
Representing Agent Contracts with Exceptions and
Business Process Descriptions

Terrence C. Poon

Bachelor of Science in Computer Science and Engineering
Bachelor of Science in Economics

Massachusetts Institute of Technology (2001)

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 24, 2002

© 2002 Terrence C. Poon. All right reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author
Department of Electrical Engineering and Computer Science

May 24, 2002

Certified by

Accepted by ___

Benjamin N. Grosof
Thesis Supervisor

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

MA SSACHUSETTS INSTITUTE
OF TECHNOLOGY

LIBRARIES

Representing Agent Contracts with Exceptions and
Business Process Descriptions

Terrence C. Poon

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 24, 2002

Abstract

A key challenge in e-commerce is to specify the terms of the deal between buyers and
sellers, e.g., pricing and description of goods/services. Previous work developed an
approach that automates such business contracts by representing and communicating
them as modular logic-program rules. This thesis presents the SweetDeal automated
contracting system, which extends the rule-based contract representation with process
knowledge descriptions (e.g. processes, exceptions, handlers) drawn from the MIT
Process Handbook, a large previously-existing repository. This enables more complex
contracts with behavioral provisions, especially for handling exception conditions that
might arise during the execution of the contract.

For example, a contract can first identify possible exceptions like late delivery,
nonpayment, and decommitment. Next, it can specify handlers to find or fix these
exceptions, such as contingency payments, escrow services, detectors, and notifications.

Our rule-based representation allows software agents in an electronic marketplace to
create, evaluate, negotiate, and execute such complex contracts with substantial
automation. This thesis defines a software agent that creates contract proposals in a semi-
automated manner by combining modular contract provisions from a contract repository
with process knowledge from a process repository. Another novel aspect is that
SweetDeal encodes the contract provisions using an emerging Semantic Web (XML)
standard for knowledge representation of rules (RuleML). Yet another novel aspect is
that SweetDeal combines this with an emerging Semantic Web representation for
ontologies (DAML+OIL).

Thesis advisor: Benjamin N. Grosof
Title: Assistant Professor of Information Technology, MIT Sloan School of Management

Representing Agent Contracts with Exceptions and
Business Process Descriptions

Terrence C. Poon

Contents

I Introduction... 7
2 Background ... 12

2.1 Agent-Based M arketplaces .. 12
2.2 M odular Contract Provisions .. 12
2.3 Business Rules and Rule-Based Contracts... 13

2.3.1 Business Rules and Situated Courteous Logic Programs...................... 13
2.3.2 Rule-Based Contracting Using SCLP .. 15

2.4 Business Process Knowledge .. 16
2.4.1 M IT Process Handbook... 16
2.4.2 Exception Conditions ... 17
2.4.3 Process Specialization Versus Object Specialization 19

2.5 Semantic W eb... 20
2.5.1 RuleM L .. 20
2.5.2 DAM L+OIL (W eb Ontology Language)... 22

3 System Overview .. 23
3.1 Typical Negotiation Process... 23
3.2 Contracting Concepts... 24
3.3 Overall Architecture ... 26

4 Process Repository .. 28
4.1 Representing Process Knowledge ... 28

4.1.1 Advantages of Using DAM L+OIL .. 28
4.1.2 Representing the MIT Process Handbook Ontology in DAML+OIL 29
4.1.3 Issue: Property Inheritance Overrides.. 32

4.2 Querying for Process Knowledge.. 33
5 Contracting Language ... 35

5.1 Contract Ontology ... 35
5.2 Referencing Process Knowledge ... 37
5.3 Defining Contract Provisions .. 38

5.3.1 Exception handler instance.. 39
5.3.2 Contract .. 41
5.3.3 M odifying Provisions.. 42

5.4 Contract Structure.. 43
5.5 Types of Contract Sections .. 44

5.5.1 Contract Naming ... 44
5.5.2 Contract Parties... 44
5.5.3 Goods Description .. 44
5.5.4 Pricing Scheme ... 45
5.5.5 Risk Assessment ... 45

5.5.6 Exception Handler Instance.. 46
5.5.7 Parameter Value... 48
5.5.8 Attached Procedure Binding .. 49

6 Contract Fragments.. 50
6.1 M odule-Inclusion M echanism (_includes) .. 51
6.2 Syntax, Types, Creation... 52

6.2.1 Contract Template... 53
6.3 Contract Repository ... 54
6.4 Discussion.. 55

7 M arket Agent..57
7.1 Overall W orkflow .. 5
7.2 Component Details ... 59

7.2.1 Internal Repository ... 59
7.2.2 Templates .. 59
7.2.3 Composition.. 59
7.2.4 Exception Handling Analysis ... 60
7.2.5 Attached Procedure Association... 61
7.2.6 Completion .. 61

7.3 Proposal Creation W izard ... 61
8 Implementation .. 76

8.1 Process Repository ... 76
8.1.1 Interface.. 76
8.1.2 Query Handling ... 77

8.2 Contract Repository ... 77
8.3 M arket Agent.. 7 8
8.4 Lim itations .. 78

9 Conclusion .. 79
9.1 Future Directions .. 80

9.1.1 Automated Contract Evaluation and Negotiation................................. 80
9.1.2 Other Types of Contracting Parties... 80
9.1.3 Richer Negotiation Protocol... 80
9.1.4 SOAP-Enabling the System Components ... 81
9.1.5 Extending RuleML With Incorporation by Reference......................... 81
9.1.6 Property Inheritance Overrides in a DAML+OIL Ontology................. 81
9.1.7 Event Delivery for Situated Procedures.. 81
9.1.8 Inferencing Perform ance .. 82
9.1.9 Contract Fragment Integrity and Access Control................................. 82
9.1.10 Advanced Query for Contract Fragments ... 82

10 References... 83
11 Appendix ... 86

11.1 Reference: SweetDeal Predicates ... 86
11.2 Built-in Rules .. 87

5

Acknowledgements

A thesis is a long journey. The seventeen thousand words in this thesis would be incomplete if I

did not include a few more to recognize the many people who helped make it possible.

First I want to thank my thesis advisor, Benjamin Grosof. From inspiring me with initial research

ideas, to introducing me to relevant researchers, to making time in his busy schedule to help me

refine my thesis, he has given me invaluable guidance and encouragement, even through

complicating circumstances.

I would not have found this thesis topic without some wonderful UROP experiences at the MIT

Media Lab, first at the Junior Summit project and then at the Software Agents group. These were

enjoyable learning opportunities, immersing me in leading areas of research. Indeed, I was first

exposed to the concept of agent marketplaces while working for David Wang at the Agents group.

One day last year, I was talking to David about potential thesis advisors, and he asked Professor

Pattie Maes, the (former) head of the Agents group, for some suggestions. My current thesis

advisor is one of the professors she recommended.

For the thesis itself, I am grateful to several researchers at Sloan's Center for eBusiness who

helped me tremendously, particularly Mark Klein, John Quimby, George Herman, Chris

Dellarocas, and Tom Malone. My research is essentially the intersection of my advisor's work on

rule-based contracting with Malone et al's work on the MIT Process Handbook, extended by

Klein et al's work on exception handling. I had many fruitful conversations with John Quimby,

who demonstrated the Process Handbook software to me and gave me many insights into the

details of representing process knowledge. Thanks to my advisor and his RA, Youssef Kabbaj,

for their work on SweetRules, which enabled my prototype to output contracts in RuleML.

Finally, thanks to Daniel Reeves and Michael Wellman at the University of Michigan for their

work on CLP-based contracts, which served as the basis for the contracting language in this thesis.

Thanks to Ana S. Li '02 for being a special person in my life, always understanding and

encouraging me throughout this journey. Thanks most of all to my parents, who have supported

me since my childhood in Hong Kong, to New Jersey, Houston, and Boston. They have given me

the freedom to discover my own passions and the opportunities to pursue them.

1 Introduction o 6

A part of the work described here appears in the following paper:

Benjamin N. Grosof and Terrence C. Poon, "Representing Agent Contracts With Exceptions

using XML Rules, Ontologies, and Process Descriptions." To appear in Proc. International

Workshop on Rule Markup Languages for Business Rules on the Semantic Web, Sardinia, Italy,

June 2002.

1 Introduction o 7

1 Introduction

Electronic markets, where software agents represent buyers, sellers, and intermediaries, provide

automated discovery, negotiation, and execution in the contracting process for goods and services

[2]. Most current agent marketplaces only support a simple knowledge representation (KR) for

contract terms, specifying fixed values for a set of attributes like price, quantity, or delivery date.

Previous work [1][5] introduced a more expressive contract representation using modular logic-

program rules that is capable of expressing conditional relationships, where the value of one

attribute is inferred from the values of other attributes.

This thesis introduces the SweetDeal system for automated contracting, part of the larger SWEET

(Semantic WEb Enabling Technology) effort. SweetDeal extends the rule-based contract

representation with process knowledge descriptions drawn from the MIT Process Handbook (PH)

[6]. This includes Klein et al [7]'s extension to PH with knowledge about exceptions, which are

violations of the inter-agent commitments specified in a contract. SweetDeal's contract

representation enables more complex contracts with behavioral provisions, in particular exception

handling provisions that manage the exceptions that might arise during the execution of a contract.

Exception handling provisions declare possible exceptions for a contract, such as late delivery,

nonpayment, fraudulent credit payment, and decommitment, and define corresponding exception

handlers, including credit checks, contingency payments, risk payments, escrow services,

detectors, and notifications.

Exception handling is particularly important for electronic markets. According to a recent

government report [37], top categories of Internet fraud complaints in the United States in 2001

included Internet auction fraud at 42.8%, non-deliverable merchandise and payment at 20.3%,

1 Introduction o 8

and credit card fraud at 9.4%, with a total reported loss of $17.8 million. The principal advantage

of electronic markets over traditional markets is that they can rapidly bring disparate buyers and

sellers together to form contracts on an as-needed basis. However, this means that the buyer and

seller negotiating a deal often have little or no prior contact with each other. Each party could

benefit from contractual protections against misbehavior or outright fraud by the other party. In

SweetDeal, these exception handling provisions can be defined in the electronic contract itself

and negotiated in the same way as other contract provisions.

Overall, the contracting process consists of three major stages [1]:

1. Discovery: Agents find potential contracting partners.

2. Negotiation: Agents exchange proposals and counterproposals with each other to determine

mutually acceptable contract terms. This may involve iterative modification of the terms.

3. Execution: Agents execute the transactions defined by the contract provisions.

SweetDeal automates the contracting process along several dimensions [15]:

1. Automated contract communication. Logic program rules provide an expressive,

machine-understandable format for representing contracts. Unlike human languages,

logic program rules have well-defined, unambiguous semantics. This allows rule-based

contracts to be exchanged between software agents (e.g. during negotiation) or Web

services with a consistent yet implementation-independent interpretation [39].

2. Automated contract creation. This project defines software components called the

process repository and contract repository that store and retrieve business knowledge in

machine-understandable formats. SweetDeal enables software agents to create contracts

in a semi-automated fashion by combining general knowledge about business processes

and exceptions from the process repository with modular provisions from the contract

1 Introduction o 9

repository. The system guides the human user through the contract creation process,

suggesting relevant contract provisions. (See Section 7.3.)

3. Automated contract execution. A software agent executes an automated contract by

simply inferencing with the rule-based provisions. In particular, an agent can use

inference to execute the exception handlers included in a contract, allowing it to detect

and manage exceptions. Inference also generates implied obligations of the contract for

particular situations (e.g. a particular penalty amount for a late delivery). In addition,

exception handlers can invoke general business processes through attached procedures

(see Section 2.3.1).

In addition, this thesis provides a foundation for the following dimensions of automation that are

not directly addressed:

4. Automated contract evaluation. Since a software agent can identify the logical

implications of rule-based contract provisions through inferencing, it can evaluate the

utility of a contract according to some set of preferences (i.e. a utility function).

Evaluation is especially important during the negotiation stage, where agents repeatedly

compare alternate contract proposals.

5. Automated contract negotiation. The primary challenge for automated negotiation is in

the generation of counterproposals. Automated contract evaluation provides a basis for a

simple generate-and-test approach, where an agent considers alternate counterproposal

terms and picks the one with highest utility. More sophisticated approaches could search

the contract space in a more intelligent manner and take strategic considerations (i.e.

reactions from the other party) into account.

6. Automated discovery. In addition to contract provisions, the rule-based representation

may be used to specify market agent profiles. This facilitates the matchmaking process in

which market agents look for contracting partners with the desired characteristics.

1 Introduction o 10

This thesis makes novel contributions in several areas:

* Represents process knowledge from the MIT Process Handbook using an emerging

Semantic Web ontology KR (DAML+OIL) and defines a process repository that allows

agents to query the process knowledge.

" Demonstrates a limitation of DAML+OIL in representing inheritance overrides.

" Extends an existing approach to rule-based representation of contracts with the ability to

reference process knowledge and include exception handling mechanisms.

* Defines a corresponding contract representation based on an emerging Semantic Web

rule KR (RuleML).

* This is, to our knowledge, the first time that RuleML has been combined with

DAML+OIL for a substantial business application or domain situation/purpose.

" Designed an implementation of a mechanism for rule-based contracts in RuleML to be

built from reusable modular provisions, called contract fragments, that are retrieved from

contract repositories.

* Designed an implementation of the mechanisms of a market agent that largely automates

the creation of such contracts as part of a negotiation process, in support of a human user.

* Provides an overall interaction architecture for an agent marketplace with such rule-based

contracts.

Here we give an overview of the rest of this thesis. Chapter 2 describes some background

research for this project. Chapter 3 gives an overview of the major contracting concepts and

system components in SweetDeal. In Chapter 4, we use DAML+OIL to encode the PH process

knowledge and demonstrate its inability to represent inheritance overrides. In addition, we

describe the process repository interface for querying the process knowledge. Chapter 5

1 Introduction o 11

introduces our rule-based contracting language, capable of referencing process knowledge and

defining exception handling provisions. Chapter 6 extends the contracting language with modular

provisions called contract fragments. In addition, it describes contract repositories, which store

and retrieve contract fragments. Chapter 7 explains the mechanisms of a market agent that creates

contract proposals in a semi-automated fashion. In Chapter 8, we sketch some details in the

implementation of SweetDeal. Finally, in Chapter 9, we summarize the contributions of this

thesis and suggest some future research directions.

2 Background o 12

2 Background

This project builds upon several areas of prior research:

" Agent-based marketplaces

" Modular contract provisions

" Business rules and rule-based contracts

* Business process knowledge

" Semantic Web technologies: RuleML and DAML+OIL

2.1 Agent-Based Marketplaces

One established mechanism for automated electronic commerce involves intelligent software

agents that represent the desires and resources of buyers and sellers [2]. These agents meet in

electronic marketplaces and form contracts for goods and services [1]. Most current agent

marketplaces only support a relatively simple KR for contract terms, specifying values for a

predefined set of attributes such as price, quantity, and delivery date (see [2] for a review). Many

real-world contracts require more complex terms [1] involving conditional relationships, where

the value of one attribute in the contract depends on the values of other attributes. These

conditional relationships can be conveniently expressed as business rules.

2.2 Modular Contract Provisions

Modular contract provisions are provisions specified in a generalized form so that they may be re-

used in multiple contracts. Modular contract provisions are similar to boilerplate terms, except

that they are simply referenced by the contract rather than copied into the body of the contract.

CommonAccord [27] is a recently formed lawyer-world organization that advocates the use of

modular contract provisions called c-Terms ("common terms") for non-automated contracts.

2 Background o 13

They are written in HTML-formatted legalese and hosted on the CommonAccord website. A

contract incorporates c-Terms by referencing their URLs.

This thesis introduces a syntax and mechanism for modular contract provisions in automated

contracts, called contract fragments (see Chapter 6).

2.3 Business Rules and Rule-Based Contracts

2.3.1 Business Rules and Situated Courteous Logic Programs

A business rule is an if-then rule used to describe some piece of business logic. Formally, it is an

implication from an antecedent (IF clause) to a conclusion (THEN clause) in which the

antecedent may contain multiple conjoined (AND'ed) conditions [1]. A rule with only a

conclusion but no antecedent is called a fact. Rules can be used to describe terms and conditions

such as volume discounts, service provisions for refunds and other exceptional conditions, and

requirements for surrounding business processes like the lead time to place an order. Consider the

following example of volume discounting:

" (Rule A) If the buyer purchases between 50 and 100 units and accepts delivery in 5 to 10

days, then the price is $10 per unit.

* (Rule B) If the buyer purchases between 80 and 150 units and accepts delivery in 8 to 15

days, then the price is $8 per unit.

" (Rule C) If the buyer is a preferred customer, then the price is $7 per unit, regardless of

the quantity or delivery date.

* (Priority Rule 1) If both A and B apply, then Rule B 'wins', i.e. the price is $8.

* (Priority Rule 2) If both A and C apply, then Rule C wins, so the price is $7.

In addition to their expressiveness to human readers, contracts specified with business rules can

be automatically evaluated, modified, and executed by software agents.

2 Background 0 14

One language for encoding business rules is called Courteous Logic Programs (CLP) [1]. CLP is

an extension of Ordinary Logic Programs, a well-established language in artificial intelligence for

knowledge representation [3]. CLP provides the additional mechanism of prioritized conflict

handling, in which conflicting rules are resolved through pairwise mutual exclusion (mutex)

statements and priorities between rules. This mechanism allows one rule to be overridden by

another rule with higher priority. Rules may be given higher priority because they specify special

cases, come from higher-authority sources, or have been updated more recently. In particular,

contract terms can be modified during negotiation by adding higher-priority rules.

CLP rules may be encoded in several formats. The SCLPfile format is a straightforward text

format for CLP. "<-" stands for implication (i.e. "if"), "?" indicates a logical variable, and ";"

ends a rule statement. "<...>" encloses a rule label, and "//' prefixes a comment line. The

following is an SCLPfile encoding of the previous example:

<A> price(?Order,10) <-
quantity(?Order,?Q) AND greaterThanOrEquals(?Q,50) AND lessThanOrEquals(?Q,100) AND
deliveryDate(?Order,?D) AND greaterThanOrEquals(?D,5) AND lessThanOrEquals(?D,10)

 price(?Order,8) <-
quantity(?Order,?Q) AND greaterThanOrEquals(?Q,80) AND lessThanOrEquals(?Q,150) AND
deliveryDate(?Order,?D) AND greaterThanOrEquals(?D,8) AND lessThanOrEquals(?D,15)

<C> price(?Order,7) <- buyer(?Order,?Buyer) AND seller(?Order,?Seller) AND
customerType(?Buyer,?Seller,preferred)

<priorityl> overrides(B,A) ;
<priority2> overrides(CA) ;

MUTEX price(?Order,?X) AND price(?Order,?Y)
GIVEN notEquals(?X,?Y)

Figure 2-1: Pricing rules

The MUTEX statement says that there can only be one price for every order. If rules A and B both

apply during execution, then the priority rule overrides (B, A) is used to decide whether to set

the price to 10 or 8. Since rule B overrides rule A, the price would be set to 8.

2 Background o 15

An important extension to CLP is the ability to express procedural attachments, resulting in

situated courteous logic programs (SCLP) [1][12]. This allows belief expressions in the rule

system to be associated with procedure calls in a programming language like Java. There are two

kinds of procedural attachments. Sensors test for antecedent conditions using an attached

procedure. For example, if the customerType predicate is associated with the Java method

CustomerManager . getCustomerType, then the rule engine will call that method to obtain a

value for customerType. Effectors use an attached procedure to perform actions when a

consequent condition is concluded. For example, if the price predicate is associated with the

Java method Order. setPrice, then Order. setPrice will be executed when the rule engine

infers a conclusion for price.

XML representation facilitates knowledge interchange on the Web. Previously, the Business

Rules Markup Language (BRML) [1] provided an XML encoding for SCLP rules. However, the

emerging RuleML language [10], which is partly based on the design approach and criteria of

BRML, is now the preferred XML embodiment for SCLP rules [43]. RuleML is described in

Section 2.5.1.

The IBM CommonRules rule engine [13] supports inferencing with SCLP rules. SCLP has been

used in several major applications, including EECOMS, a three-year industry consortium effort

led by IBM that focused on supply chain integration for manufacturing [4]. The project used

SCLP to encode rules for supply chain processes, such as ordering lead time.

2.3.2 Rule-Based Contracting Using SCLP

ContractBot [5] presents a SCLP-based contracting language that automates the negotiation of

business contracts. The language is used to represent fully-specified executable contracts as well

2 Background o 16

as partial contracts, or contract templates, that are in the process of being negotiated. ContractBot

creates a complete, executable contract by combining the rules in the contract template with

negotiated values for contract parameters such as price, quantity, and delivery date. The Michigan

Internet AuctionBot applies this contracting language toward automated auctions, using SCLP

rules to define auction structures, auction parameters, and the domain-specific constraints,

preferences, and capabilities of buyers and sellers. AuctionBot has been used in the semi-realistic

domain of a Trading Agent Competition about travel packages [34].

2.4 Business Process Knowledge

2.4.1 MIT Process Handbook

The MIT Process Handbook [6] is a knowledge repository that describes and classifies major

business processes using the organizational concepts of decomposition, dependencies, and

specialization. The Handbook models each process as a collection of activities that can be

decomposed into sub-activities, which may themselves be processes. In turn, coordination is

modeled as the management of dependencies that represent flows of control, data, or material

between activities. Each dependency is managed by a coordination mechanism, which is the

process that controls its resource flow. Finally, processes are arranged into a taxonomy, with

generic processes at the top and increasingly specialized processes underneath. Each

specialization automatically inherits the properties of its parents. However, it may use property

overrides to explicitly remove an inherited property. Figure 2-2 shows a part of the taxonomy

with some specializations for the "Sell" process.

2 Background o 17

gl via store s c llaivia electronic store
ellviA physical store-

ellllvia face-to-fce sales

all how? allv-Adirect mail

all via other direct s diem i a t Iepn

T e em o n ac

teparti
ed

violaed. 7] cnsidrs thse volatons o be oordnatinfaleivso oire excponsaditoue

company B's~~~~~~~~~AS productadBaretosiwihn1das(omtet)Hwvrueo

ell ell what?

ell via whnt channel7

u n f o r e Is e stanc Bd a rd ite m fro s n to k
et with what tuh dl iationh? l e order

[te7 custom itan ex
l h e tio link)pell to consum isn

commitmets may evla ted.m Like proeses xeptinsarlbues rraness ina-peiliato

Sell - views

Figure 2-2: Some specializations of "Sell" in the MIT Process Handbook

2.4.2 Exception Conditions

The terms of a contract establish a set of commitments between the parties involved for the

execution of that contract. When a contract is executed, these commitments are sometimes

violated. [7] considers these violations to be coordination failures, or exceptions, and introduces

the concept of exception handlers, which are processes that manage particular exceptions.

Consider the following example. Company A agrees to pay $ 100 per unit for 200 units of

company B's product, and B agrees to ship within 15 days (commitments). However, due to

unforeseen circumstances, B only manages to ship in 20 days (exception). B pays $600 to A as

compensation for the delay (exception handler).

[7] extends the MIT Process Handbook with an exception taxonomy. Every process is mapped

(using a hasException link) to its exceptions, which are the characteristic ways in which its

commitments may be violated. Like processes, exceptions are arranged in a specialization

hierarchy, with generic exceptions on top and more specialized exceptions underneath (see Figure

2-3). Finally, each exception is mapped (using an isHandledBy link) to the processes (exception

2 Background o 18

handlers) that can be used to manage them. Since exception handlers are processes, they are

arranged in a hierarchy (see Figure 2-4) and may have their own exceptions.

Figure e xpWtioow
rimanaged dependencies

Lieock (threshing)

esurce poaching

useeons else: do it

n at ici o p e s ial dilemmas i f .tatic wots
n aoice plution the l p lolakf

cexeyspnitoast
Foragedy of the Commns

riclassified

*efault Parent Exception ctiiss d portunity

eone o Violeti
Uction agent aller (subcd Wr-001) viol*Lt.

gent uyr(contaor) vioNtin

ny agent
atchmaker violas Com m i..

ost problem

mmunication problem gplc

r nrg thing.

Figure 2-3: Some exceptions in the NIT Process Handbook

There are four kinds of exception handlers [7]. For an exception that has not occurred yet, we can

use:

" Exception anticipation processes, which identify situations where the exception is likely

to occur.

" Exception avoidance processes, which decrease or eliminate the likelihood of the

exception.

For an exception that has already occurred, we can use:

" Exception detection processes, which detect when the exception has actually occurred.

" Exception resolution processes, which resolve the exception once it has occurred.

2 Background o 19

Fie Edpt View mnfdrea

etect im dulent reputabon...
Anticiate exeption aintain reputation information

kck M13TF
stermine mwxirnurn resnr.

otorrhine behvior outside not

st exception etectvinottion

dtep prerequisite violation

eited poor deman foscst]
etect hill bidding

ertviemeout

onitorusing senfines

N hct exception te t protocol ilarbions
bserve r low p ecotity taessp

mpth prido crrentn
hanage exception

equire respoftse from subcon*
etermine [a&kof response

otec too marry Wd Cowsions
receivm, nassago frorn/dead '

Sebout exce~pion using page
otify about exeption otifabout excepolusintc mail

tityabout excepbion usihg email
reepieredllocaton

trninat bid loop. wcbionssr aw
se9t priaa and restart aucion

Figure 2-4: Some exception handlers in the MIT Process Handbook

Figure 2-5 summarizes the main concepts and relations in the MIT Process Handbook taxonomy.

Note that the exceptions associated with a process are inherited by its specializations unless

explicitly overridden. Similarly, the handlers for an exception are inherited by the specializations

of that exception, unless the property is overridden.

SProcess
hasException

I
|

Exception

',isHandledBy
CoordinationMechanism ExceptionHandler -.-- '

Figure 2-5: Entity relationship diagram for the augmented MIT Process Handbook taxonomy

2.4.3 Process Specialization Versus Object Specialization

The concept of process specialization used by the MIT Process Handbook is similar to the

traditional concept of object specialization, used by object-oriented programming languages such

2 Background 0 20

as Java as well as many ontology languages. However, there is one apparent inconsistency. A

process that overrides a property inherited from its parent could result in property deletion, which

is prohibited in object specialization. Consider a scenario where handler HI has a hasException

link to exception E, handler H2 is a specialization of HI, and H2 overrides the hasException(E)

property inherited from HI. Then H2 does not have a hasException link to E, so that property

seems to have been deleted. [8] shows that this is entirely consistent with the notion of subtyping

in object specialization. Subtyping restricts the type of a property, reducing its set of permissible

values. Similarly, specialization by deletion removes some elements from the set of permissible

values for a property. By overriding the hasException(E) property, H2 is deleting the value "E"

from the set of permissible values for the hasException attribute. Therefore, the apparent property

deletion in process specialization is conceptually compatible with object specialization. However,

as we will see in Section 4.1.3, this difference does lead to some practical difficulties.

2.5 Semantic Web

The Semantic Web [30] is an effort to extend the current World Wide Web by describing the

meaning of information in well-defined, machine-understandable formats that facilitate program-

to-program communication with high-level shared semantics. Two Semantic Web technologies

relevant to this thesis are RuleML, an XML language for logic program rules, and DAML+OIL,

an XML language for representing ontologies.

2.5.1 RuIeML

RuleML (Rule Markup Language) is an early-phase initiative to create a standard language for

exchanging rules in XML [10]. RuleML is based on ordinary logic programs (i.e. Horn logic

programs extended with negation [3]), extended by the prioritized conflict handling and

procedural attachment features of SCLP [43] as well as other expressive features like

2 Background 0 21

equivalences, equations, and rewriting. Notably, RuleML allows URIs to be used as names for

local vocabulary and knowledge subsets, such as predicates, functions, and rules. This facilitates

integration with emerging standards for ontologies on the Web, such as RDF/RDFS and

DAML+OIL. As previously mentioned, we expect RuleML to become the preferred XML

encoding for SCLP rules.

<imp>
<head>

<atom>
<_opr><rel>price</rel></_opr>
<var>Order</var>
<ind>10</ind>

</atom>
</head>
<body>

<and>
<atom>

<_opr><rel>quantity</rel></_opr>
<var>Order</var>
<var>Q</var>

</atom>
<atom>

<_opr><rel>greaterThanOrEquals</rel></_opr>
<var>Q</var>
<ind>50</ind>

</atom>
<atom>

<_opr><rel>lessThanOrEquals</rel></_opr>
<var>Q</var>
<ind>100</ind>

</atom>
<atom>

<_opr><rel>deliveryDate</rel></_opr>
<var>Order</var>
<var>D</var>

</atom>
<atom>

<_opr><rel>greaterThanOrEquals</rel></_opr>
<var>D</var>
<ind>5</ind>

</atom>
<atom>

<_opr><rel>lessThanOrEquals</rel></_opr>
<var>D</var>

<ind>10</ind>

</atom>
</and>

</body>
</imp>

Figure 2-6: RuleML encoding of the first rule from Figure 2-1

In Figure 2-6, we encode the first rule from Figure 2-1 using the Version 0.8 schema of RuleML.

As shown, the RuleML format is quite verbose. This is the typical tradeoff made by XML,

favoring self-describing capability and interoperability over compactness.

Uniform Resource Identifiers [31], a standard for naming and addressing Web resources

2 Background o 22

2.5.2 DAML+OIL (Web Ontology Language)

An ontology "defines the terms used to describe and represent an area of knowledge" [14]. Each

ontology consists of classes that represent general concepts in the domains of interest, the

relationships that can exist among these classes, and the properties that these classes may have.

Ontologies are used extensively in knowledge management. They can represent the semantics of

documents in a well-defined format that may be used by web applications and intelligent software

agents.

DAML+OIL [18] is a language for creating ontologies and marking up information in a machine

readable and understandable format. It originated from two related efforts, DARPA Agent

Markup Language (DAML) [16] and Ontology Inferencing Language (OIL) [17]. DAML+OIL is

based on RDF, an XML language that represents metadata about Web resources [20].

In August 2001, the World Wide Web Consortium created a working group to define a standard

Web ontology language [19]. DAML+OIL is the main technical point of departure for this work.

3 System Overview o 23

3 System Overview

The SweetDeal system automates the contracting process for rule-based contracts with process

knowledge. In addition to defining a contract representation that is used throughout the

negotiation and execution stages of contracting, this thesis introduces mechanisms that automate

the creation of contract proposals. In this chapter, we first introduce the simple one-buyer/one-

seller negotiation process that is considered in this thesis. Next, we present the concepts used in

defining SweetDeal contracts. Finally, we illustrate the overall architecture of SweetDeal and

describe the major system components, including the process repository, the contract repository,

and the market agent.

3.1 Typical Negotiation Process

Buyer Request for Proposal Seller
Create proposal

Evaluate; create
counterproposal Counterproposal

Evaluate; create

Counterproposal counterproposal
Evaluate; create
counterproposal Counterproposal

Evaluate
Accept

Purchase Order

Ack. Deal

Figure 3-1: Typical negotiation process: Buy UsingBilateralNegotiation

We consider a typical negotiation between one buyer and one seller [15], as shown in Figure 3-1.

The buyer initiates the process by sending a Request For Proposal (RFP) to the seller. The seller

responds with an initial proposal. If the buyer is unsatisfied with the terms in the proposal, it may

add some modifications and send back a counterproposal. The seller may respond to this with

another counterproposal. In general, this sequence of counterproposals continues until one party

3 System Overview o 24

responds with an "accept" or "reject" message. (Alternatively, the process may end if it exceeds

the time constraints defined by the negotiation protocol.) If the proposal is accepted, it becomes a

contract, and the buyer sends a Purchase Order. Finally, the seller responds with an

acknowledgement of the deal, and the negotiation phase is complete. In the execution phase, the

parties carry out the provisions specified in the contract. In particular, if any exceptions occur, the

parties will react according to the exception handling provisions in the contract.

SweetDeal gives an approach for a SCLP-based contracting language that is used throughout the

negotiation and execution stages of the contracting process. During negotiation, this language is

used to represent all the stages of the contract, including the initial proposal, the intermediate

counterproposals, and the final agreement. During execution, each market agent carries out the

contract by inferencing on the rules in the final agreement. In addition to the contracting language,

SweetDeal specifies mechanisms that automate the creation of such contract proposals by

combining process knowledge from the process repository with modular provisions from the

contract repository.

3.2 Contracting Concepts

Here we introduce some concepts used in defining rule-based contracts with process knowledge.

Many of these contracting concepts build upon entities from the MIT Process Handbook (PH).

Every PH entity is a class - it refers to an abstract type or category rather than a specific object or

individual. For example, SubcontractorIsLate is a category that encompasses all the exception

conditions where the subcontractor (i.e. seller) is late. Many contracting concepts draw upon

instances of these classes. For example, an exception instance refers to a possible occurrence of

the exception class for a particular contract.

3 System Overview a 25

A contract is an agreement between two or more parties to act according to a set of provisions.

We can view a contract as a specification for one or more processes, detailing which party does

what when [9]. These processes are instances of process classes from the MIT Process Handbook.

In this thesis, we focus on the simple scenario where each contract specifies a single process that

is an instance of BuyUsingBilateralNegotiation, the process class illustrated in Section 3.1.

In addition to attributes like product, price, quantity, and delivery date, contract terms may

include exception handling provisions. First, a contract can declare a number of exception

instances that could potentially occur during its execution. These are instances of various PH

exception classes, such as SubcontractorIsLate. Next, a contract can include exception handler

instances that handle particular exception instances. An exception handler instance consists of

rules that implement the functionality of some exception handler class, such as

PenalizeForContingency.

Finally, a contract template is a partial contract whose provisions serve as an incomplete

specification of a process. To create a contract, a market agent could start with a contract template

that contains some basic provisions and add custom provisions that are specific to the purchase

being considered.

3 System Overview o 26

3.3 Overall Architecture

Ratings for
Process Repository Contract contract Reputation

fragments Repository
Process Ontology Repository

(DAML+iOIL)
Query Engine ----....-

Query Engine
Ratings

Query for and by
contract market

Query for process fragments agents
knowledge (RuleML)

(ex. exceptions,
handlers)

fo

Attached
Procedure
Repository

-..........-

Java
classes

Market
Agents

Negotiation
messages
(Ru/eML)

LIZ- Part of this thesis Future work

Figure 3-2: Overall architecture of the SweetDeal system

Figure 3-2 shows the components of the SweetDeal system. The shaded portions are part of this

thesis and are described in later chapters. The unshaded portions with dotted outlines represent

future work that can build upon the foundations defined by this thesis.

Each market agent represents a buyer, seller, or intermediary (such as an auctioneer) in the

marketplace. During the negotiation phase, these agents exchange negotiation messages with

contract proposals and counterproposals encoded in RuleML. Chapter 1 describes the components

inside each market agent. Market agents make use of several repositories of business knowledge.

A process repository provides knowledge about processes, exceptions, and exception handlers, as

well as the relationships between them. A contract repository provides contract fragments, which

are modular contract provisions.

3 System Overview o 27

Two system components in the diagram are outside the scope of this thesis. A reputation

repository could provide reputation ratings for market agents as well as contract fragments. This

helps an agent make intelligent choices when creating a contract. An attached procedure

repository provides Java classes whose methods implement attached procedures (i.e. sensors and

effectors). This allows a market agent to download implementations of the attached procedures

that are used in a contract.

In our current prototype implementation, the system components communicate with each other

via local Java calls. However, our design makes it relatively straightforward to extend the system

to communicate using SOAP' messages over HTTP instead (see Section 8.4 for more details).

This would allow the system components to be maintained separately (e.g. by different

organizations) and located anywhere on the Internet. It addition, this would make it possible for

other software systems to remotely access the SweetDeal system components, for example to

retrieve process knowledge from the process repository.

Simple Object Access Protocol [36] is an emerging Web Services standard for exchanging XML-based
messages, including remote procedure calls.

4 Process Repository o 28

4 Process Repository

We view a contract as the specification for a process and contract design as the configuration of

that process [9]. As such, process knowledge plays a critical role in contract creation.

A process repository maintains process knowledge and provides an interface for agents to query

this knowledge. In Section 4.1, we describe an approach for representing the process knowledge

in the MIT Process Handbook (PH) as a DAML+OIL ontology. In Section 4.2, we describe the

query interface of the process repository.

4.1 Representing Process Knowledge

We use the DAML+OIL language to define the ontology for the process knowledge in the MIT

Process Handbook. There is a natural mapping between PH concepts and DAML+OIL classes.

4.1.1 Advantages of Using DAML+OIL

Before describing the representation, we consider the choice of DAML+OIL as the language for

expressing the ontology of process knowledge. DAML+OIL provides several benefits:

* There are many tools in varying stages of development to parse, manipulate, and query

DAML+OIL ontologies [22] [23] [24]. This helps us avoid creating custom tools for

standard tasks. For example, we use the Jena toolkit from HP Labs [23] to parse

DAML+OIL ontologies, programmatically traverse their resources, and make simple

inferences (see Chapter 8).

* DAML+OIL is thoroughly Web-enabled. In particular, each DAML+OIL resource (e.g.

class or property) is named by a globally-unique URI'. As a result, the resource can be

There are anonymous resources in DAML+OIL, such as Restriction elements, which do not have a URI. They only
serve to modify named resources and do not need to be referenced externally.

4 Process Repository o 29

referenced unambiguously from other XML documents on the Web, which is a key

semantic capability. As we will see in Chapter 5, this allows contracts to refer to classes

(e.g. processes, exceptions, handlers) in the process ontology.

* DAML+OIL also supports ontology sharing. This allows an ontology to define its

vocabulary terms by extending terms from other ontologies. In Chapter 5, we define a

contract ontology that extends the process ontology presented in this chapter.

* Most importantly, DAML+OIL is the basis for the Web Ontology Language Working

Group at the World Wide Web Consortium, which is expected to define the standard for

representing ontologies on the web. By using DAML+OIL, we position ourselves to take

advantage of future research and tools in this area.

4.1.2 Representing the MIT Process Handbook Ontology in DAML+OIL

In this section, we show how to represent some of the process knowledge in the MIT Process

Handbook as a DAML+OIL ontology at http://xmlcontracting.org/pr.daml, where "pr" stands

for process. (The ontology file is actually stored locally in our current prototype. However, our

research group has registered the xmi cont ract ing. org domain and intend to make it a public

resource for contracting-related ontologies as well as contract fragments - see Chapter 6.)

Before proceeding, we include some DAML+OIL header statements':

<?xml version="1.0" ?>
<rdf:RDF

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns: rdfs="http: //www.w3. org/2000/01/rdf-schema#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:xsd ="http://www.w3.org/2000/10/XMLSchema#"
xmlns ="http://xmlcontracting.org/pr.daml#"

<daml:Ontology rdf:about="">
<rdfs:comment>

An ontology of some process knowledge from the MIT Process Handbook.
</rdfs:comment>
<daml:imports rdf:resource="http://www.daml.org/2001/03/daml+oil"/>

</daml:Ontology>

Here rdf : about="" means that the ontology element describes the current document.

4 Process Repository o 30

We define the main concepts as top-level classes (recall Figure 2-5):

<daml :Class rdf: ID="Process">
<rdfs:comment>A process</rdfs:comment>

</daml:Class>

<daml :Class rdf: ID="CoordinationMechanism">
<rdfs:comment>A process that manages activities between multiple agents</rdfs:comment>

</daml:Class>

<daml:Class rdf:ID="Exception">

<rdfs:comment>A violation of an inter-agent commitment</rdfs:comment>
</daml:Class>

<daml:Class rdf:ID="ExceptionHandler">
<rdfs:subClassOf rdf:resource="#Process"/>
<rdfs:comment>A process that deals with a particular exception</rdfs:comment>

</daml:Class>

Next we define the relations between concepts as object properties:

<daml:ObjectProperty rdf:ID="hasException">
<rdfs:domain rdf:resource="#Process" />
<rdfs :range rdf: resource="#Exception" />

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="isHandledBy">
<rdfs:domain rdf:resource="#Exception" />
<rdfs:range rdf :resource="#ExceptionHandler" />

</daml: ObjectProperty>

Specializations are expressed as subclasses:

<daml :Class rdf: ID="SystemCommitmentViolation">
<rdfs:subClassOf rdf:resource="#Exception"/>
<rdfs:comment>

Violations of commitments made by the system operator to create an
environment well-suited to the task at hand.

</rdfs:comment>
</daml:Class>

<daml:Class rdf:ID="AgentCommitmentViolation">
<rdfs:subClassOf rdf:resource="#Exception"/>
<rdf s: comment>

Violations of commitments agents make to each other.
</rdfs:comment>

</daml:Class>

This is a natural representation. The Process Handbook expects each specialization to inherit the

properties of its parent, and subclasses provide this automatically.

We represent a particular relationship between concepts as a daml: hasClas s restriction.

Consider the following fragment, which defines the exception ContractorDoesNotPay and

specifies an isHandledBy link to the exception handler ProvideSafeExchangeProtocols.

4 Process Repository o 31

<daml:Class rdf:ID="ContractorDoesNotPay">
<rdfs:subClassOf rdf:resource=" #ContractorViolation" />
<rdfs:subClassOf>
<daml:Restriction>

<daml:onProperty rdf:resource="#isHandledBy"/>
<daml:hasClass rdf :resource="#ProvideSafeExchangeProtocols"/>

</daml:Restriction>
</rdfs:subClassOf>

</daml: Class>

Formally, the daml: Rest riction element here defines an anonymous class consisting of all

things whose isHandledBy property could have values of class ProvideSafeExchangeProtocols.

As a subclass of both ContractorViolation and this restriction, ContractorDoesNotPay is a

specialization of ContractorViolation that could be handled by the class

ProvideSafeExchangeProtocols.

Notice we use a daml : hasC1as s restriction here rather than a daml: t oClas s restriction' [18].

daml : t oClas s would require that the value of the isHandledBy property for all instances of

ContractorDoesNotPay must be of the class ProvideSafeExchangeProtocols. In other words, it

would exclude the possibility for any other exception handler class to handle a

ContractorDoesNotPay exception. In contrast, daml : has C1as s leaves open this possibility.

This matches the semantics of the isHandledBy link in the MIT Process Handbook, which is that

some instances of the ContractorDoesNotPay exception are known to be aptly handled by some

instances of the ProvideSafeExchangeProtocols handler. The Handbook takes the approach

(which we endorse) that it is typically desirable to treat a process repository as potentially

extensible, i.e. open. Indeed, it is often unrealistic to expect a repository to provide an exhaustive

listing of all the handlers for a given exception.

Now consider FradulentCreditPayment, a specialization of ContractorDoesNotPay:

<daml:Class rdf:ID="FradulentCreditPayment">
<rdfs:subClassOf rdf:resource="#ContractorDoesNotPay"/>

</daml :Class>

1 The dami: toClass restriction is analogous to the universal (for-all) quantifier of predicate logic, while the
daml: hasClass restriction is analogous to the existential (there-exists) quantifier of predicate logic.

4 Process Repository o 32

As a subclass, FradulentCreditPayment automatically inherits the properties of

ContractorDoesNotPay, so we conclude that FradulentCreditPayment could also be handled by

ProvideSafeExchangeProtocols. Now consider that the ProvideSafeExchangeProtocols handler

has ProvideEscrowService as a specialization:

<daml:Class rdf:ID="ProvideEscrowService">
<rdfs:subClassOf rdf:resource="#ProvideSafeExchangeProtocols"/>

</daml: Class>

We can then infer that exception instances of either ContractorDoesNotPay or

FradulentCreditPayment could be handled by instances of ProvideSafeExchangeProtocols as

well as instances of ProvideEscrowService. This demonstrates the representational power of

specialization for organizing process knowledge.

4.1.3 Issue: Property Inheritance Overrides

PH allows overrides, where a specialization explicitly omits a property inherited from its

generalization (see Section 2.4.3). This is impossible to express directly in DAML+OIL, due to

the logical monotonicity of its class system. Consider the following naive attempt at omitting the

isHandledBy ProvideSafeExchangeProtocols property from SpecialNonpayment, a fictitious

specialization of ContractorDoesNotPay:

<daml :Class rdf: ID="SpecialNonPaymentViolation">
<rdfs:subClassOf rdf:resource="#ContractorDoesNotPay"/>
<rdfs:subClassOf>
<dami:Class>

<daml :complementOf>
<daml :Restriction>
<daml:onProperty rdf:resource="#isHandledBy"/>
<daml:hasClass rdf:resource="#ProvideSafeExchangeProtocols"/>

</daml :Restriction>
</daml:complementOf>

</daml :Class>

</rdfs :subClassOf>
</daml :Class>

Since SpecialNonpayment is a subclass of ContractorDoesNotPay, we would infer that it is

handled by ProvideSafeExchangeProtocols. However, since it is a subclass of the complement of

all things that could be handled by ProvideSafeExchangeProtocols, we would infer that it could

not have the handler ProvideSafeExchangeProtocols. These two statements contradict each other,

implying that the SpecialNonpayment class must be the empty set. If we defined an instance of

4 Process Repository o 33

SpecialNonpayment, a logical inconsistency would result, since it is impossible for such an

instance to exist.

Pragmatically, this is not a critical problem, since there are as yet only a few places in the current

content of the MIT Process Handbook where overrides is used. Coping with this inability of

DAML+OIL to express overrides is an area of future work. See Section 9.1.

4.2 Querying for Process Knowledge

The process repository interface allows agents to query and retrieve process knowledge remotely.

Although each agent could simply download the entire DAML+OIL ontology file and query it

locally, this would prove too costly in terms of bandwidth and time, since real-world ontologies

may be very large. For example, the MIT Process Handbook currently has more than 10,000

entities. Moreover, since ontologies are likely to be updated often, each agent would have to

periodically download new versions of the ontology. Therefore, it makes sense for the process

repository to provide a remote query interface.

Note that there are other early-stage efforts [41] for querying DAML+OIL ontologies. Future

work could relate our remote query interface to these efforts.

An agent can perform the following actions at a process repository:

1. Query for the subclass relationships of classes in the process ontology. This query takes a

clos e d argument to specify whether to generate the transitive closure of the subclass

relationship - i.e. whether subclasses of a subclass should be returned. For example, a

query for the subclasses of ContractorViolation without closure would return

ContractorCancelsTask, ContractorDoesNotPay, etc. The results with closure would also

include FradulentCreditPayment, as it is a subclass of ContractorDoesNotPay.

4 Process Repository o 34

2. Confirm a given subclass or superclass relationship, with or without closure. For example,

a query asking whether FradulentCreditPayment is a subclass of ContractorCancelsTask

would return false.

3. Query for the values of the hasException property of a process, with or without

subclasses (specified using the withSubclasses argument). For example, a query for

the exceptions of BuyUsingBilateralNegotiation would return ContractorDoesNotPay,

SubcontractorChangesCost, SubcontractorDropsTask, SubcontractorIsLate, etc. Results

with subclasses would include FradulentCreditPayment as well.

4. Query for the isHandledBy properties of an exception, with or without subclasses. For

example, a query for the handlers of FradulentCreditPayment would return

ProvideSafeExchangeProtocols. If withSubcl asses is on, then ProvideEscrowService

would be returned as well, since it is a subclass of ProvideSafeExchangeProtocols.

See Chapter 8 for implementation details of the process repository interface.

5 Contracting Language o 35

5 Contracting Language

In this chapter, we introduce our rule-based contracting language, which allows RuleML

provisions to reference process knowledge in a DAML+OIL ontology. We explain in detail how

to use this contracting language to specify various types of provisions, including exception

handling provisions. The Appendix gives a listing of all the predicates used in SweetDeal.

Although we intend for rules to be exchanged in RuleML format, RuleML is quite verbose (recall

Figure 2-6). For ease of human-readability and to save space, this thesis shows all example rules

in the SCLPfile text format (see Section 2.3.1), which maps to RuleML in a straightforward

manner. The SweetRules software component, which is also part of the SWEET effort, performs

this translation automatically.

5.1 Contract Ontology

Before we can define contract rules, we need to extend the process ontology with an ontology for

contract concepts at http: //xmlcontracting.org/sd.daml, where "sd" stands for SweetDeal.

(Recall from Section 4.1.2 that both the process ontology and the contract ontology are stored

locally in the current prototype. We intend to set up xmicontracting. org in the near future.)

Again we begin with some DAML+OIL header statements. Notice that this ontology imports the

process ontology http: //xmlcontracting.org/pr.daml'

<?xml version='1.0' encoding='ISO-8859-1'?>
<rdf :RDF

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:xsd ="http://www.w3.org/2000/10/XMLSchema#"
xmlns ="http://xmlcontracting.org/sd.daml#" >

<daml:Ontology rdf:about="">
<daml:imports rdf:resource="http://www.daml.org/2001/03/daml+oil"/>
<daml:imports rdf:resource="http://xmlcontracting.org/pr.daml"/>

</daml:Ontology>

5 Contracting Language o 36

As described in Section 3.2, we view a contract as a specification for one or more processes. We

define the Contract class and a specFor relation that links each contract to its process(es):

<daml:Class rdf:ID="Contract">
<rdfs:subClassOf>

<daml:Restriction dami:minCardinality="l">
<daml:onProperty rdf :resource="#specFor" />

</daml:Restriction>
</rdfs:subClassOf>

</daml:Class>

<daml:ObjectProperty rdf:ID="specFor">
<rdfs:domain rdf :resource="#Contract" />
<rdfs:range rdf:resource="http://xmlcontracting.org/pr.daml#Process" />

</daml:ObjectProperty>

For the special case of contracts that specify a single process, we define ContractForOneProcess,

using a daml : c a rdinal it y restriction to limit the specFor relation to exactly one process:

<daml:Class rdf:ID="ContractForOneProcess">
<rdfs:subClassOf rdf: resouce="#Contract"/>
<rdfs :subClassof>

<daml:Restriction daml:cardinality="l">
<daml:onProperty rdf:resource="#specFor"/>

</daml:Restriction>
</rdfs:subClassOf>

</daml :Class>

A contract represents the conditions that the parties agreed upon during negotiation. We define

another concept, ContractResult, to describe the state of how the contract is actually carried out.

For example, ContractResult could describe the actual shipping date, the quality of the received

goods, the amount of payment received, etc.

<daml:Class rdf:ID="ContractResult"/>

<daml:ObjectProperty rdf:ID="result">
<rdfs:domain rdf:resource="#Contract" />
<rdfs:range rdf:resource="#ContractResult" />

</daml:ObjectProperty>

The process ontology provides the hasException property to indicate that a process could have a

particular exception. To denote that an exception actually happened during contract execution, we

define a new exceptionOccurred property on ContractResult:

<daml:ObjectProperty rdf:ID="exceptionOccurred">
<daml:domain rdf:resource="http://xmlcontracting.org/pr.daml#ContractResult"/>
<daml :range rdf : resource="http: / /xmlcont ract ing. org/pr. daml#Exception"/>

</daml:ObjectProperty>

5 Contracting Language o 37

Similarly, we introduce the exceptionLikely property. It indicates that, during contract execution,

an anticipate handler identified the current situation as one in which the specified exception is

more likely to occur (but has not actually happened yet). See Section 2.4.2.

<daml:ObjectProperty rdf: ID="exceptionLikely">
<daml:domain rdf:resource="http://xmlcontracting.org/pr.daml#ContractResult"/>
<daml:range rdf:resource="http://xmlcontracting.org/pr.daml#Exception"/>

</daml:ObjectProperty>

Finally, we introduce some relations to specify the purpose of an exception handler. A

DetectException handler detects certain exception classes, an AnticipateException handler

anticipates certain exception classes, etc. Notice that the range is Class, because we want to

identify exception classes, not exception instances. Ideally, we would limit the range to

subclasses of Exception, but DAML+OIL does not currently provide this capability.

<daml:ObjectProperty rdf:ID="detectsException">
<daml:domain rdf:resource="http://xmlcontracting.org/pr.daml#DetectException"/>
<daml:range rdf:resource="http://www.daml.org/2001/03/daml+oil#Class"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="anticipatesException">
<daml:domain rdf:resource="http://xmlcontracting.org/pr.daml#AnticipateException"/>
<daml:range rdf:resource="http://www.daml.org/2001/03/daml+oil#Class"/>

</daml:ObjectProperty>

<daml :ObjectProperty rdf:ID="avoidsException">
<daml:domain rdf:resource="http://xmlcontracting.org/pr.daml#AvoidException"/>
<daml:range rdf:resource="http://www.daml.org/2001/03/daml+oil#Class"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="resolvesException">
<daml:domain rdf:resource="http://xmlcontracting.org/pr.daml#ResolveException"/>
<daml:range rdf:resource="http://www.daml.org/2001/03/daml+oil#Class"/>

</daml:ObjectProperty>

5.2 Referencing Process Knowledge

Recall from Section 3.2 that contract entities like exception instances and exception handler

instances are related to concepts from the DAML+OIL process ontology. Here we describe how

to express these relationships in the RuleML contracting language. To our knowledge, this is the

first published description and example of such integration of DAML+OIL into RuleML.

5 Contracting Language o 38

Consider an example where a process instance p123 has a possible exception e 1 that is an

instance of the SubcontractorIsLate class. We would represent this as two SCLP facts:

http://xmlcontracting.org/pr.daml#hasException(pl23, el);
http://xmlcontracting.org/pr.daml#SubcontractorIsLate (el);

The first fact declares that p123 has an exception e 1, according to the notion of hasException

defined in the MIT Process Handbook ontology. In the second fact, we identify e l as an instance

of the DAML+OIL class SubcontractorIsLate. Notably, the system recognizes and interprets

http: //xm1contracting.org/pr. daml#hasException and

http://xmlcontracting.org/pr.daml#SubcontractorIsLate as URIs, not simple tokens, so it knows

that it can find a definition for these terms at http: //xmlcontracting. org/pr. daml. This is

apparent in the RuleML representation, which specifies each URI as the corresponding element's

hre f attribute rather than its content:

<fact>
<_head>

<atom></pr

<ind>p123</ind>
<ind>e1</ind>

</atom>
</_head>

</fact>
<fact>

<_head>
<atom>

<_opr><rel-h'ref=t'http://xmniotracting.org/pr.daml#Sub-conri7 trstat4'"/>1 </_opr>
<ind>el</ind>

</atom>
</_head>

</fact>

5.3 Defining Contract Provisions

This section uses some examples to sketch the basics of defining contract provisions that make

use of both the process ontology and the contract ontology. Sections 5.4 and 5.5 describe the

structure and syntax of contracts in greater detail.

5 Contracting Language o 39

5.3.1 Exception handler instance

Exception handler instances are implementations of handler classes defined in the process

ontology. We first consider detectLateDelivery, a detect handler instance that identifies late

deliveries. Figure 5-1 shows a listing of its rules.

http://xmlcontracting.org/pr.daml#DetectPrerequisiteViolation (detectLateDelivery);
http://xmlcontracting.org/sd.daml#detectsException(detectLateDelivery,
http://xmlcontracting.org/pr.daml#SubcontractorIsLate);

<detectLateDelivery-def> http://xmlcontracting.org/sd.daml#exceptionOccurred(?R, ?EI) <-
http://xmlcontracting.org/pr.daml#specFor(?Co,?PI) AND
http://xmlcontracting.org/pr.daml#hasException(?PI,?EI) AND
http://xmlcontracting.org/pr.daml#isHandledBy(?EI,detectLateDelivery) AND
http://xmlcontracting.org/sd.daml#result(?CO,?R) AND
shippingDate(?CO, ?COD) AND shippingDate(?R,?RD) AND
greaterThan(?RD,?COD) ;

Figure 5-1: detectLateDelivery

Here we give a rule-by-rule description of this handler instance. Since detectLateDelivery

detects violations of the shipping date requirement specified in the contract, it is an instance of

the DetectPrerequisite Violation exception handler:

http://xmlcontracting.org/pr.daml#DetectPrerequisiteViolation (detectLateDelivery);

Late delivery is a situation where the subcontractor (i.e. seller) is late. As such, we add a rule

declaring that this handler instance detects the SubcontractorIsLate exception class.

http://xmlcontracting.org/sd.daml#detectsException (detectLateDelivery,
http://xmlcontracting.org/pr.daml#SubcontractorIsLate);

This illustrates one of the practical complications in using a process ontology. We would like to

say that this handler instance detects the "late delivery" exception, but there is no such exception

in the process ontology. As such, we use the more general SubcontractorIsLate class instead.

Finally, we define late delivery as a situation where the actual shipping date ?RD (i.e. as defined

in the ContractResult) is later than the shipping date ?COD specified in the contract. When this

condition is met, then the exception instance ?EI that is handled by detectLateDelivery has

occurred. This logic is captured in the following rule:

5 Contracting Language o 40

<detectLateDeliverydef> http://xmlcontracting.org/sd. daml#exceptionOccurred(?R, ?EI) <-

http://xmlcontracing.com/pr.daml#SubcontractorIsLate (?EI) AND
http://xmlcontracting.org/pr.daml#isHandledBy(?EI,detectLateDelivery) AND
http://xmlcontracting.org/sd.daml#result(?CO,?R) AND
shippingDate(?CO, ?COD) AND shippingDate(?R,?RD) AND
greaterThan(?RD,?COD) ;

Notice that this rule is generalized, as it does not refer to any particular contract or process

instance. As expressed by the highlighted conditions, the rule applies to any contract whose

process has an exception that is handled by detectLateDelivery. To use

detectLateDelivery in another contract, we can simply copy the rules into that contract and

use them verbatim. In contrast, an ungeneralized version of the rule (see Figure 5-2) would have

to be modified for use in another contract - i.e. by replacing p123 with the new process instance

and co 123 with the new contract. We will see in Chapter 6 that generalized rules are essential for

modular provisions called contractfragments.

<detectLateDeliverydef> http: xmlcontracting.org/sd.daml#exceptionOccurred(?R, ?EI) <-

Next we cnsidera ore cope avoi *hande intneExe~lvr~nlyta hre

http://xmlcontracting.org/pr.daml#isHandledBy(?EIdetectLateDelivery) AND
http: //xmlcontracting. org/sd.daml#result (to, ?R) AND
shippingDate(i?COD) AND shippingDate(?R,?RD) AND

greaterThan(?RD,?COD) ;AN

Figure 5-2: Ungeneralized version of detectLateDelivery-def

Next we consider a more complex avoid handler instance, 1lat eDe li ve ryP en al1t y, that charges

the seller a penalty fee for late delivery.

http://xmlcontracting.org/pr.daml#PenalizeForContingency(lateDeliveryPenalty) ;
http://xmlcontracting.org/sd.daml#avoidsException(ateDeliveryPenalty,

http://xmlcontracting.org/pr.daml#SubcontractorIsLate);

tpenalty = - overdueDays * 50
<lateDeliveryPenaltydef> payment(?R, contingentPenalty, ?Penalty) <-

http://xmlcontracting.org/pr.daml#specFor(?CO,?PI) AND
http://xmlcontracting.org/pr.daml#hasException(?PI,?EI) AND
http://xmlcontracting.org/pr.daml#isHandledBy(?EI,lateDeliveryPenalty) AND
http: //xmlcontracting. org/ sd. daml #result (?CO, ?R) AND
http: //xml contracting. org/ sd. daml #except ionoccurred (?R, ?E I) AND
shippingDate (col23, ?CODate) AND shippingDate (?R, ?RDat e) AND
subtract (?RDate, ?CODate, ?OverdueDays) AND
multiply (?OverdueDays, 50, ?Resl) AND multiply(?Resl, -1, ?Penalty);

Figure 5-3: lateDeliveryPenalty

5 Contracting Language o 41

Since it imposes a penalty in the event that a late delivery occurs, lateDeliveryPenalty is an

instance of PenalizeForContingency. It helps avoid the SubcontractorIsLate exception by giving

an incentive to the seller to ensure that it does not deliver late.

http://xmlcontracting.org/pr.daml#PenalizeForContingency(lateDeliveryPenalty);
http://xmlcontracting.org/sd.daml#avoidsException (lateDeliveryPenalty,

http://xmlcontracting.org/pr.daml#SubcontractorIsLate);

Once an exception instance that is handled by lateDeliveryPenalty has occurred, we

calculate the appropriate penalty. The penalty is specified as a payment of type

contingentPenalty. It is negative, since we define all payments to be from the buyer to the

seller. The penalty formula we use in this example is to charge $50 per day late. We calculate this

penalty by multiplying the number of overdue days, which is the difference between the contract

shipping date and the actual shipping date, by -50. More complex formulas can be incorporated in

a similar manner.

// penalty = - overdueDays * 50
<lateDeliveryPenalty-def> payment(?R, contingentPenalty, ?Penalty) <-

http://xmlcontracting.org/pr.daml#specFor(?CO,?PI) AND
http://xmlcontracting.org/pr.daml#hasException(?PI,?EI) AND
http://xmlcontracting.org/pr.daml#isHandledBy (?EI, lateDeliveryPenalty) AND
http://xmlcontracting.org/sd.daml#result(?CO,?R) AND
http://xmlcontracting.org/sd.daml#exceptionOccurred(?R,?EI) AND
shippingDate(col23,?CODate) AND shippingDate(?R,?RDate) AND
subtract (?RDate, ?CODate, ?OverdueDays) AND
multiply(?OverdueDays, 50, ?Resl) AND multiply(?Resl, -1, ?Penalty)

5.3.2 Contract

Now we show how to define a contract c 123 that uses some exception handlers, as shown in

Figure 5-4.

http://xmlcontracting.org/sd.daml#contract(col23);
http://xmlcontracting.org/sd.daml#specFor(col23,p123);
http://xmlcontracting.org/sd.daml#BuyWithBilateralNegotiation(p123);

http://xmlcontracting.org/pr.daml#hasException(p123,el);
http://xmlcontracting.org/pr.daml#SubcontractorIsLate(el);
<el-detect> http://xmlcontracting.org/pr.daml#isHandledBy(el,detectLateDelivery);
<el avoid> http://xmlcontracting.org/pr.daml#isHandledBy(el,lateDeliveryRiskPayment);

Figure 5-4: Provisions in contract co123

c 123 is an instance of the Contract class from the contract ontology. It is the specification for

p123, an instance of the BuyWithBilateralNegotiation process from the process ontology:

5 Contracting Language o 42

http://xmlcontracting.org/sd.daml#Contract(co123);
http://xmlcontracting.org/sd.daml#specFor (co123,p123);
http://xmlcontracting.org/sd.daml#BuyWithBilateralNegotiation (p1

2 3);

The process ontology lists SubcontractorIsLate as one of the exceptions for

BuyWithBilateralNegotation. This suggests that our process instance has a potential exception

instance e 1 that is an instance of SubcontractorIsLate. We declare this with two rules:

http://xmlcontracting.org/pr.daml#hasException(p123,el);
http://xmlcontracting.org/pr.daml#SubcontractorIsLate (el);

Finally, we set up a mechanism to manage this possible exception by associating e 1 with

detectLateDelivery as a detect handler and lateDeliveryRiskPayment as an avoid

handler:

<el-detect> http://xmlcontracting.org/pr.daml#isHandledBy(el,detectLateDelivery);
<elavoid> http://xmlcontracting.org/pr.daml#isHandledBy(el,lateDeliveryRiskPayment);

5.3.3 Modifying Provisions

The prioritized overrides mechanism of SCLP provides a convenient way to modify contract

provisions by simply adding new rules, without removing or modifying any existing rules. This is

particularly useful for creating counterproposals during negotiation.

For example, how do we augment the previous provisions so that el is avoided by

lateDeliveryPenalty instead of lateDeliveryRiskPayment? We can add the following

facts:

<elavoid2> http://xmlcontracting.org/pr.daml#isHandledBy(el,lateDeliveryPenalty);
MUTEX

http://xmlcontracting.org/pr.daml#isHandledBy(el,lateDeliveryRiskPayment) AND
http://xmlcontracting.org/pr.daml#isHandledBy(el,lateDeliveryPenalty);

overrides(elavoid2,eiavoid);

The MUTEX statement says that el cannot be handled by both lateDeliveryRiskPayment

and lateDeliveryPenalty. We use an overrides fact to choose between the two. Since we

declare the new handler declaration elavoid2 to take precedence over the existing declaration

5 Contracting Language o 43

el-avoid, only eliavoid2 takes effect, so that el is now handled by detect LateDelivery

and lateDeliveryPenalty, but not lateDeliveryRiskPayment.

5.4 Contract Structure

Contract
Contract Naming (required)

Contract Parties (required)

Goods Description (required)

Pricing Scheme

Exception Handler Instance

Parameter Values

Solo Extension
Risk Assessment

Attached Procedure Binding

Figure 5-5: Typical contract structure

The rules in a contract are conceptually grouped into a number of contract sections, which

describe different provisions (Figure 5-5). The contract consists of a set of contract sections that

is exchanged with the other parties in the negotiation. In addition, each market agent may

associate with the contract a number of provisions that it does not share with the other parties (i.e.

provisions that are private to the agent itself), called the solo extension. An agent could use the

solo extension for proprietary knowledge that it does not want to disclose, such as its own

valuation or business rules. In addition, the solo extension could be used for rules that do not

apply to other parties, such as attached procedure bindings that refer to Java classes and methods

which may not be available to all the parties in the negotiation (see Section 5.5.8).

5 Contracting Language o 44

5.5 Types of Contract Sections

In this section, we describe the different types of contract sections in detail. Only contract naming,

contract parties, and goods description are required for every contract; the other types of contract

sections are optional. We illustrate each type using examples from a scenario where Acme, a

small firm in Mexico, is looking to purchase plastic product #425 from Plastics Etc., a large firm

in the United States. All the example rules outside of contract naming, contract parties, and

goods description are generalized - i.e. they do not refer to specific contracts or process instances.

(Recall from Section 5.3.1 that only generalized rules can be part of a contract fragment.)

5.5.1 Contract Naming
(required)

This section names the contract, the process associated with the contract, and the contract result.

In this example, contract co123 is a specification for process co123_process, an instance of

BuyWithBilateralNegotiation. co12 3_re s is the ContractResult of co12 3.

http://xmlcontracting.org/sd.daml#Contrac(co123);
http: //xmlcontracting.org/sd.daml#specFor (co123, col23_process);
http://xmlcontracting.org/sd.daml#BuyWithBilateralNegotiation (col23_process);
http://xmlcontracting.org/sd.daml#result(co123,col23_res);

5.5.2 Contract Parties
(required)

Here we name the parties in the contract and use rules to describe their attributes. In this thesis,

we consider a simple scenario with one buyer and one seller.

buyer (co123, acme);
seller(co123,plasticsetc);
country(acme,Mexico);
country(plastics-etc,USA);
firmSize(acme,small);
firmSize(plastics-etc,large);

5.5.3 Goods Description
(required)

Similarly, goods description names the products or services for this contract and describes them

using rules. This thesis considers a simple scenario where each contract is for a single product.

product(co123,plastic425);

5 Contracting Language o 45

5.5.4 Pricing Scheme

The pricing scheme is a set of rules that are used to determine the price. The price could be

specified as a function of attributes like quantity, quality, or shipping date.

The example pricing scheme st dVolP ricing defines two possible prices as a function of

quantity and shipping date, where the shipping date is defined relative to the order date (e.g. "5"

means "5 days after the order date"). The standard price is $50, but if an order is large enough

and the shipping date required is not too urgent, then it is eligible for the lower volume price of

$45. Notice that we use priority overrides to naturally express the conditions for the two prices.

<standard> p = 50 if 100<=Q<=1000 and 10<=D<=20
<volume> p = 45 if 700<=Q<=1000 and 15<=D<=20

<standard> price(?CO, 50) <-
quantity(?CO, ?Q) AND
greaterThanOrEquals(?Q, 100) AND equalsOrLessThan(?Q, 1000) AND
shippingDate(?CO, ?D) AND
greaterThanOrEquals(?D, 10) AND equalsOrLessThan(?D, 20)

<volume> price(?CO, 45) <-
quantity(?CO, ?Q) AND
greaterThanOrEquals(?Q, 700) AND equalsOrLessThan(?Q, 1000) AND
shippingDate(?CO, ?D) AND
greaterThanOrEquals(?D, 15) AND equalsOrLessThan(?D, 20)

overrides(volume, standard)

Figure 5-6: stdVolPricing

5.5.5 Risk Assessment

When creating a contract, how do we decide which exceptions are most pertinent? The process

ontology gives the exceptions that are associated with a process, but it does not indicate which

ones are more likely to occur for a given situation (i.e. process instance). A risk assessment is a

set of rules that estimate the expected conditional probability of a particular exception given a

contract's attributes, such as characteristics of the buyer, seller, or product. Naturally, this

probability ranges from 0 to 1, where 1 is the greatest risk. It might, for example, be calculated as

a statistical average over contracts with the given attribute values, if such information were

available. Each risk assessment includes a riskFor statement to indicate the exception that it

calculates the risk for.

5 Contracting Language o 46

The following example, nonpaymentRisk, specifies the conditional risk for

ContractorDoesNotPay as an average of two risk components: the size of the buyer firm and

whether the purchase is international. The risk of nonpayment is higher if the buyer firm is small

or the purchase is international. For example, a contract with a small buyer and an international

purchase would be estimated to have (0.08+0.24)/2 = 16% risk of nonpayment, while one with a

large firm and a domestic purchase would have a risk of (0.02+0.04)/2 = 3%. This is clearly a

very simplistic approach. More sophisticated approaches for estimating risk probabilities could

employ Bayesian networks [40].

riskFor(nonpaymentRisk, http://xmlcontracting.org/pr.daml#ContractorDoesNotPay) ;

/*** Conditional risk components:
// whether the buyer is a small company
<rc> riskComponent(?C,http://xmlcontracting.org/pr.daml#ContractorDoesNotPay,

businessSize,0.08) <-
buyer (?C, ?Buyer) AND firmSize (?Buyer, small);

<rcdefault> riskComponent(?C,http://xmlcontracting.org/pr.daml#ContractorDoesNotPay,
businessSize,0.02) <- http://xmlcontracting.org/sd.daml#Contract(?C);

// whether the purchase is international
<rc> riskComponent(?C,http://xmlcontracting.org/pr.daml#ContractorDoesNotPay,

internationality,0.24) <-
buyer(?C,?Buyer) AND seller(?C,?Seller) AND
country (?Buyer, ?BCountry) AND country(?Seller, ?SCountry) AND
notEquals(?BCountry,?SCountry);

<rcdefault> riskComponent(?C,http://xmlcontracting.org/pr.daml#ContractorDoesNotPay,
internationality,0.04) <- http://xmlcontracting.org/sd.daml#Contract(?C);

overrides(rc,rc-default);

// *** Conditional risk function
// Calculate the risk score as the average of the risk components
<riskcond> risk(?C,http://xmlcontracting.org/pr.daml#ContractorDoesNotPay,?Risk) <-

riskComponent(?C,http://xmlcontracting.org/pr.daml#ContractorDoesNotPay,
businessSize,?Size) AND
riskComponent(?C,http://xmlcontracting.org/pr.daml#ContractorDoesNotPay,
internationality,?Intl) AND
add(?Size,?Intl,?Total) AND divide(?Total,2.0,?Risk)

Figure 5-7: nonpaymentRisk

5.5.6 Exception Handler Instance

Each exception handler instance is an implementation of an exception handler class from the

process ontology. As previously described, a contract uses the isHandledBy predicate to

associate an exception instance with a handler instance. The following fact declares that the

exception instance el is handled by detect LateDelivery:

5 Contracting Language o 47

http://xmlcontracting.org/pr.daml#isHandledBy(el, detectLateDelivery);

The following sections illustrate the four types of handlers instances through examples.

Detect handler

See detectLateDelivery in Section 5.3.1.

Anticipate handler

One anticipate handler class in the process ontology is CheckCreditLine. Figure 5-8 presents an

instance that anticipates ContractorDoesNotPay exceptions by checking whether the buyer's

credit rating is low. If so, then the handler instance declares that the exception is likely. The credit

rating is actually obtained using a sensor attached procedure called creditRat ing. Notice that

we use the sens able predicate to declare to SweetDeal that we intend for creditRating to be

bound to a sensor. See Section 5.5.8.

http://xmlcontracting.org/pr.daml#CheckCreditLine (checkCreditRating);
http://xmlcontracting.org/sd.daml#anticipatesException(

checkCreditRating, http://xmlcontracting.org/pr.daml#ContractorDoesNotPay);

http://xmlcontracting.org/sd.daml#exceptionLikely(?R, ?EI) <-
http://xmlcontracting.org/pr.daml#specFor(?CO,?PI) AND
http://xmlcontracting.org/pr.daml#hasException(?PI,?EI) AND
http://xmlcontracting.org/pr.daml#isHandledBy(?EI,checkCreditRating) AND
http://xmlcontracting.org/sd.daml#result(?CO,?R) AND
buyer(?CO, ?Buyer) AND creditRating(?Buyer, low);

sensable(creditRating);

Figure 5-8: checkCreditRating

Avoid handler

Here we present an augmented version of lateDeliveryPenalty from Section 5.3.1. Recall

that the original lateDeliveryPenalty imposed a penalty of $50 per day late. What if we

want to use this handler instance in multiple contracts with different penalty amounts? The

modified rules in Figure 5-9 introduce a lateDeliveryPerUnitPerDayPenalty parameter

that allows each contract to configure its own penalty amount. See Section 5.5.7 for a discussion

of parameters and parameter values.

5 Contracting Language o 48

http://xmlcontracting.org/pr.daml#PenalizeForContingency(lateDeliveryPenalty);
http://xmlcontracting.org/sd.daml#avoidsException(lateDeliveryPenalty,
http://xmlcontracting.org/pr.daml#SubcontractorIsLate);

// penalty = - overdueDays * perDayPenalty
<lateDeliveryPenalty-def> payment(?R, contingentPenalty, ?Penalty) <-

http://xmlcontracting.org/pr.daml#specFor(?CO,?PI) AND
http://xmlcontracting.org/pr.daml#hasException (?PI, ?EI) AND
http://xmlcontracting.org/pr.daml#isHandledBy(?EI,lateDeliveryPenalty) AND
http: //xmlcontracting. org/sd.daml#result (?CO, ?R) AND
http://xmlcontracting.org/sd.daml#exceptionoccurred(?R, ?EI) AND
shippingDate(col23,?CODate) AND shippingDate(?R,?RDate) AND
subtract(?RDate,?CODate,?OverdueDavs) AND

?Resl) AND multiply(?Resl, -1, ?Penalty)

Figure 5-9: lateDeliveryPenalty with parameter

Resolve handler

A simple way to resolve an exception is to notify someone in the firm who is responsible for the

process. emai lNot i f y, an instance of the NotifyAboutExceptionUsingEmail handler class, sends

an email notification when an exception occurs. Since emai lNot i f y can notify about exceptions

of any class, it declares that it resolves the Exception class. The email sending itself is

accomplished using an effector attached procedure called not i f yByEmai 1. We use the

e f fectable predicate to declare that we intend for it to be bound to an effector. See Section

5.5.8.

http://xmlcontracting.org/pr.daml#NotifyAboutExceptionUsingEmail(emailNotify);
http://xmlcontracting.org/sd. daml#resolvesException (emailNotify,

http://xmlcontracting.org/pr.daml#Exception);

notifyByEmail(?R,?EI) <-
http://xmlcontracting.org/pr.daml#specFor(?CO,?PI) AND
http://xmlcontracting.org/pr.daml#hasException(?PI,?EI) AND
http://xmlcontracting.org/pr.daml#isHandledBy(?EI,emailNotify) AND

http://xmlcontracting.org/sd.daml#result(?CO, ?R) AND
http://xmlcontracting.org/sd.daml#exceptionOccurred(?R,?EI);

effectable(notifyByEmail);

Figure 5-10: emailNotify

5.5.7 Parameter Value

Any contract section can use the parameter predicate to declare a parameter. For example, the

following rule from Figure 5-9 declares lateDeliveryPerDayPenalty as a parameter:

5 Contracting Language o 49

parameter(?CO, lateDeliveryPerDayPenalty) <-
http://xmlcontracting.org/sd.daml#Contract(?CO);

The parameter value contract section consists of parametervalue facts that set the values for

various parameters. For example, this fact sets the penalty for late delivery to be $32 per day:

parameterValue (col23, lateDeliveryPerDayPenalty, 32);

Note that a contract proposal does not have to specify values for all the parameters. Parameters

left unconfigured may be decided during negotiation. (Indeed, unconfigured parameters influence

the nature of the negotiation.) All parameters must be configured in a completed contract.

5.5.8 Attached Procedure Binding

Recall from Section 2.2 that attached procedures allow SCLP rules to access other software

systems. Sensors test for certain conditions, while effectors perform actions. The SCLP

mechanism allows rules to use an attached procedure independently from that procedure's

binding to a Java method. For example, checkCreditRating. cip (Figure 5-8) uses the

creditRating sensor without specifying how it is implemented. We use the sensable and

e f fect able predicates as controlled hints of which predicates are intended to be bound to

attached procedures. These hints may be used by an editor (see Section 7.3) to prompt the user to

select the appropriate bindings. They have no semantic impact, however.

The actual binding from a predicate to a Java method is defined in an attached procedure binding,

which consists of a number of SCLP binding statements. The following example binding

associates the creditRating predicate with the getcreditRating method of the Java class

sweet.deal.aprocs.OrderManager.

Sensor: creditRating
Class: OrderManager
Method: getCreditRating
BindingRequirement: (BOUND,FREE)
path: "sweet.deal.aprocs"

Figure 5-11: creditRatingSensor

6 Contract Fragments o 50

6 Contract Fragments

One of the advantages of using a declarative, rule-based representation for contracts is that we

can easily compose a contract from reusable pieces. In this chapter, we introduce contract

fragments - self-contained and reusable modules of contract provisions. Contract fragments are

contract sections that have been separated from a contract, cast in general terms, and named by a

URI, allowing them to be used by multiple contracts. As suggested by Figure 6-1, this allows us

to construct a contract by specifying which contract fragments to include as provisions. Instead of

copying the rules of the contract fragments into the contract, we simply add -includes

statements that reference their URIs. This is called incorporation by reference.

Contract

Contract Naming (required)

Contract Parties (required)

Goods Description (required)

includes
- - - - - - - - - - - - - - - - - -

includes

includes

Parameter Values

Solo Extension

| includes --

-.. .

Template

_includes

includes

FException Handler Instance

Exception Handler Instance

Pricing Scheme

Exception Handler Instance

Risk Assessment

Attached Procedure Binding

Figure 6-1: Typical structure of a contract with included contract fragments.

In this chapter, we first explain the mechanism for processing contracts with included contract

fragments. Next, we describe the syntax of contract fragments. After that, we introduce contract

6 Contract Fragments o 51

repositories, which provide a storehouse for contract fragments and an interface to query for them

based on specific attributes. Finally, we discuss some benefits and challenges of using contract

fragments.

6.1 Module-Inclusion Mechanism (_includes)

A contract uses the special _includes predicate to incorporate a contract fragment as part of its

provisions. For example, if a contract wants to include a contract fragment named by the URI

http: //www.xmlcontracting.org/cf/detectLateDelivery.c1p, it would have the following fact:

_includes (http://www.xmlcontracting. org/cf/detectLateDelivery. cip);

How does SweetDeal evaluate and execute a contract that includes contract fragments? For every

_includes statement that it finds in the contract provisions, the system downloads the rules

from the associated URI and adds them to the active ruleset of rules to be evaluated for this

contract. This mechanism is recursive - i.e. if an included contract fragment contains _includes

statements, then those contract fragments will be downloaded and added to the active ruleset as

well. In addition, it keeps track of which contract fragments it has included and will not include

the same contract fragment twice, thus avoiding cycles.

With incorporation by reference, the included contract fragments are, by default, not sent along

with the contract proposal. However, there are certain scenarios where sending along a courtesy

copy of some of the included contract fragments may be helpful. A courtesy copy could save the

other parties the trouble of downloading an infrequently-used contract fragment. In addition, it

could provide a fallback option in case the contract repository becomes inaccessible, for example

if the server or the network goes down.

6 Contract Fragments o 52

Extending RuleML to support incorporation by reference is an area of future work. A possible

approach is to use XML Inclusions (XInclude) [26], which was published by the World Wide

Web Consortium as a candidate recommendation in February 2002. XInclude defines a general

purpose mechanism for an XML document to include (i.e. be merged with) other XML

documents. Notably, XInclude has a fallback mechanism that is similar to the notion of a courtesy

copy, although its processing model only uses the fallback content if the included document is not

available.

6.2 Syntax, Types, Creation

The syntax of contract fragments is largely similar to that of contract sections, but there are a few

important differences. We illustrate this by converting the detectLateDelivery contract

section from Figure 5-1 into the contract fragment in Figure 6-2.

http: //xmlcontracting. org/pr. daml#DetectPrerequisiteViolation

http://xmlcontracting.org/sd.daml#detectsException(

http://xmlcontracting.org/pr.daml#SubcontractorIsLate);

<detectLateDelivery-def> http://xmlcontracting.org/sd.daml#exceptionOccurred(?R, ?EI) <-
http://xmlcontracting.org/pr.daml#specFor(?CO,?PI) AND
http: //xmlcontracting. org/pr. daml#hasException (?P I, ?EI) AND
http://xmlcontracting.org/pr.daml#isHandledBy(?EI,

hittp:,//xmlconitractin~g,org/cf/detectLateD -elivery.olp) AND
http://xmlcontracting.org/sd.daml#result(col23,?R) AND
shippingDate (?CO, ?COD) AND shippingDate (?R, ?RD) AND
greaterThan(?RD,?COD) ;

Figure 6-2: http://xmlcontracting.org/cf/detectLateDelivery.clp

First, we ensure that all the rules are generalized and make no reference to any specific contract

or process instance. This is already the case for detectLateDelivery. Second, we assign a

URI name to the contract fragment, so that any contract can refer to it unambiguously. We use

http://xmlcontracting.org/cf/detectLateDelivery.clp for this example. As we will see in

Section 6.3, xmlcontracting. org is a contract repository that hosts many contract fragments.

Finally, we add a cont ractFragment fact to indicate the type of this contract fragment (see

Table 6-1). Our example is a contract fragment of type handler:

6 Contract Fragments o 53

contractFragment(http://xmlcontracting.org/cf/detectLateDelivery.clp, handler);

contract fragment type type name
exception handler instance handler
risk assessment riskAssessment
pricing scheme pricing
attached procedure binding aprocBinding
contract template template

Table 6-1: Contract fragment types

6.2.1 Contract Template

Contract fragments introduce a new type of provision called contract template, which is simply a

partial contract with some number of arbitrary provisions. For example, a template could declare

some exception instances, specify their risk assessments, and specify their handler instances.

Templates provide a "shortcut" to contract creation by providing some commonly-used

provisions, allowing the user to focus on adding custom provisions that are specific to the

situation. Similar to a contract, a template uses the templateFor predicate to indicate the

process class that it specifies.

Figure 6-3 shows an example template for the BuyUsingBilateralNegotiation process. First, it

declares a SubcontractorIsLate exception e 1. Next, it incorporates two exception handler contract

fragments, http: //xmlcontracting.org/cf/detectLateDelivery.clp and

http://xmlcontracting.org/cf/lateDeliveryPenalty.clp, and specifies them to be handlers for el.

Figure 6-3: http://xmlcontracting.org/cf/bilateralBuy.clp

contractFragment(http://xmlcontracting.org/cf/bilateralBuy.clp, template);
templateFor(http://xmlcontracting.org/cf/bilateralBuy.clp,

http://xmlcontracting.org/pr.daml#BuyUsingBilateralNegotiation)

http://xmlcontracting.org/pr.daml#hasException(?PI, el) <-
http://xmlcontracting.org/sd.daml#specFor(?CO,?PI);

http://xmlcontracting.org/pr.daml#SubcontractorIsLate(e);

http://xmlcontracting.org/pr. daml#isHandledBy (el,
http://xmlcontracting.org/cf/detectLateDelivery.clp);

_include (http://xmlcontracting.org/cf/detectLateDelivery.clp);

http://xmlcontracting.org/pr.daml#isHandledBy(el,
http://xmlcontracting.org/cf/lateDeliveryPenalty.clp);

include (http://xmlcontracting.org/cf/lateDeliveryPenalty.clp);

6 Contract Fragments o 54

6.3 Contract Repository

Contract fragments are stored in contract repositories. A contract repository functions as a server

for downloading contract fragments as well as a query interface for finding them. In general, a

contract could include contract fragments from multiple contract repositories.

As a server, a contract repository provides a URI name for every contract fragment. For example,

the contract fragments of a contract repository at xmlcontracting. org could have URIs of the

form http: //xmlcontracting. org/cf /fragmentName. This aspect of a contract repository

could be provided by a standard HTTP server.

How do market agents find contract fragments at a contract repository? This functionality is

provided by the query interface. Here we describe a simple indexing mechanism that allows

agents to query for contract fragments based on pre-defined sets of attributes. An area of future

research is to develop better index and query mechanisms.

For each type of contract fragment, we select an attribute that is used to index and query contract

fragments of that type. Thus we can maintain a hash table where contract fragments are keyed by

that attribute. Table 6-2 shows the index attribute for each contract fragment type.

contract fragment type index attribute

exception handler instance exception handler class

risk assessment exception class

pricing scheme none

attached procedure binding attached procedure predicate

contract template process class

Table 6-2: Index attribute for each contract fragment type.

In addition, we allow queries by (exception handler, exception) pairs for exception handler

instances, since agents may only be interested in handler instances that deal with a certain

6 Contract Fragments o 55

exception. For these queries, we return handler instances that deal with the specified exception or

any of its superclasses. If a handler instance handles a certain exception class, it should be able to

handle all of its subclasses as well.

6.4 Discussion

Why should we use contract fragments instead of contract sections? What problems are

introduced by contract fragments? CommonAccord's [27] non-automated c-Terms (see Section

2.2) present similar benefits and challenges as contract fragments in SweetDeal.

Contract fragments provide several benefits:

* Modularity: Contract fragments are self-contained and describe the terms that they

implement. As a result, a complete contract may be constructed by simply including

contract fragments that realize the desired provisions.

* Reuse: Contract fragments can substantially reduce the effort of creating a contract.

Instead of trying to write the terms anew every time, we can simply include a contract

fragment that has been known to work in the past.

* Best practice: There may be different ways to implement any given provision. Contract

repositories provide an easy way to organize and retrieve contract fragments that

implement similar terms. In addition, one could use a reputation repository that maintains

a reputation score for each contract fragment. After every use of a contract fragment in

the marketplace, its score could be updated by soliciting ratings from the agents involved.

Using these scores, the system could suggest which contract fragments best implement a

particular provision.

" Human cognitive cost: In addition to easing contract creation, the use of contract

fragments may make it easier for people to understand a contract. A person could avoid

reading the details of a particular provision if that provision is implemented by a contract

6 Contract Fragments o 56

fragment that he is familiar with. This allows him to focus on the unique parts of the

contract - i.e. those that differ from "standard practice".

* Legal implications: As suggested by the CommonAccord project, incorporation by

reference is a legally accepted practice. Therefore, a contract with fragments included by

reference has equivalent legal power as one where those provisions are copied into the

body of the contract.

Contract fragments also raise several challenges which could be basis for future work:

* Content integrity: How do we ensure that the contents of a contract fragment referenced

in a contract will remain the same when other parties access it? This is related to the more

general issue of URL persistence [29]. One solution is for contract repositories to ensure

as an organizational commitment that the contract fragment at a particular URI will never

change. Newer versions of that contract fragment will be assigned different URIs.

* Access control: Complex contract fragments may be valuable intellectual property. A

company that develops an effective contract fragment may seek to limit the parties that

can access it. There is a tension between this proprietary desire and the universal access

encouraged by URIs. Contract repositories could restrict access based on the requesting

client.

7 Market Agent o 57

7 Market Agent

Market agents are software agents that represent the participants in the electronic marketplace.

Although this thesis focuses on a simple scenario with one buyer and one seller, marketplaces

could in general have multiple buyers and sellers, as well as intermediaries like auctioneers and

insurance agencies. In this chapter, we first give an overview of how the components of the

market agent can automate contract creation, negotiation, and execution. Next, we explain the

behavior of each component in detail. Finally, we present the Proposal Creation Wizard, which

combines the market agent components in a graphical interface for creating contract proposals.

Templates Composition Exception Handling Completion Evaluation Negotiation
Analysis m.1

Attached Procedure Execution
Intemal Association

Market Agent Repository

ETl-1 Part of this thesis Future work

Figure 7-1: Components of a market agent.

7.1 Overall Workflow

As shown in Figure 7-1, a market agent uses several mechanisms to create, evaluate, negotiate,

and execute contracts. This thesis specifies the core components for proposal creation. The

Evaluation, Negotiation, and Execution components are areas for future work.

To create a contract proposal, a market agent first asks the user for the process class to be

specified by the contract, which is added to the proposal as a contract naming contract section.

Next, the agent lets the user specify the contract parties, the contract goods, and their attributes,

which are added to the proposal as contract parties and goods description contract sections. In the

following step, the Templates component lets the user choose a contract template for the selected

7 Market Agent o 58

process from a contract repository. The Composition component adds this contract fragment to

the proposal. Then the agent prompts the user to select a pricing scheme, which is also added to

the proposal using Composition. After that, the agent performs Exception Handling Analysis to

identify the possible exceptions for this proposal and prompt the user to select risk assessments

and exception handler instances for each exception. These contract fragments are then added to

the proposal. In Attached Procedure Association, the agent asks the user to select bindings for the

sensors and effectors in the proposal. The final step, Completion, allows the user to set the values

for parameters in the proposal.

The remaining negotiation and execution stages are not considered in this thesis, but we outline

them here to complete the workflow. After proposal creation, the agent's Negotiation component

begins the negotiation by sending the proposal to the other party as a RuleML message. (Note

that this thesis does not designate an agent communication language for carrying the RuleML

proposals between agents. See [28] and [38] for work in this area.) After receiving the proposal,

the other agent uses the Evaluation component to calculate a utility score for the proposal based

on its preferences. If the user is not satisfied with these provisions (i.e. he believes that he can

negotiate for a contract that achieves higher utility), he creates a counterproposal by changing

parameter values or specifying different exception handlers. Finally, the agent uses the

Negotiation component to send the counterproposal back to the other party.

On the other hand, if the user is satisfied with the proposal it receives from the other party, then

he tells the agent to send back an accept message. The accepted proposal then becomes a contract,

and the execution phase begins. Each party uses its Execution module to carry out the provisions

of the contract through inference on the rules. When an exception condition occurs, the rules of

its associated detect exception handler will fire and assert the presence of the exception. Then the

7 Market Agent o 59

rules of any associated avoid exception or resolve exception handlers will fire, executing the

provisions for fixing this exception. Once execution completes, the contract has been fulfilled.

Future work could automate the contracting process to a greater degree. For example, once an

Evaluation component is developed, it could help the agent choose a pricing scheme

automatically, by comparing the expected utility scores from using different pricing schemes. A

similar approach could be used to automatically choose advantageous parameter values. In

general, the Evaluation component could be part of a strategy for automatically generating

proposals and counterproposals. Such strategies are a current area of research [9] [32] [33].

7.2 Component Details

7.2.1 Internal Repository

The internal repository is a local contract repository whose contents are only available to the

owner agent. An agent uses its internal repository to store proprietary contract fragments that it

may not want to disclose and contract fragments that may not be meaningful to other agents, such

as attached procedure bindings. Contract fragments from the internal repository are typically

placed in the solo extension of a contract.

7.2.2 Templates

This component queries a contract repository for templates that specify the contract's process and

allows the user to choose one to add to the proposal.

7.2.3 Composition

Composition is the adding of contract fragments to a contract. Contract fragments from contract

repositories are incorporated by reference using the -includes predicate, while those from the

internal repository are added by copying their rules into the contract.

7 Market Agent o 60

7.2.4 Exception Handling Analysis

This component determines the possible exceptions for a contract, evaluates their risk, and adds

associated exception handling provisions.

Exception Handling Analysis first queries the process repository for exceptions associated with

the contract's process. It then adds facts to the proposal to declare corresponding exception

instances for the contract. For example, if contract c 123 specifies an instance of the

BuyWithBilateralNegotiation process, and the process repository returns SubcontractorIsLate and

ContractorDoesNotPay as exceptions for BuyWithBilateralNegotiation, then

ExceptionHandlingAnalysis will add the following rules to the proposal:

http://xmlcontracting.org/pr.daml#hasException(co123,co123_el);
http://xmlcontracting.org/pr.daml#SubcontractorIsLate(col23_el);
http://xmlcontracting.org/pr.daml#hasException (co123,co123_e2);
http: //xmlcontracting.org/pr.daml#ContractorDoesNotPay(col23_e2);

The component automatically generates unique names (co 12 3e 1, cal 2 3_e2) for these new

exception instances.

Next, the component evaluates the risk of each exception for this contract. After the user selects a

risk assessment for an exception, the component adds it to the proposal and evaluates it to obtain

the exception's conditional risk valuation based on the attributes of the buyer, seller, or product.

Finally, Exception Handling Analysis configures the exception handler instances for this contract.

For each exception, it queries the process repository for associated exception handlers. Then it

queries the contract repository for corresponding exception handler instances that can handle the

given exception. Finally, the user chooses the handler instances to use for each exception, and the

component adds them to the proposal.

7 Market Agent o 61

Continuing the example, Exception Handling Analysis finds in the process repository that

SubcontractorIsLate has DetectPrerequisiteViolation as a handler. Next, it finds the contract

fragment http: //xmlcontracting.org/cf/detectLateDelivery.clp in the contract repository as an

instance of DetectPrerequisiteViolation that handles SubcontractorIsLate. The user chooses to

add this handler instance to the contract, so the component adds the following rules to the

proposal:

http://xmlcontracting.org/pr. daml#isHandledBy (col23_el,
http://xmlcontracting.org/cf/detectLateDelivery.clp);

_includes (http://www.contracts.com/cf/detectLateDelivery.clp);

7.2.5 Attached Procedure Association

Recall from Section 5.5.6 that rules may use sensable and ef f ectable to declare that certain

predicates are intended to be bound to sensor or effector attached procedures. This component

prompts the user to select attached procedure bindings for these predicates and adds them to the

proposal.

7.2.6 Completion

Completion asks the user to specify the values for the parameters in a contract. This adds

parameterValue facts to the proposal.

7.3 Proposal Creation Wizard

The Proposal Creation Wizard demonstrates how the market agent components allow the user to

create proposals through a simple point-and-click interface. In this section, we again consider a

scenario where Acme is looking to purchase a plastic product from Plastics Etc. When you run

the SweetDeal demo using java sweet .deal .Demo, Market Agent windows appear to

represent Plastics Etc. and Acme (Figure 7-2). We assume that Acme has just sent a Request for

Proposal message to Plastics Etc, so Plastics Etc. is now ready to construct the initial proposal to

Acme.

7 Market Agent o 62

Figure 7-2: Market Agent windows

Click on "New Proposal" in the plasticsetc window to start the New Contract Proposal

Wizard. Step 1 of the wizard will appear, allowing you to choose a name and a process class for

the contract (Figure 7-3). BuyUsingBilateralNegotiation is the only process class available in this

demonstration system.

Figure 7-3: Step 1 - New Contract Proposal

When you click Next, the Proposal window will appear, showing the current rules in the proposal

(Figure 7-4). As you progress through the wizard, the rules that you add to the contract will

appear.in this window. The Proposal window has three tabs. The Contract tab shows the contract

rules that will be exchanged with the other party in the negotiation (which does not include the

contents of any included contract fragments). The Solo Extension tab shows this agent's solo

extension to the contract. Finally, the Included Contract Fragments tab shows the contract

fragments that have been included by either the contract or the solo extension.

7 Market Agent o 63

fl Contract'Naming
http!ixmicontracting.orgisd.dam#ContractForOnePocessco123);
http iWmicnntracting.orgfsd.damlspecFo(ca1 23,col 23process);
httpilmicontracting.orglpr.dam#BuyUsingBilaiteraNegotlation(co1 23_process);
httpj'xmicontracting.orgisd.daml#resuft(co1 23,col 23_res);

Figure 7-4: Contract Naming rules

In Step 2 of the wizard (Figure 7-5), you specify the buyer, seller, and product for this contract

and add rules describing them. As future work, the system could be extended to acquire these

attributes automatically by contacting some central repository or the agents themselves.

Figure 7-5: Step 2 - Contract Parties and Goods Description

Step 3 (Figure 7-6) lets you choose a contract template among those that specify the process

chosen in Step 1. Choosing a different contract repository, from the Contract Repository box, lets

you see the templates available at that contract repository. The demo supports two contract

repositories: http: //xmlcontracting. org and the agent's internal repository.

7 Market Agent o 64

Figure 7-6: Step 3 - Contract Template

Choose the http://xmlcontracting.org/cf/bilateralBuy.cip template and click Show to see its

rules (Figure 7-7). Notice that the template includes two exception handler contract fragments,

http://xmlcontracting.org/cf/detectLateDelivery.cip and

http: //xmlcontracting. org/cf/lateDeliveryPenalty. cip.

Figure 7-7: bilateralBuy.clp

Click Next to select this template. This adds an _include fact that incorporates this template by

reference (Figure 7-8). Click on the Included Contract Fragments tab, and you will see the

template and its two included exception handlers (Figure 7-9).

7 Market Agent o 65

http://:kalcontracting.org/sd.daxl#ContractForOneProcess (c0123);.1// Coxtrawt Definitionhttp://xNalcontracting.org/d.daul#specFor (col23,col23_rocess);

http: //xmicontzacting. org/pr. deal#BuyUsingBilateraliegotiation(col23yrocess)
http: //xalcontracting.org/sd.daul#result(col23,col23 res);

Figure 7-8: Contract that incorporates a template by reference

ftp:IcA racUng.orAierauy.cIp
ttp~Wmkontracting.orgicfrdetetLateDe"Iy.cip
ttp:fhtmicontractingogftateDeiveyPenalty.cip

Figure 7-9: Included contract fragments

In Step 4 (Figure 7-10), you select a pricing scheme for this contract. Select the

stdVolP ricing. cip pricing scheme from the internal repository and click Next. Since it is

from the internal repository, it is incorporated by copy and not by reference (Figure 7-11). Notice,

however, that it is copied into the shared contract, since a pricing scheme is only useful if it is

shared with the other party.

7 Market Agent o 66

Figure 7-10: Step 4 - Pricing Scheme

Figure 7-11: Incorporating stdVolPricing.clp by copy

7 Market Agent o 67

Step 5 (Figure 7-12) lets you manage the exceptions that could occur with this contract.

Figure 7-12: Step 5 - Exceptions, Risks, and Handlers

The Possible Exceptions window lists the possible exceptions for this contract, based on the

exception classes returned by the process repository for BuyUsingBilateralNegotiation. Selecting

each exception instance lets you see its risk assessment and handler instances. Select e 1, an

instance of SubcontractorIsLate, and you will see that it already has the two handler instances

specified by the template (Figure 7-13).

Figure 7-13: Possible Exceptions - el

Now select co 123_e 1, an instance of ContractorDoesNotPay. We want to estimate the

probability that the contract will encounter this exception, so we set

7 Market Agent o 68

http: //xm1contracting.org/cf /nonpaymentRisk. c1p as its risk assessment. This adds the contract

fragment to the solo extension' by reference (Figure 7-14) and estimates the conditional risk to be

16% (Figure 7-15). We expect high risk of nonpayment because the buyer (Acme) is a small firm

and the purchase is international. (This is inferred from the contract parties attributes specified in

Step 2 of the wizard.)

Figure 7-14: Risk assessment in the Solo Extension

Figure 7-15: Possible Exceptions - col23_el

It is added to the solo extension because Plastics Etc. may not want Acme to know which risk assessment
it is using to estimate the risk.

7 Market Agent o 69

Since co 123_e 1 has such a high risk, we want to specify a handler instance to guard against it.

Click Edit... to open the Handlers window (Figure 7-16). Notice that CheckCreditLine,

ProvideEscrowService and NotifyAboutExceptionUsingEmail have available instances. Select

ProvideEscrowService, and the Available Instances box will update to show

http: //xmlcontracting.org/cf/provideEscrow.clp. This handler instance uses a provideEscrow

effector to establish an escrow service for the purchase. Select it and click Add. This adds rules to

the contract to incorporate this handler instance by reference and specify it as a handler for

co123_el.

Fiue4 6 Handlers for co123_el

amnt ate http:hcrnicontracting. Org/Pr. damnIC hec kC redltL no 0 1
aVte http6F i contra clting. or yo r c da mt rovideSafe Exchange P ro to c o a s 0 t

Chooe ehttcontratforg/Pr. damror iromeritedgr arty 0 b
avoid http:/tnmiontractng pr.dlaml#PrOvideEscrowService~ith~ue~ricto 0

Solve htp:.mwiontacthng.ortopr.dm o adiAbo tExoeptnon o 0s
7so".e httpoostardmNOtAboutExConUse ebrisghvale 0 1 e
rd e http :/xnfcontractng'orgfpr.am# otlAb c epdonUsIngMall 0
detect jhtt, !1 6c trcngor pr.damt#Detect~rere uisite~iolation 0 0

Figure 7-16: Handlers for co123_el

Step 6 (Figure 7-17) lets you configure the bindings for any attached procedures in the contract.

Choose es crowEf f fect or . clp from the internal repository as the binding for provideEscrow.

The system will ask whether to add the binding to the Contract or the Solo Extension (Figure

7-18). We choose to add it to the Contract because both parties have to execute this effector in

order to set up the escrow service.

7 Market Agent o 70

Figure 7-18: Adding an attached
procedure binding

Figure 7-17: Step 6 - Attached Procedure Binding

The last step, Completion (Figure 7-19), lets you set the values of the parameters in the contract.

Recall that http: //xmlcontracting.org/cf/lateDeliveryPenalty.clp introduced the

lateDeliveryPerDayPenalty parameter. Here we set the penalty to $12 per day, which adds

the corresponding parametervalue statement to the contract (Figure 7-20).

Figure 7-19: Step 7 - Contract Completion

7 Market Agent o 71

Figure 7-20: Contract - parameterValue

Now the proposal is complete (Figure 7-21). The Negotiation Message window appears, showing

the XML message that will be sent to the other party (Figure 7-22). This message includes the

contract terms encoded in RuleML format. Internally, the system uses IBM CommonRules to

translate the terms from the SCLPfile format to BRML and an early version of SweetRules to

translate from BRML to RuleML.

Figure 7-21: Proposal Complete

7 Market Agent o 72

?xal versiwi."l.0" encoding-"UTF-8"2>
negotiation-mespage>
headen>
type>proposal</tYpe>
3endet>platicsetc</ender>

recipient.acae</recipient>
/header>
terfi fOrXat"RuleHL"5
rulehase xuln:fo-"http://uw.W3.org/1999/XSL/Fornat">

_rlab>
cters>
_Qpc>
ctOr>enptyLabel</ctr>

/ctern>

-head>
clit CmEG="POSITIVE">

_opt>
rel>URIhttp: //xa.lcontracting. org/sd. deal BContractiorOneProcese</rel>

Figure 7-22: Negotiation Message

Click Send to send this negotiation message to the other party. Acme receives the message and

parses it to obtain the contract terms. Acme's Proposal window appears (Figure 7-23). Notice

that the Contract tab contains all the contract rules from Plastics Etc, but the Solo Extension tab is

empty (Figure 7-24), since those rules were not sent to Acme.

Figure 7-23: Acme's Proposal - Contract

7 Market Agent o 73

Figure 7-24: Acme's Proposal - Solo Extension

Now Acme can add some rules to create a counterproposal. Suppose that Acme wants to order

500 units with a shipping date of 10 days after the order. In addition, it feels that the late delivery

penalty of $12 per day is too little; it would prefer $15 instead. Acme can add the appropriate

rules by selecting Add a contract section from the Edit menu of its Proposal window (Figure

7-25). Notice that the parameterValue fact sets the penalty to $15, and an overrides statement

declares that this new parameterValue takes precedence over the original. (A built-in MUTEX

rule ensures that each parameter can only have one value. See the Appendix.)

quantity(coI23,500);

5hippingDate(co123,10);

new_penalty> perazeterV41ue~ (123, lteheliveryPetDayPeIalty,15);
verrides (new_penalty,pvlateDeiiveryPerDayPenalty);

Figure 7-25: Adding rules to change a parameter value

Selecting Inference conclusions from the View menu of the Proposal window shows all the

conclusions that the inferencing engine deduces from the rules in the contract, the solo extension,

and the included contract fragments (Figure 7-26). Notice that it infers that the value of

7 Market Agent o 74

lateDeliveryPerDayPenalty is 15. In addition, from the pricing scheme, the quantity, and

the shipping date, the system infers a price of $50 and a base payment of $50 x 500 = $25,000.

IAE - There are 15 derived conclusion facts:
URI _ttp://xmicontractinm.org/pr.deail 8hasException(col23 process, el)
URI _http: //xalcontracting. 6rg/sd. dwaBCntract(co123);
landlesClassType (URI htrp; //xa.contracting -org/cf/proVIdeEscrow. cip,
URI http: //aicontracting. brg/pr. deal_ 8ontractorDoesNotPay, avoid)
iandlesClassType (URl itip: //xilcontracting; org /f'ittbeliveryPenalty. cip,

URI http://xxlcontracting.rg/pr.dal_85ubcontractorIsLate, avoid);
handlesClasType(URI http://x.contractlng.org/cf/detectLatDelivery.cip,
URI http://xlcontracting.org/pr.deaiOubcotractoi:sLate, detect);
aproc (providetscrow, effector);
contractForHandler(URIhttp://xailcontracting.org/cf/provideEscrow.clp, col23);
contractForHandler (URIhttp://xalcntractingr.ora/cf/detectLateDelivery.c ip,
col23);
contractForHandler (URI_http: //xalcontracting. arg/cf/lateDelivezyPenalty. cip,
Co123);
rarazeter (col23, lateDeliveryPerDayPenalty);

provideEscrow(colM-res);
arameterialue (colZI, lateDeliveryPerDayPenalty, 15);
quantity(col23, 500);
rice(col23, SO);

payxent(col2l, base, 25000)

Figure 7-26: Inference conclusions'

In this way, Acme is enabled to modify the contract terms and send a counterproposal back to

Plastics Etc. This exchange of counterproposals continues until the provisions are acceptable to

both parties and a final contract is established. Alternatively, a negotiation deadline might force

the parties to terminate their exchange of counterproposals before an agreement is reached, but

this is not implemented in the current prototype.

After negotiation, the execution phase begins. Although this prototype does not include an

Execution component, we can simulate it by adding the appropriate ContractResult facts. Select

Add a contract section again and add the following fact to declare that the product is actually

shipped 12 days after the order (i.e. 2 days later than the 10 days specified in the contract):

shippingDate(co123_res,12);

1The URIs here are encoded so that they are accepted as predicates by the IBM CommonRules rule engine.
See Section 8.3.

7 Market Agent o 75

R;iree Conclusa~Deinse~a~nat

andiesClassType (URIhttp: //xalcontracting.org/cf/provideEscrow. cip,

Untrctp://xzlcontr acting. r/xadactng.orgzf/DoezNottay, avoid)
candlesclassType (URI http: //xalcontacting. or/cf/lateDeliveryPenalty. cp,
UR_ttp://xmlcontracting.Grg/pr.-dbal - Hubcontractorl3Late, avoid),

handlesClassType (URI-http: //xz1.cqntracting. org/cf /detectLateDelivery. CIP,
fRihttp://Xmlcontracting.org/pr.daaleSubcoatractorIs ate, detect)

JPIhttp: //xAlcontracting.org/pr.da.l 8hasExceptionico23_1res, e);

aproc(pxovideEscrov, effecto r);
areneter(coZ3, latebeliveryPerDayPenalty),;

cqontcoIn23(, 500)x:otrcig~r/f/rvdesrw~lico2)

frothe~ruanles (Uihttp: //xm contactin. rg//cf/ctatdetie.ct,~icptatee ie

hotrtp://dxm tlR tp//contracting.o//1ate~eiveryPenaty.cipt ocueta hr sacnign

col3

insane ae autom, aticlly exyeculted whnteaporit iutos rs nteCo)ateut

antt~o2,50
0rc~o2,5)

formthe ruldes (UInhttp: //xlcontig rcingroier/c/detctt1 eier2lptatte)(ie

Suconttoractor(UIhate)/exxceprtin haocdctreDiveradditip, tesse sdterlsi

htrtp: E~nde //xml p://contractin. /cf /lateDeliveryPenalty. clto ocueta hr sacnign

penal/zcoty f(zayscte $1 igo/sda-epr day late)= $I30.es Wel); ifrnigecpio ade

istanes ar7nfne a ctmatclus n frxe iulted wh teapotriacteecuationsaseithCnratsu.

8 Implementation o 76

8 Implementation

SweetDeal is implemented in Java and compatible with JDK 1.3 or later. The system consists of

several Java packages, shown in Table 8-1. The prototype code and documentation will be

available for download at http: //ebusiness.mit. edu/bgrosof /#sweet.

Package Description

sweet.deal Main SweetDeal classes, used by multiple system components
sweet.deal.processrep Process repository classes
sweet.deal.contractrep Contract repository classes
sweet. deal. agent Market agent classes
sweet.deal.agent.wizard Proposal Creation Wizard classes
sweet. deal.aprocs Dummy implementations of attached procedures used in the

examples (ex. provideEscrow)

sweet.deal.ui Utility classes for miscellaneous user interface elements

Table 8-1: Java packages in SweetDeal

sweet .deal .Demo provides a demonstration of the system, allowing you to run the Proposal

Creation Wizard and browse the process and contract repositories.

8.1 Process Repository

The implementation of the process repository uses Jena [23], a software package from Hewlett-

Packard Labs, to parse and process the DAML+OIL process ontology. At startup, the process

repository calls Jena to load the ontology into memory. Whenever it receives a process

knowledge query, the process repository uses the Jena API to programmatically traverse the

ontology to find the answer, as described below.

8.1.1 Interface

public String[] getExceptions(String process, boolean withSubclasses)

public String[] getHandlers(String exception, boolean withSubclasses)

public boolean hasSubclass(String classl, String class2, boolean closed)

8 Implementation o 77

8.1.2 Query Handling

Currently, Jena does not provide a reasoning engine for DAML+OIL, although this is planned for

future versions. (Other researchers [42] are also working on DAML+OIL reasoning and

inferencing.) However, its existing attribute access and hierarchy traversal capabilities are

sufficient to implement the simple queries we require.

First consider hasSubclass. This is trivial to implement, since we directly use Jena's

has Subclass method to determine whether one DAML class is a subclass of another class.

The implementations of getExcept ions and getHandlers are more involved. First consider

getExcept ions. Recall from Section 4.1.2 that each hasException link from a process P to an

exception E in the MIT Process Handbook is represented as a daml: Rest rict ion that is a

superclass of P in the DAML+OIL ontology. This restriction declares that the hasException

property could have values of class E. Therefore, to find all the exceptions for a process P, we

examine the superclasses of P that are restrictions for the hasException property and add all of

their hasClass values to the result set. If withSubclasses is on, we add the subclasses of

these hasClass values as well.

getHandlers is implemented analogously, by looking for superclasses of the exception that are

restrictions on the isHandledBy property.

8.2 Contract Repository

The contract repository has a simple interface, allowing agents to retrieve a contract fragment

given its URI and to query for contract fragments based on certain atttributes:

public String getContractFragment (String uri)

public String[] getTemplates (String process)

8 Implementation o 78

public String[] getRiskAssessments(String exception)

public String[] getPricingSchemes()

public String[] getHandlerInsts(String handler)

public String[] getHandlerInsts(String handler, String exception)

public String[] getAProcBindings(String procedure)

As described in Section 6.3, the contract repository indexes contract fragments by their attributes.

Queries are answered by simply retrieving the appropriate entries from the index.

8.3 Market Agent

We use IBM CommonRules [13] as the inferencing engine for contract rules. Note that there are

certain characters, such as '#', '-', and '-', that may be used in a URI but cannot be part of

predicate names in CommonRules. SweetDeal includes a Java class, sweet . deal .URIEncode,

that encodes and decodes URIs in a format that can be used as CommonRules predicates. For

example, http: //xmlcontracting.org/pr.daml#hasException is encoded as

uri-http: //xmlcontracting.org/pr.daml_8hasException. We avoid name clashes

by encoding any '.' characters in the URI as well.

8.4 Limitations

To facilitate development and testing, the system components currently communicate with each

other via local Java calls (recall Section 3.3). However, since we defined all interface methods to

use either primitive Java types (e.g. String, boolean, int) or the XML

org .w3c .dom. Element type, it should be relatively straightforward to extend the system to use

SOAP-RPC calls. For example, the Web Services Developer Pack [35] from Sun Microsystems

can take a Java interface and automatically generate corresponding SOAP clients and servers.

9 Conclusion o 79

9 Conclusion

This thesis presents SweetDeal, a novel approach for automated contracting that combines a rule-

based contract representation with knowledge about business processes and exceptions. This

enables contracts to include provisions that manage exception conditions which may arise during

contract execution, a vital capability for electronic marketplaces. We use emerging Semantic Web

formats (DAML+OIL and RuleML, respectively) to represent process knowledge and contract

provisions in a way that allows the rule-based provisions to reference process knowledge. This

work helped us identify substantive limitations of DAML+OIL (inheritance overrides) and

RuleML (incorporation by reference) that could be basis for future work. In addition, this thesis

defines mechanisms for storing and querying these two types of business knowledge. A process

repository stores and retrieves process knowledge, while a contract repository stores and retrieves

modular contract provisions. Finally, we specify and implement the mechanisms of a software

agent that uses the knowledge from these repositories to create contracts with substantial

automation. We suggest that the representations and mechanisms developed in this thesis could

serve as the foundation for automated evaluation, negotiation, and execution of contracts as well.

We believe that the widespread adoption of rule-based contracts with exception handling

provisions would result in substantial benefits for electronic marketplaces. Besides protecting

against misbehavior, such contracts incentivize market participants to reduce their likelihood of

committing exceptions, for example by improving their internal business processes. Eventually,

this would cause exception conditions to occur less frequently overall, increasing the efficiency of

the marketplace.

For a detailed enumeration of the contributions of this thesis, see the Introduction (Chapter 1).

9 Conclusion o 80

While performing the research for this thesis, we uncovered many related areas that could be

explored in the future. Next we sketch these future research directions.

9.1 Future Directions

9.1.1 Automated Contract Evaluation and Negotiation

As described in Chapter 7, this thesis focuses on automated contract creation. Future research

could involve automated contract evaluation and negotiation. An agent could evaluate contracts

automatically using a utility function based on its preferences. In turn, this would allow it to

compare alternate contract provisions for counterproposals, which forms the basis for automated

negotiation [9][32][33].

9.1.2 Other Types of Contracting Parties

This thesis considers the simplest case of a buyer contracting to buy some product from a seller.

A natural extension is to consider contracts involving intermediaries like auctioneers. The

auctioneer agrees to conduct an auction specified by certain terms and conditions, and the seller

and bidders agree to abide by those terms during the auction process. The MIT Process Handbook

is rich in content on exceptions and exception handlers for various types of auctions.

9.1.3 Richer Negotiation Protocol

Future work could provide a richer negotiation protocol and allow for more types of negotiation

messages than the simple proposal/counterproposal exchange described in this thesis. This

protocol could be based on the FIPA ACL (Foundation for Intelligent Physical Agents, Agent

Communication Language) specifications [28].

9 Conclusion o 81

9.1.4 SOAP-Enabling the System Components

As described in Section 8.4, the system components (e.g. market agents, contract repository,

process repository) currently communicate with each other via local Java calls. Extending the

system to use SOAP messages over HTTP would allow system components to be located

anywhere on the Internet and make it possible for other software systems (perhaps implemented

in other programming languages) to access these system components remotely.

9.1.5 Extending RuIeML With Incorporation by Reference

As explained in Section 6.1, RuleML does not currently have a mechanism that allows rules to

include other rulesets by reference. Such a mechanism may involve XInclude [26].

9.1.6 Property Inheritance Overrides in a DAML+OIL Ontology

As described in Section 4.1.3, there is no direct way of expressing overrides of property

inheritance in DAML+OIL. One possible solution is to augment the DAML+OIL ontology with

RuleML rules that use the priority overrides mechanism to explicitly implement property

overrides.

9.1.7 Event Delivery for Situated Procedures

Currently, SCLP defines sensors as a pull mechanism for the rule system to acquire data from

other software systems. If a sensor's value changes over time, the rule engine has to call the

sensor periodically to obtain any updated data. This polling may be impractical and expensive

performance-wise, especially for sensors like exception detectors that rarely change their values

but require the system to recognize these changes immediately. Future versions of SCLP could

define a push mechanism (e.g. event delivery) [44] for data acquisition, where an event-deliverer

attached procedure notifies the rule system whenever its data value changes.

9 Conclusion o 82

9.1.8 Inferencing Performance

For large contracts with many rules, the rule engine's inferencing performance may become an

issue. One optimization is partial evaluation, where the rule engine evaluates a few select rules to

determine a subset of rules that will never fire in this session, based on current instance facts.

Then the rule engine can simply ignore that subset in subsequent reasoning. For example, if a

contract has some tariff rules (perhaps from an included contract fragment) but the buyer and

seller are both in the same country, then the rule engine could ignore all the tariff rules in its

reasoning.

9.1.9 Contract Fragment Integrity and Access Control

As discussed in Section 6.4, it may be important to ensure that a referenced contract fragment

does not change and to allow creators to limit the parties that can access their contract fragments.

9.1.10 Advanced Query for Contract Fragments

The current contract repository supports simple queries for contract fragments, based on one or

two attributes specific to each contract fragment type. For example, queries for exception handler

instances are based on either a handler class or a (handler class, exception class) pair. More

advanced queries based on the content of contract fragments may be useful for repositories with

large numbers of contract fragments.

10 References o 83

10 References

1. B. N. Grosof, Y. Labrou, and H. Y. Chan, "A Declarative Approach to Business Rules in
Contracts: Courteous Logic Programs in XML." In Proc. First ACM Conference on
Electronic Commerce (EC99), 1999.

2. P. Maes, R. Guttman, and A. Moukas, "Agents that Buy and Sell: Transforming
Commerce as We Know It." Communications of the ACM, March 1999.

3. C. Baral and M. Gelfond, "Logic Programiing and Knowledge Representation." Journal
of Logic Programming 19,20:73-148, 1994.

4. EECOMS Project. http://www.research.ibm.com/rules/eecoms.html

5. D. M. Reeves, M. P. Wellman, and B. N. Grosof, "Automated Negotiation From
Declarative Contract Descriptions." To appear in Computational Intelligence, special
issue on Agent Technology for Electronic Commerce, 2002. (Revised and extended from
2001 Autonomous Agents conference paper.)

6. Malone, T.W., et. al., "Tools for Inventing Organizations: Toward a Handbook of
Organizational Processes." Management Science, 1999, 45(3): p. 425-443.

7. M. Klein, C. Dellarocas, and J. A. Rodriguez-Aguilar, "A Knowledge-Based
Methodology for Designing Robust Multi-Agent Systems." In Proc. Autonomous Agents
and Multi-Agent Systems, 2002.

8. G. Wyner and J. Lee, "Applying Specialization to Process Models." In Proc. Conference
on Organizational Computing Systems, 1995.

9. M. Klein, P. Faratin, H. Sayama, and Y. Bar-Yam, "Negotiating Complex Contracts." In
Proc. Autonomous Agents and Multi-Agent Systems, 2002.

10. Rule Markup Language. http://www.dfki.uni-kl.de/ruleml/

11. B. N. Grosof, "Standardizing XML Rules: Preliminary Outline of Invited Talk." In Proc.
IJCAI-OJ Workshop on E-business and the Intelligent Web, 2001.

12. B. N. Grosof, "Building Commercial Agents: An IBM Research Perspective (Invited
Talk)". In Proc. 2 nd Intl. Conference and Exhibition on Practical Applications of
Intelligent Agents and Multi-Agent Technology (PAAM97), 1997.

13. IBM CommonRules - Business Rules for Electronic Commerce.
http://www.research.ibm.com/rules/

14. Requirements for a Web Ontology Language (W3C Working Draft 07 March 2002).
http://www.w3.org/TR/2002/WD-webont-req-20020307/

10 References o 84

15. B. N. Grosof, "Automating Law in the Small: Contracts, Regulations, and Prioritized
Argumentation", 1-hour Invited Address. Presented at the 2001 International Conference
on Artificial Intelligence and Law (ICAIL-2001), held Washington University Law
School, St. Louis, MO, USA, May 21-25, 2001.

16. DARPA Agent Markup Language. http://www.daml.org

17. Ontology Inferencing Language. http://www.ontoknowledge.org/oil

18. DAML+OIL (March 2001) Reference Description. http://www.w3.org/TR/daml+oil-
reference

19. W3C Web Ontology (WebOnt) Working Group. http://www.w3.org/2001/sw/WebOnt/

20. Resource Description Framework (RDF). http://www.w3.org/RDF/

21. Annotated DAML+OIL (March 2001) Ontology Markup.
http://www.daml.org/2001/03/daml+oil-walkthru.html

22. DAML Tools. http://www.daml.org/tools/

23. Hewlett-Packard Labs Semantic Web Activity - Jena Toolkit.

http://www.hpl.hp.com/semweb/jena-top.html

24. OILEd Ontology Editor. http://www.ontoknowledge.org/oil/tool.shtml

25. A. Bernstein, M. Klein, and T.W. Malone., "The Process Recombinator: A Tool for
Generating New Business Process Ideas". In Proc. International Conference on
Information Systems (ICIS-99), 1999.

26. XML Inclusions (XInclude) Version 1.0. http://www.w3.org/TR/xinclude/

27. CommonAccord. http://www.commonaccord.org/

28. Foundation for Intelligent Physical Agents, Agent Communication Language

Specifications. http://www.fipa.org/repository/aclspecs.html

29. Hypertext Style: Cool URIs don't change. http://www.w3.org/Provider/Style/URI.html

30. World Wide Web Consortium, Semantic Web Activity. http://www.w3.org/2001/sw/

31. Web Naming and Addressing Overview (URIs, URLs, ...).

http://www.w3.org/Addressing/

32. P. Faratin and M. Klein, "Automated Contract Negotiation and Execution as a System of
Constraints." In Proc. Workshop on Distributed Constraint Reasoning (IJCAI-01), Seattle,
USA, 33-45, 2001.

33. N. R. Jennings, P. Faratin, A.R. Lomuscio, S. Parsons, C. Sierra, and M. Wooldridge,
"Automated Negotiation: Prospects, Methods, and Challenges." International Journal of
Group Decision and Negotiation, 10 (2) 199-215, 2001.

10 References o 85

34. Michael P. Wellman, Amy Greenwald, Peter Stone, and Peter R. Wurman, "The 2001
Trading Agent Competition." In Proc. 14' Conference on Innovative Applications of
Artificial Intelligence, Edmonton, Canada, 2002.

35. Java Web Services Developer Pack.
http://java.sun.com/webservices/webservicespack.html

36. Simple Object Access Protocol (SOAP). http://www.w3.org/TR/SOAP/

37. United States Government, Internet Fraud Complaint Center, IFCC 2001 Annual Internet
Fraud Report. April 2002. www.ifccfbi.gov

38. B. N. Grosof and Y. Labrou, "An Approach to using XML and a Rule-based Content
Language with an Agent Communication Language." In Proc. IJCAI-99 Workshop on
Agent Communication Languages (ACL-99), Stockholm, Sweden, 1999. Revised version
appears in F. Dignum, M. Greaves (Eds.), Issues in Agent Communication, Lecture Notes
in Computer Science Vol. 1916, Springer-Verlag, Berlin, German, 2000.

39. D. M. Reeves, B. N. Grosof, M. P. Wellman, and H. Y. Chan, "Towards a Declarative
Language for Negotiating Executable Contracts." In Proc. AAAI-99 Workshop on
Artificial Intelligence in Electronic Commerce (AIEC-99), Orlando, FL, USA, 1999.

40. D. Koller and A. Pfeiffer, "Object-Oriented Bayesian Networks." In Proc. 13th Annual
Conference on Uncertainty in AI (UAI), Providence, Rhode Island, USA, 1997.

41. R. Fikes, "Strawman DAML+OIL Query Language Proposal." August 22, 2001.
http://www.daml.org/listarchive/joint-committee/0572.html

42. J. Z. Pan and I. Horrocks, "Semantic Web Ontology Reasoning in the SHOQ(Dn)
Description Logic." In Proc. 2002 Int. Workshop on Description Logics (DL-2002), 2002.

43. B.N. Grosof, "Representing E-Business Rules for the Semantic Web: Situated Courteous
Logic Programs in RuleML." In Proc. Workshop on Information Technologies and
Systems (WITS '01), New Orleans, Louisiana, USA, 2001.

44. B.N. Grosof, D.W. Levine, and H.Y. Chan, "Flexible Procedural Attachment to Situate
Reasoning Systems." U.S. Patent 5,778,150. Granted July 7, 1998; filed July 1, 1996.

11 Appendix o 86

11 Appendix

11.1 Reference: SweetDeal Predicates

Special Predicate
_includes (?CF) : This incorporates ?CF by reference into the contract.

SweetDeal Mechanism Predicates
sensable (?Predicate): ?Predicate is intended to be bound to a sensor attached procedure.
ef fectable (?Predicate): ?Predicate is intended to be bound to an effector attached procedure.
parameter (?CO, ?P): The contract has a parameter named ?P.
parametervalue (?CO, ?P, ?Value): The value of parameter ?P in this contract is ?Value.
riskFor (?RA, ?E): ?RA is a risk assessment that estimates the risk for the ?E exception class.
risk (?CO, ?E, ?Risk): The risk of exception ?E on this contract is estimated to be ?Risk.
templateFor (?T, ?Process) : The template ?T is a partial specification for the process.

Domain Specific Predicates
buyer (?CO, ?Buyer): ?Buyer is the buyer for this contract.
seller (?CO, ?Seller): ?Seller is the seller for this contract.
product (?CO, ?Product): ?Product is the product for this contract.
price (?CO, ?P) : The price for the product in this contract is ?P dollars per unit.
quantity (?CO, ?Q): The contract is for ?Q units of the product.
shippingDate (?CO, ?Date) : The shipping date specified in the contract ?CO is ?Date.
payment (?R, ?Type, ?Amount): In the contract result ?R, there is a payment of the specified type and

amount from the buyer to the seller.
country (?Agent, ?Country): The market agent ?Agent is located in the specified country.
firmSize (?Agent, ?Size) : The market agent ?Agent has the specified size.
creditRating(?Agent, ?Rating): The credit rating of the market agent is ?Rating.

Process Ontology Predicates
http: //xmlcontracting.org/pr.daml#hasException (?P, ?E)

Exception ?E could occur when process ?P is carried out.
http://xmlcontracting.org/pr.daml#isHandledBy (?E, ?H):

Exception ?E is intended to be handled by handler ?H.

Contract Ontology Predicates
http://xmlcontracting.org/sd.daml#specFor(?CO, ?P)

Contract ?CO is a specification for process ?P.
http://xmlcontracting.org/sd.daml#result(?CO, ?R)

The contract's result is represented by ?R.
http://xmlcontracting.org/sd.daml#exceptionccurred(?R, ?E)

Exception ?E happened during the execution of this contract.
http://xmlcontracting.org/sd.daml#exceptionLikely (?R, ?E):

Exception ?E is likely to occur in the current situation (but has not actually occurred).
http://xmlcontracting.org/sd.daml#detectsException(?H,?EC)

Handler ?H detects exception class ?EC.
http://xmlcontracting.org/sd.daml#anticipatesException(?H,?EC)

Handler ?H anticipates exception class ?EC.
http://xmlcontracting.org/sd.daml#avoidsException(?H,?EC)

Handler ?H avoids exception class ?EC.
http://xmlcontracting.org/sd.daml#resolvesException(?H,?EC)

Handler ?H resolves exception class ?EC.

11 Appendix o 87

11.2 Built-in Rules

The following are the built-in rules in the SweetDeal system. These basic rules are always

included when performing inference on contract provisions.

***** Calculating payment
// base payment = price * quantity
payment(?CO,base,?Payment) <-

quantity(?CO,?Q) AND price(?CO,?P) AND
multiply(?P,?Q,?Payment)

S***** MUTEX properties
// Each contract can only have one price and one quantity.
// For every contract and exception, there can only be one risk estimate.
// For every contract and parameter, there can only be one parameter value.

MUTEX price(?CO, ?X) AND price(?CO, ?Y)
GIVEN notEquals(?X, ?Y) ;

MUTEX quantity(?CO, ?X) AND quantity(?CO, ?Y)
GIVEN notEquals(?X, ?Y) ;

MUTEX risk(?CO,?Exception,?X) AND risk(?CO,?Exception,?Y)
GIVEN notEquals(?X,?Y) ;

MUTEX parameterValue(?CO,?Param,?X) AND parameterValue(?CO,?Param,?Y)
GIVEN notEquals(?X,?Y);

