
Approximation Algorithms for Combinatorial Optimization

Under Uncertainty

by

Maria Minkoff

S.B., Mathematics with Computer Science
MIT, 1998

S.M., Electrical Engineering and Computer Science
MIT, 2000

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2003

@ Massachusetts Institute of Technology 2003. All rights reserved.

A uthor -- -- -- -- -.1. .. . - -y * -- - - -.-
Department of Electrical Engineering and Computer Science

August 18, 2003

Certified by.

Accepted by

David R. Karger
Associate Professor

Thesis Supervisor

Arthur C. Smith
Chairman, Department Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

OCT 1 5 2003 BARKER

LIBRARIES

Approximation Algorithms for Combinatorial Optimization Under
Uncertainty

by
Maria Minkoff

Submitted to the Department of Electrical Engineering and Computer Science

on August 18, 2003, in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Abstract

Combinatorial optimization problems arise in many fields of industry and technology, where

they are frequently used in production planning, transportation, and communication net-

work design. Whereas in the context of classical discrete optimization it is usually assumed

that the problem inputs are known, in many real-world applications some of the data may

be subject to an uncertainty, often because it represents information about the future. In

the field of stochastic optimization uncertain parameters are usually represented as random

variables that have known probability distributions.

In this thesis we study a number of different scenarios of planning under uncertainty mo-

tivated by applications from robotics, communication network design and other areas. We

develop approximation algorithms for several KP-hard stochastic combinatorial optimiza-

tion problems in which the input is uncertain - modeled by probability distribution - and

the goal is to design a solution in advance so as to minimize expected future costs or max-

imize expected future profits. We develop techniques for dealing with certain probabilistic

cost functions making it possible to derive combinatorial properties of an optimum solution.

This enables us to make connections with already well-studied combinatorial optimization

problems and apply some of the tools developed for them.

The first problem we consider is motivated by an application from Al, in which a mobile

robot delivers packages to various locations. The goal is to design a route for robot to follow

so as to maximize the value of packages successfully delivered subject to an uncertainty in the

robot's lifetime. We model this problem as an extension of the well-studied Prize-Collecting

Traveling Salesman problem, and develop a constant factor approximation algorithm for it,

solving an open question along the way.

Next we examine several classical combinatorial optimization problems such as bin-

packing, vertex cover, and shortest path in the context of a "preplanning" framework, in

which one can "plan ahead" based on limited information about the problem input, or

"wait and see" until the entire input becomes known, albeit incurring additional expense.

We study this time-information tradeoff, and show how to approximately optimize the

choice of what to purchase in advance and what to defer.

The last problem studied, called maybecast is concerned with designing a routing network

under a probabilistic distribution of clients using locally availabel information. This problem

can be modeled as a stochastic version of the Steiner tree problem. However probabilistic

objective function turns it into an instance of a challenging optimization problem with

concave costs.

Thesis Supervisor: David R. Karger

Title: Associate Professor

Acknowledgments

I am very grateful to many people for helping me to obtain my Ph.D. First and foremost
I would like to thank my advisor, David Karger, who has given me a great deal of his
time throughout my years as a graduate student, providing direction and encouragement,
stimulating new ideas and helping me to work through some setbacks. I am also grateful
to David for his generous feedback on the multiple drafts of this thesis. He has been
instrumental in helping me to achieve a greater clarity and unity of presentation, as well as
in recovering the missing articles from my writing.

Next I would like to thank my thesis committee members Piotr Indyk and Santosh
Vempala for their time and input, and my co-authors Avrim Blum, Shuchi Chawla, Nicole
Immorlica, Terran Lane, Adam Meyerson, and Vahab Mirrokni for collaborating with me
on various research problems that have led to the results presented in this thesis.

I am extremely fortunate to have been supported by an AT&T Labs Fellowship through-
out my graduate studies. In addition to providing generous financial support, this program
has given me an opportunity to meet and work with some great minds at AT&T Labs. I am
eternally grateful to David Johnson, my mentor in the program, who had gotten me started
on my first serious research project which has subsequently led to a paper as well as my
Master's thesis. As my mentor, David was always quick to offer encouragement and helpful
advice whenever I turned to him. My gratitude also goes to David Applegate, Howard
Karloff, S. Muthukrishnan, Steven Phillips, Peter Shor, and many others who made me feel
welcome at the Labs during my three very memorable summers there.

My experience at MIT's Lab for Computer Science would not have been as enjoyable
if not for many great students here. Student seminars in the Theory group provided a
wonderful opportunity to share results and learn from others (as well as to determine the
number of theory students it takes to change a light bulb in a projector). I am particularly
thankful to Yevgeniy Dodis, Venkatesan Guruswami, Eric Lehman, Anna Lysyanskaya,
Sofya Raskhodnikova, Matthias Ruhl for their friendship and helpful advice on research,
academic career, and life in general.

Most of all I must thank my close friends and family. Dejan Mircevski for his tremendous
support and encouragement that have helped to carry me through many ups and downs of
my graduate career; Richard Hahnloser for his patience and calming presence that helped
me to maintain my sanity through the most stressful moments of the thesis preparation. I
am eternally grateful to my parents for instilling in me the appreciation of reason and logic,
and for teaching me to never give up (and resign) a game of chess (or any other endeavor
in life) until checkmated. Finally, I would like to dedicate this thesis to my grandfather,
Lazar Shteingart, who has been tirelessly saving for me all the news articles on modern
supercomputers, and whose own dreams of earning a Ph.D. in Electrical Engineering were
first put on hold by World War II, and later shattered by the antisemitic policies of the
Soviet regime.

Contents

1 Introduction 11
1.1 Planning package delivery in advance . 13

1.1.1 Related work . 14
1.1.2 Our approach . 15

1.2 Planning in stages with growing costs . 15
1.2.1 Related work . 17
1.2.2 Our approach . 17

1.3 Planning routing paths with incomplete global knowledge 18
1.3.1 Our approach . 19
1.3.2 Related Work . 20

2 Profit-making Under Uncertainty: algorithms for traveling salesmen and
mobile robots 21
2.1 Introduction . 21

2.1.1 Markov Decision Processes . 22
2.1.2 PC-TSP and Orienteering problems 22
2.1.3 Our Contribution . 24
2.1.4 Organization . 24

2.2 Formal Problem Definitions . 24
2.2.1 R esults . 25
2.2.2 Preliminaries . 26

2.3 Min-Cost path algorithm . 26
2.4 Min-Excess Path . 27

2.4.1 A Dynamic Program . 29
2.4.2 An Improved Approximation for Min-Excess 30

2.5 Maximum Discounted-Prize Path . 30
2.6 Orienteering . 32
2.7 E xtensions . 34

2.7.1 Budget Prize Collecting Steiner Tree 34
2.7.2 Multiple-Path Orienteering and Discounted-Reward TSP 34

2.8 Open Problems . 35

3 Preplanning framework for stochastic combinatorial optimization prob-
lems 37
3.1 Introduction . 37

3.1.1 Our Contribution . 38
3.1.2 Related work . 39

5

3.2 Preliminaries
3.2.1 Formal Problem Stat
3.2.2 The Threshold Prope
3.2.3 Using Approximation
3.2.4 Overview of Results

ement . . .
rty
Algorithms

.

.

.
as Subroutines .

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.

3.3 Network Predesign for Min-Cost Flow .
3.3.1 Linear Programming formulation

3.4 Bin packing with preplanning
3.4.1 Probability estimation

3.5 Vertex Cover with preplanning
3.5.1 Polynomial number of edge sets .
3.5.2 Independent edge set

3.6 Steiner network predesign
3.6.1 Cheap path
3.6.2 Small probabilities
3.6.3 Large node probabilities
3.6.4 Algorithm for Ultrametric Case .
3.6.5 General Case

3.7 Conclusions and Open Problems

4 Provisioning routing networks with incomplete global
4.1 Introduction .

4.1.1 Formal Problem Statement
4.1.2 Our Contribution
4.1.3 Related Work .

4.2 Prelim inaries .
4.2.1 Solution Structure
4.2.2 The shortest path tree heuristic

4.3 A price function .
4.4 A hub and spoke model
4.5 A gathering problem .

4.5.1 Solving the r-gathering problem
4.5.2 Generalizations

4.6 Gathering for maybecast
4.6.1 Cost of the derived gathering problem
4.6.2 Cost of the Steiner Tree
4.6.3 Performance of the approximation algorithm . .
4.6.4 A local optimization

4.7 Conclusion .
4.8 Open problems .

knowledge

6

41
41
41
42
43
45
47
49
50
52
52
53
56
56
57
59
62
66
67

69
69
70
70
71
72
72
74
75
76
77
78
80
81
81
83
84
85
85
86

List of Figures

2-1 Segment partition of a path in graph G . 28
2-2 Approximation algorithm for Maximum Discounted-Prize Path 31
2-3 Approximation algorithm for Max-Prize Path 33

3-1 Example demonstrating anomalies in min-cost flow network predesign. . . . 46
3-2 Approximation algorithm for Steiner network predesign with ultrametric edge

costs. 62
3-3 Clustering procedure. 63

4-1 Intersecting paths . 73
4-2 The shortest path example. a) m x m grid graph with a root. b) Shortest

path tree solution. c) Alternative stem path solution 74
4-3 The Maybecast Algorithm . 81

7

8

List of Tables

2.1 Approximation factors and reductions for our problems. 26

9

10

Chapter 1

Introduction

Combinatorial optimization problems arise in many fields of industry and technology, where
they are frequently used in production planning, transportation, and communication net-
work design. The area of the theoretical computer science, in particular the analysis of
algorithms subfield, has developed a large number of classical discrete optimization prob-
lems, in which one seeks to optimize a linear cost function over a (finite) set of combinatorial
objects, and a body of techniques to solve them. Within this framework it is usually assumed
that one has perfect information about the input when solving the problem. However, for
many real-world applications some of the data may be subject to uncertainty, either due to
measurement errors, or, more fundamentally, because it is not yet determined. In practice
it is frequently necessary to purchase or allocate resources for needs that are not precisely
known in advance and might evolve over time. For example, telecommunication companies
must install sufficient bandwidth in their networks before the demand for it is realized.
Manufacturers have to decide where to build new facilities (e.g. stores or warehouses) and
how much capacity to allocate in the presence of fluctuations in needs of potential cus-
tomers. Electrical utility companies must plan how much power to produce in advance
without knowing future demand which frequently depends on such an uncertain factor as
weather [46].

There are many ways of dealing with uncertain inputs that evolve over time when solving
an optimization problem. In contrast to the framework of on-line algorithms, in which one
assumes nothing (or next to nothing) about future inputs, we are interested in studying
scenarios in which the future is known to some degree. In particular we employ stochastic
models in which uncertain parameters are represented as random variables that have known
probability distributions. Such a distribution might be available from statistical data, or
may be just an educated guess. This approach connects us with the framework of stochastic
programming, an extension of mathematical programming in which some of the parameters
incorporated into the objective function and/or constraints are random variables. Such
stochastic modeling of the future is a particularly attractive approach for planning under
uncertainty because it takes into account the effects of all potential outcomes, but allows
us at the same time to seek a solution which is "good" on average.

We consider three potential scenarios which arise in the context of planning under un-
certainty. In the first scenario, a solution must be constructed before any information about
unknown parameters is revealed. Thus, the same solution is used for all possible outcomes,
although its value is a function of the random input. This means that the cost function itself
becomes a random variable that inherits its probability distribution from uncertain inputs.

11

Our objective is to optimize the solution value in expectation over the random values of

uncertain parameters. Of course, this framework is applicable only if there exists at least

one solution that is feasible for all possible outcomes of the random variables.

An alternative approach to solving problems involving uncertainties is to allow one to

postpone making a final decision (e.g. constructing a full solution) until after learning the

values of inputs. In fact, this might be the only way to deal with scenarios in which it is

impossible to make a sensible decision without observing at least some of the inputs first.

Under the stochastic modeling of the future, we are given a probability distribution on all

the possible outcomes. Thus, we could specify in advance an individual solution to be used

for each particular outcome. In practice, however it might be desirable to construct at

least some part of the solution in advance as allocating resources at the last minute may

be considerably more expensive than reserving them in advance. In such a setting there

is a tradeoff between having perfect information (which becomes available with time) and

minimizing cost (which increases with time).

There are also scenarios in which although technically we are not required to specify a

fixed solution before observing random inputs, it might be difficult to take full advantage

of the additional information when it becomes available. This is frequently the case in the

distributed network setting, in which obtaining global information might be too expensive

(or might take too long), so one has to act based just on local information. In such a

scenario, we are interested planning a set of distributed solutions that depend only on the

values of local parameters. This locality requirement prevents us from having an optimal

solution for each possible outcome (as that would require using global information), so once

again we aim to minimize the expected value of the solution.

In this thesis we study several stochastic combinatorial optimization problems repre-

senting these different scenarios for planning under uncertainty. Although a number of

our problems can be modeled and solved using stochastic linear (or integer) programming

tools, we are interested in tackling these problems by exploiting their underlying combina-

torial structure and directly applying techniques developed for combinatorial optimization.

One of our approaches to dealing with the stochastic aspects of the problems is to analyze

combinatorial properties of an optimal solution for very small and very large probability

values. In many cases reconciling the two allows us to derive "threshold" properties of the

cost function which makes it possible to decompose the problem into independent parts. A

related approach is to aggregate probability mass so as to obtain essentially deterministic

subproblems. This enables us to make connections with already well-studied discrete op-

timization problems and apply some of the techniques developed for them. Alternatively,
new exciting variants of old classic problems may arise along the way, and new methods

have to be developed to deal with them. Some of these novel problems become challenging

theoretical questions all by themselves.

The first problem we consider is motivated by an application from the field of artificial

intelligence, in which a mobile robot delivers packages to various locations. The goal is

to design a route for robot to follow so as to maximize the value of packages successfully

delivered before the robot's battery runs out or it breaks down. If we know in advance

precisely how long the robot is going to last, then this problem can be modeled as an

instance of the Orienteering problem, a variant of the well-studied Prize-Collecting Traveling

Salesman problem (PC-TSP). In practice however, the robot's lifetime tends to be random,
and becomes known too late to be useful in planning a delivery route. Our approach to

dealing with such an uncertainty is to aim for a solution that optimizes (over the random

duration of a route) the expected value of packages delivered. Modeling robot's lifetime

12

as a random variable with an exponential distribution leads us to consider the Discounted-
Reward Traveling Salesman Problem. This problem can be thought of as an extension of the
PC-TSP, but with an exponential instead of a linear dependence of the objective function
on the length of the tour.

Next we consider a "preplanning" framework for studying stochastic versions of several
classical combinatorial optimization problems. In this framework, one may purchase a
partial solution early and cheaply based on limited information about the problem input.
Once the entire input becomes known, the rest of the solution has to be constructed, albeit
at a greater cost. We study the tradeoff between planning ahead and deferring decisions
about resource allocation until having the complete information for a number of classical
discrete optimization problems: bin packing, vertex cover, min-cost flow, shortest path, and
the Steiner tree problem.

Finally we turn our attention to the so-called maybecast problem which is concerned
with designing a routing network to connect up a set of potential clients to a central server
so as to minimize total routing cost. The server might contain some data or documents that
can be requested by any number of clients. We consider a scenario in which the exact set
of requesters is not known in advance - each client makes his own decision independently
of others on whether he wants a particular document. Our goal is to plan a local solution
to be used - each requester specifies his own path to the server without any knowledge of
who else in the network wants the same data item - that minimizes the total routing cost
in expectation over a random set of requesters. This problem is essentially a stochastic
version of the (rooted) Steiner tree problem: given a probability with which a node needs
to be connected to the root r, specify a path for it to use to communicate with the root so
as to minimize the expected network usage. The probabilistic objective function turns the
classical Steiner tree problem into an instance of a challenging optimization problem with
concave costs.

In the remainder of this chapter we separately introduce each of the problems considered,
briefly describe technical challenges associated with solving each, and provide an overview
of related work.

1.1 Planning package delivery in advance

Imagine a new building housing MIT's Artificial Intelligence laboratory in which a mobile
robot delivers packages to various offices. Each package has a value of importance asso-
ciated with it. We would like the robot to drop off packages in a timely manner, while
attempting to respect the relative priority of packages. This can be modeled by associating
with each package a reward ri (related to its priority value) to be collected upon a successful
delivery. The goal is to plan a delivery route so as to maximize aggregated reward over
time. Unfortunately, there is a certain degree of unreliability in the robot's behavior: for
example, it may break down or its battery may get discharged before all the packages are
delivered and the route is completed.

Such uncertainty about the future arises in many real-world planning scenarios. Within
the rich framework of Markov Decision Processes (MDPs), the area which motivated this
problem, such uncertainty is often handled by discounting the present value of rewards that
will be received in the distant future [36, 37]. A common approach is to use an exponential
discount factor -y, and assign to a reward r that will be collected at time t a discounted
present value of r - -. This guides a robot to get as much reward as possible as early as

13

possible, thus providing some protection against early failure. One can motivate the use of

an exponential discount by imagining that at each time step there is a fixed probability of
robot losing power (or some other catastrophic failure occurring), so the probability that

the robot is still alive at time t is exponentially distributed. Hence exponentially discounted

reward reflects the value of the reward collected in expectation.

It is worth noting that when -y is very close to 1, e.g. y = 1 - e for e - 0, then the
discount is roughly a linear function of time y - 1 - et. Thus, our objective of maximizing
the total discounted reward becomes equivalent to minimizing the weighted sum of arrival
times (latencies) at the reward locations. The latter problem (with unit rewards) is known

as the traveling repairman [1] or the minimum latency problem (MLP) [11, 23].
A different approach to maximizing reward collected by the robot before it becomes

disabled is to estimate its expected lifetime, and use that as hard deadline on the duration

of the robot's tour. Now we are interested in a delivery route that collects the maximum

possible amount of reward before the deadline. In this scenario, the robot gets an (undis-

counted) reward ri for package i only if the delivery is made before a deadline D. This is

known as the Orienteering (or Bank Robber) problem [25, 6]. In other words, the value of

a reward goes to zero after the deadline. Note that the discounted reward approach can be

viewed as a relaxation of the hard-deadline approach, as the value of a reward as a function

of time decreases more smoothly in the former. We will show that these two approaches are

in fact intimately related, reducing one to the other and providing the first constant-factor

approximation algorithms for both types of problems.

1.1.1 Related work

The minimum latency problem is known to be gP-hard even for the weighted trees [47].

This immediately implies that our Discounted-Reward TSP is also MAP-hard. There are

several constant-factor approximation algorithms known for the MLP in general graphs [11,
23, 15], with the best having a guarantee of 3.59 [15]. Although the special case of the

Discounted-Reward TSP (with y close to 1) is equivalent to the minimum latency problem,
the approximation guarantee from the latter is not preserved, since the problems have
complimentary maximize-minimize objectives.

The motivation behind our Discounted-Reward problem is to find a path that collects

as much reward as possible as early as possible. This makes it somewhat akin to the

well-studied Prize-Collecting Traveling Salesman problem (PC-TSP) [8, 25, 24]. In the
PC-TSP, a salesman has two goals: to maximize the amount of reward and to minimize

the distance traveled. There are several ways of optimizing the tradeoff between these

conflicting objectives. In the PC-TSP itself, one seeks to minimize the linear combination

of the length of the tour and the prize left uncollected. An alternative approach is to fix

one of the objectives and optimize the other one. Thus, in k-TSP the salesman is required

to obtain a reward of value at least k while minimizing the length of the tour. In contrast,
in the Orienteering problem defined above, one instead fixes a deadline D (a maximum
distance that can be traveled) and aims to maximize the total reward collected. All three

problems are VP-hard by reduction from a classical Traveling Salesman Problem.

The PC-TSP can be approximated to within a factor of 2- ni1i (where n is the number of

nodes) using a classic Primal-Dual algorithm for the Prize Collecting Steiner Tree problem,
due to Goemans and Williamson [24]. The latter problem is identical to PC-TSP, except

that we are required to construct a tree (as opposed to a tour). There are several approxi-

mations known for the k-TSP problem [5, 21, 13, 6], the best being a (2 + e)-approximation

14

due to Arora and Karakostas [5]. Most of these approximations are based on Goemans-
Williamson's algorithm mentioned above. These algorithms for k-TSP extend easily to the
unrooted version of the Orienteering problem in which we do not fix the starting location [6].
Arkin et. al [4] give a constant-factor approximation to the rooted Orienteering problem
for the special case of points in the plane. However, there is no previously known 0(1)
approximation algorithm for the rooted Orienteering Problem or Discounted-Reward TSP
in general graphs.

1.1.2 Our approach

Although the exponential discount is relatively rare in combinatorial optimization, we es-
tablish a property of an optimal solution that connects our problem with the standard
framework of "prize-collecting" problems in which objective and/or constraints have a lin-
ear dependency on the path length. In particular we show that an optimal path must obtain
a constant fraction of its reward early on when it is not discounted too much. Thus, by
finding a path of fixed small length that collects a lot of (undiscounted) prize, we can ap-
proximate the optimal discounted reward. This is exactly the Orienteering problem. But,
as mentioned above, the Orienteering problem previously had no constant-factor approx-
imation for the rooted version, which is needed in order to solve our discounted reward
collection problem.

Although there exist several approximation algorithms for the complimentary k-TSP
problem, which can also produce paths of minimum length collecting a lot of prize, they are
not of much help here. Solutions produced by these algorithms for k-TSP meet the fixed
requirement on the total prize collected by allowing constant-factor approximation in the
total length of the tour. As length feeds into the exponent of our discount factor, a constant-
factor approximation in length turns into a polynomial factor in discounted reward, yielding
terrible approximation to that quantity.

In order to solve both the Discounted-Reward and Orienteering problems, we devise a
min-excess approximation algorithm for Prize Collecting TSP that approximates to within
a constant factor the optimum difference between the length of a prize-collecting path and
the length of the shortest path between its endpoints. Note that this is a strictly better
guarantee than what can be obtained by using an algorithm for k-TSP. The latter would
return a path that has length at most a constant multiple times the total optimal length
from s to t. This could be much larger than what we can accept for our algorithms.

We give a (2 + e)-approximation for the min-excess path problem. We then use this
algorithm as a subroutine to obtain a 6.75-approximation for the Discounted-Reward TSP
and a 4-approximation for the Orienteering problem. Although we use an approximation
algorithm for the k-path problem (a variant of the k-TSP problem with a path instead of
a tour) as a subroutine, our algorithms are largely combinatorial and exploit the structure
of the problems.

This portion of the thesis is based on joint work with Avrim Blum, Shuchi Chawla,
David Karger, Terran Lane, and Adam Meyerson. The preliminary version of the results
will appear in FOCS 2003 [12].

1.2 Planning in stages with growing costs

In the robot navigation scenario considered above the main uncertainty arises from not
knowing how long a robot will last ahead of time. Since this information becomes available

15

too late to be useful, we have to specify in advance a fixed solution that optimizes the

desired objective function in expectation.
However, for some planning scenarios with uncertain inputs it is possible to "wait and

see", deferring decisions about allocating resources and specifying strategies until after more

information becomes known. There is often a tradeoff involved, in that decisions made later

may be more expensive. For example, consider a scenario in which one needs to provision a

communication network with only a limited knowledge of the demands of the future users

of this network. It is usually preferable to reserve capacity ahead of time as one can get a

cheap rate from a wholesale market. However over-provisioning can be quite unprofitable
for the network provider. Instead, one can choose to use a conservative estimate of the
client's demand and purchase additional capacity "on-demand", albeit at a more expensive

rate.
We study this time-information tradeoff for combinatorial optimization problems with

uncertainty in the inputs in the context of the stochastic programming framework. For-

mally, we postulate a probability distribution Pr[I] over problem instances I of a given

combinatorial optimization problem. A feasible solution to each instance is a collection of

elements from a ground set that satisfies a certain set of constraints. We are allowed to

purchase a solution element e in advance at cost c(e), or pay Ac(e) (A > 1) for it once all

the "active" constraints that a solution has to satisfy are revealed. The goal is to select a

set of elements to be purchased in advance so as to minimize the cost of a feasible solution

in expectation over the choice of a random instance.
We examine a number of (generally KP-hard) combinatorial optimization problems in

which it makes sense postulate some probability distribution over input instances and to

specify a portion of the solution in advance. We develop algorithms to find approximately

optimal pre- and post-sampling parts of a feasible solution. In particular, we study stochas-
tic versions of the following problems:

Min Cost Flow. Given a source and sink and a probability distribution on demand, buy

some edges in advance and some after sampling (at greater cost) such that the given

amount of demand can be routed from source to sink. We show that this problem can

be solved via linear programming for a discrete demand distribution.

Bin packing. A collection of items is given, each of which will need to be packed into

a bin with some probability. Bins can be purchased in advance at cost 1; after the

determination of which items need to be packed, additional bins can be purchased at

cost A > 1. How many bins should be purchased in advance to minimize the expected

total cost? We give a fully polynomial-time approximation scheme for bounded values

of A, i.e. we can obtain a solution of cost (1+E) times the optimum in time polynomial

in the length of the input, A and 1/e.

Vertex Cover. A graph is given, along with a probability distribution over sets of edges

that may need to be covered. Vertices can be purchased in advance at cost 1; after

determination of which edges need to be covered, additional vertices can be purchased

at cost A. Which vertices should be purchased in advance? We give a 4-approximation

for the case where the probability distribution involves only polynomially many dis-

tinct edge sets, and a different 4-approximation algorithm for the case when each edge

has to be covered with fixed probability p.

Shortest Path. We are given a graph and told that a randomly selected pair of vertices

(or one fixed vertex and one random vertex) will need to be connected by a path. We

16

can purchase edge e at cost c, before the pair is known or at cost Ace after and wish
to minimize the expected total edge cost. We show that this problem is equivalent to
the multicommodity rent-or-buy problem, a known KP-hard network design problem
with a constant factor approximation algorithm.

Steiner Tree. A graph is given, along with a probability distribution over sets of terminals
that need to be connected up. Edge e can be purchased at cost ce in advance or at cost
Ace after the exact set of terminals is known. We give a constant factor approximation
for the case where the expected number of terminals is constant (generalizing the
Cheap Path result). We give a constant factor approximation for the case where
edges form an ultrametric and an O(log n) approximation for general edge costs.

1.2.1 Related work

Our preplanning approach is a special case of two-stage stochastic programming with re-
course, one of the most widely used stochastic programming models [42]. In this model,
a planner makes some decisions in the first stage, after which a random event occurs, for
example some uncertain parameters become known. In the second stage, a planner can
take a recourse action to respond to that event, e.g. improve a solution by using additional
information that has become available. The goal is to minimize the cost of the first-stage
decision plus the expected cost of the second-stage recourse action.

Stochastic programs are generally tackled via a combination of mathematical program-
ming and advanced probabilistic techniques. A key difficulty in solving these problems
efficiently is dealing with an uncertainty space that is huge and frequently leads to compu-
tationally intractable problems. In fact, several optimization problems that are polynomial-
time solvable with deterministic inputs become MP-hard in a stochastic setting [2]. When
the random data is discretely distributed, one may duplicate constraints for each potential
setting of uncertain parameters and write out the expectation as a finite sum of solution
costs over all outcomes weighted by the corresponding probability. The resulting formula-
tion is a deterministic linear (mathematical) program, but its size is proportional to the total
number of outcomes, which might be exponential in the size of the original problem. Even
in those cases in which it is possible to use only polynomially many linear constraints to
describe the set of feasible solutions (for an exponential number of potential outcomes), the
expected cost function frequently doesn't have the nice properties (linearity and convexity)
of the original cost function.

1.2.2 Our approach

We start by illustrating how a standard merger of linear programs approach described
above can be employed to solve stochastic versions of some combinatorial optimization
problems, using the min-cost flow and the vertex cover (with polynomially many distinct
edge sets) problems as examples. This method is feasible for both problems since in each
only a limited number of instances can arise, so a combined linear (integer) program that
represents the preplanning version of each problem has bounded size. Hence, we can find
an optimum solution for the preplanning version of the min-cost flow problem by applying
any polynomial-time algorithm for linear programming. In the case of the vertex cover
problem we show how to obtain a constant factor approximation by rounding the fractional
solution to the linear programming relaxation of the corresponding integer programming
formulation.

17

However, our main approach involves exploiting the underlying combinatorial structure
of the problems and making connections with already well-studied combinatorial optimiza-
tion problems with known approximation algorithms. One of our main tools is the "thresh-
old property", which is a local-optimality condition that specifies that an element is worth
purchasing in advance if and only if it is likely to be used in a solution of a random instance.
By aggregating probability mass (with only a slight increase in the solution cost) we can
ensure that certain solution elements get to be used with high probability. This in turn
allows us to determine the set of elements to buy in advance. For example, in the case
of the preplanning vertex cover problem in which edge have to be covered independently
with probability p, we can identify a subset of vertices of high degree, each of which has a
very high probability of being used in a nearly optimal vertex cover of a random instance.
We show that buying all of them in advance gives a solution of cost not much higher than
optimal.

Another important tool that we repeatedly apply involves reducing (modulo a small
constant factor) the preplanning version of an P'P-hard problem (such as the Steiner tree
problem) to a preplanning instance of another optimization problem (such as the minimum
spanning tree problem) that has a polynomial-time algorithm. The latter problem might
have some nice combinatorial properties that we can exploit in constructing our solution.

This portion of the thesis is based on joint work with Nicole Immorlica, David Karger,
and Vahab Mirrokni.

1.3 Planning routing paths with incomplete global knowl-
edge

In contrast to our preplanning framework, in which we have assumed that one eventually
learns the values of all uncertain parameters, there are many scenarios in which one does
not get to observe the full set of random inputs even after they are fully determined.
This is frequently the case in the distributed network setting, in which obtaining global
information might be too expensive (or might take too long), so one has to act based just
on local information. In such a case we are restricted to planning solutions that have simple
local specifications.

Consider a networking problem of distributing a single data item to multiple requesters
while minimizing network usage. If caches are placed at nodes in the network then as soon as
a requester's path to the root encounters a cached copy of the item, the item can be returned
without traversing the rest of the path. Thus every edge on the set of paths is traversed
at most once by the item, so the total number (cost) of edges on the paths connecting
root to requesters reflects the total network bandwidth (transmission cost) allocated to the
distribution of the item.

If the the full set of clients who would want an item is known in advance, we can solve
this problem by modeling it as a Steiner tree problem: connect all requesters to the root
using a minimum cost set of edges. Consider now a scenario in which the set of clients
requesting an item is random. In this case, there might be a separate optimal tree for each
possible set of requesters. However, constructing one requires learning the set of actual
requesters, information which often becomes available too late to be useful. Instead we aim
for a solution designed to make use only of local information - each client's decision on
whether to make a request. Thus, we would like to specify for each client a fixed path to
the central server to be used in case he decides to get an item. Alternatively, we might

18

require a "routing tree" solution, in which each node simply specifies a parent to which it
forwards any request it receives, and the path to the server is determined by following parent
pointers. Note that with both approaches, the path via which a client makes a request and
receives the data item of interest does not depend in any way on who else wants the same
item. We will show that these two approaches are in fact equivalent.

Such a philosophy has led us to study the following maybecast problem. We are given a
network with edge costs, a root node, and a collection of N clients at nodes in the network.
Each client i will choose to contact the root independently from others with some probability
p.. In advance of the requests we must choose, for each client in the network, a path from
the client's node to the root. If a client chooses to contact the root, the edges on this path
become active. Our goal is to minimize, over the random choices of the clients, the expected
cost of active network edges. We can think of this as a stochastic version of the Steiner tree
problem.

The maybecast problem is HP-complete, as the Steiner tree problem is a special case
with terminals having probability 1 of becoming active. The problem remains HP-complete
even in the uniform case of one client per network node and unit costs on edges. Thus, we
focus our attention on approximation algorithms.

1.3.1 Our approach

Given a particular set of paths for clients to use, the expected cost of an edge e is equal to
its length times the probability of it being used, e.g. the probability that at least one of
the clients whose assigned path contains e becomes active. Note that this probability is a
concave function of the number of clients assigned to use the edge. Thus, our problem can
be thought of as single-sink min-cost flow problem with concave costs. This implies that an
optimal solution to the maybecast problem is invariably a tree. However, the obvious first
choice of a shortest path tree can cost a factor as large as 0(n1/ 2) times the optimum in an
n-node graph.

To find a better tree, we analyze structural properties of an optimum solution. In
particular, we note that the optimum tree consists of a central "hub" area within which all
edges are basically certain to be used, together with a fringe of "spokes" in which multiple
clients can be considered to be contributing independently (and linearly) to the cost of
the solution. In other words, the optimum solution first aggregates probability mass, i.e.
clusters clients into "super-clients" whose probability of being active is very close to 1. The
resulting problem reduces to the deterministic case, e.g. an instance of the regular min-cost
Steiner tree problem.

To cluster clients, we introduce a new version of the facility location problem, which we
call the r-gathering problem. In this version, also known as a load balanced facility location
problem [26], every open facility is required to have some minimum amount of demand
assigned to it. We obtain a simple bi-criterion approximation for this problem, one which
is loose in both assignment cost and minimum demand. Our solution uses this algorithm
with r = 1 to build hubs which are then connected up to the root using an approximation
algorithm for the Steiner tree problem to yield a constant factor approximation to the
maybecast problem.

This portion of the thesis is based on joint work with David Karger. A preliminary
version of the results appeared in FOCS 2000 [33].

19

1.3.2 Related Work

The maybecast problem can be represented as a kind of min-cost flow problem with infinite

capacities and a concave cost function. We can think of a client i as having "demand" for

a flow of capacity pi to the root. The cost of routing along an edge exhibits an economy of

scale: the more paths use an edge, the cheaper it is per path. By approximating our cost

function by a piece-wise linear function, we can establish a connection with the buy-at-bulk

network design problem (originally introduced by Salman et al. [49]), another problem which

exhibits an economy of scale. As an example, consider the problem of wiring a telephone

network in some metric space such that every pair of clients is connected by a path of

capacity one (devoted to just that pair). Our approximate cost function would correspond

to the situation in which two types of wires are available: low cost wires of unit capacity,
and "infinite" capacity wires of large cost.

In the general buy-at-bulk network design problem, one is given an undirected graph,
and a set of source-sink pairs with non-negative demands. The goal is to install enough

capacity on the edges in order to route all the demands while minimizing the total cost,
which is a concave function of the capacity bought. The problem is known to be .'P-
hard [49].

Prior work. Awerbuch and Azar [7] provided a randomized O(log 2 n) approximation al-

gorithm for this problem, where n is the number of nodes in the network. Recent improve-

ments in tree embedding guarantees (employed by the latter algorithm) yield a somewhat

better approximation ratio of O(logn) [18]. Subsequent work has tended to focus on the

single-sink version of buy-at-bulk network design and its variations. Andrews and Zhang [3]
gave an O(K 2)-approximation algorithm for the access network design problem, a special

case of the sigle-sink buy-at-bulk network design, which was subsequently improved to a

constant factor (independent of K) by Guha et al. [26]. However, restrictions placed on

the cost function used in the access network design problem preclude application to our

maybecast problem.

Subsequent results. Since the initial (conference) publication of our results [33] there

followed a number of developments in network design with economies of scale. In particular,
considerable improvements have been made in performance guarantees for single-sink buy-

at-bulk network design with arbitrary concave, piece-wise linear cost function [22, 27, 54],
with the best being a 73-approximation due to Gupta et. al [30]. Although this result

is applicable to the maybecast problem, we achieve a better guarantee of 37 by using our

customized algorithm for the problem.
Finally, we note that our maybecast problem can be modeled (modulo a small constant

factor) as an instance of the Connected Facility Location (CFL) problem formulated by

Gupta et al. [28] after the initial publication of our work. In the latter problem one seeks to

open a subset of facilities, assign demands to them, and finally connect up all the opened

facilities via a min-cost Steiner tree. The current state-of-art algorithm for the CFL provides

an approximation guarantee of 3.55 [30] which translates into roughly 6-approximation for

the maybecast problem.

20

Chapter 2

Profit-making Under Uncertainty
Algorithms for traveling salesmen and mobile robots

In this chapter we consider a scenario of planning under uncertainty motivated by an
application from the field of artificial intelligence, in which a mobile robot delivers packages
to various locations. The goal is to design a route for robot to follow so as to maximize
the value of packages successfully delivered before the robot's battery runs out or it breaks
down. If one can estimate in advance how long the robot is going to last, then this problem
can be modeled as an instance of the Orienteering problem, a variant of the well-studied
Prize-Collecting Traveling Salesman problem (PC-TSP). Alternatively, taking the robot's
lifetime to be a random variable with an exponential distribution and aiming for a route
that maximizes the expected reward collected leads us to consider the Discounted-Reward
Traveling Salesman Problem. We give constant factor approximation algorithms for both
problems. Although the unrooted orienteering problem, where there is no fixed start node,
has been known to be approximable using algorithms for related PC-TSP problems, ours is
the first to approximate the rooted variant, solving an open problem [6, 4].

2.1 Introduction

Consider a robot delivering packages to various locations in a building. Each package
has a value or importance associated with it. The robot should deliver packages in a
timely manner, with the more important packages getting priority over less important ones.
Unfortunately, there is a certain degree of unreliability in the robot's behavior: for example,
it may break down or its battery may get discharged before all the packages are delivered
and the route is completed. The objective then becomes to maximize the value of packages
that can be delivered before the robot becomes disabled.

This type of problem with uncertainty about the future can be modeled in many ways.
In the artificial intelligence community, motivated by ideas from Markov decision processes
(MDPs) [52, 43, 36, 37], it is traditional to consider a "discounted reward model" in which
the value associated with reaching a given state decreases the longer it takes to reach that
state. The theory community, on the other hand, has modeled this scenario as kinds of
Prize-Collecting Traveling Salesman Problems [25, 8, 24, 6], in which the goal is to obtain
a required amount of prize as quickly as possible.

21

2.1.1 Markov Decision Processes

A Markov Decision Process (MDP) consists of a state space S, a set of actions A, a prob-
abilistic transition function T, and a reward function R. At any given time step, an agent
acting in an MDP will be located at some state s E S, where he can choose an action
a E A. The agent is subsequently relocated to a new state s' determined by the transition
probability distribution T(s'ls, a). The probabilistic nature of the transition function allows
one to model unreliability in the robot's behavior or external forces that might do some-
thing unpredictable to the robot's state. At each state s, an agent collects reward R(s) (or,
sometimes, rewards are put on state-action pairs). For example, a package-delivery robot
might get a reward every time it correctly delivers a package. Note that each action defines
a probability distribution of the next state; if actions were pre-determined, then we would
get just a Markov chain.

In order to encourage the robot to perform the tasks that we want, and to do so in a
timely manner, a standard objective considered in MDPs is to maximize discounted reward.
Specifically, for a given discount factor -y E (0, 1), the value of reward collected at time t is
discounted by a factor -y. Thus the total discounted reward, which we aim to maximize, is
Rtot = o R(st)yt. This guides the robot to get as much reward as possible as early as
possible.Exponential discounting is a good model for scenarios in which at each time step,
there is some fixed probability the tour will end (the robot loses power, a catastrophic failure
occurs, etc.) In that case, the probability that the robot is alive at time t is exponentially
distributed. Thus, for a given path, the total discounted reward is equal to the amount
of reward collected on that path in expectation. Exponential discounting also has the nice
mathematical property that it is time-independent, meaning that an optimal strategy can
be described just by a policy, a mapping from states to actions. The goal of planning in an
MDP is to determine the optimal policy: the mapping of states to actions that maximizes
expected discounted reward E [Rtot].

There are well-known algorithms for solving MDPs in time polynomial in the state
space [9, 43, 52]. However, one drawback of using the MDP model in for our application is
that the robot receives the reward for a state every time that state is visited (or every time
the robot performs that action from that state if rewards are on state-action pairs). Thus,
in order to model a package-delivery or search-and-rescue robot, one would need a state
representing not only the current location of the robot, but also a record of all locations it
has already visited (or alternatively, which packages remain to be delivered). This causes an
exponential increase in the size of the state space. Thus, it would be preferable to directly
model the case of rewards that are given only the first time a state is visited [36, 37.

As a first step towards tackling this general problem, we restrict our consideration to
deterministic, reversible actions. This leads us to study the Discounted-Reward Traveling
Salesman Problem, in which we assume we have an undirected weighted graph (edge weights
represent the time to traverse a given edge), with a prize (reward) value 7, on each vertex
v, and our goal is to find a path visiting each vertex v at time tv so as to maximize E rot

2.1.2 PC-TSP and Orienteering problems

A different approach to our prize-distance tradeoff is to estimate the robot's lifetime and
use it as a hard deadline on the time the robot may spend delivering its packages. The
robot gets a reward equal to the value (prize) of the package on a delivery, but only if the
delivery is made before a deadline D. If the deadline is exceeded, he gets no reward. This

22

problem has been studied previously as the Orienteering [25] or Bank Robber's [6] Problem.
Orienteering belongs to the family of the Prize-Collecting Traveling Salesman problems

(PC-TSP). Given a set of cities with non-negative prize values associated with them and
a table of pairwise distances, a salesman needs to pick a subset of the cities to visit so
as to minimize the total distance traveled while maximizing the total amount of prize
collected. Note that there is a tradeoff between the cost of a tour and how much prize it
spans. The original version of the PC-TSP introduced by Balas [8] deals with these two
conflicting objectives by combining them: one seeks a tour that minimizes the sum of the
total distance traveled and the penalties (prizes) on cities skipped, while collecting at least
a given quota amount of prize. Goemans and Williamson subsequently focused on a special
case of this problem in which the quota requirement is dropped, and provided a primal-dual
2-approximation algorithm for it [24].

An alternative approach to the bicriterion optimization is instead to optimize just one
of the objectives while enforcing a fixed bound on the other. For example, in a quota-driven
version of the PC-TSP, called k-TSP, every node has a prize of one unit and the goal is to
minimize the total length of the tour, while visiting at least k nodes. Similarly, Orienteering
can be viewed as a budget-driven version of the PC-TSP, since we are maximizing total
amount of prize collected, while keeping the distance traveled below a certain threshold.'

There are several constant-factor approximations known for the k-TSP problem [5, 21,
13, 6], the best being a (2 + e)-approximation due to Arora and Karakostas [5]. Most of
these results are based on a classic primal-dual algorithm for PC-TSP due to Goemans
and Williamson [24] (mentioned above). The basic idea behind these algorithms is to run
Goemans-Williamson's primal-dual algorithm for PC-TSP on a series of instances derived
from the k-TSP problem with different (uniform) prize values assigned to nodes. By scaling
prizes up or down, we can control how many vertices get picked by the algorithm for a tour.
Chudak et al. show that this prize-scaling technique can be interpreted as a Lagrangean
relaxation approach [16]. They start with a linear program for the k-MST problem that is
closely modeled after the linear programming formulation of PC-TSP used by Goemans and
Williamson in their primal-dual algorithm. Taking the quota constraint (which requires a
tour to span at least k vertices) and applying Lagrangean relaxation to it, one obtains a
linear program for PC-TSP with the Lagrangean factor playing the role of node prizes.

The algorithms for k-TSP extend easily to the unrooted version of the Orienteering
problem in which we do not fix the starting location [6]. In particular, given a tour (cycle)
of value H whose length is cD for some c > 1, we can just break the cycle into c pieces
of length at most D, and then take the best one, whose total value will be at least H/c.
Noting that an optimal cycle of length 2D must span at least as much prize as an optimal
path of length D (since could just traverse the path forward and then back), we get a 2c-
approximation guarantee on the amount of prize contained in a segment we pick. However,
this doesn't work for the rooted problem because the "best piece" in the above reduction
might be far from the start. Arkin et. al [4] give a constant-factor approximation to the
rooted Orienteering problem for the special case of points in the plane. However, there is
no previously known 0(1) approximation algorithm for the rooted Orienteering Problem in
general graphs. It should be noted that the Lagrangean relaxation technique used to solve
k-MST is not quite applicable to the Orienteering problem because of a mismatch in the

'Strictly speaking, a budget-driven version of the PC-TSP would require a tour, e.g. a path that ends
at the start node, whereas the Orienteering problem is content with a path that ends at an arbitrary node.
We consider both versions of the problem.

23

objective functions: PC-TSP minimizes the sum of the total edge cost and prize foregone,
whereas Orienteering maximizes the total prize collected. Applying Lagrangean relaxation

to the budget constraint on the length of a tour results in an objective function that max-

imizes the total prize collected minus distance traveled. Although from the viewpoint of

optimization this "net-worth" version of the PC-TSP is equivalent to the traditional (min-

imization) version, the same is not true when it comes to approximation. In particular, the

net-worth objective is X'P-hard to approximate to within any constant factor [19].

2.1.3 Our Contribution

In this chapter, we give constant factor approximation algorithms for both the Discounted-

Reward TSP and Orienteering problems. To do this, we devise a min-excess approximation
algorithm that, given two endpoints s and t, approximates to within a constant factor the

optimum difference between the length of a prize-collecting s-t path and the length of the

shortest path between the two endpoints. Note that this is a strictly better guarantee than

what can be obtained by using an approximation algorithm for k-TSP, which would return

a path that has length at most a constant multiple times the total optimal length from s to

t.
Using an approximation algorithm with a guarantee of acp for the min-cost s-t path

problem as a subroutine, we get an aEP = lcp - 1 approximation for the min-excess

(s, t)-path problem, a 1 + [aEP] approximation for Orienteering, and a roughly e(aEP + 1)
approximation for Discounted-Reward TSP. Using results of Chaudhuri et. al [15], we get

constants of 2 + e, 4, and 6.75 + e for these problems respectively.

2.1.4 Organization

The rest of this chapter is organized as follows. We begin with some definitions in section 2.2.

In section 2.3 we describe an algorithm for the min-cost path problem based on the results

from the paper by Chaudhuri et. al [15]. We then give an algorithm for Min-Excess path in

section 2.4, followed by algorithms for Discounted PC-TSP and Orienteering in sections 2.5
and 2.6 respectively. In section 2.7 we extend some of the algorithms to tree and multiple-
path versions of the problems. We conclude in section 2.8.

2.2 Formal Problem Definitions

Our work encompasses a variety of problems. In this section we introduce the notation to
be used throughout the chapter, provide formal problem statements and describe a uniform

naming scheme for them.
Let G = (V, E) be an undirected graph, with a distance function on edges, d : E -+ IR+,

and a prize or reward function on nodes, 7 : V -+ IR+. Let 7r, = 7(v) be the reward on

node v. Let s E V denote a special node called the start or root.

For a path P visiting u before v, let dp(u, v) denote the length along P from u to v. Let

d(u, v) denote the length of the shortest path from node u to node v. For ease of notation,
let dv = d(s, v) and dp(v) = dp(s, v). For a set of nodes V' C V, let II(V') = Ev, 7v.

For a set of edges E' C E, let d(E') = ZeGE, d(e).
Our problems aim to construct a certain subgraph-a path, tree, or cycle, possibly with

additional constraints. Most of the problems attempt a trade-off between two objective
functions: the cost (length) of the path (or tree, or cycle), and total prize spanned by it.

24

From the point of view of exact algorithms, we simply need to specify the cost we are will-
ing to tolerate and the prize we wish to span. Most variants of this problem, however, are
.'P-hard, so we focus on approximation algorithms. We must then specify our willingness
to approximate the two distinct objectives. We refer to a min-cost problem when our goal
is to approximately minimize the cost of our objective subject to a fixed lower bound on
prize (thus, prize is a feasibility constraint while our approximated objective is cost). Con-
versely, we refer to a max-prize problem when our goal is to approximately maximize the
prize collected subject to a fixed upper bound on cost (thus, cost is a feasibility constraint
while our approximated objective is prize). For example, the min-cost tree problem is the
traditional k-MST: it requires spanning k prize and aims to minimize the cost of doing
so. Both the rooted and unrooted min-cost tree problems have constant-factor approxima-
tions [13, 6, 21, 5, 32]. The max-prize path problem, which aims to find a path of length at
most D from the start node s that visits a maximum amount of prize, is the Orienteering
problem.

The main subroutine in our algorithms requires that we introduce a variation on ap-
proximate cost. Define the excess of a path P from s to t to be d'(s, t) - d(s, t), that is, the
difference between that path's length and the distance between s and t in the graph. Obvi-
ously, the minimum-excess path that spans total prize II(P) is also the minimum-cost path
spanning prize II(P); however, a path of a constant factor times minimum cost may have
more than a constant-factor times the minimum excess. We therefore consider separately
the minimum excess path problem. Note that an (s, t) path approximating the optimum
excess e by a factor a will have length d(s, t) + ac < a(d(s, t) + E) and therefore approxi-
mates the minimum cost path by a factor a as well. Achieving a good approximation to
this min-excess path problem will turn out to be a key ingredient in our approximation
algorithms.

Finally, as discussed earlier, we consider a different means of combining length and cost
motivated by applications of Markov decision processes. We introduce a discount factor
-y < 1. Given a path P rooted at s, let the discounted reward collected at node v by path
P be defined as pp = 7rVYd(That is, the prize gets discounted exponentially by the
amount of time it takes for the path to reach node v. The max-discounted-reward problem
is to find a path P rooted at s, that maximizes pp = vp pp. We call this the discounted-
reward TSP. Note that the length of the path is not specifically bounded in this problem,
though of course shorter paths produce less discounting.

2.2.1 Results

We present a constant-factor approximation algorithm for the max-prize path (rooted Ori-
enteering) problem, solving an open problem of [6, 4], as well as the discounted-reward TSP.
Central to our results is a constant-factor approximation for the min-excess path problem
defined above, which uses an algorithm for the min-cost s-t path problem as a subroutine.
We also give constant-factor approximations to several related problems, including the max-
prize tree problem-the "dual" to the k-MST (min-cost tree) problem-and max-prize cycle.
Specific constants are given in Table 2.1.

Our approximation algorithms reflect a series of reductions from one approximation
problem to another. Improvements in the approximations for various problems will prop-
agate through. We state approximation factors in the form axy where XY denotes the
problem being approximated; the first letter denotes the objective (cost, prize, excess, or
discounted prize denoted by C, P, E, and D respectively), and the second the structure

25

Problem Current approx. Source/Reduction

min-cost s-t path (acp) 2 + E [15]
min-excess path (aEp) 2.5 + E 0 (aCcp) -

2 + c using &Cp from [15]
max discounted-prize path (aDP) 6.75 + E (1 + aEp)(1 + 1/aEp)aEP

max-prize path (app) 4 1 + [aEPl
max-prize tree (a PT) 8 2app

max-prize cycle (apc) 8 2app

max-prize multiple-path (akPp) 4.52 (1 - el/aOpp-l

max discounted multiple-path (akDP) 7.26 + 6 (1 - el/QDP)-1

Table 2.1: Approximation factors and reductions for our problems.

(path, cycle, or tree denoted by P, C, or T respectively).
Note that for the Min-Excess problem, we assert two approximation factors of 2.5 + E

and an improved factor of 2+6. The first one is obtained using an algorithm for the min-cost

s-t path as a "black box", so it applies to any such algorithm. The latter result is based

explicitly on the the min-cost s-t path algorithm of [15] and employs a tight analysis of its

approximation guarantee. To be more precise, we obtain aEP - max(acp, qacp - 1) using
properties of the latter algorithm.

2.2.2 Preliminaries

Our algorithms for the max-prize variants guess the value H of the optimum solution (or

some closely related value) via binary search 2 and then apply our min-excess path algorithm

with the target prize value rl. The latter algorithm uses a subroutine that finds a path of

small length that spans a given amount of prize. Moreover, this subroutine is invoked as

part of a dynamic program for all possible prize values in the range from 0 up to the target

value 11. In order for our algorithms to run in polynomial time, the target prize value

H has to be polynomially bounded (in the number of vertices n). We can ensure this by

multiplying all vertex prizes by nk/H (for some large constant k), thus setting the target

value to nk. If we now round every prize down to the nearest integer, we lose at most n

units of prize overall, which is a negligible multiplicative factor. This negligible factor does

mean that our approximation algorithms for the max-prize problems with guarantee c on

polynomially bounded inputs have (weaker) guarantee "arbitrarily close to c" on arbitrary

inputs. In the following discussion of the min-cost or min-excess variants, we will assume

that the given prize value H is polynomially bounded.

2.3 Min-Cost path algorithm

In the following sections we use as a subroutine an approximation algorithm for the min-cost

path problem, in which given a target prize value k, the goal is to find a path between two

pre-specified nodes of (approximately) minimum length that collects prize at least k. Note

2Technically we will be finding the highest value H such that our algorithm comes within its claimed
approximation ratio.

26

that the k-TSP problem is a special case of the min-cost path problem (with start and end
nodes equal).

Let P* be an optimum min-cost s-t path that spans at least k units of prize. We can
find a path with prize value k that achives approximation guarantee acp = aCC + 1 by the
following algorithm that we will call MCP. MCP begins by merging s and t to a vertex r,
and solving k-TSP with root r. The original path solution has become a (feasible) cycle,
so the optimum cycle length is at most d(P*), meaning we find an approximate solution
of length acCd(P*). On the original graph, this solution may be a path from s to t, in
which case we are done. Alternately, it is either a cycle ending at s, or two disjoint cycles:
one at s and one at t. In these latter cases, we simply add a shortest s-t path (which is
clearly no longer than d(P*)), increasing the approximation ratio by at most 1. Substituting
the best currently known approximation factor for k-TSP acc = 2 + e [5], we obtain an
approximation guarantee of 3 + e for the min-cost path problem.

However, an even better approximation guarantee can be obtained by using results from
the recent paper by Chaudhuri et. al [15]. This paper provides an approximation algorithm
for the minimum latency problem by repeatedly computing a solution to the k-MST (min-
cost tree) problem whose cost is bounded in terms of the cost of the min-cost s-t path
containing k vertices (such a path provides a lower bound on the latency of the kth vertex
in a minimum latency tour). In particular, the subroutine of Chaudhuri et. al returns a
tree containing s and t that spans at least k vertices and has cost at most (1 + 6) times
the cost of the shortest s-t path with k vertices, for any fixed constant 6. Note that the
algorithm can be used to obtain a tree spanning a given target prize value via the following
tansformation of the original graph: each node v with a prize 7rv gets 7r, - 1 leaves attached
to it. (Complete details of such a transformation can be found [39].)

To construct an s-t path from the tree obtained by the subroutine of Chaudhuri et. al,
we can double all the edges, except those along the tree path from s to t. This gives us a
partial "Euler tour" of the tree that starts at s and ends at t. Clearly, the cost of such a
path is at most (2+6) times the cost of the shortest s-t path spanning prize k, for any fixed
constant 6.

2.4 Min-Excess Path

We now proceed to give our approximation algorithm for the Min-Excess Path (MEP)
problem. Let P* be the shortest path from s to t with II(P*) > k. Let e(P*) d(P*) -
d(s, t). Our algorithm returns a path P with I(P) > k and length d(P) d(s, t) +

aEPE(P*), where aEP = iaCP - . Thus we obtain a (2.5+6)-approximation to min-excess
path using an algorithm of Chaudhuri et. al [15] for min-cost s-t path with acp = 2 + 6.

The idea for our algorithm for min-excess path is as follows. Suppose that the optimum
solution path encounters all its vertices in increasing order of distance from s. We call
such a path monotonic. We can find this optimum monotonic path via a simple dynamic
program: for each possible prize value p and for each vertex i in increasing order of distance
from s, we compute the minimum excess path that starts at vertex s, ends at i, and collects
prize at least p.

We will solve the general case by breaking the optimum path into continuous segments
that are either monotonic (so can be found optimally as just described) or "wiggly" (gener-
ating a large amount of excess). We will show that the total length of the wiggly portions
is comparable to the excess of the optimum path; our solution uses the optimum monotonic

27

V V2 V

t

S

b b2

type 1 type 2 type I type 2 type 1 type 2

Figure 2-1: Segment partition of a path in graph G

paths and approximates the length of the wiggly portions by a constant factor, yielding an
overall increase proportional to the excess.

Consider the optimal path P* from s to t. We divide it into segments in the following
manner. For any real d, define f(d) as the number of edges on P* with one endpoint at
distance less than d from s and the other endpoint at distance at least d from s. Note that

f(d) > 1 for all 0 < t < dt (it may also be nonzero for some d > dt). Note also that f is
piecewise constant, changing only at distances equal to vertex distances. We break the real
line into intervals according to f: the type-1 intervals are the maximal intervals on which

f (d) = 1; the type-2 intervals are the maximal intervals on which f (d) > 2. These intervals
partition the real line (out to the maximum distance reached by the optimum solution) and
alternate between types 1 and 2. Let the interval boundaries be labeled 0 = b1 < b2 ... bm,
where bm is the maximum distance of any vertex on the path, so that the ith interval is
[bi, bi+1]. Note that each bi is the distance label for some vertex. Let V be the set of vertices
whose distance from s falls in the ith interval. Note that the optimum path traverses each
set Vi exactly once-once it leaves some V it does not return. For any pair of adjacent
intervals, one must be of type-1; if the path left this interval and returned to it then f(d)
would exceed 1 within the interval. Thus, the vertices of P* in set Vi form a contiguous
segment of the optimum path that we label as Si = P* n V. A segment partition is shown

in Figure 2-1.
Note that for each i, there may be (at most) 1 edge crossing from V to Vi+1. To simplify

the next two lemmas, let us split that edge into two with a vertex at distance bi from s,
so that every edge is completely contained in one of the segments (this can be done since
one endpoint of the edge has distance exceeding bi and the other endpoint has distance less

than bi). Placing a vertex at each interval boundary ensures that the length of a segment

is equal to the integral of f(d) over its interval.

Lemma 2.1. A segment Si of type-1 has length at least bi+ 1 - bi. A segment Si of type-2

has length at least 3(bi+1 - bi), unless it is the segment containing t in which case it has

length at least 3(dt - bi).

Proof. The length of segment Si is lower bounded by the integral of f(d) over the ith

interval. In a type-1 interval the result is immediate. For a type-2 interval, note that
f(d) > 1 actually implies that f(d) 3 by a parity argument-if the path crosses distance

28

d twice only, it must end up at distance less than d.

Corollary 2.2. The total length of type-2 segments is at most 3c/2.

Proof. Let fi denote the length of segment i. We know that the length of P* is dt +e = f*
At the same time, we can write

m-1

dt < brn (bi+ - bi) Z fi + Z fi/ 3

i type-1 i type-2

It follows that

e= i - d > 2fi/3

i type-2

Multiplying both sides by 3/2 completes the proof. E

Having completed this analysis, we note that the corollary remains true even if we do
not introduce extra vertices on edges crossing interval boundaries. The crossing edges are
no longer counted as parts of segments, but this only decreases the total length of type-2
segments.

2.4.1 A Dynamic Program

Our algorithm computes, for each interval that might be an interval of the optimum solution,
a segment corresponding to the optimum solution in that interval. It then uses a dynamic
program to paste these fragments together using (and paying for) edges that cross between
segments. The segments we compute are defined by 4 vertices: the closest-to-s and farthest-
from-s vertices, c and f, in the interval (which define the start- and end-points of the
interval: our computation is limited to vertices within that interval), and the first and last
vertices, x and y, on the segment within that interval. They are also defined by the amount
p of prize we are required to collect within the segment. There are therefore O(In 4) distinct
segment to compute, where H is the total prize in the graph. For each segment we find an
optimum solution for a type-1 and a type-2 interval. For a type-1 interval the optimum path
is monotonic; we can therefore compute (in linear time) an optimum (shortest) monotonic
path from x to y that collects prize p. If the interval is of type-2, the optimum path need not
be monotonic. Instead, we use the min-cost path algorithm from Section 2.3 to approximate
to within a constant factor the minimum length of a path that starts at x, finishes at y,
stays within the boundaries of the interval defined by c and f, and collects prize at least p.

Given the optimum type-1 and near-optimum type-2 segment determined for each set
of 4 vertices and prize value, we can find the optimal way to paste some subset of them
together monotonically using a dynamic program. Note that the segments corresponding to
the optimum path are considered in this dynamic program, so our solution will be at least
as good as the one we get by using the segments corresponding to the ones on the optimum
path (i.e., using the optimum type-1 segments and using the approximately optimum type-2
segments). We need only show that this solution is good.

We focus on the segments corresponding to the optimum path P*. Consider the segments
Si of length £i on the optimum path. If Si is of type-1, our algorithm will find a (monotonic)
segment with the same endpoints collecting the same amount of prize of no greater length.

29

0

If Si is of type-2, our algorithm (through its use of subroutine MCP) will find a path with

the same endpoints collecting the same prize over length at most aCPfi. Let L 1 denote the

total length of the optimum type-1 segments, together with the lengths of the edges used to

connect between segments. Let L 2 denote the total length of the optimum type-2 segments.

Recall that L 1 + L 2 = dt + E and that (by Corollary 2.2) L 2 < 36/2. By concatenating the

optimum type-1 segments and the approximately optimum type-2 segments, the dynamic

program can (and therefore will) find a path collecting the same total prize as P* of total

length

L 1 + aCpL 2 = L 1 + L 2 + (acp - 1)L 2

<cdt + r + (acp - 1)(3E/2)

- ti + (1 - 16.E2 1

In other words, we approximate the minimum excess to within a factor of 3aCp - -

2.4.2 An Improved Approximation for Min-Excess

Our approximation guarantee for min-excess path aEP is based on the approximation guar-

antee acP for the min-cost path problem. However, we use the algorithm for the latter

problem as a "black-box" subroutine. In this section we show how to slightly improve

our approximation guarantee for min-excess path problem by exploiting the details of the

min-cost path algorithm derived from the work of Chaudhuri et. al [15].

Let us consider a segment of type-2 of an optimum min-excess path with endpoints u

and v and length f = d(u, v)+ e. If we apply the algorithm of Chaudhuri et. al with roots u

and v, we get a tree containing u and v of total edge cost arbitrarily close to f. Our min-cost

path algorithm then converts this tree into a path from u to v by doubling all edges, except

for the ones on the tree path from u to v. Noting that the total cost of "non-doubled" edges

is at most d(u, v) = f - e, we get a path from u to v of length at most (1 + 6) + E, for any

fixed small constant 6.
Next, applying Corollary 2.2 just to the path between u and v (e.g. taking u in place

of s and v in place of t), we must have that f < 36/2. Thus, the length of the segment of

type-2 between u and v found in the process of running our dynamic program is at most

3 3
f + (1 + -6)E = d(u, v) + (2 + -6)6.

2 2

In other words, we can approximate excess of a wiggly segment of type-2 to within a factor

arbitrarly close to 2. Now recall that our dynamic program finds optimal monotone segments

of type 1. Thus, summing over all segments, we get an approximation ratio of 2+ 6' for the

min-excess path problem, for any small constant 6'.

2.5 Maximum Discounted-Prize Path

In this section we present an approximation algorithm for the Discounted-Reward TSP

problem which builds upon our min-excess path algorithm. Recall that our goal is to find

a path P that maximizes total discounted reward p(P) = irv. Assume without loss

of generality that the discount factor is -y = 1/2-we simply rescale each length f to f' such

30

ALGORITHM FOR DISCOUNTED PC-TSP

1. Re-scale all edge lengths so that -y = 1/2.

2. Replace the prize value of each node with the prize discounted by the shortest path
to that node: 7'r = Y d7vrv. Call this modified graph G'.

3. Guess t-the last node on optimal path P* with excess less than e.

4. Guess k-the value of '(Pt*).

5. Apply our min-excess path approximation algorithm to find a path P collecting
scaled prize k with small excess.

6. Return this path as the solution.

Figure 2-2: Approximation algorithm for Maximum Discounted-Prize Path

that = = (D)", i.e. f' = f log2 (1/Y)-
We first establish a property of an optimal solution that we make use of in our algorithm.

Define the scaled prize 7' of a node v to be the (discounted) reward that a path gets at node
v if it follows a shortest path from the root to v. That is, 7r' = 1 ,1 yd_. Let H'(P) = Z p -F'.

Note that for any path P, the discounted reward obtained by P is at most fl'(P).
Now consider an optimal solution P*. Fix a parameter e that we will set later. Let t be

the last node on the path P* for which dp* - d < e-i.e., the excess of path P* at t is at
most e. Consider the portion of P* from root s to t. Call this path Pt*.

Lemma 2.3. Let Pt* be the part of P* from s to t. Then, p(Pt*) > p(P*)(1 -

Proof. Assume otherwise. Suppose we shortcut P* by taking a shortest path from s to
the next node visited by P* after t. This new path collects (discounted) rewards from the
vertices of P* - Pt*, which form at least 1 of the total by assumption. The shortcutting
procedure decreases the distance on each of these vertices by at least e, meaning these
rewards are "undiscounted" by a factor of at least 2 ' over what they would be in path P*.
Thus, the total reward on this path exceeds the optimum, a contradiction. 1:1

It follows that we can approximate p(P*) by approximating p(P*). Based on the above
observation, we give the algorithm of Figure 2-2 for finding an approximately optimal so-
lution. "Guess t" is implemented by going through all possible vertices, and "guess k" is
done by performing a binary search in the range from 0 to the total (rescaled) prize value
of the graph.

Our analysis below proceeds in terms of a = aEP, the approximation factor for our
min-excess path algorithm.

Lemma 2.4. Our approximation algorithm finds a path P that collects discounted reward
p(P) ;> 1'(P)/20'.

Proof. The prefix Pt* of the optimum path shows that it is possible to collect scaled prize
k = H'(Pt*) on a path with excess e. Thus, our approximation algorithm finds a path
collecting the same scaled prize with excess at most aE. In particular, the excess of any

31

vertex v in P is at most ac. Thus, the discounted reward collected at v is at least

p(v) > 7rv dvQtf = rv (-)dv (-)C =r V
2 2 2 2

Summing over all v c P completes the proof. E

Combining Lemma 2.4 and Lemma 2.3, we get the following:

Theorem 2.5. The solution returned by the above algorithm has p(P) > (1-1)p(P*)/2 .

Proof.

p(P) > '(P)/2 6 by Lemma 2.4

> I'(Pt*)/2 E by choice of P

> p(Pt*)/2c by definition of 7r'

> (I - p(P*)/2ac by Lemma 2.3

2EZ

We can now set e as we like. Writing x = 2- we optimize our approximation factor by
maximizing (1 - x)xa to deduce x = a/(a + 1). Plugging in this x yields an approximation

ratio of (1 + aEP)(1 + 1/aEp)QEP.

2.6 Orienteering

In this section we present an algorithm for computing an approximately maximum-prize

path of length at most D that starts at a specified vertex s. We solve this problem by
invoking the algorithm for min-excess path given in section 2.4 as a subroutine. Our algo-

rithm for the max-Prize problem is given in Figure 2-3. As before "guess t" is implemented

by exhausting all polynomially many possibilities, and "guess k" is done by performing a

binary search. We analyze this algorithm by showing that any optimum orienteering solu-

tion contains a low-excess path which, in turn, is an approximately optimum orienteering

solution.

More precisely, we prove that for some vertex v, there exists a path from s to v with

excess at most D-dv that collects prize at least - where aEP is the approximation ratio

for min-excess path, app is the desired approximation ratio for Max-Prize Path, and f* is

the prize of the optimum Max-Prize Path. Assuming this path exists, our min-excess path

computation on this vertex v will find a path with total length at most dv + aEP D-dy = D
CEEP

and prize at least -, providing an app-approximation for orienteering.

Let t be the vertex on the optimum orienteering path that has maximum distance from

s. We first consider the case where the optimum orienteering path ends at t (as opposed to

continuing past t back towards s).

Lemma 2.6. Suppose there exists a path P from s to t of length at most D that collects

prize 1, such that t is the furthest point from s along this path. Then for any integer r > 1
there exists a path from s to some node v with excess at most D-dI and prize at least r.

32

ALGORITHM FOR THE ORIENTEERING PROBLEM

1. Guess k, the amount of prize collected by an optimum orienteering solution.

2. For each vertex v, compute a min-excess path from s to v

3. Find a vertex v such that the min-excess path from s to v obtained in previous
step has length at most D.

4. Return the corresponding path from s to v.

Figure 2-3: Approximation algorithm for Max-Prize Path

Proof. For each point u along the original path P, let e. = d - d"; in other words, Cu is
the excess in the length of the path to u over the shortest-path distance. Since the total
length of path P is at most D, we must have et < D - dt.

Consider mapping the points on the path to a line from 0 to et according to their excess

(note that excess only increases as we traverse path P). Divide this line into r intervals
with length r. Some such interval must contain at least 1 prize, since otherwise the entire

interval from 0 to et would not be able to collect prize I. Suppose such an interval starts
at node u and ends at node v. We consider a path from s to v that takes the shortest s-u
path, then follows path P from u to v. This new path collects all of the prize in the interval
from u to v of the original path, which is at least H as desired. The total length of this new
path is

du + dp(u,v) = du + dp - dp = dv +ev - e < dv + .

Thus, this path has excess at most t = D-dt < D-dv as desired. l
r r - r

Of course, in general the optimum orienteering path might have some intermediate node
that is farther from s than the terminal node t. We will generalize the above lemma to
account for this case.

Lemma 2.7. If there exists a path from s to t of length at most D that collects prize fI,
then for any integer r > 1 there exists a path from s to some node v with excess at most
D-de that spans at least r' prize.

Proof. Let f be the furthest point from s along the given path P. We are interested in the
case where f 7 t. We can break path P into two pieces: a path segment from s to f and
then a segment from f to t. Using the symmetry of our metric, we can produce a second
path from s to f by using the shortest path from s to t and then following the portion of
our original path from f to t in reverse. We now have two paths from s to f, each of which
has length at most D. The total length of these paths is bounded by D + dt. We will call
our paths A and B, and let their lengths be df + CA and df + EB respectively.

Next we map path A to the interval from 0 to CA according to the excess at each point,
much as in Lemma 2.6. We then divide this interval into pieces of length 'AHB (the last
sub-interval may have shorter length if CA does not divide evenly). We perform the same
process on path B. This creates a total of r + 1 sub-intervals, since the total length of the
two intervals combined is CA + EB and all sub-intervals save for two are of length EA+EB

We conclude that some such sub-interval contains at least a 1 fraction of the total

prize collected by path P. Suppose without loss of generality that this interval spans a

33

portion of path A from u to v. As in Lemma 2.6 we can shortcut A by taking the shortest

path from s to u and then follow path A from u to v . The length of this new path is

bounded by dv + 'A+B resulting in an excess of at most D-df D-d as desired. E

Thus, combining our approximation guarantee for the min-excess path problem from

section 2.4 together with the result of Lemma 2.7, we can show that the algorithm given in

Figure 2-3 finds a solution for the orienteering problem within a factor of 4 from optimal.

Theorem 2.8. Our algorithm is an ([aEpi + 1)-approximation for the max-prize path

(orienteering) problem, where aEP is the approximation factor for min-excess path.

Proof. Lemma 2.7 implies that there exists a path from s to some v with excess D-d that
CEEP

spans a +1 fraction of the optimum prize I1*. Such a path has length d, + D-d , implying
TaEP1+1 EP

that our approximation algorithm for min-excess will find a path from s to v of length at

most dv + (D - dv) = D and at least the same prize.

2.7 Extensions

2.7.1 Budget Prize Collecting Steiner Tree

In this section, we consider the tree variant of the Orienteering problem, called Max-Prize

Tree in our notation. Namely, given a graph G with root r, prize function 7 and lengths d,
we are required to output a tree T rooted at r with d(T) < D and maximum possible reward

H(T). This problem is also called the Budget Prize-Collecting Steiner Tree problem [32].

Although the unrooted version of the problem can be approximated to within a factor of

5 + e via a 3-approximation for k-MST [32, 39], the version of the problem in which a tree

is required to contain a specified vertex has remained open until recently.

Let the optimal solution for this problem be a tree T*. Double the edges of this tree

to obtain an Euler tour of length at most 2D. Now, divide this tour into two paths, each

starting from the root r and having length at most D. Among them, let P' be the path

that has greater reward. Now consider the Max-Prize Path problem on the same graph

with distance limit D. Clearly the optimal solution P* to this problem has fl(P*) >

1(p') ;> I(. Thus, we can use the app-approximation for Orienteering to get a 2 app-
approximation to T*.

2.7.2 Multiple-Path Orienteering and Discounted-Reward TSP

In this section we consider a variant of the Orienteering and Discounted-Reward TSP in

which we are allowed to construct up to k paths. For the Orienteering problem, each path

must have length at most D. For the Discounted-Reward problem, the k robots move

simultaneously, so the discounting is done based on the individual lengths of the paths.

For both problems, we apply the single-path algorithms described in sections 2.5 and

2.6 respectively to successively construct the k paths. At the i-th step, we set the prizes

of all nodes visited by the first i - 1 paths to 0, and construct the i-th path on the new

graph, using the previously described algorithms. Using a set-cover like argument, we get

the following approximation guarantees.

Theorem 2.9. If all the paths are required to have a common start node, the above al-

gorithm gives a (1 - e- 1 /aPP)-1 ((1 - e- 1/aDP>-1) approximation for the Multiple-Path

Orienteering (resp. Discounted-Reward TSP).

34

If the paths are allowed to have different start nodes, the above algorithm gives a app +1
approximation for the Multiple-Path Orienteering.

Proof. First let us consider the variant of the Multiple-Path Orienteering problem when all
the paths must have a common source. Consider the prize collected by the optimal solution,
but not collected by our solution by stage i. At least one of the paths in the optimal solution
spans at least a I fraction of this prize. Then, using the approximation guarantee of the
algorithm for orienteering, our solution collects at least a 1 fraction of this prize. Hence,
by the end of k rounds, the total prize collected by the optimal solution, but not collected
by us, is at most (1 - ,,)k < e-PP, and the result follows.

To prove this result for the Discounted-Reward TSP, it suffices to literally substitute
"discounted reward" for "prize" and aDP for app.

Next consider the case when the paths have different sources. Let 02 be the set of nodes
visited by the i-th path in the optimal solution, and let Ai be the corresponding set of nodes
visited by our algorithm. Let A2 be the set of nodes that are visited by the i-th path in
the optimal solution and some other path in our solution. Let 0 U20 and A = UjAj

denote the set of all nodes visited by the paths of the optimal and respectively our solution,
and set A = UiAi to be the set of nodes spanned by both solutions. Note that H(O) then

denotes the prize collected by the optimum solution, whereas P(A) gives the total prize

value obtained by our algorithm.

At the beginning of the i-th step of our algorithm, the i-th path of the optimal solution
would collect prizes from all nodes it visits except for those that have been already covered by

one of the previous i - 1 paths constructed by our solution; at the very least it gets the prize

from all the nodes in Oi \ Aj. Hence, there exists a path that obtains at least P(O 2) - (A)
prize. Since our algorithm finds a path that spans at least a 1/app fraction of the maximum

possible prize available at step i, we must have P1(A2) > ' (r1(0) - P(Ai)). Summing
- app

over all steps, we get appH(A) ;> (H(O) - rl(A)). Noting that the total prize value of the
nodes visited by both the optimal solution and our algorithm can be at most the total prize

value obtained by our algorithm, i.e. P(A) < P(A), we get P1(A) ;> 1 H7(O).
D

2.8 Open Problems

In this chapter we give constant factor algorithms for the Orienteering problem, Discounted-

Reward TSP, and some of their variants. An interesting open problem is to consider non-
uniform discount factors, e.g. each vertex would get its own -y. Similarly we could look
at the version of the Orienteering (max-prize) problem in which each vertex has its own

deadline. Thus, the reward collected at vertex v at time t could be given by pv = rv if
t < Dv and 0 otherwise. We can also introduce "release dates" for rewards, so that one

collects the reward at vertex v only after time Rv (and before the deadline Dv).
Note that having an approximation algorithm for the max-prize problem with arbitrary

deadlines and release dates would mean that we could approximately solve Discounted-
Reward TSP for any type of a discount function. This could be accomplished by discretizing
time into polynomially many small intervals and attaching to each node v (with a positive
prize value) by a zero cost edge a leaf node vi (i = 1,...) for each time interval (ti-, ti]. The
original node v gets undiscounted prize value -K, with the deadline set to 0 and a negative
release date. Each artificial node vi is assigned a prize equal to the discounted reward

available at v at time ti, with the release date and the deadline for collecting that prize set

35

to ti-I and ti respectively. Assuming that each time interval is sufficiently small (and the
discount function is reasonably smooth), the discounted reward value doesn't drop off too

rapidly inside each interval. Thus the prize value collected by a given path in the modified
graph provides a good approximation on the discounted reward value of the corresponding

path in the original graph.
Another interesting open problem is to consider the directed versions of the problems,

although we believe that it may be hard to approximate these to within constant or even

logarithmic factors. Note though that the only portion of our algorithms which relies on
the symmetry of arc costs (i.e. undirectedness) is the subroutine for the min-cost s-t path
problem. Recall that the latter subroutine obtains a path by taking a tour of a min-cost
tree. The approximation guarantee on the length of such path wouldn't hold in the directed

case. However, if we could construct a directed s-t path of small length that collects a given
prize value, our algorithms would produce provably good solutions for the directed versions

of the problems.
Even more ambitiously, returning to the Markov Decision Process motivation for this

work, one would like to generalize these results to probabilistic transition functions. How-

ever, this has the additional complication that the optimum solution may not even have
a short description (it is no longer just a path). Still, perhaps some sort of non-trivial
approximation bound, or a result holding in important special cases, can be found.

36

Chapter 3

Preplanning framework for
stochastic combinatorial
optimization problems

So far we have considered a scenario of planning under uncertainty in which the decision
has to be taken in advance of any information about unknown inputs (other than their
probability distribution). This advance planning is necessary because information becomes
available too late to be useful for optimizing one's reward. However, there are a number
of other scenarios in which it is possible to respond to information that becomes available
after the initial planning stage. In this chapter we study the tradeoffs involved in making
some purchase/allocation decisions early to reduce cost while deferring others at greater
expense to take advantage of additional information. We consider a number of combinatorial
optimization problems (primarily in network design) in which the input is uncertain-
modeled by a probability distribution-and in which elements can be purchased cheaply
now or at greater expense after the distribution is sampled. We show how to approximately
optimize the choice of what to purchase in advance and what to defer.

3.1 Introduction

Combinatorial optimization is often used to "plan ahead," purchasing and allocating re-
sources for needs that are not precisely known at the time of solution. For example, a
network designer might have to make their best guess about the future demands in a net-
work and purchase capacity accordingly. Moreover, there are many scenarios, such as the
robot navigation problem considered in the previous chapter, in which unknown informa-
tion becomes available too late to be useful - it might be impossible to modify a solution
or improve its value once the actual inputs are revealed.

At other times, however, there is a possibility to "wait and see," deferring decisions
about resource allocation until demands or constraints become clear. This allows one to
plan an optimal solution for each potential outcome. There is often a tradeoff involved, in
that allocations made later may be more expensive. For example, the network designer may
be able to arrange cheap long-term contracts for capacity purchased ahead of time, but may
need to purchase extra capacity at the last minute on a more expensive "spot market."

Beyond the basic optimization problem, then, there is the problem of deciding which
part of the solution should be set early and cheaply based on limited information about the

37

problem input, and which part should be deferred and solved more expensively with the

arrival of additional information about the input.

In this chapter, we study a particular framework derived from stochastic programming,
for dealing with this time-information tradeoff in the presence of uncertainty. Formally,
we postulate a probability distribution Pr[I] over problem instances I. We consider a

collection of variables xi and y1 that describe candidate solutions to the problem, where

different settings of the variables are feasible for different inputs I. We are required to set

the variables xi, then sample a problem instance I from the distribution, and finally, with

knowledge of the instance, to set the variables yj so that (x, y) is feasible for I. Given a cost

function c(x, y) on solutions, our goal is to minimize the expected cost E[c(x, y)] subject to

the feasibility constraints.
In the standard two-stage stochastic programming with recourse model [10], the prob-

lem instances are polytopes over xi and yj (representing linear or integer linear programs),

and the cost function is linear. Traditionally, the second-stage variables yj are interpreted

as a recourse action against any bad effects such as solution infeasibility due to a partic-

ular realization of uncertainty [48]. Under a discrete probability distribution over random

instances {I}, the problem can be formulated as large scale linear (integer) program and

solved using standard methods from mathematical programming.

We are interested in exploring this framework in the context of problems with more

combinatorial structure, so that we can take advantage of additional techniques that exploit

this structure. Specifically, we study stochastic versions of the following problems: min-

cost flow, bin packing, vertex cover, shortest path, and the Steiner tree problem. In each, a

ground set of elements e C E is specified (vertices in the vertex cover problem, edges in the

Steiner problems, bins in bin packing). A (randomly selected) problem instance I defines

a set of feasible solutions, each corresponding to a subset F C 2 E. We can buy certain

elements "in advance" at cost ce, then sample a problem instance, and must then buy other

elements at "last-minute" costs Ace so as to produce a feasible set for our problem instance.

In this case, variables xe are set to 1 for the set of elements purchased in advance, and

variables ye are subsequently set to 1 for those elements added after sampling the problem

instance. Our goal is to minimize the expected total cost.

It is noteworthy that all of our problems are "monotone," in that any superset of a

feasible solution is feasible. This is convenient because it means that purchasing elements

in advance never "invalidates" a potentially feasible solution-the advance purchases may

be wasted, but at worst they can be ignored and any desired feasible solution constructed

from the post-sampling purchases. Thus, we can focus all of our attention on optimizing

cost without worrying about making feasibility-missteps.

3.1.1 Our Contribution

We examine a number of (generally g'P-hard) combinatorial optimization problems in

which it makes sense postulate some probability distribution over input instances and to

specify a portion of the solution in advance. We develop algorithms to find approximately

optimal pre- and post-sampling parts of a feasible solution. In particular, we study the

following problems:

Min Cost Flow. Given a source and sink and a probability distribution on demand, buy

some edges in advance and some after sampling (at greater cost) such that the given

amount of demand can be routed from source to sink. We show that this problem can

be solved via linear programming for a discrete demand distribution.

38

Bin packing. A collection of items is given, each of which will need to be packed into
a bin with some probability. Bins can be purchased in advance at cost 1; after the
determination of which items need to be packed, additional bins can be purchased at
cost A > 1. How many bins should be purchased in advance to minimize the expected
total cost? We show that this problem can be efficiently approximated arbitrarily
close to optimal.

Vertex Cover. A graph is given, along with a probability distribution over sets of edges
that may need to be covered. Vertices can be purchased in advance at cost 1; after
determination of which edges need to be covered, additional vertices can be purchased
at cost A. Which vertices should be purchased in advance? We give a 4-approximation
for the case where the probability distribution involves only polynomially many dis-
tinct edge sets and a different 4-approximation algorithm for the case when each edge
has to be covered with fixed probability p.

Cheap Path. We are given a graph and told that a randomly selected pair of vertices (or
one fixed vertex and one random vertex) will need to be connected by a path. We
can purchase edge e at cost ce before the pair is known or at cost Ace after and wish
to minimize the expected total edge cost. We show that this problem is equivalent
to the multicommodity rent-or-buy problem, so that corresponding approximation
algorithms apply.

Steiner Tree. A graph is given, along with a probability distribution over sets of terminals
that need to be connected by a Steiner tree. Edge e can be purchased at cost ce
in advance or at cost Ace after the set of terminals is known. We give a constant
factor approximation for the case where the expected number of terminals is constant
(generalizing the Cheap Path result). We give a constant factor approximation for
the case where edges form an ultrametric and an O(log n) approximation for general
edge costs.

3.1.2 Related work

Stochastic programming is a tremendous field with a vast literature [55]. It is applicable
whenever probability distributions of inputs are known or can be estimated. One of the most
widely used models in stochastic programming is the two-stage recourse model mentioned
earlier. It involves an initial deterministic decision, an opportunity for observing additional
information, and then a recourse action in response to each random outcome. The two-stage
model can be naturally generalizedby adding additional recourse stages, each consisting of an
observation and a decision responding to it. Stochastic linear programs are generally tackled
via a combination of mathematical programming and advanced probabilistic techniques. A
key difficulty in solving these problems is dealing with a very large uncertainty space, as
one gets a separate set of constraints for each potential outcome of the future. Some
standard large-scale optimization techniques utilized include decomposition methods (in
which smaller subproblems involving only a subset of constraints are repeatedly solved),
and various Lagrangian relaxation approaches. In addition, a number of computational
methods have been developed that use specific stochastic program structure; they include
extreme-point and interior-point methods employing sparse factorization, column splitting,
and others. [10].

39

The stochastic multicommodity flow problem in which various attributes of the network
such as arc costs, arc capacities, and demands between pairs of terminals, are random
variables has been studied particularly extensively (for a survey of various problems and
formulations see [51]). A variant of the problem in which demands and capacities are fixed,
and only per-unit flow arc costs are stochastic (but independent of particular flow values)
can be modeled as a linear program with deterministic arc costs set to the corresponding
expected values [51]. A probabilistic arc capacity is usually modeled by a stochastic arc
cost that depends on the corresponding flow value, becoming infinite when the capacity is
exceeded. The latter approach results in a non-linear (but still) convex objective function,
so standard convex programming methods can be applied. The most difficult version of the
problem seems to arise when one considers probabilistic demands. Although the problem can
be solved for some special cases of probability distribution functions (such as independent
Poisson PDF), we are not aware of any general-purpose methods for the case of more than
one commodity.

Nevertheless, the stochastic multicommodity flow problem has been used extensively
as a model for a variety of real-world applications. Recently, Mitra and Wang [40] have
derived a flow-based framework for stochastic traffic engineering in which the objective is
to maximize revenue from serving demands which are specified by probability distributions.
Their model is somewhat similar to ours, in that it uses a two-tier cost function, and explores
the tradeoff between deterministic allocations and probabilistic provisioning. They present
conditions under which the problem can be reduced to an instance of convex programming.

A number of other classical discrete optimization problems have been considered in
the stochastic setting. Andreatta and Romeo have studied a version of the shortest path
problem, in which a subset of the edges of a network may fail with some probability [2].
The goal is to choose a path before knowing the state of the network so as to minimize the
expected length of the resulting traversal. Andreatta and Romeo consider the problem in
the two-stage recourse model, so that the planner has to pick in addition to the "preferred"
path, an alternative path (detour) to follow from each node in case the outgoing edge of
the original path fails. The authors assume that there always exists such a detour from
every node. For the case when one is given a polynomial number of possible sets of failed
edges, the authors show how to solve the problem using stochastic dynamic programming
techniques.

A rather different stochastic optimization framework assumes random instances but
requires only that constraints be satisfied with certain probability. This framework is some-
times known as "chance constrained programs." For example, in [34] Kleinberg, Rabani
and Tardos consider stochastic knapsack, bin-packing and load-balancing problems. In the
stochastic knapsack variant, one is concerned with choosing from among a set of items,
each with a value and a probability distribution on its size, a subset of maximum value that
is unlikely to exceed a given capacity threshold. Similarly, in the stochastic bin-packing,
given a probability distribution on the sizes of items, the goal is to determine the minimum
number of bins so that the probability of any one overflowing is small. The objective of
stochastic load-balancing is to minimize the expected maximum weight in any bin, given a
fixed number of bins. Kleinberg et.al provide a constant-factor approximation for the lat-
ter problem, and somewhat weaker guarantees that are function of logp- 1 (where p is the
probability with which constraints are allowed to be violated) for the stochastic knapsack
and bin-packing.

40

3.2 Preliminaries

In this section we give a formal definition of the preplanning framework for stochastic
combinatorial optimization problems, discuss a number of basic properties shared by the
problems in this framework, and present an overview of our approaches and the results we
obtain.

3.2.1 Formal Problem Statement

Formally, a preplanning version of a combinatorial optimization problem is specified in our
framework by a ground set of elements e E E, a probability distribution on instances {I} a
cost function c : E -+]R, and a penalty factor A > 1. Each instance I has a corresponding
set of feasible solutions F G 2 E associated with it. Suppose a set of elements A C E is
purchased before sampling the probability distribution. Let CA denote the posterior cost
function, i.e.

CA (C) 0 if ccA
cA () = Ac(c) otherwise

The objective of a preplanning combinatorial optimization problem is to choose a subset
of elements A to be purchased in advance so as to minimize the total expected cost of a
feasible solution

c(A) + E min CA(S)

over a random choice of an instance I.
In solving a preplanning problem, one option is to postpone purchasing any elements un-

til after sampling a problem instance. This approach readily yields a A-approximation as it
allows us to buy an "optimal" solution for a given problem instance (assuming have access to
an exact algorithm or oracle; using a c-approximation algorithm yields Ac-approximation).
However a large value of A might make such approach prohibitively expensive. At the other
extreme, one can buy in advance a minimum-cost solution that is feasible for all possible
problem instances (for example, the set of all elements). However, such a solution might be
far more expensive than an optimal solution for any given instance from the distribution.
We are interested in studying how much preplanning one should do given only a probability
distribution on the inputs.

3.2.2 The Threshold Property

Our first observation is that optimal preplanning solutions exhibit a natural local-optimality
property.

Consider a solution that purchases some set of elements A C E in advance and then, on
sampling problem instance I, buys additional elements L1 . Note that A U L1 is a feasible
solution for the instance I. This suggests the following way of looking at the preplanning
framework: we have to specify (in advance) for each instance I a complete feasible solution
FT C E to be used in case I is sampled. The objective is to minimize the expected cost
of elements used in a solution for a randomly chosen instance I. Given the set of solutions
{Fr}, we can obtain a probability that an element e E E is used in a solution for a random
instance I: Pr [e used] = I:eEFi Pr [1]. The expected cost to the objective function

41

incurred by element e is Ace Pr [e used] if it is bought in the future, or ce if it is bought

ahead of time. The objective is minimized when this cost is equal to the minimum of the

two, i.e. if Pr [e used] < 1/A, then we should pay Ace Pr [e used] for the element e, and ce

otherwise. This immediately implies the following Threshold Property:

Theorem 3.1. An element should be purchased in advance if and only if the probability it

is used in a solution for a randomly chosen instance exceeds 1/A.

We note that if Pr [e used] = 1/A, then it doesn't really matter whether e is purchased in

advance, or added to a solution later on if needed. In either case, its expected contribution

to the objective function is 1.

3.2.3 Using Approximation Algorithms as Subroutines

The construction of a solution for a preplanning problem proceeds in two stages in our

framework. In stage 1, one picks a set A of elements to be purchased in advance. In

stage 2, after sampling the problem instance, one needs to find a solution satisfying the

set of constraints of that instance while minimizing the cost of additional elements to be

purchased. Note that stage 2 reduces to solving the regular version of the optimization

problem with the cost function cA.
Most of the problems we are interested in putting into the preplanning framework are

AIP-hard to start from. This immediately implies that the preplanning versions of these

problems are also PIP-hard. Additionally, it complicates our task since we are unable to find

an optimal solution in stage 2. Instead we have to resort to finding an approximately optimal

solution. But this could lead to us picking a sub-optimal set of elements to buy in advance.

Fortunately, as we illustrate below, an algorithm that produces an a-approximation for the

original combinatorial optimization problem could be used in place of an optimal algorithm

both in planning an advance purchase set and in stage 2, with loss of a factor of a in the

quality of the solution.

Consider an optimization problem with cost function c. Let cOPT(I) denote the value

of a min-cost feasible solution for an instance I. Suppose we are also given an approx-

imation algorithm ALG that for any instance I finds a feasible solution of cost at most

cALG(I) < acOPT (E)

Theorem 3.2. Given an a-approximation algorithm ALG, let A 0 be a subset of elements

that minimizes the expected cost of a solution obtained with ALG over a random choice of a

instance I, i.e. c(A) + E [cALG (1)]. Then the cost of a preplanning solution that purchases

elements in A0 in advance is at most a times the minimum possible cost whether one uses

an exact or an approximation algorithm in stage 2.

Proof. Let us consider an optimal solution to the preplanning problem. Let A* denote a

subset of elements that this optimal solution purchases in advance, and let OPT denote

the expected cost of an optimal preplanning solution. Since for any instance I we have
c G (PT (), we get

c(A*) + E cAG) + 1 aE [cT (I]

5 a (c(A*) + E [COP(_)

= a - OPT,

42

e.g. the expected cost of a solution constructed by ALG using set A* costs at most aOPT.
At the same time it must be at least as large as the expected cost of a solution constructed
by ALG using set A 0 , e.g.

c(Ao) + E [cAG (I) < c(A*) + E c AG

Thus, we have

c(Ao) + E [cAO(I) 1 c(Ao) + E [cAG (1) 1 a OPT

Note that we have shown that the expected cost of a solution that buys A0 in advance
and then uses either an optimum solution or an a-approximation for a random instance is
within a factor of a from the optimum solution. E

The above theorem implies that in some instances we can reduce the preplanning version
of an PP-hard problem to solving a preplanning instance of another optimization problem
that has a polynomial-time algorithm. For example, since in a metric space an MST over a
subset of nodes S provides a 2-approximation for min-cost Steiner tree on S, a preplanning
version of a Steiner tree problem can be reduced to a preplanning version of a minimum
spanning tree (MST) problem by adding an edge between each pair of terminals of cost
equal to the shortest path distance in the original graph (thus creating a metric).

3.2.4 Overview of Results

We begin our study of stochastic combinatorial optimization problems in the preplanning
framework by illustrating the use of the standard stochastic programming technique of
merging together linear programs for individual instances.This solution technique applies
when the probability distribution over problem instances has bounded support, that is only
a limited number of instances can arise. In the case when each individual instance can be
solved via a linear program, it is straightforward to create a "combined" linear program
that represents the preplanning version of the problem; one simply shares the prepurchase
variables among the different linear programs and adds the objective function values of
them all, weighed by their probability of occurrence.

The min-cost flow problem with discrete stochastic demand introduced in Section 3.3
is a good candidate for the application of this technique, since the number instances is
restricted to the number of possible demand values (which are part of the input), and the
deterministic version of the problem has a linear programming formulation of polynomial
size. However the problem is still interesting in that it highlights some challenging issues in
preplanning and stochastic combinatorial optimization. For example, whereas in the case
of the regular min-cost flow problem with integral capacities there always exists an integral
optimal solution (and one can use combinatorial algorithms to find it), it is not immediately
clear whether the same is true of the preplanning version of min-cost flow.

Next we proceed to analyze in Section 3.4 the bin packing problem with preplanning.
Using a fully polynomial approximation scheme (FPAS) for the regular bin-packing problem,
we obtain an algorithm that efficiently computes a solution for the preplanning version of
the problem that is arbitrarily close to optimal. It appears that the bin-packing problem
with preplanning is easier than other problems we consider. This can be explained by the
fact that the elements of the ground set in this problem (i.e. bins) are indistinguishable,

43

resulting in a polynomially bounded space of possible solutions (i.e. the number of bins to
buy in advance). Nonetheless, this problem is interesting and educational as it allows us to
demonstrate the application of the basic properties derived above.

In Section 3.5 we consider two versions of the vertex cover problem with preplanning. In
the first version, the number of instances, that is the number of possible subsets of edges that
need to be covered, is polynomially bounded. We extend the "merger of linear programs"
technique (used to solve min-cost flow with preplanning) to this problem to obtain a 4-
approximation. In the second version of the vertex cover problem with preplanning, each
edge needs to be covered independently with some probability, so the number of instances
is exponential in the number of edges. We exploit combinatorial properties of the problem
and apply the Threshold Property to obtain an approximation algorithm with a guarantee
of 4.

Finally, in Section 3.6 we move on to the preplanning version of the Steiner tree problem,
perhaps the most difficult of all the problems we study here. As a special (easier) case we
consider the cheap path problem, in which we are restricted to random sets of terminals
of cardinality 2. Although this problem can be also thought of as a stochastic version
of the shortest path problem (which can be solved in polynomial time), we show that
the cheap path problem in the preplanning framework is equivalent to a known VP-hard
network problem that has several approximation algorithms with constant factor guarantees.
Generalizing the cheap path result, we give a constant factor approximation for the case
where the expected number of terminals is constant. In the general case with an arbitrary
number of random terminals, we reduce the preplanning Steiner tree problem to an instance
of the MST preplanning problem. We then cluster the probability mass and apply our
threshold property to obtain a 5-approximation for the special case where edges form an
ultrametric. We also provide an O(log n) approximation algorithm (where n is the number
of nodes in the graph) for general edge costs using a tree metric embedding.

44

3.3 Network Predesign for Min-Cost Flow

Consider a min-cost flow problem in which one wishes to send a certain amount of demand
from source to sink. Each edge has (non-negative) cost and capacity values associated with
it. The goal is to find a flow of minimum cost that obeys capacity constraints on edges.
This problem also models a slightly different network design scenario in which the goal is
to purchase sufficient amount of capacity in order to ship the demand at minimum cost.
Notice that all the costs can be charged directly to installed capacity, as the amount of
capacity purchased on an edge is exactly equal to the flow sent on that edge in any optimal
solution.

We can extend our framework of preplanning to the min-cost flow problem described
above. Suppose that instead of knowing the exact value of flow that needs to be shipped
from source to sink, we are given a probability distribution on how much demand is going
to be requested. We have an option of pre-installing some amount of capacity in advance
at a regular cost per unit. However, as it might be too costly to purchase enough capacity
to satisfy the maximum possible demand (which is unlikely to arise), we are allowed to
rent additional capacity once the demands become known, but at a much higher cost. The
sum of capacity installed in advance and capacity rented must also satisfy a given upper
bound (total capacity) for each edge. The goal is to minimize (over the given probability
distribution on demands) the expected cost of installing sufficient capacity in the network
so as to be able to satisfy all of the demands.

Formal problem definition In a min-cost flow network predesign problem we are given a
directed graph G = (V, E) with source s and sink t. Each edge (i, J) E E has two parameters
associated with it: cij, the cost of purchasing unit capacity on (i, j) (in advance), and igij,
the upper bound on capacity that can be installed on (i, j) (possibly infinite). We are
also given a discrete stochastic demand D E {0, 1 ... D} with a probability distribution
Pr [D = 1] = p(l) that needs to be shipped from s to t. The objective is to minimize the
expected cost of capacity required to satisfy demand D, provided that we can pre-install
capacity in advance, or rent it after the actual value of D is revealed at a cost A > 1 times the
original price.1 That, is we seek to minimize the cost of capacity purchased in advance plus
A times the cost of required additional capacity in expectation over the demand distribution.

A solution to a min-cost flow network predesign instance is specified by a set of values

{aj } for each edge (i, j) E E corresponding to the amount of capacity pre-installed in the
network in advance. The capacity values have to be feasible with respect to the upper
bounds, that is aij < fi for each edge (i, J) E E. To minimize the cost of installing
additional capacity once the actual demand becomes known, we can solve an instance of
min-cost flow problem on the preplanned network G' = (V, E'). In the new network, each
edge e = (i, j) with non-zero value a,, gets split into two parallel edges: e' with capacity
aij and cost 0, and e" = (i, j) with capacity ij - aij and cost Acii. This reflects the fact,
that routing up to aij units of flow on edge (i, j) is free (as that capacity has been already
paid for), but more flow can be pushed on that edge by purchasing additional capacity.

The min-cost flow network predesign problem is polynomial-time solvable (as we will
show below) using the standard "merger of linear programs" approach from stochastic
programming described above. However, the problem is interesting in that it highlights
some interesting issue in preplanning. We show that the amount of capacity that needs to

'Using LP approach we can actually solve the problem with non-uniform penalties Aij > 1.

45

1 3

t

3

b

Figure 3-1: Example demonstrating anomalies in min-cost flow network predesign.

be pre-installed is not simply a function of expected demand. We also provide examples
when an optimal solution doesn't use a shortest path to send any flow, and when edges on
which capacity is purchased in advance do not constitute s-t paths.

Provisioning for expected demand. Contrary to one's intuition, provisioning for the
expected amount of demand, e.g. buying capacity sufficient to route expected demand
in the network, can be quite suboptimal. Consider a network consisting of a single path
between terminal nodes s and t. Without loss of generality let the length of this path be 1.
The demand D that has to be sent from s to t is equal to d with probability p, and is zero
otherwise. Consider a solution that installs capacity pd (equal to expected demand value)
in advance, and buys the rest of it later if the actual demand turns out to be d. Then the
expected cost of this solution

E [cost] = pd + Ap(1 - p)d = (1 + A)pd - Ap 2 d

Let p = IA Since Ap > 1, the optimal solution would buy capacity d in advance,
incurring overall (expected) cost d. The ratio between these two solutions is equal to

(I Ap A2 =(1 + A)2 _A(I + A)2 (I +A)2

2A 4A2 4A

Since the ratio grows as Q(A), it follows that a solution that installs in advance the amount
of capacity equal to the expected demand can perform arbitrarily worse than an optimal
solution.

Prepurchasing flow on non-shortest paths. Consider the graph G on 4 nodes shown
in Figure 3-1. Suppose that each edge has maximum allowed capacity 1, and the amount
of demand that needs to be shipped from s to t is 0, 1 or 2. Let A = 2, Pr [D = 0] = 1/4,
Pr [D = 1] = 1/4, and Pr [D = 2] = 1/2. Note that the only way to route 2 units of demand
is by saturating the edges (s, a), (a, t), (s, b), (b, t). Thus, the probability of using each of
these edges is at least 1/2 > 1/A, so by the Threshold Property introduced in Section 3.2.2
any optimal solution has to buy 1 unit of capacity on each of those arcs in advance. However,
once they are pre-installed, it is unnecessary to use arc (a, b). Hence, the shortest s-a-b-t
path is never used to route flow, even if only 1 unit of demand needs to be sent.

46

Prepurchases need not form paths. Using the same graph G in Figure 3-1 with unit
capacities on all edges, let us take A = 2, Pr [d = 1] = 1/4, Pr [d = 2] = 1/3. In this case an
optimal solution ends up pre-installing 1 unit capacity only on arcs (s, a) and (b, t), yielding
expected cost of 6.5. To see this, note that either edge (s, a) or edge (b, t) (or both) has to
be used in solutions for instances D = 1 and D = 2. Thus, the probability of using edge

(s, a) (or edge (b, t)) is 1/4+1/3 > 1/A. Thus, by the Threshold Property some capacity has
to be purchased in advance on at least one of these edges. Buying capacity in advance on
the path s-a-t (or s-b-t) results in the expected cost of at least 20/3, whereas pre-installing
1 unit of capacity only along the shortest path s-a-b-t costs 7 in expectation. Thus, in the
preplanned network, there are no paths of zero cost.

3.3.1 Linear Programming formulation

We can model the preplanning version of the min-cost flow problem with a linear program.
We will use a variable aij to denote capacity purchased in advance on edge (i, j). Recall that
once the exact value of demand to be shipped through the network is known, the cheapest
way to install additional capacity can be computed by solving min-cost flow problem in
a modified network. Thus, we can have a set of flow variables for each possible demand
value. Let f denote the flow routed on edge (i, J) in the event that the demand takes on

value 1. Although not needed, to simplify the LP, we will also use a variable ul to denote
the additional capacity that has to be purchased on edge (i, J) later on to route the flow
f . The cost of installing capacity in advance is (ij)EEcia, while the expected cost of

purchasing additional capacity is ED 0 (ij)EE Acij, where p(l) denotes probability
Pr [D = 1].

Writing down conservation of flow and capacity constraints for each demand value 1, we
obtain the following LP:

D

Min c a + + p(l) E Acijul

(ij)E E1=0 (ij) E E

subject to:

for l E {0, 1... D}

I if i= s

&f-E fj= -l ifi = t for all i C V

j:(ij)CE k:(k,i)EE 0 otherwise

j+ ui for all (i, j) E E

aij + 2 i for all (i,j) E

fil aij uij ;> 0

Thus, applying any polynomial-time algorithm for linear programming, we can obtain
an optimal solution for min-cost flow network predesign problem.

Note that the above linear programming formulation can be easily extended to the
version of the problem in which there is a constant number of commodities (each with
its own demand distribution) which have to be shipped between their respective terminal
nodes. In this case, we would get a separate set of flow and capacity variables for each
possible combination of demand values. Since the number of such combinations grows

47

exponentially with the number of commodities, this approach does not extend to the general

multicommodity flow problem with preplanning.

Ideally, we would like to obtain a combinatorial algorithm for min-cost flow network

predesign. However, it is not entirely clear to us if the above LP is integral, that is if

there always exists an optimal solution that purchases only integral amounts of capacity in

advance.

48

3.4 Bin packing with preplanning

In the classical bin-packing problem, one is given a set of n items, with item i having size si
(0 < s- < 1). The goal is to pack all items into unit-size bins, so as to minimize the cost of
a packing, which is equal to the total number of bins used. Now suppose that each item i is
present (active) with probability pi independently of the others. Thus we might be able to
use considerably fewer bins than are necessary to pack the entire set once we know the set
of active items. However we have to pay a higher price for bins added in the future. Our
objective is to minimize the cost of bins required for packing in expectation over a random
selection of a set of items.

Formal Problem Statement Let X 1 , X 2, ... X,, be mutually independent random vari-
ables representing items to be packed. We are given Pr [Xi = si] = pi, where 0 < si < 1.
Let B be a discrete random variable denoting the minimum number of unit-sized bins re-
quired to pack items X1, X 2 ,.. . X,. Let a denote the number of bins allocated in advance,
before one learns the values of random variables {Xi}. Then the cost of packing with bin
pre-allocation a is equal to a + A max(B - a, 0), where A > I is the cost of bins to be added
in the future. Our objective is to find the optimum number of bins a to buy in advance so
as to minimize the expected cost of packing a + AE [max(B - a, 0)] (over a random set of
active items).

Since the classical bin-packing problem (AP-hard by itself [20]) is a special case of
our preplanning version with deterministic items and A > 1, the best we can hope is to
match the approximation bound for bin-packing. Several heuristics for one-dimensional
bin-packing (First Fit Decreasing and Best Fit Decreasing) achieve an absolute worst-case
ratio guarantee of 3/2 (i.e. for any instance they use at most 1.5 times more bins than the
optimum does). We should also note that the one-dimensional bin-packing admits a fully
polynomial asymptotic approximation scheme (FPAS) (i.e. we can get a solution arbitrarily
close to the optimum one for instances in which the optimum uses sufficiently many bins).

Contrary to a plausible intuition, a solution that pre-allocates in advance the minimum
number of bins sufficient to pack deterministic items of size E [Xi] is suboptimal in general.
To see this, consider an instance with just one item of size s that is active with probability
p. Clearly, we need exactly one bin to pack a deterministic item of size ps. However, if
Ap < 1, then it is much cheaper (in expectation) to see if the item becomes active and
purchase the bin then, rather than to buy it in advance.

Using Theorem (3.2), we can reduce the preplanning bin-packing problem to that of
computing the optimum bin pre-allocation that minimizes the expected cost of a packing
obtained with any one of the approximation algorithm for bin packing (losing at most the
corresponding performance guarantee in approximation). Let Bh be a discrete random
variable denoting the number of bins used by a chosen bin-packing heuristic. Our problem
is to find a value of a that minimizes c(a) = a + AE [max(Bh - a, 0)]. The following result
follows from the Threshold Property introduced in Section 3.2.2.

Lemma 3.3. c(a) is minimized for a* = max{a : Pr [Bh > a] > 1/A}.

Proof. We can think of the bins as elements of the ground set to be purchased. Let us
number the bins bi, b2 ,. . . bN, so that bin bi gets used only after bins b, ... bi- 1 are picked.
By the threshold property (Theorem 3.1), bin bi should be bought in advance if and only if
it is used with probability over 1/A. Thus, we get our claim.

F-

49

Thus, we have reduced our problem to computing probabilities Pr [Bh > a] for each

value of a = 1, ... N, where N is the number of bins required (by our heuristic) to pack

all items. This is quite difficult in most cases (unless the random variables Xi are of some

special form). Fortunately for us, it turns out that it is sufficient to approximate these

probabilities in order to compute an approximately optimal pre-allocation a.

Lemma 3.4. Suppose we are given a non-increasing function p : {o,... n} -4 [0, 1] that

approximates the probabilities Pr [Bh ;> i] within a relative error e, e.g.

(1 - c) Pr [Bh ;> i] < p(i) < (1 + e) Pr [Bh > i].

Let a = max{a : p(a) > 1/A}. Then c(ap) < i±c(a*), i.e. pre-allocating a, bins in

advance yields a solution arbitrarily close the optimum.

Proof. Let's assume that p(O) = 1 (otherwise we can just set it to 1 without violating any of

its properties). Note that p(i) is a feasible probability distribution function in our context,
since 0 < p(O) < I and p() ;> p(i + 1) for Z' = 0 ... N.

Recall that c(a) a+AE [max(Bh - a, 0)]. Writing expectation in terms of probabilities,
we get

N-a N

c(a)=a+A k-Pr[Bh aa+k]=a+A 1 Pr[Bh >i].
k=1 i=a+l

Let cp(a) =a + A ENa+ p(i). Since p(i) approximates Pr [Bh ;> i], we must have that

(1 - e)c(a) < c, (a) < (1 + e)c(a).

By Lemma 3.3, a* = max{a : Pr [Bh > a] > 1/A} minimizes the cost function

c(a) = a + A EN Pr [Bh > i]. Thus, a, must minimize the value of cp(a). Hence,
c,(a*) > cp(ap). Combining this with the previous inequality, we get

(1 - e)c(ap) < c,(ap) < cp(a*) < (1 + e)c(a*),

yielding our claim. l

3.4.1 Probability estimation

Approximating the probabilities can easily be done through Monte Carlo sampling: perform

many experiments in which a set of active items is generated according to the probability

distribution, and keep track of how often a given number of bins is needed. In particular,
to estimate Pr [Bh > i], we note the number of times mi a packing required at least i bins,
and return mi divided by the total number of trials as our estimate. A polynomial number

of trials suffices to give a sufficiently accurate estimate for the desired threshold number of

bins [41]. We provide the full argument for the sake of completeness.
First we note that in order to compute a nearly-optimal pre-allocation, we don't need

to estimate Pr [Bh > i] for all values of i. All we need is to find the largest value of i for

which the estimated value of Pr [Bh > i] is at least 1/A. Thus, if our estimates are accurate

to within a relative error e, it suffices to estimate probabilities only for values of i for which

Pr [Bh ;> i] > 1/A(1 + e). Next we bound the number of samples required in order to obtain

accurate estimates of the probabilities for such values of i.

50

Estimating Pr [Bh > i] is equivalent to performing a sequence of Bernoulli trials, each
having probability of success p = Pr [Bh > i]. The following lemma establishes how many
samples we need in order to estimate Pr [Bh > i] with relative error e.

Lemma 3.5. Let Y be a Bernoulli random variable with probability of success p. If we take

k = In 2 samples of Y, then with probability at least 1 - 6

(l-e)p : s/k < (l+ e)p,

where s is the observed number of successes.

Proof. If we take k samples of Y, then the expected number of successes is kp. For e < 1
(which is the relative error we desire), the Chernoff bound tells us that

Pr [Is - kp| > Ekp < 2e_ 2 kp/4

which is at most 6 for k = 4 ln 4. Thus, with probability 1 - 6, s/k doesn't deviate from
p by more than ep. E

Finally let us note that we can compute probability estimates for various values of i in
parallel: it suffices to sample item sizes k times to obtain k values of random variable Bh,
which yield k Bernoulli trials for each value of i. Since we are looking for the largest value
of i such that Pr [Bh > i] > 1/A(1 +e) taking the number of samples sufficient for obtaining
an accurate estimate for the smallest probability 1/A(1 + e) is good enough for estimating
the rest of probabilities. Combining Lemmas 3.4 and 3.5, we obtain the following result:

Theorem 3.6. Taking (1 + e) A 4 In 2 samples of item sizes is sufficient to obtain a pre-

allocation that with probability 1 - 6 yields a solution of cost at most (1 + E)/(1 - e) times
the cost of a solution that uses an optimal pre-allocation for a given bin-packing heuristic).

The above result combined with the Theorem 3.2 implies that we can obtain an ap-
proximation guarantee for the preplanning version of the bin-packing problem that comes
arbitraily close to any performance guarantee for regular bin-packing. Assuming that A
is polynomially bounded in the number of items, we get a polynomial-time approximation
algorithm for one-dimensional bin-packing with preplanning that achieves an absolute ap-
proximation guarantee of 3/2 + e. Moreover, using an FPAS for the regular version of the
problem, we attain a polynomial (asymptotic) approximation scheme.

Remark 1. Notice that our approach to bin-packing did not use explicitly neither the dis-
tribution of random variables X 1 , - . - Xn denoting items, nor their independence. In fact,
it could have worked with any probability distribution, as long as we could sample from
it. Thus, the above approach solves the problem (approximately) for stochastic item sizes,
provided that the corresponding distributions can be sampled efficiently.

51

3.5 Vertex Cover with preplanning

In the (unweighted) vertex cover problem, given an undirected graph, the goal is to find a
subset of vertices of minimum cardinality, such that for every edge of the graph, at least

one of its endpoints is in the subset. Now suppose that only a subset of edges needs to be

covered, but we don't know in advance exactly which ones. Given a probability distribution
on the sets of edges to be covered, the goal of the preplanning vertex cover problem is

to determine an optimum set of vertices to buy in advance (at cost 1), so as to minimize
the expected cost of a vertex cover for a random subset of edges, provided that additional
vertices can be added at cost A each.

Since the regular vertex cover (.'P-hard by itself [20]) is a special case of our stochastic
preplanning version (with a deterministic set of active edges, A > 1), the best we can hope for
is to get an approximation algorithm. In this section we show how to obtain constant-factor
approximations for two different types of probability distributions. We achieve performance
guarantees of 4 for both cases using completely different methods.

First we consider the case when the probability distribution over problem instances has
bounded support, i.e. the number of possible subsets of edges to be covered is polynomially

bounded. We make use of a standard technique from stochastic programming of combining
linear programs for individual problem instances that we have used to solve the preplanning
version of the min-cost flow problem. We show how this technique can be extended to
combinatorial optimization problems that are solved by rounding fractional solutions to
linear programming relaxations, and apply it to the vertex cover problem.

Next we consider the version of the problem in which edges have to covered indepen-
dently with uniform probability p. Notice that the number of possible instances of the vertex
cover problem is exponential in this case, so we cannot apply the stochastic programming
technique. Instead, we exploit combinatorial properties of the problem and reduce it to

that of finding a cover for a set of edges in a k-matching, a type of matching in which each
vertex is allowed to have up to k incident edges.

3.5.1 Polynomial number of edge sets

Suppose we are given a graph G = (V, E) and a probability distribution on the polynomial
number of "active" edge sets from F C 2 E that might to be covered by the vertices. In other
words, for each F E T, we have access to pF, the probability that we have to construct a
vertex cover for exactly the edges in F. For F T, p F

We can model the preplanning version of the vertex cover problem with an integer
program. For each vertex i, let x = 1 if i is bought in advance, and let yf = 1 if i is
added to the vertex cover once it is revealed that F is the set of active edges that have to
be covered. For edge (i, j) E F, either i or j has to be in a vertex cover for edge set F, e.g.
at least one of the variables x, , F yf has to be 1. Writing this constraint for all edgesiyj
in each of the potential edge sets, obtain the following integer program:

Min Z EVX i+A EvpFyF

subject to xi + x + yi + yF > V F EV (i, j) c F

Xi E {0, 1} V i E V

yi E {0,} V F E T, V i E V

Since the number of edge sets F E T is polynomial, the corresponding linear programming

52

relaxation can be solved efficiently. The value of an optimal solution to this LP relaxation
provides a lower bound on the optimal integer solution.

Next we construct a solution to the vertex cover preplanning problem by rounding an
optimal solution to the LP. Let us buy vertices i such that x. > 1/4 (i.e. we round such xi
to 1). Once the set F of edges to be covered is revealed, we purchase the additional vertices
i such that yf > 1/4 (i.e. we round such y F to 1). Let 2, be the corresponding integral
solution. To see that this solution is a feasible vertex cover for F, notice that for any edge

(i, j) E F, an averaging argument applied to the corresponding constraint implies that one
of Xi, xj, y, yF[must be at least 1/4. Hence, at least one of sj, ,F, must be 1 (i.e.,
at least one of the endpoints of (i, J) must have been bought at some stage). Furthermore,
since we multiply each fractional variable xi, yf by a factor of at most 4 when we round
them to si, , we must have that

and so our solution is a 4-approximation.

3.5.2 Independent edge set

In this section we consider the version of the problem in which each edge is active (e.g. has
to be covered) independently with probability p. As before, given a graph G = (V, E), we
would like to determine an optimum set of vertices A C V to buy in advance (at cost 1),
so as to minimize the expected cost of a vertex cover for a random subset of edges F C E,
provided that additional vertices can be added at cost A each. Note that once vertices in
the set A are specified, extending it to a cover of the edge set F is equivalent to finding a
vertex cover in the V\A-induced subgraph of GF = (V, F).

Let us assume that A > 3. In the event A < 3, we can obtain a trivial 3-approximation
algorithm by not purchasing any vertices in advance.

Let A* denote the set of vertices to be purchased in advance so as to minimize the
expected cost of the minimum vertex cover. Then the threshold property from Section 3.2
implies that all vertices in A* must be used in an optimal vertex cover of a random subset
of edges at least with probability 1/A. In particular this means that any vertex bought in
advance must have sufficiently large degree.

Lemma 3.7. Let d, denote the degree of vertex v. Then for all v E A*, dv > log 1_P(-

Proof. Suppose for the sake of contradiction that for some v E A*, dv < log,(1 - j. Note
that the probability of using v in a vertex cover for a random set of edges is upper-bounded
by the probability of v being adjacent to at least one edge in the set. The latter probability
is given by 1 - (1 - p)dv < 1 - (1 - 1/A) = 1/A. But by the threshold property, this
probability must be at least 1/A, and so we get a contradiction. E

Note that if the degree of a vertex v E A* is exactly logip(1 - j), then the solution cost
does not increase if we postpone purchasing v until after a random set of edges to be covered
is sampled. Consequently, we get the following result:

Corollary 3.8. If for all v E V, d < log 1,_(1 - j), then buying no vertices in advance is
optimal.

53

The idea of our algorithm is to select a subset of high-degree vertices that are going to
be used in vertex covers of a large fraction of subsets of edges.

Definition 3.9. Given a graph G = (V, E), define a k-matching to be a subset of edges
that induces degree at most k on every vertex. Call a vertex v E V tight if its degree is
exactly k, that is exactly k edges of the matching are incident on v.

Note that we can easily construct a maximal k-matching with a greedy algorithm: go
through the edge list in some order, adding an edge to the matching unless one (or both)
of its endpoints is already incident to k edges previously picked.

Set k [I-p(1 - -)]. Let At denote the set of tight vertices of some maximal k-matching.
The cost of the solution that purchases in advance vertices in At consists of the preplanning
cost |AtJ, and the "wait and see" cost, which is equal to the expected cost of a vertex cover
in the V\At-induced subgraph. We will bound these two costs separately in terms of the
cost of an optimum solution to the vertex cover preplanning problem, which we denote by
OPT.

Lemma 3.10. lAtJ < 30PT.

Proof. Let us consider an instance of the preplanning problem in which only edges of the
k-matching Mk have to covered (e.g. the edge set of the graph from which some edges
are sampled consists just of the edges of the k-matching). Clearly, the cost of an optimal
solution to this instance is no more than OPT.

Let v E At be one of the tight vertices. Suppose that an incident edge of v, say e = (u, v),
is active (i.e. has to be covered). Conditioned on this fact, the probability that u, the other
endpoint of e has no other active incident edges is

1 2
(1 p)du-1 (1 p)k >1 - - 2

A -3'

since A > 3. The probability that at least one incident edge of v is active is 1 - (1 -p)k > I
Combining, the probability that there is an active edge incident on v with no other active
edge incident on the other endpoint of that edge is at least 2.

Note that when an edge adjacent to (u, v) is active, then either v or u has to be included
in the vertex cover. If the optimum purchases v in advance, then v contributes to the
expected cost of our solution just as much as it contributes to the optimum. In case v is
not purchased in advance, as shown above, with probability at least 2, we get an instance
such that there is an active edge adjacent to v whose other endpoint does not "cover" any
additional edges. We can expect v to be added to the vertex cover at least half the time in
this event, resulting in expected cost of A - !. Hence, by buying v in advance, we overpay
by at most a factor 3. Thus, the cost purchasing all the tight vertices in advance is at most
3 -OPT.

Next we bound the expected cost of a vertex cover of a random edge subset in the V\At-
induced subgraph. Let us think of having paid JAt| to reduce our preplanning problem in
the graph G = (V, E) to the preplanning problem in the V\At-induced subgraph of G. Note
that the cost of an optimal preplanning solution for the latter instance of the problem is at
most the optimum cost of the former. In the following lemma we show that an optimum
algorithm for this new instance of the preplanning problem buys nothing in advance. Thus,
its expected cost (which can be at most OPT) is exactly equal to the expected cost of a
vertex cover in the V\At-induced subgraph.

54

Lemma 3.11. It is optimal to buy nothing in advance for an instance of the preplanning
problem in the V\At-induced subgraph of G.

Proof. First note that in the original graph, every edge not in the k-matching must have at
least one tight endpoint (otherwise it could have been added to the k-matching, making it
non-maximal). Thus, vertices in At cover all edges not in the k-matching. This means that
the V\At-induced subgraph contains only edges from the k-matching. Since the edges of
the k-matching induce degree at most k on every vertex, and At contains all vertices with
degree k, the maximum degree of a vertex in the V\At-induced subgraph is at most k - 1.
By Corollary 3.8, it is optimal to buy no vertices in advance. E

Corollary 3.12. The expected cost of a vertex cover of a random edge subset in the V\At-
induced subgraph is at most OPT

The above corollary provides an upper bound on the "wait and see" cost of a solution that
purchases At, the set of tight vertices induced by a maximal k-matching. Combining this
result with Lemma 3.10, which bounds the cost of purchasing vertices in At in advance, we
obtain the following theorem:

Theorem 3.13. Purchasing in advance a set of all tight vertices induced by a maximal k-
matching, where k = [log 1 ,(1 - -)] yields a solution of cost at most 4 times the optimum.

Note that we can optimize the approximation guarantee by setting A - 2 + vx7 to be
threshold value below which we do not purchase any part of a vertex cover in advance. This
results in a slightly better approximation guarantee of 3.73.

Remark 2. Note that the above theorem implicitly assumes that the solution that purchases
the set of tight vertices induced by a maximal k-matching is able to obtain an optimal vertex
cover for a random subset of edges. Since the vertex cover problem is 'P-hard, in practice
we might have to use an approximation algorithm instead. A trivial 2-approximation can
be obtained by constructing a (regular) maximal matching, and including both endpoints
of each edge of the matching in the cover. Using this algorithm in the second stage (in place
of an exact one) we get a solution whose expected cost is within a factor of 5 of optimal.

55

3.6 Steiner network predesign

In the network Steiner tree problem we are given an edge-weighted graph G = (V, E) and
a subset of nodes S C V that need to be connected. The goal is to find a minimum cost
tree spanning S. We consider preplanning versions of this problem, in which S is the set of
active clients drawn from some distribution. Most Steiner network predesign problems are
PIP-hard since they contain the Steiner tree problem as a special case (with A > 1, and a
deterministic active set).

Formal problem statement Let G = (V, E) be an undirected edge-weighted graph. Let

ce > 0 denote the cost of an edge e E E. We call a subset S of nodes (clients) active if
all of the nodes (clients) in it wish to be connected. Given a probability distribution over
potential active sets {S}, the objective is to minimize the expected cost of connecting up
clients in the active set. To this end a subset of edges A c E can be purchased in advance
at cost ce, whereas the rest can be added later on at cost Ace, where A > 1. Once a set S
of active clients is revealed, the cheapest way to connect up all the clients in S is to build a
min-cost Steiner tree over the vertices of S using the edge cost function CA, where CA(e) = 0
if e E A, and CA(e) = Ace otherwise. Let TST(S) be an optimum Steiner tree over S for the

edge cost function CA. The objective of the network predesign problem is to choose A so as

to minimize the cost of the solution c(A) + CA(TST(S)) in expectation over a random set of

active clients S.

A number of interesting special cases of this problem can be shown equivalent to

previously-studied combinatorial optimization problems; we therefore inherit constant fac-

tor approximations from those problems.

Cheap path to root. In this problem, a root is specified in advance and it a single, ran-
domly chosen node wishes to be connected by a path to that root. We show that
this problem is equivalent to the connected facility location problem, with proba-
bility (scaled by A) replacing demand, and hence can be approximated to within a
constant [30, 53].

Cheap path. A randomly chosen pair of nodes wishes to be connected. This problem can
be shown to be equivalent to the multicommodity rent-or-buy problem, with probabil-
ity (scaled by A) replacing demand, which has several constant factor approximation
algorithms [35, 29].

However, our main focus is on problem instances in which each client chooses to become

active with probability pi independently of all other nodes. Thus, the number of possible
active nodes can be large. We assume that there exists a special root vertex r to which all
active clients have to connected (e.g. the root is a client that is active with probability 1).
We give a constant factor approximation for the case where the expected number of active
clients is constant (generalizing the Cheap Path result). For the case with an arbitrary
number of active clients we obtain a 5-approximation for ultrametric edge costs and an
O(log n) approximation for general edge costs.

3.6.1 Cheap path

In this section we consider a special case of the Steiner network predesign in which each

active set consists of a pair of vertices (s, tk) which have to be connected by a path with

56

probability Pk- We show that this problem is equivalent to the Multicommodity Rent-or-
Buy (MROB) network design problem with probabilities acting as demands.

An instance of MROB design is specified by a graph G = (V, E), an edge cost ce > 0
for each e c E, a set of source-sink pairs {(sk, tk)} with corresponding demand values {dk},
and a parameter M > 1. The goal is to assign each demand pair (sk, tk) to a path in G and
install enough capacity in the network to allow simultaneous shipping demands between
each pair. We are given a choice to rent capacity on edge e at unit cost ce or pay ceM for
unlimited usage of capacity on the edge paying. Thus the cost of the solution is given by

ZeEE ce min {ae, M}, where ae is the amount of capacity rented on an edge e. Kumar et
al. gave the first constant factor approximation algorithm for this 'P-hard problem with
a performance guarantee of 73 [35], which was recently improved by Gupta et. al to 12 [29].

Notice that in our cheap path predesign problem, once a set of edges A to be installed in
advance is specified, we can assign a specific path to be used for each pair (sk, tk) (namely
any shortest path under the cost function CA). Furthermore, for each edge e E A it must
be true that Pr [e used] > 1/A, since otherwise it doesn't make sense to buy this edge in
advance. Thus, we can reformulate our problem as that of assigning pairs (Sk, tk) to paths
so as to minimize ZCEE Ce min{A Pr [e used], 1}. Observe that Pr [e used] is just a sum of

Pk over all pairs k that are assigned to use edge e. To reduce this problem to an instance
of MROB, take arbitrary M > 1 and set demand dk = pkAM.

Similarly, to reduce an instance of the MROB problem to an instance of cheap path
predesign, let D = Ek dk denote the total demand that needs to be shipped. We can
assume that D > M, since otherwise the MROB instance can be solved trivially by renting
sufficient capacity on shortest paths between pairs of terminals (as there is no advantage in
buying unlimited capacity). To complete the transformation, we set Pk = dk/D and take
A = D/M.

Cheap path to root. A special case of the cheap path predesign problem in which all
random pairs are of the form (sk, r) (or (r, tk) merits a special consideration. This problem
is equivalent to preplanning a cheap path to the root for a randomly chosen active client.
Given a set of edges A bought in advance, an active client needs to just find the shortest path
to the root-containing component of A. In the context of MROB design the corresponding
instance of the problem simply reduces to an instance of the Connected Facility Location
(CFL) problem (with zero facility-opening costs), a variant of the facility location problem
in which one seeks to minimize the cost of assigning demands to facilities plus the cost of
building a Steiner tree on all opened facilities. The CFL problem is also VP-hard, but can
be directly approximated to within a factor of 2 + aST using a randomized algorithm by
Gupta et al. [30] or within a factor of 3 + aST via a deterministic primal-dual algorithm of
Swamy and Kumar [53], where asT is an approximation factor for the Steiner tree problem
(with the best current value being 1.55 [44]).

3.6.2 Small probabilities

The remaining discussion in this chapter is concerned with rooted Steiner network predesign.
In this problem variant we are given a special root node r to which all active clients have
to connected up. A client i becomes active with probability pi independently of others. We
first consider a special case of the problem in which the expected number of active clients is
constant. Unsurprisingly, this problem is quite similar to the cheap path-to-root problem,
in which the expected number of active clients is 1.

57

Let us first examine the case when the expected number of active clients is at most 1,
i.e. E3 p i < 1. Then, by the Markov inequality, the probability of having 2 or more active
clients is at most 1/2. Thus, at least half of the time we are in the situation in which
at most one client is active. In that case, it makes sense to use a solution for the cheap
path-to-root problem in which exactly one client is allowed to become active under the same
probability distribution {pi} (in case E pi < 1, we can create a phantom client attached
by a zero-cost edge to the root r and assign it probability 1 - Ei pi). In fact, we can show
that the optimum values for the two problems are closely related.

Theorem 3.14. If the expected number of active clients is at most 1, an optimal solu-
tion for cheap path-to-root is a 2-approximation to the (rooted) Steiner network predesign
problem.

Proof. Let OPT and OPT 1 denote respectively the (expected) cost of an optimal solution
to the original problem (each client becomes active independently with probability pi) and
the cheap path-to-root problem (a single active client is chosen according to the probability
distribution {pi}). We will fist show that OPT > 1/2 - OPT 1 .

Let X be a random variable denoting the number of active clients. As we have already
shown, Pr [X < 1] > 1/2. If we were given an option of constructing separate solutions for
the case when X = 1 and X > 2 and then picking which one to use depending on the value
that X takes on, we would do at least as well as OPT. Thus, we get the desired lower bound
OPT > 1/2 - OPT 1 .

Next let us analyze the cost of an optimal solution to the cheap path-to-root problem
(in which exactly one client becomes active). Let A denote the set of edges that an optimal
solution purchases in advance. Now, when client i becomes active, it just needs to find P(i),
the shortest path to the root r under the edge cost function cA. Let U, denote the set of
clients that use the edge e in their shortest path to the root, that is Ue = {i : e E P(i)}.
Thus,

OPT, = c(A) + [pi cA(e) = c(A) + E cA(e) pi
iEV ecTP(i) eCE icUe

Now let us use the set A for solving the original Steiner predesign problem (in which
more than one client can be active). Although, given a set of active clients S the cheapest
way to connect clients is by a min-cost Steiner tree over S (under the edge cost function CA),
we will the shortest path tree T(S) instead. Clearly the expected cost of such a solution
must be at least OPT. More precisely, it is given by

c(A) + cE CA(T(S)) Pr [S] = c(A) + E cA(e) Pr [S] (3.1)
SCV eEE S:eET(S)

Next we would like to show that this solution costs at most OPT 1 . We do this by bounding

ZS:eET(S) Pr [SI, the probability that a given edge e is in the shortest path tree of a random
subset S of clients. Note that the shortest path tree over the set S is a union of the
shortest paths to the root of individual clients in S, i.e. T(S) = UicsP(i). Recalling
that Ue is the set of all clients that use e in their shortest path to the root, we obtain

ZS:eeT(S) Pr [S] < EiEU, pi. Substituting this into the expression for the expected cost of

58

our solution (Equation 3.1, we get

OPT < c(A) + Z cA(e) pi = OPT 1 .
eEE iEUe

But OPT 1 < 20 PT. Thus, using the set A for solving our problem we get a 2-approximation.

Since the cheap path-to-root problem can be approximated to within a constant factor
3.55 [30] we have the following result:

Corollary 3.15. There exists an approximation algorithm with a performance guarantee
of 7.1 for the rooted Steiner network predesign problem in the special case when expected
number of active clients is at most one.

Let us now consider a more general case, in which the expected number of clients is
equal to some constant k > 1. Let us divide up all clients into 2k groups, such that the
sum of probabilities (expected number) of clients in each group is at most 1. (To see that
it is always possible to do so, note that in any grouping of clients such that each group
contains at most 1 active client in expectation, the probabilities sum to over 1/2 in at most
2k - 1 groups, so the rest of the groups can be combined into a single one.) Now, let us
construct a solution for each group separately and independently - each group buys its own
set of edges, and the set of active clients within each group build their own min-cost Steiner
tree containing the root. Clearly, the expected cost of an optimal solution for each group
is at most the expected cost of an optimal optimal solution for the entire graph. Moreover,
putting all the individual solutions together, we get a solution for the entire graph of cost
at most the sum of individual costs. In particular, this solution cost at most 2k times the
most expensive individual group solution, whose cost is in turn upper-bounded by OPT.
Thus, if we could find an optimal solution for each group, we would get a 2k-approximation
for the entire graph. Since each group has at most 1 active client in expectation, we can
obtain a constant-factor approximation for it by Corollary 3.15. By the above argument,
this yields a constant-factor approximation for the entire graph.

Theorem 3.16. There exists an 0(1)-approximation algorithm for rooted Steiner network
predesign problem in the special case when the expected number of active clients is constant.

3.6.3 Large node probabilities

The opposite of the few-clients case is when every client is active with some large probability.
In this section we show that if all the probabilities are lower-bounded by 1/A, then the
optimum is 2-approximated in this case simply by purchasing a minimum spanning of the
entire node set. This is of limited interest but is an important component of our general
solution.

Since the minimum Steiner tree is g'P-hard in general graphs [20], we can apply The-
orem 3.2 and use any approximation algorithm instead of an exact one to come up with
a prepurchase set. In particular a minimum spanning tree (MST) over all terminal nodes

(using shortest path distances between pairs of nodes that are not connected by edges)
provides a 2-approximation [45]. Although there exist better approximation algorithms for
the Steiner tree problem, MST is particularly convenient to work with in the context of
solving our problem.

59

Let OPTM denote the cost of an optimum solution to the rooted Steiner network pre-
design problem, assuming we are restricted to connecting up the set of active clients by
MSTs in place of min-cost Steiner trees. By Theorem 3.2 OPTM < 2. OPT. Naturally,
the best we can do for a given active set S is to buy in advance all edges of TMST(S), a

minimum spanning tree over nodes in S. Thus, E [c(TMsT(S))] is a lower bound on OPTM.
Next we show that the expected cost of a minimum spanning tree over an active set is on
the order of the cost of an MST over all clients when all probabilities are sufficiently large.

Lemma 3.17. Let p be the smallest activation probability of a potential client. The expected
cost of an MST over a set S of active clients is lower-bounded by p times the cost of MST
on all the potential clients.

E [c(TMsT (S)) ; p - c(TMST (V))

Before we proceed with the proof of this lemma, let us introduce the notion of ultra-
metrics.

Definition 3.18. An ultrametric is a metric which satisfies the following strengthened
version of the triangle inequality:

d(x, y) < max(d(x, z), d(y, z))

for all x, y, z.

Given a graph G = (V, E) with edge weights cav we can extract an ultrametric distance
metric [2j by considering any minimum spanning tree of G. In particular, given a fixed
MST for each pair of nodes u, v E V take , to be equal to the heaviest edge on the path
from u to v in the MST. Note that v < cuv for any (U, v) E E. Clearly, tu, = cUV for each
MST edge (u, v). If (u, v) is not part of the MST, then by the optimality of the MST (u, v)
must cost at least as much as the heaviest edge on the path from u to v in the MST, and
so Uv <_ cUV. However, replacing the original edge costs by the MST-induced ultrametric
maintains the MST optimality condition and hence preserves the MST itself.

Proof Lemma 3.17: To simplify the following discussion, we assume that our original
graph has a client with a positive activation probability on every node. (We can always
achieve that without changing MST costs by adding an edge between each pair of potential
clients of cost equal to the shortest path length between them, and deleting all nodes whose
activation probability is equal to zero.)

As a first step, let us replace the edge costs cuv in the given graph G by an MST-induced
ultrametric uv as described above. Note that this does not increase the cost an MST over
active clients while keeping the cost of the MST over the whole graph unchanged. Thus, it
suffices to prove the theorem statement just for these MST-induced ultrametric edge costs.

Let T be an MST of the graph G produced by the Prim's Algorithm. Let us think of
T as being rooted at r and let ir(v) be the parent of v in the T. Recall that each client
decides to become active independently of others. Thus, instead of having the set of active
clients determined at once, we can think of it as being revealed sequentially: going through
the clients in an arbitrary order, at time step i the i-th client decides to become active with
probability pi. Now, consider running Prim's algorithm to find MST over a set of active
clients as a similar random process: at the beginning, r is the only visited vertex. At each
step, we select the next vertex v which minimizes its distance to the current set of visited

60

vertices. This vertex becomes active with probability p,. If it becomes active, we add the
minimum edge from v to the set of visited vertices and mark v as visited. Note that the
cost of the resulting MST depends only on the set of active clients, since restricting the
algorithm to just the set of active clients would have produced exactly the same ordering
of nodes.

To prove our statement we will show that the cost of the edge from v to its parent in this
new MST over a set of active clients is at least the cost of the edge from v to rr(v), its parent
in T. Let T(v) be the subtree of T rooted at v. Consider some node w ' T(v). Recall that

Vw = max{ce : e E P(vw)}. Then for any u E T(v), we must have that ev, < cuw since
the path from u to w in T must pass through the vertex v, and hence contains all of the
edges on the path from v to w in T.

Next we prove that our random process picks v first among the nodes in T(v). Fix a
step of the random process before it has considered any nodes in T(v) and suppose S is the
set of already visited vertices. Note that the random process considers the node u S that
minimizes a(u, S) = minses s Since T(v) n S = 0, we must have that a(v, S) < a(u, S) for
any u E T(v). Thus the algorithm has to pick the node v before any other nodes in T(v).

Thus, at each step of the algorithm, the cost of the edge being added is at least the cost
of the MST edge from a newly visited node v to its parent 7r(v) in T. Hence, the expected
added cost is at least av7r(v)pv + 0 * (1 - pv) = prv,(v). Thus, the total expected cost of an
MST on all active clients is at least p - c(TMST(V)) by linearity of expectation. D

Corollary 3.19. If each client becomes active with probability at least 1/f where f > 1)
we obtain a 2f-approximation to the Steiner network predesign problem by purchasing in
advance edges of an MST on all potentially active clients.

We can further lower the probability threshold for buying an MST (without losing the
approximation guarantee) by performing a more careful analysis of the overall expected cost
of a solution.

Corollary 3.20. If for all clients i, pi > % (where f > 1), then buying in advance a
minimum spanning tree over all potentially active clients is a 2f-approximation.

Proof. We will assume as before that each node in the graph has a client with a positive
activation probability associated with it. Let A be the set of edges that an optimum
solution to MST preplanning buys in advance and let OPTM be its expected cost. Recall
that OPTM = c(A) + ES [cA(TM(S))], where TM(S) denotes an optimal MST on a set S
with respect to cost function cA. From Lemma 3.17 we have

1 1
Es [cA(TM(S))] -cA(T(V)) = ce

ecTm(V)\A

Thus, the cost of the optimum solution

OPTm ce + Ce Ce
ecA ecTm(V)\A eTm(V)

Since TM(V) costs (with respect to the original edge costs ce) at least as much as an MST
on all nodes, we must have that OPTM is at least - times the cost of the latter. Recalling
that OPTM is within a factor of 2 from the optimum for min-cost rooted Steiner network
predesign, we deduce that an MST on all vertices of G is a 2f-approximation. l

61

3.6.4 Algorithm for Ultrametric Case

We now give a constant factor approximation algorithm for the Steiner network predesign
problem for the case when the underlying graph G = (V, E) forms an ultrametric - an

assignment of edge weights such that e , < max(Euw, Ewv). This ultrametric property

implies that the shortest-path distance between any two vertices in the graph is equal to

the weight of the heaviest edge on that path.

The basic idea of our algorithm is to cluster nodes into components Ci of bounded

size and then build a minimum spanning tree over representative nodes, one from each

component. Intuitively, each component can be thought of as a super-client that is active

whenever at least one of its clients is active. We would like for each component to be large

enough so that the probability that it becomes active is roughly 1/A:

Pr[C] -- 1 - ri (1 - PV)~
vGC

. Lemma 3.17 lets us conclude that since the probability mass in each client is large, an

approximately optimum approach to solving a new instance of the predesign problem on

the super-clients is to purchase in advance an MST spanning the super-clients. At the same

time, since the probability mass within each super-client is not too large, we can show that

there is no real benefit in buying any edges inside any super-client. We need to have both

an upper bound b and a lower bound a on the activation probabilities Pr[C] of clusters in

order to apply both sides of the argument. Formalizing this intuition, we have the following

algorithm for rooted Steiner network predesign.

ALGORITHM FOR STEINER NETWORK PREDESIGN

1. Compute a minimum spanning tree T over all clients.

2. Run CLUSTER(T, 1, 1) to obtain a set of clusters together with their representa-

tives {C, rep(C)}.

3. Purchase in advance edges of a minimum spanning tree Tc on the representatives

{rep(C) }.

Figure 3-2: Approximation algorithm for Steiner network predesign with ultrametric edge

costs.

Our algorithm uses a subroutine for clustering nodes provided in Figure 3-3. The basic

idea of our clustering procedure is to take a (minimum) spanning tree and break it up into

connected components by removing its edges in the order of decreasing weight until we get

components of just the right size. Note that deleting an edge might result in one of the

two resulting components being too small, so we need to deal with such cases separately.

In particular, unless the larger (probability-wise) component consists of just one node, we
merge the "too small" component into the larger component by shrinking the edge attaching
it to the larger component. In that special case, we output a cluster containing both the

large one-node component and the small component, possibly resulting in a cluster with

the activation probability over 1/A. (Note that this is the only case when this is possible.)

Our clustering procedure outputs each cluster together with its representative. Except

in the case of a large one-node component mentioned above, a cluster representative is an

62

CLUSTER(T, a, b)
e +- arg max{ce : e E T}
Suppose To and T1 are the connected components of T - {e}.
if Pr[To] > a and Pr[Ti] > a

if Pr[To] < b then output (To, rep(To))
else CLUSTER(TO)

if Pr[Ti] < b then output (T1,'rep(T1))
else CLUSTER(TI)

if Pr[T1_i] < a and ITil > 1 where i= 0 or i = 1
then contract e = (uo, ui) into node ui to create tree TIe

assign pu, < 1 - (1 - pu)(1 - Pr[T1_i])
CLUSTER(Tl,)

if Pr[T1_i < a and JTi = 1 where i = 0 or i = 1
then output (T, v) where v = Ti

Figure 3-3: Clustering procedure.

arbitrary vertex in the cluster present at the time it is formed. Thus, nodes that are part

of contracted small components are not eligible to become cluster representatives. This

guarantees us the following property:

Lemma 3.21. The cost of a minimum spanning tree on cluster representatives is equal to

the net cost of the edges of the original MST deleted (but not shrunk) by the clustering
procedure.

Proof. Let us consider two adjacent clusters which were originally connected by an MST

edge e deleted by the algorithm. Let u and v be their representatives. We will show below
that uv = e. But that means that we can replace the edge e in the original MST by (u, v),
obtaining yet another minimum spanning tree of the full graph. Repeating this procedure

for every pair of adjacent clusters, we obtain an MST over all nodes of the graph that

contains as a subtree a minimum spanning tree on cluster representatives. The cost of this

subtree is equal to the cost of the edges deleted by our clustering procedure, yielding our
claim.

Now let us show that &tv =e for given representatives u, v of two clusters originally

connected by a deleted MST edge e. By the ultrametric property uv is equal to the weight
of the heaviest edge on the path from a to v in the MST of the full graph. If neither cluster
contains a merged small component, then e was the first and only MST edge on the path

from u to v considered by the algorithm, and so it must be the heaviest. If one of the
components does contain a shrunk edge, say es, then either e, does not lie on the path from
u to v in the original MST, or this edge must have been considered after e - if it were
the other way around, then e, could have been deleted resulting in a different cluster split.
In all cases, the edge e turns out to be the heaviest edge on the path from u to v, and so

EUV= e as desired. l

We will analyze the cost of a solution produced by the algorithm in two stages. Let OPT
denote the cost of an optimal solution to the rooted Steiner network predesign problem.

First we show that the cost of the minimum spanning tree Tc constructed in Step 3 of our

63

algorithm given in Figure 3.6.4 is within a constant factor of OPT. Next we show that once
the edges of tree TC are purchased in advance, it is suboptimal to buy any additional edges
in advance.

Lemma 3.22. The cost of the minimum spanning tree TC on the representatives of all
clusters is at most 4 - OPT.

Proof. Let us run our algorithm on a graph G to obtain a clustering of the vertices V(G).
Consider a new instance of the problem. In this instance (let's call it Gc), there is one
node corresponding to each cluster and the cost of an edge between two nodes is equal to
the cost of the shortest edge between two vertices of the corresponding clusters.

Consider an optimum solution to the original instance of the problem for a given active
set of clients. Clearly this solution is a feasible solution for the new instance GC. Since we
ignore the cost of edges inside the clusters (e.g. charge 0 for them), the cost of this solution
for the instance Gc is at most OPT. Since this is true for any active set of clients, the cost
of the optimum solution of the new instance Gc is at most the cost of an optimum solution
to the original instance.

From Corollary 3.20, a minimum spanning tree on all nodes of Gc is a 4-approximation
for the optimum solution in Gc. Therefore, its cost is at most 40PT. We can show

(analogously to Lemma 3.21) that the cost of the minimum spanning tree on nodes of Gc
is equal to the net cost of the MST edges deleted by our clustering procedure. (Instead of
considering representatives of two adjacent clusters, we can consider the endpoints of the
shortest edge between the two clusters.) By Lemma 3.21 the latter cost is equal to the cost
of the minimum spanning tree TC on the cluster representatives, and so we must have that
the cost of TC is at most 40PT. E

Let A denote the set of edges purchased in advance by our algorithm. Starting from
the original instance G, let us construct yet another instance of the problem, called GA, by
contracting all the edges in A into the root node (the root node is spanned by edges of A).
If we think of cluster assignments obtained by our algorithm, then contracting edges of A is
equivalent to merging all cluster representatives into one big super-root. We claim that an
optimum solution to this new instance of the Steiner network predesign problem on graph
GA buys no edges in advance.

Lemma 3.23. It is optimal to buy no edges in advance for an instance of the problem in
the graph GA .

To prove Lemma 3.23, we first need to establish the following claim:

Lemma 3.24. Let C and C' be two distinct clusters obtained by our algorithm. Then the
length of an edge between any two nodes u G C and v E C' (in the new graph GA) is at
least the distance from u to the super-root r, i.e. dur < U.

Proof. Let s be the representative of the cluster C. Since s was merged into the root,
dur = du,. Naturally, if u = s the result holds trivially.

Since u and v are in different clusters, it means that our algorithm has removed an MST
edge e between C and C' at some time, which we will denote t. By optimality of MST,
ae < uv. We need to consider two following cases. Case 1: u is part of a "too small"
component contracted into some node of C. Case 2: u is a regular node inside cluster C

(and not part of any small subcomponent).

64

We begin by considering Case 2. By the ultrametric property, the shortest-path distance
from u to s in G is equal to the length of the heaviest edge on the MST path u -- + s. Let el be
that edge, so d,, = 41,. Since u is a regular node of C, the algorithm must have considered
edge e before it got to edge ei (otherwise, ei would have been removed or shrunk). Hence,
cei 4e as edges are considered in the decreasing weight order. Thus, we have

as desired.

Now consider Case 1. Let edge e2 be the edge that was shrunk when u's small component
was formed. In the case when ae 2 < e (i.e. it was considered after the edge e), the same
argument as for Case 1 applies. Otherwise, e2 must be the heaviest edge on the path u -- s.
If there exists e3 that is heavier than e2 , the algorithm would have considered e3 first and
would have either shrunk it (creating a different small component) or deleted it, creating
a different cluster. Thus, by the ultrametric property dus = Ce2 . But ee2 < 4 , since
otherwise we could have deleted e 2 from the MST and inserted (u, v) in its place while
decreasing the cost. Hence, we have du, 5 < .

Proof of Lemma 3.23: We would like to show that it is optimal to buy no edges in
advance for the problem instance in a graph GA, in which all edges of a minimum spanning
tree on clusters constructed by our algorithm have been shrunk into the root node.

Let us first consider edges connecting nodes from different clusters. From Lemma 3.24
we know that there is never a need to buy an edge (u, v) between two clusters, since we can
instead hook up node u (v) to the super-root by purchasing edges (path) to its respective
cluster representative for less. Thus, for any random instance of the problem, the only edges
used by an optimal solution are inside the clusters.

Next recall that except in the case of a cluster consisting of a large one-node component
attached by an edge to a small component, the probability of a cluster becoming active (i.e.
having at least one active client in inside of it) is bounded by 1/A. Thus the probability
of using any given edge inside a cluster is at most 1/A. This also holds for the edges
inside irregular clusters mentioned above, since the node making up the larger component
is designated to be that cluster's representative, and the rest of the nodes have cumulative
activation probability of less than 1/2A. Hence, by the threshold property (Theorem 3.1)
none of the internal edges should be bought in advance. D

Theorem 3.25. Our algorithm produces a solution which is a 5-approximation to the rooted
Steiner network predesign problem.

Proof. Recall that our algorithm clusters all clients into groups with activation probabilities
close to 1/A, and then purchases the set of edges A forming a minimum spanning tree on
cluster representatives. The cost of our solution is c(A) + Es [cA(TsT(S))], where TST(S)
denotes a min-cost Steiner tree on the set of active clients S. We will analyze this cost by
bounding the advance purchase cost c(A) (e.g. the cost of the MST on clusters) and the
expected "buy-later" cost cA(TST(S)) (e.g. the cost of additional edges necessary to connect
up all the active clients to the root) separately.

From Lemma 3.22 we have that the cost of the minimum spanning tree on cluster
representatives produced by our algorithm is at most 4 - OPT.

65

Next note that the cost of an optimum solution to the Steiner predesign problem in the

contracted graph GA is at most OPT since any optimal solution for the original problem

is feasible for the new problem (with edges in A automatically having cost zero). By
Lemma 3.23 there exists an optimal solution for the new instance which buys no edges

in advance. Thus, the optimum cost of the new instance is exactly equal to the expected

cost of a min-cost Steiner tree in the contracted graph GA, i.e. E [cA(TsT(S))]. Hence, the
expected buy-later cost of a solution obtained by our algorithm is at most OPT. Combining

the two costs we get the stated claim. E

Remark 3. It should be noted that the above argument on bounding the expected "buy-
later" cost assumes that we have access to an oracle that outputs a minimum cost Steiner

tree on the set of active clients. In practice, one would probably have to use an approx-

imately optimal Steiner tree instead. Using 1.55-approximation algorithm of Robins and

Zelikovsky [45], we would obtain a solution with expected cost within a factor of 5.55 of

optimum.

3.6.5 General Case

Finally, we remark that if edge costs form a tree metric, we can solve the problem optimally

in polynomial time. In a tree metric minimum cost Steiner tree on any subset of nodes

is simply a spanning tree on that subset. Thus, for each edge we can compute the exact

probability of using that edge in the Steiner tree over a random set of active clients. In

particular for a given edge e, we have Pr[e used] = 1 - Hj i E Ue(1 - p.), where Ue is the set

of clients whose tree path to the root contains e. The edge should be purchased in advance

if and only if the probability of it being used is at least 1/A.
Given a graph with arbitrary edge weights, we can induce a metric on this graph by

replacing all edge costs with shortest path distances between their endpoints. Clearly doing

so does not increase the cost of an optimal solution. Since any metric can be embedded

into a tree metric with distances approximated by a factor of O(log(n)) in expectation [18],
we obtain the following result:

Theorem 3.26. There is an O(log(n)) approximation for the metric Steiner tree network

predesign problem.

66

3.7 Conclusions and Open Problems

In this chapter we presented a novel "preplanning" framework that allows to study the time-
information tradeoff in solving problems with uncertainty in the inputs. We have examined
a number of (generally .NP-hard) combinatorial optimization problems in which it makes
to postulate a probability distribution over possible instances and to specify a portion of
the solution in advance, and developed algorithms for computing approximately optimal
pre- and post-sampling parts of a solution.

We leave open a number of questions concerning the problems we have considered.
Although the Steiner network predesign problem appears to be quite challenging, we believe
that there exists a constant factor approximation for general edge costs. Another interesting
open question is the integrality of the linear program for the min-cost flow with preplanning.
If it could be in fact shown that there exists an optimal solution that pre-installs only
integral amounts of capacity, then the next natural question to ask is whether we can solve
the problem using a purely combinatorial algorithm.

We could also extend our framework to other combinatorial optimization problems. One
natural problem to consider in the preplanning framework is facility location. The latter
problem is often used to model planning scenarios in which manufacturers have to decide
where to build stores and warehouses and how much capacity to allocate them. However,
this model assumes that all of the customer demands and costs are well-known in advance.
In practice, a lot of these parameters are subject to an uncertainty. In particular, client
demands are frequently estimated based on preliminary data, but are subject to changes in
the future once the facilities are built and start operating. In this case, the manufacturer
might want to save some money by building a minimum number of facilities in advance,
and opening more as demands go up. Naturally there might be a penalty for postponing
construction of facilities, as some demand might go unserved. Thus, in the preplanning
version of the facility location problem, given a probability distribution on the demand of
each client, we would like to determine which facilities should be opened in advance (and
which postponed) so as to minimize the overall expected assignment cost plus the facility
opening cost.

We can also easily formulate a number of stochastic scheduling problems in the context
of our framework. Taking job duration times to be probabilistically distributed, we may
ask how many machines should be reserved in advance in order to complete all jobs by
some deadline, or how much processing time to reserve in advance (with an option of
extending it later) given a fixed number of machines. The simplest version of the former
problem with no ordering or release time constraints is basically captured by the bin-packing
problem. However, incorporating these additional constraints might make the problem quite
interesting and non-trivial.

67

68

Chapter 4

Provisioning routing networks with
incomplete global knowledge

In this chapter we consider a networking problem of planning under uncertainty in a dis-
tributed setting in which obtaining global information might be infeasible, so one has to act
based on local information. This scenario combines some features of the two scenarios con-
sidered earlier in the thesis. While we assume that, just like in the preplanning framework,
one does not have to provide a fixed a solution in advance of observing random inputs, we
are restricted to getting only a local, partial picture of active constraints. Thus, we must
plan a solution that has a simple local specification, which prevents us from coping with
every possible outcome in an optimal manner. In fact, we show that our locality require-
ment leads to a fixed "meta-solution" whose cost is a function of a random outcome. This
connects us with the robot navigation scenario in which we specified the path for the robot
to follow, but the amount of reward collected depended on how long the robot's batteries
lasted.

4.1 Introduction

A networking problem of present-day interest is that of distributing a single data item to
multiple requesters while minimizing network usage. In the presence of caches, it is never
necessary for an item to traverse a network link more than once. Thus, this problem can
be modeled as a Steiner tree problem: connect all requesters to the root using a minimum
cost set of edges. However, the full set of clients who want an item might not be known
in advance.In many real-world scenarios, the set of requesters is drawn from a larger set of
clients which can be determined in advance. Furthermore, it is reasonable to assume that
each client decides independently of others on whether he wants a particular document or
not. Since learning the full set of requesters might be too expensive, or simply take too
long, each client interested in obtaining the data item needs to make a local decision by
specifying his own path to the server without knowing who else in the network is making a
request.

This leads us to define the following maybecast problem. We are given a network (pos-
sibly with edge costs), a root node, and a collection of N clients at nodes in the network.
Each client i will choose to contact the root independently from others with some proba-
bility pi. In advance of the requests we must choose, for each client in the network, a path
from the client's node to the root. If a client chooses to contact the root, the edges on this

69

path become active. Our goal is to minimize, over the random choices of the clients, the

expected number (or cost) of active network edges. We can think of this as a probabilistic

version of the rooted Steiner tree problem, in which one desires to connect a set of terminals

with the root while minimizing total edge cost.

Our maybecast scenario is not unlike the preplanning framework considered in the pre-

vious chapter. Just like in the preplanning setting, in the maybecast problem we are given

a probability distribution over problem instances {I} (e.g. the set of active clients). We

get to plan a solution to be used for each instance in advance. The actual cost of a solution

depends on a random outcome in the second stage. However, in the maybecast problem,
in the second stage each node is restricted to act only on local information. Thus, our pre-

planned solution must have a local specification, and so a solution to each instance consists

of independent pieces determined in advance.

Our maybecast problem is of course AVP-complete, since the Steiner tree problem is a

special case (with all terminals active with probability 1). In fact, our problem remains .P-

complete even in the uniform case of one client per network node and unit costs on edges.

We give a constant-factor approximation algorithm. Our solution relies on some structural

analysis of the optimum solution which leads to an application of facility location and

Steiner tree algorithms to solve the problem.

4.1.1 Formal Problem Statement

Input: We consider an undirected graph G = (V, E) with a non-negative edge weight

function I : E - R+ and a root vertex r E V. A set of N clients is assigned to a subset

of vertices S C V. Client i becomes active independently with probability pi > 0, in which

case it communicates with the root r along some to-be-specified path. Every edge on the

path from an active client to the root becomes active.

Output: Construct a set of paths connecting each client to the root; this is the path that

will be used if the client becomes active. The goal is to minimize the expected total weight

of active edges.

In order to study this problem, we think of le as the length of edge e and define a

per-unit-length edge cost function ce reflecting the probability that an edge will be used.

Given a solution, let us denote by Ue the set of clients using edge e to communicate with

the root. Then c, = Pr[e is active] = 1 - lEU, (1 - pi). Using linearity of expectation, we

can express the objective function as the sum over all edges of probabilities that an edge is

active weighted by its length

E[weight of active edges] = 1 - r (1 - pi) le

eEE \ iEUe

4.1.2 Our Contribution

In this chapter we design a constant factor approximation algorithm for the maybecast

problem. We begin with a study of the optimum solution. We show that the optimum

solution is invariably a tree. However, the obvious first choice of a shortest path tree can

cost a factor as large as 0(n'/ 2) times the optimum in an n-node graph. To find a better

tree, we note that the optimum tree consists of a central "hub" area within which all edges

are basically certain to be used, together with a fringe of "spokes" in which multiple clients

can be considered to be contributing independently (and linearly) to the cost of the solution.

70

We use a facility location algorithm to identify a good set of "hubs" to which we route clients
at independent (linear) costs, and then use a Steiner tree algorithm to connect the hubs to
the root. Our approximation algorithm achieves a performance guarantee of 37.

To identify a good set of hubs, we introduce a new version of the facility location
problem: one in which every open facility is required to have some minimum amount of
demand assigned to it. This problem can also be phrased as a clustering problem where
we wish to minimize the average radius of clusters without letting any cluster be too small.
We present a simple bicriterion approximation for this problem, one which is loose in both
assignment cost and minimum demand. This suffices for our application. We leave open
the question of finding an algorithm that produces a truly feasible approximate solution.

4.1.3 Related Work

The maybecast problem can be represented as a kind of min-cost flow problem with infinite
capacities and a concave cost function. We can think of a client i as having "demand" for
a flow of capacity pi to the root. The cost of routing along an edge exhibits an economy of
scale: the more paths use an edge, the cheaper it is per path. By approximating our cost
function ce by a piece-wise linear function min (iZj, pi, 1), we can establish a connection
with the buy-at-bulk network design problem (originally introduced by Salman et al. [49]),
another problem which exhibits an economy of scale. As an example, consider the problem of
wiring a telephone network in some metric space such that every pair of clients is connected
by a path of capacity one (devoted to just that pair). Our approximate cost function would
correspond to the situation in which two types of wires are available: low cost wires of unit
capacity, and "infinite" capacity wires of large cost.

In the general buy-at-bulk network design problem, one is given an undirected graph,
and a set of source-sink pairs with non-negative demands. The goal is to install enough
capacity on the edges in order to route all the demands while minimizing the total cost,
which is a concave function of the capacity bought. The problem is known to be g'P-
hard [49]. Awerbuch and Azar [7] provide a randomized O(log2 n) approximation algorithm
for this problem, where n is the number of nodes in the network. Their approach relies on
the tree metric embedding of Bartal; subsequent improvements in tree embedding yield a
somewhat better approximation ratio of O(log n) [18].

Subsequent work has tended to focus on the single-sink version of buy-at-bulk network
design and its variations. One special case considered is the access network design problem,
a variant of the problem in which one needs to construct a network using a set of K trunk-
types with a fixed overhead charge and a service charge proportional to capacity used. The
cost structure obeys economy of scale, however restrictions placed on the relation between
the fixed and proportional components of the cost preclude its application to our problem.
Andrews and Zhang [3] gave an O(K 2)-approximation algorithm for the access network
design problem which was subsequently improved to a constant factor (independent of K)
by Guha et al. [26].

After the initial publication of our results there followed a number of developments in
network design with economies of scale. In particular, considerable improvements have been
made in approximation guarantees for single-sink buy-at-bulk network design with arbitrary
concave, piece-wise linear cost function. Garg et al. [22] gave an 0(K)-approximation
algorithm for the problem based on an LP rounding technique, while Guha et al. [27]
independently came up with a constant-factor combinatorial approximation algorithm. The
performance guarantee of the latter algorithm has been estimated to be roughly 2000 [54]. It

71

has been subsequently improved by orders of magnitude, first by Talwar [54] who reduced it

roughly by a factor of 10, and more recently by Gupta et. al [30] who gave an approximation

algorithm with a guarantee of 73. While this algorithm solves our problem as a special case,
we obtain a better constant with our algorithm for the maybecast problem.

Recently Kumar et al. [35] introduced the multicommodity rent-or-buy (MROB) prob-

lem, a type of multicommodity buy-at-bulk network design with a two-piece linear cost

function identical to our approximate cost function. This problem models a scenario in

which one can rent capacity at some small cost per unit, or pay a large fixed cost for unlim-

ited (e.g. infinite) amount of capacity. The first constant-factor approximation algorithm

for this problem provided by Kumar et al. [35] was quite complex and had a very large

performance guarantee (though not explicitly stated). Gupta et al. [29] has recently intro-

duced a much simpler 12-approximation algorithm. It is worth noting that although our

maybecast problem (with the approximate two-piece linear cost function) is a special case of

the MROB problem (with just one commodity), it doesn't have a natural multicommodity

formulation by itself, as the cost of transmission of different data items over the same link

cannot be shared the same way that the capacity is shared in MROB. In particular, a given

link might have to be traversed multiple times if there is more than one type of item (e.g.

commodity) being sent over it.

Finally, we note that our maybecast problem can be modeled (modulo the loss of a

small constant factor) as an instance of the Connected Facility Location (CFL) problem

formulated by Gupta et al. [28] in the context of provisioning Virtual Private Networks

after the initial publication of our work. This problem is a variant of the traditional facility

location problem, as it seeks to open a subset of facilities, assign demands to them, and

additionally connect up all the opened facilities via a min-cost Steiner tree. The current

state-of-art algorithm for the CFL provides an approximation guarantee of 3.55 [30] which

translates into roughly 6-approximation for the maybecast problem.

4.2 Preliminaries

In this section we provide some preliminary results regarding the structure of the optimum

solution. We show that the paths of the optimum solution must define a tree, but that the

obvious shortest paths tree can be a terrible approximation.

4.2.1 Solution Structure

We start by showing that the optimum solution to any maybecast problem is a tree.

Given a set of paths connecting each client with a root, let us think of the solution as a

flow along those paths. A client i contributes di = - ln(1 - pi) units of flow to every edge

on its path to the root. Thus, a given edge e carries fe = i - ln(1 - pi) units of flow.

The cost of the flow on that edge is given by

I - (I - pi) le = I e-di le

= (1 - e-fe)le

This cost function is concave in fe, the flow on that edge. To see that note that the second

derivative of the cost function with respect to to the flow is negative since 2 (1 - ex)

72

r

Q

client i P

clientj

Figure 4-1: Intersecting paths

-e-- < 0.
If we have two distinct paths between the same pair of nodes with non-zero flows fi and

f2 on each, by properties of concave functions, cost(fi + f2) < cost(fi) + cost(f 2). This
suggests that an optimal solution never sends flow from a given node to the root along 2
distinct paths. We deduce that it has to be a tree.

We can actually prove this in a general setting.

Theorem 4.1. Consider any single-sink min-cost flow problem where capacities are infinite
and every edge e has a nondecreasing concave cost function ce of the total flow actually
carried by that edge. Then there is an optimal (min-cost) solution to the flow problem that
is a tree (that is, every vertex has at most one outgoing edge carrying flow).

Proof. For simplicity we provide a proof only for the case where all cost functions are
increasing and strictly convex, i.e. f(Ax + (1 - A)y) > Af (x) + (1 - A)f (y).

Consider an optimum solution. Let us decompose the flow into paths carrying flow to
the root and cycles carrying flow in circles. Note that if there is a flow-carrying cycle, we
can decrease flow on every edge of the cycle, decreasing the solution cost, a contradiction.
So the optimum flow is decomposed into paths to the root.

We will now show that this solution must be a tree. For the sake of contradiction,
assume the solution is not a tree. This can only happen if there exist two clients i and
. with paths to the root that intersect at a non-root vertex and then separate, i.e. use 2
different edges out of that vertex as shown in Figure 4-1 (as a special case we might have
i =). Let v be a vertex where the separation happens and let w be the next intersection
of the two paths. Let P denote the segment of the first path between v and w and Q the
corresponding segment of the other path. Let up denote the amount of flow on path P, and
uQ the amount of flow on path Q. Notice that we can substitute segment P for Q to obtain
a different valid path to the root for client i, and vice versa for client j. We argue that
at least one of these substitutions yields an improved solution, violating our assumption of
optimality.

To see this, we evaluate the cost of our flow in 3 pieces: the up units of flow on P,
the uQ units of flow on Q, and everything else. If we leave out the flow on P and Q, the
remaining flow (which is not feasible, since it violates conservation at v and w) has some
total amount of flow ue on each edge e for some total fixed cost C.

73

a) b) c)

Figure 4-2: The shortest path example. a) m x m grid graph with a root. b) Shortest path
tree solution. c) Alternative stem path solution.

To make this flow feasible we must add upQ = up + uQ units of flow from P to Q,
but we can distribute this flow any way we like between P and Q. Let us consider the

incremental cost over C of placing u', units of flow on P and u' units on Q such that

U' + u'q = upQ. The incremental cost on edge e E P of sending an additional u', units

is ce(ue + u'), which (since ce is strictly concave) is a concave function of u', (offsets of

concave functions are strictly concave). The overall incremental cost fp(u') of sending u',

units on P is thus a sum of strictly concave functions and thus strictly concave. Similarly,
the overall incremental cost fg (u') of sending u' units of flow on Q is also strictly concave.

Paths P and Q are disjoint, so our overall solution cost is simply C + fp(u') + fQ(u').

We wish to minimize this subject to u', + u'= upQ, and both positive which means

minimizing fp(AupQ) + fQ((l - A)u',) over 0 < A < 1. But since fp and fQ are strictly

concave functions, this sum is a strictly concave function of A, so is optimized at one of the
"endpoints" A = 0 or 1, i.e. u', = 0 or u' = upQ.

This shows that we can find a solution better than the (presumed optimal) one which

sent flow on both P and Q, a contradiction. E

4.2.2 The shortest path tree heuristic

Now that we know that an optimal solution is a tree, a shortest path tree is a logical

candidate for an approximate solution. Unfortunately, the shortest path tree can have

polynomial approximation gap, as the following example illustrates.

Consider an unweighted m x m grid graph with a root vertex attached to the top m

vertices by single edges as shown in Figure la. All edge lengths are 1.
Consider an instance in which only the m vertices on the bottom have clients, each

having the same activation probability p. Let n = m 2 + 1 be the total number of vertices.

The number of clients in this instance is then given by N = m = vn - 1.
In a shortest path tree solution, every client will use a path that goes up along vertical

74

r r

edges, until it merges into the root (see Figure 1b). Let us compute the cost of such
a solution. Consider a vertical path of length m. Each edge of this path is used with
probability p, so the cost of this path is p -m. Summing over all m vertical paths, the total
cost of the shortest path solution is pm2 .

Now consider an alternative solution, in which all clients in the bottom row go to the
middle vertex of the row, and then use 1 central vertical path to get to the root (illustrated
in Figure 1c). The central vertical path costs at most m since the maximum cost of an
edge is 1 and there are m edges in it. Similarly, the cost of the paths converging in the
center of the bottom row is at most m - 1. Thus, the total cost of this solution is at most
2m. The ratio of costs of the shortest path solution and the central path solution is at least
pm 2 /2m = Q(pv/n - 1) = Q(n 1 / 2) when p is constant. Thus, a shortest path tree can give
a polynomially-bad approximate solution.

4.3 A price function

To develop our approximation algorithm, we convert our concave cost function into one
that is piecewise linear but closely approximates our original function.

Given a solution, let us define the unit cost of an edge e in the solution as the probability
that e becomes active, Ce = 1 - rH ,U (1 - pi), where Ue is the set of clients whose paths
to the root contain e. We can assume that |Ue > 0, since we can always throw out edges
that are not used by any of the clients. We can upper bound ce by the sum of activation
probabilities of the clients using e, that is ce < Ecu, pi. Notice that when this sum is
small, ce is very close to it, whereas when the sum becomes large (greater than 1), ce
rapidly approaches 1. Based on this observation, let us introduce a unit price function

e {in p, 1
E Uei,

We have already argued that our unit price function is an upper bound on the actual unit
cost. We show that it is a tight upper bound: that e is E(ce), independent of probabilities

Lemma 4.2.

1
Ce < e < ce.1 - 1 /e

Proof. We have already argued the first inequality. For the second inequality, let us fix

s = Eiu, pi. Observe first that since 1 - x < ex,

(1 -pi) <]7 e =e
iEUe iEUe

So we must have that ce > 1 - e-'. Now we show that

1
-e < (1 - e-')

-c1 - 1/e

which, combined with the previous observation, proves the lemma.

75

Case 1: s > 1, so =1. The desired inequality holds trivially

Ce 1
1 - es -1 - 1/e

Case 2: s < 1, so 'e s. Consider the quantity 3 This is an increasing function of

s on the interval (0, 1], so the maximum is attained at s = 1. So once again,

Ce 1
1 - e-s - 1 - l/e

In a problem with edge lengths, the actual contribution of an edge to the objective

function is its length multiplied by its unit cost, le - ce. Let us refer to this quantity as the

weighted cost of an edge, or simply its cost. We can similarly define the (weighted) price of

an edge to be 1e - ,. Because of the linear relationship to unit price and cost, the weighted

price of an edge is an upper bound on its actual weighted cost and their ratio is bounded

by the same constant 1 - 1/e.

Since costs and prices are related within a constant, we see that the optimum cost

maybecast tree has cost within a constant factor of the optimum price maybecast tree. It

follows immediately that any algorithm that approximates the minimum price tree to within

a constant will also approximate the minimum cost tree to within a the same constant times

e/(e - 1).
It is worth noting some similarities between our edge price function and the two-tier cost

structure of the preplanning framework. Recall that, as shown in Section 3.2, the expected

cost to the objective function incurred by an edge e in the Steiner network predesign problem

is equal to le -min{A Pr [e used] , 1}. This suggests that the same kinds of techniques involving

aggregation of probability mass via clustering of clients might be applicable to the maybecast

problem. Below we demonstrate that this is indeed the case.

4.4 A hub and spoke model

What the grid graph example in Section 4.2.2 demonstrated was that sometimes instead of

using a shortest path to the root, it pays for clients to cluster together at some node and

then share one path to the root. To get a better understanding of why this is the case,
let us go back to our flow analogy. Suppose each client i has to send pi units of flow to

the root via some path. Once the total amount of flow from clients using the same path

reaches a certain value, adding more flow (from one more client) onto the path doesn't

increase the real unit cost (the probability of the edges on the path being active) by much.

This is captured by our unit price function, which uniformly charges 1 for every edge once

ZEiUe pi, the amount of flow on that edge, reaches 1.

Consider any tree solution T to the maybecast problem. Every client has a unique path

to the root. We will say that a client i passes through node v if node v lies on i's path to

the root. As paths of different clients converge towards the root, they might start sharing

the same edges and passing through the same nodes. Define a hub to be a node that has at

least 1 unit of flow from clients passing through it. The unit price of every edge on the path

from a hub to the root is 1. Thus, once a client gets to a hub, the rest of its path to the root

76

is already paid for. Let hub(i) be the first hub on the path of a client i to the root. We will
say that client i is assigned to hub(i). In building a solution, if we were given a set of hubs
and an assignment of the clients to the hubs, to obtain the rest of the solution we would
need to connect all of the hubs up to the root at the minimum edge cost. But edges on the
paths from hubs to the root have price one, so the optimum "hub tree" is just a Steiner
tree on the hubs (which we can approximate via a Steiner tree approximation algorithm).

Let us now analyze the cost of assigning a client to a hub. Any edge e on the path of i
to hub(i) carries no more than 1 unit of flow; otherwise we would have a hub sitting earlier
on that path. This means that unit price of edge e is ce = EiU pi, where Ue is the set of
clients using that edge. Thus, client i contributes pi towards the unit price of every such
edge. Let h(i) denote the length of the path (distance) from client i to hub(i). Then over
all the edges on its path to a hub, client i contributes pi - h(i) to the overall solution.

We can therefore decompose our problem into two parts: first, clustering clients at hubs,
and second, connecting hubs up at minimum cost. Of course, we do not know where the
hubs are, rather we have to create them. In this respect, the problem is similar to the
facility location problem in which, given costs for opening facilities and assigning locations
to them, one wants to open a set of facilities and connect each location to an open facility
while minimizing net cost [31]. There is no direct cost associated with opening a hub,
however the Steiner tree parallel applies only if there is a large number of clients assigned
to every hub. So how can we find a set of hubs, such that there is a hub not too far from
each client but every hub receives a substantial amount of demand?

4.5 A gathering problem

In the uncapacitated facility location problem [14, 17, 31, 50], we are given a set of facilities
F, a set of locations C, a cost fi for opening each facility i E F, and for each pair i E
F, j E C, the cost cij of connecting location j to (opened) facility i. The goal is to select a
subset of facilities to open, and assign each location to an opened facility so as to minimize
the total sum of the assignment costs and the costs of opening facilities. There are a
number of constant-factor approximation algorithms for solving the uncapacitated facility
location problem when the assignment costs satisfy the triangle inequality [14, 17, 31, 50].
The currently best approximation guarantee, due to Mahdian et. al [38], is 1.52. In a
demand-weighted version of the problem, we are also given a non-negative demand dj for
each location j, so that the cost of assigning j to a facility i is dcij.

Intuitively, facility costs are supposed to encourage us to use facility resources frugally
and assign many clients to the same facility. However, it is still possible to have an optimal
solution in which a facility serves only very few clients. If we wanted to prevent opening
a facility that serves too few clients, instead of having a fixed cost associated with each
facility, we could require that a facility i can be opened only if at least a certain number
of clients get assigned to i, or in the demand-weighted case, facility i gets to serve at least
some minimum required demand.

Let us define an r-gathering problem to be a special type of demand-weighted facility
location problem. The goal is to open a subset of facilities and assign demands to them,
such that each opened facility has at least r units of demand assigned to it, and the total
assignment cost is minimized. In our particular application, the cost of opening a facility is
zero if that facility is feasible. However, the problem and our solution generalize to include
facility-opening costs, and also to allow different lower bounds at different facilities.

77

We can formulate our problem of finding a set of hubs close to all the clients as an

instance of the r-gathering problem. Take the set of all nodes of the graph to be the set

of potential facilities, and the set of clients to be the set of locations. Set assignment costs

to be the shortest path distances between nodes. Let the demand of a client j be pj. If
we solve the r-gathering problem on this instance with r = 1, the opened facilities can

be thought of as hubs. Next we will show that there exists a 1-gathering solution of cost

comparable to the cost of an optimum solution to our original problem.

The r-gathering problem also makes sense in the context of clustering problems: an

r-gathering solution attempts to divide the clients into clusters (one per open facility) so
as to minimize the average radius (distance from the cluster center) while forbidding any

cluster from having too few items.

4.5.1 Solving the r-gathering problem

We now describe an approximation algorithm for the r-gathering problem. For simplicity, we

first consider the case without facility-opening costs, and assume that all lower bounds are

the same value r. This is the problem we need to solve in our maybecast application. This

simplified version can be described as follows: given a set of potential facilities (indexed by
), a set of of clients (indexed by j), each with a demand dj, and a cost matrix cij satisfying

the triangle inequality, we wish to open a set of facilities, and assign each client to an open

facility, such that

1. At least r units of demand are assigned to each open facility

2. The total distance traveled by all the demand to its assigned facility is minimized.

More formally, we wish to set assignment variables xij, where xj = 1 if j is assigned to i

and 0 otherwise, such that

1. For every i, Ej xi > r (facility i is open) or >3 x-j = 0 (facility i is not open).

2. We minimize C = E xijcijdj.

We present a bicriterion approximation to this problem.

Theorem 4.3. Let C* be the optimum cost of a feasible solution to an r-gathering problem.

In polynomial time, we can find a solution to the problem, of cost C, such that

1. For every i, Ej xij > r/2 (facility i is open) or >j x3, = 0 (facility i is not open).

2. C = O(C*).

That is, we can find a solution that gathers at least half the required demand at every

open facility, and does so at cost within a constant factor of the optimum gathering cost.

There is a typical tradeoff: we can in fact come within (1 - E) of the required demand (nearer
feasibility) at every open facility if we are willing to worsen the approximation ratio.

To prove this theorem, given our gathering problem, we define a related facility location

problem and show that its solution meets our requirements. To define the facility location

problem, we assign a cost fi to each facility i. The cost of i is defined as twice the minimum

cost of moving r units of demand from the clients to facility i.
More formally, let J,, J2,.. , j, be the clients, ordered in increasing distance from facility

i (that is, caij < cij 2 < ---). Let k be minimum such that dj, + dj,2 + - - - d ik > r. For

78

simplicity let us assume this sum is exactly equal to r-if not, just split client k into two
smaller demands. Then the cost

fi = 2(cidj, +--- + ciJk d k).

Note that for any assignment that assigns at least r units of demand to i, we must have

Z: cijzxjdj > fi/2.
Let F denote the facility location problem with costs cij inherited from the gathering

problem g and with facility costs fi.

Lemma 4.4. The cost of an optimum solution to F is at most thrice that of 9.

Proof. Consider any solution to 9. It opens certain facilities and makes assignments xij.
The same solution is clearly feasible for F; let us analyze its cost under F. The assignment
cost E xijcijdj is the same for both problems; we need only measure the added cost of
opening the facilities in F.

Consider some facility i that was opened in 9. By feasibility of the solution for g, there
are at least r units of demand incident on i. It follows that the total cost of shipping this
demand to i, E xijcjdj > fi/ 2 . Thus, summing over all open i, we have

S i < 2 xi S j
i open i open j

that is, the total cost of opening facilities is at most twice the total assignment cost. But
that total assignment cost is the entire cost of g, so the cost of F is at most 3 times the
cost of 9. E

Lemma 4.5. Any solution to F can be converted into a solution of no greater cost that
assigns at least r/2 units of demand to every open facility.

Proof. Suppose we have a solution to F that does not satisfy the gathering requirement.
We give a procedure that modifies the solution to a cheaper one by closing a facility. We
repeat this procedure until the gathering requirement is satisfied. Clearly this will happen
within n repetitions.

As a first step, convert the solution to one that is locally optimal: assign every client to
the nearest open facility. Clearly this can only improve the cost.

Now suppose there is an open facility i with less than r/2 incident demand. Consider
the nearest clients i,... , jA that are used to define fi. By definition, these clients in total
have d,, + d. 2 + -.- + dk = r units of demand, and send at most r/2 units to i, so at least
r/2 of this demand must be assigned to other facilities. Let

1
c -(djic ii + di 2cij2 + --- +dj ciJ)= fi/2r

r

be the average distance of these r units of nearest demand. By Markov's inequality, less
than half of this nearby demand is at distance exceeding 2c from i. But by assumption less
than r/2 of these nearby demand units are assigned to i. Thus, some client j' not assigned
to i is at distance less than 2c from i. But by local optimality, this j' must be assigned to
a facility i' at distance less than 2c from '. By the triangle inequality, this facility is at
distance less than 4c from i.

79

So suppose that we close facility i, take all the demand assigned to i, and assign it to
i' instead. By the triangle inequality, this adds at most 4c to the assignment distance of
those units of demand; thus the total increase in assignment cost is the amount of demand
at i (less than r/2) times the added distance (at most 4c) for a total of less than 2rc. But
now note that c = fi/2r, meaning that the change in assignment cost is less than fi.

Thus, by closing a facility, we have saved fi in facility cost, and paid less than fi in
assignment cost. We can repeat this process until no facility remains with less than r/2
units of incident demand. E

The conversion outlined in this lemma is clearly algorithmic. This leads to the following
result:

Corollary 4.6. Given a p-approximation algorithm for the facility location problem, and

given an r-gathering problem, we can find a solution of cost at most 3p times the optimum
gathering cost that gathers at least r/2 units of demand at every open facility.

Proof. Given the gathering problem g with cost G, define the related facility location prob-
lem as above, which has cost at most 39. Run the p-approximation algorithm to find a
solution of cost at most 3pG. To that solution apply the conversion that ensures that every
facility has at least r/2 incident demand at no greater cost. E

Applying current approximation bounds for facility location yields our initial theorem:

Corollary 4.7. There is a bicriterion approximation algorithm for the r-gathering problem
that gives an r/2-gather costing at most 4.56 times the optimum r-gathering.

Proof. Use the 1.52-approximation algorithm for facility location [38].

There is a tradeoff between the approximation factor and the factor by which the lower
bound on demand gets relaxed. By scaling our special facility cost fi appropriately we can
demonstrate the following result.

Corollary 4.8. There is a bicriterion approximation algorithm for the r-gathering problem
that gives an re-gather costing at most 'k' - 1.52 times the optimum r-gathering.

4.5.2 Generalizations

Our approximation algorithm straightforwardly handles two generalizations (which are not
needed for our application):

" We can include an actual facility opening cost fi.

" We can allow the lower bound of demand needed to open each facility to be a distinct
value ri.

To handle nonzero facility costs, we simply add our special facility cost fi (minimum
cost to ship r units of demand to i) to the original facility opening cost fi' to get the facility
opening cost f,+ fi in our derived facility location problem F. Our analysis still shows that
F has cost within a constant factor of g. Furthermore, as in the simpler problem, the added
cost fi is enough to pay for closing any facility with less than r/2 demand and rerouting to
a different open facility. Note that in fact, it suffices to set the derived problem's facility
cost to be max(fi, f2'); this might improve performance in practice.

80

To handle distinct lower bounds, we note that our analysis is essentially local to every
vertex. If we define fi to be the minimum cost of shipping ri units of demand to facility i, the
entire analysis goes through unchanged. We end up with a constant factor approximation
that places at least ri/2 units of demand on facility i if it is open.

4.6 Gathering for maybecast

In this section, we use our gathering algorithm as a black box for solving the maybecast
problem. We apply the following algorithm:

MAYBECAST ALGORITHM

1. Let F = V, C = S. For any pair i E F, j C C, let cij be the shortest path distance
between i and j. For any client j E Sc, let dj = p.. Set r = 1. Run our bicriterion
approximation algorithm on this instance of the r-gathering problem to obtain a
feasible solution to an r/2-gathering problem.

2. Let H c F be the set of facilities opened in Step 1. Build an approximately
minimum cost Steiner tree TS connecting nodes in H to the root r.

3. For a client j, its path Pj to the root consists of its path to the facility i to which
it was assigned in Step 1 plus the path from i to the root in the tree Ts.

4. If there are cycles in Pj, remove them.

Figure 4-3: The Maybecast Algorithm

Our algorithm clusters clients into large enough groups and then connects up all the
groups with the root. For clustering purposes, we will think of a client i as having pi units
of demand and take assignment costs to be equal to shortest path distances. We solve an
r-gathering problem on this instance using our bicriterion approximation algorithm and
then build a Steiner tree on all of the facilities opened by the r-gathering algorithm, thus
connecting each client with the root via its gathering point. In the last step we simplify the
paths of all clients, clearly without increasing the cost of solution.

We analyze this algorithm's performance in two steps. First, we show that the derived
gathering problem has an optimum cost close to that of the maybecast optimum. Then
we show that, given a solution to the derived gathering problem, we can convert it to a
maybecast solution of similar cost. Combining these two arguments with our approximation
algorithm for gathering shows that the maybecast algorithm finds a good solution.

4.6.1 Cost of the derived gathering problem

In this section we analyze the cost of the derived gathering problem.

Theorem 4.9. Given an instance I of the maybecast problem with an optimal solution of
cost OPT, there exists a solution to the derived r-gathering problem (r = 1) of cost O(OPT).

To prove this theorem, we will take an optimal maybecast tree for instance I and
construct an r-gathering solution using the structure of the tree. In the optimal maybecast

81

solution, the path from each client eventually reaches a hub. By the definition of a hub,
an ancestor of a hub is also a hub, which means that the hubs form a subtree TH of the

maybecast tree (containing the root) which we will call the hub tree. Demand from any one

client moves on non-hub edges until it reaches a hub, and then moves on the hub tree to

the root.

Consider the price C* O(OPT) of the optimum (with respect to the original cost

function) maybecast solution. Let us decompose the price paid for the overall solution into

the price of moving demand from each client to its first hub in the hub tree (along non-hub

edges) and the price of moving demand from the hubs to the root. Along non-hub edges,
the price function is linear: client i sending demand pi along non-hub-edge e contributes

lepi to the price function ce. So if we define h(i) to be the distance (under le) from client

i to the first hub on its path to the root, then client i contributes pih(i) in total to the

price on non-hub edges. On the other hand, by definition edges in the hub tree are carrying

demand exceeding 1. Thus the price of each edge is just the length of that edge. So C,
the price of edges in TH, is just the total length of hub-tree edges. We have thus argued
that

0*= (p-h(i) +0*g
clients i

We use this two-part decomposition to construct a solution to the gathering problem. In

the first step of the solution, we move the demand from each client to its first hub, exactly as

in the optimum solution. This costs us exactly the first term, Epih(i). As a hub might get

fewer than r units of demand, we proceed to gather all this shifted demand from the hubs

into facilities, each holding at least r demand in total, at cost C. This provides a solution

to the gathering problem whose cost is the sum of the two parts, namely Epih(i) + Cg.
This is precisely the price of the maybecast solution, which in turn is within a constant

factor of (1 - 1/e)- 1 times the true cost of the maybecast solution.

That the first part costs Epih(i) is immediate from the definition of the (linear) gath-

ering problem objective function. It remains to prove that we can gather the demand from

where it arrives at the hubs at cost C*.

Lemma 4.10. Given any tree with edge costs ce > 0, demands d. > 0 on nodes, and total

demand at least r, there exists a solution to the demand-weighted r-gathering problem of

cost no more than r .C, where C is the total edge cost of T.

Proof. By induction on the size of the tree. Suppose first that there is a leaf (degree-one

node) with less than r units of demand. Move this demand from the leaf to its parent along

edge e. Since we are moving less than r units this costs at most rce. Then we can delete

edge e and the leaf. This leaves a tree with total edge cost C - ce and demand which, by
induction, can be gathered at cost r(C - ce). Thus, the total gathering cost is at most

rce + r(C - ce) < rC as desired.

Now suppose every leaf has at least r units of demand. Take one leaf and open a facility

there. Assign all demand on the leaf to the facility. This has no cost. Then delete the leaf

and its demand. Since all (unrooted) trees have at least two leaves, the remaining tree still

has demand greater than r so, again by induction, it can be gathered at cost rC. l

Theorem 4.9 implies that the cost of an optimal r-gathering solution is O(OPT). The

r/2-gathering solution obtained with our bicriterion approximation algorithm must then

82

cost O(OPT) as well. Note that in general, if we run our bicriterion approximation algorithm
with a fixed demand relaxation factor of e, the resulting re-gathering solution is also within
a constant of OPT.

Corollary 4.11. The re-gathering solution (0 < e < 1) produced by our bicriterion approx-
imation algorithm costs at most

1.52 1 + E
I OPT

1 -1/e 1 -c

Proof. In proving Theorem 4.9 we have shown that there exists a solution to the r-gathering
problem whose cost is bounded by the price of the optimum maybecast tree, which in turn
is always within a factor of (1 - 1/e)- 1 of the true cost of the solution. Hence, an optimal
r-gathering must cost at most OPT/(1 - 1/e). By Corollary 4.8, the cost of an re-gathering
solution produced by our bicriterion algorithm is within a factor of }+' - 1.52 from the
optimum r-gathering solution. Combining this with the previous bound on the cost of the
optimum r-gathering solution, we get the desired result. E

4.6.2 Cost of the Steiner Tree

The previous section showed that the cost of our gathering solution is O(OPT). In this
section, we show that the cost of the Steiner tree we build on the gathering points is also
O(OPT).

Theorem 4.12. The cost of the minimum Steiner tree on the gathering points is O(OPT).
Proof. Consider the following new maybecast instance, based on our prior solution to the
r/2-gathering problem with r = 1. Let us go back to our flow-demand analogy that we used
in defining the hub-and-spoke model. Send each client's demand (flow) to the gathering
point to which it was assigned in the 1/2-gathering solution. Since each gathering point
has at least 1/2 unit of demand (flow), we will refer to it as a half-hub.

Let us construct a solution to this new maybecast instance with all the demands (clients)
gathered at half-hubs. We will first send all the demand back to its original nodes (via
shortest paths), and from there route them to the root using an optimal solution to the
original maybecast problem at cost OPT. Notice that the price (which is an upper bound
on the cost) of sending demand back to its original nodes is equal to the cost of gathering
it, which is precisely the cost of the r/2-gathering returned by our bicriterion algorithm.
Let us denote by GATr/ 2 the latter cost and by OPT' the cost of an optimum solution to
the modified maybecast instance. Thus,

OPT' < GATr/2+ OPT = O(OPT)

As has been already demonstrated in Theorem 4.1, it is actually suboptimal to send
clients from the same node on different paths to the root. In an optimal solution (to the
modified instance) all of the clients from a given node will use the same path to the root.
Because we gathered at least 1/2 unit of demand at each gathering point, each path will
have at least 1/2 unit of demand, so every edge on any path will carry at least 1/2 unit
of demand. So the unit cost of each edge on the path from a half-hub to the root in this
optimal solution is at least

1 - J7(i -pi) > 1 - e-iehPi2 > -_ e-1/2
iEh

83

It follows that the cost of every edge we use is at least 1 - e-1/ 2 times its length, and that

the cost of the optimum solution is at least 1 - e-1/ 2 times the sum of the lengths of edges

used.
A Steiner tree TS on the gathering points connects all the half-hubs to the root while

minimizing the total edge weight (length). Let ST = ECTs ce denote the weight of an

optimal Steiner tree on half-hubs. Then (1 - e- 1/ 2) - ST is the lower bound on the OPT'.

Thus we have

OPT'_
ST< = O(OPT)

- 1 - 1/2

We can use a known 1.55-approximation algorithm [44] to build a Steiner tree on the

set of facilities opened by our bicriterion gathering algorithm. By the above theorem it is

guaranteed to cost O(OPT). Note that if we use the re-gathering solution to open hubs,
we can derive a similar guarantee on the cost of the resulting Steiner tree. It suffices to

substitute e for 1/2 in the above argument.

Corollary 4.13. The Steiner tree on the re-gathering points obtained with our bicriterion

approximation algorithm costs at most

GATre + OPT
1 - . .55

Notice that we can decrease the cost of the Steiner tree by picking an appropriate

demand relaxation factor e.

4.6.3 Performance of the approximation algorithm

In this section, we show that our algorithm finds a constant factor approximation to the

optimum maybecast solution.

First let us verify that we don't increase the cost of the solution by performing Step 4

of our Maybecast Algorithm given in Figure 4-3. In that step we remove any cycles after

merging clients' paths to the hubs (opened by our gathering algorithm) and the Steiner tree

on hubs. Consider some edge e and the set of clients Ue using it to get to the root before

Step 4. Notice than when we simplify the clients' paths in Step 4, we don't add any clients

to e, but we might remove some. This means that the cost of e can only decrease after Step

4. Thus, the cost of solution T obtained before we simplified the paths is an upper bound

on the cost of the final solution.

To evaluate the performance of the algorithm, we measure the price of the solution

obtained. The price paid can be decomposed into two components: (i) the price of moving

demand from each client to its gathering point, and (ii) the price of moving demand from

all the gathering points to the root. The first price component (i) is precisely the cost of

the gathering solution, which we already proved O(OPT). The second one is equal to the

total price of flow on Steiner tree edges, which is upper bounded by the total length of the

Steiner tree edges, i.e. the weight of the Steiner tree. We already showed this is O(OPT).

Thus, our total solution cost is O(OPT) + O(OPT) = O(OPT) as claimed.

We have thus shown that the price of the solution T is at most O(OPT). Since the price

function is an upper bound on the true cost, we have the following result.

84

Theorem 4.14. The MAYBECAST ALGORITHM yields an 0(1)-approximation solution to
the maybecast problem.

We can rebalance the tradeoff between the cost of re-gathering solution and the cost
of the Steiner tree built on the corresponding gathering points. In particular, our approx-
imation guarantee is a function of the demand relaxation factor e used by the gathering
bicriterion algorithm and is given by

1.52 1 + E 1.55 1.52 1 + e
1 - 1/e 1 - E I - e6 1-1/e -E

By setting e = 0.361, we can obtain a solution to the maybecast problem which is within
a factor of 36.5 of optimal.

Corollary 4.15. There is an approximation algorithm for the maybecast problem that pro-
duces a solution of cost at most 37 times the optimum cost.

4.6.4 A local optimization

In our algorithm above, we set the path of every client to go via the hub to which it was
gathered in the derived gathering problem. This can result in a solution which is not a
tree (paths can cross). We can fix this problem, without making the solution worse, if after
finding the Steiner tree on gather points, we simply route each client, via a shortest path, to
the closest point in the Steiner tree. Equivalently, we can imagine contracting the Steiner
tree into the root, and building a shortest path tree on what remains. This will clearly
result in a tree solution to the maybecast problem.

To see that the cost of our modified solution is no worse than before, note that our
analysis above assumes that every edge in the Steiner tree is saturated, with unit price (and
cost) 1. Thus, no matter how we reroute the client paths, we will never pay more than
we thought on the Steiner tree edges. As for the remaining edges, we bounded their unit
cost by the total demand (Epi) of paths through the edge, thus bounding the total cost
on those edges by the sum of path lengths from each client to the Steiner tree. It follows
that minimizing the sum of path lengths to the Steiner tree can only improve our solution,
and that is precisely what taking shortest paths to the Steiner tree does.

4.7 Conclusion

We have studied a particular routing problem in which certain global information is hard
to gather both due to uncertainty and the distributed nature of the network, and developed
a local-decision approximation algorithm that achieves results within constant of optimum.
Our problem belongs to a class of challenging "concave cost" network design problems.
Perhaps the techniques used could be applied as well to more general cost functions or the
design of more complex networks.

We might also ask whether our solution can get by with less global information. At
present we require global knowledge of the set of clients and activation probability p. Is it
possible to define a path-based scheme which works regardless of p? Under such a model, all
we are requiring is that every equally sized subset of clients be equally likely to activate-a
plausible assumption for non-geographically-dependent requests. Even better would be to
define a scheme in which our path solution is always competitive against the best possible

85

solution for the set of active terminals. But we suspect there are strong lower bounds for

this variant.

4.8 Open problems

We can extend our local decision-making framework, in which only part of the solution can

be preplanned, while the remainder must be generated quickly and locally, to a number

of other stochastic combinatorial optimization problems. For example, when dealing with

the stochastic vertex cover problem (in which each edge is "active" and thus needs to be

covered with probability p) we can require that each edge picks a vertex that is going to

cover it in advance. Our goal is then to pick a subset of vertices in advance that cover all

edges, so that the expected number of "active" vertices (e.g. vertices adjacent to at least

one active edge) is minimized. Notice that similar to maybecast, we can approximate the

expected cost of each vertex v chosen to be in a cover by min {puv, 1}, where u, is the

number of adjacent edges that v is assigned to cover. Thus, once a vertex of degree at least

1/p is included in a solution set, it makes sense for all of its adjacent edges to designate it

as their cover. Observing the similarity with the threshold property from the preplanning

framework, we believe that our algorithm for the vertex cover with preplanning problem

that picked high-degree vertices induced by a maximal k-matching can be used to solve the

local-specification version of the problem as well.

Another classical combinatorial optimization problem that has a natural local specifica-

tion variant is bin-packing. Imagine a scenario in which each item needs to be assigned to

a particular bin ahead of time. After observing which items actually need to be packed, we

purchase only those bins that have at least one "active" item assigned to them. The goal

is to assign items in such a way so as to minimize the total number of bins that need to be

purchased. Note that the probability of a bin being active depends on the number of items

in the bin (and their respective probabilities) but not on the sizes of items. Intuitively, we

would want to gather many small items together to be assigned to the same bin(s), and

have the rest of the bins filled with only a few large items per bin. This way, there are only

a small number of bins that would need to be purchased for packing a random selection of

items. However, this goes against the standard approach of using small items to fill gaps

in mostly-packed bins. The latter approach can result in nearly every bin having a good

chance of becoming active.

86

Bibliography

[1] F. Afrati, S. Cosmadakis, C. Papadimitriou, G. Papageorgiou, and N. Papakostanti-
nou. The complexity of the traveling repairman problem. Theoretical Informatics and
Applications, 20(1):79-87, 1986.

[2] G. Andreatta and L. Romeo. Stochastic shortest paths with recourse. Networks,
18:193-204, 1988.

[3] Matthew Andrews and Lisa Zhang. Approximation algorithms for access network
design problem. Algorithmica, 34(2):197-215, 2002.

[4] E. M. Arkin, J. S. B. Mitchell, and G. Narasimhan. Resource-constrained geometric
network optimization. In Symposium on Computational Geometry, pages 307-316,
1998.

[5] S. Arora and G. Karakostas. A 2+ e approximation algorithm for the k -MST problem.
In Proc. of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
754-759, 2000.

[6] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Improved approximation guaran-
tees for minimum-weight k-trees and prize-collecting salesmen. Siam J. Computing,
28(1):254-262, 1999. Preliminary version in 27th Annual ACM Symposium on Theory
of Computing, 1995.

[7] Baruch Awerbuch and Yair Azar. Buy-at-bulk network design. In Proc. 38th Sympo-
sium on Foundations of Computer Science, pages 542-547, 1997.

[8] E. Balas. The prize collecting traveling salesman problem. Networks, 19:621-636, 1989.

[9] D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 1995.

[10] John R. Birge. Stochastic programming and applications. INFORMS Journal on
Computing, 9(2):111-133, spring 1997.

[11] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan.
The minimum latency problem. In Proc. of the 26th Annual ACM Symposium on
Theory of Computing, pages 163-171, 1994.

[12] A. Blum, S. Chawla, D. Karger, T. Lane, A. Meyerson, and M. Minkoff. Approximation
algorithms for orienteering and discounted-reward tsp. In Proc. of the 44th Annual
Symposium on Foundations of Computer Science, Cambridge, Massachusetts, 2003.

87

[13] A. Blum, R. Ravi, and S. Vempala. A constant-factor approximation algorithm for the

k-MST problem. JCSS, 58:101-108, 1999. Preliminary version in 28th Annual ACM
Symposium on Theory of Computing, 1996.

[14] Moses Charikar and Sudipto Guha. Improved approximation algorithms for facility

location and k-median problems. In Proc. 40th Symposium on Foundations of Computer

Science, pages 378-388, 1999.

[15] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and minimum latency

tours. In Proc. of the 44th Annual Symposium on Foundations of Computer Science,
Cambridge, Massachusetts, 2003.

[16] F.A. Chudak, T. Roughgarden, and D.P. Williamson. Approximate k-MSTs and k-
steiner trees via the primal-dual method and lagrangean relaxation. In Proc. of the 8th

International IPCO Conference, volume 2081 of Lecture Notes in Computer Science,
pages 60-70, Utrecht, the Netherlands, June 2001. Springer-Verlag.

[17] Fabian Chudak and David Shmoys. Improved approximation algorithms for the unca-

pacitated facility location problem. 1998.

[18] F., S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics by tree

metrics. In Proc. ACM Symposium on Theory of Computing, 2003.

[19] J. Feigenbaum, C. Papapdimitriou, and S. Shenker. Sharing the cost of multicast

transmissions. In Proc. of the 32nd Annual ACM Symposium on Theory of Computing,
2000.

[20] M.R. Garey and D.S. Johnson. Computers and Intractability: A guide to the theory of

NP-completeness. W. H. Freeman and Company, 1979.

[21] N. Garg. A 3-approximation for the minimum tree spanning k vertices. In Proc. of the

37th Annual Symposium on Foundations of Computer Science, pages 302-309, October

1996.

[22] Naveen Garg, Rohit Khandekar, Goran Konjevod, R. Ravi, F. S. Salman, and Amitabh

Sinha. On the integrality gap of a natural formulation of the single-sink buy-at-bulk

network design problem. In Proc. 8th International IPCO Conference, volume 2081
of Lecture Notes in Computer Science, pages 170-184, Utrecht, the Netherlands, June

2001. Springer-Verlag.

[23] M. Goemans and J. Kleinberg. An improved approximation ratio for the minimum

latency problem. In Proc. of the 7th Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 152-158, 1996.

[24] M.X. Goemans and D.P. Williamson. A general approximation technique for con-

strained forest problems. SIAM J. Comput., 24:296-317, 1995. Preliminary version in

3rd Annual ACM-SIAM Symposium on Discrete Algorithms, 1992.

[25] B.L. Golden, L. Levy, and R. Vohra. The orienteering problem. Naval Research Logis-

tics, 34:307-318, 1987.

88

[26] Sudipto Guha, Adam Meyerson, and Kamesh Munagala. Hierarchical placement and

network design problems. In Proc. 41st Annual Symposium on Foundations of Com-

puter Science, 2000.

[27] Sudipto Guha, Adam Meyerson, and Kamesh Munagala. A constant factor approx-

imation for the single sink edge installation problems. In Proc. 33d Annual ACM
Symposium on Theory of Computing, pages 383-388, 2001.

[28] A. Gupta, J.M. Kleinberg, A. Kumar, R. Rastogi, and B. Yener. Provisioning a Virtual

Private Network: a network design problem for multicommodity flow. In Proc. ACM
Symposium on Theory of Computing, pages 389-398, 2001.

[29] A. Gupta, A. Kumar, M. Pal, and T. Roughgarden. Approximation via cost-sharing:

a simple approximation algorithm for the multicommodity rent-or-buy problem. In

Proc. 44th Annual Symposium on Foundations of Computer Science, Cambridge, MA,
2003.

[30] A. Gupta, A. Kumar, and T. Roughgarden. Simpler and better approximation algo-
rithms for network design. In Proc. A CM Symposium on Theory of Computing, pages

365-372, 2003.

[31] Kamal Jain and Vijay V. Vazirani. Primal-dual approximation algorithms for metric

facility location and k-median problems. In Proc. 40th Symposium on Foundations of

Computer Science, pages 2-13, 1999.

[32] D. Johnson, M. Minkoff, and S. Phillips. The prize collecting steiner tree problem:

Theory and practice. In Proc. of the 11th Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 760-769, 2000.

[33] David R. Karger and Maria Minkoff. Building Steiner trees with incomplete global

knowledge. In Proc. 41st Annual Symposium on Foundations of Computer Science,
pages 613-623, 2000.

[34] Jon Kleinberg, Yuval Rabani, and Eva Tardos. Allocating bandwidth for bursty con-

nections. SIAM J. Computing, 30(1):191-217, 2000.

[35] A. Kumar, A. Gupta, and T. Roughgarden. A constant factor approximation algorithm

for the multicommodity rent-or-buy problem. In Proc. 43d Annual Symposium on

Foundations of Computer Science, pages 333-342, 2002.

[36] T. Lane and L. P. Kaelbling. Approaches to macro decompositions of large markov
decision process planning problems. In Proc. of the 2001 SPIE Conference on Mobile
Robotics, Newton, MA, 2001. SPIE.

[37] T. Lane and L. P. Kaelbling. Nearly deterministic abstractions of markov decision

processes. In Proc. of the Eighteenth National Conference on Artificial Intelligence,
Edmonton, 2002.

[38] M. Mahdian, Y. Ye, and J. Zhang. Imroved approximation algorithmsfor metric facility

location problems. In Proc. 5th International Workshop on Approximation Algorithms

for Combinatorial Optimization, pages 229-242, 2002.

89

[39] Maria Minkoff. The prize collecting steiner tree problem. Master's thesis, Massachusetts
Institute of Technology, Cambridge, MA, May 2000.

[40] Debasis Mitra and Qiong Wang. Stochastic traffic engineering, with applications to
network revenue management. In Proceedings of IEEE INFO COM 2003, 2003.

[41] R. Motwani and P. Raghavan. Ramdomized Algorithms. Cambridge University Press,
1995.

[42] Andy Philpott. Official cosp stochastic programming introduction. World Wide Web,
http: //stoprog. org/index.html?spintroduction.html.

[43] M. L. Puterman. Markov Decision Processes. Wiley, 1994.

[44] G. Robins and A. Zelikovsky. Improved steiner tree approximation in graphs. In Proc.
10th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 770-779, 2000.

[45] G. Robins and A. Zelikovsky. Improved steiner tree approximation in graphs. In Proc.
10th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 770-779, 2000.

[46] R.T. Rockafellar. Optimization under uncertainty. Lecture Notes, University of Wash-
ington.

[47] R.Sitters. The minimum latency problem is NP-hard for weighted trees. In Proc. of
the 9th International IPCO Conference, volume 2337 of Lecture Notes in Computer
Science, pages 230-239, Cambridge, Massachusetts, USA, May 2002. Springer-Verlag.

[48] N.V. Sahinidis. Optimization under uncertainty: state-of-the-art and opportunities.
University of Illinois,Urbana, February 2003.

[49] F.S. Salman, J. Cheriyan, R.Ravi, and S. Subramanian. Approximating the single-sink
link-installation problem in network design. SIAM Journal on Optimization, 11(3):595-
610, 2000.

[50] David B. Shmoys, Eva Tardos, and Karen I. Aardal. Approximation algorithms for
facility location problems. In Proc. 29th Annual ACM Symposium on Theory of Com-
puting, pages 265-274, 1997.

[51] Hossein Soroush and Pitu B. Mirchandani. The stochastic multicommodity flow prob-
lem. Networks, 20:121-155, 1990.

[52] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

[53] C. Swamy and A. Kumar. Primal-dual algorithms for connected facility location prob-
lems. In Proc. 5th APPROX, volume 2462 of LNCS, pages 256-269, 2002.

[54] K. Talwar. Single-sink buy-at-bulk lp has constant integrality gap. In Proc. 9th Inter-
national IPCO Conference, volume 2337 of Lecture Notes in Computer Science, pages
475-486, Cambridge, Massachusetts, USA, May 2002. Springer-Verlag.

[55] Maarten H. van der Vlerk. Stochastic programming bibliography. World Wide Web,
http://mally.eco.rug.nl/spbib.html, 1996-2003.

90

