments change if there was a capacity constraint posed on the DCs?

A uniqueness of this network is that almost all of the production takes place in the eastern part of the country. A DC on the Western side could serve only the customers on the west in a costeffective way. To serve more customers from the CA facility would imply that products are shipped to the West Coast from the east and then shipped eastwards again. This would be like backtracking material flows, which would result in higher costs.

The analysis found that it was indeed more cost effective to reduce the number of DCs. However, results showed that the total system costs comprising of the transportation and facility costs were lower for a 4 DC network as compared to a 3 DC network as planned by the company. The trade-off between facility cost, inbound and outbound costs yield maximum advantage when the number of DCs was at 4.

The existing facilities at Bethlehem, PA and Ontario, CA were to be definitely kept operational. The solver selected Meadows, KY as the optimal location for the third DC. This was because the KY facility is co-located with a manufacturing plant where 47% of the total volume of products is made. This implies that to supply to a customer from a DC location other than KY would cost more than to ship it from KY itself. That is the main reason why the solver tends to converge all demand to the DC at Meadows, KY.

Meadows, KY was the largest DC in the system, serving about 81% of the country's total demand when no capacity limitation was imposed. A capacity limitation on this facility caused some customers to be assigned to Bethlehem, PA. The demand weighted average distance changed from 570.92 to 543.90 for that DC and increased from 93.41 to 156.86 for Bethlehem when a capacity limit of 150 million pounds was imposed.

5.2. Summary of results

There are trade-offs in changing the number of customer facing points (Distribution Centers):

- 1. There will be reduction in the inbound transportation costs for the warehouse (cost of transportation from plants to warehouses). The additional stoppage at the CDC is eliminated, reducing the material handling and transportation costs.
- 2. There is an increase in outbound transportation costs (cost of transportation from distribution centers to customers) as the facilities are now located farther from the customers.
- 3. There is a reduction in the overhead and setup costs as the number of facilities is reduced.
- 4. A reduction in the inventory carrying costs since the total safety stock in the system goes down with the number of stocking points (square root law). The uncertainties in customer demand are met from a smaller pool of inventory.
- 5. The average travel time to customers increases with fewer distribution centers. This has an adverse effect on customer service levels.

5.3. Recommendations

The optimality of the network design can have a direct influence on the costs and the profitability of a company. The important design parameters discussed in the study that had the maximum impact were :

- 1. the number of DCs
- 2. the location of the DCs
- 3. capacity of the DCs.

In order for the reconfiguring of the network to have maximum benefit, the following is recommended:

- 1. The company should proceed with its plans to reduce the number of DCs from 7. However, the option of having 4 DCs instead of 3 should definitely be explored.
- 2. Meadows, KY, by virtue of its co-location with the largest manufacturing plant, is the ideal location for the third facility. The product made at that plant is the product with the single largest demand and so there is a natural tendency for location of a facility there. In case the plan for a fourth facility is followed, the optimal location for that will be Des Moines, IA. Indianapolis, IN was also a strong candidate for the location of the fourth DC.
- 3. The customer service strategy determines the maximum distance to customer that can be served from a given facility. This is perhaps the most important parameter that will decide the extent of the service zone and hence the capacity of the DC. The company should clearly define its policies on this issue before actually sizing the facility. The Bethlehem, PA and the Ontario, CA facilities already exist. It will be a good strategy for the company to study the possibility of expansion at these facilities and incorporate that while deciding the capacity of the Meadows facility.

5.4. Possible improvements to the study

SAILS is a powerful tool that can be used to model a supply chain network to great detail. With proper training, a network can be accurately represented in the model. The scope of this thesis was scaled down to a study that would be do-able in the time available and yet add value to the instruction provided in the program. Time permitting, the scope of the study could have been expanded to include a greater depth of detail in the models. Some of the main areas where this could be possible are enumerated below.

1. Aggregation of data

The data used for the study was aggregated from transactions that took place over the previous one year. As in any aggregation, there was some loss of detail that occurred. SAILS allows the use of transaction data which the software itself analyzes for seasonality and trends that may influence results of the study.

2. Transportation rates.

Transportation rates were based on the Yellow 500, 1999 rates for shipments that moved last year by truckload, LTL or were picked up by the customers themselves. The advantage of this approach was that there was uniformity for all possible lanes and combinations. The disadvantage of this approach was that truckload and LTL shipments were both costed at the same rate, when in reality, a truckload shipment will be costed at a cheaper rate over an LTL shipment in the same weight break.

3. Basis for costing flows

All calculations for flows were based on the weight of the shipments moving between the nodes. In the lighting equipment industry, shipments containing products like incandescent bulbs will cube-out whereas shipments containing products like ballast will weigh-out. A truckload of incandescent bulbs will weigh much less than a truckload of ballast. It was

assumed that the product mix for all customers would weigh similarly and this would not cause any discrepancy in the results. SAILS does have the option to define the profile for each product. Incorporating this in the study would have complicated the model beyond the scope of the study.

4. Solver Tolerance

All results given by the solver were within 1% of the optimal as that was the tolerance limit set for the study. A tighter tolerance would have required higher computing power and longer time for each run of the model. There are a large number of solutions at each level of tolerance. As the tolerance is tightened, the solver requires a larger number of iterations and so the time requirement increases exponentially. As a next step, the tolerance limit can be set tighter to achieve results closer to the optimal if so desired.

5.5. Further Steps

Supply Chain network optimization is a strategic decision for the company that will impact the profitability over a long period of time $-4 \sim 5$ years. SAILS ODS is a decision support tool that enables the management to take decisions regarding the issues on number of facilities, facility location, customer assignment, etc., as discussed in this paper. It is not capable of doing a sensitivity analysis on parameters without a re-modeling exercise. Testing the sensitivity of the model solution to variances can help the management of the company make better informed decisions.

The immediate issue for analysis will probably to decide on the size of the third DC at Meadows, KY. This will require clear inputs regarding the customer service limitations from the management. The capacity will be based on the peak throughput at the DC. That information can be obtained through a simulation tool that can take input from the SAILS solver regarding the network model.

Network optimization can be an on-going exercise, even from a strategic perspective to continuously monitor its optimality and decide on the next change with even better data. Some of the areas where improvement can be made are discussed below:

Some of the other issues that were identified during the study related to the new network design without the Central DCs where individual shipments could be consolidated. The company management will need to look at these issues also to make its network optimization effective:

- 1) In reality, demand will be probabilistic and manufacturing capacity limited. Hence, in the direct to DC deployment scenario, the product-planning schedule will have to incorporate information on where the product will be deployed. The absence of an agile and responsive forecasting system can result in product in the wrong place and having to be re-deployed to another location. In such a scenario, the location with excess inventory will become a potential supplier for the shortage location, but indiscriminate shipping can result in this location having shortages in the next time window.
- 2) The existing information and management systems would have been designed for the 3echelon system. Reconfiguration of the network will probably require a change in these systems. The management will require to ensure changes in the systems before change is implemented.

This thesis highlights the differences that emerge from a mathematical solution to a real world situation and how the result are modified to give less than optimal solutions. The solutions thus obtained are "optimal" under the constraints and the model that was defined.

It was assumed that the plant locations will not change. The product mix was not changed and the demand pattern also remained the same. The objective was to design or reconfigure the logistics network so as to minimize the annual systemwide costs. This includes production and purchasing costs, inventory holding costs, facility costs and transportation costs. Facility costs arise from the fixed costs at the facility, storage and handling of products. These are likely to vary with location of the facility depending on real estate costs in the area, availability of labor, etc. (For the purpose of this study, these costs are assume to be constant over the selection of the location and hence ignored for calculations.) The transportation costs are also likely to vary with location of the facility depending on volume of total freight inbound to and out bound from the area where the facility is planned to be located. The selection of the mode of transportation is key to the cost. (In the model here, it is assumed to be constant for a given customer, independent of the location of the DC that customer will be served from)

There is a lot that can be done towards improving any supply chain or even a part of it. In this study, the focus was improvement of the distribution system using a supply chain network modeling tool. The strong interrelationship between some of key decision areas in a logistics system design was studied to arrive at recommendations to some of the issues. Even tough the actual situation may have been unique for the company in terms of its product range, and manufacturing system, these issues were identical to what any company wanting to alter even a part its supply chain network would face. The key results were presented and analyzed to make recommendations for the company. This study can serve as the starting point for a change and so some points for further study were also identified, not omitting some of the future improvements possible in a similar study.

Bibliography

- Ronald H.Ballou & James M.Masters, Commercial Software for locating warehouses and other facilities Journal of Business Logistics, Vol.14, No.2, 1993.
- {Ho, Peng-Kuan, Univ of Maryland, 1989; Warehouse location with service sensitive demand: AAD90-21511}
- SAILS Concepts: A Handbook for SAILS Users.
- Supply Chain Optimization Keely L. Croxton, Thomas L. Magnanti, MIT (Jan, 1996)
- SAILS Concepts: A Handbook for SAILS Users, Volumes 1 & 2 (Users Guide)
- Designing & managing the Supply Chain David Simchi Levi, Philip Kaminski, Edith Simchi Levi

Appendices

Appendix-1

Арропал і												
SOLVER REPORTS			CUSTOME	R ASSIGNM	ENT MA	AP KEY					ILS: REL	
REPORT #: 56-019										22	APRL	0
PAGE 46	CUSTOMER CLASS :	1	STD CUSTCLASS		PRODU	JCT BUNDLE :	1 S	TD PRD BUNDLE		0S	new1	
CUSTOMER REGION	SYMBOL		DC ASSIGNMENT		Ct	JSTOMER REGION		SYMBOL		DC A	SSIGNMENT	Г
7 CHICOPEE MA	(A)	1	THE MEADOWS	KY	8	SPRINGFIELD	MA	(A)	1	THE	MEADOWS	ΚY
9 PITTSFIELD MA	(A)	1	THE MEADOWS	KY	10	GREENFIELD	MA	(A)	1	THE	MEADOWS	KY
11 FITCHBURG MA	(A)	1	THE MEADOWS	КY	12	SHREWSBURY	MA	(A)	1	THE	MEADOWS	ΚY
13 WORCESTER MA	(A)	1	THE MEADOWS	KY	14	FRAMINGHAM	MA	(A)	1	THE	MEADOWS	ΚY
15 MIDDLESEX-ESS MA	(A)	1	THE MEADOWS	KY	16	LYNN	MA	(A)	1	THE	MEADOWS	KY
17 NORWOOD MA	(A)	1	THE MEADOWS	KY	18	CAMBRIDGE	MA	(A)	1	THE	MEADOWS	KY
19 BOSTON MA	(A)	1	THE MEADOWS	ΚY	20	PLYMOUTH	MA	(A)	1	THE	MEADOWS	KY
21 BROCKTON MA	(A)	1	THE MEADOWS	KY	22	BUZZARDS BAY	MA	(A)	1	THE	MEADOWS	KΥ
23 CENTERVILLE MA	(A)	1	THE MEADOWS	KY	24	NEW BEDFORD	MA	(A)	1	THE	MEADOWS	КY
25 PAWTUCKET RI	(A)	1	THE MEADOWS	KY	26	PROVIDENCE	RI	(A)	1	THE	MEADOWS	KY
27 NASHUA NH	(A)	1	THE MEADOWS	KΥ	28	MANCHESTER	NH	(A)	1	THE	MEADOWS	KY
29 LACONIA NH	(A)	1	THE MEADOWS	KY	30	CONCORD	NH	(A)	1	THE	MEADOWS	KY
31 KEENE NH	(A)	1	THE MEADOWS	KΥ	32	BERLIN	NH	(A)	1	THE	MEADOWS	KY
33 WAPOLE NH	(A)	1	THE MEADOWS	KY	34	LEBANON	NH	(A)	1	THE	MEADOWS	KY
35 PORTSMOUTH NH	(A)	1	THE MEADOWS	KY	36	YORK	ME	(A)	1	THE	MEADOWS	KY
37 BIDDEFORD ME	(A)	1	THE MEADOWS	KY	38	PORTLAND	ME	(A)	1	THE	MEADOWS	ΚY
39 LEWISTON ME	(A)	1	THE MEADOWS	KY	40	AUGUSTA	ME	(A)	1	THE	MEADOWS	KY
41 BANGOR ME	(A)	1	THE MEADOWS	KY	42	BATH	ME	(A)	1	THE	MEADOWS	KY
43 CALAIS ME	(A)	1	THE MEADOWS	KY	44	PRESQUE ISLE	ME	(A)	1	THE	MEADOWS	KY
45 ROCKLAND ME	(A)	1	THE MEADOWS	KY	46	WATERVILLE	ME	(A)	1	THE	MEADOWS	ΚY
47 WHITE RIVER J VT	(A)	1	THE MEADOWS	KY	48	SPRINGFIELD	VT	(B)	2	BET	HLEHEM-18	302PA
49 BENNINGTON VT	(A)	1	THE MEADOWS	KY	50	BRATTLEBORO	VT	(A)	1	THE	MEADOWS	ΚY
51 BURLINGTON VT	(A)	1	THE MEADOWS	KY	53	MONTPELIER	VT	(A)	1	THE	MEADOWS	KΥ
54 RUTLAND VT	(A)	1	THE MEADOWS	KY	55	ORLEANS	VT	(A)	1	THE	MEADOWS	КY
57 NEW BRITAIN CT	(A)		THE MEADOWS	КY		HARTFORD	CT	(A)		THE	MEADOWS	ΚY
59 WINDHAM CT	(B)	2	BETHLEHEM-1802	2PA	60	NORWICH	CT	(B)	2	BET	HLEHEM-18	302PA
61 FAIRFIELD CT	(A)	1	THE MEADOWS	KY	62	NEW HAVEN	CT	(A)	1	THE	MEADOWS	ΚY
63 BRIDGEPORT CT	(A)	1	THE MEADOWS	KY	64	WATERBURY	CT	(A)	1	THE	MEADOWS	ΚY
65 NORWALK CT	(A)	1	THE MEADOWS	KY		STAMFORD	СТ	(A)			MEADOWS	KY
67 EAST ORANGE NJ	(A)	1	THE MEADOWS	KY	68	NEWARK	NJ	(A)	1	THE	MEADOWS	KY
69 ELIZABETH NJ	(A)	1	THE MEADOWS	КY	70	JERSEY CITY	NJ	(A)	1	THE	MEADOWS	KY
71 WAYNE NJ	(A)	1	THE MEADOWS	KY		PATERSON	NJ	(A)			MEADOWS	ΚY
73 HACKENSACK NJ	(A)	1	THE MEADOWS	KY	74	MONMOUTH	NJ	(A)	1	THE	MEADOWS	ΚY
75 DOVER NJ	(A)	1	THE MEADOWS	KY	76	MORRISTOWN	NJ	(A)	1	THE	MEADOWS	ΚY
77 CHERRY HILL NJ	(A)	1	THE MEADOWS	KY	78	CAMDEN	NJ	(A)	1	THE	MEADOWS	ΚY
79 PLEASANTVILLE NJ	(B)	2	BETHLEHEM-1802		80	VINELAND	NJ	(A)	1	THE	MEADOWS	ΚY
81 ATLANTIC CITY NJ	(B)	2	BETHLEHEM-1802	2PA	82	PRINCETON	NJ	(A)	1	THE	MEADOWS	КY
83 TRENTON NJ	(A)	1	THE MEADOWS	KY	84	TOMS RIVER	NJ	(A)	1	THE	MEADOWS	ΚY
85 EDISON NJ	(B)	2	BETHLEHEM-1802	PA?	86	NEW BRUNSWICK	NJ	(A)	1	THE	MEADOWS	KY
87 NEW YORK 1 NY	(A)	1	THE MEADOWS	KY	88	NEW YORK 2	NY	(B)	2	BETI	HLEHEM-18	02PA
89 NEW YORK 3 NY	(A)	1	THE MEADOWS	КY	90	TOMPKINSVILLE	NY	(A)	1	THE	MEADOWS	KY
91 BRONX NY	(A)	1	THE MEADOWS	KY	92	MOUNT VERNON	NY	(A)	1	THE	MEADOWS	KΥ
93 WESTCHESTER C NY	(A)	1	THE MEADOWS	КY	94	YONKERS	NY	(A)	1	THE	MEADOWS	КY
95 NEW ROCHELLE NY	(A)	1	THE MEADOWS	КY	96	PALISADES	NY	(A)	1	THE	MEADOWS	ΚY

SOLVER REPORTS REPORT #: 56-019		CUSTOMER ASSIGN	MENT MAP KEY	SAILS: REL 99-1C 22 APRL 0
PAGE 47 CUSTOMER REGION	CUSTOMER CLASS : SYMBOL	1 STD CUSTCLASS DC ASSIGNMENT	PRODUCT BUNDLE : 1 STD PRD BUNDLE CUSTOMER REGION SYMBOL	osnew1 DC ASSIGNMENT
97 FLORAL PARK NY		1 THE MEADOWS KY	98 SUNNYSIDE NY (A)	1 THE MEADOWS KY
99 BROOKLYN NY	(A)	1 THE MEADOWS KY	100 QUEENS CENTER NY (A)	1 THE MEADOWS KY
101 JAMAICA NY	(A)	1 THE MEADOWS KY	102 MINEOLA NY (B)	2 BETHLEHEM-1802PA
103 FAR ROCKAWAY NY	(A)	1 THE MEADOWS KY	104 HAUPPAUGE NY (A)	1 THE MEADOWS KY
105 HICKSVILLE NY	(A)	1 THE MEADOWS KY	106 SOUTHAMPTON NY (B)	2 BETHLEHEM-1802PA
107 AMSTERDAM NY		1 THE MEADOWS KY	108 TROY NY (A)	1 THE MEADOWS KY
109 ALBANY NY		1 THE MEADOWS KY	110 SCHENECTADY NY (A)	1 THE MEADOWS KY
111 KINGSTON NY		1 THE MEADOWS KY	112 NEWBURGH NY (B)	2 BETHLEHEM-1802PA
113 POUGHKEEPSIE NY		1 THE MEADOWS KY	114 MONTICELLO NY (A)	1 THE MEADOWS KY
115 GLENS FALLS NY		1 THE MEADOWS KY	116 PLATTSBURGH NY (A)	1 THE MEADOWS KY
117 AUBURN NY		1 THE MEADOWS KY	118 OSWEGO NY (A)	1 THE MEADOWS KY
119 SYRACUSE NY		1 THE MEADOWS KY	120 HERKIMER NY (A)	1 THE MEADOWS KY
121 ROME NY		1 THE MEADOWS KY	122 UTICA NY (A)	1 THE MEADOWS KY
123 WATERTOWN NY		1 THE MEADOWS KY	124 ENDICOTT NY (A)	1 THE MEADOWS KY
125 VESTAL NY		1 THE MEADOWS KY	126 BINGHAMTON NY (A)	1 THE MEADOWS KY
127 LOCKPORT NY		1 THE MEADOWS KY	128 TONAWANDA NY (A)	1 THE MEADOWS KY
129 BUFFALO NY		1 THE MEADOWS KY	130 NIAGRA FALLS NY (A)	1 THE MEADOWS KY
131 CANADAIGUA NY		1 THE MEADOWS KY	132 NEWARK NY (A)	1 THE MEADOWS KY
133 ROCHESTER NY 135 ITHACA NY		1 THE MEADOWS KY 1 THE MEADOWS KY	134 JAMESTOWN NY (A)	1 THE MEADOWS KY
		1 THE MEADOWS KY	136 ELMIRA NY (A)	1 THE MEADOWS KY
137 NEW KENSINGTN PA 139 PITTSBURGH PA		1 THE MEADOWS KY	138 MCKEESPORT PA (A) 140 WASHINGTON PA (A)	1 THE MEADOWS KY
141 UNIONTOWN PA		1 THE MEADOWS KI		1 THE MEADOWS KY
141 UNIONIOWN PA 143 GREENSBURG PA		1 THE MEADOWS KY	142 SOMERSET PA (A) 144 INDIANA PA (A)	1 THE MEADOWS KY 1 THE MEADOWS KY
145 DUBOIS PA		1 THE MEADOWS KI	144 INDIANA FA (A) 146 JOHNSTOWN PA (A)	1 THE MEADOWS KI
147 BUTLER PA		1 THE MEADOWS KY	148 NEW CASTLE PA (A)	1 THE MEADOWS KY
149 CLARION PA		1 THE MEADOWS KY	150 OIL CITY PA (A)	1 THE MEADOWS KY
151 CORRY PA		1 THE MEADOWS KY	150 OIL CITT TA (A)	1 THE MEADOWS KY
153 ALTOONA PA		1 THE MEADOWS KY	152 BATH TA (A)	1 THE MEADOWS KY
155 STATE COLLEGE PA		1 THE MEADOWS KY	156 WELLSBORO PA (A)	1 THE MEADOWS KY
157 CAMP HILL PA		1 THE MEADOWS KY	158 HARRISBURG PA (A)	1 THE MEADOWS KY
159 CHAMBERSBURG PA		1 THE MEADOWS KY	160 HANOVER PA (A)	1 THE MEADOWS KY
161 YORK PA		1 THE MEADOWS KY	162 EPHRATA PA (A)	1 THE MEADOWS KY
163 LANCASTER PA		1 THE MEADOWS KY	164 WILLIAMSPORT PA (A)	1 THE MEADOWS KY
165 SUNBURY PA		1 THE MEADOWS KY	166 POTTSVILLE PA (A)	1 THE MEADOWS KY
167 BETHLEHEM PA		1 THE MEADOWS KY	168 ALLENTOWN PA (A)	1 THE MEADOWS KY
169 HAZELTON PA		1 THE MEADOWS KY	170 EAST STROUDSB PA (B)	2 BETHLEHEM-1802PA
171 CARBONDALE PA		2 BETHLEHEM-1802PA	172 SCRANTON PA (A)	1 THE MEADOWS KY
173 PITTSTON PA		1 THE MEADOWS KY	174 WILKES-BARRE PA (A)	1 THE MEADOWS KY
175 SAYRE PA		1 THE MEADOWS KY	176 WARMINSTER PA (A)	1 THE MEADOWS KY
177 LEVITTOWN PA		1 THE MEADOWS KY	178 PHILADELPHIA PA (A)	1 THE MEADOWS KY
180 WEST CHESTER PA		1 THE MEADOWS KY	181 NORRISTOWN PA (A)	1 THE MEADOWS KY
182 KUTZTOWN PA		2 BETHLEHEM-1802PA	183 READING PA (A)	1 THE MEADOWS KY
184 NEWARK DE		1 THE MEADOWS KY	185 WILMINGTON DE (A)	1 THE MEADOWS KY
186 DOVER DE		1 THE MEADOWS KY	187 WASHINGTON DC (A)	1 THE MEADOWS KY
188 STERLING VA	(A)	1 THE MEADOWS KY	189 UNITED STATES DC (A)	1 THE MEADOWS KY

SOLVER REPORTS REPORT #: 56-019		CUSTO	MER ASSIG	NMENT MAP KEY		SAILS: REL 99-1C 22 APRL 0
PAGE 48	CUSTOMER CLASS	: 1 STD CUSTCLASS	5	PRODUCT BUNDLE :	1 STD PRD BUNDLE	osnew1
CUSTOMER REGION	SYMBOL	DC ASSIGNMENT		CUSTOMER REGION	SYMBOL	DC ASSIGNMENT
	DC (A)	1 THE MEADOWS	КY	191 GEN SVCS ADMINDC	(A)	1 THE MEADOWS KY
192 SMITHSONIAN I	DC (A)	1 THE MEADOWS	КY	193 WALDORF MD	(A)	1 THE MEADOWS KY
194 COLLEGE PARK N	MD (A)	1 THE MEADOWS	ΚY	195 ROCKVILLE MD	(A)	1 THE MEADOWS KY
196 SILVER SPRING N	MD (A)	1 THE MEADOWS	КY	197 COLUMBIA MD	(A)	1 THE MEADOWS KY
198 WESTMINSTER N	MD (A)	1 THE MEADOWS	KY	199 BALTIMORE MD	(A)	1 THE MEADOWS KY
200 ANNAPOLIS N	MD (A)	1 THE MEADOWS	КY	201 CUMBERLAND MD	(A)	1 THE MEADOWS KY
202 EASTON N	MD (A)	1 THE MEADOWS	КY	203 FREDERICK MD	(A)	1 THE MEADOWS KY
204 SALISBURY N	MD (A)	1 THE MEADOWS	KY	205 ELKTON MD	(B)	2 BETHLEHEM-1802PA
206 FAIRFAX V	VA (A)	1 THE MEADOWS	КY	207 WOODBRIDGE VA	(A)	1 THE MEADOWS KY
208 ARLINGTON	VA (B)	2 BETHLEHEM-180)2PA	209 ALEXANDRIA VA	(B)	2 BETHLEHEM-1802PA
210 FREDERICKSBRG V	VA (A)	1 THE MEADOWS	КY	211 TAPPAHANNOCK VA	(A)	1 THE MEADOWS KY
212 WINCHESTER	VA (B)	2 BETHLEHEM-180)2PA	213 CULPEPER VA	(A)	1 THE MEADOWS KY
214 HARRISONBURG	VA (A)	1 THE MEADOWS	KY	215 CHARLOTTESVIL VA	(A)	1 THE MEADOWS KY
216 HIGHLAND SPRG V	VA (A)	1 THE MEADOWS	KY	217 WILLIAMSBURG VA	(A)	1 THE MEADOWS KY
218 RICHMOND V	JA (A)	1 THE MEADOWS	KY	219 CHESAPEAKE VA	(A)	1 THE MEADOWS KY
220 VIRGINIA BCH V	VA (A)	1 THE MEADOWS	KY	221 NORFOLK VA	(A)	1 THE MEADOWS KY
222 NEWPORT NEWS	VA (A)	1 THE MEADOWS	KY	223 PORTSMOUTH VA	(A)	1 THE MEADOWS KY
224 PETERSBURG	VA (A)	1 THE MEADOWS	КY	225 FARMVILLE VA	(A)	1 THE MEADOWS KY
226 ROANOKE	VA (A)	1 THE MEADOWS	KY	227 MARTINSVILLE VA	(A)	1 THE MEADOWS KY
228 BRISTOL	VA (A)	1 THE MEADOWS	ΚY	229 PULASKI VA	(A)	1 THE MEADOWS KY
230 STAUNTON	VA (A)	1 THE MEADOWS	КY	231 LYNCHBURG VA	(A)	1 THE MEADOWS KY
232 BLUEFIELD	VA (A)	1 THE MEADOWS	KY	233 BLUEFIELD WV	(A)	1 THE MEADOWS KY
234 WELCH V	NV (A)	1 THE MEADOWS	ΚY	235 LEWISBURG WV	(A)	1 THE MEADOWS KY
236 DUNBAR V	VV (A)	1 THE MEADOWS	КY	237 NITRO WV	(A)	1 THE MEADOWS KY
238 RIPLEY W	VV (A)	1 THE MEADOWS	ΚY	239 CHARLESTON WV	(A)	1 THE MEADOWS KY
240 MARTINSBURG V	VV (A)	1 THE MEADOWS	ΚY	241 POINT PLEASNT WV	(A)	1 THE MEADOWS KY
242 WILLIAMSON W	NV (A)	1 THE MEADOWS	KY	243 HUNTINGTON WV	(A)	1 THE MEADOWS KY
244 BECKLEY V	VV (A)	1 THE MEADOWS	ΚY	245 OAK HILL WV	(A)	1 THE MEADOWS KY
246 WHEELING V	VV (A)	1 THE MEADOWS	КY	247 PARKERSBURG WV	(A)	1 THE MEADOWS KY
248 BUCKHANNON	VV (A)	1 THE MEADOWS	KY	249 CLARKSBURG WV	(A)	1 THE MEADOWS KY
250 WESTON V	VV (A)	1 THE MEADOWS	KY	251 MORGANTOWN WV	(A)	1 THE MEADOWS KY
252 GASSAWAY V	(A) VV	1 THE MEADOWS	KY	253 KEYSER WV	(A)	1 THE MEADOWS KY
254 PETERSBURG V	VV (A)	1 THE MEADOWS	KY	255 CLEMMONS NC	(A)	1 THE MEADOWS KY
256 WINSTON-SALEM N	NC (A)	1 THE MEADOWS	KY	257 HIGH POINT NC	(A)	1 THE MEADOWS KY
258 SANFORD N	NC (A)	1 THE MEADOWS	КY	259 GREENSBORO NC	(A)	1 THE MEADOWS KY
260 CHAPEL HILL N	NC (A)	1 THE MEADOWS	KY	261 RALEIGH NC	(A)	1 THE MEADOWS KY
262 DURHAM N	NC (A)	1 THE MEADOWS	КY	263 ROCKY MOUNT NC	(A)	1 THE MEADOWS KY
264 ELIZABETH CTY N	NC (A)	1 THE MEADOWS	КY	265 GASTONIA NC	(A)	1 THE MEADOWS KY
266 SALISBURY N	NC (A)	1 THE MEADOWS	KY	267 CHARLOTTE NC	(A)	1 THE MEADOWS KY
268 FAYETTEVILLE N	NC (A)	1 THE MEADOWS	KY	269 WILMINGTON NC	(A)	1 THE MEADOWS KY
270 KINSTON N	NC (A)	1 THE MEADOWS	KΥ	271 HICKORY NC	(A)	1 THE MEADOWS KY
272 HENDERSONVILL N	NC (A)	1 THE MEADOWS	ΚY	273 ASHEVILLE NC	(A)	1 THE MEADOWS KY
274 MURPHY N	JC (A)	1 THE MEADOWS	KY	275 LEXINGTON SC	(A)	1 THE MEADOWS KY
276 SUMTER S	5C (A)	1 THE MEADOWS	KY	277 COLUMBIA SC	(A)	1 THE MEADOWS KY
278 SPARTANBURG S	SC (A)	1 THE MEADOWS	KY	279 CHARLESTON SC	(A)	1 THE MEADOWS KY
280 FLORENCE S	SC (A)	1 THE MEADOWS	ΚY	281 GREENVILLE SC	(A)	1 THE MEADOWS KY

SOLVER REPORTS REPORT #: 56-019		CUSTOMER ASSIGN	MENT MAP KEY	SAILS: REL 99-1C 22 APRL 0
PAGE 49	CUSTOMER CLASS :	1 STD CUSTCLASS	PRODUCT BUNDLE : 1 STD PRD BUNDLE	osnew1
CUSTOMER REGION	SYMBOL	DC ASSIGNMENT	CUSTOMER REGION SYMBOL	DC ASSIGNMENT
282 ROCK HILL SC	(A)	1 THE MEADOWS KY	283 AIKEN SC (A)	1 THE MEADOWS KY
284 HILTON HEAD SC	(A)	1 THE MEADOWS KY	285 MARIETTA GA (A)	1 THE MEADOWS KI 1 THE MEADOWS KY
286 ROME GA	(A)	1 THE MEADOWS KY	287 LA GRANGE GA (A)	1 THE MEADOWS KI 1 THE MEADOWS KY
288 ATLANTA GA	(A)	1 THE MEADOWS KY		
	(A) (A)	1 THE MEADOWS KI 1 THE MEADOWS KY	289 SWAINSBORO GA (A)	1 THE MEADOWS KY
290 GAINESVILLE GA			291 ATHENS GA (A)	1 THE MEADOWS KY
292 DALTON GA	(A)	1 THE MEADOWS KY	293 THOMSON GA (A)	1 THE MEADOWS KY
294 AUGUSTA GA	(A)	1 THE MEADOWS KY 1 THE MEADOWS KY	295 WARNER ROBBNS GA (A)	1 THE MEADOWS KY
297 MACON GA	(A)		298 HINESVILLE GA (A)	1 THE MEADOWS KY
299 SAVANNAH GA	(A)	1 THE MEADOWS KY	300 WAYCROSS GA (A)	1 THE MEADOWS KY
301 VALDOSTA GA	(A)	1 THE MEADOWS KY	302 ALBANY GA (A)	1 THE MEADOWS KY
303 MANCHESTER GA	(A)	1 THE MEADOWS KY	304 COLUMBUS GA (A)	1 THE MEADOWS KY
305 ST AUGUSTINE FL	(A)	1 THE MEADOWS KY	306 DAYTONA BEACH FL (A)	1 THE MEADOWS KY
307 JACKSONVILLE FL	(A)	1 THE MEADOWS KY	308 TALLAHASSEE FL (A)	1 THE MEADOWS KY
309 PANAMA CITY FL	(A)	1 THE MEADOWS KY	310 PENSACOLA FL (A)	1 THE MEADOWS KY
311 GAINESVILLE FL	(A)	1 THE MEADOWS KY	312 TITUSVILLE FL (A)	1 THE MEADOWS KY
313 ORLANDO FL	(A)	1 THE MEADOWS KY	314 MELBOURNE FL (A)	1 THE MEADOWS KY
315 HIALEAH FL	(A)	1 THE MEADOWS KY	316 MIAMI FL (A)	1 THE MEADOWS KY
317 NORTH MIAMI FL	(A)	1 THE MEADOWS KY	318 FT LAUDERDALE FL (A)	1 THE MEADOWS KY
319 WEST PALM BEA FL	(A)	1 THE MEADOWS KY	320 BRANDON FL (A)	1 THE MEADOWS KY
321 TAMPA FL	(A)	1 THE MEADOWS KY	322 ST PETERSBURG FL (A)	1 THE MEADOWS KY
323 LAKELAND FL	(A)	1 THE MEADOWS KY	324 FORT MYERS FL (A)	1 THE MEADOWS KY
325 NAPLES FL	(A)	1 THE MEADOWS KY	326 SARASOTA FL (A)	1 THE MEADOWS KY
327 OCALA FL	(A)	1 THE MEADOWS KY	328 CLEARWATER FL (A)	1 THE MEADOWS KY
329 LEESBURG FL	(A)	1 THE MEADOWS KY	330 FORT PIERCE FL (A)	1 THE MEADOWS KY
331 BESSEMER FL	(A)	1 THE MEADOWS KY	332 TALLADEGA AL (A)	1 THE MEADOWS KY
333 BIRMINGHAM AL	(A)	1 THE MEADOWS KY	334 TUSCALOOSA AL (A)	1 THE MEADOWS KY
335 JASPER AL	(A)	1 THE MEADOWS KY	336 DECATUR AL (A)	1 THE MEADOWS KY
337 SCOTTSBORO AL 339 GADSDEN AL	(A) (A)	1 THE MEADOWS KY 1 THE MEADOWS KY	338 HUNTSVILLE AL (A)	1 THE MEADOWS KY
	. ,		340 PRATTVILLE AL (A)	1 THE MEADOWS KY
341 MONTGOMERY AL	(A) (A)	1 THE MEADOWS KY 1 THE MEADOWS KY	342 ANNISTON AL (A)	1 THE MEADOWS KY
343 DOTHAN AL	• •		344 EVERGREEN AL (A)	1 THE MEADOWS KY
345 ATMORE AL	(A) (A)		346 MOBILE AL (A)	1 THE MEADOWS KY
347 SELMA AL			348 AUBURN AL (A)	1 THE MEADOWS KY
349 YORK AL	(A)	1 THE MEADOWS KY 1 THE MEADOWS KY	350 CLARKSVILLE TN (A)	1 THE MEADOWS KY
351 MURFREESBORO TN	(A)		352 NASHVILLE TN (A)	1 THE MEADOWS KY
353 CLEVELAND TN	(A)	1 THE MEADOWS KY	354 CHATTANOOGA TN (A)	1 THE MEADOWS KY
356 JOHNSON CITY TN	(A)	1 THE MEADOWS KY	357 GREENVILLE TN (A)	1 THE MEADOWS KY
358 OAK RIDGE TN	(A)	1 THE MEADOWS KY	359 KNOXVILLE TN (A)	1 THE MEADOWS KY
360 MILLINGTON TN	(A)	1 THE MEADOWS KY	361 MEMPHIS TN (A)	1 THE MEADOWS KY
362 MCKENZIE TN	(A)	1 THE MEADOWS KY	363 JACKSON TN (A)	1 THE MEADOWS KY
364 COLUMBIA TN	(A)	1 THE MEADOWS KY	365 COOKEVILLE TN (A)	1 THE MEADOWS KY
366 HOLLY SPRINGS MS	(A)	1 THE MEADOWS KY	367 GREENVILLE MS (A)	1 THE MEADOWS KY
368 TUPELO MS	(A)	1 THE MEADOWS KY	369 GRENADA MS (A)	1 THE MEADOWS KY
370 CLINTON MS	(A)	1 THE MEADOWS KY	371 VICKSBURG MS (A)	1 THE MEADOWS KY
372 JACKSON MS	(A)	1 THE MEADOWS KY	373 MERIDIAN MS (A)	1 THE MEADOWS KY
374 HATTIESBURG MS	(A)	1 THE MEADOWS KY	375 GULFPORT MS (A)	1 THE MEADOWS KY
376 MCCOMB MS	(A)	1 THE MEADOWS KY	377 COLUMBUS MS (A)	1 THE MEADOWS KY

SOLVER REPORTS REPORT #: 56-019					CUSTOME	R ASS	IGNMENT	MZ	AP KEY					ILS: REL APRL	99-1C 0
PAGE 50		CUSTOMER CLASS	:	1 STD CU	STCLASS		PR	ODL	JCT BUNDLE :	1	STD PRD BUNDLE			new1	•
CUSTOMER REGION		SYMBOL		DC ASSI	GNMENT				JSTOMER REGION		SYMBOL			SSIGNMENT	1
379 SHELBYVILLE	КY	(A)		1 THE ME	ADOWS	ΚY	3		RADCLIFF	KY	(A)			MEADOWS	KY
381 LOUISVILLE	KΥ	(A)		1 THE ME	ADOWS	ΚY	3	82	WINCHESTER	ΚY	(A)	1	THE	MEADOWS	ΚY
383 RICHMOND	KΥ	(A)		1 THE ME	ADOWS	KҮ	3	84	LEXINGTON	ΚY	(A)	1		MEADOWS	ΚY
385 FRANKFURT	KУ	(A)		1 THE ME	ADOWS	КY	3	86	LONDON	ΚY	(A)	1	THE	MEADOWS	ΚY
387 CUMBERLAND	KΥ	(A)		1 THE ME	ADOWS	ΚY	3	88	MIDDLESBORO	ΚY	(A)	1	THE	MEADOWS	ΚY
389 COVINGTON	KΥ	(A)		1 THE ME	ADOWS	КY	3	90	ASHLAND	ΚY	(A)	1	THE	MEADOWS	КY
391 PAINTSVILLE	KΥ	(A)		1 THE ME	ADOWS	KΥ	3	92	CAMPTON	KΥ	(A)	1	THE	MEADOWS	КY
394 PIKEVILLE	KΥ	(A)		1 THE ME	ADOWS	ΚY	3	95	AUXIER	ΚY	(A)	1	THE	MEADOWS	KY
396 HAZARD	ΚY	(A)		1 THE ME	ADOWS	KҮ	3	97	WHITESBURG	KΥ	(A)	1	THE	MEADOWS	KY
398 PADUCAH	KΥ	(A)		1 THE ME	ADOWS	ΚY	3	99	BOWLING GREEN	KΥ	(A)	1	THE	MEADOWS	KY
400 HOPKINSVILLE	KΥ	(A)		1 THE ME	ADOWS	ΚY	4	01	OWENSBORO	KΥ	(A)	1	THE	MEADOWS	KY
402 HENDERSON	KΥ	(A)		1 THE ME	ADOWS	KY	4	03	SOMERSET	KΥ	(A)	1	THE	MEADOWS	ΚY
404 MONTICELLO	KΥ	(A)		1 THE ME	ADOWS	ΚY	4	05	ELIZABETHTOWN	ΚY	(A)	1	THE	MEADOWS	ΚY
406 NEWARK	OH	(A)		1 THE ME	ADOWS	KΥ	4	07	LANCASTER	OH	(A)	1	THE	MEADOWS	ΚY
408 COLUMBUS	OH	(A)		1 THE ME	ADOWS	ΚY	4	09	MARION	OH	(A)	1	THE	MEADOWS	ΚY
410 BOWLING GREEN	ОН	(A)		1 THE ME	ADOWS	KΥ	4	11	PERRYSBURG	OH	(A)	1	THE	MEADOWS	ΚY
412 TOLEDO	OH	(A)		1 THE ME	ADOWS	ΚY	4	13	ZANESVILLE	OH	(A)	1	THE	MEADOWS	ΚY
414 COSHOCTON	ОН	(A)		1 THE ME	ADOWS	КY	4	15	STEUBENVILLE	OH	(A)	1	THE	MEADOWS	KY
416 LORAIN	ОН	(A)		1 THE ME		КY			CLEVELAND	ОН	(A)	1		MEADOWS	КY
418 CUYAHOGA FALL		(A)		1 THE ME		КY			AKRON	ОН	(A)	1		MEADOWS	КY
	OH	(A)		1 THE ME		ΚY			YOUNGSTOWN	ОН	(A)	1		MEADOWS	ΚY
	ОН	(A)		1 THE ME		ΚY			CANTON	OH	(A)	1		MEADOWS	ΚY
424 SANDUSKY	ОН	(A)		1 THE ME		KΥ			MANSFIELD	ОН	(A)	1		MEADOWS	ΚY
426 HAMILTON	ОН	(A)		1 THE ME		KΥ			WILMINGTON	ОН	(A)	1		MEADOWS	ΚY
428 CINCINNATI	OH	(A)		1 THE ME		KΥ			MIAMISBURG	ОН	(A)	1		MEADOWS	ΚY
	OH	(A)		1 THE ME		KΥ			SPRINGFIELD	ОН	(A)			MEADOWS	ΚY
	OH	(A)		1 THE ME		КY			ATHENS	ОН	(A)	1		MEADOWS	KΥ
434 LIMA	OH	(A)		1 THE ME		KY			ANDERSON	IN	(A)	1		MEADOWS	KY
437 GREENWOOD	IN	(A)		1 THE ME		KΥ			INDIANAPOLIS	IN	(A)	1		MEADOWS	КY
439 HAMMOND	IN	(A)		1 THE ME		KY	-		GARY	IN	(A)	1		MEADOWS	KY
441 ELKHARDT	IN	(A)		1 THE ME		KY			SOUTH BEND	IN	(A)	1		MEADOWS	KY
443 HUNTINGTON	IN	(A)		1 THE ME		KY			FORT WAYNE	IN	(A)	1		MEADOWS	KY
445 KOKOMO	IN	(A) (A)		1 THE ME 1 THE ME		KY KY			LAWRENCEBURG COLUMBUS	IN IN	(A) (A)			MEADOWS MEADOWS	KY
447 NEW ALBANY 449 MUNCIE	IN IN	(A) (A)		1 THE ME		KY			BLOOMINGTON	IN	(A) (A)	1		MEADOWS	KY KY
451 WASHINGTON	IN	(A) (A)		1 THE ME		KY			NEWBURGH	IN	(A) (A)	1		MEADOWS	KY
453 EVANSVILLE	IN	(A)		1 THE ME		KY			TERRE HAUTE	IN	(A) (A)	1		MEADOWS	KY
455 LAFAYETTE	IN	(A)		1 THE ME		KY			ROYAL OAK	MI	(A)	-		MEADOWS	KY
	MI	(A)		1 THE ME		KY			DETROIT	MI	(A)			MEADOWS	KY
	MI	(A)		1 THE ME		KY			FLUSHING	MI	(A)			MEADOWS	KY
	MI	(A)		1 THE ME		KY			SAGINAW	MI	(A)	1		MEADOWS	KY
	MI	(A)		1 THE ME		KY			EAST LANSING	MI	(A)			MEADOWS	KY
	MI	(A)		1 THE ME		KY			KALAMAZOO	MI	(A) (A)	1		MEADOWS	KY
	MI	(A) (A)		1 THE ME		KY			JACKSON	MI	(A) (A)			MEADOWS	KY
	MI	(A)		1 THE ME		KY			MUSKEGON	MI	(A) (A)			MEADOWS	KY
	MI	(A)		1 THE ME		KY			TRAVERSE CITY		(A)			MEADOWS	KY
	MI	(A)		1 THE ME		KY			IRON MOUNTAIN		(A)			MEADOWS	KY
TID GAIDOLD	5.1 T	1 411				***		, -	THOM HOOMATH	*.4.4	(5)	Т			1/1

SOLVER REPORTS REPORT #: 56-019		SAILS: REL 99-1C 22 APRL 0				
PAGE 51	CUSTOMER CLASS :	1 STD CUSTCLASS	PRODUCT BUNDLE : 1 STD PRD BUNDLE	osnew1		
CUSTOMER REGION	SYMBOL	DC ASSIGNMENT	CUSTOMER REGION SYMBOL	DC ASSIGNMENT		
475 IRONWOOD M		1 THE MEADOWS KY	476 AMES IA (A)	1 THE MEADOWS KY		
477 MARSHALLTOWN I		1 THE MEADOWS KY	478 W DES MOINES IA (A)	1 THE MEADOWS KY		
	A (A)	1 THE MEADOWS KY	480 MASON CITY IA (A)	1 THE MEADOWS KY		
	A (A)	1 THE MEADOWS KY	482 CEDAR FALLS IA (A)	1 THE MEADOWS KY		
	A (A)	1 THE MEADOWS KY	484 CRESTON IA (A)	1 THE MEADOWS KY		
	A (A)	1 THE MEADOWS KY	487 SIOUX CITY IA (A)	1 THE MEADOWS KY		
	A (A)	1 THE MEADOWS KY	490 CARROLL IA (A)	1 THE MEADOWS KY		
491 COUNCIL BLUFF I		1 THE MEADOWS KY	492 SHENANDOAH IA (A)	1 THE MEADOWS KY		
	A (A)	1 THE MEADOWS KY	494 DECORAH IA (A)	1 THE MEADOWS KY		
~	A (A)	1 THE MEADOWS KY	496 MARION IA (A)	1 THE MEADOWS KY		
497 CEDAR RAPIDS I		1 THE MEADOWS KY	$\frac{498}{498} \text{ OTTUMWA} \qquad \text{IA} \qquad (A)$	1 THE MEADOWS KY		
	A (A)	1 THE MEADOWS KY	500 CLINTON IA (A)	1 THE MEADOWS KY		
	A (A)	1 THE MEADOWS KI	500 CHINION IA (A) 502 SHEBOYGAN WI (A)	1 THE MEADOWS KI 1 THE MEADOWS KY		
503 KENOSHA W		1 THE MEADOWS KI	502 SHEBOIGAN WI (A) 504 MILWAUKEE WI (A)	1 THE MEADOWS KY		
505 RACINE W		1 THE MEADOWS KY	506 JANESVILLE WI (A)	1 THE MEADOWS KI 1 THE MEADOWS KY		
	II (A)	1 THE MEADOWS KI	508 PLATTEVILLE WI (A)	1 THE MEADOWS KI		
509 PORTAGE W		1 THE MEADOWS KY	510 RIVER FALLS WI (A)	1 THE MEADOWS KY		
	I (A)	1 THE MEADOWS KY	512 MANITOWOC WI (A)	1 THE MEADOWS KY		
513 GREEN BAY W		1 THE MEADOWS KY	512 MANITOWOC WI (A)	1 THE MEADOWS KY		
515 RHINELANDER W		1 THE MEADOWS KY	516 LA CROSSE WI (A)	1 THE MEADOWS KI		
		1 THE MEADOWS KY	518 SPOONER WI (A)	1 THE MEADOWS KY		
519 OSHKOSH W		1 THE MEADOWS KY	520 STILLWATER MN (A)	1 THE MEADOWS KY		
	IN (A)	1 THE MEADOWS KY	522 ANOKA MN (A)	1 THE MEADOWS KY		
523 MINNEAPOLIS M		1 THE MEADOWS KY	526 HIBBING MN (A)	1 THE MEADOWS KY		
	IN (A)	1 THE MEADOWS KY	528 ROCHESTER MN (A)	1 THE MEADOWS KY		
529 MANKATO M		1 THE MEADOWS KY	530 WINDOM MN (A)	1 THE MEADOWS KY		
531 WILLMAR M		1 THE MEADOWS KY	532 SAINT CLOUD MN (A)	1 THE MEADOWS KY		
533 BRAINERD M		1 THE MEADOWS KY	534 DETROIT LAKES MN (A)	1 THE MEADOWS KY		
535 BEMIDJI M		1 THE MEADOWS KY	536 THIEF RIVER F MN (A)	1 THE MEADOWS KY		
	D (A)	1 THE MEADOWS KY	538 SIOUX FALLS SD (A)	1 THE MEADOWS KY		
	D (A)	1 THE MEADOWS KY	540 MITCHELL SD (A)	1 THE MEADOWS KY		
	D (A)	1 THE MEADOWS KY	542 PIERRE SD (A)	1 THE MEADOWS KY		
	D (A)	1 THE MEADOWS KY	545 WAHPETON ND (A)	1 THE MEADOWS KY		
546 FARGO N		1 THE MEADOWS KY	547 GRAND FORKS ND (A)	1 THE MEADOWS KI		
548 DEVILS LAKE N		1 THE MEADOWS KY	549 JAMESTOWN ND (A)	1 THE MEADOWS KY		
550 BISMARCK N		1 THE MEADOWS KY	551 DICKINSON ND (A)	1 THE MEADOWS KY		
552 MINOT N		1 THE MEADOWS KY	553 WILLISTON ND (A)	1 THE MEADOWS KY		
554 LIVINGSTON M		3 ONTARIO INTERNCA	555 BILLINGS MT (C)	3 ONTARIO INTERNCA		
556 WOLF POINT M		1 THE MEADOWS KY	557 MILES CITY MT (A)	1 THE MEADOWS KY		
558 GREAT FALLS M		3 ONTARIO INTERNCA	559 HAVRE MT (C)	3 ONTARIO INTERNCA		
560 HELENA M		3 ONTARIO INTERNCA	561 BUTTE MT (C)	3 ONTARIO INTERNCA		
562 MISSOULA M		3 ONTARIO INTERNCA	563 KALISPELL MT (C)	3 ONTARIO INTERNCA		
564 ARLINGTON HTS I		1 THE MEADOWS KY	565 ELGIN IL (A)	1 THE MEADOWS KY		
566 EVANSTON I		1 THE MEADOWS KI	568 JOLIET IL (A)	1 THE MEADOWS KY 1 THE MEADOWS KY		
569 NAPERVILLE I		1 THE MEADOWS KI 1 THE MEADOWS KY	570 CHICAGO IL (A)	1 THE MEADOWS KY 1 THE MEADOWS KY		
571 NILES I		1 THE MEADOWS KI 1 THE MEADOWS KY	570 CHICAGO IL (A) 572 MORTON PARK IL (A)	1 THE MEADOWS KY 1 THE MEADOWS KY		
		1 THE MEADOWS KY 1 THE MEADOWS KY				
573 KANKAKEE I		I THE MEADOWS KI	574 FREEPORT IL (A)	1 THE MEADOWS KY		

SOLVER REPORTS REPORT #: 56-019		SAILS: REL 99-1C 22 APRL 0				
PAGE 52	CUSTOMER CLASS	: 1 STD CUSTCLASS	PRODUCT BUNDLE : 1 STD PRD BUNDLE	osnew1		
CUSTOMER REGION	SYMBOL	DC ASSIGNMENT	CUSTOMER REGION SYMBOL	DC ASSIGNMENT		
575 ROCKFORD IL	(A)	1 THE MEADOWS KY	576 ROCK ISLAND IL (A)	1 THE MEADOWS KY		
577 LA SALLE IL	(A)	1 THE MEADOWS KY	578 GALESBURG IL (A)	1 THE MEADOWS KY		
579 PEKIN IL	(A)	1 THE MEADOWS KY	580 PEORIA IL (A)	1 THE MEADOWS KY		
581 BLOOMINGTON IL	(A)	1 THE MEADOWS KY	582 CHAMPAIGN IL (A)	1 THE MEADOWS KY		
583 CHARLESTON IL	(A)	1 THE MEADOWS KY	584 GRANITE CITY IL (A)	1 THE MEADOWS KY		
585 EAST ST LOUIS IL	(A)	1 THE MEADOWS KY	586 QUINCY IL (A)	1 THE MEADOWS KY		
587 EFFINGHAM IL	(A)	1 THE MEADOWS KY	588 DECATUR IL (A)	1 THE MEADOWS KY		
589 JACKSONVILLE IL	(A)	1 THE MEADOWS KY	590 SPRINGFIELD IL (A)	1 THE MEADOWS KY		
591 CENTRALIA IL	(A)	1 THE MEADOWS KY	592 CARBONDALE IL (A)	1 THE MEADOWS KY		
593 FLORISSANT IL	(A)	1 THE MEADOWS KY	594 SAINT LOUIS MO (A)	1 THE MEADOWS KY		
595 SAINT CHARLES MO	(A)	1 THE MEADOWS KY	596 HANNIBAL MO (A)	1 THE MEADOWS KY		
597 KIRKSVILLE MO	(A)	1 THE MEADOWS KY	598 FLAT RIVER MO (A)	1 THE MEADOWS KY		
599 CAPE GIRARDEA MO	(A)	1 THE MEADOWS KY	600 SIKESTON MO (A)	1 THE MEADOWS KY		
601 POPLAR BLUFF MO	(A)	1 THE MEADOWS KY	602 INDEPENDENCE MO (A)	1 THE MEADOWS KY		
603 KANSAS CITY MO	(A)	1 THE MEADOWS KY	604 MARYVILLE MO (A)	1 THE MEADOWS KY		
605 SAINT JOSEPH MO	(A)	1 THE MEADOWS KY	606 CHILLICOTHE MO (A)	1 THE MEADOWS KY		
607 HARRISONVILLE MO	(A)	1 THE MEADOWS KY	608 JOPLIN MO (A)	1 THE MEADOWS KY		
610 ELDON MO	(A)	1 THE MEADOWS KY	611 JEFFERSON CTY MO (A)	1 THE MEADOWS KY		
612 COLUMBIA MO	(A)	1 THE MEADOWS KY	613 SEDALIA MO (A)	1 THE MEADOWS KY		
614 ROLLA MO	(A)	1 THE MEADOWS KY	615 LEBANON MO (A)	1 THE MEADOWS KY		
616 AURORA MO	(A)	1 THE MEADOWS KY	617 WEST PLAINS MO (A)	1 THE MEADOWS KY		
618 SPRINGFIELD MO	(A)	1 THE MEADOWS KY	619 LAWRENCE KS (A)	1 THE MEADOWS KY		
620 KANSAS CITY KS	(A)	1 THE MEADOWS KY	621 SHAWNEE MISSI KS (A)	1 THE MEADOWS KY		
622 JUNCTION CITY KS	(A)	1 THE MEADOWS KY	623 MANHATTAN KS (A)	1 THE MEADOWS KY		
624 TOPEKA KS	(A)	1 THE MEADOWS KY	625 FORT SCOTT KS (A)	1 THE MEADOWS KY		
626 EMPORIA KS	(A)	1 THE MEADOWS KY	628 ARKANSAS CITY KS (A)	1 THE MEADOWS KY		
629 NEWTON KS	(A)	1 THE MEADOWS KY	630 WICHITA KS (A)	1 THE MEADOWS KY		
631 INDEPENDENCE KS	(A)	1 THE MEADOWS KY	632 SALINA KS (A)	1 THE MEADOWS KY		
633 HUTCHINSON KS	(A)	1 THE MEADOWS KY	634 HAYS KS (A)	1 THE MEADOWS KY		
635 COLBY KS	(A)	1 THE MEADOWS KY	636 DODGE CITY KS (A)	1 THE MEADOWS KY		
637 LIBERAL KS	(A)	1 THE MEADOWS KY	638 FREMONT NE (A)	1 THE MEADOWS KY		
639 OMAHA NE	(A)	1 THE MEADOWS KY	640 BEATRICE NE (A)	1 THE MEADOWS KY		
641 YORK NE	(A)	1 THE MEADOWS KY	642 LINCOLN NE (A)	1 THE MEADOWS KY		
643 COLUMBUS NE	(A)	1 THE MEADOWS KY	644 NORFOLK NE (A)	1 THE MEADOWS KY		
645 GRAND ISLAND NE	(A)	1 THE MEADOWS KY	646 HASTINGS NE (A)	1 THE MEADOWS KY		
647 MCCOOK NE	(A)	1 THE MEADOWS KY	648 NORTH PLATTE NE (A)	1 THE MEADOWS KY		
650 ALLIANCE NE	(A)	1 THE MEADOWS KY	651 METARIE LA (A)	1 THE MEADOWS KY		
652 NEW ORLEANS LA	(A)	1 THE MEADOWS KY	653 THIBODAUX LA (A)	1 THE MEADOWS KY		
654 HAMMOND LA	(A)	1 THE MEADOWS KY	655 LAFAYETTE LA (A)	1 THE MEADOWS KY		
656 LAKE CHARLES LA	(A)	1 THE MEADOWS KY	657 BAKER LA (A)	1 THE MEADOWS KY		
658 BATON ROUGE LA	(A)	1 THE MEADOWS KY	659 MINDEN LA (A)	1 THE MEADOWS KY		
660 SHREVEPORT LA	(A)	1 THE MEADOWS KY	661 MONROE LA (A)	1 THE MEADOWS KY		
662 ALEXANDRIA LA	(A)	1 THE MEADOWS KY	663 NATCHITOCHES LA (A)	1 THE MEADOWS KY		
664 PINE BLUFF AR	(A)	1 THE MEADOWS KY	665 CAMDEN AR (A)	1 THE MEADOWS KY		
666 HOPE AR	(A)	1 THE MEADOWS KY	667 HOT SPRINGS N AR (A)	1 THE MEADOWS KY		
668 JACKSONVILLE AR	(A)	1 THE MEADOWS KY	669 NORTH LITTLE RAR (A)	1 THE MEADOWS KY		
670 LITTLE ROCK AR	(A)	1 THE MEADOWS KY	671 WEST MEMPHIS AR (A)	1 THE MEADOWS KY		

SOLVER REPORTS REPORT #: 56-019					CUSTOM	IER AS	SIGNMEN	M TI	AP KEY					ILS: REL	
PAGE 53		CUSTOMER CLASS	:	1	STD CUSTCLAS	ss	Ţ	ומספי	UCT BUNDLE :	1	STD PRD BUNDLE			APRL new1	0
CUSTOMER REGION		SYMBOL	•		DC ASSIGNMENT				USTOMER REGION		SYMBOL			SSIGNMENT	p
672 JONESBORO A	٨R	(A)			THE MEADOWS	КY	e			AR	(A)			MEADOWS	KY
	AR	(A)			THE MEADOWS	KY			FAYETTEVILLE	AR	(A)			MEADOWS	KY
676 RUSSELLVILLE	AR	(A)			THE MEADOWS	KY			FORT SMITH	AR	(A)			MEADOWS	KY
678 NORMAN	OK	(A)			THE MEADOWS	KY			OKLAHOMA CITY		(A)	1		MEADOWS	KY
681 ARDMORE	OK	(A)			THE MEADOWS	КY			LAWTON	OK	(A)	1		MEADOWS	KY
683 CLINTON	OK	(A)			THE MEADOWS	KY			ENID	OK	(A)	1		MEADOWS	KY
686 GUYMAN	OK	(A)			THE MEADOWS	KY			STILLWATER	OK	(A)			MEADOWS	KY
688 TULSA	ОК	(A)			THE MEADOWS	KY			MIAMI	OK	(A)			MEADOWS	KY
	ОК	(A)			THE MEADOWS	KY			MCALESTER	OK	(A)			MEADOWS	KY
692 PONCA CITY	OK	(A)			THE MEADOWS	KY			DURANT	OK	(A)			MEADOWS	KY
694 SHAWNEE	OK	(A)				KY			POTEAU	OK	(A)			MEADOWS	KY
696 GARLAND	ТΧ	(A)			THE MEADOWS	КY			MESQUITE	TX	(A)			MEADOWS	KY
698 DALLAS	ТΧ	(A)			THE MEADOWS	KY			JUANITA CRAFT		(A)			MEADOWS	KY
700 GREENVILLE	ТΧ	(A)			THE MEADOWS	KY			TEXARKANA	тх	(A)			MEADOWS	KY
702 LONGVIEW	ТΧ	(A)		1	THE MEADOWS	KY			TYLER	тх	(A)			MEADOWS	KY
704 PALESTINE	ТX	(A)			THE MEADOWS	KY			LUFKIN	тх	(A)			MEADOWS	KY
706 ARLINGTON	тх	(A)		1	THE MEADOWS	KY			FORT WORTH	тх	(A)			MEADOWS	KY
708 DENTON	ТX	(A)		1	THE MEADOWS	KY			WICHITA FALLS		(A)			MEADOWS	KY
710 STEPHENVILLE	ТΧ	(A)		1	THE MEADOWS	KY			TEMPLE	ТΧ	(A)			MEADOWS	KY
712 HILLSBORO	ТΧ	(A)		1	THE MEADOWS	KY		713	WACO	тх	(A)			MEADOWS	КY
714 BROWNWOOD	ТΧ	(A)		1	THE MEADOWS	KY		715	SAN ANGELO	ТΧ	(A)			MEADOWS	KY
716 HOUSTON	ТΧ	(A)		1	THE MEADOWS	KY		718	HOUSTON INTERI	NTX	(A)			MEADOWS	КY
719 CONROE	ТΧ	(A)		1	THE MEADOWS	КY		720	MISSOURI CITY	ТΧ	(A)			MEADOWS	KY
721 PASADENA	ТΧ	(A)		1	THE MEADOWS	КY		722	PORT ARTHUR	ТX	(A)			MEADOWS	KУ
723 BEAUMONT	ТΧ	(A)		1	THE MEADOWS	KY		724	BRYAN	ΤХ	(A)	1		MEADOWS	KY
725 VICTORIA	ТΧ	(A)		1	THE MEADOWS	KY		726	LAREDO	тх	(A)	1	THE	MEADOWS	KY
727 NEW BRAUNFELS	ТΧ	(A)		1	THE MEADOWS	ΚY		728	SAN ANTONIO	ТΧ	(A)	1	THE	MEADOWS	КҮ
729 KINGSVILLE	ТΧ	(A)		1	THE MEADOWS	KY		730	CORPUS CHRIST	ТΧ	(A)	1	THE	MEADOWS	КҮ
731 MC ALLEN	ТX	(A)		1	THE MEADOWS	KΥ		732	SAN MARCOS	ТΧ	(A)	1	THE	MEADOWS	KY
733 AUSTIN	ТΧ	(A)		1	THE MEADOWS	ΚY		734	DEL RIO	тх	(A)	1	THE	MEADOWS	КY
735 GIDDINGS	ТΧ	(A)		1	THE MEADOWS	KY		736	PLAINVIEW	тx	(A)			MEADOWS	КY
737 AMARILLO	ТΧ	(A)		1	THE MEADOWS	ΚY		738	CHILDRESS	ТΧ	(A)	1	THE	MEADOWS	KY
739 LEVELLAND	ТΧ	(A)		1	THE MEADOWS	KY		740	LUBBOCK	ТΧ	(A)	1	THE	MEADOWS	KY
741 SNYDER	ТΧ	(A)		1	THE MEADOWS	KY		742	ABILENE	ТΧ	(A)	1	THE	MEADOWS	KY
743 MIDLAND	ТΧ	(A)		1	THE MEADOWS	ΚY		745	EL PASO	ТΧ	(A)	1	THE	MEADOWS	KY
746 AURORA	CO	(A)		1	THE MEADOWS	ΚY		747	ENGLEWOOD	CO	(A)	1	THE	MEADOWS	КY
748 DENVER	CO	(A)		1	THE MEADOWS	ΚY		749	BOULDER	CO	(A)	1	THE	MEADOWS	KY
750 GOLDEN	CO	(A)		1	THE MEADOWS	KY		751	LONGMONT	CO	(A)	1	THE	MEADOWS	KY
752 BRIGHTON	CO	(A)		1	THE MEADOWS	ΚY		753	STERLING	CO	(A)	1	THE	MEADOWS	КY
754 USAF ACADEMY	CO	(A)		1	THE MEADOWS	КY		755	COLORADO SPRI	CO	(A)	1	THE	MEADOWS	ΚY
756 PUEBLO	CO	(A)		1	THE MEADOWS	KY		757	ALAMOSA	CO	(A)	1	THE	MEADOWS	ΚY
758 SALIDA	CO	(A)		1	THE MEADOWS	КY		759	DURANGO	CO	(A)			MEADOWS	KY
760 MONTROSE	CO	(A)		1	THE MEADOWS	КY		761	GRAND JUNCTIO	со	(A)	1		MEADOWS	КҮ
762 GLENWOOD SPRI	CO	(C)		3	ONTARIO INTE	RNCA			CHEYENNE	WY	(A)			MEADOWS	KY
765 WHEATLAND	WY	(A)		1	THE MEADOWS	КY		767	WORLAND	WY	(C)	3		ARIO INTE	
	WY	(C)		3	ONTARIO INTE	RNCA		769	CASPER	WY	(A)			MEADOWS	KY
770 GILLETTE	WY	(A)		1	THE MEADOWS	КY		771	SHERIDAN	WY	(A)			MEADOWS	KY

SOLVER REPORTS REPORT #: 56-019		CUSTOMER ASSIGN	NMENT MAP KEY	SAILS: REL 99-1C 22 APRL 0
PAGE 54	CUSTOMER CLASS	: 1 STD CUSTCLASS	PRODUCT BUNDLE : 1 STD PRD BUNDLE	osnew1
CUSTOMER REGION	SYMBOL	DC ASSIGNMENT	CUSTOMER REGION SYMBOL	DC ASSIGNMENT
772 ROCK SPRINGS WY	(A)	1 THE MEADOWS KY	773 JACKSON WY (C)	3 ONTARIO INTERNCA
774 KEMMERER WY	(C)	3 ONTARIO INTERNCA	775 POCATELLO ID (C)	3 ONTARIO INTERNCA 3 ONTARIO INTERNCA
776 TWIN FALLS ID	(C)	3 ONTARIO INTERNCA	777 IDAHO FALLS ID (C)	3 ONTARIO INTERNCA
778 LEWISTON ID	(C)	3 ONTARIO INTERNCA	779 NAMPA ID (C)	3 ONTARIO INTERNCA 3 ONTARIO INTERNCA
780 BOISE ID	(C)	3 ONTARIO INTERNCA	781 COEUR d'ALENE ID (C)	3 ONTARIO INTERNCA 3 ONTARIO INTERNCA
782 OREM UT	(C)	3 ONTARIO INTERNCA	783 SALT LAKE CIT UT (C)	
785 LOGAN UT	(C)	3 ONTARIO INTERNCA	786 OGDEN UT (C)	
787 PRICE UT	(C)	3 ONTARIO INTERNCA	788 PROVO UT (C)	
789 ST GEORGE UT	(C)	3 ONTARIO INTERNCA	730 PHOENIX AZ (C)	
791 MESA AZ	(C)	3 ONTARIO INTERNCA		3 ONTARIO INTERNCA
793 GLOBE AZ	(C)	3 ONTARIO INTERNCA		3 ONTARIO INTERNCA
795 TUCSON AZ	(C)	3 ONTARIO INTERNCA	· - ·	3 ONTARIO INTERNCA
798 PRESCOTT AZ	(C)	3 ONTARIO INTERNCA		3 ONTARIO INTERNCA
801 GRANTS NM	(A)	1 THE MEADOWS KY		3 ONTARIO INTERNCA
804 GALLUP NM	(C)	3 ONTARIO INTERNCA	802 ALBUQUERQUE NM (A)	1 THE MEADOWS KY
806 SANTA FE NM	(A)		805 FARMINGTON NM (C)	3 ONTARIO INTERNCA
809 TRUTH OR CONS NM	(A)	1 THE MEADOWS KY 1 THE MEADOWS KY	808 SOCORRO NM (A)	1 THE MEADOWS KY
811 CLOVIS NM	(A)		810 LAS CRUCES NM (C)	3 ONTARIO INTERNCA
813 CARRIZOZO NM	(A)	1 THE MEADOWS KY 1 THE MEADOWS KY	812 ROSWELL NM (A)	1 THE MEADOWS KY
818 LAS VEGAS NV	(C)	3 ONTARIO INTERNCA	817 NORTH LAS VEGANV (C)	3 ONTARIO INTERNCA
820 FALLON NV	(C)	3 ONTARIO INTERNCA 3 ONTARIO INTERNCA	819 ELY NV (C)	3 ONTARIO INTERNCA
822 CARSON CITY NV	(C)	3 ONTARIO INTERNCA 3 ONTARIO INTERNCA	821 RENO NV (C)	3 ONTARIO INTERNCA
824 LOS ANGELES CA	(C)	3 ONTARIO INTERNCA 3 ONTARIO INTERNCA	823 ELKO NV (C)	3 ONTARIO INTERNCA
827 INGLEWOOD CA	(C)		826 DOWNEY CA (C)	3 ONTARIO INTERNCA
829 TORRANCE CA	(C)	3 ONTARIO INTERNCA 3 ONTARIO INTERNCA	828 SANTA MONICA CA (C)	3 ONTARIO INTERNCA
831 CARSON CA	(C)		830 NORWALK CA (C)	3 ONTARIO INTERNCA
833 ARCADIA CA	(C)	3 ONTARIO INTERNCA 3 ONTARIO INTERNCA	832 LONG BEACH CA (C)	3 ONTARIO INTERNCA
835 GLENDALE CA	(C)		834 PASADENA CA (C)	3 ONTARIO INTERNCA
835 GHENDAHE CA 837 VAN NUYS CA	(C)		836 THOUSAND OAKS CA (C)	3 ONTARIO INTERNCA
839 NORTH HOLLYWO CA	(C)		838 BURBANK CA (C)	3 ONTARIO INTERNCA
841 ALHAMBRA CA	(C)		840 POMONA CA (C)	3 ONTARIO INTERNCA
843 OCEANSIDE CA	(C)	3 ONTARIO INTERNCA	842 CHULA VISTA CA (C)	3 ONTARIO INTERNCA
		3 ONTARIO INTERNCA	844 SAN DIEGO CA (C)	3 ONTARIO INTERNCA
845 PALM SPRINGS CA 847 SAN BERNARDIN CA	(C)	3 ONTARIO INTERNCA	846 REDLANDS CA (C)	3 ONTARIO INTERNCA
847 SAN BERNARDIN CA 849 HUNTINGTON BEACA	(C) (C)	3 ONTARIO INTERNCA	848 RIVERSIDE CA (C)	3 ONTARIO INTERNCA
		3 ONTARIO INTERNCA	850 SANTA ANA CA (C)	3 ONTARIO INTERNCA
851 ANAHEIM CA	(C)	3 ONTARIO INTERNCA	852 OXNARD CA (C)	3 ONTARIO INTERNCA
853 SANTA BARBARA CA	(C)	3 ONTARIO INTERNCA	854 VISALIA CA (C)	3 ONTARIO INTERNCA
855 BAKERSFIELD CA	(C)	3 ONTARIO INTERNCA	856 SANTA MARIA CA (C)	3 ONTARIO INTERNCA
857 MOJAVE CA	(C)	3 ONTARIO INTERNCA	858 CLOVIS CA (C)	3 ONTARIO INTERNCA
859 FRESNO CA	(C)	3 ONTARIO INTERNCA	861 SALINAS CA (C)	3 ONTARIO INTERNCA
862 SUNNYVALE CA	(C)	3 ONTARIO INTERNCA	863 SAN FRANCISCO CA (C)	3 ONTARIO INTERNCA
864 SACRAMENTO CA	(C)	3 ONTARIO INTERNCA	865 PALO ALTO CA (C)	3 ONTARIO INTERNCA
866 SAN MATEO CA	(C)	3 ONTARIO INTERNCA	867 FREMONT CA (C)	3 ONTARIO INTERNCA
868 OAKLAND CA	(C)	3 ONTARIO INTERNCA	869 BERKLEY CA (C)	3 ONTARIO INTERNCA
870 RICHMOND CA	(C)	3 ONTARIO INTERNCA	871 NORTH BAY CA (C)	3 ONTARIO INTERNCA
872 SANTA CRUZ CA	(C)	3 ONTARIO INTERNCA	873 SAN JOSE CA (C)	3 ONTARIO INTERNCA
874 STOCKTON CA	(C)	3 ONTARIO INTERNCA	875 MODESTO CA (C)	3 ONTARIO INTERNCA

SOLVER REPORTS REPORT #: 56-019		SAILS: REL 99-1C				
PAGE 54 CUSTOMER REGION	CUSTOMER CLASS : SYMBOL	1 STD CUSTCLASS DC ASSIGNMENT	PRODUCT BUNDLE : 1 STD PRD BUNDLE CUSTOMER REGION SYMBOL	22 APRL 0 osnew1 DC ASSIGNMENT		
876 SANTA ROSA CA	(C)	3 ONTARIO INTERNCA	877 EUREKA CA (C)	3 ONTARIO INTERNCA		
878 CITRUS HEIGHTSCA	(C)	3 ONTARIO INTERNCA	879 RANCHO CORDOVACA (C)	3 ONTARIO INTERNCA		
880 SACRAMENTO CA	(C)	3 ONTARIO INTERNCA	881 MARYSVILLE CA (C)	3 ONTARIO INTERNCA		
882 REDDING CA	(C)	3 ONTARIO INTERNCA	883 SOUTH LAKE TAHCA (C)	3 ONTARIO INTERNCA		
887 GRESHAM OR	(C)	3 ONTARIO INTERNCA	888 HILLSBORO OR (C)	3 ONTARIO INTERNCA		
889 PORTLAND OR	(C)	3 ONTARIO INTERNCA	890 SALEM OR (C)	3 ONTARIO INTERNCA		
891 EUGENE OR	(C)	3 ONTARIO INTERNCA	892 MEDFORD OR (C)	3 ONTARIO INTERNCA		
893 KLAMATH FALLS OR	(C)	3 ONTARIO INTERNCA	894 BEND OR (C)	3 ONTARIO INTERNCA		
895 PENDLETON OR	(C)	3 ONTARIO INTERNCA	896 ONTARIO OR (C)	3 ONTARIO INTERNCA		
897 BELLEVUE WA	(C)	3 ONTARIO INTERNCA	898 SEATTLE WA (C)	3 ONTARIO INTERNCA		
899 EVERETT WA	(C)	3 ONTARIO INTERNCA	900 BREMERTON WA (C)	3 ONTARIO INTERNCA		
901 TACOMA WA	(C)	3 ONTARIO INTERNCA	902 OLYMPIA WA (C)	3 ONTARIO INTERNCA		
903 VANCOUVER WA	(C)	3 ONTARIO INTERNCA	904 WENATCHEE WA (C)	3 ONTARIO INTERNCA		
905 YAKIMA WA	(C)	3 ONTARIO INTERNCA	906 CHENEY WA (C)	3 ONTARIO INTERNCA		
907 PULLMAN WA	(C)	3 ONTARIO INTERNCA	908 SPOKANE WA (C)	3 ONTARIO INTERNCA		
909 PASCO WA	(C)	3 ONTARIO INTERNCA	910 CLARKSTON WA (C)	3 ONTARIO INTERNCA		

LVER REPORTS		SISIEMIDE C	USTOMER SERVICE H	ISIOGRAM P	-LOI			SAILS: REL 9	99-1
AGE 41								osnew1	
	46-I								
	- I								
	44-I								
	- I								
	42-I								
	-I								
	40-I								
	-I								
	38-I								
	-I								
	36-I								
	-I								
	34-1								
	-I								
	32-1		XXXXXXXX						
	-I		XXXXXXXXX						
	30-I		XXXXXXXXXX						
	-I		XXXXXXXXX						
PERCENT	28-1		XXXXXXXXX						
t the child	-I		XXXXXXXXX						
OF	26-I		XXXXXXXXX						
01	-I		XXXXXXXXX						
TOTAL	24-I		XXXXXXXXX XXXXXXXXX						
101111	-I		XXXXXXXXX XXXXXXXX						
DEMAND	22-1		XXXXXXXXX XXXXXXXX XXXXXXXXX XXXXXXXX						
DENAND	-I		XXXXXXXXX XXXXXXXXX						
	20-I		XXXXXXXXX XXXXXXXXX						
	-I		XXXXXXXXX XXXXXXXXX						
	18-I		XXXXXXXXX XXXXXXXXX	*****					
	-I		XXXXXXXXX XXXXXXXXX						
	-1 16-1								
	-I		XXXXXXXXX XXXXXXXX XXXXXXXXX XXXXXXXX						
	-1 14-I								
	-I		XXXXXXXX XXXXXXXX						
	-1 12-I		XXXXXXXX XXXXXXXX						
	-I		XXXXXXXX XXXXXXXX						
			XXXXXXXX XXXXXXXX						
	10-1		XXXXXXXX XXXXXXXX						
	-I 0 7		XXXXXXXX XXXXXXXX						
	8-1		XXXXXXXX XXXXXXXX						
	-I		XXXXXXXX XXXXXXXX						
	6-I		XXXXXXXX XXXXXXXX						
	-IXXXXXXXX		XXXXXXXX XXXXXXXX						
	4-IXXXXXXX		XXXXXXXX XXXXXXXX						
			XXXXXXXX XXXXXXXX						
			XXXXXXXX XXXXXXXX						
			XXXXXXXX XXXXXXXX	XXXXXXXX	XXXXXXXX				
	0-+						+	+	
LEAGE RANGES>	0 50	100 250	500 75	1000	1500	2000	3000	99999	
TERVAL PERCENTAGES:	5.08	3.33 8.19				0.00	0.00	0.00	
MAND-WEIGHTED AVERAGES:	31.06	66.13 163.44	381.66 620.6		1137.68	0.00	0.00	0.00	

Appendix-2

	R REPORTS						AM PLOT B					SAILS: REL 9
GE	42			D	ISTRIBUTI	ON CTR:	1 THE I	IEADOWS	KY			osnew1
		50-I										
		- I										
		48-1										
		-I										
		46-I										
		-1- -I										
		44-1										
		I-										
		-										
		42-1										
		-I										
		40-I										
		-1										
		38-I										
		- I										
		36-I										
		- I										
		34-I										
		-I				XXXXXXXX						
		32-I				XXXXXXXX						
		-I				XXXXXXXX						
		30-1				XXXXXXXX						
		-I				XXXXXXXX						
	PERC						XXXXXXXX					
	1 Litte	-I					XXXXXXXXX					
	0						XXXXXXXXX					
	0.	-I					XXXXXXXXX					
	TOT											
	101.						XXXXXXXX					
		I-					XXXXXXXX					
	DEM						XXXXXXXX					
		- I					XXXXXXXX					
		20-I					XXXXXXXX					
		- I					xxxxxxx					
		18-I					XXXXXXXX					
		-I				XXXXXXXX	XXXXXXXX	XXXXXXXX				
		16-I				XXXXXXXX	XXXXXXXX	XXXXXXXX				
		-I				XXXXXXXX	XXXXXXXX	XXXXXXXX				
		14-1				XXXXXXXX	XXXXXXXX	XXXXXXXX				
		- I				XXXXXXXX	XXXXXXXX	XXXXXXXX				
		12-I					XXXXXXXX					
		-1 -1					XXXXXXXX					
		10-I					XXXXXXXXX					
		1-11 1-										
							XXXXXXXX					
		8-1					XXXXXXXX					
		~I					XXXXXXXX					
		6-1					XXXXXXXX					
		-I					XXXXXXXX					
		4-I			XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX			
		-I			XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX			
		2-1					XXXXXXXX					
		 - I					XXXXXXXX					
		_	+-							+	+	+
LEA	GE RANGES>	0		100						2000	3000	99999
ITER	VAL PERCENTAG	ES:	0.27	1.42	8.50	33.2	7 28.9'	21.17	6.41	0.00	0.00	0.00
	D-WEIGHTED AV		11.38	79.09					1135.54	0.00	0.00	0.00
	ERALL DEMAND-			570.92		• •						

	REPORTS						PLOT BY D					SAILS: REL 99
AGE	43			DI	ISTRIBUTIO	N CTR:	2 BETHLEH	EM-1802PA				osnew1
		100-I										
		-I										
		96-I										
		- I										
		92-I										
		- I										
		88-I										
		- I										
		84-I										
		- I										
		80-I										
		- I										
		76-I										
		-I										
		72-I										
		- I										
		68-I										
		- I										
		64-I										
		- I										
		60-I										
		- I										
	PERCENT	56-I	XX	XXXXXXX								
		-I	XX	XXXXXX								
	OF	52-I		XXXXXX								
		-I		XXXXXX								
	TOTAL	48-I		XXXXXX								
		I		XXXXXX								
	DEMAND	44-I		XXXXXX								
		- I	XX	XXXXXX								
		40-I	XX	XXXXXX								
		~ I	XX	XXXXXXX X	XXXXXXX							
		36-I	XX	XXXXXXX X	XXXXXXXX							
		- I	XX	XXXXXX X	XXXXXXX							
		32-I	XX	XXXXXXX X	XXXXXXXX							
		- I	XX	XXXXXXX X	XXXXXXXX							
		28-I	XX	XXXXXXX X	XXXXXXXX							
		-I	XX	XXXXXXX X	XXXXXXX							
		24-I		XXXXXX X								
		-I		XXXXXX X								
		20-I		XXXXXXX X								
		- I		xxxxxx x								
		16-I		XXXXXXX X								
		-I		XXXXXX X								
		12-I		XXXXXX X								
		-I		XXXXXXX X								
		8-I		XXXXXX X								
		- I		XXXXXX X								
				XXXXXX X								
				XXXXXX X								
					+-	+	+	+	+	+	+	+
LEAG	E RANGES>	0	50	100	250	500	750	1000	1500	2000	3000	999999
TERV	AL PERCENTAGES:		4.80	56.38	38.79	0.04	0.00	0.00	0.00	0.00	0.00	0.00
	-WEIGHTED AVERAG	ES:	25.17	56.18	155.81	287.00	0.00	0.00	0.00	0.00	0.00	0.00
	RALL DEMAND-WEIG			93.41								

SOLVER	REPORT	S		CUSTOM	R SERVIC	E HISTOGR	M PLOT B	Y DISTRIBU	UTION CTR			SAILS	: REL 99-1C
PAGE	44			I	ISTRIBUT	ION CTR:	3 ONTA	RIO INTERI	NCA			osnew	
			50-I										-
			- I										
			48-I										
			- I										
			46-I										
			- I										
			44-I										
			- I										
			42-I										
			- I										
			40-I										
			-I										
			38-I										
			-I										
			36-I										
			- I										
			34-I										
			- I										
			32-I										
			- I										
			30-I			XXXXXXXX							
			-I			XXXXXXXX							
		PERCENT	28-IXXXXXXXX			XXXXXXXX							
			-IXXXXXXXX			XXXXXXXX							
		OF	26-IXXXXXXXX			XXXXXXXX							
		TOTAL	-IXXXXXXXX			XXXXXXXXX							
		TOTAL	24-IXXXXXXXX -IXXXXXXXX			XXXXXXXXX							
		C114 6 1617				XXXXXXXXX							
		DEMAND	22-IXXXXXXX			XXXXXXXXX							
			-IXXXXXXXX 20-IXXXXXXXX			XXXXXXXXX XXXXXXXXX			XXXXXXXX				
			-IXXXXXXXXX			XXXXXXXXX			XXXXXXXXX				
			18-IXXXXXXXX			XXXXXXXXX			XXXXXXXXX				
			-IXXXXXXXX			XXXXXXXX			XXXXXXXXX				
			16-IXXXXXXXX			XXXXXXXXX			XXXXXXXXX				
			-IXXXXXXXX			XXXXXXXX			XXXXXXXX				
			14-IXXXXXXXX			XXXXXXXX			XXXXXXXX				
			-IXXXXXXXX			XXXXXXXX			XXXXXXXX				
			12-IXXXXXXXX			XXXXXXXX			XXXXXXXX				
			-IXXXXXXXX			XXXXXXXX			XXXXXXXX				
			10-IXXXXXXXX			XXXXXXXX			XXXXXXXX				
			-IXXXXXXXX			XXXXXXXX			XXXXXXXX				
			8-IXXXXXXXX			XXXXXXXX			XXXXXXXX				
			-IXXXXXXXX			XXXXXXXX		XXXXXXXX	XXXXXXXX				
			6-IXXXXXXX	XXXXXXXX		XXXXXXXX		XXXXXXXX	XXXXXXXX				
			-IXXXXXXXX	XXXXXXXX		XXXXXXXX		XXXXXXXX	XXXXXXXX				
			4-IXXXXXXXX			XXXXXXXX		XXXXXXXX					
			~IXXXXXXXX										
			2-IXXXXXXXX										
			-IXXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX				
			0-++						+	+	+	+	
MILEAGE	E RANGE	S>	0 50	100	250) 500) 750	1000	1500	2000	3000	99999	
INTERVA	AL PERC	ENTAGES :	28.46						L 20.00	0.00	0.00	0.00	
		ED AVERAGES				7 391.16	5 708.76	914.25	5 1140.99	0.00	0.00	0.00	
OVEF	RALL DE	MAND-WEIGHI	'ED AVERAGE:	460.62									

	REPORTS	SYSTEMWIDE CUSTOMER SERVICE HISTOGRAM PLOT		SAILS: REL 99-10
AGE	41			os7ftl
		46-I		
		-I		
		44-I		
		-I		
		42-I		
		-I		
		40-I		
		-I		
		38-I		
		-I		
		36-I		
		-I		
		34- <u>I</u>		
		-I 32-I		
		-I		
		30-I XXXXXXXX		
		-I XXXXXXX		
	PERCENT	28-I XXXXXXX		
	1 51(010(1			
	OF	26-I XXXXXXXX		
	••	-I XXXXXXX		
	TOTAL	24-I XXXXXXX		
		-I XXXXXXX		
	DEMAND	22-I XXXXXXX		
		-I XXXXXXX		
		20-1 XXXXXXX XXXXXXX		
		-I XXXXXXX XXXXXXX		
		18-I XXXXXXX XXXXXXX		
		-I XXXXXXX XXXXXXX		
		16-I XXXXXXXX XXXXXXX XXXXXXX		
		-I XXXXXXXX XXXXXXX XXXXXXX		
		14-I XXXXXXXX XXXXXXX XXXXXXX		
		-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX		
		12-IXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX		
		-IXXXXXXX XXXXXXX XXXXXXX XXXXXXXX		
		10-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX		
		-IXXXXXXX XXXXXXXX XXXXXXXXXXXXXXXXXXXX		
		8-IXXXXXXX XXXXXXXX XXXXXXXXXXXXXXXXXXXX		
		-IXXXXXXX XXXXXXXX XXXXXXXXXXXXXXXXXXXX		
		6-IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
		-IXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXX		
		4-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXX		
		-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXX		
		2-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXX		
		-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXX		
			+	+
	E RANGES>	0 50 100 250 500 750 1000 1500 2000	3000	99999
	AL PERCENTAGES:	13.88 5.85 20.46 30.26 16.65 6.97 5.92 0.00	0.00	0.00
	-WEIGHTED AVERAGES	23.36 67.92 177.13 399.88 612.35 841.65 1163.84 0.00	0.00	0.00

Appendix-3

OLVER REPO	RTS		CUSTOME	R SERVICE	HISTOGRAM	PLOT BY D	ISTRIBUTI	ON CTR			SAILS: REL 9	9-1C
AGE 42				ISTRIBUTIO		1 BETHLEH					os7ft1	
		100-1										
		-I										
		96-I										
		-I										
		92-I										
		-I										
		88-I T										
		-I										
		84-I										
		1- 1-08										
		I-08 I-										
		-1 76-I										
		-I										
		72-I										
		-I										
		68-1										
		-I										
		64-I										
		-I										
		60-I										
		-1										
	PERCENT	56-I										
		-I	XXXXXXXX									
	OF	52-I	XXXXXXXX									
		- I	XXXXXXXX									
	TOTAL	48-I	XXXXXXXX									
		- I	XXXXXXXX									
	DEMAND	44-I	XXXXXXXX									
		-I	XXXXXXXX									
		40-I	XXXXXXXX									
		-I	XXXXXXXX									
		36-I	XXXXXXXX									
		-I	XXXXXXXX									
		32-I	XXXXXXXX									
		-I	XXXXXXXX									
		28-1	XXXXXXXXX									
		-I 24-I	XXXXXXXXX XXXXXXXXX	~~~~~								
		-I	XXXXXXXXX									
		20-I	XXXXXXXXX									
		-1XXXXXXXX										
		16-IXXXXXXXX										
		-IXXXXXXXX										
		12-IXXXXXXX										
		-IXXXXXXX										
		8-IXXXXXXX										
		-IXXXXXXXX										
		4-IXXXXXXXX										
		-IXXXXXXXX										
		0-+			+-	+	+	+	+	+	+	
LEAGE RAN	GES>	0 5			500	750	1000	1500	2000	3000	99999	
TERVAL PE	RCENTAGES:	19.3	8 54.52	25.04	1.06	0.00	0.00	0.00	0.00	0.00	0.00	
	HTED AVERAGE:			160.98	347.99	0.00	0.00	0.00	0.00	0.00	0.00	
OVERATE	TEMAND-WETCH	FED AVERAGE:	75.36									

PAGE 43		DISTRIBUTION	CTR: 2	2 ONTARIO	O INTERNO	A			os7ftl
	50-I								
	-I								
	48-I								
	-I								
	46-I								
	40-1 -I								
	44-I								
	- I								
	42-I								
	- I								
	40-I								
	-I								
	38-I								
	-I								
	36-I								
	-I								
	34-1								
	-I								
	-1 32-I								
	-I								
	30-IXXXXXXX		XXXXXX						
	-IXXXXXXXX		XXXXXX						
PERCENT	28-IXXXXXXXX		XXXXXX						
	-IXXXXXXXX		XXXXXX						
OF	26-IXXXXXXXX	XXX	XXXXXX						
	-IXXXXXXXX	XXX	XXXXXX						
TOTAL	24-IXXXXXXXX	XXX	XXXXXX						
	-IXXXXXXXX	XXX	XXXXXX						
DEMAND	22-IXXXXXXXX	XXX	XXXXXX						
	- IXXXXXXXX	XXX	XXXXXX						
	20-IXXXXXXX	XXX	XXXXXX		х	XXXXXXX			
	~IXXXXXXXX	XXX	XXXXXX		х	XXXXXXX			
	18-IXXXXXXXX	XXX	XXXXXX		х	XXXXXXX			
	-IXXXXXXX		XXXXXX			XXXXXXX			
	16-IXXXXXXXX		XXXXXX			XXXXXXX			
	-IXXXXXXXX		XXXXXX			XXXXXXX			
	14-IXXXXXXX		XXXXXX			XXXXXXXX			
	-IXXXXXXXX		XXXXXX			XXXXXXXX			
	12-IXXXXXXXX		XXXXXX						
						XXXXXXX			
	-IXXXXXXXX		XXXXXX			XXXXXXX			
	10-IXXXXXXXX		XXXXXX			XXXXXXX			
	-IXXXXXXXX		XXXXXX			XXXXXXX			
	8-IXXXXXXXX		XXXXXX			XXXXXXX			
	-IXXXXXXXX XXXXX		XXXXXX		х	XXXXXXX			
	6-IXXXXXXXX XXXXX	XXX XXX	XXXXXX		х	XXXXXXX			
	-IXXXXXXXX XXXXX	XXX XXX	XXXXXX	XX	XXXXXXX X	XXXXXXX			
	4-IXXXXXXXX XXXXX	XXX XXX	XXXXXX	XX	XXXXXX X	XXXXXXX			
	-IXXXXXXXX XXXXX	XXX XXXXXXX XXX	XXXXXX	XX	XXXXXXX X	XXXXXXX			
	2-1XXXXXXXX XXXXX	XXX XXXXXXXX XXX	XXXXXX	XX	XXXXXXX X	XXXXXXX			
	-IXXXXXXXX XXXXX	XXX XXXXXXX XXX	XXXXXX XXX						
	0-++						+	+	+
MILEAGE RANGES>	0 50	100 250	500	750	1000	1500	2000	3000	99999
INTERVAL PERCENTAGES:	30.76	7.16 3.52	30.82	1.27	5.54	20.93	0.00	0.00	0.00
DEMAND-WEIGHTED AVERAGE		2.16 149.67	393.81	663.95	937.57		0.00	0.00	0.00
OVERALL DEMAND-WEIGH		9.32							0.00
Bennip Heron									

CUSTOMER SERVICE HISTOGRAM PLOT BY DISTRIBUTION CTR

DISTRIBUTION CTR: 2 ONTARIO INTERNCA

SAILS: REL 99-1C

os7ftl

PAGE 43

9	SOLVER REPOR REPORT #: 56				ERVICE HISTOG		Y DISTRIBU	TION CTR			SAILS: REL 99-1C 22 APRL 0
	PAGE 44			DIST	RIBUTION CTR:	4 OLD	NATIONAL	GA			os7ftl
<pre>48-1</pre>											
<pre>46-1</pre>											
44											
<pre>42-1</pre>											
40-1 											
38-1											
36-1 34 34-1 32-1 32-1 30-1 30-1 28-1 -1 30-1 28-1 -1 28-1 -1 XXXXXXXX PERCENT 28-1 -1 XXXXXXXXX 07 26-1 -1 XXXXXXXXX 08 -1 XXXXXXXXX 101 24-1 XXXXXXXXX 102 24-1 XXXXXXXXX 101 21 11 12 131 132 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14											
			- I								
34-T			36-I								
32-I -I 30-I XXXXXXXX -I XXXXXXXX PERCENT 28-I -I XXXXXXXX OF 26-I -I XXXXXXXX OF 26-I -I XXXXXXXX TOTAL 24-I -I XXXXXXXX TOTAL 24-I -I XXXXXXXX DEMAND 22-I -I XXXXXXXX 20-I XXXXXXXX 20-I XXXXXXXX -I XXXXXXXX 18-I XXXXXXXX -I XXXXXXXX 18-I XXXXXXXX -I XXXXXXXX 14-I XXXXXXXX -I XXXXXXXX I2-I XXXXXXXX XXXXXXXX I2-I XXXXXXXXX XXXXXXXX											
30-T XXXXXXX											
-I XXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX			—								
PERCENT 28-1 XXXXXXXX -I XXXXXXXX OF 26-1 XXXXXXXX -I XXXXXXXX TOTAL -I XXXXXXXX DEMAND -I XXXXXXXX 20-1 XXXXXXXX XXXXXXXX 20-1 XXXXXXXX XXXXXXXX 20-1 XXXXXXXXX XXXXXXXX 20-1 XXXXXXXX XXXXXXXX 18-1 XXXXXXXX XXXXXXXX -1 XXXXXXXX XXXXXXXX 14-1 XXXXXXXX XXXXXXXX 12-1 XXXXXXXX XXXXXXXX 12-1 XXXXXXXX XXXXXXXX 14-1 XXXXXXXX XXXXXXXX 12-1 XXXXXXXX XXXXXXXX 10-1 XXXXXXXX XX											
$\begin{array}{cccccccc} -1 & XXXXXXXX \\ OF 26-I & XXXXXXXX \\ -1 & XXXXXXXX \\ XXXXXXXX \\ TOTAL 24-I & XXXXXXXX \\ 24-I & XXXXXXXX \\ TOTAL 22-I & XXXXXXXX \\ 22-I & XXXXXXXX \\ -1 & XXXXXXXX \\ 20-I & XXXXXXX \\ 20-I & XXXXXXXX \\ 20-I & XXXXXXX \\ 20-I & XXXXXXX \\ 20-I & XXXX$		DEDCENT									
OF 26-I XXXXXXXX -I XXXXXXXX TOTAL 24-I XXXXXXXX XXXXXXXXX DEMAND 22-I XXXXXXXX -I XXXXXXXX 20-I XXXXXXXXX 20-I XXXXXXXXX 20-I XXXXXXXXX 18-I XXXXXXXXX -I XXXXXXXXX -I XXXXXXXXX 18-I XXXXXXXXX -I XXXXXXXXX I0-I XXXXXXXXX I0-I XXXXXXXXX -I XXXXXXXXX -I XXXXXXXXX -I XXXXXXXXX		PERCENT									
- I XXXXXXX XXXXXXX TOTAL 24 - I XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX		OF		XXX							
TOTAL 24-1 XXXXXXXX XXXXXXXXX -I XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX											
- I XXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX		TOTAL									
DEMAND 22-1 XXXXXXXX XXXXXXXX -I XXXXXXXX XXXXXXXX 20-1 XXXXXXXX XXXXXXXX -I XXXXXXXX XXXXXXXX 18-1 XXXXXXXX XXXXXXXX -I XXXXXXXX XXXXXXXX 16-1 XXXXXXXX XXXXXXXX 16-1 XXXXXXXX XXXXXXXX 14-1 XXXXXXXX XXXXXXXX 12-1 XXXXXXXX XXXXXXXX -1 XXXXXXXX XXXXXXXX 12-1 XXXXXXXX XXXXXXXX 12-1 XXXXXXXX XXXXXXXX 10-1 XXXXXXXX XXXXXXXX 10-1 XXXXXXXX XXXXXXXX -1 XXXXXXXX XXXXXXXX -1 XXXXXXXX XXXXXXXX -1 XXXXXXXX XXXXXXXX 12-1 XXXXXXXX XXXXXXXX XXXXXXXX -1 XXXXXXXX XXXXXXXX XXXXXXXX -1 XXXXXXXX XXXXXXXX XXXXXXXX -1 XXXXXXXX XXXXXXXX XXXXXXXX -1<			-I								
20-IXXXXXXX-IXXXXXXXX18-IXXXXXXXX17XXXXXXXX16-IXXXXXXXX16-IXXXXXXXX14-IXXXXXXXX12-IXXXXXXXX13-IXXXXXXXX14-IXXXXXXXX14-IXXXXXXXX12-IXXXXXXXX12-IXXXXXXXX10-IXXXXXXXX10-IXXXXXXXX11XXXXXXXX10-IXXXXXXXX11XXXXXXXX12-IXXXXXXXX13-I14-IXXXXXXXX14-I15-IXXXXXXXX16-I16-I16-I1718-I18-I19-I19-I10-I <td></td> <td>DEMAND</td> <td>22-I</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		DEMAND	22-I								
IXXXXXXXXXXXXXX18-IXXXXXXXXXXXXXXXX16-IXXXXXXXXXXXXXXXX16-IXXXXXXXXXXXXXXXX14-IXXXXXXXXXXXXXXXX14-IXXXXXXXXXXXXXXXX12-IXXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX12-IXXXXXXXXXXXXXXXX10-IXXXXXXXXXXXXXXXX10-IXXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX12XXXXXXXXXXXXXXXX13XXXXXXXXXXXXXXXX14XXXXXXXXXXXXXXXX15XXXXXXXXXXXXXXXX16XXXXXXXXXXXXXXXX17XXXXXXXXXXXXXXXX18XXXXXXXXXXXXXXXX19XXXXXXXXXXXXXXXX10XXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX12XXXXXXXXXXXXXXXX13XXXXXXXXXXXXXXXX14XXXXXXXXXXXXXXXX15XXXXXXXXXXXXXXXX16XXXXXXXXXXXXXXXXX17XXXXXXXXXXXXXXXXX17XXXXXXXXXXXXXXXXX1819XXXXXXXXX1919<				XXX	XXXXX XXXXXXX	x					
18-IXXXXXXXXXXXXXX-IXXXXXXXXXXXXXXXX16-IXXXXXXXXXXXXXXXX14-IXXXXXXXXXXXXXXXX14-IXXXXXXXXXXXXXXXX-IXXXXXXXXXXXXXXXX12-IXXXXXXXXXXXXXXXX10-IXXXXXXXXXXXXXXXX10-IXXXXXXXXXXXXXXXX10-IXXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX10-IXXXXXXXXXXXXXXXX10-IXXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX10-IXXXXXXXXXXXXXXXX10-IXXXXXXXXXXXXXXXX10-IXXXXXXXXXXXXXXXX10-IXXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXXX11XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX											
-I XXXXXXXX XXXXXXXX XXXXXXXXX 16-I XXXXXXXXX XXXXXXXXX XXXXXXXXX -I XXXXXXXXX XXXXXXXXX XXXXXXXXX 14-I XXXXXXXXX XXXXXXXXX 12-I XXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX											
16-IXXXXXXXXXXXXXXXXXXXXX-IXXXXXXXXXXXXXXXXXXXXXXXX14-IXXXXXXXXXXXXXXXXXXXXXXXX-IXXXXXXXXXXXXXXXXXXXXXXXX12-IXXXXXXXXXXXXXXXXXXXXXXXX-IXXXXXXXXXXXXXXXXXXXXXXXX10-IXXXXXXXXXXXXXXXXXXXXXXXX10-IXXXXXXXXXXXXXXXXXXXXXXXX8-IXXXXXXXXXXXXXXXXXXXXXXXX-IXXXXXXXXXXXXXXXXXXXXXXXX8-IXXXXXXXXXXXXXXXXXXXXXXXX6-IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX6-IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX6-IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX6-IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX6-IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX6-IXXXXXXXXXXXXXXXXXXXXXXXXX7-XXXXXXXXXXXXXXXXXXXXXXXXX6-IXXXXXXXXXXXXXXXXXXXXXXXXX7-XXXXXXXXXXXXXXXXXXXXXXXXX7-XXXXXXXXXXXXXXXXXXXXXXXXX7-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX											
-I XXXXXXX XXXXXXXX XXXXXXXX 14-I XXXXXXXX XXXXXXXX XXXXXXXX -I XXXXXXXX XXXXXXXX XXXXXXXX 12-I XXXXXXXX XXXXXXXX XXXXXXXX 11-I XXXXXXXX XXXXXXXX XXXXXXXX 10-I XXXXXXXX XXXXXXXX XXXXXXXX 10-I XXXXXXXX XXXXXXXX XXXXXXXX -I XXXXXXXX XXXXXXXX XXXXXXXX -I XXXXXXXX XXXXXXXX XXXXXXXX -I XXXXXXXX XXXXXXXX XXXXXXXX 6-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX -IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX -IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX -IXXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX -IXXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX -IXXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX -IXXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 2-IXXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX											
14-I XXXXXXXX XXXXXXXX XXXXXXXX -I XXXXXXXX XXXXXXXX XXXXXXXX 12-I XXXXXXXX XXXXXXXX XXXXXXXX -I XXXXXXXX XXXXXXXX XXXXXXXX -I XXXXXXXX XXXXXXXX XXXXXXXX 10-I XXXXXXXX XXXXXXXX XXXXXXXX -I XXXXXXXX XXXXXXXX XXXXXXXX 8-I XXXXXXXX XXXXXXXX XXXXXXXX -I XXXXXXXX XXXXXXXX XXXXXXXX 6-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX -IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 4-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX -IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX -IXXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX -IXXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX -IXXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX -IXXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 2-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX </td <td></td>											
-I XXXXXXX XXXXXXXX XXXXXXXX 12-I XXXXXXXX XXXXXXXX XXXXXXXX -I XXXXXXXX XXXXXXXX XXXXXXXX 10-I XXXXXXXX XXXXXXXX XXXXXXXX 10-I XXXXXXXX XXXXXXXX XXXXXXXX -I XXXXXXXX XXXXXXXX XXXXXXXX 8-I XXXXXXXX XXXXXXXX XXXXXXXX -I XXXXXXXX XXXXXXXX XXXXXXXX -I XXXXXXXX XXXXXXXX XXXXXXXX 6-IXXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX -IXXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 2-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX											
12-I XXXXXXX XXXXXXX XXXXXXX -I XXXXXXX XXXXXXX XXXXXXX 10-I XXXXXXX XXXXXXX XXXXXXX -I XXXXXXX XXXXXXXX XXXXXXXX 8-I XXXXXXXX XXXXXXXX XXXXXXXX 6-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 6-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 4-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 4-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 2-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX											
-I XXXXXXXX XXXXXXXX XXXXXXXX 10-I XXXXXXXX XXXXXXXX XXXXXXXX -I XXXXXXXX XXXXXXXX XXXXXXXX 8-I XXXXXXXX XXXXXXXX XXXXXXXX 6-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 6-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 6-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 4-IXXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX -IXXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 4-IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX											
-IXXXXXXXXXXXXXXXXXXXXXXXXXXXX8-IXXXXXXXXXXXXXXXXXXXXXXXXXXXX-IXXXXXXXXXXXXXXXXXXXXXXXX6-IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX-IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX4-IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX-IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX2-IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX											
8-I XXXXXXXX XXXXXXXX XXXXXXXX -I XXXXXXXX XXXXXXXX XXXXXXXX 6-IXXXXXXXX XXXXXXXXX XXXXXXXXX XXXXXXXX -IXXXXXXXXXX XXXXXXXXX XXXXXXXXX XXXXXXXX 4-IXXXXXXXXX XXXXXXXXX XXXXXXXXX XXXXXXXXX -IXXXXXXXXX XXXXXXXXX XXXXXXXXX XXXXXXXXX 2-IXXXXXXXXXXXX XXXXXXXXX XXXXXXXXX 2-IXXXXXXXXX XXXXXXXXX XXXXXXXXX			10-I								
-I XXXXXXXX XXXXXXX XXXXXXX XXXXXXX 6-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXX			-I	XXX	XXXXX XXXXXXX	x xxxxxxx	XXXXXXXX				
6-IXXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX			8-I	XXXX	XXXXX XXXXXX	x xxxxxxxx	XXXXXXXX				
-ΙΧΧΧΧΧΧΧΧ ΧΧΧΧΧΧΧΧ ΧΧΧΧΧΧΧΧ ΧΧΧΧΧΧΧΧ ΧΧΧΧ											
4-ΙΧΧΧΧΧΧΧΧ ΧΧΧΧΧΧΧΧ ΧΧΧΧΧΧΧΧ ΧΧΧΧΧΧΧΧ ΧΧΧΧ											
-ΙΧΧΧΧΧΧΧΧ ΧΧΧΧΧΧΧΧ ΧΧΧΧΧΧΧΧ ΧΧΧΧΧΧΧΧ ΧΧΧΧ											
2-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXX											
I V V V V V V V V V V V V V V V V V V V								****			
-IXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXX											
MILEAGE RANGES> 0 50 100 250 500 750 1000 1500 2000 3000 99999	MILEAGE RANG	ES>								-	
INTERVAL PERCENTAGES: 6.74 6.66 26.24 30.23 12.07 16.87 1.19 0.00 0.00 0.00	INTERVAL PER	CENTAGES :	6.74	6.66	26.24 30.	23 12 0	7 16.87	1.19	0.00	0.00	0 00
DEMAND-WEIGHTED AVERAGES: 24.55 82.42 192.26 377.06 598.93 813.13 1182.10 0.00 0.00 0.00 OVERALL DEMAND-WEIGHTED AVERAGE: 395.11	DEMAND-WEIGH	TED AVERAGES	: 24.55	82.42							

SOLVER REFORTS REPORT #: 56-015		CUSTOMER SER	VICE HISTOGR	AM PLOT B	Y DISTRIB	UTION CTR			SAILS: REL 99-1C 22 APRL 0
PAGE 45		DISTRI	BUTION CTR:	5 ELK (GROVE VIL	LIL			os7ftl
	50-I								
	-I								
	48-I -I								
	46-I								
	-I								
	44-I								
	-I								
	42-I								
	-I								
	40-I								
	-I 38-I								
	-I								
	36-I								
	-I								
	34-1								
	- I								
	32-1								
	-I 30-I		VVVVV VVV						
	-I		XXXXXXXXX XXXXXXXXX						
PERCENT	28-1		XXXXXXXXXX						
	-I		XXXXXXXX						
OF	26-IXXXXXXXX		XXXXXXXX						
	-IXXXXXXXX		XXXXXXXX						
TOTAL	24-IXXXXXXXX		XXXXXXXX						
DEMAND	-IXXXXXXXX 22-IXXXXXXXX		XXXXXXXXX XXXXXXXXX						
BLIMUD	-IXXXXXXXXX		XXXXXXXXX						
	20-1XXXXXXX		XXXXXXXX						
	-IXXXXXXXX		XXXXXXXX	1					
	18-IXXXXXXXX		XXXXXXXX						
	-IXXXXXXXX		XXXXXXXX						
	16-IXXXXXXXX		XXXXXXXXX			XXXXXXXX			
	-IXXXXXXXX 14-IXXXXXXXX		XXXXXXXXX XXXXXXXXX			XXXXXXXXX XXXXXXXXX			
	-IXXXXXXXX		XXXXXXXXX			XXXXXXXXX			
	12-IXXXXXXXX		XXXXXXXX			XXXXXXXX			
	-IXXXXXXXX		XXXXXXXX	XXXXXXXX		XXXXXXXX			
	10-IXXXXXXXX			XXXXXXXX		XXXXXXXX			
	-IXXXXXXXX			XXXXXXXX		XXXXXXXX			
	8-IXXXXXXXX -IXXXXXXXX		KXX XXXXXXXX KXX XXXXXXXX			XXXXXXXXX			
	6-IXXXXXXXX		XXX XXXXXXXXX			XXXXXXXXX XXXXXXXXX			
	-IXXXXXXXX		XXX XXXXXXXX			XXXXXXXX			
	4-IXXXXXXXX		XXX XXXXXXXX		XXXXXXXX				
	-IXXXXXXXX		XXX XXXXXXXX						
	2-IXXXXXXX X								
		XXXXXXX XXXXXX							
MILEAGE RANGES>	0-++- 0 50	100	250 50				2000	+ 3000	+ 99999
	3 30	100	a	· /3(, 1000	7 1300	2000	3000	22223
INTERVAL PERCENTAGES:	26.26	2.56	3.82 30.1	7 11.79	4.37	7 16.03	0.00	0.00	0.00
DEMAND-WEIGHTED AVERAGES:	18.46		5.50 424.3	7 636.68	939.48	1215.81	0.00	0.00	0.00
OVERALL DEMAND-WEIGHTE	D AVERAGE:	459.55							

SOLVER R REPORT #			CUSTOMER	SERVICE	HISTOGRAM	1 PLOT BY	DISTRIBU	TION CTR			SAILS 22 A	: REL 99-1C PRL 0
PAGE 4	6		DI	STRIBUTIC	ON CTR:	6 CARROL	LTON-750	тх			os7ft	
		50-I				• •••••••	21011 / 50				05/10	1
		-I										
		48-I										
		-I										
		46-IXXXXXXXX										
		- IXXXXXXXX										
		44-IXXXXXXXX										
		-IXXXXXXXX										
		42-IXXXXXXXX										
		-IXXXXXXXX										
		40-IXXXXXXXX										
		-IXXXXXXXX										
		38-IXXXXXXX										
		-1XXXXXXXX										
		36-IXXXXXXXX										
		-IXXXXXXXX										
		34-IXXXXXXXX										
		-IXXXXXXXX										
		32-IXXXXXXXX										
		-IXXXXXXXX										
		30-IXXXXXXXX										
		-IXXXXXXXX										
	PERCENT	28-IXXXXXXXX										
	L DICCHIT	-IXXXXXXXX										
	OF	26-IXXXXXXXX										
	01	-IXXXXXXXX										
	TOTAL	24-IXXXXXXXX										
	IOIAL	-IXXXXXXXX	v	xxxxxx								
	DEMAND	22-IXXXXXXXX		XXXXXXX								
	DEFINIO	-IXXXXXXXX		XXXXXXX								
		20-IXXXXXXXX -IXXXXXXXX		XXXXXXX								
				XXXXXXX								
		18-IXXXXXXXX		XXXXXXX X								
		~IXXXXXXXX		XXXXXXX X								
		16-IXXXXXXXX		XXXXXXX X								
		-IXXXXXXXX		XXXXXXX X								
		14-IXXXXXXXX		XXXXXXX X								
		-IXXXXXXXX		XXXXXXX X								
		12-IXXXXXXXX		XXXXXX X								
		-IXXXXXXXX		XXXXXXX X								
		10-IXXXXXXXX		XXXXXXX X								
		-IXXXXXXXX		XXXXXXX X								
		8-IXXXXXXX		XXXXXXX X								
		-IXXXXXXXX		XXXXXXX X								
		6-IXXXXXXXX	X	XXXXXXX X	XXXXXXX		2	XXXXXXXX				
		-IXXXXXXXX	X	XXXXXXX X	XXXXXXX		3	XXXXXXXX				
		4-ixxxxxxxx	XX	XXXXXXX X	XXXXXXX		3	XXXXXXXX				
		-IXXXXXXXX	XX	XXXXXXX X	XXXXXXX X	XXXXXXX	3	XXXXXXXX				
		2-IXXXXXXXX	XX	XXXXXXX X	XXXXXXX X	XXXXXXX	2	XXXXXXXX				
		-IXXXXXXXX	XX	XXXXXXX X	XXXXXXX X	XXXXXXX	2	XXXXXXX				
		0-++-			+-	+-	+-	+	+	+	+	
MILEAGE H	RANGES>	0 50	100	250	500	750	1000	1500	2000	3000	99999	
INTERVAL	PERCENTAGES :	46.43	0.27	23.99	18.60	3.79	0.62	6.31	0.00	0.00	0.00	
	EIGHTED AVERAGES		85.14	175.31	370.40	633.33		1094.95	0.00	0.00	0.00	
	LL DEMAND-WEIGHT		218,18						0.00	0.00	0.00	
			-									

SPORT #: 56-015		COSTOME	X SERVICE HIST	JGRAM PLOT BY	DISTRIBU	TION CTR			SAILS: REL 22 APRL
AGE 47		D	ISTRIBUTION CT	R: 7 WESTLA	ND SHOPP	OH			os7ftl
	50-I								
	-I								
	48-I								
	-I								
	46-I -I								
	-1 44-1								
	44-1 -I								
	42-1								
	-I								
	40-I								
	-I								
	38-I								
	- I								
	36-I								
	- I								
	34-I		XXXXX						
	- I		XXXXX						
	32-1			XXX XXXXXXXX					
	-I 30-I			XXX XXXXXXXX					
	-I			XXX XXXXXXXXX XXX XXXXXXXX					
PERCENT	28-1			XXX XXXXXXXX					
	-I			XXX XXXXXXXX					
OF	26-I	2	XXXXXX XXXXX						
	-I		XXXXXX XXXXXX						
TOTAL	24-I	2	XXXXXXX XXXXXX	XXX XXXXXXXX					
	- I		XXXXXXX XXXXXX						
DEMAND	22-I		XXXXXXXX XXXXXX						
	-I		XXXXXXXX XXXXXX						
	20-I -I		XXXXXXXX XXXXX						
	-1 18-1		XXXXXXXX XXXXXX XXXXXXXXX XXXXXX						
	-I		XXXXXXXX XXXXXX						
	16-I		XXXXXXXX XXXXXX						
	-I		XXXXXXX XXXXXX						
	14-I		XXXXXXX XXXXX						
	-I		XXXXXX XXXXXX						
	12-I	2	XXXXXX XXXXXX	XXX XXXXXXXX					
	- I		XXXXXX XXXXXXX						
	10-1		XXXXXX XXXXXX						
	-I		XXXXXXX XXXXXX						
	8-I		XXXXXXX XXXXXX						
	-I		XXXXXXX XXXXX						
	6-I 7		XXXXXXX XXXXX						
	-I 4-I		XXXXXXXX XXXXXX						
	4-1 -I		XXXXXXXX XXXXXX XXXXXXXX XXXXXX						
	2-IXXXXXXX		XXXXXXXX XXXXXX		~~~~~~				
			XXXXXXXX XXXXXX						
EAGE RANGES>	0				1000	1500	2000	3000	99999
ERVAL PERCENTAGES:	2.3	29 1.61	26.45 34	.84 32.19	2.56	0.06	0.00	0.00	0.00
AND-WEIGHTED AVERAGES	: 22.		171.40 412			1167.27	0.00	0.00	0.00
OVERALL DEMAND-WEIGHT	ED AVERAGE:	409.78							

CUSTOMER SERVICE HISTOGRAM PLOT BY DISTRIBUTION CTR

SAILS: REL 99-1C

SOLVER REPORTS

Appendix-4

SOLVER REPORTS		SYSTEMWIDE	CUSTOMER SERVIC	E HISTOGRAM	PLOT			SAILS: REL 99-1C
PAGE 41								osnew4
	- I							
	46-I							
	-I							
	44-I							
	-I							
	42-I							
	-I							
	40-I							
	-I							
	38-I -I							
	-1 36-I							
	-I							
	-1 34-I							
	-I							
	32-I							
	-I		XXXXXXXX					
	30-I		XXXXXXXX					
	-I		XXXXXXXX					
PERCENT	28-I		XXXXXXXX					
	-I		XXXXXXXX					
OF	26-I		XXXXXXXX					
	-I		XXXXXXXX					
TOTAL	24-I		XXXXXXX					
	-I		XXXXXXXX XXXXX	XXXX				
DEMAND	22-I		XXXXXXXX XXXXX					
	-I		XXXXXXXX XXXXX					
	20-1		XXXXXXXX XXXXX					
	~I		XXXXXXXX XXXXX					
	18-I		XXXXXXXX XXXXX					
	-I 16-I		XXXXXXXX XXXXX					
	-I -I		XXXXXXXX XXXXX XXXXXXXX XXXXX					
	-1 14-I		XXXXXXXXX XXXXX					
	-I		XXXXXXXX XXXXX					
	12-I		XXXXXXXXX XXXXX					
	-1		XXXXXXXX XXXXX					
	10-I		XXXXXXXX XXXXX					
	-I		XXXXXXXX XXXXX		XXXXXXXX			
	8-I	XXXXXXXX	XXXXXXXX XXXXX					
	-I		XXXXXXXX XXXXX					
	6-I		XXXXXXXX XXXXX					
	-IXXXXXXXX	XXXXXXXXX	XXXXXXXX XXXXX	XXXX XXXXXXXX	XXXXXXXX			
	4-IXXXXXXXX	XXXXXXXX	XXXXXXXX XXXXX	XXXXXXXXX XXXX	XXXXXXXX			
		XXXXXXX XXXXXXXX						
		XXXXXXX XXXXXXXX						
		XXXXXXX XXXXXXXX	XXXXXXXX XXXXX	XXXX XXXXXXX	XXXXXXX			
	0-++-		+	+	++	+	+	+
MILEAGE RANGES>	0 50	100 25	500	750 1000	0 1500	2000	3000	99999
INTERVAL PERCENTAGES:	5.29	3.35 8.1	9 31.85 2	3.53 18.06	5 9.73	0.00	0.00	0.00
DEMAND-WEIGHTED AVERAGES	30.04	66.07 163.4	4 381.97 61	8.31 843.24	4 1160.03	0.00	0.00	0.00
OVERALL DEMAND-WEIGHT	ED AVERAGE:	549.49						

	REPOI				CUSTOME	R SERVICE	HISTOGRA	M PLOT B	Y DISTRIBU	JTION CTR			SAILS:	REL 99)-1C
	'#: 50	6-015											24 API	чь 0	
AGE	42				D	ISTRIBUTI	ON CTR:	1 THE I	MEADOWS	ΚY			osnew4		
			50-I												
			- I												
			48-I												
			- I												
			46-I												
			- I												
			44-I												
			- I												
			42-I												
			- I												
			40-I												
			- I												
			38-I												
			- I												
			36-I												
			- I												
			34-I												
			- I				XXXXXXXX								
			32-I				XXXXXXXX								
			- I				XXXXXXXX								
			30-I				XXXXXXXX								
			- I				XXXXXXXX								
		PERCENT	28-I				XXXXXXXX	XXXXXXXX							
			- I				XXXXXXXX	XXXXXXXX							
		OF	26-I				XXXXXXXX	XXXXXXXX							
			- I				XXXXXXXX	XXXXXXXX							
		TOTAL	24~I				XXXXXXXX	XXXXXXXX							
			~ I				XXXXXXXX	XXXXXXXX							
		DEMAND	22-I				XXXXXXXX	XXXXXXXX							
			- I				XXXXXXXX	XXXXXXXX	XXXXXXXX						
			20-I				XXXXXXXX	XXXXXXXX	XXXXXXXX						
			- I				XXXXXXXX	XXXXXXXX	XXXXXXXX						
			18-1				XXXXXXXX	XXXXXXXX	XXXXXXXX						
			- I				XXXXXXXX	XXXXXXXX	XXXXXXXX						
			16-1				XXXXXXXX	XXXXXXXX	XXXXXXXX						
			- I				XXXXXXXX	XXXXXXXX	XXXXXXXX						
			14-I				XXXXXXXX	XXXXXXXX	XXXXXXXX						
			-I				XXXXXXXX	XXXXXXXX	XXXXXXXX						
			12-I				XXXXXXXX	XXXXXXXX	XXXXXXXX						
			-1				XXXXXXXX	XXXXXXXX	XXXXXXXX						
			10-I				XXXXXXXX	XXXXXXXX	XXXXXXXX						
			- I				XXXXXXXX	XXXXXXXX	XXXXXXXX						
			8-I			XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX						
			-I			XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX						
			6-I			XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX					
			- I		:	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX					
			4-1		:	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX					
			- I						XXXXXXXX						
			2-I						XXXXXXXX						
			- I	х					XXXXXXXX						
			0-+							+-	+	+	+		
LEAG	E RANC	GES>	0	50	100	250	500	750	1000	1500	2000	3000	99999		
TERV	AL PEF	RCENTAGES:		0.27	1.42	8.53	33.36	28.77	21.23	6.42	0.00	0.00	0.00		
		HTED AVERAGE	S:	11.38	79.09					1135.55	0.00	0.00	0.00		
				AGE:	570.67										

OLVER	REPOR	TS		CUSTOME	R SERVICE HI	STOGRAM	PLOT BY D	ISTRIBUTI	ON CTR			SAILS: RE	L 99-1C
EPORT		5-015										24 APRL	0
AGE	43			D	ISTRIBUTION	CTR:	2 BETHLEH	EM-1802PA				osnew4	
			100-1										
			-I										
			96-1										
			-I										
			92-I T										
			-1 88-1										
			1-00 I-										
			-1 84-1										
			-I										
			80-1										
			-I										
			76-I										
			-I										
			72-1										
			- I										
			68-I										
			- I										
			6 4 -I										
			-I										
			60-I										
			-1										
		PERCENT	56-I	XXXXXXXXX									
		OF	-I 52-I	XXXXXXXX									
		OF	-I	XXXXXXXX XXXXXXXX									
		TOTAL	48-I	XXXXXXXXX									
		IOIAD	-I	XXXXXXXXX									
		DEMAND	44-I	XXXXXXXXX									
		Diality	-I	XXXXXXXXX									
			40-1	XXXXXXXX									
			-I	XXXXXXXXX	XXXXXXXX								
			36-I	XXXXXXXX X									
			- I	XXXXXXXX X	XXXXXXX								
			32-I	XXXXXXXX X	XXXXXXX								
			-I	XXXXXXXX X	XXXXXXX								
			28-I	XXXXXXXX X									
			-I	XXXXXXXX X									
			24-1	XXXXXXXXXX									
			-I	XXXXXXXXXX									
			20-1	XXXXXXXX X									
			-I	XXXXXXXXX									
			16-I -I	XXXXXXXXX									
			-1 12-I	XXXXXXXXXXXX									
			-I	XXXXXXXXX X XXXXXXXXX X									
			 8-I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX									
			-I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX									
				XX XXXXXXXX X									
				XX XXXXXXXX X									
				++-		+-	+	+	+	+	+	+	
LEAGE	RANG	ES>	0	50 100	250	500	750	1000	1500	2000	3000	999999	
TERVA	L PER	CENTAGES:		.80 56.38	38.79	0.04	0.00	0.00	0.00	0.00	0.00	0.00	
		TED AVERAG		.17 56.18	155.81	287.00	0.00	0.00	0.00	0.00	0.00	0.00	
OVER	ALL D	EMAND-WEIG	HTED AVERAGE:	93.41									

OLVER	REPOI	RTS		CUSTOME	R SERVICE	HISTOGRAM	I PLOT BY	DISTRIBU	TION CTR			SAILS: R	ET, 99-10
EPORT	#: 50	6-015										24 APRL	
AGE	44			Г	ISTRIBUTIO	N CTR.	3 ONTARI	O INTERN	C 2			osnew4	0
			50-I	_			5 01111111	0 11010104	ch			Callew 4	
			-I										
			48-I										
			-I										
			46-I										
			40-1 -I										
			44-I T										
			-I										
			42-1										
			-I										
			40-I										
			- I										
			38-I										
			- I										
			36-I										
			-I										
			34-I										
			- I										
			32-I			XXXXXXX							
			-IXXXXXXXX			XXXXXXX							
			30-IXXXXXXXX			XXXXXXX							
			-IXXXXXXXX			XXXXXXX							
		PERCENT	28-IXXXXXXXX			XXXXXXX							
			-1XXXXXXXX			XXXXXXX							
		OF	26-IXXXXXXXX			XXXXXXX							
			- IXXXXXXXX			XXXXXXX							
		TOTAL	24-IXXXXXXXX		х	XXXXXXX							
			-IXXXXXXXX		Х	XXXXXXX							
		DEMAND	22 - IXXXXXXXX		Х	XXXXXXX							
			~IXXXXXXXX		Х	XXXXXXX							
			20-1XXXXXXXX		Х	XXXXXXX							
			-IXXXXXXXXX		х	XXXXXXX							
			18-IXXXXXXXX			XXXXXXX		2	XXXXXXXX				
			-IXXXXXXXX		X	XXXXXXX		2	XXXXXXXX				
			16-IXXXXXXXX		X	XXXXXXX		2	XXXXXXXX				
			-IXXXXXXXX		x	XXXXXXX		2	XXXXXXXX				
			14-IXXXXXXXX		X	XXXXXXX		2	XXXXXXXX				
			~IXXXXXXXX		x	XXXXXXX		2	XXXXXXXX				
			12-IXXXXXXXX		x	XXXXXXX		2	XXXXXXXX				
			-IXXXXXXXXX		X	XXXXXXX		2	XXXXXXXX				
			10-IXXXXXXXX		X	XXXXXXX		2	XXXXXXXX				
			-IXXXXXXXXX		X	XXXXXXX		2	XXXXXXXX				
			8-IXXXXXXXX		X	XXXXXXX		2	XXXXXXXX				
			-IXXXXXXXX	XXXXXXXX	X	XXXXXXX		2	XXXXXXX				
			6-IXXXXXXXX	XXXXXXXX	x	XXXXXXX		2	XXXXXXX				
			-IXXXXXXXX	XXXXXXXX	X	XXXXXXX	X	XXXXXXX X	XXXXXXX				
			4-ixxxxxxx	XXXXXXXX	X	XXXXXXX	x	XXXXXXX X	XXXXXXX				
			-IXXXXXXXX	XXXXXXXX	XXXXXXX X	XXXXXXX	X	XXXXXXX X	XXXXXXX				
			2-1XXXXXXXX	XXXXXXXX	XXXXXXXX X	XXXXXX		XXXXXXX X					
			-1XXXXXXXX										
			0-+			+-	+-		+	+		+	
LEAGE	E RANG	GES>	0 50	100	250	500	750	1000	1500	2000	3000	99999	
	AL PER	RCENTAGES :	31.9	9 7.45	3.66	32.05	1.32	5.30	18.22	0.00	0.00	0.00	
ITERVA													
		TED AVERAGE	s: 32.0'	7 62.16	149.67	393.81	663.95	941.03	1136.77	0.00	0.00	0.00	

OLVER REPORTS		CUSTOMER	SERVICE HI	STOGRAM	I PLOT BY D	ISTRIBU	TION CTR			SAILS: REL	99-10
EPORT #: 56-015										24 APRL	0
GE 45		DI	STRIBUTION	CTR:	10 DES MOI	NES	AI			osnew4	
	100-1										
	-I										
	96-I										
	-I										
	92-I										
	I-										
	88-I -										
	-I						XXXXXXXX				
	84-1						XXXXXXXX				
	1- 1-00						XXXXXXXX				
	80-I 7						XXXXXXXX				
	-I 76-I						XXXXXXXX				
	-I						XXXXXXXX				
	-1 72-I						XXXXXXXX				
	- I						XXXXXXXX				
	 68-I						XXXXXXXX				
	-1-00 -1						XXXXXXXX				
	-1 64-I						XXXXXXXX				
	-I						XXXXXXXXX XXXXXXXX				
	-1 60-I						XXXXXXXXX				
	-I						XXXXXXXXX				
PERC							XXXXXXXXX				
1 5/10	-I						XXXXXXXXX				
c	F 52-I						XXXXXXXXX				
-	-I						XXXXXXXX				
TOT							XXXXXXXX				
	-I						XXXXXXXX				
DEM	IAND 44-I						XXXXXXXX				
	- I						XXXXXXXX				
	4 0-I						XXXXXXXX				
	- I						XXXXXXX				
	36-I						XXXXXXX				
	- I						XXXXXXX				
	32-I						XXXXXXXX				
	-I						XXXXXXXX				
	28-I						XXXXXXXX				
	- I						XXXXXXXX				
÷	24-I						XXXXXXX				
	- I						XXXXXXX				
	20-I					:	XXXXXXXX				
	- I						XXXXXXX				
	16-I					2	XXXXXXX				
	- I						XXXXXXXX				
	12-I					2	XXXXXXXX				
	-IXXXXXXX	х				2	XXXXXXXX				
	8-1XXXXXX	х				3	XXXXXXX				
	-IXXXXXXX	х				2	XXXXXXXX				
	4-IXXXXXXX	х					XXXXXXX				
	-IXXXXXXX	х			XX		XXXXXXX				
	0-+	-++-	+	+-	+		+	+	+	+	
LEAGE RANGES>	0	50 100	250	500	750	1000	1500	2000	3000	99999	
TERVAL PERCENTAG	ES: 10.	24 0.94	0.00	0.02	0.01	2.59	86.19	0.00	0.00	0.00	
AND-WEIGHTED AV		75 55.00	187.00	489.00	659.00	943.65	1266.22	0.00	0.00	0.00	
	WEIGHTED AVERAGE:	1117.13									

Appendix-5

SOLVER REPORTS PAGE 41

SYSTEMWIDE CUSTOMER SERVICE HISTOGRAM PLOT

SAILS: REL 99-1C osnew5

GE 41								os
	48-I							
	-I							
	46-I							
	- I							
	44-I							
	-I							
	42-I							
	-I							
	40-I							
	-I							
	38-I							
	-I							
	36-I							
	-I							
	34-I							
	-I							
	32-I	XXXXXX						
	-I 30-I	XXXXXX						
	-I	XXXXXX						
PERCENT	-1 28-I	XXXXXX	XX XXXXXXXX					
PERCENT	-I		XX XXXXXXXXX					
OF	26-I		XX XXXXXXXXX					
0F	-I		XX XXXXXXXXX					
TOTAL	24-1		XX XXXXXXXXX					
101112	-I		XX XXXXXXXX					
DEMAND	22-1		XX XXXXXXXX					
			xx xxxxxxx					
	20-I		xx xxxxxxxx					
	-I		XX XXXXXXXX					
	18-I		XX XXXXXXXX					
			XX XXXXXXXX					
	16-I		xx xxxxxxx					
	-I		XX XXXXXXXX					
	1 4 -I		xxxxxxxx					
	- I		xxxxxxxx	XXXXXXXX				
	12-I		x xxxxxxxx					
	-I	XXXXXX	XXXXXXXXX	XXXXXXXX				
	10-I	XXXXXX	XXXXXXXXXX	XXXXXXXX				
	-I	XXXXXX	XXXXXXXXX	XXXXXXXX				
	8-I	XXXXXX	XXXXXXXXX	XXXXXXXX	XXXXXXXX			
	-I	XXXXXXXX XXXXXX	XXXXXXXX XX	XXXXXXXX	XXXXXXXX			
	6-I	XXXXXXXX XXXXXX	XXXXXXXXX	XXXXXXXX	XXXXXXXX			
	-IXXXXXXXX	XXXXXXXX XXXXXX	XXXXXXXXX	XXXXXXXX	XXXXXXXX			
	4-IXXXXXXXX	XXXXXXXX XXXXXX	XXXXXXXXX	XXXXXXXX	XXXXXXXX			
	-IXXXXXXXX XXXXXXX	K XXXXXXXX XXXXXX	XXXXXXXX XX	XXXXXXXX	XXXXXXXX			
	2-IXXXXXXXX XXXXXXX	x xxxxxxx xxxxxx	xxxxxxxx	XXXXXXXX	XXXXXXXX			
	-IXXXXXXXX XXXXXXX	x xxxxxx xxxxxx	xxxxxxxx	XXXXXXXX	XXXXXXXX			
	0-+	-++	+	+	+-	+	+	
LEAGE RANGES>	0 50 1	00 250	500 750) 1000	1500	2000	3000	9999
TERVAL PERCENTAGES:	5.62 3.	78 7.91 32	83 28.43	13.08	8.34	0.00	0.00	0.0
MAND-WEIGHTED AVERAGES						0.00	0.00	0.0

OLVER REP				CUSTOM	ER SERVICI	E HISTOGR	AM PLOT B	Y DISTRIBU	TION CTR			SAILS	REL 99-1C
REPORT #:	56-015											24 AI	
AGE 42				I	DISTRIBUT:	ION CTR:	1 THE	MEADOWS	КY			osnews	5
		50-I											
		- I											
		48-I											
		- I											
		46-I											
		-I											
		44-I											
		44-1 -I											
		42-I											
		-I											
		40-I											
		- I											
		38-I											
		- I				XXXXXXXX							
		36-I				XXXXXXXX							
		- I				XXXXXXXX							
		34-I				XXXXXXXX							
		-I				XXXXXXXX							
		32-I				XXXXXXXXX							
		-I				XXXXXXXXX							
		30-I					XXXXXXXX						
		-I											
	PERCENT	28-I					XXXXXXXX						
	FERCENT						XXXXXXXX						
	0.5	-I					XXXXXXXX						
	OF	26-1					XXXXXXXX						
		-I					XXXXXXXX						
	TOTAL	24-I					XXXXXXXX						
		- I				XXXXXXXX	XXXXXXXX						
	DEMAND	22~I				XXXXXXXX	XXXXXXXX						
		- I				XXXXXXXX	XXXXXXXX						
		20-I				XXXXXXXX	XXXXXXXX						
		-I				XXXXXXXX	XXXXXXXX						
		18-I					XXXXXXXX						
		-I					XXXXXXXX						
		16-I					XXXXXXXX						
							XXXXXXXX	******					
		14-I					XXXXXXXXX						
		-I											
		12-I					XXXXXXXXX						
							XXXXXXXX						
		-I					XXXXXXXX						
		10-I					XXXXXXXX						
		-I					XXXXXXXX						
		8-I			XXXXXXXX								
		- I			XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX					
		6-I			XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX					
		- I			XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX				
		4 – I			XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX				
		- I						XXXXXXXX					
		2-1						XXXXXXXXX					
		-I	Y					XXXXXXXXX					
ILEAGE RAN	NGES>	0-+	50	100									
LIGAGE RAI		0	00	100	250	500	0 /5	, 1000	1500	2000	3000	99999	
			0 11	1		20 20			E 96	0 00	. . .		
	ERCENTAGES:	100	0.31	1.66						0.00	0.00	0.00	
	GHTED AVERAG		11.38	79.09		379.45	5 617.5	L 829.58	1165.95	0.00	0.00	0.00	
OVERALL	DEMAND-WEIG	HTED AVER	AGE:	539.81									

OLVER REPORTS			CUSTOM	R SERVICE	HISTOGRAM	PLOT BY I	ISTRIBUTI	ON CTR			SAILS: RE	99-1C
REPORT #: 56-015	5										24 APRL	0
PAGE 43			I	ISTRIBUTIO	N CTR:	2 BETHLEH	EM-1802PA				osnew5	
		100-1										
		- I										
		96-I										
		-I										
		92-I										
		-I 88-I										
		-1-00 -1										
		84-1										
		-I										
		80-I										
		-I										
		76-I										
		- I										
		72-I										
		-I										
		68-I										
		-I										
		64-I T										
		-I 60-I										
		-I										
PF	RCENT	56-I	xxxxxxxx									
		-I	XXXXXXXX									
	OF	52-I	XXXXXXXX									
		-I	XXXXXXXX									
T	TAL	48-I	XXXXXXXX									
		-I	XXXXXXXX									
I	EMAND	44-I	XXXXXXXX									
		-1	XXXXXXXX									
		40-I	XXXXXXXX									
		-1 36-1	XXXXXXXXX									
		-1-02 -I	XXXXXXXX XXXXXXXX									
		32-I	XXXXXXXXX									
		-1	XXXXXXXXX									
		28-1	XXXXXXXX									
		- I	XXXXXXXX									
		24-I	XXXXXXXX									
		- I	XXXXXXXX	XXXXXXXX								
		20-I	XXXXXXXX									
		-1	XXXXXXXX									
		16-I	XXXXXXXX									
		-I 12-I	XXXXXXXXX									
		12-1 -I	XXXXXXXXX XXXXXXXXX									
		8-I 8-I	XXXXXXXXX									
		-I	XXXXXXXXX									
			XX XXXXXXXX									
			XX XXXXXXXX									
			++		+-	+	+	+	+	+	+	
LEAGE RANGES	>	0	50 100		500	750	1000	1500	2000	3000	999999	
TERVAL PERCENT			.80 56.38		0.04	0.00	0.00	0.00	0.00	0.00	0.00	
EMAND-WEIGHTED			.17 56.18	155.81	287.00	0.00	0.00	0.00	0.00	0.00	0.00	
OVERALL DEMAN	D-WEIGH	TED AVERAGE:	93.41									

OLVER	REPOR	TS		CUSTOM	ER SERVIC	E HISTOGRA	M PLOT BY	DISTRIBU	TION CTR			SAILS: RE	6 99-10
EPORT	#: 56	-015										24 APRL	0
AGE	44			1	DISTRIBUT	ION CTR:	3 ONTAR	IO INTERN	ICA			osnew5	
			50~I										
			~ I										
			48-I										
			- I										
			46-I										
			- I										
			44-I										
			-I										
			42-1										
			-I										
			40-I										
			-I										
			-1 38-1										
			-1										
			36-1										
			-I										
			34-I										
			-I										
			32-I			XXXXXXXX							
			-IXXXXXXXX			XXXXXXXX							
			30-IXXXXXXX			XXXXXXXX							
			-IXXXXXXXX			XXXXXXXX							
		PERCENT	28-IXXXXXXX			XXXXXXXX							
			-IXXXXXXXX			XXXXXXXX							
		OF	26-IXXXXXXXX			XXXXXXXX							
			-IXXXXXXXX			XXXXXXXX							
		TOTAL	24-IXXXXXXXX			XXXXXXXX							
			-IXXXXXXXX			XXXXXXXX							
		DEMAND	22-1XXXXXXXX			XXXXXXXX							
			-IXXXXXXXX			XXXXXXXX							
			20-IXXXXXXXX			XXXXXXXX							
			-IXXXXXXXX			XXXXXXXX							
			18-IXXXXXXXX			XXXXXXXX			XXXXXXXX				
			-IXXXXXXXX			XXXXXXXX			XXXXXXXX				
			16-IXXXXXXXX			XXXXXXXX			XXXXXXXX				
			-IXXXXXXXX			XXXXXXXX			XXXXXXXX				
			14-IXXXXXXXX			XXXXXXXX			XXXXXXXX				
			-IXXXXXXXX			XXXXXXXX			XXXXXXXX				
			12-IXXXXXXXX			XXXXXXXX			XXXXXXXX				
			-IXXXXXXXX			XXXXXXXX			XXXXXXXX				
			10-IXXXXXXXX			XXXXXXXX			xxxxxxx				
			-IXXXXXXXX			XXXXXXXX			XXXXXXXX				
			8-IXXXXXXXX			XXXXXXXX			XXXXXXXX				
			-IXXXXXXXXX	XXXXXXXX		XXXXXXXX			XXXXXXXX				
			6-IXXXXXXXX			XXXXXXXX			XXXXXXXX				
			-IXXXXXXXX			XXXXXXXX	x	XXXXXXX					
			4-IXXXXXXXX			XXXXXXXX		XXXXXXX					
			-IXXXXXXXX		xxxxxxxx			XXXXXXXX					
			2-1XXXXXXXX					XXXXXXXX					
			-IXXXXXXXX										
			0-++										
LEAGE	RANGE	2S>	0 50				750	1000		2000	3000	99999	
TERVA	L PERC	CENTAGES :	31.99	7.45	3.66	32.05	1.32	5.30	18.22	0.00	0.00	0.00	
MAND-	WEIGHT	ED AVERAGES	5: 32.07	62.16		/ 393.81	663.95	941 07	1136.77	0.00	0.00	0.00	

SOLVER		56-015			COSTOR	ER SERVIC	E ALSTOGR	AM PLOT B	Y DISTRIBU	TION CTR				REL 99-10
AGE		20-012				חדפידים דימייייי		Q N73.017		זארדי			24 APR	L 0
190	40		100	- T		DISTRIBUT	TOW CLK:	8 NASH	A T T T R	TN			osnew5	
				-1 -I										
			96											
				-I										
			92											
				-I										
			88											
				-I										
			84	-I										
				-I										
			80	-I										
				-I										
			76-	-I										
				- I										
			72											
				- I										
			68											
				-I										
			64	-1 -I										
			60-											
				-I				XXXXXXXX						
		PERCEN						XXXXXXXXX						
				-I				XXXXXXXXXX						
		OF	52.					XXXXXXXXX						
				- I				XXXXXXXX						
		TOTAL	48	-I				XXXXXXXX						
				-I				XXXXXXXX						
		DEMAN	ID 44.	-I				XXXXXXXX						
				- I				XXXXXXXX						
			40-	- I				XXXXXXXX						
				- I				XXXXXXXX						
			36-					XXXXXXXX						
				- I				XXXXXXXX						
			32-					XXXXXXXX						
				-I				XXXXXXXX						
			28-					XXXXXXXXX						
			- 24-	-I -T				XXXXXXXXX						
				-1 -I				XXXXXXXXX						
			20-					XXXXXXXXX XXXXXXXXX						
				-1 -I				XXXXXXXXX						
			16-					XXXXXXXXX						
				-I			******	XXXXXXXXX						
			12-					XXXXXXXXX	xxxxxxxx					
				-I				XXXXXXXXX						
				-I				XXXXXXXXX						
				-I		XXXXXXXX								
			4-	-I		XXXXXXXX								
			-	IXXXXXXXX	XXXXXXXX									
			0 -	-+	+					+	+	+	+	
ILEAG	E RA	NGES>		0 50	10	0 250					2000	3000	99999	
		ERCENTAGES GHTED AVER	: ACEC.	2.89 17.10	5 3.7					1.63	0.00	0.00	0.00	
APRIMIATIO.				I/.IO			367.53	o 048.6.	843.04	1184.45	0.00	0.00	0.00	

SOLVER REPORTS		CUSTOME	R SERVICE H	ISTOGRA	a PLOT BY	DISTRIBU	TION CTR				REL 9	_
REPORT #: 56-015 PAGE 46		•		CIPE	10 000 000	TMDC				24 AI		
AGE 46	100-1	D.	ISTRIBUTION	CTR:	TO DES MO	INES	IA			osnew	5	
	-I											
	96-I											
	-I											
	92-I											
	-I											
	88-I											
	- I											
	84-I						XXXXXXXX					
	- I						XXXXXXXX					
	80-I						XXXXXXXX					
	-I						XXXXXXXX					
	76-I						XXXXXXXX					
	- I						XXXXXXXX					
	72-I						XXXXXXXX					
	- I						XXXXXXXX					
	68-I						XXXXXXXX					
	-I						XXXXXXXX					
	64-I T						XXXXXXXX					
	-I 60-I						XXXXXXXX					
	-1						XXXXXXXXX XXXXXXXXX					
PERCENT	56-I						XXXXXXXXX					
121(021)1	-I						XXXXXXXXX					
OF	52-I						XXXXXXXX					
	- I						XXXXXXXX					
TOTAL	48-I						XXXXXXXX					
	- I						XXXXXXXX					
DEMAND	44-I						XXXXXXXX					
	-I						XXXXXXXX					
	40-I						XXXXXXXX					
	-I						XXXXXXXX					
	36-I						XXXXXXXX					
	-I 32-I						XXXXXXXX					
	32-1 -I						XXXXXXXX					
	-1 28-I						XXXXXXXX					
	-I						XXXXXXXXX XXXXXXXXX					
	24-I						XXXXXXXXX					
	-I						XXXXXXXXX					
	20-I						XXXXXXXXX					
	-I						XXXXXXXXX					
	16-I						XXXXXXXX					
	-I						XXXXXXXX					
	12-I						XXXXXXXX					
	-IXXXXXXXX						XXXXXXXX					
	8-IXXXXXXX						XXXXXXXX					
	-IXXXXXXX						XXXXXXX					
	4 -IXXXXXXXX						XXXXXXXX					
	-IXXXXXXXX						XXXXXXXX					
ILEAGE RANGES>	0-+5		250	+- 500	750	1000		2000	3000	+ 99999		
NTERVAL PERCENTAGES:	10.6	7 0.98	0.00	0.02	0.01	2.36	85.95	0.00	0.00	0.00		
EMAND-WEIGHTED AVERAG			187.00	489.00			1273.67	0.00	0.00	0.00		
	HTED AVERAGE:							0.00	0.00			