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Chapter 1

Introduction

The Self-Certifying File System (SFS) [6] is a file system with a high level of security

built over NFS. SFS has three goals: security, a global namespace, and decentralized

control. It runs on a wide variety of UNIX platforms but previously was unavailable

on Windows.

An SFS client for Windows is desirable because of the widespread use of the

Microsoft Windows platform. With an SFS client a Windows machine could obtain

files securely and remotely from UNIX SFS servers.

One of the key features of its design is that SFS runs in user space and does not

depend much on the kernel. In this thesis we show how this user-level implementation

can be ported to Windows.

One of the most important goals of this project is to keep the code as similar to

the original as possible. SFSNT[9], a previous implementation of SFS for Windows

became unusable because it was difficult to maintain and after a while did not work

with the newest versions of SFS. By staying close to the UNIX code any updates to

the UNIX code can be folded back into the Windows code easily.

1.1 SFS Architecture

SFS consists of a number of programs on the client and server side. This thesis only

concerns with porting the SFS client and its supporting libraries. While the SFS

8
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Figure 1-1: SFS System Overview

server compiled, it was not tested and is left as future work.

SFS is written in C++ with a strong use of templates to allow for asynchronous

calls and simple function currying. SFS communicates between modules using SUN

RPC. SFS is implemented as a loopback NFS server. This means that the SFS client

runs on the local machine and pretends to be an NFS server. It responds to NFS

RPC calls by converting these calls into SFS RPC calls and sending them out over

the network. This process takes the file system development out of the kernel since

the loopback NFS server can run in user space.

The client is implemented as a suite of four programs (See Figure 1-1). The first

is an NFS Mounter, "nfsmounter." The nfsmounter handles the creation of NFS

mount points for loopback servers in directories of the local file system. It runs as

a separate process to help clean up the mess that loopback NFS servers may leave

behind should they break. In an event of system failure the nfsmounter responds to all

existing messages with errors and unmounts the file systems. This allows developers

to not have to reboot their machines after a file system breaks.

9



The second part is the automounter, "sfscd". The automounter mounts SFS file

systems as they are referenced. This means that the user can simply change to a

directory and they will be accessing files on a different server. The automounter runs

as a loopback NFS server. NFS automounters are challenging to develop because

if a LOOKUP RPC is unanswered NFS clients will lock any access to the rest of

the directory. To correct this situation, the automounter never delays a LOOKUP

RPC but instead redirects you to a symbolic link where it will delay a response to a

READLINK RPC until the file system has been mounted.

The third part is the actual SFS client, "sfsrwcd". The client is also implemented

as a NFS loopback server. To avoid the pitfalls of NFS loopback servers, this server is

not allowed to block and runs asynchronously using an asynchronous library written

specifically for SFS.

The fourth part is a user agent that holds credentials needed by the client, "sfs-

agent". The agents runs as a separate process to allow users to write their own agents

if they want a different authentication scheme or do not trust a particular agent. In

this way the authentication scheme is separate from the actual file access. When the

SFS client needs to add authorization to a message it sends the message to the agent

and the agent will sign the message. In this way the SFS client never has access to

the user's private keys.

In UNIX one process can pass another process a file descriptor across UNIX Do-

main Sockets using the sendmsg system call. This allows one process to open a

connection and then hand it off to another process to finish it. This is especially

useful with servers; The main process receives a new connection and hands it off to

a worker process. The main process can then keep listening for new connections.

SFS uses this feature in many places. The nfsmounter keeps a backup copy of the

connection to the client in case the client dies, and the client gets a file descriptor

from the agent so that they can communicate. An SFS program, suidconnect, obtains

a file descriptor securely and sends it back to you using this process.

The sendmsg system call, used to pass file descriptors, works as follows. A sender

process calls sendmsg passing it some data, and a file descriptor. The receiver calls

10



recvmsg and gets the data and the file descriptor. Passing file descriptors only works

over UNIX Domain Sockets.

1.2 Contributions

This thesis contributes a Windows port of SFS. The porting process was simplified

by using Cygwin. The approach taken to port SFS can be used to port other software

projects to Windows.

The Windows SFS client is fully interoperable with UNIX SFS servers. It supports

encryption and authentication of clients and servers just like its UNIX counterpart.

It supports symbolic links to files and directories stored on either the same server as

the link or on a different server.

We contribute a system to automount SFS servers in Cygwin through a mountd

daemon that allows a simple shell script to perform the mounting and unmounting

of loopback NFS servers. We also contribute a PCNFSD server for loopback NFS

servers that uses Cygwin UIDs. The translation of symlinks to Windows Shortcuts

can also prove useful in other UNIX software packages.

The thesis also contributes to the Cygwin project. A system to pass file descriptors

between processes, previously unavailable in Cygwin, was designed and implemented

and behaves like its UNIX counterpart.

1.3 Organization

Since this research is from an already produced system the line between Design and

Implementation is unclear. To that effect Chapter 2 describes several approaches to

porting SFS to Windows and reasons why they were rejected. Chapter 3 describes the

approach that was chosen, how the approach was implemented and what problems

surfaced during the process. Chapter 4 evaluates the performance of the SFS client

on Windows. Finally, future work is considered in Chapter 5.
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Chapter 2

Design Alternatives

There are many choices to be made when porting an application from UNIX to

Windows. In some situations, the best solution is obvious, in others they are just

decisions that we must live with. Careful analysis will provide the most informed

decision. The two important decisions to make are how to implement the file system,

and what programming environment to select. All the approaches in this section were

discarded because they required too many code changes or were incompatible with

the current SFS system.

2.1 File Systems on Windows

Windows does not natively support NFS. This shortcoming is unfortunate because

the SFS client runs as an NFS server that the NFS client connects to (See Figure

1.1). This means that some bridge will need to exist to link Windows with SFS.

2.1.1 CIFS Protocol

Microsoft Windows natively supports the Common Internet File System (CIFS) [4].

Unfortunately, CIFS is not really all that common as only Windows uses it. To make

matters worse, Microsoft's only Internet Draft of the specification expired 3 years

ago. The Samba project [13] has implemented CIFS in UNIX by reverse engineering
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Figure 2-1: CIFS Loopback Server File System Architecture

the Windows version.

CIFS is a file system that preserves state; different from NFS, which is state-

less. CIFS also depends on Netbios, a decentralized naming protocol, for its naming

scheme. It does not rely on DNS.

Many different projects use loopback CIFS servers (Figure 2-1) to implement file

systems. With the newest versions of CIFS (in Windows 2000 and later), Windows

lost the ability to run multiple CIFS servers on one machine. Microsoft's solution is

to add a setting to enable a CIFS Device (a one line change in the registry) or to run

the CIFS server on a Loopback Adapter (a virtual device). Unfortunately, adding the

setting to enable the CIFS Device causes Group Policy Object access to break and

access to Windows Domains will fail.

To use a Loopback Adapter you must first install the Device Driver. The CIFS

server then needs to be modified to bind itself to the correct adapter, and the hosts

file must be modified so that the CIFS client can find the correct address.

One idea is to create a loopback CIFS server that translates CIFS calls into NFS

calls. Unfortunately this solution would cause all file system calls to go through two

programs, the CIFS loopback server and the NFS loopback server, requiring twice

the number of context switches.

OpenAFS[12] is a "free" version of AFS that IBM released. It works as a Loopback

13



CIFS server and is used daily by many individuals around the world.

Work done at MIT by Information Systems [8] provided a solution to the Group

Policy problem by using a Loopback Adapter. It detects if the adapter is installed,

binds to the correct address, and changes the hosts file appropriately. This version

has been used by MIT for a few years now.

We considered using the CIFS server code that AFS uses and write a file system

to bridge to NFS. Unfortunately, not only did extracting the CIFS code prove to be

difficult, since AFS RPCs are very different from NFS RPCs it made the conversion

of these laborious.

Danilo Almeida implemented a Framework for Implementing File Systems for

Windows NT[1]. This is a loopback CIFS server that runs on Windows machines. Its

goal was to allow developers to create user mode File Systems on Windows, akin to

[7]. It allows for stackable file systems, in which you add one file system on top of

another. SFSNT was built using FIFS.

One could use FIFS to bridge the gap between CIFS and NFS. Unfortunately

FIFS is encumbered by some Microsoft proprietary header files and has not been

tested with the newest versions of Windows.

2.1.2 Kernel Mode Driver

Another way to implement a file system in Windows is to go down to the kernel.

Microsoft sells an Installable File System Kit (IFS Kit) to develop file systems for

Windows. For about $1,000, Microsoft will give you a header file, ntifs.h, and two

sample drivers.

Kernel driver development in Windows is difficult because of various reasons.

The driver cannot access traditional operating system services available to user mode

programs and must comply with kernel paging restrictions. Additionally, the driver

is difficult to debug because it runs in a single address space with other drivers and

must be debugged using special debuggers. Also, while traditional drivers usually

only interact with the I/O manager, a file system driver must also interact with the

cache manager and the virtual memory manager (See figure 2-2)

14
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Figure 2-2: Microsoft IFS Architecture

Bo Branten has reverse engineered the IFS Kit [2] and has a GPL version of the

ntifs.h header file on his website. Several people have taken the challenge to create file

systems for Windows using this free software. Unfortunately all the file systems are

for physical devices and no attempt has been made to make any network file systems.

Open System Resources (OSR) [14] created a file system Development Toolkit

to make it easier for developers to create file systems. The Kit is a library that

exports an interface very similar to the VFS interface on UNIX and comes with full

documentation and support. The kit costs $95,000 for commercial use but it appears

they have a more inexpensive version for research institutes. Coda [15], a file system

developed at CMU, has a Windows port built using the FSDK. Unfortunately, we

did not find out about the less expensive version until late into the project.

The Arla project is a project to create an Open Source implementation of AFS.

Using the IFS Kit, they have ported their XFS file system to Windows NT [11]. We

were disappointed to find out that currently this port of XFS only supports reading

and does not support writing.

15



// primary template
template <class T, class A> class sample {

// stuff

// partial specialization
template <class A> class sample<bool, A> {

// stuff

Figure 2-3: Partial Specialization of Templates

2.2 Programming Environment

The question of which Programming Environment to use is very important. SFS uses

automake and libtool for its build system; it would save a lot of time if this could

be preserved. Also the compiler must be selected correctly because the asynchronous

library uses many templates, which some compilers do not fully understand.

2.2.1 Microsoft Visual Studio

Microsoft Visual Studio is an Integrated Development Environment for Windows. It

provides the developer a nice user interface and organizes development into projects

and workspaces. Visual Studio also has the ability to process makefiles. Unfortunately

Microsoft's makefiles are different from GNU's so they are not compatible.

Another big problem is that Template support in the Microsoft compiler is not up

to date. Microsoft's compiler does not support Partial Specialization of Templates

(See Figure 2-3). This is vital for the asynchronous library's pseudo function currying

system.

2.2.2 Intel Compiler

Intel makes a C++ compiler for Windows that supports Partial Specialization of

Templates and plugs into the Visual Studio framework. Unfortunately, this doesn't

give us the support for automake and libtool.

16



Chapter 3

Design and Implementation

The final design can be seen in figure 3-1. The NFS client lives inside the kernel

and communicates with the automounter and the SFS client using UDP sockets.

The automounter communicates with the nfsmounter to mount file systems. The

nfsmounter mounts file systems in the NFS client and in the Cygwin mount table.

3.1 Cygwin

Cygwin was chosen as the Programming Environment. Cygwin is a library and a

set of tools that contain most of the system calls that UNIX supplies. Cygwin was

created by Cygnus Solutions, is Open Source, and is now supported by RedHat.

Cygwin allows the programmer to pretend he is developing on a UNIX system. Many

sfsrwcd fcmon
Application user-sesel automuter nfsmounter moungmo nt al

system

uernUP U mount submount

NFS Client Drive apping

Figure 3-1: SFS for Windows Design
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programs have been ported to Windows using Cygwin including Apache, OpenSSH

and XFree86.

Cygwin is a good choice because it supports automake, autoconf, and libtool. The

code can be kept the same because Cygwin supports many of the UNIX system calls

that SFS uses. All changes made to the original SFS code are marked with #ifdef

__CYGWIN32__ so builds on UNIX will ignore them.

After placing ifdef's around missing functions and ignoring the nfsmounter, which

is system dependent, SFS compiled and passed 18 of the 22 tests in make check. In

fact Cygwin was so good at porting that all we had to do was find the problems and

fix them. Most of the design was done as a reaction to what did not work in Cygwin.

We followed the motto of "If it ain't broke, don't fix it."

3.1.1 Fork and Handle Problems

Windows does not have a function like UNIX's fork, which creates a new process

that is an exact copy of the calling process. Windows only knows how to start a new

process but not how to start a duplicate one. Cygwin works around this problem

by using a complicated algorithm to start a new process and then copy all the data

and duplicate all the handles. It was discovered in the development process for SFS

that when a process forks it leaves multiple copies of the handles in the child process.

This was problematic because processes would not get an EOF when the handle was

closed because there were duplicates that remained opened. The solution is to store

the values of the handles in another variable and force a close after the fork.

Fortunately, a solution to this problem was simple thanks to the asynchronous

library. The most common use of fork in the library is before a new process is

spawned. To spawn a new process the SFS library calls fork followed by exec to

spawn the new process. The spawn function will also call a callback procedure before

the exec call but after the fork. This callback procedure can close the extra handles.

We are currently working with the Cygwin developers to find the real cause of the

problem in order to find an actual solution.

18



3.1.2 Namespace Problems

SFS uses the colon in a self-certifying pathname to separate the hostname from the

hostid. It was unfortunate to discover that Windows does not allow a colon as a

character in a filename because it is used to describe drive letters (E:) or special

devices (comi:). In Windows the % character was used instead of the colon. The

symlink fixes describe in Section 3.2.3 fix all the symlinks so that they use % instead

of colons. The SFS team is currently discussing a new format for self-certifying

pathnames.

3.1.3 Select Problems

The select call in Windows is incomplete. It selects only on sockets and not on any

other type of handle. Cygwin implemented a select call for file descriptors by spawning

a new thread for each different type of descriptor and having the main thread wait for

the other threads to return. This solution is computationally expensive. While a call

to select in Windows that should return immediately takes 16 milliseconds the same

call to Cygwin select takes 940 milliseconds to run. As a result, SFS is unbearably

slow. We solved this problem by calling the Windows select on socket parameters

instead. This solution lowered the above-mentioned runtime to 20 milliseconds and

made SFS twice as fast.

3.2 NFS Client

We chose to use a commercial NFS client to solve the NFS access problem. This

choice means, unfortunately, that to run SFS the user will have to purchase an NFS

client. A dependable NFS client is less likely to halt the machine and will also give

us the fastest solution to the problem. We do hope that SFS will not be tied for long

to the commercial NFS client and that someone will develop a free NFS client for

Windows.

We chose Hummingbird's NFS Maestro Client [5] because it supports NFS Ver-
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sion 3, supports mounting same servers using different ports, and MIT Information

Systems has technical contacts with them.

3.2.1 Mounting NFS Filesystems

In UNIX, programs mount NFS file systems through the mount system call by passing

this function the port number and IP address of the NFS server, along with the NFS

file handle of the directory being mounted. Users generally mount NFS file systems

using a command line program mount, which converts a hostname and directory into

the info needed by the system and performs the mount system call. It obtains the

port from a portmapper running on the NFS server and the file handle from a mountd

daemon also running on the server. SFS calls the mount system call directly to mount

loopback NFS servers. This direct mount interface is not available in Windows.

To mount directory 'D' on server 'S' to a drive letter, the Windows NFS client

first contacts the mountd server running on S, asking to get the file handle for D.

After the client gets the file handle it calls the portmapper running on S asking for

the port for NFS. The NFS client now has all the hostname, the file handle, and the

port, and can do the kernel magic necessary. Since we do not have the source code

to the NFS client we don't know what this magic is so we must work around it.

The nfsmounter, part of the SFS client, needed to be modified to support mount-

ing using a directory name, instead of a port and file handle. Since these two val-

ues are obtained from the portmapper and the mountd daemon respectively, these

two daemons must be running in the system. The mountd daemon runs inside the

nfsmounter so that it can easily obtain the file handles of the directories that the

nfsmounter wants to mount. The portmapper however runs as a separate process

and is not part of the SFS client.

The different SFS clients run on different ports and the portmapper must be

updated to reflect that. Therefore before returning a file handle for a given directory

the mountd daemon calls into the portmapper to change the NFS port to the correct

value. (Steps 3-5 in Figure 3-2) When the NFS client calls into the portmapper it

gets the correct value for the port. This process allows the NFS client to mount /sfs

20
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nfsmounter 2

mountd 3

NFS Client
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5

portmapper

Figure 3-2: Mount Process

which is on one port, and mount /sfs/foo which is on another port. This technique

could also be useful on UNIX variants that do not have a mount system call.

3.2.2 Cygwin Submounts

Windows uses drive letters to refer to file systems. While UNIX has one root directory,

'/', Windows has multiple drive letters. To solve this problem Cygwin supports

the idea of submounts. The Cygwin shell allows the user to create submounts that

convert drive letters into directories (i.e., map drive E: to /cdrom). Cygwin also

allows submounts on subdirectories. Therefore we can mount E: to /cdrom and F:

to /cdrom/drive2, and when we access /cdrom/drive2 it will send us to F: and not

to the directory drive2 on E:. Unfortunately Cygwin submounts exist only in the

Cygwin world and outside of Cygwin, for example in Windows Explorer, going into

E:/drive2 may take you to an empty directory or give you an error if E:/drve2 does

not exist.

We modified the nfsmounter to create submounts in Cygwin to the drive letters
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that correspond to the correct file system. In this way when the Cygwin user accesses

/sfs Cygwin sends him to the correct drive letter. Unfortunately outside of Cygwin

it will not work this way, and the user will have to deal with drive letters.

Our modified mount process is shown in Figure 3-2. When the nfsmounter receives

the NFSMOUNTERMOUNT call a long process begins. First it adds the file handle and

the port to a list of existing mounts (Step 1), then it tells the NFS client to map

the directory to a drive letter using the "nfs link" command (Step 2), finally it calls

Cygwin's mount command to map the POSIX path (i.e. /sfs) to that drive letter

(Step 6).

Much to our chagrin, it was discovered that changing the port in the portmapper

was not enough to convince the NFS client to connect to another port as was proposed.

Fortunately adding a parameter for the port to the "nfs link" command caused the

NFS client to mount the file system to the correct port.

A simple shell script does the mounting. The script calls the NFS client mount

command "nfs link", and then calls Cygwin's mount command with the result of the

above. To unmount it does the opposite. It calls umount then "nfs unlink." The

shell scripts can be easily modified to support other NFS clients for Windows.

3.2.3 Symbolic links

Because self-certifying pathnames can be very long and hard to remember SFS uses

symbolic links. For example, when a user authenticates to a remote server using an

agent the agent places a symbolic link in the user's /sfs directory that points to the

correct self-certifying pathname. This approach allows the user to follow the symlink

to get to the right location and not have to remember a long self-certifying pathname.

Also an SFS server can have symlinks to other SFS servers so that the users do not

have to remember a long name.

Because Windows does not understand the concept of symlinks, Hummingbird's

NFS client follows all symlinks when it first looks up a directory. This approach has

a consequence that when you change into a directory the client gets the directory

listing and follows all the symlinks until the end. Any symlinks that do not have an
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end, either because they loop or their destination is not found, are removed from the

listing.

Any symlinks to /sfs/foo are completely undefined since /sfs/foo is a Cygwin

submount pointing to another drive letter, the NFS client runs outside of Cygwin and

Cygwin submounts are not visible outside of Cygwin. In order to fix this problem the

NFS client needs to defer the symlink resolution to Cygwin.

In Cygwin, symlinks are implemented as Windows Shortcuts. Cygwin has special

handlers that detect shortcuts and make sure that they look like symlinks to the

Cygwin user. Shortcuts are special Read-Only files that have a .lnk extension and

special data naming the destination. When you try to access a file in Cygwin, Cygwin

will first try to lookup the file and if that fails it will lookup the file with the .ink

extension. If it finds the file and its format is correct, it will do a lookup on the

destination of the link. Currently Cygwin will only iterate through 10 links so that

recursive links won't freeze your system.

We modified SFS to replace symlinks with shortcuts in the automounter. The /sfs

virtual directory is created using objects called afsnodes. One of these nodes is called

a delaypt because it delays the READLINK call. This node was replaced by a different

node that serves a binary file with special data that says where the destination is.

The automounter was changed as follows. When the automounter receives a

LOOKUP RPC in the /sfs directory that corresponds to a self-certifying pathname,

foo, it creates a shortcut with foo plus .Ink that points to foo. The NFS client will

then do a lookup on foo plus .Ink because Cygwin requests it. Once Cygwin sees

that a file exists it reads the contents of the file and tries to follow it. Following it

causes a LOOKUP RPC in the /sfs directory pointing to foo and the process repeats

itself. While Cygwin and the NFS client loop, the automounter actually mounts the

remote file system under /sfs. Cygwin always checks its mount table before doing

a lookup and once the automounter mounts the file system and modifies the mount

table, Cygwin sees the submount for foo and redirects the request to the correct drive

letter.

Unfortunately using this method does not convey any error message to the user.
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The only error message is "Too many symbolic links" which happens because the

above loop was repeated more than ten times and Cygwin assumes that it's a recursive

symbolic link. In UNIX you may get "Permission denied" or "Connection timed out,"

which is much more constructive.

The SFS client was also modified to make sure that all files that were symlinks

received the .lnk extension and the result of READ RPC's on them pointed to the

correct directory. This change was easy to implement because SFS has a notion of

stackable NFS manipulators. For example, there is a class nrfsserv-fixup that works

around many bugs in kernel NFS clients to avoid panicking the kernel. Several NFS

client implementations crash if the results of a LOOKUP RPC do not include the file

attributes and this manipulator makes sure that no LOOKUP RPCs return without

attributes.

We implemented a shortcut generator, as a stackable NFS manipulator, that con-

verts all symlinks into shortcuts. In this way, Cygwin can both trigger the auto-

mounting that may be necessary, and send us to the correct drive letter. The rules

for turning symlinks into shortcuts are as follows:

1. Any LOOKUP for a file that would return a symlink returns file not found.

2. Any LOOKUP for a filename that fails but ends in .lnk returns the file handle for

the filename without the .lnk but with the attribute changed to be a regular

file.

3. Any READ on a file handle that fails because the file is really a symlink returns

the data for the symlink.

4. All READDIR calls are changed into READDIRPLUS to obtain the attributes quickly.

5. READDIRPLUS adds a .lnk extension to filenames if they are symlinks.

6. ACCESS and GETATTR return modified data for symlinks.
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3.2.4 Access Rights

NFS uses user id's (UIDs) to figure out your permissions. SFS uses these UIDs to

figure out who you are and what files to show you. It also uses your UID to determine

the correct agent to use.

The Windows NFS client unfortunately has no access to these UIDs. To supply

Windows NFS clients with UIDs an RPC daemon, PCNFSD, maps Windows user-

names to UID's. A person that wants to give access to Windows users runs the

PCNFSD daemon on their NFS Server. Another possible solution is to run a PC-

NFSD daemon locally and have it obtain your UID through other channels, like using

Kerberos to do a hesiod lookup [3]. In our case both solutions are the same since our

NFS server is running locally; the challenge is to obtain the correct UID.

When you first install Cygwin it creates a /etc/passwd file from your computer's

accounts, and assigns all accounts UIDs. These are the UIDs that SFS uses to give

access. We developed a PCNFSD daemon that runs inside the nfsmounter and assigns

you UIDs from the password file. This solution allows the NFS client to use your

Cygwin UIDs.

We implemented the PCNFSD daemon and placed it inside the nfsmounter. This

allows the NFS client to obtain a user's Cygwin UID. Unfortunately, the NFS client

caches these UIDs and once /sfs is mounted it has a UID associated with it that

cannot change. This property causes many problems with SFS.

SFS selects the correct agent based on the UID of the NFS RPC call. It also

displays different views of the /sfs directory depending on your UID. This scheme

allows SFS to put symbolic links in the directory depending on the agents that a user

is running. In Windows, since the UID doesn't change, if a second user logs in to

Windows he will get the same view as the first user,and since SFS can not tell that

this another user, it will give him the same access permission. We have contacted

Hummingbird about this problem but haven't received any response. For now, the

only solution is to not allow multiple users on the machine at the same time.
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3.3 File Descriptor Passing

Cygwin did not support passing file descriptors. The Cygwin code had to be modified

to support this useful protocol. The challenge was to design a system that worked

similarly to the UNIX method of passing file descriptors. We also wanted to add the

support to Cygwin and not keep it inside SFS.

3.3.1 File Descriptors in Cygwin

Windows uses opaque handles to identify Pipes, Sockets, Files, Consoles, etc. The

designers of Cygwin wanted to keep the UNIX notion of file descriptors, contiguous

integers that represent Pipes, Sockets, etc. So in Cygwin when you create a file

descriptor it allocates the correct type of the handle, stores it in an object, and adds

the object into an array so that the file descriptor is really an index into that array.

Cygwin also stores the type of handle, and other info like permissions into the object.

This design allows Cygwin to use Pipe system calls on Pipes, and Socket system calls

on Sockets, etc. Handles are per process values and only have meaning in a particular

process; therefore, passing around the value of a handle has no productive result. To

transfer handles between processes the handles must be duplicated, which we explain

next.

3.3.2 Duplicating a Handle

A handle can be duplicated in Windows by using the DuplicateHandle call. This

call takes a source process, a source handle, a destination process, and returns a

destination handle. This destination handle is a duplicate of the source handle that

is valid in the destination process. This call allows a sender, a receiver or even a third

party to duplicate a handle assuming that that process has enough permission to do

so.
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3.3.3 Passing Handles

The Cygwin developers implemented the cygserver as a way to share memory between

processes. It enables calls such as shmget and shmctl. Basically, the Cygserver is an

RPC daemon that holds memory and handles for other processes. That way if the

other processes exit the memory is retained. The cygserver is an optional tool in

cygwin and must be run separately.

The cygserver is an RPC daemon and we can define functions and call them. We

define two new functions in the cygserver for the purpose of passing file descriptors,

HOLDHANDLE and RELEASEHANDLE. HOLDHANDLE takes a Process ID (pIn), a handle

(hIn) valid in process pIn, and returns a DuplicateHandle of hIn valid in the cygserver

process. RELEASEHANDLE takes a ProcessID (pOut), a handle valid in the cygserver

process (hCyg), and returns a DuplicateHandle of hCyg valid in process pOut.

Using the cygserver we can easily duplicate the handles between two processes.

The sending process first calls the cygserver HOLDHANDLE routine and gets a handle

valid in the cygserver process. Then when it sends the message to the second process,

using normal UNIX Domain Socket I/0, the first process adds a header that contains

the file descriptor information and the value of the handle before the actual data.

The receiving process detects the header and calls RELEASEHANDLE and then converts

the Handle into a file descriptor. The entire process works as follows.

1. P1 calls sendmsg passing it some data and FD1.

2. Inside sendmsg, Cygwin extracts handle HI from FD1 and calls HOLDHANDLE

sending it Hi and P1; it receives HCyg.

3. Sendmsg sends the handle, plus the handle's info, in a header and the data to

P2.

4. P2 calls recvmsg.

5. In recvmsg Cygwin receives the data, sees the extra header, and calls RELEASEHANDLE

sending it HC and P2; it gets back H2.
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6. Recvmsg then allocates a file descriptor (FD2) and binds the handle info and

the Handle to that file descriptor

Since we were adding headers to messages we needed to come up with a scheme

to not confuse headers with real messages. We did not want to add headers to all

messages because that would slow things down. We needed a way to preserve message

boundaries so that we could easily detect a header and could send multiple messages

with headers without getting them confused with real data. UNIX sockets in Cygwin

are really TCP sockets, which do not preserve message boundaries.

We considered using out of band data to pass the headers. Out of band data is

used as a second transmission channel or as urgent data. Out of band data can also

be sent inline in which case the programmer can detect the presence of it using the

SIOCATMARK ioctl. Only one byte can be sent in out of band data so we could not

send entire headers this way.

Another option was to send a byte of out of band data inline as a tag stating that

a header was coming. Unfortunately the SIOCATMARK ioctl in Windows is only able

to tell you if there is out of band data pending. It will not tell you if you are going

to read it, and, if you send two messages out of band you cannot reliably detect the

first one.

It was discovered that if you send normal out of band data the system somehow

preserves the message boundaries. Therefore, before we send a packet containing a

header we send an out of band byte and all our boundaries are preserved. Because

we had no access to Windows source code we could not investigate why this behavior

occurs.

This patch was submitted to Cygwin and is being looked at closely for admission.
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Chapter 4

Evaluation

We evaluated two main aspects of this research: The number of changes that had to

be made and the performance of the system.

4.1 Changes

We modified 25 files of the original SFS code and created 8 new files. Of the 25 files

4 are changes to Makefiles to include libraries not normally included by Cygwin like

resolv and rpclib. The grand total of lines changed and created is 1328. We think

that maintaining this small number of code changes will be relatively simple. The

list of modified files and new files can be found in Figures 4.1 and 4.2 respectively.

4.2 Performance

We compared the performance of SFS on Windows to accessing files using Humming-

bird's NFS client, Microsoft's CIFS client, and IBM's AFS client. Since SFS runs on

top of Hummingbird's client we will see what the overhead of the loopback NFS is.

We ran the LFS large and small file micro-benchmarks [10] to see the performance of

all these network file systems.

The SFS client ran on an 866MHz Pentium3 with 256K Cache, 512Mb of RAM,

with a 10Mb 3Com Ethernet Controller. The SFS server, the NFS server and the
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Filename Number of Lines Changed
agent/Makefile.am 14
arpc/Makefile.am 3
arpc/axprt-unix.C 18
async/Makefile.am 7

async/aio.C 2
async/async.h 3
async/core.C 76
async/sigio.C 2

crypt/getkbdnoise.C 3
crypt/rndseed.C 4

nfsmounter/Makefile.am 6
nfsmounter/mpfsnode. C 11

nfsmounter/nfsmnt.h 9
nfsmounter/nfsmounter.C 9

sfscd/afs.C 5
sfscd/afsroot.C 26
sfscd/afsroot.h 9
sfscd/sfscd.C 3

sfsmisc/afsdir.C 17
sfsmisc/afsnode.C 22
sfsmisc/afsnode.h 12
sfsmisc/nfsserv.C 274
sfsmisc/nfsserv.h 14
sfsmisc/sfspath.C 4
sfsrwed/sfsrwcd.C 3

Total 556

Table 4.1: List of Modified Files

Filename Number of Lines
nfsmounter/domount-cygwin.C 213

nfsmounter/mountsfs 6
nfsmounter/umountsfs 6
async/select-winsock.C 40
nfsmounter/pcnfsdsrv.C 235

portmap/Makefile 63
portmap/srv.C 209

Total 772

Table 4.2: List of New Files
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CIFS server all ran on a 233Mhz Pentium2 with 256K Cache and 128Mb of RAM.

AFS was tested against MIT's AFS servers. The NFS client was configured to use

NFS version 3 over UDP. All the servers are located in the same subnet to make

transit time as equal as possible. Each test was run five times to make sure the data

was accurate.

4.2.1 Latency

We first tested the latency of NFS versus SFS because we were having problems with

speed. We tested how fast we could send a SETATTR RPC since this involved no disk

activity. We observed that by adding the fix suggested in Section 3.1.3 the calls per

second went from 11 to 21. This result is pretty low compared to 333 calls per second

in NFS.

4.2.2 Large File Microbenchmark

The large file microbenchmark sequentially writes a large file, reads it sequentially,

writes it randomly, reads it randomly, and then re-reads it sequentially. Data is

flushed to the disk after each 8 Kb write. We used a 8MB file with I/O sizes of 8KB

and 256Kb. The results are shown in Table 4-1 and 4-2.

As can be observed, with an 8K buffer size SFS is about 6 times as slow in writing

as NFS and half as slow as AFS. The reading for both SFS and NFS are affected by

the fact that the NFS client has cached the result in the NT Cache Manager, which

AFS has not. The same results were found using a 256K buffer. Strangely, the select

fix discussed in Section 3.1.3 did not make these number improve.

4.2.3 Small File Microbenchmark

The small file microbenchmark creates 1000 1Kb files across 10 directories. It then

reads the files, re-writes them, re-writes them flushing changes to the disk (write

w/sync), and deletes them. Because of the large amount of files, the time really

represents the lookups on each file.
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Our modifications to select mentioned in Section 3.1.3 doubled the performance

of SFS in the small file benchmark but it still remained ten times as slow as other

systems. It is however interesting to see that the writes with sync and the delete

tests in AFS are extremely slow compared to the others. This may be due to the file

locking mechanism inside AFS or to bad interaction with the Cache Manager.

The performance of SFS is very bad compared to the other systems. We believe

that this slowness may be caused by other slow Cygwin calls. We hope that future

work on the project will turn up the source of these problems in SFS.
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Chapter 5

Conclusion

5.1 Future Work

It is unfortunate that we used the commercial NFS client for NFS functionality. The

commercial client costs money and we do not have access to the source code to correct

errors and many work-arounds had to be devised. In the future it would be great to

develop an NFS client for Windows. The OSR FSDK toolkit could be used for such

an endeavor. CMU wrote Coda for Windows using it so perhaps it is a good choice.

The problem of passing file descriptors can also be solved without using the

cygserver. In fact, the Cygwin developers would much prefer a solution that does

not involve the cygserver because they consider the cygserver an optional tool.

Another issue with the current file descriptor passing system is that if the receiver

dies before picking up a file descriptor from the cygserver the handle will be stored

in the cygserver forever. Some method of garbage collection could be developed to

overcome this problem.

5.2 Conclusion

While the performance of SFS left something to be desired we believe that this re-

search will prove useful. Not only did we reach our goal of creating an SFS client for

Windows but we also did it in a manner that will make maintenance and future work
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simple. Also, the lessons learned in this research can be applied to other projects.

To our knowledge there have never been any automounters in Windows. Our

system, while very NFS client dependent, may prove to be useful for such a project.

Also our handling of symlinks could prove valuable in future projects. Our research

into passing file descriptors in Cygwin sparked many discussions in the Cygwin mail-

ing lists and this useful feature will finally exist in the Cygwin library so that other

developers may use it.

We believe that the Windows port of SFS can be improved and that it can be

made comparable in speed to NFS.
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