Automatic Service Selection in Dynamic Wireless Networks

by

George J. Lee
B.S., University of California, Berkeley (2000)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2003

© Massachusetts Institute of Technology 2003. All rights reserved.

Author ..
Department of Electrical Engineering and Computer Science
September 2, 2003

Certified by

John Wroclawski
Research Scientist
Thesis Supervisor

Accepted by
Arthur C. Smith
Chairman, Department Committee on Graduate Students
Automatic Service Selection in Dynamic Wireless Networks

by

George J. Lee

Submitted to the Department of Electrical Engineering and Computer Science
on September 2, 2003, in partial fulfillment of the
requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

We consider the use of machine learning agents to autonomously and continually select among wireless access services available to a user. The work in this thesis is part of the Personal Router project; a technical research program aimed at reshaping the wireless network access market towards greater competition and diversity [11]. A critical function within the PR vision is that of service selection. The Personal Router, acting on behalf of its user, must intelligently, intuitively, and autonomously select from among the available services the one that best meets its user's needs. It must do this transparently, without involving, bothering, or distracting its user. Previous approaches to wireless service selection, including static policies and manual selection, do not adequately address individual user preferences.

Instead, we explore a machine learning approach, in which an intelligent agent learns user preferences and makes selections automatically on behalf of the user with minimal user involvement. We developed an agent model based on a partially observable Markov decision process (POMDP) abstractly describing the challenges and goals of service selection. Next we devised a service selection architecture providing the framework for an agent that can learn from user feedback and accurately select services even when the set of available services changes. Our approach uses ideas from reinforcement learning to estimate the quality and cost of services, and neural networks to predict the value of new services. We implemented a software prototype of the PR using this architecture and evaluated it with user experiments.

Our experimental results show that our approach can effectively estimate the user perceived quality and cost of services even when the set of available services changes for high bandwidth web browsing. They suggest that compared to manual selection, the PR requires less interaction to select a good service and can provide more consistent performance.

Thesis Supervisor: John Wroclawski
Title: Research Scientist
Acknowledgments

I would like to thank my thesis advisor John Wroclawski for his feedback, support, and guidance. Steven Bauer contributed much of the implementation framework, helped in the design and architecture of the Personal Router, and gave valuable feedback. Many of the machine learning and user modeling ideas and techniques used in this paper arose from discussions with Peyman Faratin. Xiaowei Yang helped me better understand network traffic profiling. I am grateful to Georgios Theocharous, Kurt Steinkraus, and Yu-Han Chang for their advice in designing the POMDP model. Many thanks go to those who participated in the user experiments.
Contents

1 Introduction ... 9

2 The Service Selection Problem .. 11
 2.1 Network Services .. 11
 2.2 User Behavior .. 13
 2.3 Related Work ... 16

3 Agent Model ... 19
 3.1 States S .. 19
 3.2 Observations Z .. 20
 3.3 Actions A .. 21
 3.4 Transitions δ .. 22
 3.5 Objective .. 23

4 Architecture ... 25
 4.1 User Interface .. 26
 4.2 Service Evaluator ... 28
 4.3 Change Controller .. 29
 4.4 Service Value Predictor 29

5 Approach ... 31
 5.1 User Interface .. 31
 5.2 Service Evaluator ... 33
 5.3 Change Controller .. 34
5.4 Service Value Predictor ... 36

6 Results .. 39
 6.1 User Experiments .. 39
 6.1.1 Network ... 39
 6.1.2 User Groups ... 40
 6.1.3 Procedure .. 40
 6.2 Evaluation Results .. 41
 6.2.1 Learning Quality and Cost 42
 6.2.2 PR vs. Manual Selection ... 44

7 Conclusion & Future Work .. 51
Chapter 1

Introduction

This thesis considers the use of machine learning agents to autonomously and continually select among wireless access services available to a user. Our context is the Personal Router (PR) project; a technical research program aimed at reshaping the wireless network access market toward greater competition and diversity [11]. By allowing potential suppliers to easily advertise service offerings in a given area, and allowing users to transparently and continually discover, negotiate terms for, and switch between available network services, we aim to greatly lower the barriers to entry in the wireless service market, creating a rich ecosystem of large and small service providers with different offerings, capabilities, and business models.

A critical function within the PR vision to enable user choice is that of service selection. The Personal Router, acting on behalf of its user, must intelligently, intuitively, and autonomously select from among the available services the one that best meets its user’s needs. It must do this transparently, without involving, bothering, or distracting its user. Its task is difficult—acceptable service choice depends not only on the features and cost of the service, but also on the network and user context, including such dynamic variables as the applications the user is running and the user’s higher level goals. Beyond this, the set of available services may change rapidly with time and the user’s location, requiring the PR to choose new services frequently. Without the automatic selection capability granted by the PR, users could not possibly respond to the constantly changing set of services and application demands.
Previous approaches to wireless service selection, including static policies and manual selection, are inadequate. Static policies [38, 16, 34] cannot accommodate individual user preferences and do not adapt to changing user goals and contexts. Manual selection is unappealing because of users' reluctance to constantly interact with a user interface while engaged in a network activity, particularly in rapidly changing and complicated wireless service environments.

These considerations motivate us to explore a machine learning approach, in which an intelligent agent learns user preferences and makes selections automatically on behalf of the user with minimal user involvement. We developed an agent model abstractly describing the challenges and goals of service selection. Next we devised a service selection architecture providing the framework for an agent that can learn from user feedback and accurately select services even when the set of available services changes and service features are not completely known. We implemented a software prototype of the PR using this architecture and evaluated it with user experiments.

This thesis presents our work in five parts. In Chapter 2, we give an overview of the challenges, complexity, and importance of the service selection problem and the assumptions we make about the network and user. Secondly, we outline our agent model and clearly define the functions and goals of our agent in Chapter 3. Next in Chapter 4 we present our architectural framework for service selection in the PR and describe how its components operate in terms of the agent model. In Chapter 5, we present the details of our software implementation. Finally we illustrate the performance of our system with user experiments in Chapter 6.
Chapter 2

The Service Selection Problem

To address the problem of service selection, the PR requires accurate models of the network and user. The PR needs to know which services are available from the network and which services users prefer in their current context. Below we describe the research challenges involved in these network and user interactions and the assumptions we make about them.

2.1 Network Services

We can imagine many different mechanisms for selecting services. Users could specify their requirements and negotiate with providers for a service. Alternatively, service providers could advertise the quality levels they offer and sell network service to users in an auction. They may also simply advertise their offerings and allow users to choose among them.

We abstractly represent the set of services available to the PR with the variable D. This set of available services may change as the user moves to new locations or service offerings change. Each of the available services $x \in D$ has an associated service profile $p(x)$ describing its features, including both quality and cost.

An ideal definition of a service profile is one for which the user’s perception of a service is based solely on the features in its profile in a particular context. That is, two services with the same service profile would be perceived as equivalent to the user in that context. If this were the case, then the PR could make accurate selections based only on the features in the
service profile. In reality, however, it is not possible to capture all the variables that affect the user's perception of a service. Therefore in choosing which features to include in the profile, we have two considerations. First, service providers should be able to accurately describe services in terms of their profile features and ensure that services conform to their profiles. Providers may wish to advertise certain attributes instead of others, however, depending on marketing, business, and other considerations. Secondly, for the profiles to be relevant, these features must be related to the user's perception of a service.

To describe the quality of a service, we choose to use a two bucket profile [40], describing a service in terms of its short term and long term burst characteristics. A two bucket profile consists of a token rate ρ, a burst size β, and a refill interval T_{refill} (called \textit{forced-off} in [40]) after which the bucket is refilled if it is empty. This type of profile can describe a wide variety of services, including high and low bandwidth services and burstiness over different time scales. These characteristics are also more likely to correspond to the quality features perceived by users for common activities such as web browsing that exhibit an on/off heavy-tailed traffic distribution. In addition, this system is similar to the well-studied token bucket traffic profiles [27].

Along with quality attributes, service profiles contain information about the cost of a service. In the simplest case, the cost may just be the price per unit time of a service profile given by the service provider. In general, however, service providers may advertise complex profiles with different initial costs or pricing depending on congestion, for example. Though it is possible to model services with time-varying quality and cost using a Markov decision process, the additional state space required greatly increases the time to learn service values. Therefore in our work, we choose to consider just two cost attributes, price per minute c_{\min} and price per kilobyte c_{kb}, enabling providers to advertise services using different pricing plans. The total cost c_{total} of a service to the user is calculated by applying these cost attributes to the duration of usage t and the quantity of data transferred y according to the equation:

$$c_{\text{total}} = c_{\min} t + c_{\text{kb}} y$$

(2.1)

Combining the quality and cost features described yields a service profile $p(s) =$
Service providers might not advertise services accurately and truthfully, however. For instance, a service provider may overstate the quality of their service to attract more customers, or the quality of a service may degrade for reasons outside their control. If advertised service profiles are incorrect, the PR can attempt to determine the true service profiles in several ways. It can passively monitor network traffic to construct a profile, but this requires time and may not be accurate. Alternatively it can attempt to actively measure the properties of the service [28, 23], but this also takes time and consumes bandwidth. Also, characteristics such as burst size are difficult to measure directly. If other users have experienced the service before, the PR can use information collected from other users about the service or provider to guide its decisions [24]. Another possibility is to structure the marketplace in such a way that providers have an incentive to advertise accurate service profiles [14]. Obtaining accurate service profiles is beyond the scope of this thesis, however. In the present work, we assume that services can be accurately described by the service profiles proposed and that providers advertise services truthfully. We also assume that the PR can seamlessly switch between available services without disruption using a mobility solution such as mobile IP [30].

2.2 User Behavior

Users do not evaluate services purely in terms of service profiles. Instead, a user’s preferences depends on many factors, including their context, goals, perception of services, and willingness to explore. A user perceives services subjectively in terms of quality and cost. This perceived quality and cost may depend on the user’s goals and context, including the user’s activity and their current weighting between quality and cost. For example, a user may consider a high bandwidth, high latency service to have high quality for bulk file transfer but low quality for videoconferencing. Similarly, a service that charges by the byte may be low cost for email but high cost for streaming video.

To accurately select services, we must identify the user’s context. The correct service for the user depends on what applications are running and their network requirements. Just
as users cannot state precisely what type of service they desire, however, it is infeasible for application designers to specify detailed network requirements for most applications. Furthermore, since the proper service depends on individual preferences and how the application is used, such application specified requirements have limited usefulness.

User context depends on more than just the application; it also depends on the activity of the application. If there are multiple applications and activities running at the same time or if they change very quickly, it may be unclear how to set the activity. Furthermore, a single application may perform many very different activities. For instance, a web browser can be used for bulk file transfer as well as streaming video. User applications or the operating system can make this information available to the PR.

Though our learning agent can function with very detailed definitions of user context and take into account several simultaneously running applications and activities, the additional state space would slow the learning rate. In order to make the space of user contexts manageable and to improve performance, we only take note of the currently active application in our approach. We assume that a user usually only cares about the network performance of the current foreground application and define a user context \(g \) as this application. If we find that this definition is inadequate, we can change how context is defined without affecting the rest of the agent model.

Another factor that influences user decisions is their goals. If the user just wants to surf the web and read the news, then perhaps they prefer a low cost service. On the other hand, if they urgently need to transfer a large file, then they may want a high quality service even if it has high cost. Even if a user's perception of the quality and cost of a service remains unchanged, the service they prefer may depend on their changing goals and situations. One of the primary effects of changing user goals is a change in their trade-off between quality and cost, the two attributes of a service that users ultimately care about. To enable the PR to correctly select services when this quality/cost trade-off changes, we model this trade-off with a weighting \(w \in [0, 1] \), where \(w = 0 \) means the user only cares about cost, \(w = 1 \) means the user only cares about quality, and values in between represent intermediate weightings.

The user's willingness to explore the space of available services may also change. If
the user needs to complete an urgent task and requires the highest quality service available immediately, they probably do not want a randomly chosen service. In other situations, the user may be more willing to try out new services when they become available. The PR models this with a variable $e \in [0, 1]$ to allow users to express their changing tolerance for exploration, where $e = 0$ corresponds to minimal exploration while $e = 1$ represents high tolerance for exploration.

We make several assumptions about user preferences. First, it is reasonable to assume that users evaluate services based on subjective quality and cost in a given context. That is, any two services which they perceive to have the same quality and cost in that context are perceived as equivalent. We assume that their orderings of services over quality and cost are complete—given any two services, the user can decide which one has higher quality or that they are indifferent. Similarly users can decide which of two services has higher cost or if they are indifferent. Additionally, users’ cost and quality preferences are transitive—if service A has higher quality than service B, and B has higher quality than C, then they perceive A to have higher quality than C. Without these assumptions, user preferences would not be well-defined, making it impossible to specify which service a user prefers. These assumptions allow us to represent their perceptions of the quality and cost of a service s in context g with quality and cost functions $q(g, s)$ and $c(g, s)$, representing the user’s orderings over quality and cost. The user perceives service s_i to have higher quality than s_j in context g if and only if $q(g, s_i) > q(g, s_j)$, and similarly if s_i is cheaper than s_j, then $c(g, s_i) > c(g, s_j)$. We choose to model a user’s preference for services as a function of the quality $q(g, s)$ and cost $c(g, s)$ of the current service s in the current context g and their current quality/cost weighting w, allowing us to model user preferences for services with a utility function $u(q(g, s), c(g, s), w)$. This efficiently represents user preferences and enables the agent to reason about the quality and cost of services in different contexts with different user quality/cost trade-offs.

As mentioned earlier, the service profile does not capture all the factors that influence user perceived quality and cost. A user’s perception of a service may depend also on other features not accessible to the agent, such as service provider reputation, end-to-end network delay to particular hosts in the network, or financial incentives not in the service profile.
For example, even if two services have identical service profiles, a user may perceive one to have higher quality because it has a shorter network round-trip time to MIT's web server, a feature not captured in the service profile. Similarly, if a user receives external compensation in the form of free pizza for using the service in a pizza shop, they may consider that service to have lower cost than the profile would indicate. For this reason, the agent cannot rely on service profiles alone to make its decisions.

Service profiles are still useful for estimating service value if we assume the service profile features are partially correlated with $q(g, s)$ and $c(g, s)$, however. In other words, if two services have similar profiles, they are likely to be perceived as having similar quality and cost. This assumption allows the PR to use service profiles to predict the quality and cost of services not yet experienced by the user based on previous observations.

2.3 Related Work

Our work in network service selection spans several fields of research, including mobile and wireless networks, network quality of service (QoS), intelligent agents, machine learning, and user modeling. Our research synthesizes ideas from these fields to produce a novel machine learning service selection approach.

Previous service selection researchers have developed systems that use an agent to select network services for the user, but they do not attempt to learn user preferences with a simple and unobtrusive interface. In [2], the authors describe a mechanism for users to manually choose among a fixed number of priority-level/price pairs. They study the simulated behavior of multiple users on the load and performance of such a network. Their work assumes that users can accurately and rapidly choose the appropriate priority level as the observed network performance changes. In this thesis, services are described by features more complex than a fixed set of priority levels and prices. Furthermore, our focus is not on the efficiency of the network but on ease of use and user satisfaction.

The authors of [24] propose a user agent to select among services in a diverse network environment. They describe the framework for an agent that selects services based on user expectations and application requirements, measures the performance of the current ser-
vice, rates services, and shares this information with other agents. They do not implement this system, describe the user interface, or give detailed algorithms for selection and rating, however.

There has been previous research in wireless and mobile networks on deciding how and when to switch network service. While the 802.11 specifications [33] do not specify a procedure for when handoffs should occur, a variety of common approaches are taken. These include STA initiated handoffs based upon signal strength information. Access points may also initiate handoffs based upon their load. Commercial products employing multi-mode wireless access technologies typically just prioritize the radios and employ the highest priority radio at any point in time [26]. Prior research has suggested that handoff between wireless technologies ("vertical handoff") [34] and systems employing a variety of wireless networks and technologies [19] are feasible. In [38] the authors argue the need for policy-enabled handoffs across such heterogeneous wireless networks. [36] describes a measurement based prioritization scheme for handovers in mobile cellular networks. In Cellular IP [8], handoff is partly based on clients' signal strength measurements. In Mobile IP [29] handoff decisions are based upon foreign agent advertisements. Katz has studied mobility in wireless overlay networks [18, 19]. Research on seamless and transparent handoffs is similarly voluminous, [4, 9, 13, 30, 32, 37]. Software radios have a similar type of problem of determining which radio configuration to employ [10]. None of these approaches account for user preferences, however.

In this thesis we employ several well-studied user modeling techniques. The authors of [41] give an overview of different ways to model and predict user behavior, including a discussion of content-based and collaborative learning, linear models, Markov models, neural networks, and Bayesian networks. In [39], the authors discuss the challenges of machine learning for user modeling, including the need for large data sets, the need for labeled data, concept drift, and computational complexity. Most of these approaches require a great deal of explicit feedback from the user, however. In order to make our system unobtrusive and easy to use we do not explicitly ask for ratings from the user and use implicit rating instead, as described in [25]. Nichols examines methods for implicitly learning user preferences from their behavior. We also incorporate aspects of previous approaches to
measuring user perceived quality that make use of feature-based models. The authors of [1, 31] describe several methods to make recommendations based on the features of items users previously rated.

We make use of AI techniques to learn user preferences. The traditional approaches to modeling user utility include conjoint analysis, in which users are asked to specify their preferences over different goods [20, 21]. We reject this approach since users are unable to accurately evaluate a service based on a description of their features; they must experience it before they can determine its utility. Instead we use ideas from reinforcement learning to learn user preferences based on their behavior. Kaelbling gives an overview of the field in [17]. Sutton and Barto provide an excellent reference for reinforcement learning in [35].

We abstractly model our service selection agent using a partially observable Markov decision process (POMDP) [7, 6]. This gives us a framework to reason about nondeterminism and unobservability in the network and user and allows us to take advantage of the previous work in reinforcement learning with Markov models.
Chapter 3

Agent Model

The service selection problem has the property that the agent’s decisions depend on the possibly changing state of the network and user. Both fully observable Markov decision processes (FOMDPs)[7] and partially observable Markov decision processes (POMDPs)[6] are commonly used to represent these problems in which an intelligent user agent must learn the values of different states and actions while making selections to maximize the reward it receives [17]. A Markov model captures the nondeterminism of user and network states and enables the agent to estimate the value of actions in these states. In this thesis we choose to use a POMDP model because it can capture the inherent inaccessibility of the complete network and user states; the agent cannot observe the entire state of the network, nor does it have access to the user’s intentions and goals.

A POMDP can be described as a set of states S, a transition probability function $\delta : S \times A \times S \rightarrow [0, 1]$, a set of agent actions A, and a set of observations Z. Below we describe the elements of this model in detail.

3.1 States S

In the most general model, the state space would comprise all variables that influence the set of available agent actions and transition probabilities. For instance, the length of time the current service has been in use may affect when the user wants to switch services. The amount of money in the user’s bank account could influence the amount they are willing
to pay. The set of available services could be correlated with the day of the week and
when the user is at home or at work, and so on. Our agent model can function correctly
with such a large state space, but including all these variables would quickly make the
problem intractable; the greater the number of states, the longer it takes for the agent to
learn. As a reasonable compromise, we choose to define a state $x = (D, g, s, w)$ as a set
of available services D, the current service in use s, the user’s current activity g, and the
user’s quality/cost weighting w. By factoring the state space into these four components,
we can keep the model to a manageable size while still allowing the agent to reason about
its actions based on the available services and the user’s context and goals.

We do not attempt to model services with changing quality or cost; instead we assume
that network services themselves do not have state and always deliver the same level of
service. This enables us to represent services much more compactly and greatly simplifies
the evaluation of states.

Note that since we do not place any restrictions on the set of available services D, and
since w is a real number, this state space is infinite. Furthermore, since D consists of a
set of services, the state space is potentially exponential in terms of the number of unique
services. We will address these issues in Section 3.5.

3.2 Observations Z

Even in this simplified state space, the agent does not have access to all the state variables.
It can only observe the set of available services D, the service profile $p(s)$ of each service
s, the user’s activity g, and the user’s most recent feedback r. The agent does not know the
user’s quality/cost weighting w. This partial observability means that the agent must infer
w based on its observations.

The user can express three types of feedback r about the current service: satisfaction $r = \text{sat}$; dissatisfaction with quality and a request for a higher quality service ($r = \text{better}$); and dissatisfaction with cost and a request for a lower cost service ($r = \text{cheaper}$). The probabilities of each of these actions are functions of the user’s utility, perceived quality, and perceived cost, respectively.
Since users may mentally aggregate their perception of recently used services when deciding what feedback to give, we can model their behavior using a delayed reward model in which a \(r = \text{better} \) input may express dissatisfaction with the previously used service and not the current one [35]. Though this model is appealing, it makes it more difficult for the agent to identify the service for which the user is providing feedback. Thus we assume that their behavior depends only on the current service and context, and not previous states. If this assumption is not appropriate, we can amend the reward model. We explain how users express their inputs using the user interface in Section 4.1.

In a more sophisticated POMDP model, the service profiles themselves may not be observable. If that were the case, the agent would have to infer service profiles based on user behavior, network traffic measurements, or other data. Similarly, in a more general model, the user’s context could be more complex and unobservable. This module assumes that accurate service profiles and user context are available. Inferring the true characteristics of inaccurate service profiles is beyond the scope of this thesis.

3.3 Actions \(A \)

There are many possible models of agent actions we could employ, depending on the selection mechanism. If service providers allowed negotiation, for instance, then an agent action could be to make an offer stating how much it is willing to pay for a service. Alternatively, the agent could state the type of service it wanted and ask all providers for a bid. The agent actions also depend on how users use network services. If a user has two network interfaces, then they could select different services for each interface. In this case, the agent would have to make two selections.

Though our model can accommodate these mechanisms using additional state variables and transitions, we choose to adopt a system that closely corresponds to the current market for wireless network access in which service providers advertise all the services they offer and the agent chooses among them. This type of model has the advantage that the agent actions depend only on the set of available services and not on a negotiation process, which would require additional state variables to model the process of negotiation. In addition,
agent actions do not cause the set of available services to change, which would be the case if the agent could negotiate a service with a provider.

Let $A = \{b_1, b_2, \ldots \}$ be the set of all agent actions, where action b_i is to select service s_i. The PR may choose from any of the available services in D, hence the set of available agent actions is $\{b_i | s_i \in D\}$.

3.4 Transitions δ

In general the probability of transition between different activities may depend on the current service and the services available. For instance, if there are no high speed network services in the area, then the user is unlikely to engage in high bandwidth videoconferencing. In addition, changes in the set of available services are likely to be related to the geographic locations of base stations and service providers. To keep the problem tractable, however, we decide to treat changes in D, g, and w as exogenous and do not attempt to model or predict them. Furthermore, we assume that the agent always gets the service it requested. We let the transition probability $\delta(x_i, b, x_j)$ of going from state $x_i = (D, g, s_i, w)$ to $x_j = (D, g, s_j, w)$ on action b be 1 if $b = b_j$ selecting service s_j. Otherwise it is 0. A more sophisticated model would allow the agent to reason about changing activities and available services, but we assume that in the short-term time frame in which users select services, the set of available services usually remains the same, the user is performing the same activity, and the user's goals are unchanged. If these variables change the agent can make selections based on the new state, but it does not attempt to predict these changes. These assumptions allow the agent to base its selection decisions solely on the current service and context.

Another question is when transitions occur. The agent may be able to better explore the space of available services and learn user preferences better if it switches services without external input. If service quality or cost can change with time, then the agent should be able to switch services in response to such changes. We found that in our preliminary user experiments that users do not want to worry about their service changing unexpectedly, however. In order to provide a predictable user experience, the agent only switches services
in response to user input or changing state. Therefore in our model transitions occur only when the user provides feedback or if the state changes exogenously, though the agent can still make selections stochastically to explore the space of available services.

3.5 Objective

Given this model, the task of the agent is to maximize user satisfaction as measured by the frequency of positive user feedback. Since we do not model state transitions in the set of available services or user state, the agent’s objective is simply to identify and select the service that provides the greatest expected reward, where reward is 1 for a \(r = \text{sat} \) input and 0 otherwise. Like the well-known \(k \)-armed bandit problem in reinforcement learning [5], the agent must choose among a set of actions so that its expected reward is maximized. Unlike the \(k \)-armed bandit problem, however, the agent’s state may change. To deal with changes in the state of the network and user, the PR attempts to use previously learned information to help it make decisions.

As alluded to earlier, the state space is potentially infinite, requiring us to make some simplifying assumptions to keep the problem tractable. First, we assume that the utility of a service depends only on the perceived quality and cost of a service and the user’s quality/cost weighting, and not on what other services are available. This causes the state space to be linear in the number of services instead of exponential. Secondly, the agent can address the problem of a real valued quality/cost weighting by treating it as a parameter in its action value function. We describe this approach in Chapter 4.

When the state changes, the agent attempts to initialize its action estimates of new services based on the observations made in previous states. If a new service is encountered, the PR can attempt to predict its value by comparing its service profile to the service profiles of previously seen services. We assume that services with similar profiles will be perceived similarly. When the user’s quality/cost weighting changes, the PR can recalculate its action values according to its estimated user utility function. If the user’s activity changes, the agent could also attempt to compare the new activity to previous activities to initialize action values. This would require a priori knowledge about the relationships between
activities or quantitative activity descriptions, however, so we do not perform this type of prediction in our model.

As in other reinforcement learning problems, the agent faces the challenge of balancing exploration and exploitation [3]. In order to discover the service with the greatest expected reward, it must explore different services even if they may be suboptimal. Once it finds the best service, however, it should use it as much as possible to maximize its reward.

The agent model described precisely defines the service selection problem and outlines the tasks and functionality of an agent to address this problem. Even with the simplifying assumptions we make about the agent’s state space, transitions, and action value estimation, the agent’s task is still very difficult.
Chapter 4

Architecture

The service selection problem as described above can be broken down into four subproblems:

1. Devising an intuitive and effective user interface to elicit feedback useful for agent decision-making.

2. Accurately evaluating services in terms of their user perceived characteristics to help learn the value of the agent’s actions.

3. Deciding when to change services and which service to select based on the user’s preferences, context, and goals.

4. Correctly predicting the value of actions in new states based on previous observations.

To address these subproblems, we built an agent consisting of four modular components corresponding to the subproblems described. These components are the user interface, a service evaluator, a service change controller, and a service value predictor. Figure 4-1 illustrates the relationship between these components. Together, these components allow the PR to learn the value of services from user feedback, adapt to changing user needs, and also estimate the value of new services. This modular architecture allows different parts of the PR to be developed independently and allows us to easily change its behavior.
by selecting different implementations of these components. In this chapter we outline the requirements and functionality of these components. In Chapter 5 we give a detailed description the implementation of these components in the PR.

\[s: \text{current service} \]
\[g: \text{user context} \]
\[\Delta c: \text{change in cost estimate} \]
\[\Delta q: \text{change in quality estimate} \]
\[\Delta w: \text{change in quality/cost weighting} \]
\[\Delta e: \text{change in exploration level} \]
\[e: \text{evaluator exploration level} \]

\[V'_q(g,s): \text{quality estimate} \]
\[V'_c(g,s): \text{cost estimate} \]
\[F'_q(g,s): \text{quality prediction} \]
\[F'_c(g,s): \text{cost prediction} \]

Figure 4-1: Agent Architecture

4.1 User Interface

For the user interface to be effective, the user inputs must be intuitive and unobtrusive. Users should not have to spend much time and effort thinking about how to interact with the interface. This means that the UI should not require frequent user involvement and that the inputs should be easy to understand. At a minimum, the user must be able to provide feedback about their satisfaction with the current service and to indicate whether they desire a higher quality or a lower cost service. In addition, to help guide the PR’s decisions we also allow them to indicate their tolerance for trying new services.

A simple approach is to only have two inputs: satisfaction or dissatisfaction with the current service. This has the advantage of making service evaluation easier since the PR would not need to track quality and cost separately, but fails to capture the user’s dynamic
quality/cost weighting. Thus we allow the user to not only express whether or not they are satisfied with the current service, but also whether they desire a higher quality or lower cost service.

If the user is dissatisfied with a service, it is either because it has low quality or high cost. Therefore the UI provides two buttons for feedback about the current service: a better button to indicate \(r = \text{better} \), expressing dissatisfaction with the current service’s quality level and requesting a higher quality service; and a cheaper button for \(r = \text{cheaper} \), expressing dissatisfaction with the current service’s cost and requesting a lower cost service. If the user is satisfied with a service, they need not do anything. Users are unwilling to constantly interact with the PR just to express their satisfaction with the current service, so instead we assume that they are implicitly expressing satisfaction with the service \((r = \text{sat}) \) if they do not press any buttons for some time. We assume that the longer the user waits before pressing a button, the more likely they are to be satisfied they with the quality and cost of that service.

If the user inputs \(r = \text{better} \), it is due to one or both of the following two reasons: either the perceived quality of the service \(q \) is lower than the PR’s estimate, or the user’s quality/cost weighting \(w \) increased. To the extent that the button press is due to low \(q \), the evaluator needs to update its quality estimate for the service. To the extent that \(w \) has increased, the change controller must choose higher quality services. Similar reasoning applies to \(r = \text{cheaper} \).

The user’s willingness to explore may change as well. The UI may provide a means for the user to express this change via explore more and explore less buttons, a slider, or attempt to infer it from their behavior. Therefore from an input \(r \) the UI needs to generate four outputs, \(\Delta q, \Delta c, \Delta w, \) and \(\Delta e \), the amount to change the quality estimate, cost estimate, quality/cost weighting, and exploration level, respectively.

To help the user make their decisions, the UI also needs to give feedback to the user about the current service and available services to enable the user to quickly determine the relative quality and cost of a service. Too much feedback is detrimental; giving detailed technical information about each service is likely to distract and confuse the average user. On the other hand, without any feedback at all the user has no basis on which to compare
services and decide which one they prefer out of the choices available.

The user must be able to at least identify which service is currently in use and how much it costs. The current service may be indicated using a name, description, or other identifier. There are many possible ways to give feedback about cost, including cumulative cost, estimated cost per unit time, and estimated cost per byte.

4.2 Service Evaluator

To accurately make service selection decisions, the PR must have information about services. As mentioned earlier, evaluation based simply on a static function of network characteristics and price is inadequate because different users have different preferences. The agent’s selections should ultimately be based on the user’s subjective perception of services, so we choose to evaluate services in terms of user perceived cost and quality. This evaluator must be able to learn individual user preferences under many different contexts based on user feedback.

Under the assumptions we make about user behavior, utility is a function of the user’s quality/cost weighting and the perceived quality and cost of the current service under the current activity. The task of the evaluator is to estimate this perceived quality and cost for each service and activity. For each service s and user context g experienced by the PR, the evaluator maintains quality and cost estimates $V_q(g, s)$ and $V_c(g, s)$. These estimates range from 0 to 1, where 0 corresponds to the worst possible quality or cost (slow or expensive) and 1 is the best (fast or cheap). Since these estimates should be based purely on the user’s perception of the service, they are calculated from the Δq and Δc UI outputs and not on any information in the service profile. This allows the evaluator to learn user perceived quality and cost regardless of the user’s quality and cost functions. Furthermore this makes the system robust to inaccurate or incomplete service profiles. Since the evaluator uses learning, its estimates improve as it receives more user feedback. We allow it to communicate its confidence in its estimates with an exploration value e, allowing it to request more exploration when untried services exist and less exploration when it has greater confidence in its estimates.
4.3 Change Controller

The role of the change controller is to decide when to switch services and which services to select based on information from the service evaluator and from the user interface. It is not optimal to always select the service with the greatest estimated value; if the evaluator’s estimates are inaccurate or new services are available it may be better to try a different service. When to switch and the correct service to select depend on the user’s context, the user’s weighting between quality and cost, as well as the amount of exploration the user will tolerate.

Since user utility is a function of perceived quality and cost and a quality/cost weighting w, the change controller must have an estimate of w and an approximate utility function to select services. The change controller estimates the quality/cost weighting based on Δw inputs and then applies its utility function to the perceived quality and cost of each available service. It then makes selections based on a stochastic function of these utilities.

The change controller may occasionally select a service with lower estimated utility in order to improve the evaluator’s estimates. Some amount of exploration accelerates the learning process, but too much exploration results in suboptimal selections [3]. The PR must strike a balance between exploring and exploiting the highest utility service. The exploration level of the service evaluator and Δe from the UI affect this balance.

4.4 Service Value Predictor

Using the evaluator allows the agent to learn the value of individual service profiles, but does not help it select from services the user has not yet experienced. Using just the service evaluator, the PR can only estimate the value of a service based on the feedback it receives when it is in use. Therefore to improve performance when new services are encountered, the PR forms a model of user utility to predict the value of new services based on the Δq and Δc outputs from the UI and the current service profile. Estimating the value of services based only on a mapping from service profile features in this manner is insufficient because their perceived quality and cost may depend on features not in the service profile, however.
Thus the evaluator uses the predictor to initialize its estimates, but its estimates are updated based solely on user feedback.

The task of the predictor can be viewed as an approximation problem, where the goal is to approximate user perceived quality and cost as closely as possible given a limited number of observations about their behavior and service profiles. This assumes that there exist functions $f_q(g, p(s))$ and $f_c(g, p(s))$ correlated with the user perceived quality $q(g, s)$ and cost $c(g, s)$ of a service s. The predictor attempts to approximate these functions f_q and f_c based on previous observations. Since the predictor is only used for the initial estimate, predictions need not be completely accurate. As long as its estimates allow the PR to make better than random selections, the predictor can improve performance.

The standard approaches to this type of approximation problem include linear regression, single layer perceptrons, and multilayer neural networks [22, 15]. We reject linear regression and single layer perceptrons because they are incapable of learning nonlinear functions. Of the possibilities outlined, multilayer neural networks are the most general and flexible, are straightforward to train and compute, and can approximate the broadest range of utility functions. Therefore in our implementation, when it encounters new services the PR attempts to approximate the user's utility function using a two-layer feed-forward neural network.

The PR trains the predictor on the Δq and Δc UI outputs, the current service profile, and the current activity. As the neural network receives more training data, its predictions will improve. Since the neural network requires a substantial amount of training data before it becomes useful, the PR does not use it until it has accumulated enough observations. Once the predictor is activated, the evaluator can use it to initialize its quality and cost estimates for a given service and activity.
Chapter 5

Approach

We now address the challenges described above in dealing with the network and the user. We describe our implementation of the architecture described above.

5.1 User Interface

The user interface (UI) needs to translate user inputs into the control signals used by the other components. Our primary considerations for the behavior of the UI are that it be intuitive, predictable, and easy to use while providing enough information for the other components to operate effectively. The user should receive feedback about the relative cost and quality of a service, and it should be possible to switch services with a minimal amount of button presses.

The UI must collect user feedback about the quality and cost of the current service as well as information about the user’s quality/cost weighting. One way to elicit this information is to provide separate buttons for indicating satisfaction or dissatisfaction with quality and cost, and buttons for indicating increases or decreases in the quality/cost weighting. We believe that users would have difficulty deciding which button to press if presented with too many options, however, and so we only include two buttons in the user interface, a better button corresponding to \(r = \text{better} \) and a cheaper button for \(r = \text{cheaper} \).

An input of \(r = \text{better} \) expresses dissatisfaction with the quality of the current service and a desire for a higher quality service. This causes the UI to generate \(\Delta q = -1 \) and
\(\Delta w = +0.05 \) signals, decreasing the quality estimate of the current service and moving the quality/cost weighting toward quality. The magnitudes of \(\Delta q \) and \(\Delta c \) are arbitrary; the evaluator just needs to be able to distinguish between positive and negative feedback. The value of \(\Delta w \) was chosen empirically; we found that \(\Delta w = 0.05 \) allowed the agent to account for a changing quality/cost weighting without excessively influencing its decisions. Since users expect to get a different service when they press a button, if another service is available it continues to generate these signals until the change controller selects a different service. Similarly, if the user inputs \(r = \text{cheaper} \), the UI sets \(\Delta c = -1 \) and \(\Delta w = -0.05 \) until another service is selected. If the user does not press any buttons, the PR assumes that they are satisfied with the current service. Every 15 seconds, the UI generates a \(r = \text{sat} \) signal, setting \(\Delta q = +1 \) and \(\Delta c = +1 \) to indicate this implicit satisfaction. Fifteen seconds allows the user enough time to initially evaluate the service and decide whether or not they are satisfied while still being short enough to sufficiently reward the agent for selecting high utility services. We choose not to implement the exploration level inputs in the present work because it is not essential to the operation of the PR. This feature could easily be added at a later time if desired.

This system requires no interaction from the user if they receive a satisfactory service, minimizes the amount of interaction needed to select a new service, and allows the evaluator to form estimates of the quality and cost of services. Other reward models are possible; for instance, the satisfaction signals could be generated based on whether the network has been in use to account for idle time. We do not adopt these approaches due to the complexity they add.

To allow the user to determine the cost of the current service, the UI also displays the estimated marginal cost of a service based on the current network usage and the cost per minute and cost per kilobyte of the service. In addition, a meter shows the user’s total cumulative expenditure. These enable the user to quickly evaluate the relative cost of different services. Other forms of feedback are possible as well, such as a list of the available services and the agent’s estimates of them. We choose not to present this information to keep the interface simple.

Figure 5-1 shows a screen shot of the user interface used in our experiments. This
implementation also includes a start/stop button to turn on and off the agent and a timer to track the duration of usage. In an implementation intended for regular users, the user interface would be slightly different.

![Figure 5-1: User interface for experiments](image)

5.2 Service Evaluator

The service evaluator uses reinforcement learning techniques to form quality and cost estimates. The PR maintains a table of quality and cost for each service and user context. It updates these quality and cost estimates based on the Δq and Δc signals from the UI. These updates are done using an exponentially weighted moving average with optimistic initial estimates [35], calculated based on the most recent user feedback about a service in a given context.

For each service s and user context g that the PR observes, it maintains estimated quality and cost values $V_q(g, s)$ and $V_c(g, s)$ between 0 and 1. Since we do not have delayed rewards, it is sufficient to just update the value of the current state. The estimated quality and cost are calculated by averaging the previous Δq and Δc inputs according to the
exponential weighted average update rules

\[V_q(g, s) \leftarrow \alpha \frac{\Delta q + 1}{2} + (1 - \alpha) V_q(g, s) \] (5.1)

\[V_c(g, s) \leftarrow \alpha \frac{\Delta c + 1}{2} + (1 - \alpha) V_c(g, s) \] (5.2)

with learning rate \(\alpha = 0.1 \), where \(g \) is the current context and \(s \) is the currently selected service. This learning rate allows the agent to learn preferences reasonably quickly while retaining enough precision to discriminate between services with different quality or cost.

If the PR’s predictor has not yet been trained, then values of \(V_q \) and \(V_c \) are initialized optimistically with 0.9, encouraging the agent to try new services. Otherwise, they are initialized to the values \(F_q(g, s) \) and \(F_c(g, s) \) predicted by as described in section 5.4. As users implicitly express satisfaction with services by not pressing the better and cheaper buttons, these update rules will cause \(V_q \) and \(V_c \) to increase for services perceived as having higher quality or lower cost, respectively. Conversely, low quality and high cost services will receive lower values of \(V_q \) and \(V_c \) when users express dissatisfaction.

We do not currently implement the evaluator exploration value in our approach. By optimistically initializing estimates, the PR already has a natural tendency to explore untried services, however.

5.3 Change Controller

Given a set of service profiles and estimates of their value, the agent needs to decide when to switch and which one to select to maximize the long-term average reward. The controller has two tasks: estimating service value based on quality, cost, and the quality/cost weighting; and choosing a service based on these utility estimates.

Because the services available to the agent do not depend on the current service in use, it is not necessary to consider the possible actions the agent may take in the next state. Furthermore, since we do not have delayed rewards temporal difference learning is unneeded. If these conditions were to change, then we could use other techniques to estimate action values, such as Sarsa or Q-learning [35].
The change controller estimates service value with an action value function in terms of the quality and cost estimates from the service evaluator and its estimate of the user's quality/cost weight. The quality/cost weight w is updated on user input according to the rule $w \leftarrow w + \Delta w$ and constrained so that $0 \leq w \leq 1$. The agent's action value function should order services as closely as possible to the user's utility function. We assume that the users prefer higher quality services to lower quality ones and cheaper services to more expensive ones. By definition, as their quality/cost weighting increases they place more weight on quality, and as it decreases they weight cost greater. In general the value function may be nonlinear and depend on the current activity, but since we do not know users' actual utility functions we choose to simply use a linear action value function $v(g, s, w)$ as a starting point:

$$v(g, s, w) = wV_q(g, s) + (1 - w)V_c(g, s) + c_{\text{switch}}$$ \hspace{1cm} (5.3)

where $c_{\text{switch}} = 0.1$ if s is the currently selected service and 0 otherwise. We introduce the variable c_{switch} to account for switching costs in the system, which we will explain below.

Given these action value estimates, the change controller must then decide which service to select. Many possible selection methods exist, including ϵ-greedy, softmax, reinforcement comparison, and pursuit methods [35]. Previous work [12] has show that both ϵ-greedy and softmax methods exploit high value actions well while retaining the ability to effectively learn long term state values. Other options may also yield good results, but in this thesis we choose to use a softmax selection policy because it can make selections based on the magnitude of estimates and not just their relative ordering.

The change controller selects a service stochastically based on a Gibbs softmax distribution of the estimated utility of the available services, where the probability of selecting a service s_i with value $v(s)$ from the set of available services S is given by the expression

$$\frac{e^{v(s)/\tau}}{\sum_{x \in S} e^{v(x)/\tau}}$$ \hspace{1cm} (5.4)

The exploration level of the service evaluator and the user’s willingness to explore affect the the temperature parameter τ, changing the frequency with which the PR randomly switches
services. We set the initial temperature to $\tau = 0.05$. This distribution causes the change controller to select services based on the relative value of available services. We chose this type of selection policy because it can effectively balance the need to explore untried services with the desire to select the highest valued services.

In order to maintain predictability and consistency, the change controller only switches services when the set of available services changes or when the user presses a button. To account for switching costs, we add a constant c_{switch} to v for the current service. This will cause the PR to only switch services when the difference in estimated utility exceeds this threshold, preventing oscillation and excessive switching. This also ensures that each time the service changes, the user will receive a service that the agent believes is significantly better than the current one. Note that in this model the switching cost is the same for all services. To model variable switching costs, the agent could set c_{switch} differently for different services.

5.4 Service Value Predictor

The PR uses neural networks (NN) [15] to predict the value of services. The PR maintains two separate NN for each user context g, one for quality and one for cost. Figure 5-2 depicts the cost NN; the quality NN is similar. The NN for quality has four inputs I_j, one
for each service profile quality feature \((\rho, \beta, \text{and} \ T_{\text{refill}})\) and a constant bias of 1. The NN for cost has six inputs \(I_j\), one for each service profile feature and a bias of 1. The bias allows the NN to generate nonzero outputs when its inputs are all 0; the value of the bias does not matter as long as it is nonzero. Since total cost depends on the amount of data transferred, the NN for cost must take the quality features into account as well.

Both NN have four hidden neurons \(n_i\) with input weights \(H_{i,j}\); and an output \(o\) with weights \(W_i\). It is not known how to accurately determine the optimal number of hidden neurons to use in a NN, so we tried several different choices ranging from two to ten neurons. The fewer the number of neurons, the faster it can learn. A greater number of neurons enables the NN to approximate more complex quality and cost functions, however. We decided to use four neurons in the hidden layer because we find that it can accurately and rapidly learn many common utility functions.

The activation function \(a(.)\) applied to the output of each neuron is the sigmoid function \(a(x) = \frac{1}{1+e^{-x}}\), where \(x\) is a neuron’s output value. This commonly used activation function allows the predictor to finely discriminate between services within certain feature ranges. The outputs \(N_i\) of the hidden layer and the final output \(O\) are \(N_i = a\left(\sum_j H_{i,j}I_j\right)\) and \(O = a\left(\sum_i W_iN_i\right)\).

The predicted quality and cost values of a service \(F_q(g, s)\) and \(F_c(g, s)\) are obtained by setting the inputs \(I\) of the respective NN to the appropriate service profile features along with a bias of 1. The outputs \(O\) of the NN are then calculated using the learned weights. The NN is updated every time the PR receives a reward. For quality, the PR first computes the error \(E_q = V_q(g_t, s_t) - F_q(g_t, s_t)\) and then attempts to set the weights \(H\) and \(W\) to reduce this error according to a gradient descent rule:

\[
W_i \leftarrow W_i + \alpha E_q'(x)N_i \quad (5.5)
\]
\[
H_{i,j} \leftarrow H_{i,j} + \alpha E_q'(x)I_jW_i \quad (5.6)
\]

where \(a'(x)\) is the derivative of the sigmoid function. We choose to use learning rate \(\alpha = 0.7\) because it enables the NN to learn fairly rapidly. It follows a similar process to update cost weights. Since the predictor needs to be trained before it can produce accurate output,
the PR does not use the NN for prediction until it has received at least 40 inputs. Based on our simulation and experimental results, this provides enough data to do substantially better than random selection.
Chapter 6

Results

We implemented a software prototype of the PR and conducted exploratory user experiments to determine how well our system performs with real users. We describe our experiment design, results, and conclusions below.

6.1 User Experiments

The experiments have two objectives. The first is to determine if the PR performs its function correctly, learning user preferences and selecting appropriate network services when services stay the same and when they change. We evaluate this objective by comparing the PR’s estimates and predictions with the actual network features. Secondly, we assess the usefulness of automatic service selection by giving users a specific task and measuring the performance of PR users against users selecting services manually.

6.1.1 Network

The network environment in our experiment is chosen to evaluate the performance of the PR when many different services are available. We also test the ability of the PR to predict the value of new services by changing the set of available services during the experiment.

The set of available services are generated using traffic shaping in a software router. In these experiments we choose to use only three features from the service profile described
in Section 2.1: average data rate, cost per minute, and cost per kilobyte. We choose these features because they are the ones easiest for users to perceive in the short time frame of the experiment and are the most straightforward to implement.

The values of these features are chosen to mimic a range of realistic network services, from inexpensive low quality services to expensive high quality services. We choose to use seven quality levels, corresponding to bandwidth levels commonly encountered by users in current 802.11b and broadband, modem, and cellular data networks: 11Mbps, 1Mbps, 384Kbps, 128Kbps, 56Kbps, 28.8Kbps, and 9600bps. The services differ substantially in cost, both in price per minute and price per kilobyte.

In our experiment the user moves between three simulated locations, each with eight services available. By making eight services available, we make it challenging for the user to choose the correct service while enabling the PR to learn service values within the time frame of their task. For each location there is exactly one optimal service that allows the user to complete their task on time with the greatest number of credits remaining. All other services are either too costly or too slow.

6.1.2 User Groups

In order to test the effectiveness of the PR, we compare PR users against a control group of manual selection users, allowing us to evaluate the ease of use and effectiveness of the agent and user interface.

Test subjects are placed into one of two groups:

1. Users in the first group choose between services manually by selecting from a menu displaying the available services and their features.

2. Users in the second group use the PR to select between services, requesting services using the better and cheaper buttons described earlier.

6.1.3 Procedure

In our experiments, we choose to give users the task of high bandwidth web browsing because it is a common and familiar activity requiring attention from the user and enables
users to distinguish between services with different quality levels. Users must focus their attention on their task and not just the user interface, just like in a realistic service selection scenario. We gave subjects ten minutes to practice and then evaluated their performance for 15 minutes.

Our experiment consists of three phases. In the first phase, we give the user ten minutes to become familiar with the user interface, the procedure, and the available services. The second phase tests how well the PR can learn preferences in a static network environment. The third phase evaluates the ability of the PR to make selections when the set of available services changes.

In each phase, the user has one or two tries to complete a task. Their task is to use a web browser to fully load a series of ten web pages within five minutes while selecting a service using the mechanism designated for their group. Each web page contains four large image files. This task approximates the network usage of a typical user shopping or looking for information on-line and makes use of the network service in a realistic and familiar way. Users are charged for their network usage based on the cost of the current service. There are eight services available during a task. Each phase takes place in a different simulated location with a different set of services available. Their score for a try is the number of credits expended during that try.

In phase 1 the user is placed in location 1 and performs their task twice for practice. This allows the user to become familiar with the user interface and their task. In Phase 2, the PR is reset, the user chooses services from location 2, and the user is given two tries at their task and is instructed to minimize the number of credits they expend. These two tries test the ability of the PR to improve its performance as it learns user preferences. Finally in Phase 3, the user attempts to minimize their score in location 3. Phase 3 evaluates the performance of the PR when faced with new service profiles.

6.2 Evaluation Results

We conducted experiments on 17 users, 9 using the PR and 8 using manual selection. We present our results below.
6.2.1 Learning Quality and Cost

![Quality estimate vs Data rate graph](image1)

Figure 6-1: Quality estimates in Phase 2, $r^2 = 0.793$

![Cost estimate vs Total cost/min graph](image2)

Figure 6-2: Cost estimates in Phase 2, $r^2 = 0.931$

An examination of the quality and cost values learned by the PR shows that the agent is capable of learning the perceived quality and cost of services based on user feedback as well as predicting the value of new services as they become available. Figures 6-1 and 6-2 plots the average agent estimated quality and cost values $V_q(g,s)$ and $V_c(g,s)$ of each service in Phase 2 against metrics of their actual quality and cost. The total cost is calculated according to equation 2.1 assuming that the service is being used at its maximum data rate. We performed a linear least squares regression using a logarithmic scale for the data rate and total cost. Though we do not have enough data to precisely determine the
Figure 6-3: Quality predictions in Phase 3, $r^2 = 0.946$

Figure 6-4: Cost predictions in Phase 3, $r^2 = 0.438$
underlying quality and cost functions, a logarithmic scale is reasonable because it models
the user’s diminishing returns as quality increases and increasing returns as cost decreases.
The regression line and the square of the correlation coefficient r^2 are given for each figure.
The correlation for both quality and cost appear quite strong. Note that the cost estimates
are an estimate of the user’s satisfaction with the cost of a service, with greater values
associated with lower cost. These regressions show that the quality and cost estimates
learned by the PR are closely related to the data rate and total cost per minute of a service,
indicating that the evaluator is able to successfully learn the quality and cost of services
based on user feedback.

The predictor also correctly estimates the value of new services when the set of avail-
able services changes. Figures 6-3 shows that the quality values predicted for the new
services in location 3 closely correspond to the actual data rate. The cost predictions plotted
in Figure 6-4 correlate well with the total cost, but are not as accurate as the quality
predictions. We expect that the cost predictions would take longer to learn since there are
three service profile features affecting cost while only data rate affects quality. These re-
sults suggest that the predictor can provide useful estimates when services change, but may
require more time to learn before it can produce more reliable results.

6.2.2 PR vs. Manual Selection

![Graph showing PR improvement in Phase 2](image)

Figure 6-5: PR improvement in Phase 2
Figure 6-6: Manual selection in Phase 2

Figure 6-5 shows that the performance of the PR improved in the second task of Phase 2. The plot depicts the distribution of scores by percentile. The value plotted is the score under which a given fraction of the users scored. The left-most point is the lowest score for that try and the right-most point is the highest score. In Phase 2, the PR improves the score achieved at every percentile except for the outlier at 90%. Figure 6-6 shows that there is no such improvement within Phase 2 with manual selection, suggesting that the change results from better estimates. Note that these results indicate that the agent’s performance improves significantly after only five minutes of usage. Given more time to learn, we expect that the performance of the PR will improve further.

Figure 6-7: Duration of usage of services in Phase 2
We also observe both the change controller and users of manual selection chose the best service more frequently than other services. Figure 6-7 and 6-8 show the duration of usage of each of the available services in Phases 2 and 3 as a fraction of total usage time. In Phase 2, using service 2 results in the best score. In Phase 3, service 7 is best. The figures show that both approaches are capable of identifying and selecting the best service, though it appears that the agent does not choose the optimal service as frequently as under manual selection.

The average score achieved by PR users is slightly better than that of manual selection users in Phase 2. Figures 6-9, 6-10, and 6-11 show the distribution of scores by percentile.
Figure 6-10: Distribution of scores in Phase 2 Try 2

Figure 6-11: Distribution of scores in Phase 3

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 2, Try 1</td>
<td>1480</td>
<td>1680</td>
<td>361</td>
<td>722</td>
</tr>
<tr>
<td>Phase 2, Try 2</td>
<td>1430</td>
<td>1600</td>
<td>616</td>
<td>747</td>
</tr>
<tr>
<td>Phase 3</td>
<td>1680</td>
<td>1090</td>
<td>1120</td>
<td>713</td>
</tr>
</tbody>
</table>

Table 6.1: Experiment Statistics
in Phases 2 and 3 for both the PR and manual selection. In both tries of Phase 2 the PR clearly reduces the variance in the score, with scores in low and high percentiles closer to the mean (Table 6.1). This suggests that service selection guided by the agent provides a more predictable and consistent experience for the user.

![Figure 6-12: Score vs. user inputs in the PR, $r^2 = 0.458$](image)

![Figure 6-13: Score vs. user inputs in manual selection, $r^2 = 0.041$](image)

In Phase 3, however, the score varies widely for different users, with some users scoring extremely well and others doing poorly (Figure 6-11). We hypothesize that this disparity is related to differences in how users interacted with the PR. We observed that some users were able to train the PR better than others during Phase 2, enabling the agent to make better selections in Phase 3. We noticed that performance suffered when users incorrectly...
pressed the buttons (e.g. pressing *better* when they actually wanted a cheaper service, or getting frustrated and repeatedly pressing the button without using services long enough to evaluate their quality). For those users that were patient and used the interface as anticipated, the agent tended to choose services more accurately with a minimum amount of interaction. For those who were impatient and used the interface incorrectly, the PR was unable to correctly predict the value of new services and chose services almost randomly, causing users to become frustrated and make more improper inputs. Figure 6-12 and 6-13 shows the relationships between score and number of user inputs in Phase 3, along with regression lines and correlation. The positive correlation in the PR is consistent with our hypothesis that for patient users who use the interface correctly, the agent can learn preferences more effectively and accurately predict the value of new services with very few button presses. For impatient users who incorrectly press buttons repeatedly, the agent learns poorly and performance suffers. This suggests that perhaps a delayed reward model is more appropriate for the PR, in which user inputs are applied to services based on the duration and recency of usage. The slight negative correlation among manual selection users coincides with our intuition that users must try many different services to determine which one is best when faced with new services. We also observe that on average, the best scorers among PR users did better than those using manual selection and made many fewer button presses, showing that if used properly the agent can perform better than manual selection while requiring less user input.

Another factor that influenced the performance of the PR was the ability of users to evaluate services. Some users were better able to estimate the quality and cost of services based on the feedback provided by the UI and the speed with which images loaded on the web pages. Other users incorrectly believed the quality of a service was adequate when it was not fast enough to complete their task, or were satisfied with the cost of a service even when they had used a similar service that was available for lower cost. This affected the accuracy of the agent's estimates and predictions.

We also collected feedback from users regarding their experience. Many users of the manual selection mechanism remarked that it was difficult to remember the features of the different services. This suggests that even if the PR performs similarly to manual selection,
users may prefer it simply because it requires less cognitive effort to use. In this experiment we used only eight services per location, but in locations with many more services available we expect users would have an even greater preference for automatic service selection.

Users also gave us suggestions to improve the UI. One user of the PR system wanted a way to quickly switch between high quality and low cost services without changing the agent’s estimates of them, validating our assumption that estimation of quality and cost should be done independently of the user’s quality/cost weight. Many users wanted to switch between high quality and low cost services during the experiment, suggesting that it may be valuable to include coarse grained control over the quality/cost weight in the UI.

Our experiments confirm that the PR functions as designed, learning user preferences and selecting services effectively. The agent also performs similarly to manual selection on average, but requires less user interaction to select a good service and reduces variance. The data we collected also gave us valuable insight into how users interact with the PR in realistic situations, helping us further tune and improve the system. Though the results are promising, further work and experimentation is required to adequately evaluate the usefulness of the PR.
Chapter 7

Conclusion & Future Work

We proposed the idea of a Personal Router to automatically select network services for users in dynamic network environments in order to introduce competition into the market for wireless network access. We outlined the important research challenges in this area and gave an agent model defining the objectives, requirements, and functionality of an automatic service selection agent. Next we presented a modular architecture describing the design of this agent. We then described in detail a prototype software implementation of this architecture. Finally we evaluated our implementation with a user study comparing our approach to manual selection, showing that the PR can make effective service selection decisions and provides some important benefits over manual selection.

Our experiments identified several areas in which the PR could be improved. In future work we plan to incorporate delayed rewards in our agent to more closely model the way users provide feedback to the agent, increasing the robustness of the agent to user mistakes and frequent button presses. Based on our observations of users, we have identified some possible changes to the user interface to improve accuracy and performance, including alternative methods for giving feedback about the current service and the user’s quality/cost weight.

To enable the agent to correctly operate in more complex environments, we also plan to investigate its ability to infer user satisfaction, quality/cost weighting, and other unobservable variables in the POMDP model. We would also like to model transitions in state changes between locations and user activities and goals, allowing the agent to anticipate
changes in these variables. In addition, we intend to compare the effectiveness of action value models more sophisticated than the linear model in equation 5.3.

We would also like to conduct more experiments to study the performance of the PR in other network and user environments, including environments with different numbers of services available, changing user contexts, more complex network services, uncertainty in network services, and changing user goals. It would also be valuable to perform long-term user studies to determine if performance improves as users become more skilled at using the PR and the agent collects more observations about user preferences.
Bibliography

