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Abstract

This thesis presents an improved method of modeling contact current distribution
in the quasi-static and full-wave surface integral equation solver FastImp [1]. A
significant shortcoming of FastImp is its lack of a single uniform approach to model
contact current across different frequencies. Its method of computing contact current
at high frequencies does not efficiently and optimally capture skin and proximity
effects. Its method of computing contact current at low frequencies lacks accuracy
due to the use of a centroid collocation scheme when evaluating fields on the contact
surfaces. The method discussed in this thesis offers a unified, more accurate and more
efficient method of computing contact current over a wide range of frequencies. It
is shown in this thesis that the electric field on the conductor contact surfaces can
be modeled effectively by only a few conduction modes as basis functions. These
conduction modes were first introduced in [2] for a "volume" integral equation solver.
In this thesis, we improved these basis functions and adapted them into a "surface"
integral equation solver. On the non-contact surfaces, the electric field is modeled by
a set of standard piecewise constant basis functions. The surface-based conduction
mode basis functions, used in a Galerkin technique, and the piecewise constant basis
functions, used in a collocation scheme, are utilized for the discretization of the system
of surface integral equations implemented in FastImp. Examples are used to validate
the new method as an improvement from FastImp in its ability to compute contact
current accurately, consistently and efficiently. The efficiency of the new method is
demonstrated by its ability to use a significantly coarser surface discretization yet
still managing to achieve comparable impedance accuracy in comparison to Fastlmp.

Thesis Supervisor: Jacob K. White
Title: Professor
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Chapter 1

Introduction

1.1 Motivation

As integrated circuits operate at increasingly higher speed, methods are needed that

are capable of performing quasi-static and full-wave electromagnetic analysis over

a wide range of frequencies, up to 10's of gigahertz (GHz). With this increase in

frequencies, the assumption that lumped inductance and lumped capacitance can

be extracted separately no longer holds true. Methods are needed that can take

into account the effects of distributed resistive, capacitive and inductive impedance

throughout the entire circuit layout in an accurate and efficient manner.

The importance of designing extraction tools capable of handling coupled parasitic

effects is demonstrated by circuit interconnects. It is well known that parasitic capac-

itance and resistance of the interconnects can cause propagation delays, while their

coupled inductance and capacitance can not only affect propagation delays, but also

influence signal integrity [3]. For example, the coupling between two nearby intercon-

nect wires or between an interconnect wire and the substrate introduces noise into

their signals. In addition, the coupling of interconnects' inductance and capacitance

can create resonance peaks in their frequency responses [4]. Thus it is imperative

to have robust extraction tools that can recognize these parasitic effects during the

designing stage of an integrated circuit layout so as to avoid costly post-prototype

ad-hoc fixes, or even worse, the complete redesigning of the system.
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1.2 Background

The development of accelerated integral equation solvers in the past decade has

made the realization of aforementioned features feasible in electromagnetic analy-

sis tools. Accelerated integral equation methods like those used in FastCap [5] and

FastHenry [6], together with several techniques for handling skin and proximity ef-

fects [7, 8, 9, 10], enable detailed EM analysis of complicated integrated circuits to

be performed in matter of minutes. More specifically, iterative methods such as GM-

RES [11] and matrix sparsification techniques such as fast multipole [6], Precorrected-

FFT [12] and SVD algorithms [13] can reduce both CPU time and memory usage

dramatically when solving a system of discretized integral equations.

Traditionally there have been two competing integral equation methods, one vol-

ume based and the other surface based. There are several advantages of surface

methods over volume methods. One main advantage is that while volume based

methods need to discretized the entire volume of a structure, surface methods only

need to discretize the surface of the structure, thereby reducing the number of un-

knowns in the system [6]. In addition, discretization of a curved structure is handled

with much more ease by surface methods than by volume methods.

1.3 The problem

The formulation described in this thesis addresses many issues currently plaguing

the surface integral solver FastImp. One of the shortcomings of FastImp is that

it switches between two different techniques of computing contact surface current

depending on the operating frequencies applied to the conductor. Figure 1-1 shows the

position of a contact in relation to a conductor. At low frequencies, FastImp evaluates

contact current using a surface integral approximation that takes into account the

sum of all the current flowing through the discretized panels on each contact. At

high frequencies FastImp uses line integrations involving the magnetic field around

the cross sections near the contacts to compute contact current. This abrupt change

12



of formulation from low frequencies to high frequencies breaks the continuity of the

solution. However, the more obvious shortcomings of the FastImp algorithm are the

issues encountered while performing impedance extractions at extreme frequencies.

At low frequencies, FastImp's computation of impedance lacks accuracy due to its

use of a centroid collocation scheme. At high frequencies, the formulation cannot

adequately capture the current as it crowds near the sides and corners of a contact

surface without using a much refined discretization that is computationally expensive.

To make clear of this difficulty, consider that in order to capture skin and proximity

effects accurately in FastImp, not only the dimension of contact panels must be

narrower than the skin depth, but also the dimension of non-contact panels near the

edges and corners of the contact surfaces. This implies that when discretizing long

wires, such as in transmission line configurations, many tightly interacting long and

thin panels are produced. The problem with these high-aspect-ratio panels is that

they worsen the efficiency of clustering-based fast solvers [12, 6, 5].

contact surface non-contact surface

contact surface

Figure 1-1: A conductor structure

The methodology described in this thesis modifies a crucial area in the surface

integral package FastImp. Instead of using piecewise constant basis functions on

the contact surfaces of a conductor as implemented in FastImp, our method utilizes

a different set of basis functions that captures skin effects in a more efficient and

accurate manner. It has been shown that a set of basis functions, generated from

13



solutions to the Helmholtz equation, can be combined with a standard Galerkin tech-

nique to solve a system of "volume-based" Mixed-Potential Integral Equations [2].

This approach has proved to be effective in capturing skin and proximity effects. In

this thesis, the basis functions, first seen in a volume-based integral solver, are now

adapted into the surface integral solver FastImp. Modifications are made on these

basis functions from their original forms in the volume method [2] by confining each

basis function to its area of optimal field distribution on a given surface. It has been

found that this technique improves the linear independence of the basis functions.

In the method presented in this thesis, the new basis functions are only applied on

the contact surfaces of the conductor. Piecewise constant basis functions are used on

the non-contact surfaces of the conductor. A standard Galerkin technique is applied

when field evaluations are made on the contact surfaces while a centroid collocation

scheme is used when field evaluations are made on the non-contact surfaces. It will

be shown that the use of the Galerkin technique dramatically improves the accuracy

of contact current computation and impedance extraction at low frequencies.

In this thesis, we will also show that the exponential field distribution on the

contacts can be captured by only a few conduction modes. The implementation of

these conduction mode basis functions eliminates not only the constraint of having

a fine discretization on the contact surfaces but also on the non-contact surfaces

as required in FastImp. In comparison to FastImp, for the same final accuracy, a

much coarser discretization is therefore needed, and a much smaller number of tightly

interacting panels are then produced. With smaller aspect ratios, these panels are

able to take full advantage of the acceleration provided by clustering-based fast solvers

such as PFFT.

In short, this thesis offers a unified, more accurate and more cost-effective method

of calculating contact current and conductor impedance. It will be shown that this

new method addresses the inadequacies of the FastImp algorithm and offers a signif-

icant improvement in memory usage and computational speed.

14



1.4 Overview

This thesis is organized as follows: Chapter 2 presents a description of the system of

surface integral formulation. Most of the material in this section is not new research,

but is included for the sake of completeness and as a possible source of future reference.

Chapter 3 offers a detailed description of the basis functions used. Chapter 4 shows

the discretization of the integral equations and the assembly of the system matrix.

Chapter 5 presents some of the computational results obtained using the new method.

The new method's performance in comparison to FastImp and FastHenry is also

discussed.
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Chapter 2

Surface integral formulation for

full-wave impedance extraction

The surface formulation described in this chapter is developed for the full-wave anal-

ysis of time harmonic electromagnetic field. Consider an example of multiple conduc-

tors as shown in Figure 2-1.

Conductor1 Conductor 2

Si

Conductor

Figure 2-1: A system of conductors

It is assumed that permeability p and permittivity e are constant and applicable to

the entire problem space while conductivity, oa, is constant and applies to individual

conductor i. The following Maxwell equations are fundamental laws governing the

behavior of the time harmonic electromagnetic fields in the entire problem domain

that consists of the conductor media and free space:

V x E = -jw1 pH (2.1)

17



V xH= J+jwrE (2.2)

V . (E) = p (2.3)

V - (/H) = 0, (2.4)

where E, H:R 3 - R3 are the space dependent electric and magnetic fields and J:R 3 -+

R3 is the electric current density.

Each conductor is characterized by Ohm's law which relates conduction current

J to electric field E by conductivity uj, where

E = J. (2.5)

2.1 First dyadic surface integral equation

The electric field inside of a conductor satisfies a dyadic integral equation that is

derived from (2.1) and (2.2). In particular, apply the curl operation to both sides of

(2.1), substitute the vector identity V x V x E V(V -E) - V 2 E with V -E = 0

inside of each conductor and the equation V x H =- + jweE, the following vector

Helmholtz equation can be derived:

(V 2 + w 2 Iie - jW/op)E = 0. (2.6)

Let k, = Vw 2 wE - jwpo, then (2.6) can be expressed as:

(V 2 + k2)E= 0. (2.7)

According to Green's Second Identity[15], the solution to the above wave equation is:

IE() = dS' G )E(7) &G1 (7, ')7) (2.8)
2 si ) an(7) an(?r)

with
- ejkl Ir'I'

G, (2.9)
4-rIT - ?1'1

where Si is the surface of the i-th conductor and G1 is the scalar Green's function as

defined in (2.9). In general, a Green's function enables one to determine the electric

18



field response at a test point due to a given point source [14]. In (2.8) and (2.9), the

location of the test point is specified by position vector Y and that of the source point

is specified by position vector T.

According to Green's Second Identity, field solutions inside of a volume is com-

pletely determined by the fields on the enclosing surface of the volume. Therefore

fields inside of a conductor can be determined by integrating the relation formed by

the Green's function over the bounding surface of the conductor as demonstrated

in (2.8). In mathematical terms, solution (2.8) expresses the electric field inside of

a conductor volume in terms of the electric field and its normal derivative at the

conductor surface.

2.2 Second dyadic surface integral equation

The second dyadic surface integral equation applies to the union of all conductors

in the problem domain. A macroscopic view is taken by treating the individual

conductors as current sources J in free space. Thus this equation accounts for the

coupling of the electromagnetic fields of the conductors.

A Helmholtz equation is obtained by considering the first two of the Maxwell

equations (2.1) and (2.2), yielding:

(V2 + ko)E = jwyIj, (2.10)

where ko = w Vj-. Green's Second Identity [15] then implies that E and j satisfy:

T E(T) = ds' Go (T, T) &E(?) Go (F7, ') E() + jw J dv'Go(, ?)J(?),fsi n(F) an(F) v
(2.11)

where Vi is the volume of the ith conductor, Si is its surface area and

1 if f E V

T = 1 ifTcS

0 otherwise.

The Green's function associated with (2.11) is given by:

Go(T, P') = e - .(2.12)
47rl-F - ?I'|

19



Now consider a system of two conductors. If T resides on the first conductor

surface, then according to (2.11):

ds' [Go(fY 7) n(7)
0G 0 (T, 7) E(7) + 3W/I

On( ?) IV' dv'Go(Tj,)_j()-

(2.13)

If T is on the first conductor then (2.11) for the second conductor yields:

- ds' Go(Ty,' 01E(T)
42 On(?)

Go(r') )
On(?)

+ JW dv'

The sum of (2.13) and (2.14) is:

ds' [Go
7) E() 

_ Go(7, T7) E(7)
On(?) On(?)

Consequently, the second dyadic equation can be written in the intergral form:

aG (7 ')

On(T)
+ JW/I dv'Go(T,7)1(?),

(2.16)

where V is the union of all conductor volumes and S is the union of all conductor

surfaces.

The volume integral in (2.16) can be expressed in a non-integral form by consid-

ering the following equation:

jwA(T) = VO(T) + E(Y), (2.17)

where A is the magnetic vector potential and 0 is the scalar electric potential. Ac-

cording to [16], the magnetic vector potential A(T) is defined as:

(2.18)

Therefore, (2.17) becomes:

I WAfVdv'Go(7)1j(F) = VO(T) + E(T), (2.19)

The second dyadic surface integral equation can then be written in the surface integral

form:

S-
2E

OE(?)
On(?)

- Go (7, r' )
On(?) I+ VO()

(2.20)

20

1 -
2 ISi

S-
2E(T Is 1+S2

(2.14)

I+3jW/I

1-
2

IV1+V2
d'Go(,2).

(2.15)

Go(T7, ')j(P)

ds' [Go (T, Pr)fS

A() Go (f,2p ?.

fsds' [Go(7 r')



where S is the union of all conductor surfaces. Intuitively, one can see that this

equation relates the gradient of the scalar electric potential to the electric field and

its normal derivative on the surface of all conductors.

2.3 Scalar Poisson surface integral equation

According to the well known "mixed-potential" formulation, Maxwell differential

equations (2.1)-(2.4) can be expressed in the form of an electric scalar potential #
satisfying:

(v 2 + k 2)q (2.21)

where KO = wV-I-. In a surface integral form, (2.21) is written as:

() = dS'Go(T,r/)P(P, (2.22)

where Go is the same as the Green's function defined in (2.12).

2.4 Expression of current conservation as a surface

integral equation

V -E = 0 holds true inside of a conductor volume [14]. A surface form of this equation

must be derived. This can be accomplished by considering a volume V shaped like a

rectangular pillbox as illustrated in Figure 2-2. The top and bottom surfaces of the

box have area a and closed contour C and are situated such that the top face is on

the conductor surface while the bottom face is a distance 6 beneath the surface.

Current conservation can be accounted for by noting that the current flows from

the top, bottom and sides of the box adds up to zero [16], that is,

pbi~ b2

dc [6Et - (n(T) x f - 12 dtidt2 [En(tit 2 ,0) - En(tlt 2, -6)] = 0. (2.23)
CJalJ a2

The line integral along contour C in (2.23) accounts for contributions of current

tangential to the pillbox, that is, entering from the sides. In this integral, n is the

21
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Figure 2-2: A sample surface for current conservation

unit normal vector of the top or bottom face while f is the unit vector along contour

C, and n x f indicates the tangential direction of current flow.

The area integral in the second term of (2.23) accounts for the contributions of

current entering the box from the normal directions, that is, from top and bottom

of the box. In this integral, a local coordinate system (ti, t 2 , n) is used. The two

mutually orthogonal unit vectors t1 and t2 indicate the tangential location of a point

within a plane surface while unit vector n indicates the normal placement of this point

in relation to the plane surface. Therefore (ti, t 2 , 0) and (ti, t 2, -6) describe any point

that is located on the top and bottom faces of the box, respectively.

In (2.23), let 6 approach zero in the integrand of the line integral and apply Taylor

expansion to the integrand of the area integral. The following surface integral form

of current conservation is then obtained:

dc [Et)- (n(T) x f(T))1- da = 0. (2.24)
C la On(f)

2.5 Boundary conditions

In the case of general full-wave impedance extractions, normal boundary conditions

for the non-contact conductor surface can be derived by considering the charge con-

22



servation law

7 J(AT) = jp7.(2.25)

From (2.25), one sees that the surface normal boundary condition on the non-contact

surfaces is:

En (T)_ = . (2.26)
01

A different set of boundary conditions exists for the contact surfaces of a conductor

to which the terminals are attached. We assume that a constant input current is

applied to each terminal in the surface normal direction. Then the electrical field

along the tangential directions of the contact can be assumed to be zero. In addition,

since the applied current is constant, changes of the electrical field along the normal

direction of the contact can also be assumed to be zero, that is, E = 0. Moreover,

it can be assumed that changes of the tangential electrical fields along the normal

direction are negligible, that is, =Et1  0 and = 0. In mathematical terms, thean an

boundary conditions on each contact surface are summarized as:

E(T) =- fEn (T), T E S, (2.27)

and

09 = 0, T E SC, (2.28)an
where Sc denotes the contact surfaces of a conductor and h is the outward surface

normal unit vector.

Finally, since voltages are applied to the contact terminals, electric potentials on

the contacts are known. They are either positive or negative constants depending on

the polarity of the terminals, that is:

0 (F) = c. (2.29)

2.6 Surface integral formulation summary

To summarize, the surface integral formulation consists of four surface integral equa-

tions and several boundary conditions:
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2 E(T) = fs dS' [G1 (n, 7)"

1. The first dyadic surface integral equation:

G1 (7, 7)= , ki =v W2/liJ,

where Si is the surface of the ith conductor.

2. The second dyadic surface integral equation:

'~ ds' (~; 7~ t3E~') - Go (T,r')Er'l± 4)
2(T JS [0 a n(r') Dn(r') F) +

ejk 0 IF-T'
Go(Fr7) = , k0 = W / wV ,

where S is the union of all conductor surfaces.

3. The surface potential integral equation:

f, ds'Go(T,7) P
Gojek 0 IF-r'I ko w1Et.Go(7,') = ,k4=rI-/'.

4. The surface integral form of current conservation:

f dc [Et(r) (n(7) x e(f))] - fada a ()= 0.

5. Boundary conditions for non-contact surface:

En(F) - wP(T).
0-

6. Boundary conditions for contacts:

E(T) = hE,(T)

M() = 0
an

Under the global coordinate system of (x, y, z), there exists eight unknowns,

grouped into four categories, that are associated with the above full-wave formulation.

They are: the electric field components Ex, Ey and Ez, the components of the surface

normal derivative of the electric field OE- E-, and OE, the scalar surface charge
y p, ad th s r I

density p, and the scalar electric potential k.
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2.7 Impedance extraction

For a conductor operating at a certain frequency f with a potential difference OA -

B -Vdiff applied between its two terminals A and B, a system of integral equations

can be formed utilizing the above formulation. The normal electric field on a contact,

En, is then obtained by solving the system. Subsequently, E, is used to compute

contact current utilizing the equation:

I(T) = fior j drE (T). (2.30)

Once the contact current is known, the impedance of the conductor at each frequency

level is calculated as:

Z = .f(2.31)
I'

Resistance R, inductance L, and capacitance C are defined as:

R = Re{Z} (2.32)

and

L = IZ} if Im{Z} > 0 (2.33)
27rf

1
C = { I if Im{Z} < 0. (2.34)

Im{ Z} x 27rf
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Chapter 3

Basis functions for each type of

unknowns

In this chapter, it will be shown that each type of unknowns, E, 9, p and q, can be

approximated by a weighted sum of basis functions. In turn, the conductor surface

must be discretized in manners so as to support the basis functions associated with

each type of unknowns. In the case of non-contact surfaces, consider representing

, p and # using piecewise constant basis functions; therefore the non-contact

surfaces are discretized into NNC regular quadrilateral panels consisting of MNC

vertices. In the case of contact surfaces, consider using piecewise constant basis

functions to present p and #; therefore the contact surfaces are discretized into NC

quadrilateral panels with MC vertices. Consider using a set of conduction mode basis

functions to represent E on each contact surface; since each contact is considered to be

a basis of support for the set of conduction modes, no contact surface discretization is

need. Finally, it should be noted that is negligible on the contact surface according

to boundary condition (2.28).
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3.1 Electric field

3.1.1 Conduction mode basis functions on contact surfaces

Background

Input contact current and conductor impedance can only be accurately determined

if the electric field on the contact is accurately represented. However, it becomes

more difficult to calculate the electric field on the contact as operating frequencies

increase. This is because current at high frequencies crowd near the edges and corners

of the contact's cross-sectional surface, thus generating skin effects. One dimensional

analysis [17] shows that inside a conductor, the current density decays exponentially

with distance from the conductor surface. The decay rate increases as operating

frequency increases. Customarily, more refined discretization of the contact surface

is needed to capture the crowding of the fields on the contact edges and corners.

To avoid such computationally expensive endeavor, one can take advantage of the

knowledge of this exponential decay to model the field distribution on the contact.

A volume integral formulation that has successfully modeled the skin and prox-

imity effects of a conductor at high frequencies is presented in [2]. First consider

equation (2.6) for the region inside of a conductor. Assuming that - > jwE in a

"good" conductor, the governing Helmholtz diffusion equation for each contact sur-

face of the conductor is obtained to be:

[,72 _1+j)TE = 0, (3.1)

where 6 = 2 is the skin depth. According to boundary condition (2.27), it is

assumed that the electric field on a contact exists only in the surface normal direction.

Equation (3.1) thus yields:

O2En 2E 1 + j(32
-t + t )En = ,(3.2)

where ti and t 2 are two mutually orthogonal tangential unit vectors of the contact.

The general solutions to (3.2) are the infinite series:

En (t1,7t2) =E Cke -ak "e- bkt2, (3.3)
k

28



Figure 3-1: Volume discretization of a conductor with each section supporting a set of

conduction mode basis functions. The arrow indicates the direction of current flow.

where n denotes the surface normal of the contact surface. Coordinate system (t1 , t2 )

is used to specify any point in the plane of the contact. Ck's are scalar coefficients.

Exponents ak and bk satisfy the following constraint:

a 2 + b 2 = .+j) (3.4)k k 6

Each term in the infinite series (3.3) represents a "conduction mode."

As presented in [2], in order to model conductor current flow using a volume-

based method, a conductor is subdivided along its length into sections that are short

compare to the smallest wavelength. A set of conduction mode basis functions is

applied to each section. An example of this discretization is shown in Figure 3-1.

Using conduction modes in the surface integral formulation FastImp

A major observation of our research is that the volume-based conduction mode basis

functions can be modified to be used in a surface formulation so as to accurately and

efficiently model contact surface current flow. For the volume-based method, a set

of conduction mode basis functions is applied to each subdivided segment volume as

shown in Figure 3-1. On the other hand, for the surface-based method, the conduc-

tion mode basis functions are only applied on each conductor contact surface, thereby

reducing the number of unknowns in comparison to the volume-based method, espe-

cially as the number of conductor volume subdivisions increase with the increase of

operating frequencies.
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The normal electric field distributions on a contact, E,, can be accurately repre-

sented by just a few of the infinitely many conduction modes. Specifically, we use

eight such modes. Four modes are "side modes" and they capture the field exponen-

tially decaying from each side of a conductor contact cross section. The combination

of all four side modes is able to account for most of the high frequency conductor

field distribution on a contact. At extremely high frequencies, four additional "cor-

ner" modes are necessary to account for the extra distributions decaying from the

four corners of the contact. A side mode is specified by letting

1+ j
as = and b= 0. (3.5)

A corner mode is specified by letting

1 1+j 1 1+j(36
a. = 1 ( ) + and b,= ( (3.6)

However, if each one of the eight conduction modes were implemented over the

entire area of the contact surface, numerical difficulties would arise at low frequencies

due to the fact that the relative flatness of the contact electric field at low frequen-

cies makes all the conduction modes resemble each other. This lack of distinctions

between modes introduces linear dependency between the system of discretized in-

tegral equations at low frequencies. The system thus becomes ill-conditioned and

solving it using an iterative method would require many iterations. This problem

can be rectified by confining conduction modes to areas on the contact that reduces

the amount of overlaps between modes while maintaining their effectiveness. For in-

stance, the coverage of each mode can be reduced to a half or a quarter of the contact

area. Therefore the four side modes are confined to the left half, right half, top half

and bottom half of the contact. The four corner modes are confined to the upper left

quarter, lower left quarter, upper right quarter and lower right quarter of the contact.

Figure 3-2 and Figure 3-3 show the shapes of one truncated side mode and one

truncated corner mode, respectively. As demonstrated, the truncated side conduction

mode only contributes to the electric field distribution on one half of the contact plane

while the truncated corner mode only contributes to one quarter of the entire contact

electric field distribution.
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004,
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0,03-

0025,

0.2

0,2 - 6 04

Figure 3-2: A side mode contact surface electric field distribution and its optimal

contact area coverage. The arrow indicates the direction of current flow.

03,

K~LI3 ~

Figure 3-3: A corner mode contact surface electric field distribution and its optimal

contact area coverage.
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In general, the electric field on a contact can be written as a weighted sum of field

contributions from all eight truncated conduction modes. That is:

NM

Es,(r) = ZE C W (T), (3.7)
j=1

where W denotes the jth conduction mode basis function, and NM is the total

number of conduction mode basis functions used on each contact. Figure 3-4 shows

an example of contact electric field representation using all eight conduction mode

basis functions, that is, four truncated side modes and four truncated corner modes.

Ole

0.04
0.04

0 ..... 0

0 0001

Figure 3-4: Electric field representation using all eight truncated conduction mode

basis functions on a contact.

3.1.2 Piecewise constant basis functions on non-contact sur-

faces

Non-contact conductor surfaces are discretized into NNC quadrilateral panels with

the assumption that the electric field is constant on each panel. It should be noted

that the global coordinate system of (x, y, z) is used when dealing with fields on

the non-contact surfaces. Therefore the electric field associated with each panel is

decomposed into E2, Ey and E, components. The electric field on the non-contact

surfaces can thus be expressed as a sum of combined contributions from the directional
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components on all the non-contact panels. That is,

NNC

Esc (T) = E (iEx, + EY, + iE,)Pcj(Y),
j=1

(3.8)

where Pc3 is a piecewise constant function defined as:

1 if T E Panel,.

0 otherwise

3.1.3 Basis functions on the entire conductor surface

The electric field on the entire conductor surface can be represented as a sum of

electric field on the contact surfaces (Sc) and on the non-contact surfaces (Sc) of the

conductor. That is,

E(T) = Es, (T) + Es c () - (3.9)

Substituting (3.7) and (3.8) into (3.9) yields:

NM NNC

E(7) = ic E Cj Wj (T) + E (,Ex, + Eyj + 2Ez,)Pc (c).
j=1

(3.10)
j=1

Figure 3-5 shows the overall conductor surface discretization required to support

the basis function representations of the electric field on the contact and non-contact

surfaces.

Piecewise constant basis function

Conduction mode basis functions

Figure 3-5: Conductor surface discretization for the electric field E.
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3.2 Surface normal derivative of the electric field

According to (2.28), the surface normal derivative of the electric field is negligible on

the contacts. Therefore,
OrE(T) _ OEs (-) (3.11)
On On

The non-contact conductor surface is dicretized into NNC panels with the assumption

that 9 is constant on each panel. Using the piece-wise constant basis function
an

representation, a over the entire non-contact surface can be expressed as a sum of

5 on all the non-contact panels. That is,

OE(7) NNC OF OE OEz
=n ( N ( ±3+ ++2 ' )Pc(). (3.12)

an On On On

3.3 Surface charge density and electric potential

Surface charge density p is approximated by discretizing the entire conductor surface

into N quadrilateral panels. Assuming that p is constant on each discretized panel,

then the sum of p on all the panels would approximate the charge density on the

entire conductor surface. That is,

N

p(Y) -E pP (). (3.13)
j=1

Similarly, conductor electric potential 0 is represented as a sum of panel potentials

over the entire conductor surface:

N

M() = E 0PCj (M). (3.14)
j=1

Furthermore, in an effort to relate each panel centroid potential to the potentials

at panel vertices, one can assume that the potentials at the four vertices contribute

equally to the potential at the centroid of the panel. That is:

j E j(Vjk), (3.15)
k=14
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Piecewise constant basis functions

Figure 3-6: Conductor surface discretization for q, p and O.

where Vjk is the kth vertex of panel j. Substitute (3.15) into (3.14) for # yields the

piece-wise constant basis function representation of the electric potential:

N 4

O(N) = E #(Vik)Pc (f).
j=1 k=1

(3.16)

Figure 3-6 shows the overall conductor surface discretization required to support

the basis functions of 0, p and a. It is worth mentioning at this point that only the

non-contact conductor surface discretization is used to support the basis functions of
OE
On'

3.4 Basis functions summary

1. For the electric field:

E-t = iie X:N_ CjWit + _NC (' Enj + En E3Pe()2.)CW(T) ± fj lciE f e (d

2. For the surface normal derivative of the electric field:

__L_ NN OEj+ j(Y)
an = an- (an± an

3. For the charge density:

p(T) = ZN_ pI Pp7)

4. For the electric potential:

= E_ El_1 #(vjk)Pcj ().
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Chapter 4

Discretization

In Chapter 3, the basis functions for each type of unknowns have been defined along

with the surface discretization required to support those basis functions. In this

chapter, a mix of standard Galerkin and centroid collocation techniques is used to

generate a system of discretized equations for the weights of the basis functions. In

turn, these weights can be utilized to compute terminal current and extract conductor

impedance.

4.1 Discretization of the first dyadic surface inte-

gral equation

The first dyadic surface integral equation given by (2.8) can be written explicitly as

a sum of integrals over non-contact and contact conductor surfaces:

j dsIG,(r, r') -- (f + )ds' ' ET - -E(7)= 0, (4.1)
sOc On s sC On 2

where Snc denotes the non-contact surfaces and S, denotes the contact surfaces. Since
OF is assumed to be negligible on the contacts according to boundary condition (2.28),On

then only the non-contact surface integral of a is applied to (4.1).On

Let f1 (T) equal to the first term of (4.1), that is,

1 - OE(r)
ds'G1 (7, r') (4.2)f(T snc On
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Substituting basis function (3.12) for in (4.2) yields the expanded integral:

NNC E. OE . E,
i(j) = (s "' + Q -1-2 a ) f ds'G(fTr'), (4.3)

j_1 Sn On On sncj

where Sc, is the surface of the jth non-contact panel.

Let f(F) equal to the second integral term in (4.1), that is,

-G G(7 7)
f2 (T) = - ds' 0 E(T). (4.4)

Basis function(3.10) defined on the non-contact surfaces is substituted for E in (4.4)

to yield the following expression:

NNC DG1(T, )
f2 (T) = - E (_, ExS + QEy, + 2Ezj) ds' . (4.5)

j=1 (

Let 3(f) be to the third integral term in (4.1), that is,

f3() = - ds' On E(7). (4.6)

Assume that the conductor is a two-ported system, then (4.6) can be decomposed

into a left and a right contact surface integral. Using the basis function representation

of the contact electric field in (3.7), (4.6) can then be expressed as:

SNM

f 1(T Cli Js ds&G(T TWjr)f()=-d C s' Wri(7) (4.7)j=1 C

and

f 32 ) r C ds' WG ( (F), (4.8)

where Sc, and Sc, are the left and right contact surfaces, fil and TE, are the left and

right contact normals, and C, and Cr are the conduction mode weights of the basis

functions representing left and right contact electric fields.

Finally, let f 4 () equal to the fourth non-integral term in (4.1). Then

f(T)= -- E(T). (4.9)
2

Utilizing the basis function representation for the overall electric field in (3.10), (4.9)

can be rewritten in the form of:
NNC NM NM

h (T) = 2 E ( Exj +QEy, + zEzj)Pc,(r) - 2i E Cj W(T) - 2f E CrjWj(T)
j=1 j=1 j=1

(4.10)
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Based on the above expansions, (4.1) can then be represented as a sum of those

expanded terms as defined in (4.3), (4.5),(4.7), (4.8) and (4.10), that is:

fl(7) + f2) + f 3 1( ) + f32() + f( ) = 0. (4.11)

A mix of standard Galerkin and centroid collocation techniques is applied to (4.11)

to generate a system of equations for the weights, %Ex 0EY , Ex ,Ey, E, C and C,.
On7On I On

The standard Galerkin technique [18] is applied when the electric field evaluations are

made on the contact surfaces of a conductor. This Galerkin technique is necessary due

to the nature of the conduction mode basis functions, that is, they are non-constant,

fast-varying, and need a large area of support (either one half or a quarter of the

contact area). In comparison to the Galerkin technique, a more efficient, but less

accurate scheme of centroid collocation is applied to the field evaluations made on

the non-contact surfaces.

The result is a matrix equation of the form:

OE,
On

OE,
an 0

OEz
an 0

[A] 0,
0

Ez
0

C-

Cr

with A=

P 0 0 D 0 0 nixLi nrLr

0 P 0 0 D 0 niLi n2ryLr

0 0 P 0 0 D niLi n,,Lr

nix Ji niy Ji nz J nix ki ny ki niki D1i (rj1 -di)Dir
nrrxJ, nrirJr rz Jr nrx kr nry kr nrz kr (ir -ni)Dri Drr

where nri, ne, and nri are the projections of the unit normal vector of the left contact

onto the global x, y and z coordinates. The same projections are performed on the
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unit normal vector of the right contact to produce n,,, n,, and n,,. Derivations for

the entries of the submatrices in matrix A will be shown in the next few sections.

The unknown vectors OE, -E and O2E are the weights of the piecewise-constantOn'I On On

basis functions for the normal derivative of the electric field on the non-contact panels.

Vectors E2, Ey and E, are the weights of the piecewise-constant basis functions for

the electric field on the non-contact panels. Vectors C, and C, contain the weights

of the conduction mode basis functions used to represent the electric field on the left

and right contacts, respectively.

The first three rows of matrix A correspond to evaluations made on the non-

contact conductor surfaces. Recall from Chapter 3 that the x, y and z field com-

ponents on the non-contact surfaces are approximated by piecewise constant basis

functions. Therefore each row in A is an extraction of a non-contact surface direc-

tional field component, x, y or z. A panel centroid collocation scheme is used to

produce the submatrix entries in the first three rows of A:

i dr'G1(rc,r') (4.12)

-i fsn dr' G
S f G1(j i

Li f dr' I ' W3(F) (4.13)

1 OG1( ?)

Lr.. = - Ir Wi F). (4.14)
scr an(T)

In (4.12)-(4.14), Tic is the centroid of the ith non-contact evaluation panel. Matrices P

and D contain E and f field responses, respectively, measured at the centroid of each

evaluation panel due to source distribution on each non-contact panel. Matrices J,

and J, contain the electric field responses measured at the centroid of each evaluation

panel due to source distributions on the left contact surface, Sc1 , and right contact

surface, Scr, respectively. Matrices P and D are NNC by NNC, where NNC is the

number of non-contact panels. Matrices L, and Lr are NNC by NM, where NM is

the number of conduction mode basis functions on each contact.
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The last two rows of matrix A correspond to field evaluations made on the contact

surfaces. Since only the surface normal component of the electric field is present on the

contacts, the last two rows of A contain the extracted normal electric field components

on the left and right contacts, respectively. A standard Galerkin technique is used to

produce the matrices in the last two rows of matrix A. Using the left contact as an

example, the following matrices are produced:

Jf= dr'drG1 (f,P)Wi(T) (4.15)
Sc ncj

K. j -dr'dr ' W () (4.16)
S s sne, an(P)

D = C dr Wi (T) W () (4.17)

Dir = - j drdr (4.18)

Matrices J and K contain the distributed E and a field responses, respectively,5 n

over the entire surface of the left contact due to source distribution from each non-

contact panel. Matrices D11 and Di, contain the distributed E field responses on the

left contact due to source distributions on the left and right contacts, respectively.

Similar matrices Jr, Kr, D,, and Dr can be obtained when the field evaluations are

made on the right contact surface. Matrices J, Jr, K and K, are all NM by NNC.

Matrices D11, Dir, Dri and Drr are all NM by NM.

4.2 Discretization of the second dyadic surface in-

tegral equation

The second dyadic equation given by (2.20) can be written as a sum of contact and

non-contact surface integrals:

f - EG-ds'Go(, +') -f( + )ds' '?) E(T) + -E(T) + Vo(f) = 0. (4.19)
snc On -sc sc On 2

Equation (4.19) is similar to (4.1) with the exception of the V1 term that is defined

as:

7 + 2 '+ (4.20)
at1 Ot2 On'
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where (t1 , t2, n) is a local coordinate system with t1 and t2 being the two mutually

orthogonal unit tangent vectors on a plane surface and n being a unit normal vector

of the surface.

From (4.20) one sees an immediate difficulty in evaluating 2. There is not enough

information present to compute the normal derivative of the potential at the centroid

of a panel based on the potentials at the panel vertices. One solution is to extract

the surface tangential components of (4.19). That is:

d-G r D~E(r) / dOGo(r, w)-~ 1- ___ ( 0(421

t1  ds'G(, r') + )ds' E)- + =M 0 (4.21)
Jsc an s, Sc an 2 at,

and

O E(r) _G_(_,_)- 1- ___( )
£2[[ ds'G (f, j') -( f )ds EGo(T ()+E()1 + 0. (4.22)

s c On fsn as On 2 Ot 2

According to boundary conditions (2.27), tangential electric fields Et, and Et2 are as-

sumed to be zeros on the contacts. Therefore the tangential electric fields in (4.21) and

(4.22) vanish when field evaluations are made on the contacts. In addition, bound-

ary condition (2.28) assumes that O is negligible on the contacts. Therefore terms

involve ' vanish as well when evaluations are made on the contacts. Furthermore,

according to boundary condition (2.29), 4 is constant on the contacts, therefore the

terms also vanish from both equations when evaluations are made on the contacts.at

It can then be concluded that the tangential extractions of the second dyadic equation

expressed in (4.21) and (4.22) are only significant when evaluations are made on the

non-contact conductor surfaces.

A standard centroid collocation scheme can be utilized for the discretization of
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(4.21) and (4.22). Consequently the following matrix equation is produced:

aE.
On

On

aEz
On

Ex --

[A] E = 0

C,

Cr

with

A T1 Po T1yPo T1 zPo T1xDO T1yDO T1 zDO TILD 21 TRD 2, AT1

T 2xPo T2yPo T2zPo T2xDO T2yDO T2zDO T2 LD21 T2RD 2, AT2

where [T 1x, Ty, Tiz] and [T 22, T2y, T221 are six NNC by NNC matrices that are the

extractions of the tangential components of the non-contact evaluation panels and

their projections onto the global x, y and z coordinates. TIL and T2L are two NNC by

NM matrices that are the projections of the left contact normal onto the tangential

directions of the non-contact evaluation panels. Similarly, T1R and T2R are matrices

containing the projections of the right contact normal onto the tangential directions

of the evaluation panels.

Utilizing the centroid collocation scheme, the matrices in A are derived as:

Poi -j dr'Go(ric,') (4.23)
SncJ

fs dr'I if i=j
Doj = ncj 2 oG

- fs drGo(rTcr') if i

fScI O(r')d/,OGO(rc r')
D2, = - dr' (W) Wy(r') (4.24)

D2, = -] dr' ( (TWc (r'). (4.25)
fs sr on(r')
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Matrices PO and Do contain E field and field responses, respectively, measured at

the centroid of each non-contact evaluation panel due to source distribution on each

non-contact panel. Matrices D 2, and D 2 , contain E field responses measured at the

centroid of each non-contact panel due to source distributions on the left and right

contacts, respectively. Both PO and Do are NNC by NNC matrices. Both D 2, and

D2, are NNC by NM matrices.

AT, and AT2 are matrix operators that compute the surface tangential components

of V# using a finite-difference scheme on the vertex potentials of a panel. Using the

panel shown in Figure 4-1 as an example, tangent unit vectors ti and t 2 of this panel

are formed by connecting the midpoints of the panel's sides. ao for the panel can

then be discretized with a finite-difference scheme:

AO _ 02 + 03 - 01 - 04 (4.26)
At, 21M1M231

AT, denotes the resulting finite-difference matrix for the entire system of panel ver-

tices. Similar procedure is used to produce the finite-difference matrix AT2 for the

discretization of a.at2

M23

Figure 4-1: Discretization of 0(a- or 2).
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4.3 Discretization of the scalar Poisson surface in-

tegral equation [16]

The scalar Poisson surface integral equation is given by (2.22). Substitute basis

function(3.13) for p and basis function (3.16) for # in (2.22) to obtain:

N N N

E p ds'Go(T, r7) - NE E #(Vjk)Pcj(T) = 0. (4.27)
j=1 s j=1 k=1

It is worth noting at this point that both p and 0 require the discretization of the

entire conductor surface into regular quadrilateral panels. A centroid collocation

scheme is then applied to generate a system of equations for the weights in (4.27).

Consequently the following matrix equation is obtained:

Pop - eAP#5= 0 (4.28)

with

Po= j ds'Go(fic, ), (4.29)

where Ti, is the centroid of the ith evaluation panel and S is the surface of the jth

source panel. Ap is a finite-difference matrix containing potential averaging coeffi-

cients that relate the potential at each panel centroid to the potential at its panel

vertices.

Matrix PO is N by N, where N is the total number of discretized panels on the

entire conductor surface. Matrix Ap is N by M, with M being the total number of

panel vertices.

4.4 Discretization of the surface integral form of

current conservation [16]

The purpose of the surface integral equation for current conservation in (2.24) is to

resolve the electric potentials on the vertices of non-contact panels. As shall be seen

in the next section, potentials on the vertices of the contact panels are resolved by
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the boundary conditions in the formulation. For the sake of completeness, equation

(2.24) is reiterated in this section as:

f dc [Et(f) (n(T) x f(7))] - Ia da = 0.

Consider a non-contact vertex 0 viewed as the centroid of a "dual" panel that

is constructed by connecting the centroids of non-contact panels P1 ,P2 ,P3 and P4

surrounding 0. As shown in Figure 4-2, this dual panel has area a and contour c.

A discretized form of integral equation (2.24) can be formed by considering the part

P4  
P3

M 34 in

* ti

P P2

Figure 4-2: A dual panel

of each non-contact panel that contributes to a dual panel. Using panel P as an

example, subpanel Q 1M 120M14 is the part of P that is used in the dual panel with

M12 being the midpoint of the shared side between panels P and P2 and M 14 being

the midpoint of the shared side between panels P and P4 .

Let's define fi(T) as the first line integral term of (2.24) applied to a dual panel

with contour c, that is:

fi~7) = dc [Et (T) -(n(T) x f(f))]. (4.30)

Now consider the contribution of panel P to this integral. In particular, only subpanel

Q1 M12OM 14 of P1 contributes to (4.30) with semgments Q1 M 12 and Q1M14 making

up 1 of the overall dual panel integration path. Furthermore, one sees from Figure
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4-2 that £12 is a unit vector in the direction of Q1 M12 and £14 is a unit vector in

the direction of Q1 M14. With n being the unit surface normal vector of the panel,

n x £14 ti is just a surface tangential vector along the direction of Q1 M 12 and

n x £12 t2 is another surface tangential vector orthogonal to t, and situated along

the direction of Q1M 14 . Therefore applying (4.30) to panel P yields:

fi(T)= E(T) - (IQiM 12 1ti + JQ1M 14 1t2 ). (4.31)

Substituting basis function (3.10) for the E field on the non-contact surfaces in (4.31)

yields the discretized expression:

fip, = (IQ1M121tix+lQiM14lt2x)Ex+(IQiM121tiy+lQ1M14lt2y)Ey+(IQ1M121t12+IQ1M141t22)Ez,

(4.32)

Now let's define f2(Y) to be the dual panel area integral in (2.24), that is:

/ DEn(r)
f2 = - ada () (4.33)

Extracting from (4.33) the contribution of panel P1 , or more specifically, the contri-

bution of subpanel Q1 M120M 14 , results in the following expression:

f2- () =- da OE ,() (4.34)
aP1 n T

where ap1 is the surface area of subpanel Q1M 12OM 14. It should be noted that f2p1

only accounts for 1 of a dual panel area integration. Now substitute basis function4

(3.12) for in (4.34). This yields the following discretized expression:

OEx OE OEz
f2p1 = (-aprinx) x + (-apiny) E + (-apinz)E. (4.35)

On On On

The discretized version of the surface integral form of current conservation for

each non-contact panel is thus:

fi1p + f2, = 0, (4.36)

where fi 1 is defined in (4.32) and f2p, is defined in (4.35). It should be noted that

this sum only contributes to of the overall current conservation integral for a dual4
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panel. For the entire system of non-contact panels, the discretized form of current

conservation can be expressed as the matrix equation:

iE DIE DIE
CxEx +CyEY +CzEz +Cdxax Cdy a +Cdz z = 0. (4.37)

an On an

Matrices Cx, Cy, C2, Cdx, Cdy and Cdz are all MNC by NNC, where MNC is the

number of non-contact vertices and NNC is the number of non-contact panels. For

the sake of matrix-size consistency, zeros are padded into the rows related to the

contact vertices, thus expanding the matrices to M by NNC, where M is the total

number of panel vertices.

4.5 Discretization of boundary conditions

Equation (2.26) specifies the boundary condition for the non-contact conductor sur-

faces. Substitute basis functions (3.10) and (3.13) into boundary condition (2.26) for

E and p, one obtains:

NNC

S[(nx Ex, + ny, Ey + nz, Ez,) = . (4.38)
j=1

The discretized form of (4.38) can be written as a matrix equation:

(NNC, Ex + NNCy Ey + NNCZ Ez) - W -= 0. (4.39)

Matrices NNCX, NNC , NNCz and W, are all NNC by NNC, where NNC is the number

of non-contact panels.

Boundary conditions (2.27) and (2.28) for the contact surfaces are integrated

within the formulation implementation itself. Therefore these equations do not need

to be explicitly discretized.

Finally, according to boundary condition (2.29), constant potentials need to be

applied to the panel vertices on the contacts. The discretized form of (2.29) is:

ICOV = #c, (4.40)

where matrix I specifies the contact panel vertices from the entire set of conductor

panel vertices and Oc sets those contact vertices to a certain positive or negative
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potential depending on the polarity of the current applied to the contact. 1, is M

by M with only Mc non-zero rows, where Mc is the number of panel vertices on the

contacts and M is the total number of panel vertices over the entire conductor surface.

Oc is a vector of M elements with only Mc non-zero entries.

4.6 System formation

Under full-wave considerations, the discretized equations formulated in this chap-

ter are assembled into a system matrix with 6NNC+2NM+N+M equations and

6NNC+2NM+N+M unknowns where NNC is the number of non-contact panels, NM

is the number of conduction modes, N is the number of discretized panels over the

entire conductor surface and M is the total number of vertices on those panels.

Let A=
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then

On
0

On
M, 0

On

Ex 0

[A] Ey 0
Ez 0

C, 0

Cr 0

$ IC

p 0

The first five rows of Matrix A correspond to the discretized first dyadic integral

equation. The next two rows correspond to the discretized second dyadic integral

equation. The eigth row is the discretized Poisson potential integral equation. The

ninth row corresponds to the discretized non-contact surface normal boundary con-

dition. The tenth row contains two discretized equations: the integral equation for

current conservation applied to the vertices of non-contact panels and the potential

boundary condition applied to the vertices of contact panels.

The unknown vectors a, OE and aEz are the weights of the piecewise-constant

basis functions for the normal derivative of the electric field on the non-contact panels.

Vectors Ex, Ey and E2 are the weights of the piecewise-constant basis functions for

the electric fields on the non-contact panels. Vector C and C, contain the weights of

the conduction mode basis functions used to represent the electric field on the left and

right contacts, respectively. Vector p is the weights of the piecewise-constant basis

functions for the surface charge densities over the entire conductor surface and vector

# specifies the weights of the basis functions representing the electric potentials over

the entire conductor surface.

Even though the formulation described in the paper is implemented under full-

wave assumptions, the equations in the formulation can be easily modified to accomo-

date magneto-quasistatic (MQS) conditions. In particular, under MQS assumptions,
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charge density p becomes zero. Therefore p is eliminated from the formulation as

an unknown. Likewise, the scalar Poission integral equation is eliminated from the

formulation. Furthermore, MQS normal boundary condition for non-contact panels is

used, that is, E, = 0 on non-contact surfaces. Overall, the system matrix is reduced

to a size of 6NNC+2NM+M by 6NNC +2NM±M.

Matrix B is the system matrix generated under MQS assumptions with B=

P 0 0 D 0 0 ni, L, nr, Lr 0

0 P 0 0 D 0 nlyL, nr, Lr 0

0 0 P 0 0 D niLi n,, Lr 0

ni, J, niJ, ni, Ji ni, ki niYk, ni, ki D11  (6 - fr)DIr 0

nr,, Jr nr, Jr nr, Jr nrX kr n, kr nr, k, (, - ii)Dr Drr 0

T1xPo T1vPo T1 zPo TixDm T1yDm T1zDm TILD 21  T1RD 2 , AT1

T 2xPo T 2yPo T 2zPo T2xDm T2yDm T2zDm T 2 LD 2  T 2 RD 2 , AT2

0 0 0 NNCx NNC, NNC 0 0 0

Cdx Cd, Cdz CX CV CZ 0 0 Ic

4.7 Current computation and impedance extrac-

tion

Under the assumption of a two-ported conductor system operating at a certain fre-

quency f with a potential difference Vdiff applied between the two terminals of the

conductor, the current flowing through each contact terminal can be computed af-

ter solving the system matrix in the above section for the unknowns. For example,

the current through the left contact can be evaluated using (2.30). Substitute the

conduction mode basis function representation for contact surface E, in (2.30) yields:

NM

Ic= no- 3 j dr C Wj (r), (4.41)
j=1 c

where W's are the conduction mode basis functions, ni is the left contact normal,

and C are weights of the left contact conduction mode basis functions obtained from

solving the system matrix.
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Given the dimension of the left contact, each integral in the above summation

can be evaluated analytically to obtain the net current flow through the left contact.

Once the contact current is known, the impedance of the conductor at each frequency

can be computed using (2.31),(2.32) and (2.33).

In contrast to our implementation of using a consistent method of computing con-

tact current, FastImp switches between two different methods of computing contact

current depending on the skin depth. At low frequencies where skin depth is greater

than the width of the conductor contact, FastImp uses (2.30) to determine current

flow through each contact by utilizing the weights of the piecewise constant basis

function representing the contact E, field. However, At high frequencies where the

skin depth is less than the contact width, the exponential variation in E" cannot

be accurately represented by the piecewise constant basis functions without using a

much refined discretization on the contacts. For this reason FastImp uses a differ-

ent method of computing contact current that involves a line integration along the

contour of a cross section near the contact. That is:

o = +1 1 dl (V x E(r)) t, (4.42)o- +iwE iW1_ L

where ti is the unit vector along the closed contour L on the non-contact surfaces.

Therefore, the non-contact surfaces must now be discretized finely in order to ensure

that the skin and proximity effects are captured at high frequencies.

As one can see, the new method presented in this thesis offers consistency in

computing contact current over a wide range of frequencies while the method in

FastImp does not. The relative accuracy and efficiency of these two methods are

determined in the next chapter.
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Chapter 5

Computational results

This section presents some of the computational results obtained from the new method

of evaluating contact current. Specifically, impedance extraction results for a straight

wire, a ring conductor and a transmission line are presented in this chapter to validate

the accuracy and efficiency of the new method introduced in the thesis. It should be

noted that since the algorithm is implemented in MatLab, the size and the complexity

of the examples are rather limited.

For the wire and the ring examples, result comparisons are made with FastImp

and the magnetoquasistatic analysis program FastHenry. Therefore these examples

are analyzed magnetoquasistaticly for the sake of performance comparison with Fas-

tHenry. For the transmission line example, electromagneto-quasistatic analysis is

performed by both FastImp and our conduction mode method. In general, full-wave

solves are also possible.

5.1 A straight wire

Consider a straight wire with a square cross-section of 10pm by 10pm and a length of

100pm. The conductivity of the wire is that of copper which is 5.8 x 10' . Impedancem

extractions are performed under applied frequencies ranging from 1Hz to 10GHz.

In FastImp, the surface of this conductor is uniformly discretized with 4X4 panels

on each contact and 4X6 panels on each of the four non-contact faces along the length
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Figure 5-1: A discretized wire structure

of the conductor as shown in 5-1. In the new method, the same 4X6 discretization on

each non-contact face of the conductor is used. As for the contacts, either } or ith2 4

of a contact is treated as a support for each of the 8 conduction modes.

Since FastImp uses the contours near the contacts to evaluate contact current at

high frequencies, the non-contact surface discretization needs to have panels as small

as a skin depth. With a uniform discretization of 4 panels per face along the contour

of the contacts, the dimension of each panel quickly exceeds skin depth as operating

frequencies increase. In order to ensure that panel dimensions remain within }th of a

skin depth at the highest frequency of 10GHz one would need to use a 12X12X6 non-

uniform discretization. This discretization generates 12X12 panels on the contacts

and 12X6 panels on each face along the conductor length. Results obtained from this

fine discretization are used to compare to results from our conduction mode method

of only 4X4X6 coarse non-contact surface discretization. That is 4x6 panels on the

non-contact faces and 8 conduction modes on each contact face.

Finally, FastHenry is run on the same conductor structure with 324 filaments so

that the cross-section of the smallest filament is within }th of the skin depth at even

the highest frequency used in this example. The solution obtained from such fine

volume discretization can be safely assumed to be accurate and can be used as a

reference for validation purposes.
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5.1.1 Accuracy

For excitation frequencies within the range of 1Hz to 10MHz, where skin effects are

not significant, the wire resistances are expected to be close to that of the DC value,

which is obtained analytically to be 0.017241Q for this structure. From the resistance

comparison plot in Figure 5-2, one can conclude that results from FastImp's coarse

and fine discretizations and from our conduction mode method are all accurate in

comparison to this DC resistance value. However, our conduction mode method offers

more accurate evaluations of inductances. Inductances are expected to be constant

at low frequencies. Based on such observation, the inductance analysis shown in

Figure 5-3 reveals that this is clearly not the case for the FastImp method with

both coarse and fine discretizations. Our conduction mode method has a maximum

error of 1% from FastHenry's inductance at 100Hz. On the other hand, inductance

from FastImp's coarse discretization has an error of 30% at the same frequency, and

inductance from its fine discretization has an error of 61%.

When compared to FastHenry at high frequencies, our method with the coarse

4X4X6 non-contact surface discretization yields similar resistance accuracy as FastImp's

fine non-uniform 12X12X6 discretization. Results from FastImp's non-uniform fine

discretization are expected to be accurate since the discretization ensures that the

dimension of each panel is small enough compare to skin depth at all frequencies used.

FastImp's coarse 4X4X6 discretization shows a degraded resistance performance. At

the maximum frequency of 10GHz, resistances from both our method and FastImp's

fine discretization scheme deviate within 1% of the "accurate" solution generated by

FastHenry. FastImp's coarse discretization deviates by 5%.

5.1.2 Cost

In this example, our conduction mode method uses 96 non-contact panels. FastImp

generates 128 panels using the 4X4X6 coarse discretization, 32 of which are contact

panels. FastImp produces 1152 panels using the 12X12X6 fine discretization, 288 of

which are contact panels. In general, our method uses fewer panels while providing
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the most accurate solution at low frequencies. At high frequencies, despite the fact

that our method uses 12 times fewer panels than FastImp's fine discretization scheme,

results from our method have comparable accuracy to FastImp's fine discretization

results and are more accurate than FastImp's coarse discretization results that uses

32 more panels than our method. The sizable discrepancy in cost between our con-

duction mode method and FastImp's non-uniform fine discretization scheme is due

to that the fact that our conduction mode method has removed the constraint of

fine discretization on the non-contact surfaces in order to achieve high accuracy in re-

sults. In fact, our conduction mode method uses a factor of 9 times fewer non-contact

surface panels compare to FastImp's fine discretization scheme.
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Figure 5-2: Resistance of the wire

56

- Conduction modes
- Fastimp coarse discretization

o FastImp fine discretization
* FastHenry

/

/

0.01 1-
10 2

'l! "l" Ni "I" 011 "I'l CIS



x 10-1

- Conduction modes
- - Fastimp coarse discretization
o FastImp fine discretization
* FastHenry

CO 0

7:)

1 --

C 0

0.5-

2 3 4 5 9 10 1110 10 10 10 10 10 10 10 10 10
f (Hz)

Figure 5-3: Inductance of the wire

5.2 A ring

Consider a ring as shown in Figure 5-4 with an inner radius of 20ptm and a square

cross-section of 10pm by 10pm. In FastImp, the structure of this ring is discretized

uniformly into 4X4 panels on each contact and 4X8 panels on each of the four non-

contact faces along the curved length of the conductor. For the conduction mode

basis function method, the same 4X8 discretization on each non-contact face of the

conductor is used. FastImp is again run on the ring structure with a 12X12X8 fine

non-uniform surface discretization so that the length of the smallest panel is within

'th of the smallest skin depth used. FastHenry is run on the same ring with a 1568-

filament volume discretization. The cross-section of the smallest filament is within

'th of the smallest skin depth used.

For this ring structure, impedance extractions are performed under applied fre-

quencies ranging from 1Hz to 30GHz. It should be noted that since this structure
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Figure 5-4: A discretized ring structure

is larger and more complex then the straight wire example, discrepancies between

the results produced by our conduction mode method and FastImp will be more

pronounced.

5.2.1 Accuracy

At low frequencies, Figure 5-6 demonstrates that our method provides the best in-

ductance evaluations with a maximum error of 9% at 100Hz while FastImp's coarse

discretization yields an error of 32% and its fine discretization yields an error of 30%

at the same frequency.

From Figure 5-5, one observes that at high frequencies, resistances produced by

either our method or FastImp's fine discretization method show a large discrepancy

compare to resistances produced by FastImp's coarse discretization. Assuming that

FastHenry's solution is the "accurate" solution, then the resistances produced by

our method show a maximum deviation of 4% occurring at 30GHz. The resistances

produced by FastImp's fine discretization have a maximum deviation of 4% as well.

In contrast, FastImp's coarse discretization results show a maximum 16% deviation

at the same frequency.

More importantly, one observes that both set of FastImp's solutions show a notice-

able dip in resistance at 100MHz as seen in Figure 5-5. This dip is due to FastImp's

switching between two different methods of computing contact current as frequencies

transition from low to high, which occurs around 100MHz. Our surface conduction
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mode basis function method has evidently corrected this discontinuity in solution by

implementing one consistent method of computing contact current.

At high frequencies, it has been demonstrated in Figure 5-6 that inductances

from both our method and from Fastlmp's fine discretization scheme deviate at most

2% from FastHenry's inductance at 30GHz while inductance from FastImp's coarse

discretization deviates 13% at the same frequency.

5.2.2 Cost

Our conduction mode method uses 128 discretized panels. FastImp uses 160 panels

in its 4X4X8 coarse discretization scheme, 32 of which are contact panels. Fastlmp

uses 1440 panels in its 12X12X8 fine discretization scheme, 288 of which are contact

panels. In general, our method uses fewer panels than FastImp, yet yielding the most

accurate results at low frequencies. At high frequencies, our method uses a factor of

12 times fewer panels than Fastlmp's fine discretization scheme, yet still managing

to provide results with comparable accuracy. FastImp's coarse discretization with 32

more panels than our method fares much worse in terms of accuracy.

5.3 Transmission Line

The goal of this example is to test the ability of our conduction mode method to

capture wavelength-related resonance phenomena under the influence of skin effects

and proximity effects. In this simulation, two typical IC package wires, each 1cm

long with 10pm by 40pm on the cross section, are situated 10pm apart. Worst case

high-Q resonances are obtained when the two wires are shorted at one end and are

excited with an ideal voltage source as shown in 5-7. When the excitation frequency

is such that the length of the transmission line is close to a quarter or a half of the

wavelength, one may observe sharp resonance peaks as shown in Figure 5-8. The

amplitude of such peaks is mainly determined by skin and proximity effects.

It should be noted that both Fastlmp and our conduction mode method conducted

EMQS analysis on this transmission line structure. First, we ran our conduction mode
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method using a 2X10 and 3X10 coarse discretization along the non-contact faces of

the two wires with 8 conduction modes on each contact face. To produce an accurate

reference solution using the original FastImp approach we ran a second experiment

where we had to use on the contact faces a fine 8x9 non-uniform discretization in order

to produce panels of about one skin depth. In the original FastImp approach such

discretization implies a similar fine discretization on the non-contact panels near the

contacts and therefore along the entire wire length. In order to avoid long and skinny

panels that cannot be efficiently handled by PFFT, a minimum of 35 sections along

the length must then be used, thereby producing a very large number of unknowns

even for this very simple problem.

5.3.1 Accuracy

In Figure 5-10, The conduction mode method gives a worst-case 3.4% error in the

position of the first quarter-wavelength impedance resonance when compared to the

reference fine discretization solution. A worst-case error of 3.2% is measured on

the impedance amplitude of the same resonance. The discrepancies in resonance

amplitude are more evident in Figure 5-9.

5.3.2 Cost

In this transmission line example, our conduction mode method uses a total of 200

panels. FastImp's coarse discretization scheme generates a total of 224 panels and

FastImp's fine discretization scheme generates 2668 panels. With even fewer number

of panels than FastImp's coarse discretization, the conduction mode method is able

to reach within 5% accuracy to FastImp's fine discretization method that uses 13

times more panels than the conduction mode method. It is evident that the majority

of the savings in cost of our conduction mode method in comparison to FastImp's

fine discretization scheme is due to the use of much fewer panels on the non-contact

surfaces, more specifically, a factor of 12 times fewer. We can finally realize that the

factor of 12 reduction applies to tightly interacting panels. Since such panels do not
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exploit the PFFT acceleration, the final save in memory and time is a square factor

of 122 144.

5.4 Conclusion

A number of conclusions can be drawn from the above results. One is that the

conduction modes, originally developed in [2] for a volume integral method can be

applied to a surface integral method. Furthermore, these basis functions can be

modified by confining their coverage to certain areas on a contact so as to promote

their linear independence while still maintaining their effectiveness.

It has been determined that using these modified conduction modes as basis func-

tions on the contacts offers improvements in the accuracy of conductor impedance

evaluation when compared with the existing approach in FastImp. More specifically,

at high frequencies, our conduction mode basis functions is more effective in taking

into account skin effects. At low frequencies, improvements in inductances are ob-

served due to the use of the Galerkin technique in field evaluations from the contact

surfaces.

It has also been observed that in order to capture skin and proximity effects, the

original FastImp needs to use a very fine discretization on contact faces which implies a

similarly fine discretization on non-contact faces in order to avoid high aspect ratios

on tightly interacting panels which are unfavorable for PFFT. For the same final

accuracy in a transmission line example, by using only up to eight conduction modes

as basis functions on the contacts, we could use a 12 times coarser discretization of

the non-contact surfaces. Therefore a saving factor of 144 in memory and simulation

time can be achieved with the new method.

Finally, it should be noted that FastImp utilizes different techniques for computing

contact current at different frequencies. In FastImp, a switch of evaluation method

is made when the skin depth becomes smaller than the length of the contact. In

contrast, our improved method offers a consistent technique for evaluating contact

current and conductor impedance at every frequency level.
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occurring at 100MHz due to the switching of contact current evaluation method.
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Figure 5-7: A discretized transmission line structure
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