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Abstract

As the bit rate of telecommunications has risen up to 40Gbps, the need for broadband

integrated add-drop filters arises. Our implementation of such a filter makes use of distributed
feedback structures. To achieve such a broad bandwith the device must exhibit high index
contrasts. There is a special case for such a structure that is radiation free but unfortunately not
fabricatable. We consider the more realistic case of air grooves etched deeply into a waveguide.
This approach guarantees us large bandwith but unfortunately induces radiation loss.

Specifically, to implement such a filter we need one or more resonant cavities within a

distributed feedback (periodic) structure operating in the stopband and thus behaving as a
mirror. This stopband is chosen below the continuum of the radiation cone, in the slow wave
region, where the Bloch mode of the mirrors is still bounded and not radiative itself. Radiation
is produced due to the mismatch among the modes supported by the input/output waveguides,
the mirrors and the cavities. As a result of the input waveguide - mirror mode mismatch the
reflectivity of the mirrors is not frequency independent and too low. Together with the mirrors
- cavities mode mismatch this results in a very low radiation Q at resonance.

In this thesis we first give an optimization algorithm for the proper design of a low loss
mirror. It is based on trying to achieve mode matching for the periodic waveguide Bragg
grating and the input waveguide. We then introduce a cavity and design it so that radiation
from it is suppressed. The final result for a suggested filter claims a radiation Q of 600,000 for
40Gbps channels over a 300nm free spectral range.

Thesis Supervisor: Hermann A. Haus
Title: Institute Professor Emeritus
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Chapter 1

Introduction

Telecommunication industry is one that has evolved really rapidly in our century and still

does. The constant demand for increased bit rate incites very active scientific research in the

domain of optics and integrated optics. What limits the bit rate is the finite bandwith of the

available transmission media (optical fibers) and even worse that of integrated optical circuits.

Specifically, the range of wavelengths with acceptable loss for the best available optical fibers

today is 1.5ptm-1.6pim (100nm wide) and the bandwith of Erbium-Doped Fiber Amplifiers is

40nm. These numbers translate to bit rates as 12Tbps and 5Tbps respectively, if we assume

the simplest on-off modulation scheme for the laser sources. Even though this is a limit, such a

communication speed is still really fast and has not been achieved yet for also all the integrated

devices that comprise an optical telecommunication system. Therefore, current research is

focused on reaching this limit for Wavelength Division Multiplexed (WDM) channels of bit rate

40Gbps.

A very important device for integrated optical systems is an Add/Drop WDM Filter. Its

purpose is to extract channels from a WDM stream or add new ones to it. The frequency

selection of such a channel is done through filtering, thus using some sort of resonators. The

total bandwith of the Add/Drop filter, which is the quantity that needs to be improved, is

determined by the number of channels it can support. The goal of this Master Thesis is exactly

the design of a broadband filter with minimized losses.

To implement the device we make use of Distributed FeedBack (DFB) or periodic structures.

It is known that a Bragg stack of quarter-wave layers operates as a perfect mirror for plane
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waves of certain frequencies. This range of frequencies (called a stopband) is larger the higher

the refractive index contrast of the layers. By including a quarter-wave phase shift for one layer

inside the stack we can achieve frequency selection of the resonant wavelength. [1]-[3]

We want to extend these principles to the two-dimensional case of the integrated devices

of our interest, which are waveguide gratings. The great difference is that now out-of-plane

radiation losses show up due to scattering. There is a very special case when this can be

avoided but is unfortunately not fabricatable. Similarly to the Bragg stack the bandwith

increases with increased index contrast of the materials, which means stronger discontinuities

within the device, and hence greater scattering loss. This contradiction has kept the periodic

perturbation in the devices to be relatively modest so far, expressed by shallow gratings on the

surface of the waveguide core. Consequently the achievable bandwith is limited. We considered

the option of deep gratings and specifically air trenches etched on the waveguide starting from

the upper cladding and reaching down into the substrate. The bandwith becomes extremely

broad and our task is to find an optimum design to minimize the radiation loss. Following the

one-dimensional example, the structure will look like the one in Figure 1-1.

Figure 1-1: Grating resonator formed by etching deep air trenches into a waveguide.

In the analysis, infinite periodic structures are studied first and it is found that they can

support a non-radiative guided mode even inside the stopband. Therefore, as cause for the

losses is identified the mode mismatch at the interfaces between uniform waveguide segments

with grating segments. One such interface forms a semi-infinite periodic structure and this is

studied afterwards and properly optimized. As the last step, a cavity is introduced to make

a grating resonator. The first results for the resonant transmission are not very promising.

However, by further designing the cavity the loss levels are reduced to a surprising degree.
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Chapter 2

Infinite Periodic Structures

In this chapter we study the properties of electromagnetic structures that are infinitely periodic

along one certain direction. Specifically, we need to know the modes they can support, with

detailed eigenvalue (propagation constant) and eigenvector (field and power pattern) charac-

teristics. This theory has been well studied and known for a long time for 1D layered media

[4]-[8], closed waveguides and the slow wave region of open waveguides [9]-[12] and the fast

wave region of open waveguides [13]-[18]. This knowledge is of extreme importance to us and

detailed understanding of every aspect of it is necessary.

2.1 Statement of problem

2.1.1 Differential Equation (Helmholtz Equation)

Electromagnetic problems are precisely governed by Maxwell Equations along with the consti-

tutive relations that describe the materials used. In the integrated optical devices of our interest

these materials are isotropic, time-independent, nondispersive, nonmagnetic and linear. Their

only special property is their space-dependency (inhomogeneity). To study the modes of such

structures for a given frequency we use the source-free and Time-Domain Fourier Transformed

(monochromatic wave) form

9



V x E (r) = iwptH (r) (2.1a)

V x H (r) = -iwcoc (r) E (r) (2.1b)

V - coe (r) E (r) = 0 (2.1c)

V - pOH (r) = 0 (2.1d)

with relative dielectric permittivity e (r) = n 2 (r) and an assumed time dependence e-'. These

can be combined to give the wave equations

V xV x E(r) - k e (r) E (r) = 0 (2.2a)

V x 1 [V x H (r)] - k2H(r) = 0 (2.2b)
e (r)

where k2 = W2poco, or by using Gauss' laws (2.1c) and (2.1d)

V 2E (r) + V [E (r) - V In c (r)] + kj 2(r) E (r) = 0 (2.3a)

V2H (r) - [V x H (r)] x V In E (r) + k e (r) H (r) = 0 (2.3b)

We will restrict ourselves to the 2D y-independent case (O/Oy = 0), that is simpler but

can give us fruitful insight for the physics of the more general 3D problems. By doing this

Maxwell Equations get decoupled into Transverse Electric (TE: E = yEy, H = kH + 2Hz)

and Transverse Magnetic (TM: H = fy I E = REx + 2Ez). Each case can be fully described

by its scalar y-component (the transverse to the variations of the structure), so by using (2.3a)

for TE and (2.3b) for TM respectively we get

V 2 Ey (x, z) + k e (x, z) Ey (x, z) = 0 (2.4a)

V2 F ln c(x, z) 0 OlnE(x,z) 012
V2 Hy (x, z) ~ Hy (x, z) + ke (x, z) Hy (x, z) = 0 (2.4b)

So the TE equation reduces to the simple Helmholtz equation, while the TM one does not. We

will concentrate our attention to the simpler case of TE waves and equation (2.4a). This is a

second order linear partial differential (Helmholtz) equation with coefficients that vary in x and
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z. By naming the scalar field Ey = # we rewrite it

[V 2 +ke (x, z)] (x, z) = 0 (2.5)

2.1.2 Boundary Conditions in z (Floquet-Bloch Theorem and Spatial Har-

monics)

Infinitely periodic integrated optical structures have a refractive index profile that varies peri-

odically in one or more directions. In the case of waveguide gratings, that we want to study

here, the periodicity is in the direction of propagation, which we will choose to be z. If A is the

period, we can expand the relative dielectric permittivity in a Fourier series

+00

c(x, z) = e (x, z + A)= er () et2 Z (2.6)
r=-oo

Then the differential equation (2.5) has A-periodic coefficients in z, therefore its solutions

are dictated by the Floquet-Bloch Theorem (Appendix A) to be of the form

# (x, z) u u (x, z) eiZ3z (2.7)

with u (x, z) also a A-periodic function of z

u (x, z + A) = u (x, z) (2.8)

The differential equation for u (x, z) becomes

V2 + 2i+ + k2e (X, z) - 02 u (x, z) = 0 (2.9)

with periodic boundary conditions in z and this is clearly an eigenvalue problem for 0, whose

solutions are called Bloch modes.

By expanding also u (x, z) to a Fourier series we can write

+00 +00

u(x, z)= c () ei 2z7 -- #(x, z)= C (X) ei(3+ 2 7-)z (2.10)
n=-oo n=-oo

11



The coefficients c, (x, z) ei Z are called spatial harmonics of the solution and are not them-

selves solutions of the equation. Only their infinite sum is and they are all present in any

solution. Of course every such solution of the differential equation will have its own different

set of spatial harmonics. We usually call as the fundamental harmonic (n = 0) the one that

carries the most energy. If we see the grating as a perturbation on a uniform z-independent

structure, then this harmonic is usually the one that survives if we take the periodic perturba-

tion to go to zero and reduces to the wave in the simple unperturbed structure.

Now, each spatial harmonic has its own phase velocity defined by

W7=n (2.11)

and this can be positive or negative for different harmonics. However, it can be shown that

energy is propagating with the group velocity

V= (2.12)

which is the same for all the harmonics and defines the direction of propagation. We have to

be very careful in the use of the terms forward and backward to avoid misunderstandings. We

will call forward (backward) propagating wave one that has positive (negative) group velocity,

while forward (backward) harmonic of such a wave will be one whose phase velocity has the

same (opposite) sign/direction with the group velocity. Using this terminology harmonics with

n ;, 0 are forward and those with n < 0 are usually backward.

2.1.3 Boundary Conditions in x (Method of Moments)

The boundary conditions that the electric field # has to satisfy in the transverse direction

depend of course on the form of the boundaries that enclose the structure. Specifically, on an

electric wall the electric field must vanish (0 = 0), since it is tangential to it; on a magnetic wall

the tangential magnetic field must vanish giving ? = 0; and in unbounded open structures

while x goes to infinity both # and 2 must go to zero (bounded modes) or the solution must

represent a standing wave (radiation modes).

If again we consider the grating as a perturbation on a uniform structure, which is in our
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case a waveguide, then this waveguide supports modes that satisfy the same conditions at the

boudaries with the unperturbed problem. If the dielectric profile of the waveguide is Ewg (x)

then the equation that its kth mode satisfies is

[V ± keCwg (x)] "k (x) eikZ = 0 - dx2 + kcEwg (x) - 'k (x) = 0 (2.13)

The set {k (x) } is complete for lossless materials, therefore any function of x in the specified

domain can be expanded in this basis as an infinite sum

00

f (x) = ZAkk (x) (2.14)
k=1

The functions /k (x) also satisfy the orthogonality condition

lol JV)k (x) V1 (x) x = Jkl (2.15)
2wptof

These two properties can lead to a very useful and straightforward implementation of the

Method of Moments to our original periodic problem. One major advantage among others is

that we don't have to worry any more about enforcing the perturbed fields to have the proper

behavior at the transverse boundaries, since the basis functions have this desired behavior

anyway. We could of course use any other complete set in x, that satisfies the boundary

conditions, for the application of the Method of Moments. However, this particular one provides

more physical intuition and gives rise to the very popular Coupled-Mode Theory.

Having formally stated the problem now, we need to proceed in giving recipes to determine

the solutions of the infinitely periodic problem in an exact way, but also to employ an approxi-

mate analytical approach, that can reveal many of the interesting properties periodic structures

have. We do this using different independent techniques and discuss the conclusions.
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2.2 Floquet-Bloch Theory formalism

The most straightforward way to calculate the modes of an infinite periodic structure is to

substitute the expected form of solution (2.10) into the Helmholtz equation (2.5) or equivalently

in (2.9).

[V 2 kC (X, z)]

+k E(x,z) 

+00

Cn ()i(0+2±)Z = 0
n=-00

(1 2n7r 
2

+ )

The dielectric permittivity can be written in terms of its Fourier series expansion (2.6) and the

factor eifz can be dropped

[ +k 2

5OX 2 0

+00

z=o
( 2n7r 2

-(0+ A )

i27rrZ
Er (x) e~~ A

1 2rn
cn (x)e A

(0+
2rr)2]

+00

+k 2 r- (
r=-oo

cn (x) e A = 0

) 27r(r+n)}

We multiply now with e- A z and integrate over one period A so

d2 
2

-2

[d (1

+ 2plr)2]
+oo

c, (x)-+k k Er (X)cp-r

2 \ ) 2 ] ±P( ) + 00 p n( ) C ( X
2~ +-ooIc,() +k ~ 5 pn() a()

This is an infinite system of equations for the cn (x) with boundary conditions the given for

the transverse direction. By defining the vector c (x) [cn (x)]T, the diagonal matrix B =

diag {1 + 2 } and the Toeplitz matrix i (x) = {cn (x)} with fpn (X) = Cp-n (X), we can write

the system in a matrix form

L d 2dx2
+ ko (X) - 521 c (x) = 0 (2.17)

From this form we already get our first very important property for the solutions of an

14

Ea2
Ox

2

+00

n=-oo
Cn (x) ei(,3+ )z = 0

±00

z=o
{ 02

[9x 2

+00

n=-oo

(x) = 0

(2.16)



infinitely periodic problem. If for a given frequency k, we write + - 9 + - then the infiniteA

system (2.17) does not change, but just implies a renumbering of the spatial harmonics (cn (x) --

Cn+q (x)), which does not matter since their sum is infinite anyway. Therefore the W -

(Brillouin) diagram has to be periodic in 3 with period 2.

To solve exactly for the Bloch modes now we can apply the Method of Moments. Each

harmonic is expanded in the complete set {k (x)} (or any other complete set that satisfies the

boundary conditions in the transverse direction) as

00

cn (x) = S Anbk (x) (2.18)
k=1

and then projected onto it again by multiplying with 0'* (x) and integrating over the x cross-

section. In this way (2.17) is converted to an infinite homogeneous system for the constant

unknown coefficients Ank. For nontrivial solutions the determinant must be zero and this is

our guidance condition that will give the eigenvalues for 3.
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2.3 Coupled-Mode Theory formalism

A different way to proceed for the solution is using Coupled-Mode Theory [2]. Basically this

approach is exactly the same like the previous one, but the expansion in x is applied first

and then the Floquet-Bloch form is demanded for the z dependence. Since the set {k (x)} is

complete, the transverse field at each fixed position z can be expanded in an infinite series of

them. Since for a different z the coefficients will be altered, we can write

00

# (x, z) = Ak (z) Vk (x) (2.19)

k=1

and by substituting this into (2.5)

00

[V 2 +k 2E (x,z)] 1 Ak (z) V-k (x)= 0
k=1

Making use of the fact that each "k (x) satisfies (2.13) this reduces to

0dz2+k [(x,z)- Z (x)+ + }Ak(z)k(x) = 0
k=1

We write the periodic perturbation e (x, z) - ,wg (x) = Ae (x, z), multiply the equation with

1'311 0* (x) and integrate over x, so with the use of the orthogonality relation (2.15) the above

becomes

+ I A, (z) +2 I| Z ik(Z)Ak(z)=0 (2.20)
k=1

where Kik (z) is the coupling coefficient between the modes k and I and is equal to

+00

Kik (z) = * J (x) Ae (x, z) Ek (x) dx

-00

Since Ac (x, z) is a periodic perturbation of z, it can be expanded in a Fourier series

+00

Ae (x, z) = Ac (x, z + A) = S erA(x)ei^z

r=-oo
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so then we can define
+00

Klk,r x f b1 (X) AlEr (x) Ek (x) dx (2.21)
-00

and (2.20) is rewritten

2 00 +00

dz 2 + A, (z) +2 1/31 S S Iik,reAAk (z) = 0 (2.22)
- ~ k=1 r=-oo

and this is a coupled system of differential equations for the unknown expansion coefficients

Ak (z), with boundary conditions of the Floquet-Bloch type. The equivalence to the system of

equations (2.16) should be obvious, since their only difference is that the boundary conditions

for a different coordinate have been applied first.

To find the solution of this system exactly, we just have to impose for these unknown

coefficients to have the form

+00

Ak (z) = Uk (z) eipZ = 5 ckneQ(+A) (2.23)
n=-oo

since uk (z + A) = Uk (z). By substituting into (2.22) we finally get exactly the same infinite

homogeneous system like before for the constant unknown coefficients Ckn. Again, for nontrivial

solutions the determinant must be zero, giving the guidance condition that will provide the

eigenvalues for the Bloch wavenumbers 3.

2.3.1 Approximate solution (based on perturbation arguments)

To obtain some intuition on the solution we proceed on an approximate analysis . In (2.22)

every term Ak (z) consists of both a forward and a backward wave, so it can be written

Ak (z) = B+ (z) ei1kIZ + B- (z) e-ilkIz

17



so we get

2 dz 00 + 0

k=1 r=-ood 2i d3I B (z) e-'IPl1Z + 2 I/3d 1 00 +00~ A "k x k1

00 +0+07r Z

- 2i e-IZ + 2lol ] (z) ~ = 0
dk=1 r=-00

Multiplying separately with e-si Ilz and e2Il1Ilz gives two different versions of the above

00 +00

- + 2i ] d B- (z) + 21011 Il S i,rBj (z) ei(1-kIl+ A)z±
dz Zj k=1 r=-o0

00 +00

- 2i I3| B- (z)e-i2/31Z + 2|I/3|1 5 5 'Ik,rBk-(z) e~~I$kI±IlI-)z =0
- k=1 r=-oo

and

2+ 2i |o d B+ (z) ei2 |lIz + 2 |i01 w00 ±0 k,r0 B (z) i10k1-1311+

d z d zk=1 r=-oo

d ~ 2 d +00111_o1)K2 - 2i l +1 Bi (z) + 2 l k,0B0-- (z) e~-50k A =0
I- k=1 r=-oo

Since the w - 3 Brillouin diagram is periodic in o, the curves that describe the modes of

the unperturbed waveguide must fold, giving rise to an infinite set of spatial harmonics. In this

way there will be points where for a given frequency the phase matching condition

27rm
Afl=I/3k1±-I 3II- A = 0

is satisfied. Now the perturbation theory argument can be used that, when the periodic pertur-

bation is small, the coefficients Bg (z) do not have rapid variations. Then, using the method of

stationary-phase, if we integrate the two above equations over a very large longtitudinal length

L >> A (or from -oc to +oc), the only terms that survive are those whose phase is zero,

since the others have a fast oscillating term that cancels with the slowly varying modulating

coefficient. The surviving terms are B+ (z) and Bk- (z) and we say that the two modes couple,

namely exchange of power can happen between them. Since a forward propagating mode is

18



coupled to a backward one, we call this contra-directional coupling. A phase matching condi-

tion can happen usually for only one set of (k, 1, m), so we can approximate the above set of

equations with

E d 2  i ddz2 +±2ziIpg| d Bt+(z)

- 2i k|I d Bk (z)

+ 2 lio rlk,mBk (z) e-iAz = 0

+ 2 10k| I kl,-mB+ (z) e2Asz = 0

with Kk,-m = Ki~k m. We can discard the second derivative term, because the variation is slow,

and then the following popular form of Coupled-Mode Equations is derived

dB+ (z)

dz
dBk (z) -

dz

141kmBk (z) e-iez

-in*k,mB+ (z) ei2z

If instead the phase matching condition

27rm
B= -/k+|I/l - =0A

then we would get co-directional coupling. To describe both cases with one set of equations we

write

dB (z)
dz

dBk (z)
dz

= i Oik,mBk (z) e-iAI3 z

Ok * /iA3Z
S I I'lkm iBl ( z) ee
|!0k|

(2.24a)

(2.24b)

and the phase-matching condition is

= # - !k - 27m= 0 (2.25)

For our problem representation in terms of the coefficients Ak (z) is useful, so we write back

19
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Ak (z) = Bk (z) eiIkZ and similarly for 1, so the equations are from (2.24)

dA = (z) =)A + i lk,mAk (z) eAz (2.26a)
dz loll

dAk(Z) = i 1 A. (z) + i Ok rI*k,mAl (z) e-A z (2.26b)
dz |/k|

The final step is to basically apply the condition (2.23) for the expected form of solutions,

which is expressed here by making the substitutions

Al (z) = cioe 0Z

Ak (z) = k,-me(A)

and then getting the system

[ -1,311- nk,m cil 0

LKlk,m ~~ + 7k Ck,-m

Its determinant equal to zero gives the possible values for the Bloch wavenumber #3

+ = 2 A 2 ++sign {kl Ikm (2.27)
2 A ( ± 2

and then the approximation for the total field is

/; (x, z) = [ci,OVi (x) + Ck,-mIk (x) e-i z eiz

which is clearly compatible with the Floquet-Bloch form.

As a final remark, it is obvious that for contra-directional coupling (sign{3
1 0k} = -1) the

quantity under the square root can become negative when I AO3I < 2 Ii lk,mI. In that case the

values for 13 are complex. Such complex solutions arise from the real ones in the w - /3 Brillouin

diagram at the points where |AO3 = 2 |rcik,m| and the root for 3 is double or equivalently 4 = 0.dTy

This has a very significant physical meaning as we shall see.
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2.4 Properties of Floquet-Bloch modes

2.4.1 Passband (No coupling)

EIGENVALUE / CHARACTERISTICS:

If we are away from a coupling point, meaning the phase matching condition is not satisfied,

then IAO >> I Kk,mI and the possible values of 3 are real and from (2.27) equal to

'3 = 01 and / - A3 + m

with corresponding eigenvectors

[1 , 0 ]T and [0 , 1]T

respectively. So the possible solutions are

0 (x, z) = V), (x) eA ilz and 0 (x, z) = Ok (x) e kZ

namely the modes are decoupled. We say then that the periodic structure operates in the

passband.

FIELD PATTERN q (x, z) CHARACTERISTICS:

In the passband 3 is real and if we write u (x, z) U (x, z)I eiW(x,z) , the field is

Ey (x, z) = 0 (x, = ju (x, z) I eikO(x,z)+z

H (x, z) = - (x,z)
wy-t0 Oz

(2.28a)

+01 ei[w(x,z)+z

(2.28b)

so it is a propagating wave with a modulated amplitude and phase. Exactly at the interface

21
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z = 1 defining the unit cell [-, A]

El ) = u 2 ) eik2(x)+3A] (2.29a)

H1 2, + 2) + e, + 2iwx$+$ (2.29b)

Generally, e (x, z) is real so e* (x) = e-, (x), but if it is also even in z, namely if the

periodic cell is symmetric, then E* (x) = 'r (x) = f-r (x). Therefore Z (x) is real symmetric

and the system (2.17) is totally real, so the solutions for the Cn (x) can be taken real. Then

u (x, z) = C7n, (x) ei 2Z = u* (x, -z), so 1u (x, z)I and ,p (x, z) are even and odd functions

of z respectively. Derivatives of them in z have just the opposite parity. Hence, at the interface

z we have P x, A) = )=0 and the field is

E, (X, = 2 e', As (2.30a)

Hz~2 -, =2-- + ,O e# (2.30b)
2A epo z 2

This indicates the very important result that for symmetric periodic cells in the passband the

phasefront of the Bloch mode is planar at the interfaces defining the cells. In any other position

of the cell or for nonsymmetric structures the phase of the field depends on x for every z and

thus the phasefront is curved.

ADMITTANCE Y(x) CHARACTERISTICS:

For periodic structures we define the admittance only at the interfaces of the periodic cells,

so by (2.29)

Hx (x, ) 1 H x, $) 1 aI (xA)I ( )
Ey (x, A) - wuL az J u (x, A) z(2.31)

and we see that it is complex and a function of x. However, for symmetric cells

Hx (x, A w) 1 [) (X, A(
Y (X) =- 2 __2)+ (2.32)

Ey (X, $) WOp 09z
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so it is real, similarly to the case of uniform waveguides. Hence we can write that the admittance

of a Bloch mode in the passband is

Y (X) = () - iy ()

with Y, y E R and y = 0 for symmetric cells.

POWER PATTERN S(x, z) CHARACTERISTICS:

The complex Poynting vector in the direction z is

1 1
2 - S (x, z) = 2 - E (X, z) x H* (x, z) = 2Ey (x, z) H* (x, z)

= f [2 0 X, z) 1I (X, Z)12[wt t z L 13Ouxz) - i lu(x,z) I } (2.33)

and at z = A

A) 1

2wpo{[ &9(x, )
Sz

+±] u
A 2
2 J -. U ( 22 J a|u(x)|

so real power is propagating and reactive circulating. For symmetric cells

1

2wp-o

Lw (X,:) I
09z +0 ('

A \ 2

2f

so only real power is propagating. In both cases, similarly to plane waveguides

A
1

2 (X) Ey (X
A 2

2,

2.4.2 Stopband (Intramode Coupling)

EIGENVALUE 3 CHARACTERISTICS:

When two different harmonics of the same waveguide mode couple then they must be contra-

propagating and 01 = -Ok. From (2.27) the Bloch wavenumbers are

7rM)2
- Kru,mI2

23
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(2.35)

8|n (, z) I

S- S X' A
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Close to the coupling region there is a frequency range for which <31 -- I5  < , s0 3 is

complex with real part = that is constant throughout this range. This frequency interval is

called a stopband and if we write w- - wil its bandwith is

AWstopband = 2- I ri1i,mI
n

(2.36)

In our device we want this bandwith to be large, therefore we have to make Iril,ml large, so

(2.21) now explains why the perturbation has to be strong. To illustrate the above arguments

better, in Figure 2-1 we show an example for the Brillouin diagram near a stopband.

3.0 ' 3.2
MA

3.4 3.6

Figure 2-1: Brillouin dispersion diagram near the stopband, taken from

wavenumber 3 is denoted here as K + iKj.

[2]. The complex Bloch

FIELD PATTERN q$ (x, Z) CHARACTERISTICS:

Suppose that again we are examining the mth stopband where 3 = T + ia. Then by

substituting into (2.16)

[ +ia+ r 2pr 21
+00

c, (x) + k 2 E En (X) Cn () = 0
n=-00
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Changing the index p into - (p + m)

d 2 (m7r 2 (p + m)\ 21 2 +00
dx 2  A + A ) c(pm) (x) + ko 1 C-(p+m)-n (x) Cn (x) = 0

n=-oo

and n into - (n + m)

d 2  
m7r a 2p7r\

dx2 A A)

21 +00

c-(p+m) (x) + k S + (pn) (x) C-(n+m) () = 0
n=-oo

Taking complex conjugate

d2  m7r 2p7r

d2 A + A 

2] +00

c-(p+m) (x) + k Y E(pn) (x) C*(n+m) (X) = 0
n=-o

and since c* (x) = e-r (x)

d2 m7r 2p7r 2 +00

d2 A A C*(p+m) (x) + k pn (X) C* (n+m) (X) = 0
1 fn=-oo

and this is exactly the same system of equations as in (2.37) but for c*(n+m) (X) instead of cn ().

Since the system has only one solution for this value of B, C*-(n+m) (X) must be proportional to

cn (x) and by the same factor for every n. For normalized solutions this constant must have

unit amplitude so it can be written as e- Y. Thus

C-(n+m) (x) = e-icY (x) for every n (2.38)

Therefore the field for m odd is

+002

# (x,z) = ca(X) ei(I+')z = c( r+

n=-0 n=-

+00 _i2,Tn Z i= -QZ

Cn (X) ei A ei Aze-z

-m I+1
2J

We set n -+ - (n + m) in the first sum

r0 .27r(n+m) * 27rn 1 mirZ -
# (x, z) = [C-(n+m) (x) e A z+C(x)e z e A e

n= -m+

25
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and make use of (2.38)

+00 (, z 2i(n+m) i2,n Zimz -

(x, Z) = Z e c* (x) e-' A Z cn (x)eI e A e-
-m+1n=2

2 i +00 2 .i(2n+m) Zm(2n+m) z
= e e c* (X) e2 e- A z + cn (x) e- 2e ^ z e Ze-Z

-m+1n -- 2

+00 r [ i(2n+m) '
2e Re cn (x) e ^ Z2 e-az

n=2

= 2e 2C (X) Is C r + C (W) e-az (2.39)

n -m+1 (

and the field is obviously a standing wave.

At the band edges the field must have both stopband and passband characteristics so for

symmetric cells the cn (x) are real and

. +00 7r (2n + m) [ _ -az# (x, z) = 2e' 2 cn (x) cos A - e
_= - m+1

- 2

When the interfaces of the symmetric cells z = are defined in their high dielectric region,

it turns out that in the lower frequency edge of the stopband -y =,r, so

(x, z) = 2i cn (x) sin r(2n z e-az
=2 -+1 A

2

namely most of the energy is stored in this high dielectric region, while in the upper frequency

edge of the stopband -y 0

+0C 7r (2n + m) U
#(x, z) = 2 c (X) cos A z e-

n=-m+12

and the energy is stored in the lower dielectric region [3] [5].
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Similarly for the case m even we get from (2.38)

C*_M = e-ac - -Zcm = + Zc-m + 2s7r -- > Zc- = + s7r
2 2 2 2 2

-- c- M (x) = e2Em (x) with E_ m (x) E R

so

2+00 -7r (2n + m) az(x, ) = e _ {a (X) + 2cf(x)cos[ A z - ±+ Zcf (x) e-z (2.40)
n=1+ -

Again the energy storage at the stopband edges follows the variational principle that it concen-

trates in high dielectric regions for lower frequencies and vice versa.

As a general conclusion from (2.39) and (2.40) it can be stated that in the stopband the

Bloch mode is a standing wave and can be written as a completely real function (apart from a

multiplicative complex constant).

Ey (x, z) = (x, z) = U (x, z) e-cz (2.41a)

i 6# (x, z) _i [&U (x, z)_Hx (x, z) - [ ' - aU (X, z) e-ez (2.41b)

ADMITTANCE Y(x) CHARACTERISTICS:

The admittance of a Bloch mode in the stopband is

Hx (X, A) i 1 OU (X, z)~Y (X)( - i1 - U (2.42)
Ey (x, A) WO U (x, z) Oz

so it is purely imaginary.

POWER PATTERN S(X, z) CHARACTERISTICS:

Again

i - S (X, z) = 1 Ey (xi, z) H* U2 (x,z)-U(x, z) u (X, z) e_2az
2 2wyo [ z
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so in the stopband there is no transfer of real power anywhere within the periodic cell. This

is completely compatible with the standing wave field pattern and the fact that a stopband

can arise only from points of the passband where group velocity is zero. There is only reactive

power and is decaying along the structure. The Bloch mode in the stopband is evanescent and

this is the region where such structures can operate as good mirrors.

2.4.3 (Intermode Coupling)

EIGENVALUE 3 CHARACTERISTICS:

When the coupling is between two harmonics of different modes of the unperturbed waveguide,

then they can be either co- or contra-propagating. The eigenvalue 3 is given from the general

form (2.27)

-=~ + k3k + sign {/I/ kg}|rn|
2 A 2

and can be complex only in the contra-propagating case. The real part is not constant any-

more with frequency. The bandwith of this phenomenon is again proportional to the coupling

coefficient KIk,ml.

Suppose that we have now a slab waveguide between two hard walls. The modes of the

structure are all discrete. By applying some periodicity, harmonics of them will couple giving

rise to complex 3's for finite bandwiths. If we now start pulling the walls apart, the higher

order modes will become denser and these bandwiths will overlap. Then, while frequency is

increased, the Bloch mode / does not manage to become real soon, but stays complex over

a larger frequency range. In the limit when the walls are taken to infinity we have an open

structure and these higher order modes form a continuum. Consequently, the Bloch mode stays

always complex and is clearly a leaky wave mode.

Its existence starts when the -1 harmonic of a bounded mode meets the oppositely propa-

gating radiation continuum to which it couples. Before the leaky /3 reaches the next 2 the

corresponding field pattern is bounded. When it does reach that point though, coupling be-

comes co-propagating and no (proper) complex solutions can exist. This is exactly why the

leaky wave has a null in its imaginary part there forming a "leaky stopband". From there on,

a complex solution can only be improper and indeed the -1 harmonic crosses a branch cut and
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enters the improper Riemann sheet, where the field is unbounded in the transverse direction.

The above frequency dependence is shown in the Brillouin diagram of Figure 2-2 for the case

of a sinusoidally stratified dielectric slab.

It would be nice for our distributed feedback mirror not to radiate itself. Therefore, we

would like to avoid operating it in the radiation region. The very important result of the

previous analysis is that there is a stopband below the radiation cone, as can also be seen in

Figure 2-2. This is a very pleasant conclusion and such a stopband will be a perfect operation

point for the mirror.

Since the radiation region is not of our interest, we will not discuss more the theory related

to leaky modes. This theory has been well known since many years and can be found in the

literature [13]-[15][18].

k-ot.k

032 04 O0s 04 2

flA4

20 ~

Figure 2-2: Brillouin dispersion diagram for a sinusoidally stratified dielectric slab, taken from
[15]. The region inside the triangle corresponds to bounded guided waves and a stopband does
exist in that region. When such a bounded wave meets the side of the triangle, it couples to the
radiative continuum (enlargement B) and then outside the triangle it becomes a leaky wave.
At broadside its imaginary part has a null and a "leaky stopband" is formed (enlargement A).

29

A

U
A

I I

I e5

..... .Ow 121F

I

i 2 2 z 14



POWER PATTERN S(x, z) CHARACTERISTICS:

It can be shown [16][17] that a wave with a complex propagation constant cannot carry real

power. That's why in Figure 2-2 (enlargement B) the leaky wave again stems from a point in

the passband of zero group velocity. This was seen also for the case of a mode in the stopband.

The difference now is that the complex Poynting vector is not identically zero everywhere. Only

the total (integrated Poynting vector) real power is zero. What happens is just circulation of

power from the forward propagating mode to the backward, so that nothing manages to go

through. In the case of a leaky wave these modes are respectively a bounded guided mode and

some portion of the backward radiative continuum. This is why the structure then behaves

like an antenna. When the -1 harmonic first enters the light cone it radiates backward endfire

and then the radiation peak is scanned with frequency, until it reaches broadside, where as we

explained, it has a null. Therefore, in general, even though no power is transmitted, this is not

a good operation point for us, because what happens is not simple reflection but radiation. We

can safely conclude that the distributed feedback structure for our application of an integrated

resonator must be operated in the bounded stopband lying beneath the radiation cone.
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2.5 Transfer Matrix formalism

Another very useful method to describe periodic structures is a Transfer Matrix apporach

(Appendix B) with the use of Mode Matching. If the Wave Backward Transfer Matrix is used

to describe how the field propagates across a periodic unit cell then denoting the vectors with

the coefficients of the forward propagating waves at the nth interface as fn and those for the

backward bn, then the matrix relation is

[fn-1 1=T1,

T21

T12 fn1

T22 bn

A B fn

C D bn I (2.43)

However from Floquet-Bloch Theorem (Appendix A) a solution should satisfy the condition

0 (x, z + A) - eiOA (x, z)

which translates in

fn- 1 1 -iA f 1
bn_1 bn

for the expansion coefficients of the field at the two interfaces

into (2.43) gives

of the cell. Substituting back

A B fn fn ](2.44)
C D bn bn

so e-i8A is an eigenvalue of the ABCD Matrix and this is a standard way to find numerically the

propagation constants of the Bloch modes of the structure. The eigenvectors give the eigenfield

at an interface which can be propagated with the Transfer Matrix to give the field pattern

throughout the cell.

For reciprocal systems we will show that also ei/3A will be an eigenvalue, so it makes sense

that we reduce the problem to half of this [12]. From (2.44)

(A-e-iA) . f -B - b

C - fn = (e-i 3 A - D) -bn
fT. CTB - b = bT- (e-iOA - DT) (e-i3A - A) f
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We now use the reciprocity condition (Appendix B)

ATD - CTB=I

so

fT - (ATD - I) -b, scalar b - (DTA - I)- f = bn -e-2/AI - (A + DT) eiI3 A + DTA] fr

b [ ei23AI -(A+DT) eiAe- + fn= 0

and finally A+D c

bn - 2D - cos (OA) I -fn 0 (2.45)

therefore cos (OA) is an eigenvalue of the matri +DT and this verifies that both # and -,3 are

possible wavemunbers. fn are the corresponding eigenvectors of A+DT and b_ those of AT+D

for the same eigenvalue. If the same procedure is followed for the Voltage-Current Backward

Transfer Matrix we similarly find

iT A-i-T cos (OA) I vn = 0 (2.46)

If the system (namely the unit cell) is symmetric then (Appendix B) A = AT, D = DT and

D=AT, therefore

bn A -cos (3A) I] f =0
2

ij. [A-cos(A)I] -vn = 0 (2.47)

and if in addition it is lossless then for the simple second case it can be shown that A is real

(A = A*).

By solving this eigenvalue problem we can find all the different Bloch modes that can exist.

The cases for the eigenvalue are:

" real cos (OA) with Icos (,3A) <1 - 3 real -+ mode operates in the passband.

* real cos (OA) with cos (,3A)| > 1 - # = ' + ia - mode operates in the stopband.
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9 complex cos (3A) -> 3 complex with Re { } - mode operates in a region of

coupling between two different modes. 1

Since A is real, for the first two cases that cos (OA) is real the eigenvectors v, and in will be

real. This means that in the passband and the stopband at the interfaces of symmetric cells the

phases of the expansion coefficients are all the same, so the field pattern has planar wavefront

and this agrees to what was found with the previous methods.

To examine more of the properties that are hidden in (2.45) we have to look at a specific

example and of course the choice is one that is related to our problem.

'In [12] the author proves that only real eigenvalues can exist by claiming the argument that Cholesky
decomposition can be applied to any real symmetric matrix. This is wrong, because this factorization can be
done for sure only when the matrix is also positive definite.
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2.6 1D layered periodic media [4]-[8]

Consider a one-dimensional stack of alternated layers with refractive index ni and n2 . The

transverse modes that are supported are just plane waves, therefore a matrix relation to describe

the system would be 2 x 2 with just scalar elements.

n2 n

Figure 2-3: One-dimensional Bragg stack of alternated dielectric layers.

If we define the interfaces of the periodic cell to be like in Figure 2-3, with 91, 02 and 93 the

phase shifts across each layer, then it turns out that the elements of the ABCD Matrix are

A = e-it(1+3) (cos 02 - iP+ sin 92)

B = -ie i( -03)P_ sin 02

C = ie-i (1-03)p sin 92 = B*

D = ei(01+3) (cos 02 + iP+ sin 92) = A*

with P± = i and therefore the eigenvalue equation (2.45) becomes

A +D _A +A*
cos (OA)= - A Re {A} = cos (01 + 03) cos 02 - P+ sin (01 + 93) sin 02 (2.48)

2 2

We can also write 01 + 03 = / 1wi and 92 = 0 2W2 and if the plane waves are normally incident

then /1 = koni and 0 2 = kon 2 . In this case, that we will consider here, the above is written

cos (OA) = cos (koniwi) cos (kn2W2) - 1 + n2 sin (koniwi) sin (kon 2w2) (2.49)
2 (n2 ni
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When Icos (OA) I < 1 then the mode is in the passband. However, if for example 01+03 = 02 = Z,

then we have a common quarter-wave layer Bragg stack and

cos (A) = -P+ = (±+ -2 < I < = 7- + i- cosh-i + -
2 n2 ni A A 2 n2 ni ,

(2.50)

which means that the Bloch mode is evanescent, and this is the center of the stopband, because

there the imaginary part of the complex wavenumber is maximum.

Since we are interested in designing a rectangular grating, which can be considered a layered

periodic structure, we need to know what the widths of the layers should be. Therefore we

invent a graphical tool that can tell us how these widths should be chosen, in order to have the

stopband characteristics that are needed. We make a contour plot of the relation (2.49) with

(01 + 03) /7r and 02/7r instead of just wi and W2, like in Figure 2-4.

I I

1.76F

1.51

1.251

---------

10 0.25 0.5 0.75 1
k n w hn

1.25 1.5 1.75

Figure 2-4: Dispersion diagram for a Bragg stack of alternated layers ni = 1.67 and n2 = 1

(air). The passband is shown white and in the stopband |cos (3A)| is plotted with the phase

shifts in the layers. The straight black line shows the frequency dependence.
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The center of the first stopband at 61 + 03 = 02 = 2 is evident. A choice for any (Wi, W2)

(and therefore [(Q1 + 93) /7r, 02/7r] at a fixed frequency) can be seen as a choice for an operation

point. The frequency dependence is then given by a straight line that passes through this

operation point. This is also true when incidence is not normal but at an angle p with respect

to the normal. This line is given for both the center of the stopband and another arbitrary point,

where the imaginary part of 3 is less. Clearly the width of the stopband (called Free Spectral

Range) is maximum in the first case. It can also be stated that this bandwith increases when

the maximum at the center increases, and therefore through (2.50) when the index contrast

ni - n 2 increases, namely the periodic perturbation is strong.

It should be evident now why quarter-wave layers have always been chosen for a Bragg

stack: Large Free Spectral Range (FSR) and rapid decay of the field in the structure. However,

plots of the form of Figure 2-4 will be very useful later on for our 2D waveguide grating, since

they will show that such an operation point is no more optimal.
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2.7 2D layered periodic media (waveguide grating)

When the periodic structure under consideration becomes 2D, such as a waveguide grating

of deep air trenches, the transverse unperturbed modes of the waveguide are not decoupled

anymore. Therefore, as we explained before, complex solutions might arise in possible coupling

regions of two different discrete modes and a leaky wave will for sure appear, when any of the

discrete modes meets a backward harmonic of the radiative continuum. As a result, a Bloch

mode is bounded and guided only in the region inside the triangle of Figure 2-2, which is defined

by
27r

ko < f < - ko ->= cos (OA) < cos (koA) (2.51)

Therefore, we will concentrate our attention only in that area. To make sure that there is only

one Bloch mode in this slow, bounded wave region for the total wavelength range of interest

(e.g. OCB 1.5pm - 1.6pm), we need to choose the waveguide to be single-mode until the tip

of this triangle

ko= f stopband = e-> A = 2A (2.52)

for the shortest wavelength in this range.

A Si3N4 (n = 2) - air waveguide with infinitely deep air gaps is considered as an example

here, so the structure looks like rectangular rods in air. The core thickness is chosen dcore =

400nm for the waveguide to be single-mode up to A = 1.5ptm. Of course a symmetric air-

cladding waveguide is not realistic, since it cannot stand on the substrate, but this is just an

illustrative case, so we won't worry about this.

For the finding of the Bloch eigenvalues 3 we now have to use the general equation (2.45).

At the center wavelength (A = 1.55pm) we make a contour plot of cos (A) for the fundamental

mode. This time we cannot clearly define phase shifts (01 + 03) /7r and 02/7r, so we simply

plot it with wl and w 2 , which here we denote as x and y. The graph is the one in Figure 2-5.

The passband is shown in green color and the presence of the radiation continuum is denoted

with blue color. More specifically the darker blue indicates the region above the tip of the

triangle of Figure 2-2 (A < 2A) and the lighter blue the continuum at the sides of the triangle

(A > 2A but cos (A) > cos (koA)).

To see now the frequency dependence we should plot for a different wavelength. We would
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see that, for example, for a shorter one the graph moves towards the origin. The operation

point (x, y) seems then as if it moves away from the origin, approximately on a straight line.

Therefore, we claim that the frequency dependence can be roughly described again by such a

line and the simulations do verify this assumption. Also the behavior of the Brillouin diagram

is very well reproduced in this way. For example, the line for the operation point away from

the center corresponds to a diagram like the one in Figure 2-2.

Figure 2-5: Dispersion diagram for rectangular rods of index n = 2 (Si3N4) in air at A = 1.55pm.

The passband is shown green, the radiation cone blue and in the stopband Icos ('3A) is plotted

with the widths of the rods and air gaps. The straight black line again shows approximately

the frequency dependence.

Again the important conclusion from Figure 2-5 is that there is a stopband that lies below

the radiation cone. The Bloch mode there is evanescent, but in the transverse direction is

bounded. Therefore if we choose our operation point in it, the periodic structure itself will not

radiate. How radiation comes up will be discussed in the next section. On the graph also the
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stopband of an equivalent Bragg stack is shown, using the effective indices of the waveguide

and air region. These are n1 = 1.67 and n2 = 1 and this is why we chose these numbers in

the previous section. It could be said that the effective index description is a decent one, since

it gives a good idea about the location of the stopband. In this way we can see where the

next (second) stopband would lie and this is of course in the radiation cone. We don't want to

operate the structure there. If the initial waveguide was very slow, then there could be more

bounded stopbands, but those could be only the odd numbered ones, because only those can

fall inside the triangles of Figure 2-2.
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2.8 Conclusions concerning the grating resonator

The major conclusion of this chapter was that an infinite (uninterrupted) periodic structure

can support a Bloch mode in the stopband that is non-radiative and guided. We will obviously

choose such a mode for our integrated DFB mirror. In this case, radiation can show up only at

interfaces where we interrupt the periodicity, and these are indicated in Figure 2-6 by arrows.

Figure 2-6: Radiation from the grating resonator can arise only at the interfaces indicated by

the arrows, where a uniform waveguide is connected to a periodic grating.

We defined the periodic cells of the DFB structure to be symmetric, so that all of the above

interfaces will be equivalent. Taking into account reciprocity, they can all be seen as the same

interface between a simple waveguide and a semi-infinite periodic structure. The mirrors are

shaded so that each one can be considered as an entity, independent of the uniform waveguide.

Even though these four interfaces look the same, they don't play equal roles in the operation

of the device and therefore each one is responsible for the appearance of radiation to a different

degree. Specifically, the role of the input interface is to reflect the entire band of the incom-

ing WDM signal and therefore the loss upon reflection that it introduces affects basically the

channels that will not pass and will exit from the Through Port. For the filtered channel most

of the energy will lie in the resonant cavity, so the losses of the two center interfaces will be

detrimental for the performance of the Drop and Add Ports and compared to these losses the

imperfection of the outer interfaces will not really matter.

In any case though, given their similarity, it makes sense that we first study only one of these

interfaces and try to minimize the loss it produces. The next chapter is therefore concentrated

in the analysis and optimization of a semi-infinite integrated mirror.
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Chapter 3

Low-loss Semi-infinite Periodic

Mirror

The purpose of this chapter is to design a low loss broadband mirror made up by a semi-infinite

periodic structure operating in the stopband. The problem is related to this of out-of-plane

scattering by two-dimensional photonic crystals, so a very active research has been conducted

on the topic the last years [19]-[28]. The analysis is not obvious and is taken step by step

to be made more comprehensible. The cause of the loss is identified first and then studied in

depth. The conclusions help us suggest remedies that we need to apply. These remedies at some

point contradict and their dominant balance must be evaluated. An optimization algorithm is

developed and then implemented to design a very low loss and broadband integrated mirror.

3.1 Modal mismatch as cause for radiation loss

The incoming waveguide is designed to be single-mode. Having a full description of this mode

and the guided evanescent Bloch mode on both sides of a semi-infinite DFB mirror, it is straight-

forward to conclude that radiation loss arises only due to the mismatch of their transverse profile.

This mismatch induces coupling to higher order modes, which are all radiative for both sides

of the interface. It was actually shown in [26] that if the overlap between the waveguide and
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Figure 3-1: Radiation results from the mismatch of the transverse profiles of the waveguide and

evenescent Bloch modes, which induces coupling to higher order radiative modes.

the Bloch mode at the interface above is

Re {[f Ew9 (x) x H* (x) - - d] [f EB (X)xH ( 2 dx] /[f E (X)xH (X)Zd]}
Re {f Eg (x) x H* (x)dx}

(3.1)

then the reflectivity of the semi-infinite mirror can be well approximated by

Rmirror = r72

Since in the stopband there can be no transmitted energy to the evanescent Bloch mode,

whatever remains can only get lost in radiation. Therefore a model for the losses is

Lmirror = 1 - r72 (3.2)

Our task is to find an appropriate waveguide and periodic structure such that the factor 7q is

maximized. We will denote the mismatch of the waveguide and Bloch modes as r7 < 1.

The ideal case of making q = 1 requires that both the electric and magnetic field profiles

are matched on the definitive interface. If we look at the Bloch mode in the stopband though

from (2.41) we have

EV (x, z) = U (x, z) e-z

Hx (x, z) = - [OU(x, z)- aU (x, z)1 e-z
PO . z
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so the transverse profiles are not the same for both fields or equivalently the impendance is

not constant, but a function of x. On the other hand, a waveguide has the same profiles for

the transverse electric and magnetic components of a TE mode and the mode impedance is

a constant number. Therefore there cannot be a way that a z-uniform structure can match a

Bloch mode, unless the longitudinal and tranverse dependance of the Bloch mode are decoupled.

This happens only when the separability condition

E (x, z) = EX (x) + 6z (z) (3.3)

is satisfied [29]. For example, for two symmetric slab waveguides this can be written as [30]

ni1-2 = n2 _ i12 = Const. (3.4)
2 -2 2 -2

and then the semi-infinite mirror under consideration would look as in Figure 3-2. We see that

the same tranverse mode profile can be kept throughout the device, because all of its segments

support such a mode.

n2 k

Figure 3-2: The transverse modes are decoupled when the structure satisfies the separability

condition ( 3.3).

Unfortunately such a device is not fabricatable. Its manufacturing, apart from being ex-

tremely costly, would be so much sensible to misalignments and other tolerances, that turns

out to be prohibitive. Clearly, our problem is an optimization problem only because the in-

tegrated circuit fabrication industry has limitations. It is imperative therefore to be aware of

these limitations, since they will be a guide towards our optimum design.
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3.2 Fabrication limitations

A discontinuity that can be very straightforwadrly implemented and is the least susceptible to

fabrication errors is etching air gaps on waveguides. The question is what are the sizes of the

trenches that can be actually made and how do they compare with our desired values. For a

bounded mode to exist we definitely need the period of the grating to obey the relation

7r 27r 7rA
ko< 3

stopband =-X < A - ko -> ko < 2-> A < (3.5)

and since we want to cover the total Optical Communication Bandwith (OCB) 1.5pm - 1.6pm

we get an estimate for the order of magnitude of the period we are looking at, and this is

A < 750nm, which accounts for both the air trench and the waveguide segment. Such a

precision cannot be implemented by UV lithography but only with electron beam lithography.

Therefore the limitations of this method is what we have to be aware of.

There are two e-beam processes available. The most common is Reactive Ion Etching (RIE)

and a more precise, but less popular because of its expense, is Chemically Assisted Ion Beam

Etching (CAIBE). They both set a limit to the minimum width of air trench that can be

etched, the minimum width of waveguide between two trenches that can be left, and most

importantly the maximum aspect ratio of the depth to the width of the air gap. The exact

values depend on which process is used, the materials to be etched and of course the potentials

of the manufacturer. We will consider limits that are close to the best industry can offer,

without though becoming too demanding, and will assume that the same numbers apply to all

materials. Therefore we have:

* width of air trench Wetch > 100nm.

* width of waveguide segment between two air trenches wwg > 100nm.

* aspect ratio of depth vs. width of air trench (AR) = detch : Wetch < 10 : 1.

We also have to keep in mind that the higher available indices of refraction are those of semi-

conductors, like Si, GaAs and GaAlAs so

* available indices of refraction n < 4.
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3.3 Causes for modal mismatch and suggested remedies

3.3.1 Mismatch of waveguide mode with mode in the trench region

It was shown that the only way to avoid radiation is if the separability condition (3.3) is satisfied.

We can state this condition otherwise in terms of the overlap ( of the modes in the waveguide

and the etch region. Similarly to 7

Re { [f Ewg (x)x Hetch (x)- 2 dx] [f Eetch (x)x H* g (x)- dx]/[f Eetch (x)x Htch ' dx]

Re {f Ewg (x)xH,g (x)- 2 dx}

wgetch LIEy,wg (x) Ey,etch (x) dx 2 (3.6)

for propagating and normalized modes. The separability condition can now be expressed as

= 1 and obviously when it is not satisfied ( < 1 <-> q < 1.

Now it should be evident why so far only small periodic corrugations have been considered

and manufactured. A strong corrugation implies ( < 1 to an extent that radiation losses seem

prohibitive. Therefore, what has been done is only soft gratings on the surface of the core of air

cladding waveguides. (It needs to be noted that a perturbation just in the cladding would have

negligible effects, since the bulk of the mode energy is trapped in the core and would barely see

any change in the cladding.)

Despite the bad indications, the facts that fabrication processes allow for more abrupt dis-

continuities and the resulting bandwith of the stopband is enormous have interested researchers

enough to study this case of a strong perturbation. As a first step, scientists thought to sim-

ply increase the depth of the etch inside the core. It was then noticed that indeed radiation

increased rapidly inside the stopband. The main reason is that the field in the etch shifts down-

wards while trying to remain trapped inside the remnant core. In this way, the centers of the

two bounded mode profiles are displaced and the mode mismatch is high. However, if the etch is

carried all the way through the core and into the lower cladding, then we have a bounded mode

with an almost plane wave to compare, so at least the field profiles are approximately symmet-

ric in the transverse direction even though different. Actually the best results are obtained for

complete symmetry, since then even and odd modes are decoupled (because of opposite parity)

and the fundamental even mode can couple to only half of the existing radiation modes.
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For the above reasons we always consider the slab symmetric, and for a choice of slab we

make sure that the air gap is deep enough for the waveguide mode to "see" a pure plane wave

in the trench. The structure is now invariant under reflection about the x = 0 plane and we

can consider only half of it. The even modes are of greater interest so we place a magnetic

wall exactly at x = 0. This simplification reduces also the computational numerical effort for

our simulations significantly. For this arrangement the mismatch C < 1 is between a symmetric

guided mode with a strict plane wave, so it deteriorates as the former gets more bounded and

shrunk, namely as the index contrast of the waveguide increases. As a result we can conclude

that

e For a lower mismatch ( < 1 we need to use a low index contrast waveguide. Since there is

a maximum allowable aspect ratio and period of grating, there is a maximum etch depth

allowable and thus a minimum for this index contrast.

3.3.2 Back to mismatch of waveguide mode with evanescent Bloch mode

We want to see now how exactly the mismatch C < 1 affects the mismatch rq < 1. To get some

intuition we plot the reflectivity of a semi-infinite mirror with wavelength in Figure 3-3. Here

we used again the Si3N4 (n = 2) - air waveguide with core thickness dcore = 400nm of the

previous chapter. The thickness of the waveguide mode (Dmode) will be considered to be the

thickness of the core plus three times the penetration depth (Dpenetration) in each cladding.

Dmode = dcore + 2 - 3 * Dpenetration (3.7)

Then in this particular case it turns out that Dmode = 1.6pm. The mirror was operated with

wg = 250nm and Wetch = 370nm (A = 620nm), so that the communications wavelength

1.55pm is near the center of the stopband, which was taken to be the widest possible by

choosing the widths equivalent to quarter-wave layers of a one-dimensional Bragg stack. The

trench width is such that for (AR) = 10 : 1 the etch can be deep enough (detch <; 3.7pm) that

the guided mode cannot see the substrate (Dmode < detch). Now the assumption of infinitely

deep trenches of the previous chapter is validated. The structure indeed looks effectively like

rectangular rods in free space.
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Figure 3-3: Reflectivity vs. wavelength of an array of rectangular rods in free space. The

widths and spacings of the rods are chosen to represent quarter-wave layers of an equivalent

Bragg stack.

Our first remark is that the bandwidth of the stopband (called Free Spectral Range) is

enormous, five times larger than the useful Optical Communication Bandwith! This accom-

plishment is only due to our persistense to consider strong perturbations. Also, keep in mind

that throughout this chapter we deal with semi-infinite structures in the stopband, so no trans-

mission is possible in any way. Energy conservation is written R + L = 1 and what is not

reflected is lost, so the second evident conclusion is that radiation losses are significantly high

in the short wavelength side of the stopband and very small in the other edge. This is not

pleasant, not only because there is a large amount of power scattered to radiation, but also

because the frequency response for the Through Port of the Add/Drop filter cannot be flat as

we want it. Two independent reasons contribute for this phenomenon [25]:
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3.3.3 Symmetry of Bloch mode in the stopband

Since there is a mismatch ( < 1 in the transverse direction for the waveguide mode with a

plane wave, and a periodic cell of our DFB mirror consists partly of both, we expect the total

Bloch mode profile at the input interface to be distorted with respect to the simple guided mode

(but still bounded since we chose it to be under the radiation cone). The degree of distortion

depends on which of the two parts of the unit cell is dominant, namely has most of the Bloch

mode energy stored inside it. We saw in the previous chapter that energy is stored in the high

dielectric region (namely the waveguide) for the long wavelength edge of the stopband, with the

field pattern having a null in the air gap. Hence the degree of distortion must be small (71 ~- 1)

for given ( < 1 and the losses low. On the contrary, for the same ( < 1 in the high frequency

side the air gap affects more the total Bloch mode profile and the mismatch q < 1 is worse.

To verify the above statements we plot the Bloch mode at the two ends of the stopband

(A = 1.77pm and A = 1.28pm) for the specific mirror we have used so far. At the long

wavelength edge the magnitude of the electric field of the mode is shown in Figure 3-4a. We see

that truly there is a null inside the air gap and the mode at the cell interfaces looks a lot like

the waveguide mode. At the other end of the stopband the Bloch mode field pattern is as in

Figure 3-4b. Let's look at the guided part of the field only (the radiative part will be discussed

in the next paragraph.). The null now is at the waveguide's side and the air gap influences its

pattern more, since it is relatively broadened. The mismatch of the guided portion of the Bloch

mode to the waveguide mode is large.

Clearly the remedy is to make the waveguide part of the periodic unit cell dominant through-

out the total frequency range. This means that the evanescent Bloch mode must not feel the

air gaps so much. This can be achieved if we:

* Make the air gaps smaller. For a given waveguide, the depth of the groove must be at least

the thickness of the mode (detch > Dmode), so for a given fabricatable aspect ratio (AR)

we can only reduce the width of the groove down to a minimum value.

wetch > Dmode/ (AR) (3.8)

48



a)

b)

Figure 3-4: Magnitude of electric field pattern for the evanescent Bloch mode at the a) long and

b) short edge of the stopband. The pattern is even with respect to a magnetic wall assumed at

x=O. The rods are shown with white lines. Red color indicates maximum field and blue zero.
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To reduce the width even more, we need to reduce the depth too, but then the guided

mode must be narrower, hence the waveguide's index contrast higher, which will however

deteriorate the mismatch ( < 1.

9 Increase the indices of the waveguide core and cladding. In principle, electromagnetic

energy tends to be stored more in regions of higher refractive-index dielectrics. In this

way, even in the short wavelength edge, where the field's null is in the waveguide, enough

energy is stored in this part to improve the matching. Of course, we can only go as high

as semiconductor materials for the value of the refractive indices.

3.3.4 Coupling of bounded Bloch mode to nearby radiative continuum

From the Brillouin diagram it is known that at higher frequencies the single slow bounded Bloch

mode gets closer to the radiative continuum. When air grooves form the periodicity, it turns out

that the stopband of our interest is usually adjacent to the radiation cone at its high-frequency

end, and it often even extends inside it. Following Coupled Mode Theory arguments, for some

mismatch ( < 1 coupling to the radiative modes is inevitable when the mode is close to or

above this cladding light line. This is the region where this Bloch mode becomes a leaky wave

and starts behaving as a backward antenna. The field pattern must have hybrid properties of

a bounded and a radiation mode, and Figure 3-4b for the Bloch mode at the short-wavelength

edge verifies this. With this hybrid field pattern the mismatch q < 1 is even worse and this is

another reason for which radiation is higher at the high frequency side of the stopband.

It seems reasonable by these arguments that the stopband must be designed to be away

from the radiation cone. For this to happen the uniform waveguide must support a very slow

mode so

* A high-index contrast waveguide must be used to keep the bounded stopband away from

the radiation cone.
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3.3.5 Summary: Conclusions and contradictions

It should be obvious now that the solution of the problem is not obvious. The reasons of the

radiation loss have been well understood. The mismatch of the waveguide mode to a plane wave

(( < 1) is the fundamental reason that allows for mismatch of this guided mode also to the

total evanescent Bloch mode of the mirror (r7 < 1). This happens because of the Bloch mode's

symmetry in the stopband and its potential adjacence to the radiation cone. The remedies that

can be given for sure by now are:

A In any case, we want the width of the air gap to be as small as possible, so we must always

take the depth of the trenches equal to the waveguide mode and not larger, so that for the

given aspect ratio the width can be minimized.

detch = Dmode and wetch = Dmode/ (AR) (3.9)

A The waveguide should be made of high-index materials, so that it will hold most of the energy

in its part and the field will not feel the air gaps so much.

However, we also have one controversy:

V If we use a high index-contrast waveguide, its mode will be less thick, so the etch depth can

be smaller and for fixed aspect ratio the width of the air gap can be smaller, which we

like. The stopband will also be kept away from the radiation cone. On the other hand, the

mismatch of this guided mode to a plane wave is deteriorated.

This contradictory argument only actual simulation can resolve. Comparing numerical

results for different structures will show which behavior is dominant and will therefore indicate

the choice for the index-contrast of the waveguide we have to make.
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3.4 Design through analysis (simulation)

3.4.1 Graphical method for optimization of mirror's dimensions

Given a certain waveguide, we state the following optimization problem:

* What do the period A and the dimensions of the air gap have to be, so that for a speci-

fied bandwith (for example the OCB) the radiation losses of the semi-infinite mirror are

minimal or equivalently its reflectivity maximum?

To answer this question, we use a contour graph of the semi-infinite structure's reflectivity

with the widths wwg (= x) and Wetch (= y) at the center wavelength of the specified bandwith

(e.g. A = 1.55pm), similar to the one for the Bloch mode eigenvalue 3 of an infinite periodic

structure in Figure 2-5. Again for the Si3N4 rods in free space this graph is Figure 3-5.

The reflectivity is shown again only in the stopband of interest, while green and light blue

colors indicate the passband and the radiation continuum as before. The only difference is that

all of the stopband is shown, even when it extends in the radiation cone. We remind that,

after choosing the dimensions wwg (= x) and Wetch (= y), the frequency dependance follows

approximately a straight line starting from the origin and passing through this operation point.

This plot has lots of useful information in it. It verifies the fact that radiation loss increases

with frequency, but most importantly it certifies our belief that loss decreases, if the width

of the air gap is taken smaller. For narrow enough trenches the short-wavelength edge of the

stopband is detached from the radiation cone and since the waveguide part of the periodic

cell becomes dominant, reflectivity increases, meaning loss is reduced. It seems that the Free

Spectral Range (FSR) becomes narrower too, but we don't worry about that because we saw

that its value is usually so large that it is not expected to fall lower than desired values.

On to the optimization problem, the best solution is clearly a function of fabrication limi-

tations. The limits wwg = x > 100nm and Wetch = y > 100nm are excluded from the graph

with white shading. For a mode thickness Dmode (= 1.6ptm) and aspect ratio (AR) (= 10 : 1),

the etch depth can be from (3.8) Wetch > Dmode/ (AR) (= 1.6pm/10 = 160nm). The white

horizontal line axpresses exactly this limit. Therefore in total,

The operation point must be outside of the shaded regions and above the horizontal white

line to have compliance with fabrication limitations.
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Figure 3-5: Reflectivity of rectangular rods of index n = 2 (Si3N4) in air at A 1.55pm. The
passband is shown green, the radiation cone blue and in the stopband the reflectivity is plotted
with the widths of the rods and air gaps. The straight black line again shows approximately
the frequency dependence.

To achieve optimization though, we said that we will always choose the trench width to be

the minimum possible (3.9). We also want optimization only for a specified band around the

center wavelength for which this plot is done. Thus:

A The operation point must be chosen outside of the shaded regions, on the horizontal white

line, and as close to the low frequency edge of the stopband it can be, so that the whole

specified band can fit in this stopband.

This was done for the special problem under consideration, giving graphically w"g = 340nm

for Wetch = 160nm and the result for the reflectivity is shown in Figure 3-6.
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Figure 3-6: Reflectivity vs. wavelength of a periodic distribution of rods in free space. A

quarter-wave-like and an optimal case for the widths of the rods and their spacings are shown.

Indeed, the FSR is reduced but is large enough to include the whole OCB, which is covering

the long wavelength side of the stopband, exactly as it was designed to. The improvement for

the reduction of loss is obvious.

3.4.2 Comparative simulations for determination of optimal waveguide

Knowing now that for any waveguide, we can design the air trench in an optimal way, it is time

to answer the question

* Is it preferable to have a low index-contrast waveguide that matches better a plane wave or

a high index-contrast waveguide that allows for narrower air grooves?
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This problem has been the main point of interest for researchers especially related to out-of-

plane losses in two-dimensional photonic crystals [19]-[25],[31].

To answer the question we simply compare simulation results and make theoretical con-

clusions from them. Three different refractive-index contrasts are chosen for air-cladding

waveguides. In this section only we will work with permittivities rather that refractive indices,

so the contrasts chosen were

Ecore -clad = 3 - 1, 6 - 1 and 9 - 1

The waveguides must all be single-mode and their mode as bounded as possible, so that the

trenches will not need to be very deep. In Figure 3-7 we plot the mode thicknesses from (3.7)

with the core thickness for the three cases at the center wavelength of A = 1.55pm, until they

reach their cutoff.

3
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0.6

6.1 0.15 0.2 0.25 0.3 O.5 0,A
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0.45 0.6 0.55 0M5

Figure 3-7: Thicknesses of the fundamental modes of different index-contrast waveguides.

From this plot we decide to choose the core for each case respectively to be

dcore = 500nm, 300nm and 240nm
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and then the mode thicknesses turn out to be roughly

Dmode = 1.8m, 1.2pm and 900nm

and these numbers will define the vertical position of the horizontal white line in our graphical

method, namely the minimum width of the etch for the given (AR) = 10: 1

Wetch = y ) 180nm, 120nm and 90nm

We verify that this minimum value decreases as the index-contrast of the waveguide increases.

In the last case actually 90nm is less than what is permissible by the other fabrication limit

Wetch > 100nm.

To get the complete picture we don't just compare these waveguides. For each index-contrast

we increase the material of the core and the cladding so that the transverse waveguide mode

profile and therefore the fundamental mismatch C < 1 remains the same under the separability

condition (3.3). Namely we increase both Ecore and Eclad by keeping

Ecore - Eclad = 2, 5 and 8

We do this four times for each of the above so the waveguides we compare are

Low index-contrast 3 - 1 6 - 4 9 - 7 12 - 10

Medium index-contrast 6 - 1 9 - 4 12 - 7 15 - 10

High index-contrast 9 - 1 12 - 4 15 - 7 18 - 10

even though the permittivities 15 and 18 are too high to actually be implemented. We can now

plot the complicated graph of the previous section for each of these cases! The result is shown

in Figure 3-8.
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Figure 3-8: Reflectivity vs. widths of the waveguide and air trench segments for different
waveguides at A = 1.55ptm. Dielectric permittivities are shown and not indices of refraction.
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Even with a quick look we are able to see that the "winner" is the upper right corner with

a waveguide of 12 - 10. The range in the stopband where the reflectivity is close to one is far

larger than in any other graph. This implies that the slope of the Reflectivity vs. wavelength

curve is much smaller. Since at the long wavelength edge loss is usually zero and with the

designing procedure of the previous section we make sure to place the OCB near that edge,

we conclude that the loss will be closer to zero everywhere within the OCB for that particular

waveguide than for any other.

We examine more carefully now Figure 3-8 in three different directions:

- Horizontally: As we keep the transverse waveguide profile fixed and increase the indices of

the core and the cladding for all index-contrasts the performance improves. This comes

to strongly verify the fact that the high dielectrics withhold the electromagnetic energy

in their region, so the air gap is not "allowed" to distort the mode profile.

- Vertically: As we keep the index of the cladding constant and increase the core (and hence

the index-contrast) it is not clear whether loss is reduced or the opposite.

The most objective and practical comparison though should be based on the availability for

high index materials and this is

- Diagonally: As we keep the index of the core constant (and high) and decrease the cladding

(increasing the index-contrast) the performance clearly deteriorates.

Our final conclusion therefore can be stated as

A It is preferable to have a low index-contrast waveguide with dense materials and a larger width

of air gap than a higher index-contrast waveguide with narrower and shallower trenches.

This is a conclusion that has not been seen in the literature yet. It basically implies that

the physical intuition that the mode of the waveguide must be broad enough to match better

a plane wave is correct and this matching is the dominant factor that can reduce radiation.

The above result has a very nice outcome. It makes the so far used aspect ratio even more

realistic. We considered it to be the same for any case, but it is not hard to see that a trench
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100nm wide can be made 1[m deep much more difficult than another 300nm wide to be etched

3pm deep.

Finally, whilst on our path towards the upper right corner of this matrix, we need to show

when this path ends. As we decrease the index-contrast the limiting white line is elevated and,

to stay close to the low frequency edge of the stopband, the operation point must be moved

to the left. The result that we get is always better, but when this point moves so left that

weg < 100nm the structure is no longer fabricatable. By keeping now fixed wg = 100nm,

decreasing the index-contrast even further and thus increasing the trench width, after some

point the bandwith over which loss is minimum will not be able to cover the OCB. Here is

when we have reached our optimal solution of the problem of a low loss semi-infinite integrated

mirror. If the operation point does not go more to the left than 100nm, then the procedure

stops anyway since after all from (3.5) A < A. However, usually the case is that the final design

will have wwg = 100nm.

It has to be mentioned that another approach that might lead to improvement of the per-

formance of a distributed feedback mirror is that of a tapered device, namely a chirped grating.

Some efforts have been made recently [26]-[28] but the results are not astonishing yet. We

choose to stick with a strictly periodic structure because it is simpler and the results are sat-

isfying enough. To summarize we give the steps of the optimization procedure in an iterative

algorithmic form in the next section.
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3.5 Iterative algorithm for optimal design of a low loss semi-

infinite integrated mirror

Statement of the problem:

* For given fabrication limitations for the minimun manufacturable width of air trench Wetch,min,

minimum allowed spacing between two such trenches Wwg,min and maximum implementable

etching aspect ratio (AR)ma and for highest index of refraction in available materials

nmax, find the optimal waveguide configuration, period of grating A and sizes of the air

trench to minimize the radiation losses of a semi-infinite mirror over the specified band-

with B.

Algorithm:

1. Pick the material with the highest available index of refraction for the waveguide core.

2. Choose randomly a relatively low index for the cladding.

3. Pick dcore for single mode operation, calculate Dmode = dcore + 2 - 3 ' Dpenetration and

Wetch = max {Dmode / (AR)max , Wetch. min}

4. Find weg ;> Wwg,min such that loss is minimized over B.

5. Increase the index of the cladding and repeat steps 2-4 until the minimal loss over B is

worse than the previous iteration.

6. This previous iteration is the optimal design for the mirror.
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3.6 Results for a low loss semi-infinite integrated mirror

With the fabrication limitations we have used so far Wetch > 100nm, wg > 100nm, (AR) =

detch : Wetch < 10 : 1 and with n < 3.46 (GaAs), the optimal mirror over the Optical Communi-

cation Bandwith 1.5pm - 1.6pm found with the above procedure is the one presented in Figure

3-9. It is in scale in the longtitudinal direction and clearly the air gaps are much larger than

the waveguide segments. Still, the facts that the waveguide mode is so spread, approaching a

plane wave, and the materials used are of so high refractive indices provide a truly amazing

performance.

Wetch

deore n0, =3.46 detch

A
dcoe=lpm, d,,,f=3. 7pm, w,,= 37Onm (d ,.,,,,= 1 O 1), A470nm

Figure 3-9: Design for an optimal fabricatable semi-infinite mirror. The radiation losses are
minimized over the Optical Communications Bandwidth 1.5tm - 1.6pm.

To illustrate the efficiency of the design, in Figure 3-10 we plot again the reflectivity of this

mirror with wavelength. The index contrast in the longitudinal direction is so strong that the

Free Spectral range is enormous (1.2pm), but in the transverse direction the modes are well

matched so radiation loss is less than 0.4% over the range 1.5pm - 1.6pm.

61



62

1.4 1.6 1.8
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Figure 3-10: Reflectivity vs. wavelength for optimized semi-infinite mirror. The FSR is 1.2yM
and loss over the OCB is less than 0.4%.
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Chapter 4

Low-loss Grating Resonator

In this final chapter we address the problem of the frequency selection of the desired channel to

be dropped. By introducing an appropriate cavity within the distributed feedback mirrors the

system can resonate at the desired wavelength allowing power to pass through. Unfortunately

this transmission is not perfect. The wave of the resonant frequency is trapped inside the

cavity and therefore undergoes multiple reflections from the side mirrors. Since these mirrors

are lossy, as we saw in the previous chapter, even if these losses are very small upon each

reflection, after a large number of them the total out-of-plane scattered power can be significant,

destroying basically the resonance and making the performance of the Drop and Add Ports really

bad. Task of this chapter is to minimize the losses at resonance and improve the transmission

characteristics for the dropped or added channel. Since we already have an optimal design for

the side DFB mirrors from the previous chapter, our only degree of freedom left is to design an

optimal cavity that suits this mirror.

We start the analysis by a very common characterization of a lossy resonance and then

introduce a worst-case model to predict the losses given those of the grating mirror. It is a

worst-case model, because it does not take into consideration interference effects at the far-field.

Such effects we use in our first attempt to reduce radiation from a cavity created by just adding

an appropriate phase shift on the waveguide part of the grating. The performance is indeed

improved, but becomes almost perfect when we choose a more elaborate cavity that is still

manufacturable.
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4.1 Coupled Mode Theory for resonators

To describe the performance of a structure at resonance a very simple but also powerful model

was given by Prof. Haus in his book [1] using perturbation arguments. A summary of this work

will be shown here.

If we describe the amplitude of the wave inside a resonant cavity with a, normalized such

that Ja12 is the energy W stored inside the cavity, then the time dependence of the oscillations

at the resonant frequency w, can be described by

da

If we include some losses inside the cavity, then damping will induce decay of the field amplitude

and slightly shift the frequency of the oscillation. For small losses though this shift can be

ignored, so the time evolution of the wave is

3W" -t da 1
raoei~oi) aeote, e- = 3wa -a

dt jwo

Power dissipated at the loss mechanism reduces therefore the energy storage inside the cavity

at a rate

dW _ dia 2  da* + da 2 2 2
dt dt dt dt r 0o

Apart from the decay factor T 0 the most popular quantity that characterizes losses of a resonator

is the quality factor Q that is defined as

WO - Energy stored inside cavity wOW woro (4.1)
Dissipative power Pd 2

so the lower the value of Q is, the higher the losses of the system.

Resonators are of course useful only provided they can interact with the external world and

that they can be set to forced oscillation. For such interaction to be possible the resonant cavity

must not be isolated but should be connected somehow to an external system to which it can

lose energy of from which it can be fed by energy. Every region where such a connection is

realized is called a port.
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4.1.1 One-port resonators

If we consider a one-port system first, then since the cavity loses energy to the external world

through this port we need to include another decay factor -r. Reversely, to describe the feeding

of power into the cavity a Coupled-Mode Theory approach implies that this will be done via

a coupling coefficient Ke, that can be shown with time-reversibility arguments to be .1*

Therefore, if s+ and s_ are the amplitudes of the incoming and outgoing waves, normalized so

that I S± 12 is the power they carry, we can summarize the behavior of this forced now system in

the equations

da Ida jwoa- - +- aT + ) es+ (4.2a)

s- = -s+ + Kea (4.2b)

with

e 2 (4.3)

The second equation can be derived by applying the principle of energy conservation.

A one-port system can only be useful to study how much power will be reflected by it, when

it is fed with power. If the feeding wave s+ is monochromatic at frequency w (monochromatic

forced oscillation), then 1 = jwa and we can solve equations for the reflection coefficient

S -L - _L) - j w- 0 ) (L _0 - 2j-woQ
r = - (4.4)

s+ 1 + _L + j (W wo) + _L+ 2j W"-w")

so the reflectivity is

R-r2 +1(-( 1)2 - +4 ( )2R = r l = L+ L 2 +(_ O2 -L+ 2 +4Ww2 (4.5)

* If the cavity is lossless - = 0 and R = 1 for any w, so the system is an all-pass filter than

can be used for example in phase compensation applications.

" When losses are present, away from resonance Iw - wo >> ± I and R = 1. The
Te TO
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incident wave cannot excite the cavity into oscillation, so all of the power simply gets

reflected back. On the other hand, at resonance w w0 and

1 1 2 ( _1)2

Res -2 2

If To = Te, then all the provided power is dissipated in the loss mechanism of the cavity,

so nothing gets reflected back. We say that the two effects are critically matched. The

conditions y > I and -< 1 are called overcoupling and undercoupling respectively and

some power is reflected in both cases. The overall dependance on the driving frequency w

shows that this system is a band-reject filter and can be used to selectively absorb/dissipate

some frequency band of the source.

4.1.2 Two-port resonators

The analysis of a two-port system is completely similar. We just need to add also the decay and

coupling factors that relate to the communication with the external world through a second

port too. The equations now look like

da . 1 1 1
- ~jwoa - - + - + - - a + Keis+1 + Ke2s+2 (4.6a)
dt To Tel Te2

s-i = -8+1 + Kela (4.6b)

s-2 = -S+2 + Ke2a (4.6c)

and again
2 2

Kel = and Ke2 = T
Tel e2

This configuration now allows not only for reflection of power incoming to the cavity by the

two ports, but also for transmission of power from one port to the other. Hence, there are two

reflection and two transmission coefficients that can be written in a Scattering matrix form

= r t (4.7)

t r2
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where we used the fact that the reciprocity of the system will enforce t 12 = t 21 = t. Assuming

a driving frequency w again, the solution gives

____ 8 -1 (7'A, 2  ; ) J(w- j
'2 S+1,2 _L+ _L + 1 + j (LL - WO)r 1 2(1 11\.To

2

52 8-2 8- TelTe2

s+1 S+2 1+ + + j ( - W"

so the reflectivity and the transmissivity are

( + ( - WO

R1,2 = Ir1,2| 1 el,2 , 2

Tel Te2 T

)2j ( A

+ 1 + + 2j-
(Qel Qe2 Q. 2 (WO)

2
-QelQe2 (4.9)

) + I + _)+ 2j WW

- 1,2 Qe2,1 - + 4
2 2

(4.10)
4 4

T = ItI 2  
e7e2 2QQ2 (4.11)

(1 +-+1L\2 +± "2 + 1 +__)_+
Gelo Te2 TOQei Qe Qo ( UOj

Away from resonance 1w - woj >> wo and R - 1, T - 0, while at resonance reflectivity is small

but not zero and transmissivity is large but not one. Therefore we have a band-pass filtering

process that provides selective transmission and this is what we need in our application for

the WDM Add/Drop filter. The shape of the throughput is a Lorentzian around the resonant

frequency. The imperfect performance at resonance is because of the asymmetry of the two

ports and the intrisic losses of the cavity. This is why we chose our structure to be symmetric

and we try to reduce the radiation losses. For such symmetric structures Qei = Qe2 and if we

define as total external quality factor = + -L = 1 2 the above results becomeQ 1Qe Q,2 Qe 1

R = (r 122 + 4 (4.12)

(1)2 
, 2

T = It)2 ( 2 (4.13)

(s)2+ (W - wO)2 L) 2(+4 W2
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where we defined the total w and Q as

1 1 1 1 1 1- + - < = - + (4.14)
T To Te Q Qo Qe

Finally we can write now the results at resonance to be

R = Q ) and T = (4.15)
QO Qe

so for a good, low loss performance it is the desire of the designer to achieve Q0 >> Qe, so that

in this limit R ~_ 0 and T ~_ 1. It is interesting to see that if we solve (4.15) for Q0 and Qe and

substitute back into (4.14), theory suggests that we must have

VR_ + VT = I r I+ It I= I

The width of the resonance (and therefore the bandwith of the selected channel) is deter-

mined by Q (or by Qe if indeed Q0 >> Q,). It can be shown by (4.13) that if AWFWHM is the

Full Width at Half Maximum of the Lorentzian, then

Q = WO (4.16)
A/WFWHM

This concludes the theortical treatment of resonators. Even though the analysis was derived

for small intrisic losses of the system, it turns out that it is a good description also for highly

lossy devices and this is why the quality factor Q0 is the engineering figure of merit for the

losses of resonant systems.
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4.2 A worst-case model for the grating resonator

It would be useful now to have a model that can predict the perfomance of the actual resonators

we are trying to make and then compare it with the prototype equations (4.12) and (4.13). For

the device of our interest we need two finite mirrors and a cavity introduced between them,

that will be designed to resonate at the desired wavelength (Figure 4-1).

High Reflectivity High Reflectivity
MWaveguie Grating Mirror Grating Mirror avgi de

Figure 4-1: Block diagram of an integrated grating resonator.

The analysis is equivalent to that of a simple Fabry-Perot etalon but more generalized.

Semi-infinite periodic mirrors were studied in the previous chapter and energy conservation

was Rm + Lm = 1, so we could judge how lossy the mirror was by the degree that reflectivity

was not one. Since now we have finite mirrors, some power will also be transmitted through,

and the resonance is based exactly on this small portion of energy that reaches the cavity. Since

the mirrors are lossy, their Scattering matrices for the fundamental mode will not be unitary

(S+S : 1). We will take the two ports of each mirror (waveguide and cavity) to be different for

generality, so they are not symmetric, however they are reciprocal. Thus for the input mirror

5 = rW9 tM -rcav , 2, erS[n tm rcav in [rwg A A1t _rwgrcav

where Tin is the corresponding Transfer matrix. Energy conservation for both sides of the

mirror is now written

Rwg + Tm + Lwg = rwg| 2 +tm|2 + Lwg 1 (4.17a)

Rcav + Tm + Lcav = Ircav12 + |tm|2 + Lcav = 1 (4.17b)
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From what was said in the previous paragraph, the total device must be symmetric for better

performance at resonance. Therefore the cavity must be chosen symmetric and the output

mirror a reflected image of the input one. Hence

Souutg I Tout = av - , = - rgrcav

tm rwg tm rcav A

The cavity introduces just a phase

the total Transfer matrix to be

shift 0 = OcavWcav to the fundamental mode so we can derive

e- 0

Ttot = Tin -
0

0

eiOI- 1 -rcav
Tout = -

F jo 2 iG
1 e -rcave

tM rwge- + rcave

e-i 0 1

0 eiO tM rcav

-rwge - rcavAeo

r2 e + A 2 eiO

The reflection and transmission coefficients are

_ 'tot,21 _
r--

Ttot,i11

1
t =

ritot, 11

rwge- + rcavAeO

-o - r 2 eie cay

rwg + rcavAe 
20

1- Ircavl2 ei2(+rcav)

The final result for the transmission of the system is then

T2 (4.17b)
T = It| 2

(1 - Rcav) 2 + 4Rcav sin 2 (0 + Prcav)
T ) 2
rn

T =cav

( + 2+ 4 Sin 2 (0 + 9Orcav)

(4.20)

Resonance occurs when

0 + (rcav = pT -- > 20cavwcav + 2
Vrrav = 2p7 , pEZ (4.21)

which agrees with the intuition that the phase must add up constructively for one roundtrip
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t2 t2 ei9
= m

r2 - 12 ei2 (+'ca)eo cay 1 Ircavl 2 es~cv

(4.18)

(4.19)
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of the wave in the cavity. In contrast with the previous section there is an infinite number of

resonances because this problem is a distributed one and not a dicrete element circuit. However,

near each resonant frequency w, we can write

+ sin (Ocav-Ocav,n) cav -=sin2 cav,eff 1 ncav,ef f Wcav 2 2
kU ~r)= 11

2
[yfca-/3avn)Wcvj= in[ (w- W) WcavjH C )(wwn)

With this remark the resemblance to (4.13) is now very obvious and we can relate

1 T m and 1 1 ~__" where (4.17b) Rcav + Tm + Lcav 1Qe Rcav Qrad Qo Rcav

(4.22)

The result is very important, because it implies that responsible for the loss at resonance is

only the mismatch of the transverse profiles of the mode inside the cavity and the evanescent

Bloch mode in the mirror. The mismatch at the input interface of the mirror does not even

matter! Leg will only affect the reflected wavelengths and therefore the Through Port of the

Add/Drop filter. This verifies our expectation that since all the energy at resonance is in the

cavity, the two center interfaces will be of greater importance than the outer ones. So

A If we can find a cavity, whose mode is matched to the Bloch mode in the periodic structure,

then Lcav -+ 0, so Q0 -+ oc and Qe -- 1-Ra
v/ Rcav

which is the finesse of a lossless Fabry-Perot etalon. The selectivity of the filter Qe increases

with the reflectivity of the mirror that the cavity sees.

To end this section, we must explain why we named this model a worst-case one. In the

analysis, losses at the mirror interfaces were assumed without specifying where the lost power

goes. If the mirrors were dissipating it, this would be a very good model. However in this case,

power is just scattered to radiation. In the far field interference effects might very well occur,

which are not taken into account by the model. In that case cancellations in several transverse

directions and a redistribution of power will happen, so the overall radiation will be reduced.

This is why our model is only a worst-case one and the actual results show indeed that a far

better performance can be achieved than what this model would predict.

A If we design the cavity so that interference effects introduce nulls in the transverse direction

of the far-field radiation pattern of the resonance, then the net loss can be reduced.
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4.3 Far field multipole cancellations for high order longitudinal

modes [32]

The simplest and most feasible way to make the cavity is by just allowing for a phase shift of

the form 3cavwca within the grating, that interrupts its periodicity for a while. This shift must

be made with a waveguide segment and not with a wider air gap, because in this latter case

radiation loss at resonance is detrimental for the operation of the device.

For a fixed wavelength the propagation constant of the fundamental mode in the waveguide

and the behavior of the mirror are fixed. Therefore 0ca, and So are known so the widths of

the cavity for which it resonates are given by (4.21)

Wcav,p = - rc, P E Z (4.23)
Ocay

and the separation between two consecutive is

7r - (Prr
Akca = ra

l Ocav

Theoretically we could also have negative cavity length, which would mean that instead of

adding some waveguide we subtract. We cannot subtract of course more than what exists

within a cell of the periodic mirror (wwg), so we will denote as the first mode the one that has

the smallest cavity width wi that satisfies (4.23) along with wi > -wwg. For this mode Wcav is

so small that half a wavelength A/2 cannot fit inside the cavity, therefore this resonant mode

must be even in z around the center of the cavity, which is also the center of symmetry for the

whole structure.

If we start increasing now the width of the cavity Wcav, every Awcav we will find another

resonance and half a wavelength more will be able to fit in the cavity. In this way we have a

succesion of even with odd modes. The phenomenon is similar to the transverse modes of a

slab waveguide. There as we increase the cross-section of the slab more half-wavelengths can

fit in the core and a succesion of even and odd modes become from cutoff propagating.

What is important for us in this description of the modes is their different radiation be-

haviors. The Kirchhoff diffraction principle says that we can evaluate the electromagnetic field
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somewhere in space, for example the far field, if we know its distribution on some surface. This

surface can be chosen along the cavity, where it is known that each mode forms a standing

wave, as we said even or odd. The result for the far field can be seen intuitively, if we make

the following analogy. Each positive crest of this wave is seen as a positive monopole and each

negative crest as a negative monopole. Then these poles are spaced half a wavelength apart

and therefore their fields add up in the longtitudinal direction but introduce nulls in the lateral.

A The more the monopoles (meaning the higher order longtitudinal mode) the more cancella-

tions happen in the transverse far field and the total radiation loss is reduced.

The above principle was illustrated for a cavity made by just a phase shift in the waveguide,

because this case is more intuitive and comprehensible by the reader. However, it should

be obvious that it applies also for any other complicated cavity we might choose to create the

resonances. The longer we make the cavity the less radiation in the lateral plane should become.

The only drawback of choosing a higher order mode for the operation of our filter is that

the spacing between two consecutive modes in frequency decreases. More resonances occur in

the stopband of the DFB structure and the effective Free Spectral Range diminishes. However,

this is not really an issue. From our results we saw that we are talking about stopband widths

of the order of 1tm. This allows to go up even to the fifth or sixth resonance and still cover

the useful OCB.
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4.4 Results for a cavity made by a simple waveguide phase shift

4.4.1 Application of the worst-case model

It is now time to apply everything and see if our theoretical so far expectations will be verified.

The mirror that will be used is of course the optimal one that was designed in the previous

chapter and the cavity will be introduced by a waveguide phase shift. For the desired channel bit

rate (40Gbps) the channel bandwith must me around AAFWHM ~ 0.3m. For this selectivity

the most reasonable muber of periods for this finite mirror was 3.

Numerically evaluating the Reflectivity, Transmissivity and Loss of the finite mirror we got

Rcav Rwg = 0.994 , Tm = 0.0022 and Lcav = Lwg = 0.0038

By using now (4.14),(4.15),(4.20) and (4.22) we can estimate

T= T )2 = 0.135 , R Lcav ) =0.4 and L=1-R-T=0.465
I - Rcav (1 - Rcav )

Since this result does not make any distinction among different longitudinal modes, and it does

not take interference effects into consideration, we expect it to represent basically the first even

mode that behaves like a single monopole.
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To verify this and the arguments of the previous paragraph we plot the Trasmissivity,

Reflectivity and Loss with wavelength around the resonance and the electric field pattern (real

part) at resonance for the first four longtitudinal modes. For each mode we will give also the

cavity length (with a nonrealistic precision just to make sure that the peak is at 1.55gm), T,

R and L at resonance, the bandwith AAFWHM and the quality factors Q, Qe and Qrad. For

an acceptable resonator we usually want Qrad > 1OQe.

For the following plots extreme care must be taken to make sure that the numerical results

are correct. Radiation into the vertical direction will hit the walls of the computational window

and the reflected wave will affect the correctness of the results. The use of Perfectly Matched

Layers (PMLs) is therefore mandatory. We make sure that the results are correct by taking

far enough these walls, using strong enough PMLs, taking many modes for the expansion and

checking the field pattern itself that captures the whole truth. When a further change of these

parameters does not vary the result we are confident that this is correct. The computation

might take a bit longer but it is far more important to have a true answer.

In the following graphs one should notice:

" The results for the first order resonance agree surprisingly well with the worst-case model

we introduced.

" As the order of the mode increases the ratio Qrad/Qe increases and this makes the per-

formance for T, R and L better and better as we expected.

* Qe itself increases so the filter becomes narrower around A = 1.55pm.

* The parity of the mode is alternated and for every new mode a null in the radiation

pattern is introduced.

" The first mode radiates a lot and this can be seen in its field pattern that extends signif-

icantly in the lateral direction.

* The field is more bounded for every higher order and more energy is stored in the cavity,

since the maximum of the field increases.
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4.4.2 First order resonance

Cavity width: w,,,, = -93.95nm > -100nm

T = 0.115 R 0.448 and L = 0.437 A A = 1-55prn

AAFWHM= 3.2nm Q = 484 Q, = 1, 430 and Q,,,d 732

......................... ...... ........ --------- ......... ---------- ---------- ------ ....... ----------------

-- -------------

.............. -- --- - -- ---- -- ------- ........... ....... --- ----- -- ----------- --- --------------------

0 .7 -- ----- --- ---- --- --- ------ -- -------- -- ------------- --------------------------

0 .6 - --- ------- ---------- --- -- -- ---- ------ ------ -- --------------- -

0.5 ------

----- -----------

0 .4 -------------- ----------- ------ ---- ----- -- ---- ---- -------------- ------------------ -------

L
0 .3 --------------- .......... ....... ................ .......................... ........... ............. ....... ............... .................

0 .2 ............ ............. --------- - -------------- I .............. .............. ....... ... ....... .........

. ...........................

0 .1 ......... ....... .........
-------------- ........ ........... .........T ---------

1. 47 1.5,49 1.58 1.551 1.652 1

wavelength (j.Lm)

10

-40

40

-0

4W

0.5 1 1.5 2 2.6

z

76



4.4.3 Second order resonance

Cavity width: w,,,,, = 132.76nm

T = 0.613 R = 0.047 and L = 0.34 La A = 1.55pm

AAFWHM= 0.9nm Q = 1, 722 , Q, = 2.205 and Q,,,,d= 7,861
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.= =- - - - - --- - - ;111p,

4.4.4 Third order resonance

Cavity width: w,,,,, = 358.74nm

T = 0.761 R = 0.016 and L = 0.223 0 A = 1.55/.tm

AAFWHM 0.5nm Q = 3, 100 Q, = 3,554 and Q,,,d 24,267
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4.4.5 Fourth order resonance

Cavity width: w, , = 584.53nm

T = 0.811 R - 0.013 and L = 0.176 (Q A - 1.551Lrn

,AAFWHM = 0.35nm , Q = 4,429 Q, - 47 921 and Q,,,d = 447 300
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4.5 Results for an improved cavity

After increasing the order of the longitudinal mode to the fourth, the response of the grating

resonator has improved significantly. However, it does not completely come up to our expecta-

tions. The radiation Q is still less than 10 times the external Q and transmission at resonance

is just 80%. By increasing the order even higher we don't actually achieve that much, rather

than just decreasing the FSR.

Clearly it's time to allow for a more complicated cavity. As we explained in the beginning

of the second chapter, since the electric and magnetic field of the evanescent Bloch mode in the

mirror do not have the same profile, a z-uniform structure cannot match this mode for both

fields. For an ideally perfect matching a z-nonuniform structure might exist, that could be seen

as the unit cell of another periodic structure operating in the passband. However, such a cavity

would really not be fabricatable and again this attempt can only be an optimization one. The

only case that seems reasonable and feasible is that of another waveguide that has the same

cladding like our initial waveguide but different core material.

By trial and error we found indeed that the response can be drastically improved reaching

an almost ideal performance. We started from the last simpler device and its fourth order

resonance, and increased gradually the index of the core up to a value that is high, but still in

the rough limits n < 4. Our final design is shown in Figure 4-2 and its response can be given

by providing again the same information like before.

Wetch

dcore detch

A

dcor.,=1pm, d,,,h 3. 7pm, w,,,h=3 70nm (d,,h. w,,h= 10: 1), A=470nm, wcav=5 3 9 nm

Figure 4-2: Final design for grating resonator with improved cavity.
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FSR 330nm 4==> Bit Rate WDM -- 44Tbps !!!

T = 0.9821 R = 0.0014 and L 0.0165 L A = 1.55ttm
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Chapter 5

Conclusions

It has been shown that high radiation Q, broadband and really compact resonators can be

made. After realizing that an infinite periodic structure can support a bounded Bloch mode

in the stopband, its mismatch with the simple waveguide mode was identified to be the source

of radiation. To overcome this, we try to modematch as well as we can, by using a low index-

contrast waveguide of dense materials and etching the smallest air gaps possible. The cavity is

designed so that radiation effects are suppressed, either by hindering coupling to the radiation

cone or by forming appropriately the far field radiation pattern of the resonator.

Our final design shows a Qrad -- 600, 000 when Qe is just 5,500, corresponding to a channel

bandwith of 0.28nm, and this is why transmission at resonance is over 98%. The Free Spectral

Range is very broad, around 330nm, and is achieved with a very small resonator length of just

3.4pm. We believe that the design should not be difficult to implement, since we assumed an

aspect ratio of 10 : 1 for the depth vs. width of the air trenches, which is not too demanding

for contemporary etching processes. Therefore, the next step should be to try to make these

resonators and measure them.

On the other hand, we have to realize that such a device will most probably suffer from

fabrication tolerances. The structure is so small that the cavity length cannot be expected to

be made exactly the one needed for resonance at the specified wavelength. Still, we believe that

this problem might be possible to overcome with some sort of tuning. In any case, the quality

factors are so appealing that these resonators seem very promising for future applications.
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Appendix A

Floquet-Bloch Theorem [33]

In the n-dimensional complex space C' let L be a linear partial differential operator of order

m, that acts on the functions w : C -- C and has coefficients that vary periodically in one

dimension, which we will call z, and have only regular singularities. Then the differential

equation

Lw (p, z) = 0

where p describes the (n-1)-dimensional subspace Cn-l that is orthogonal to z, will have m

linearly independent solutions wi (p, z), w2 (p, z), ... , Wm (p, z). Therefore a general solution

# (p, z) can be written as a linear combination # (p, z) = aT w (p, z), where w (p, z) is the

vector [Wi (p, z) , w2 (p, z) , ... , Wm (p, z)]T and a is any arbitrary m-dimensional complex vector.

Since the coefficients of the operator L are periodic, the functions wi (p, z + A) = Wi (p, z) will

also satisfy the differential equation and their set can be shown to be again fundamental. Hence

the linear combination (I (p, z) = aT -W (p, z) = a. -w (p, z + A) = # (p, z + A) is also a general

solution, which we expected since the differential equation is invariant under translation by A.

The problem is to examine whether there are such solutions of the problem that satisfy the

relation # (p, z + A) = so (p, z).

To answer this, we use the fact that each W (p, z), as a solution, can be written as a linear

combination of the {wi (p, z)}, so we can write W (p, z) = A - w (p, z). By differentiating this

up to m - 1 times we get Wronskian {W (p, z)} = JA -Wronskian {w (p, z)}, from which we

have JA 0 0, since the Wronskians are nonzero for linear independent sets of solutions. Now
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we can write

q(p, z + A)= s (p, z) 4- a' -W (p, z) = sa w (p, z)

a T.A. w (p, z)= sa -w (p, z) 4---> a - (X - sI) - w (p, z) = 0 -

w (p, z)T. (AT - sI) -a = 0

so the si for which we can have qi (p, z + A) = si oi (p, z) exist and are the m eigenvalues of the

matrix AT with corresponding eigenvectors ai, namely the si are roots of the determinantal

equation IAT - slJ = 0. There cannot be zero eigenvalue, because JAI # 0 as we showed.

When the m roots are nondegenerate the eigenvectors {ai} are linearly independent, so the set

of solutions {#i (p, z)} is fundamental too.

If we now set s = ei/3A then

# (p, z + A) = ei3 A# (p, z) -# # (p, z + A) e-iO(z+A) = # (p, z) e-flz

so # (p, z) e-ioz = u (p, z) is a periodic function of z, meaning u (p, z + A) = u (p, z). Therefore

we can finally say that the differential equation has m solutions of the form

# (p, Z) = U (p, Z) e i'Z (A. 1)

with u (p, z) A-periodic function of z, that form a fundamental set. This is the Floquet-Bloch

Theorem.

When the operator L is of second order, we have two independent solutions. If the system is

also invariant under reflection with respect to the z = 0 plane, as is the case for the Helmholtz

equation (2.4a) if the periodic cells of e (x, z) are symmetric, these two solutions usually are

# (p, z) = u (p, z) ei23Z and # (p, -z) = u (p, -z) e-iz

The sets {wi (p, z)}, {W (p, z)} and {#i (p, z)} are all fundamental and different. When

we are looking for solutions of a differential equation with periodic coefficients we should be

looking for the last one because of its special form. The first two were only introduced for the

proof of the theorem.
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Appendix B

Two-Port Matrix methods

For the analysis of integrated optical two-port circuits a very useful, especially from the nu-

merical point of view, approach are Matrix Methods. Their principle is that for every specific z

position in the longtitudinal direction the vertical cross-section is thought as the cross-section

of a z-uniform structure, whose complete set of modes can be found for a particular frequency.

For an arbitrary monochromatic excitation of the total structure the field at each such z posi-

tion can be expanded in the local complete set of modes and the expansion coefficients are of

course diferent for each position z. To find how to relate two different expansions at the two

sides of a discontinuity interface between two different uniform structures we apply the Mode

Matching Method. This means basically that by matching the tangential on this interface field

components and projecting one complete set onto the other we can find a matrix relation for

the coefficients of the two expansions. In this way, by properly concatenating these matrices we

can find a matrix relation for the input and the output of the system and therefore obtain its

reflective, transmissive and radiative properties. In addition, if the exciting field is known, it

can be propagated through the structure by Mode Matching on each interface and this way the

field can be found everywhere. Obviously, the method is efficient for structures of a rectangular

geometry. In any other case a rectangular discretization must be first applied before utilizing

the method.
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B.1 Matrix representations

Any of the integrated structures under consideration is a physical two-port between the input

and the output, so a matrix to describe it should be 2 x 2. However each of the infinite

modes at each port can be seen as an electrical port of its own, so the elements of the above

2 x 2 matrix above are infinite matrices themselves (which of couse we truncate for numerical

purposes). There are different equivalent representations of the method, based on which exactly

coefficients we relate with this matrix relation:

* If we write all the coefficients an2 of the incoming wave to the n port (n = 1, 2) in a

vector form an =an 2 ,an and similarly for the outgoing b = b() b

then there are 6 different 2 x 2 matrix relations between the vectors a1 , a 2 , bi, b 2 ; 3

fundamental and their inverses:

1. The outgoing from the two-port waves, that is the reflected and transmitted, are

given in terms of the incoming ones via the Scattering Matrix S

b i  S11 S12 a1
(B. 1)

b2 S 2 1 S 2 2  a 2

or more succintly

b = S - a with a= [ai, a 2]T and b = [bi, b 2 ]T

while the inverse relation is provided by the Inverse Scattering Matrix S-1

a, S11 S 12  bi
-w a = S- - b

a2 S21 S22 J L bb2 lb

2. If we express the forward and backward waves at the first port in terms of the cor-

responding ones at the second port then we would use the Wave Backward Transfer
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Matrix T, which is also called ABCD Matrix

[a1 T 1 T 12  b2

bi T 2 1 T 2 2 a 2 I A

C

B b 2

D a2 I (B.2)

and the Wave Forward Transfer Matrix T- 1 is obviously the inverse

[b2 T1 1

a 2 ] T21

T12 a1

T22 Lb I
3. The last possible combination is the Wave Hybrid Matrix H

Fa1 Hil H 12  b1

b2 H 2 1 H 2 2 a 2

and its inverse one H-1

[
-I -1 -

bi H1 1 H 12  a

a 2 H 2 1 H 2 2 b 2

* We can also write the relation for the total amplitudes of the electric and magnetic fields,

which are v, = a, + b, and in, = a, - bn respectively. Again there are 6 different combi-

nations of v1 , v 2 ,i 1 , i 2 and they are completely equivalent to the various representations

of a two-port in ordinary electronics.

1. If we relate amplitudes of electric field (voltages) to those of the magnetic (currents)

then we get the Impedance Matrix

VE

V 2 I ZE

Z 21

Z12 ] 1

Z22 i2

(B.3)

or just

v = Z - i with v = [v1 , v 2 ]T and i = [i, 1 2]T
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and its inverse is the Admittance Matrix Y = Z-1

Yl11 12 V1 i Y

2 Y 2 1 Y 2 2  V 2

2. There is again the Voltage-Current Backward Transfer Matrix T or ABCD Matrix

V1 1 1 1 2 V2 _ A B V2 (B.4)

i1 21 T2 -- 12 C D -i2

and the Voltage-Current Forward Transfer Matrix T-1

V2 T11 T12 V1

-- i2 21 T22 i 1

3. Finally, there is again a Voltage-Current Hybrid Matrix N

V1 [H 1 1 N1 2 i

2 N 2 1 N 2 2  v 2 J

ans the inverse H-1

ii R11 R12 V1

V2 H21 H22 i2

Therefore, in total there are 12 matrices with which we could describe a microwave or

integrated optical two-port. The most useful ones are the Scattering, Wave Backward Transfer,

Impedance and Voltage-Current Backward Transfer matrices and we will concentrate only on

these.

B.2 Properties of matrices

Some properties of the system under study are translated into properties of the matrices,

that set restrictions on their elements. In the following we take only propagating modes into
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consideration. These properties are:

" Reciprocity:

For two different solutions for the field (E(,), H(Q)) and (E(3 ), H(3 )) produced by two

different excitations, if S is a surface that encloses the two-port, then reciprocity implies

that

E(c) (X) x H(O) (x) - (-dS) JE() (x) x H(c) (x) (-dS) T a) b = b -

S S
(B.5)

This reflects in the properties of the matrices as:

- S =ST

- ATC = CTA, BTD = DTB, ATD - CTB = I

- Z=ZT

- ATC=CTA, BTD-DT$, ATD-CTB= I

" Symmetry (which implies also Reciprocity):

If the two-port looks exactly the same by interchanging the numbering for the two ports,

then it is symmetric. This means that if we also interchange the excitations at the ports,

the same fields will be produced, namely with

(a b) 1 - (a, b) 2 ->: M __ M (B.6)

namely the matrix M remains unchanged. Therefore

- S1 = -= S22, S12 12 - S21

- A=AT, D-DT, C= -BT,

AC=-BA, CD=-DB, AD+B 2 =DA+C 2=I

Z 1 1=Z1 = Z 22 , Z 12 = Z2 = Z 21

- B =L3T,C=CTD-AT

AB3=BD, CA=DC, A 2 _3C=D 2 -CB=I
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* Lossless condition:

If the system does not dissipate energy then

Re E (x) x H (x) - (-dS) =POSS= 0 Re [V+I] =0

S-

and the matrices satisfy

- S+s =I

- A+B = C+D, A+A - C+C = D+D - B+B = I

-z = -z+

-A+C = -C+A, B+D = _+-$, A+D + C+B = I

* Resonance condition:

At resonance a system does not have any reactive energy storage, so

E (x) x H (x) - (-dS) = 2iw (We - Wm) - 0 We = Wm -> Im [V+I] = 0

(B.8)

and the matrices' properties are

- S =S+

- A+C=C+A, D+B=B+D, A+D-C+B=I

- z =Z+

- A+C=C+A, BL+D=D+., A+D-C+13= I
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