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Abstract

Simulated single nucleotide polymorphism data play an important role in human ge-
netics. They provide a mechanism for analyzing genetic patterns on a genomic scale,
examining theories of human evolution, inferring properties of recombination, and
comparing efficiencies of medical genetic study designs. However, the simple popu-
lation models used in most experiments pose a critical obstacle to drawing reliable
inferences from these simulations.

This thesis introduces a powerful and flexible tool, CoSi, that generates haplo-
type data based on the coalescent process. CoSi includes key features for accurate
simulation of empirical data: support for non-uniform recombination and the ability
to model multiple populations and population events. Here we use CoSi to examine
models of human recombination and demonstrate its capabilities by matching diverse
empirical data.
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Chapter 1

Introduction

Characterizing patterns of genetic variation in the human genome is a critical first

step towards understanding how genotype and biomedical phenotype are related. This

information can reveal genetic factors in disease that suggest possible treatments, or

can help scientists understand the genetic basis behind a patient's response to certain

drugs. Knowledge of these patterns has already enabled researchers to reduce the

amount of time necessary to screen a region of the genome for involvement in disease

[12, 24].

Simulated data is often used to formulate or test hypotheses about these patterns

of variation. For example, models have been used to estimate the number of common

single nucleotide polymorphisms in the human genome [16] or to suggest recombi-

nation patterns that lead to observed characteristics [29]. Simulations can also be

used to further our understanding of human evolution. For example, by comparing

empirical data to simulated data modeled upon an out of Africa hypothesis, we can

make estimates as to when major movements of the human population occurred. And

because simulated data contains complete information about the alleles and history

of a hypothetical chromosome, we can analyze the effects of different methods of

collecting empirical data on the completeness and accuracy of results.

Current models, however, are often limited in their flexibility. This leads to dis-

crepancies between simulated and observed data. For example, recent empirical data

have suggested much longer regions of high linkage disequilibrium, or correlation be-
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tween variable sites, than observed in population simulations [3, 6, 23]. While simple

models of population evolution and recombination are adequate for formulating basic

hypotheses, more complex models must be available in order to make comparisons

to specific features of empirical data. Many studies compare empirical data to simu-

lated data to draw conclusions about selection events [4], but whether the observations

could be explained simply by random drift in a more complex and accurate popula-

tion model is still unclear. The recent rapid increase of empirical data provides us

with the opportunity to create more complex models that can be matched to our

emerging detailed understanding of genetic variation patterns.

This thesis describes the design and development of CoSi, a coalescent simulator

with capabilities for multiple populations and non-uniform recombination. CoSi pro-

duces simulated data which has been tested to match the output of state of the art

simulators in simple scenarios, but is also capable of simulating more complex models

of human demography and recombination. These complex models, unlike those used

frequently in population genetics literature [21, 29, 34], generate data which resem-

ble empirical genetic variation patterns and can thus be used to draw more reliable

inferences about human history and patterns of recombination.

14



Chapter 2

Background

To understand the need for simulations and the limitations of currently available

tools, we first explain what we are simulating and the experimental reasons why we

need simulations, then discuss some population genetics concepts.

2.1 Single nucleotide polymorphisms (SNPs)

Human DNA differs from individual to individual only at points where ancestral

mutations have occurred. By far the most common type of mutation is one that occurs

at a single site, referred to as a single nucleotide polymorphism (SNP) 1 . Other types of

genetic markers exist as well but are not discussed here. SNPs, being most common,

are likely responsible for most observed phenotypic variation, and are therefore the

focus of many studies which seek out genetic factors in disease. SNPs can also serve

as markers for other types of variation. Since mutations in DNA accumulate and

are passed down to an individual's offspring, mutations that originate in ancient

generations appear in the population with higher frequency than mutations from more

recent generations. Based on an analysis of existing data, Kruglyak and Nickerson [17]

predict about ten million SNPs in the human population with minor allele frequency

> 1%.

1SNP: a nucleotide base where some copies of a particular chromosome carry a particular base
(A,C,G,T) and other copies carry a different base. In this document, the terms marker and SNP
are used interchangeably.
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Empirical data have revealed that groups of nearby SNPs are non-randomly as-

sociated with each other. This association, or linkage disequilibrium (LD), can be

used to track and pinpoint genes associated with complex diseases, and suggests that

genotypes can be determined using lower-resolution data and a good knowledge of LD

patterns in the genome [6]. Some studies examine pairs of SNPs which are known to

be linked, while others involve examining an entire region where limited haplotypes,

or patterns of SNP alleles, are observed. For a review of the LD measure we use in

this thesis, r2 , refer to Appendix A.1.

2.2 Linkage disequilibrium and recombination

The major force disrupting LD is recombination, because it promotes the creation

of new haplotypes. When a mutation first appears on a chromosome, the mutation

exhibits high LD with all neighboring markers, since it only appears in a particular

haplotype. Recombination breaks up this correlation.

Because sites close to each other have a smaller chance of experiencing a re-

combination event between them, expected linkage disequilibrium will decrease with

distance. Two SNPs tend towards linkage equilibrium at a rate dependent on the

distance between the SNPs and the local recombination rate.

2.3 Limitations of empirical data

Error and bias is introduced into SNP studies through genotyping errors, sampling

errors, and the ascertainment process. Since data are collected marker by marker,

a heterozygous individual2 is said to be of ambiguous phase: it is unclear from the

observation which allele was paternally derived and which was maternally derived.

Various methods can be employed to infer the haplotypes, but they introduce an

element of uncertainty.

2Heterozygous individual: an individual who has two different alleles for a marker (one each
on the two corresponding chromosomes).
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Figure 2-1: How SNPs are ascertained. Random shotgun snippets are lined up
against a reference sequence (generally the Human Genome Project). The snippets
are compared to the reference sequence and differences are noted as discovered SNPs.
Some regions will be covered with more than one snippet, others will not be covered
at all.

Most SNPs are discovered by sequencing a small number of chromosomes before

examining these SNPs in larger study samples. This ascertainment biases the collec-

tion of SNPs towards high frequency markers. For example, The SNP Consortium

(TSC), the largest SNP discovery project to date, ascertains SNPs using a shotgun

method (Figure 2-1). Most SNPs are detected using only one or two sequence com-

parisons, and some areas of the genome are not covered at all. A public database3

contains all TSC SNPs along with a collection of SNPs discovered in other stud-

ies. Most genetic studies now base their experiments on the SNPs available in this

database. Many studies such as as Phillips et al. [21] intentionally choose evenly

spaced SNPs that are separated by several kilobases.

3dbSNP is available at http://www.ncbi.nlm.nih.gov/SNP
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2.4 A brief review of population genetics

This section covers some basic concepts of population genetics that relate to this

thesis.

2.4.1 Effective population size

Under neutral theory, where changes in variation are caused by genetic drift, popu-

lation size determines the rate at which allele frequencies change. Most organisms,

including humans, have frequent and significant changes of population size. The rele-

vant population size for genetic studies is the size of the population which is currently

breeding, which may be anywhere from one-third to one-quarter of the entire pop-

ulation [5, p.57]. Also, panmictic4 populations exhibit lower genetic diversity than

non-panmictic populations. Instead of using the actual population size, population

geneticists use an effective population size Ne that is chosen to approximate the diver-

sity of the actual population. Fluctuations in population size, non-uniform mating,

and gender ratio can all affect Ne. Population size changes can be incorporated by

taking the harmonic mean of the population sizes,

r 1 *-1 1 _
Ne~

t j_0 Ni

where t is the total time, and Ni is the population size at time i. Thus, the time

spent at a smaller sizes will have a greater impact on Ne than time spent at larger

population sizes.

When simulating the human population as a constant size model, Ne is conven-

tionally considered to be 10,000 individuals'. However, this estimate is not based on

a large empirical analysis and, as we will note later, does not explain the full range

of empirical data.

4Panmictic: breeding uniformly and randomly.
'See Takahata et al. [28], Yang [31], and references therein for a more detailed explanation.
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Figure 2-2: Average LD versus physical distance for African-American and
non-African populations. Average LD is lower for African populations than non-
African populations, indicating a longer genetic history for African sequences. Data
from Gabriel et al. [6].

2.4.2 Out of Africa theory

Based on archaeological evidence, and now substantiated by examination of the ge-

nome, scientists believe that a small group of modern Homo sapiens left Africa around

100,000 years ago and eventually founded the European and Asian populations. The

founding group of these populations would have carried only a subset of the diversity

present on the African continent at that time. The bottlenecks experienced during

these migrations caused many alleles to fixate6 or dramatically change in frequency.

Thus, since the SNPs found in European and Asian populations are on average more

recent, these populations should exhibit less diversity, fewer ancient mutations, and

higher LD. Indeed, as shown in Figure 2-2, the empirical LD of non-African samples

is higher than that of African-American samples.

6 Fixate: To cease being a variation in a population, either by reaching 100% frequency or by
disappearing entirely.
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Chapter 3

State of the art in population

simulations

When empirical data is limited, simulations are often used to generalize or confirm

results of analyses. Gabriel et al. [6] used simulations to estimate the underlying

structure that produced the given empirical results. Zhang et al. [34] used simulations

to evaluate the effect of genetic drift on linkage disequilibrium.

The naIve method of generating a set of chromosomal samples is to start with a

founding population or individual that replicates to produce the current day chromo-

somes. These chromosomes are then randomly sampled for analysis. This approach

is computationally intensive, as the number of chromosomes increases to an unwieldy

value. Moreover, at the end of the process, all the chromosomes which are not sam-

pled represent wasted compute time and memory. Forward simulations are still used

in cases where one needs to track the evolution of the entire population over time [18],

but more efficient methods are now available.

Since we are only concerned with coalescent simulations in this document, we refer

the reader to other sources for descriptions of approaches such as diffusion1.

1A good overview of diffusion is given in Ewens [5].
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3.1 The coalescent process

The coalescent process is commonly used to efficiently generate a population history,

using a Monte Carlo method [7, 8, 14]. The simulation works backwards, starting with

the final sampled chromosomes, and constructs their ancestral histories. Coalescence

assumes the neutral theory, although selection has been considered in some models [9,

10, 19, 20]. In addition, each subpopulation is assumed to be panmictic.

As an example, Figure 3-1 shows a population of 10 chromosomes over several

generations. Some chromosomes will have multiple descendents, while others will

have no descendents. Eventually, looking back far enough will identify a common

ancestor for all 10 current chromosomes in the population. As described later in

Section 6.2.3, the ancestral state of a human polymorphism can be discovered by

examining the corresponding site in non-human primates.

Coalescent simulations are based upon this assumption that all chromosomes are

ultimately derived from a single ancestral chromosome. The lineages of chromosomes

in the resulting sample are traced back until a common ancestor is found. From that

point on backwards, these chromosomes share the same genetic history. The genetic

history in Figure 3-1 can also be represented as the tree shown in Figure 3-2, which

only shows the relevant nodes rather than the entire population.

A mutation that occurs in an ancestral chromosome also appears in all descendent

chromosomes. After constructing the coalescent tree, mutations are placed on certain

ancestral chromosomes, indicating that an individual during that branch of genetic

history underwent a mutation. Since mutations only affect chromosomes that descend

from the individual in which the mutation first occurred, recent mutations tend to

have lower frequencies than older mutations (Figure 3-3).

The simulation then constructs the chromosomes using the ancestral trees and

mutations. The simulated data gives complete sequence information for the popula-

tion sample, where each mutated position is known, as are the identities of ancestral

alleles.
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Figure 3-1: Genetic history of a constant population size 10. The oldest
generation is at the top; the darkened nodes and lines represent the ancestors of the
current population (bottom row).
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Figure 3-2: A coalescent tree. The same population as in Figure 3-1, but showing
only the relationships among the chromosomes in the current generation.

3.2 Null model

The model most often used to generate simulated data produces data which differs

from empirical data in many important respects. The typical model, hereafter referred

to as the null model, includes the following parameters:

" constant population size Ne = 10,000

" constant mutation rate p = 2 * 10-8 muts/base/gen

" uniform recombination rate r =1 * 10-8 recs/base/gen

As seen in Figure 3-4, LD patterns produced by this model do not match empir-

ical data. The choice of constancy for the three parameters (Ne, p, r) is not based

on biological evidence (indeed, each is implausible), but is a computational conve-

nience that produces ease of modeling. The null model provides a surprisingly good

approximation for examining basic genetic observations, but in light of the increas-

ingly detailed human genetic data available today, we need to go beyond these simple

assumptions and build more realistic models.

24
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Figure 3-3: Ancient versus recent mutations. The figure on the left shows a
recent mutation producing a low frequency marker, while the figure on the right
shows an older mutation producing a higher frequency marker. The chromosomes in
group a have the ancestral allele; the chromosomes in group b have the new mutation.
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Figure 3-4: Empirical versus simulated data. Empirical data is from Gabriel
et al. [6], simulated data is generated under the null model and ascertained with a
TSC-like method described in Section 2.3.

3.3 Non-uniform recombination

Regional recombination rates (average rates over a few hundred kilobases) vary across

the genome, from less than 0.5 cM/Mb to more than 3 cM/Mb [15]. In addition,

Jeffreys et al. [11] and many other studies have shown evidence of recombination

hotspots in humans and other organisms [2, 13, 27, 32, 33], implying some regional

variation may be due to the variable distribution of these hotspots.

The ability to simulate these hotspots is key to obtaining an accurate picture of

the LD patterns in the genome, since hotspots tend to preserve LD in areas between

the hotspots. Without hotspots, the simulations produce data with a much shorter

extent of LD than is observed in empirical data [34].

3.4 Multiple populations

Simulating multiple populations allows us to compare differences between popula-

tions. One such measure is FST, a measure of the genetic distance between subpop-

ulations by comparing the allele frequencies for each marker. Here we use the Weir

26



and Cockerham formula [30].

Gabriel et al. [6] found that block boundaries are often preserved across popu-

lations. The ability to model multiple populations will allow us to simulate these

observations.

3.5 Haplotypes

A simulator that outputs haplotypes rather than the relationship between only two

markers has the advantage that patterns over several SNPs can be analyzed. Studies

have investigated the extent and causes of regions of limited haplotype diversity, or

haplotype blocks [3, 6, 12, 18, 21, 29, 34]. These regions often have only four or

five common haplotypes throughout the population, even when 10 or more SNPs are

examined. In this paper we use the haplotype block definition in Gabriel et al. [6],

which searches for series of SNPs that have high pairwise LD. For a review of this

definition, please refer to Appendix A.2.
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Chapter 4

Problem statement

4.1 The need for an enhanced simulator

As seen in Figure 3-4, the null model does not fit empirical data well for characteristics

such as LD. To draw accurate conclusions from simulated data, we need to be able

to create data which looks realistic.

Specifically, we would like to match the following characteristics:

Allele frequency

Allele frequency is the distribution of frequency of alleles at variable

sites.

LD patterns

As described in Section 2.1, LD is the measure of non-random asso-

ciation between two markers. We examine the relationship between

LD and physical distance.

Fraction of ancestral alleles

This is the probability that an allele of a given frequency is ancestral.

Genetic distance between subpopulations

As defined in Section 3.4, FST is a measure of genetic distance be-

tween subpopulations.

29



variable recombination multiple populations haplotypes

Hudson N Y Y
Schaffner Y Y N

Posada Y N Y

Table 4.1: Current simulators and available features The three simulators com-

pared are Hudson's make samples simulator[8], Schaffner's two-locus simulator[26],

and Posada's SNPsim program[22].

Length of haplotype blocks

For each population, we examine the average length of haplotype

blocks for three groups of blocks: all blocks, blocks longer than 20kb

and blocks longer than 10kb. As noted in Section 3.5, the definition

used in this paper is from Gabriel et al. [6].

Haplotype block genome coverage

After calculating the length of haplotype blocks, we are also inter-

ested in how much of the genome falls within blocks.

Of the capabilities described in Sections 3.3-3.5, Table 4.1 shows that of the three

coalescent simulators surveyed, none of them has all the desired features. The goal

of this thesis is to create a tool to fulfill that need.

4.2 Needed features

This section describes the needed features for the simulator.

4.2.1 Non-uniform recombination rate

We need the flexibility to model non-uniform recombination rates. The user should

have complete freedom to specify any recombination model.
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4.2.2 Support for multiple populations and population

events

The user should be able to specify a wide variety of population events involving one

or more populations. These events include:

Population size changes
Populations size changes will include both instantaneous and expo-
nential size changes.

Bottlenecks
A bottleneck represents a brief period with a very small population
size, or any event which produces a similar effect.

Expansions
An expansion is an exponential growth of a population, such as the
population growth following the agricultural revolution.

Admixtures
Admixtures occur when two populations mix and breed with each
other.

Splits
Splits occur when one part of a population leaves to form, or to join,
another population.

4.2.3 Haplotype output

The output should be simulated haplotypes, in order to examine relationships between

a sequence of SNPs, rather than just pairwise SNP comparisons. This allows us to

study characteristics such as haplotype blocks.

4.2.4 History log

After drawing conclusions from the simulated data, we can look at the various events

and correlate the characteristics of the haplotypes to the underlying historical events.

For example, we may be interested in determining the contribution of recombination
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events to haplotype block boundaries. We can generate our sequences, find the hap-

lotype blocks, and return to the history log to determine where the recombination

events occurred.

4.3 Engineering constraints

In addition we also need to observe the following constraints.

Programming in ANSI C Current software in population genetics is often written

in C. Because we are creating a tool that population geneticists will need to be able

to alter and add functions to, we need to use a commonly used language.

Modularity The program must be as modular as possible, both for ease of devel-

opment but also ease of customization by others. We may want to add features as

new datasets become available.

Ease of use Since we are providing the ability to use complex models, we need to

ensure that the input to the program is easily read by the user.

4.4 Advantages of a flexible simulator

The data generated by this simulator will better resemble empirical data. This flexi-

bility will let researchers tailor the simulated output to their relevant data sets. They

can then analyze available data in the context of more accurate simulations.

This simulator can also be used to examine theories of human migration. The out

of Africa theory has been shown to contribute to the reduced diversity in non-African

populations. One can estimate the likelihood of a proposed event by examining the

event's effects on the characteristics of the simulated sequence, and comparing those

characteristics to the same measures derived from empirical sequence.
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Chapter 5

Implementation of CoSi

The options when approaching this project were to modify an existing program by

adding necessary features, or to write a simulator from scratch. After investigating

existing programs, we decided to write an original program, in order to meet our

desired constraints specified in the last chapter.

Figure 5-1 shows the structure of the program, CoSi (Coalescent Simulator). The

simulator engine executes the simulation by manipulating the data representation

maintained by the demography manager, through Poisson and historical events. After

constructing the complete coalescent tree, the engine calls the mutation subroutine

to place mutations and output haplotypes.

5.1 Null model, no recombination

Initially we implemented a simple coalescent simulator and ensured that it met the-

oretical values for the time to the most recent common ancestor. The time to reduce

the population from n to n - 1 chromosomes is Ts,

4N
E [Tn] =~ n(n -1)

where N is the population size. For k chromosomes sampled from a population of

N diploid individuals, the time to coalesce to one ancestor has an expected mean of
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Figure 5-1: Structure of CoSi
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Figure 5-2: Distribution of coalescent times over 10 5 independent trials.

The expected distribution is given by

P(tjk, 0)
P(t, kj|)
P(k|9)

(OT) 2 e-T(1+)/2

1+0 1+0

t
2Ne 9 = ANy

where [p is the mutation rate and k is the number of samples.

Figure 5-2 shows the distribution of these values for 10' independent simulations

(null model, no recombination) against the expected distribution. This simulation,

and all described in this thesis, are for 100 randomly sampled chromosomes per pop-

ulation.
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Figure 5-3: Minor allele frequency distribution for 102 independent trials.

5.2 Uniform recombination

Uniform recombination completes the basic coalescent simulator. Recombinations,

like coalescences, are Poisson events with parameter A,

A = rl ni
iCP

where r is the recombination rate, I is the length of the chromosome, P is the set of

all populations, and ni is the number of nodes in population i.

Mutations are placed on the chromosome in an exponentially distributed manner.

The number of mutations for each segment unbroken by recombination is proportional

to the time in all the branches of the genetic tree for that segment.

The expected number of SNPs with frequency f is proportional to

1
fk

where k is the number of samples [25, p.26]. Figure 5-3 shows the graph of allele

frequency over 100 runs (null model, r = 1 * 10-8)
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5.3 Non-uniform recombination

In lieu of limiting the user to predefined recombination models, we allow complete

freedom by defining the recombination rate with a piecewise model specified by the

user in a text file. The total recombination rate is determined by integrating the rate

over the region, and the recombination events are distributed accordingly.

A more extensive look at non-uniform recombination rate will be given in Sec-

tion 6.1.

5.4 Population events: single populations

The events in the next two sections are described briefly, along with implementation

details when relevant.

5.4.1 Population size changes

Two types of population size changes were implemented. Populations can either

undergo an instantaneous size change, or can change their size exponentially over a

specified number of generations.

5.4.2 Bottlenecks

A bottleneck is a specific instance of population size change. Bottlenecks are events

where the population size is severely reduced for a short period. Many coalescences

occur during the bottleneck and as a result, many variations become fixed or are lost.

As described in Section 2.4.2, the out of Africa event was a major bottleneck event.

The inbreeding coefficient F defines the severity of the bottleneck. F is the prob-

ability that two randomly chosen chromosomes share a common ancestor during the

bottleneck. F can be calculated from the length of the bottleneck t and the size of

the population during the bottleneck N,

F =1- e .
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The value of F completely determines the effect of the bottleneck. In other words,

the effect of a bottleneck can be considered without the specific knowledge of t and

N, and can thus be considered an instantaneous event. To simulate this event, we set

the length t to one generation, and calculate the appropriate population size. Using

this size (which will be improbably small), we then calculate how many coalescences

occur in that generation.

5.5 Population events: multiple populations

Each population is a list of chromosomes we are currently simulating. Coalescences

can only happen within a population, so to represent a migration we move a chromo-

some from one population to another (Figure 5-4).

A migration rate can be specified for every pair of populations {i, j}, which is

the probability per chromosome that a chromosome migrates from i to j in each

generation. This is implemented as a Poisson event, along with coalescence and

recombination.

Larger scale moves between populations are implemented as user-specified events.

A split occurs when a population breaks into two separate populations; an admixture

occurs when two populations combine. Because the coalescent works in the reverse

direction, a split is represented by combining two populations. An admixture is repre-

sented by creating a new population, with a certain probability that each chromosome

in the original population will join the new population.
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Figure 5-4: Multiple populations and migration. During a migration event (in
the forward direction), one chromosome moves from population B to population A
(dotted arrow). The simulator represents this event by moving a chromosome from
population A to population B (solid arrow) and allowing it to coalesce (and recombine,
not shown here) with any of the chromosomes in population B.
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Chapter 6

Using CoSi

This section describes experiments using CoSi on complex models. First we examine

models of recombination, then we simulate a comprehensive population model.

All simulated data shown in this section is ascertained in a TSC-like method

described in Section 3.5.

6.1 Developing a recombination model

We use CoSi to build a model of non-uniform recombination. We start with uniform

recombination, which we will refer to as HO for recombination, and build a model

using nested hypotheses. Because we are using a constant population, we compare

our results with empirical African-American data, which appears to fit the constant

population model. All simulations are 100kb in length, with 100 independent trials.

For the constant recombination rate in HO we use the standard value r 1 * 10-.

We also use the mean recombination rate for hypothesis H1 described below, 1.6*10-',

denoted as model H 6 . LD patterns for HO are shown in Figure 6-1 and block statistics

are shown in Table 6.1 (along are the block statistics for the next two models).

The first variation that we explore, H1 , is regional variation across the genome.

We draw our rates from a distribution based on the Gabriel et al. dataset [6]. Each

of these segments has a uniform recombination rate. As seen in Figure 6-2, regional

variation creates only a slight increase in LD.
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Figure 6-1: LD versus physical distance for uniform recombination, HO

Average block size (% Genome coverage)
all blocks > 20 kb > 10 kb

Ho 5.9 (84.8) 23.9 (5.37) 15.2 (23.5)
H01.6 1.9 (29.6) - 12.2 (1.6)
H1  2.2 (31.3) 22.4 (0.7) 13.2 (5.0)
H2  10.5 (70.8) 33.6 (34.4) 21.9 (57.4)

Table 6.1: Block statistics for HO,H 1 , and H 2 recombination models. Gabriel et al

observed block sizes of 9kb in African populations.
. [6]

Next, we vary the local recombination rate by adding hotspots (H 2), in addition to

using the distribution of H 1. We add hotspots with an exponential distribution with

mean spacing 9kb, and distribute the recombination probability as a 10% background

rate and a 90% hotspot rate. LD patterns and block statistics are shown in Figure 6-3.

6.2 Comprehensive model

The model shown in Figure 6-4 is the comprehensive model developed by S.F. Schaff-

ner and used in this section. This model is used with both the HO (r = 1x10- 8)

and H2 recombination model described in Section 5.1. The empirical data referred to

in the next section are from Gabriel et al. [6], which surveyed 51 autosomal regions
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Figure 6-2: LD patterns for regional uniform recombination rates chosen from a
distribution, H,
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Figure 6-3: LD patterns for hotspot recombination model H2
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spanning 13 Mb.

6.2.1 Allele frequency

Figures 6-5, 6-6, and 6-7 show the allele frequency distribution for the European,

Asian, and African-American populations, against the empirical values. The allele

frequencies are for all markers found across all populations. The African-American

population has low monomorphic alleles as expected, since the bottlenecks in non-

African populations tend to fixate alleles, resulting in more monomorphisms.

6.2.2 LD versus physical distance

The LD graphs referred to in this section use only alleles with minor allele frequency

> 20%, for both empirical and simulated data. Figures 6-8 and 6-9 show the LD

patterns for the model with constant recombination. The extent of LD is higher than

the null model (Figure 3-4) but does not show as much high LD as the empirical data.

Figures 6-10 and 6-11 show the patterns for the complete model. LD levels at shorter

distances are elevated, possibly due to the lack of gene conversion, but the LD values

at distances greater than 40kb appear to approximate the empirical data well.

6.2.3 Fraction of ancestral chromosomes

For empirical data, the probability that an allele of a given frequency is ancestral,

P(ancestral), is found by comparing human sequences to chimpanzee sequences. For

a constant size population, the probability that an allele represents the ancestral state

is equal to its frequency. The African population history is the closest to a constant

population, and P(ancestral) appears to have the expected linear relationship. For

European and Asian populations, however, P(ancestral) deviates from the linear

value (Figure 6-12). This deviation indicates a bottleneck in the history of these

populations.

As seen in Figure 6-13, the CoSi model produces patterns in the African and

non-African populations that are similar to the empirical observations.
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Figure 6-4: Population model used in Section 6.2. The gray boxes indicate the
time of the event, where the number indicates how many generations ago the event
occurred. The migration rates are given in the number of migrations per chromosome
per generation.
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Figure 6-5: Allele frequency of simulated European population. The gray

bars represent the allele frequencies observed in empirical data. Error bars represent

standard deviation.
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Figure 6-6: Allele frequency of simulated Asian population. The gray bars rep-

resent the allele frequencies observed in empirical data. Error bars represent standard

deviation.
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Figure 6-8: LD for African populations with uniform recombination. In this
and following figures and tables, AA and Sim:AA refer to the empirical and simulated
African-American datasets, respectively.
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Figure 6-10: LD for African populations using the H 2 model of recombination.
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Figure 6-11: LD for European populations using the H2 model of recombination.
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Figure 6-12: Fraction of ancestral alleles in empirical data. The dotted line
indicates the linear relationship.
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Figure 6-13: Fraction of ancestral alleles in simulated data.
graph to Figure 6-12, which shows the corresponding empirical data.

Compare this

Sim. Emp.
African, European 0.168 0.157
African, AA 0.010 0.016
African, Asian 0.158 0.200
European, AA 0.116 0.110
European, Asian 0.102 0.139
AA, Asian 0.109 0.162

Table 6.2: FST values for simulated and empirical data

6.2.4 Genetic distance between subpopulations

Table 6.2 shows the FST values for each pair of populations. The non-Asian compar-

isons represent the empirical data well, but the Asian values are low. This will later

be examined by further altering the population parameters.

6.2.5 Haplotype blocks and block coverage

See Figure 6.3 for haplotype block statistics for simulated populations. Gabriel et al.

found average block lengths of 9kb in the African samples and 18kb in the European

and Asian samples, with a wide range of sizes (< 1kb to 174kb) [6}. As seen in

Figure 6.3, the average block size for the simulated African populations is close to the
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A Uniform recombination
Average block size (% Genome coverage)
All blocks > 20 kb > 10 kb

Sim:African 2.5 (15.8) - 11.8 (1.9)
Sim:AA 2.4 (15.8) - 12.8 (2.2)
Sim:European 6.0 (28.9) 25.1 (5.0) 16.0 (16.0)
Sim:Asian 4.2 (24.9) 22.1 (1.1) 14.1 (8.7)

B Recombination hotspot model
Average block size (% Genome coverage)
All blocks > 20 kb > 10 kb

Sim:African 9.6 (65.5) 32.2 (32.5) 21.7 (51.9)
Sim:AA 9.5 (65.7) 31.9 (32.8) 22.2 (51.3)
Sim:European 16.0 (77.0) 41.1 (55.1) 30.8 (67.5)
Sim:Asian 14.0 (74.8) 35.8 (48.3) 26.2 (64.8)

Table 6.3: Haplotype block statistics for complex population model, with
(A) and without (B) recombination hotspots. Gabriel et al. observed blocks of 9kb
and 18kb for African and non-African populations respectively.

desired average. Non-African populations show a lower than desired block average,

which will be investigated in future work. These figures also indicate that a hotspot

recombination model is essential for reproducing the desired block lengths.
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Chapter 7

Conclusions

This paper has described CoSi, a new coalescent simulator with the flexibility to

model SNP data that resembles empirical data.

7.1 Goals met

This section reiterates the requirements set in Chapter 4, and how CoSi satisfies these

requirements.

Development of CoSi A simulator, CoSi, which provides much-needed flexibility

was developed as described in Chapter 5. CoSi allows for user-specified non-uniform

recombination, multiple populations, and a variety of population events.

Correctness of CoSi CoSi implements the basic coalescent process correctly. Re-

sults using simple models match theoretical results, as shown in Sections 5.1-5.3.

Desired features available CoSi is capable of simulating a variety of popula-

tion events for one or more populations, and can use any user-defined recombination

model.

Simulated data resembles empirical data As seen in Section 6.4, CoSi can

be used to generate data which closely resembles empirical data. This will allow
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researchers to draw more accurate conclusions about the underlying causes of observed

genomic patterns.

Software engineering CoSi is implemented in ANSI C. The program is modular,

as evidenced by the design in Section 5.1. Crucial elements are abstracted from the

simulator to allow for greater flexibility, such as the recombination model described

in Section 6.1. The parameter file is clear and easily read (Appendix B.1).

7.2 Uses and extensions of CoSi

As seen in Section 6.4, CoSi can be used to simulate complex population models. The

data have characteristics which are also exhibited by empirical data. This thesis used

a model developed to match a specific dataset, but CoSi could be used to model any

proposed scenario.

In Section 6.1, we use CoSi to compare various recombination models. Other

models could also be evaluated, such as the "warm and cool zones" proposed by

Zhang et al. [34]. The advantage of the user-defined recombination model used in

CoSi is that it offers complete flexibility to the researcher.

CoSi can easily be modified to include other components such as gene conver-

sion [1], selection [9, 10, 19], or double mutations (for example, to simulate mitochon-

dria).

The ability to generate realistic simulation data with CoSi provides researchers

with the unprecedented opportunity to use simulations in a reliable way. Studies will

be able to look at the entire model at once, rather than simulating each component

separately. As genomics continues to expand into larger scale studies, simulations will

become indispensable for proposing new studies, and for analyzing the underlying

forces that shape our genetic information.
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Appendix A

Additional background information

A.1 Linkage disequilibrium

Linkage disequilibrium (LD) is the measure of allelic association between two markers,

and is often measured by r2 and D'. Both r 2 and D' are related to a quantity D which

measures the difference between expected and observed haplotypes. For two alleles

with values A/a and B/b, these values are defined as follows:

D = fAB - fAfB

f 2 D 2
A fa B fa

D'= D|
Dmax

,Dmax ={ mirt(fA f, fafB), D > 1

min(fA fB, fafb), D < 1

where fA is the frequency of allele A, fa is the frequency of allele a (equal to 1 - fA),

and so forth. Note that D' is always between 0 and 1.
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A.2 Finding haplotype blocks

Gabriel et. al [6] describes a block definition that uses a confidence limit on D'. Since

D' gives high values to low frequency SNPs, the limit is calculated by determining

the probability that a given D' could have produced the observed data, over all values

of D', and examining the upper and lower 5% bounds.

Based on their confidence limits, each pair of markers is classified as a pair in strong

LD, a pair with strong evidence of recombination, or an uninformative pair. Blocks

are defined as continuous stretched of segments where at least 95% of the informative

pairs exhibit strong LD. The specific parameters were determined empirically.
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Appendix B

CoSi inputs

Inputs to CoSi are shown in this section.

B.1 Parameter file

This is the parameter file used to generate the simulations in Section 6.2. Comparison

with Figure 6-4 should be straightforward. Keep in mind that the simulator works

backwards. The following section explains the recombination file.

# sample file

# comments have #s in front of them
# newlines don't matter.

# sets the length of the segment, in base pairs.
length 200000

# mu, here it is 2e-8
mutation-rate 0.00000002

# recomb file
recomb-file model.out

# population info

# for each population, include a line:
# pop-define pop-index pop-label

pop-define 1 european
pop-define 3 african-american
pop-define 4 asian

pop-define 5 african
pop-define 6 afr2
pop-define 7 eurafr

#init sample pops
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# for each sample set, include

# pop-size pop-label pop-size
# sample-size pop-label sample-size

#european

pop-size 1 100000

sample-size 1 100

#african american

pop-size 3 100000

sample-size 3 100

#asian

pop-size 4 100000

sample-size 4 100

#african

pop-size 5 100000

sample-size 5 100

# FORMAT OF POPULATION EVENTS
# pop-event admix "label" from-pop-index to-pop-index gen to-pop-size .moved

# pop-event split "label" origin-pop-index new-pop-index gen

# pop-event bottleneck "label" pop-index gen coeff

# pop-event migration-rate "label" from-pop-index to-pop-index gen rate

# pop-event change-size "label" pop-index gen new-size

# pop-event exp-change-size "label" pop-index start-gen end-gen startsize endsize

# Comprehensive population model

# Set migration rates

pop-event migration-rate "afr->eur migration" 5 1 0 .00002

pop-event migration-rate "as->eur migration" 4 1 0 .00015

# Create African-American population
pop-event admix "african american pop" 3 7 5 100000 .2

pop-event split "european to aa" 1 7 6

pop-event split "african to aa" 5 3 7

# Agricultural expansions
pop-event change-size "agriculture - african" 5 200 24000

pop-event change-size "agriculture - european" 1 350 7500

pop-event change-size "agriculture - asian" 4 400 7500

# Mixing of African2 and European populations, followed

# immediately by Asian and European split and bottlenecks.
# Eliminate migration rate, since Asian population ceases

# to exist.

pop-event migration-rate "as->eur migration" 4 1 1997 0
pop-event bottleneck "asian bottleneck" 4 1998 .04

pop-event bottleneck "european bottleneck" 1 1999 .06

pop-event split "asian and european split" 1 4 2000
pop-event admix "african2 european admix" 1 6 2001 16000 .04

# Out of Africa event

pop-event migration-rate "afr->eur migration" 5 1 3498 0

pop-event bottleneck "OoA bottleneck" 1 3499 .075

pop-event split "out of Africa" 5 1 3500

# African expansion
pop-event change-size "african pop size" 5 5000 16000

# African2 population split
pop-event split "african split" 5 6 12000
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B.2 Recombination input file

The format of the recombination file is a piecewise definition of the recombination

model:

[Position (bp)] [recombination rate (recs/bp/gen)]

The following is a recombination file from a model with hotspots.

1 1.3306e-09
79444 8.50665e-05

79445 1.3306e-09

80251 7.76718e-05

80252 1.3306e-09

81680 0.00111013
81681 1.3306e-09

112343 1.9749e-09

112344 1.3306e-09

113767 0.000157409

113768 1.3306e-09

116201 1.42287e-05

116202 1.3306e-09

130617 2.90585e-07

130618 1.3306e-09

130792 0.000124841

130793 1.3306e-09

131085 1.10916e-05

131086 1.3306e-09

131213 0.00096577

131214 1.3306e-09

133475 0.000215526

133476 1.3306e-09

134662 0.00140553

134663 1.3306e-09

137603 0.000639362

137604 1.3306e-09

140671 8.91719e-06

140672 1.3306e-09

167331 3.19626e-05

167332 1.3306e-09
169877 0.00056655

169878 1.3306e-09

173184 2.73664e-06
173185 1.3306e-09
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