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Abstract

Backgrounding is the process of maintaining a background model of a scene and
using it to detect foreground objects within the scene. Backgrounding is a useful
first step for many tracking and detection algorithms. A background maintenance
algorithm that is similar to Stauffer and Grimson [5] except that it attempts to exploit
relationships between the colors in a scene as feedback to the pixel process. The goal
is that this common distributions approach will enable more accurate localization
of foreground objects because it can better estimate the colors in a scene and their
behaviors.
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Chapter 1

Introduction

Object tracking has many applications: automated systems for visual surveillance

and security, tracking players during sporting events, or monitoring traffic flow rates

and patterns. Utilizing vision for object tracking is particularly difficult. Objects

may or may not be moving, they can change shape dramatically in a short time,

and even if both motion and shape are held constant there may be multiple types

of objects to track (cars, people, bikes, dogs, trucks). Furthermore, the scene may

change. In outdoor scenes, the sun and clouds move, affecting light and shadowing.

In indoor scenes, doors can be opened and closed, lights may be turned on and off,

and light through windows may affect the scene just as it does in outdoor scenarios.

In addition, in all situations, static objects may be moved into or out of a scene. For

instance, a car may be driven into a parking lot, then left there. A chair may be

placed in or repositioned within a room. Finally, there is camera noise and slight

variation of otherwise static objects (e.g. waving trees, construction flashers). Such

changes in the scene on top of the activities of the tracked objects require robust

initialization for any tracking approach.

There are several approaches to initialization for visual tracking. One is to search

the scene for the objects to track. However, such a 'detection by recognition' approach

restricts the objects you can track to those for which you search. A more general

approach to object localization is backgrounding.

Backgrounding is the process of differencing an image of a scene with no fore-
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ground objects (a baseline or background image) from an image with objects present.

The goal is to generate a mask image in which potential objects to track are high-

lighted. In the more general case, the baseline is not simply an image but a more

thorough model of the background. Background maintenance is the process of cre-

ating and maintaining the background model. The entire process of backgrounding

involves background maintenance as well as a method for determining how a new

input deviates from the background model.

This process is complicated by several factors including: camera noise, lighting

variations, moving background objects (e.g. fluttering objects), and static objects

that are added, removed, or repositioned. This mask image highlights the locations

of foreground objects. Therefore it may be input directly to a tracking engine or serve

as the initialization for a specific object detector.

However, despite the difficulties, there are many benefits to backgrounding. It can

be robust to camera noise. Backgrounding can be resilient to environmental changes

as described previously. Finally backgrounding may be used to locate a moving object

regardless of its appearance.

Backgrounding generally makes three assumptions about a scene. The first is

that the objects to track are moving the majority of the time. The second is that

over any sufficiently long window of time, a background pixel will be unobscured by

foreground objects for the majority of the period. The final assumption is that there

are detectable color differences between background and foreground pixels (i.e. the

object can not be camouflaged). There are no other assumptions about the behavior,

size, or shape of the objects to track.

1.1 Difficulties with backgrounding

There are several hurdles to overcome with background maintenance. Toyama et al.

[7] laid out ten canonical problems:

The first is the 'moved object' problem. If an inanimate object is repo-

sitioned within a scene should it be background or foreground? Because
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we generally are not interested in tracking such an object, it should be

background. However, because color and motion are the only cues to the

background mechanism, such objects are generally considered foreground

at least temporarily.

The second is the 'time of day' problem. Primarily in outdoor scenes

but also in indoor situations, the movement of the sun and long-term varia-

tions in cloudcover lead to gradual yet pronounced changes in illumination

and the locations of shadows or bright regions. Again, such changes should

not affect the notion of what is background but they constitute color and

motion cues and thus can confuse many background approaches.

The third is the 'light switch' problem. This refers to sudden global

scene changes. For instance, turning on lights in a room. Such variations

affect the entire scene and all of the objects at once.

The fourth problem is 'waving trees.' Frequently background objects

move. Waving trees or flapping flags are the standard examples however

construction flashers cause the effect. Such objects exhibit cues that may

lead a background subtraction approach to label them as foreground how-

ever that is generally not the desired behavior. The one cue that generally

sets them apart from interesting objects is the periodicity and range of

motion. Tree branches waving in the breeze have a high frequency and

low range relative to a person pacing in front of a building.

The fifth problem is that of 'camouflage.' A person dressed in white

walking in front of a white building should be foreground. However, that

event probably does not trigger the color and motion cues necessary for a

background approach to correctly label it.

The sixth problem is how to initialize a background model with the

presence of foreground objects. 'Bootstrapping' is a difficulty in many

surveilled locations. For instance, how do you make all the cars stay off

the road so you can take a background picture?

The problem of 'foreground aperture' arises when a uniformly colored
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foreground object moves. The motion cues only appear at the edges of

the object. Thus background subtraction only detects the edges of the

objects as foreground.

The eighth is the 'sleeping person' problem. This is akin to the 'moved

object' problem. When an object of interest, such as a person, enters a

scene and remains still, it is desirable to continue to detect that person as

foreground.

The ninth problem is 'waking person' which mirrors the sleeping person

problem. When a foreground object such as a parked car has been still in

a scene and begins to move, it should be considered foreground. However,

the region of background that it uncovers is frequently also considered

foreground.

The final problem is 'shadowing.' With a point light source, objects

cast shadows. Those shadows should not be part of the object however

they are generally regarded as such by the backgrounding algorithm.

Most of these problems arise because of a 'poverty of the stimulus.' The only input

to the backgrounding process is the stream of images and as a result, the previous

background model. Any other input requires a priori knowledge of the objects of

interest or the scene.

1.2 Background of Backgrounding

Backgrounding is a popular first step for visual tracking. The simplest approaches

represent each pixel in the background model by its average value over time. More

complex approaches utilize filters or other predictive methods to estimate the back-

ground model for each frame.

Wren et al. [8] represent each background pixel process with a single Gaussian.

Their system is specifically designed for a static background and makes no attempt

to solve the bootstrapping problem. They use an initialization period in which there

are no foreground objects in the scene.
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Stauffer and Grimson [5] utilize a mixture of Gaussians to represent every pixel

process. Each Gaussian is updated with a weight that is an estimate of the degree to

which that Gaussian represents the recent history of the pixel. By allowing multiple

distributions per pixel, they can accurately account for items such as construction

flashers as part of the background model.

Friedman and Russel [1] present a similar approach using Gaussian distributions.

However, instead of using a general mixture as Stauffer and Grimson [5] they attempt

to classify each pixel into one of either vehicle, road, or shadow distributions. There

approach was designed for the particular application of tracking vehicles on a segment

of road.

Harville et al. [3] add the additional information of depth to the standard mixture

of Gaussians approach. Unfortunately, their approach requires stereo cameras.

Toyama et al. [7] utilize a layered approach to background maintenance. At the

pixel level, they represent each pixel process with a Weiner filter. This allows them to

predict the pixel value in the next frame. Significant deviation from this prediction

suggests the pixel is foreground. Their region level framework tries to segment out

moving objects by detecting the motion at the edges of the object. Finally, their frame

level processing decides when there has been a global scene change that requires a

completely new background model.

Gutchess et al. [2] make use of optical flow information to determine which values

are background. They do so by recognizing events where an object moves over a pixel

value then later moves off of a pixel value. These covering and uncovering events

allow them to determine which values from a pixel process were foreground and which

were background. This approach is specifically designed to allow initialization of a

background model while foreground objects are present in the scene ('bootstrapping').

Rittscher et al. [4] and Stenger et al. [6] use Hidden Markov Models to represent

each pixel process. However, inherent in such a representation is a direct time depen-

dence and they also assume independence between pixels. Stenger et al. [6] go one

step further to use topology free HMMs. This allows the state to split (akin to the

multimodality of backgrounds in Stauffer and Grimson [5]). This is convenient for
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the global scene changes. In their testing, Stenger et al. [6] generate a background

model for a train station that accounts for both the cases where the train is there

and where it is not.

Previous work in backgrounding centers around either trying to more accurately

represent the state of the background or trying to extract a little more information

from a sparse world. Friedman and Russel [1], Harville et al. [3], Stauffer and Grim-

son [5], Stenger et al. [6], Wren et al. [8] attempt to accurately represent as much

information as possible for each pixel. Gutchess et al. [2], Toyama et al. [7] attempt

to make higher level assumptions about events that affect the pixel processes.

1.3 Goals of my approach

I propose an extension to Stauffer and Grimson [5] by sharing information across pixels

thus providing some feedback and more support for estimating every pixel process.

My hope is that this will enable faster, more accurate updates to the background

model because the individual effect of each pixel can be smaller. However, with

multiple pixels, the effect of a global lighting change will update the distribution

faster. In addition, each distribution can maintain its own state about whether it

is background or foreground. Thus, in the case of the 'waking person' problem the

newly revealed background will have a high prior to be labeled as background because

the pixels will fall under a distribution that is background at every other pixel. In the

case of the 'sleeping person' problem, the feedback loop allows pixels on the object,

as they decide to become background, to encourage other pixels on the object to do

the same.

I propose an approach that will aggregate the information across multiple pixels

to solve some of the problems laid out by Toyama et al. [7]. There are two implicit

assumptions in such an approach. First is the assumption that the majority of the

scene is background. Such is generally the case in far field tracking. Second is

the assumption that the background occurs in reasonably contiguous uniform color

regions.

11



Chapter 2

Approach

My approach is a direct extension of the work of Stauffer and Grimson [5]. Stauffer

and Grimson [5] represented each pixel process with a mixture of Gaussians. At every

time step, the model for each pixel is updated with the latest observation. In the

common distribution framework (described in section 2.2), I propose some limited

sharing of the observation information across pixels.

2.1 Mixture of Gaussians

Stauffer and Grimson [5] represent each pixel process with a mixture of Gaussians.

In particular, the probability of the current pixel value is

K

P(Xt) = wi,t * 7(Xt, pit,, Ei) (2.1)

For a pixel represented by K distributions and the it distribution at time t: wjt is

the weight estimate in Equation 2.4, pi,t is the mean, and Ei, is covariance matrix.

Finally, q is the Gaussian probability density function

1 -e(Xt -t) T E (Xt -,t)(2)
S(Xt, /p,' E-) = e t- e -NF (2.2)

V/ (27r) V/ IF,
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For computational convenience, the covariance matrix is assumed to be of the form:

Ekt 2 = I (2.3)

This assumes independence between the color channels.

With every new pixel value Xt, the parameters are updated as follows: The new

pixel is checked against the K Gaussian distributions. It is considered to match if

Xt is within 2.5 standard deviations of the mean of a distribution. If the pixel does

not match any of its distributions, the distribution with the lowest weight wj,t is

replaced by a new distribution with mean Xt, a high variance, and a low weight. By

construction, the pixel will match this new distribution.

After matching, the prior weights Wk,t of the K distributions are updated as follows

Wk,t =(1 - a)Wk,t_1 + a (Mk,t) (2.4)

where Mk,t is 1 for the distribution that matched and 0 elsewhere. a is a constant

and 1/a is the time constant for the update of the parameters of the distributions.

Finally, the weights are re-normalized so that they sum to 1.

For all unmatched distributions, the parameters A and a remain unchanged, how-

ever the parameters of the matching distribution update as

At (1 - p)[t_1 + pXt (2.5)

- (1p) * 1 + p(Xt - t)T (Xt,_ -t) (2.6)

and

p = a(Xt Ik, Jk) (2.7)

Background pixels should have relatively static values. That means that they have

low variance and match with a Gaussian of high weight. To decide which pixels should

be labeled as background, Stauffer and Grimson [5] begin by sorting the Gaussians in

descending order by w/a. Thus pixels that have been represented primarily by a single
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distribution and have a low variance are more likely to be considered background. To

implement this, the first B distributions for each pixel are chosen as the background

model where
b

B = argminb(Zwk > T) (2.8)
k=1

and T is a threshold representing the minimum portion of the data that should be

accounted for by the background. A small T restricts the background to a unimodal

distribution whereas a larger T accepts more distributions thus allowing a multimodal

background model.

2.2 The Common Distributions Approach

I propose some extensions to the work of Stauffer and Grimson [5]. The primary

goal is to capitalize on the repetition of information across pixels by allowing a single

Gaussian to represent multiple pixels. Each pixel will continue to have an independent

set of K Gaussians that account for its history with weights Wk,t. However, instead of

matching against only those K Gaussians, each pixel is matched against all Gaussians.

Therefore the pixels in a region of uniform color will potentially all map to a single

Gaussian.

There is a set of Gaussians g {G 1,--- GN} where each Gaussian Gi at time t is

represented by a mean pi,t and covariance E,t.

Gi,t = {pfi,t , Ei,t , Fi,t} (2.9)

F is an estimate of the foreground probability of the Gaussian (this will be dis-

cussed later). Ei,t is assumed to be diagonal but unlike Equation 2.3 the variances of

each channel are not assumed to be equal.

There is also a set of pixels P = {P1,--- PAI} where each pixel P at time t

consists of its position, most recent color observation Xi,t = {ri,t, gjt, bi,t}, and a set
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of K references {gi - - -YK} to Gaussians in g.

Pi,t = {{xi, yi}, Xi,t, 91,i,t ' - - gK,i,t} (2.10)

In each pixel, 9k is a reference to a Gaussian and has the form

9k,i,t = G , wij,t} (2.11)

where wjt is the weight associating pixel P to Gaussian Gj as in Equation 2.4.

At every time step, each pixel in P is compared to every Gaussian in g. A pixel

Pi is considered to match a Gaussian Gj if Gj minimizes q defined as:

_ 1Xi't - ptytl (2.12)

Thus q is the normalized squared distance from the pixel to the mean of the distribu-

tion. This match occurs subject to the constraint that IXi,t - pj,tl < 2.5 -o-jt as with

Stauffer and Grimson [5]. If the pixel does not match with any Gaussian in g then a

new Gaussian is added with an initially high variance and low weight.

For all unmatched Gaussians, the parameters it and o- again remain unchanged.

However, for all matched Gaussians the updates occur per Gaussian as

pt - (1 - #pt-1 + #E[Xt,match] (2.13)

E2 = (1 - #)E 1 + #(E[Xt,match - pt])T(E[Xt match - lt]) (2.14)

where

min (tmatch, .9 (2.15)

Ptmatch are all the pixels that matched at time t with the Gaussian being updated,

and Xt,match are their current values, and C is some suitable constant that is primarily

dependent upon the size of the input image. The purpose of # is to modulate the

update of the Gaussians. Gaussians with one pixel of support will update slowly but
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Gaussians with more support will update faster up to a point. The assumption is

that with more samples the estimate of the color is more likely to be accurate.

For purposes of creating a background model, each pixel still maintains its own

set of Gaussians to which it matched with weights updated as in Equation 2.4. The

difference now is that instead of using this information to generate a binary decision

about background versus foreground, I generate a confidence fi,t which is an estimate

of how likely pixel P is to be background at time t. For this purpose, if pixel P

matched with Gaussian Gj

fi= (1 - "' + ,FYjt_1 (2.16)
max(wi,t)

Finally, because of the one-to-many mapping of Gaussians to pixels, we can de-

termine a probability that a Gaussian represents a background color Fjt. For any

Gaussian Gj at time t,

Fjt = (1 - * F,1 + 3 * E[fmatch,t > Tbackgroundl (2.17)

Thus at time t, every pixel has an initial estimate of whether it is background and

every Gaussian has an estimate from time t - 1 of whether it is background. By com-

bining these two estimates we can hopefully achieve a more accurate determination

of whether a pixel is background or foreground. Because these are two estimates of

the probability of an event, they can be averaged with some appropriate weighting

to estimate the probability that a particular pixel is background. That weighting is

determined by -y. Tbackground is a threshold on the probability above which a pixel

is considered background.

16



2.3 Proposed Benefits of the Common Distribu-

tions Approach

I hope that there are several advantages to this approach of sharing color models

across pixels. In particular, I hope to better estimate the color model of an object by

matching multiple pixels to a single Gaussian. In addition, by allowing the Gaussians

to impart feedback upon the pixels, I hope to better estimate the probability that a

pixel is background.

The common distribution approach that I have described creates a global color

model of a scene. This model consists of the set of Gaussians 9. Each Gaussian has

a mean value, variance, and probability that it is background at any particular time.

As a result, if a foreground object reenters the scene, the system will already have an

accurate color model for it.

Again because of the shared color model, pixels in a uniform color region will

generally match with the same Gaussian. Therefore, there is a larger sample set from

which to estimate the parameters of the distributions. A larger sample suggests that

I can place more confidence in the new estimates and thus update the color model at

a higher rate.

The 'waking person' problem is common to backgrounding. When a previously

stationary object moves, it is beyond the scope of the backgrounding problem to

determine that the uncovered region should be background. One approach would be

to apply higher level assumptions and treat it as an 'uncovering' event from Gutchess

et al. [2]. In most backgrounding however, because each pixel is independent, the

uncovered region dissolves piecemeal into the background over time.

In my approach, there are potentially two advantageous factors in such a situation.

Assuming that the uncovered region is uniform, it should dissolve into the background

all at once. As pixels decide that they are background, the bias of the color will shift

towards an estimate that it is background and other pixels will be faster to follow

suit. The unfortunate side-effect, is that before the color transitions to background it

will be biased to the foreground and thus will exert pressure on the matching pixels to
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stay foreground. This problem is mitigated however when the revealed pixels match

a distribution that is already background. For instance, if the revealed background

pixels where part of a parking lot that was already considered background.

Finally, for the same reason that revealed background of a novel color may have

a tendency to remain as foreground, I hope that my approach will more resilient

to background objects that are moved and foreground objects that are stopped (ie.

the 'moved object' and 'sleeping person' problems). If a chair is repositioned in a

room, under most approaches it would be foreground and be re-incorporated into

the background over time. However, in the case of a single chair, it's color model

would bias it towards becoming background sooner. More importantly, in a room

full of similar chairs, if one is repositioned all of the other chairs that match its color

model will tend to bias it to be background. This is analogous to the situation of

revealed pavement described above. In addition, if a foreground object pauses, it's

color model will continue to bias it towards being in the foreground. In a perhaps less

likely scenario, if there was a group of foreground objects that shared a color model

(e.g. a soccer team with identical jerseys) the situation would be identical to that of

the moved chair.

2.4 Potential Pitfalls of the Common Distributions

Approach

My primary concern with this approach is that it is non-deterministic. At it's heart,

it is a clustering algorithm and as such its results are dependent upon how it is initial-

ized. For instance, on the first iteration a particular pixel P may match Gaussian Gj.

However, a later pixel Pk may not match any of g and thus a new Gaussian G, will be

created. The problem arises when G, is a better match for P by Equation 2.12 than

the original match Gj. Fortunately, this is not a serious problem in practice. The

updating of the weights Equation 2.4 makes the single match mistake insignificant.

However, this can occur in the first iteration of matching. At that point, because the
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weights are normalized, the incorrect match Gj will have a weight of 1.0 with pixel P

and it will take many frames for that to decay away. The solution I have implemented

is to perform an initial pass to generate g before beginning the process of matching.

Another potential problem is that the histories for particular pixels may be inval-

idated over time. This is because a single Gaussian can represent multiple different

pixels at different times. For instance, at some time t - 6, pixel P matched with

Gaussian G where 6 is some arbitrary delay such that Gj is still in the history for P.

At time t these two objects may no longer match. In such a situation, in the interim

6, Gj may have matched with other pixels. Through updates in those iterations, G

may no longer accurately represent the state of P at time t -6. The models of pixels

over time may no longer be valid. Thus if pixel P reverts to its value at t - 6 it will

no longer match Gj and be erroneously labeled as foreground.

Finally, the entire system may be unstable. At every time step, the Gaussians

update their probability of being background using the background probabilities of the

pixels that matched. However, on the following iteration, the pixels make decisions

again about whether they are background. This decision is determined in part from

the background probability of the Gaussian from the previous time step.

2.5 Summary of the Common Distributions Ap-

proach

I propose a background maintenance algorithm that is similar to Stauffer and Grim-

son [5] except that I am trying to exploit dependencies between pixels. Whereas

they utilized an independent mixture of Gaussians to represent every pixel process, I

propose maintaining a separate mixture per pixel but that the Gaussians be shared

across all pixels. On each iteration, every pixel will be compared against every Gaus-

sian and will be matched with the one to which it is closest. The quality of a match

is measured by the normalized squared distance from the mean of the distribution

to the pixel observation. After matching, the weights associating each pixel to the
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recent history of Gaussians to which it matched are updated as in Stauffer and Grim-

son [5]. The probability that a single pixel is background is determined by Equation

2.16 which allows a pixel to have a multimodal background model. The probability

that a Gaussian is background is determined by an online EM update (Equation 2.17)

utilizing the expectation that the pixels it previously matched with were background.

Then each pixel is labeled as background or foreground by thresholding the weighted

average of the pixel's estimate and the matching Gaussian's estimate. Finally, the

Gaussian mean and variance parameters are updated in batch from the pixels with

which it matched.
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Chapter 3

Results

3.1 Testing

To test my approach, I compared it to an implementation of Stauffer and Grimson [5].

However, because the intent of the comparison was to analyze the differences between

the two approaches (namely sharing the distributions versus not sharing them) it is

not intended to be a complete and tuned implementation of Stauffer and Grimson

[5]. In particular, p (Equation 2.7) is implemented such that p = a instead of as a

function of 7j, the Gaussian pdf (Equation 2.2). The results of both algorithms have

been postprocessed to eliminate all 4-connected-components smaller than 4 pixels as

suggested by Stauffer and Grimson [5].

Figure 3-1 shows some images from the test data. The test dataset was from the

PETS2001 workshop. It is a single camera view of a parking lot with some pedestrian

and automobile traffic. I ran both the mixture of Gaussians Stauffer and Grimson [5]

and the common distributions approach on the dataset with a variety of parameters.

As an input sequence, I used every tenth image of the original video sequence. The

output sequences are binary images where white represents pixels that were labeled

as foreground.

There are four output sequences representing the best of several runs: two from

each approach with different parameters. Figure 3-2 illustrates the results of the

common distributions approach with a Tbackground = .75, y = .2, a = .05 and the
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initial variance of a new Gaussian was .005. Figure 3-3 is another run of the common

distributions approach but instead the default variance of a new Gaussian was .001.

The difference in noise is immediately clear. The lower default variance means that

each Gaussian represents more pixels and a larger range of colors.

Figure 3-4 shows the output from the mixture of Gaussians approach with T

.4, a = .05, K = 3 and new Gaussians have a default variance of .05. Figure 3-5 is a

second iteration of mixture of Gaussians but with a default initial variance of .001.

Again, the difference in the noise is obvious.

3.2 Results

The first image in the sequence is from a period of time with no activity. It sim-

ply illustrates the effect of noise on each of the backgrounding algorithms. Clearly,

the image is noisier in the darker regions with less uniform color. Both mixture of

Gaussians implementations handle this situation extremely well. For common distri-

butions, Figure 3-2 has less noise than Figure 3-3 because it uses a higher default

variance. As a result, it is representing the scene with nearly half as many Gaussians.

Each of which has a larger variance and is thus less sensitive to slight variations in

the individual pixel values.

The second image has a car entering from the left and the car parked nearest

the middle of the scene is backing out of a parking space. All of the illustrated

approaches detect the motion of the reversing car. However, the common distribution

approach detects more of the object because regions of uniform color are pulled to the

foreground as a group. Additionally, the mixture of Gaussians approaches appear to

be a little more sensitive to the noise of the pixels surrounding the car approaching

from the left.

In the third image, the reversing car has stopped while the other vehicle continues

to approach from the left. Again, all of the algorithms have no trouble with this

simple motion. The mixture of Gaussians approach again appears to be slightly more

sensitive to the noise. Another point of interest is that all approaches have lost track
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of the reversing car. This illustrates the 'moved object' problem. The car was still

and thus part of the background, then it moved slightly and became still again. All

approaches have successfully reinserted it into the background.

By the fourth frame the car from the left has stopped before backing into a space

and the reversing car in the middle has continued its move from its parked location.

Figure 3-4 shows that this implementation of mixture of Gaussians has lost track

of the car from the left just as it pauses to prepare to reverse into an empty space.

This is an instance of the 'sleeping person' problem. The car has paused long enough

such that the mixture of Gaussians approach has incorporated it into the background

whereas the feedback built into the common distributions approach has allowed it to

hold onto the car for longer.

In the fifth frame, there is an illustration of the 'waking person' problem. The

space obscured by the parked car in the center is revealed as the car backs out. The

mixture of Gaussian approaches seem to have lost track of the car from the left that

is now parking. Additionally, in Figure 3-4 appears to have labeled a swath of the

parking space as foreground. However, the common distribution approach seems to

have labeled more of the parking space as foreground. This is because the parking

space is painted and thus does not fit the color model of the rest of the pavement.

In this frame a pedestrian has entered from the right and is detected by all of the

approaches.

In the sixth, seventh, and eighth images, the two pedestrians continue across

the scene to the left. As they appear smaller they become more difficult to detect.

All approaches show difficulty detecting such small objects however the common

distributions approaches seem to do a slightly better job of selecting pixels on the

pedestrians.

Finally, in the remaining two images, a bicyclist is moving across the scene to the

left. One difficulty here is that the wheels of the bike are very thin and the spoke

regions appear nearly transparent. In this case, both of the common distributions

approaches appear to do a better job of segmenting the cyclist including the wheels

of the bike.
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Figure 3-1: A series of images from the input data.

In all of the approaches, an increase in the detection probability leads to an in-

crease in false detections as is to be expected. The common distribution approach

appears to more uniformly detect an object as foreground without missing individual

pixels and leaving holes in the mask. This is a result of the dependencies between

pixels of similar color. Perhaps most notably, we can see some of the problems de-

scribed by Toyama et al. [7]. The problem of backgrounding is potentially under

constrained. In the third image, the reversing car paused and was reimplemented

into the background as if it was a repositioned background object. However, with

additional information, we know that the car should have been foreground. Unfortu-

nately there is not necessarily information available to the background algorithm to

make such a decision.
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Figure 3-2: The results of the common distributions approach.
.005

Default variance =

Figure 3-3: The results of a the common distributions approach. Default variance
.001

Figure 3-4: The results of the mixture of Gaussians approach Stauffer and Grimson
[5]. Default variance = .05

Figure 3-5: The results of the mixture of Gaussians approach Stauffer and Grimson
[5]. Default variance = .001
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Chapter 4

Conclusions

The common distributions approach for background maintenance illustrates some of

the promise of backgrounding as well as some of the inherent difficulties. It can

accurately label regions of activity however it can also mislabel regions of noise.

Perhaps most importantly, it can misclassify regions because it makes assumptions

about the state of the world which are not necessarily true.

The common distributions approach labels foreground objects more uniformly

(without 'holes') because it assumes a dependency amongst pixels of similar colors

and that objects tend to be relatively uniform in color. This feature allows it to more

accurately label novel objects because of assumed relationships via color information

(ie. it is a new color not yet in the scene). However, this very much relies on the

assumption that the foreground objects are not the same color as the background

objects. Otherwise, the system works against itself.

Unfortunately, some of the features of the common distributions approach that are

designed to allow it to solve more problems in backgrounding also potentially cause

some more. For instance the reintegration of the paused car into the background as

though it was a moved object. Additionally, the revealed background that was kept

as part of the foreground model for longer because it was a relatively novel color. It

seems to support the claims of Toyama et al. [7] that backgrounding might not be

the appropriate level to solve classification problems because of the poverty of the

stimulus. Perhaps backgrounding should be at most a coarse filter to a recognition
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or tracking engine.

An unfortunate drawback to the common distributions approach is its speed or

lack thereof. Whereas [5] has to test for K matches per pixel, the common distribu-

tions approach has to test for Jg! matches per pixel. In the two examples illustrated

previously, 1!9 (the number of Gaussians) was about 130-250. This does not compare

favorably with [5] in which K varies from 3 - 5.

In addition, I initially had concerns that the feedback in the system would make

it unstable. This is not a problem provided -/ + Tbackground < 1. Otherwise the

entire scene is labeled as foreground.

Any benefits of the common distributions approach are because it assumes some

dependence between pixels of similar colors and uses them to generate more accurate

color models. However, these benefits may also cause problems because they make

more assumptions about the world.

Despite this, I feel that the common distributions approach does represent an

improvement (however small) over the mixture of Gaussians approach upon which it

is based. It more completely highlights objects and is more robust to some camouflage

problems.

Although backgrounding is potentially poorly defined, it still serves as a useful

initialization step for many tracking algorithms. Backgrounding relies on some as-

sumptions about the world that generally hold. Such as pixels maintaining a relatively

consistent color unless a foreground object is present and that foreground objects are

generally in motion. Over the range of situations in which we generally track, such

assumptions hold reasonably well and thus background can be a useful tool.
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