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by
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Abstract

The invariance hypothesis is the claim that properties of the ventral stream can be de-
duced from 1. a consideration of the computational problem with which it is engaged:
invariant object recognition, 2. constraints of the neural “hardare”, and 3. the visual
environment. We are interested here in a particular instantiation of this idea. A recent
general theory of hierarchical networks for invariant recognition [1] describes many
modern convolutional networks as special cases, and also implies the existence of a
wider class of algorithms, which we are only now beginning to explore. Our version
of the invariance hypothesis is the claim that the algorithm implemented by the ventral
stream is also in this class. As applied to the brain, the theory follows from a few sim-
ple and commonly accepted premises. This thesis contributes several models/studies
in which properties of the ventral stream are deduced and explained in the context
of the theory. The main contribution here is providing a general framework through
which disparate results concerning many parts of the ventral stream, and even differ-
ent levels of analysis [2], can be bridged and understood. In that sense, it is primarily
a Neuroscience contribution. However, the ideas and algorithms it suggests may also
have implications for the broader question of how to learn representations capable of
supporting intelligence.

Thesis Supervisor: Tomaso Poggio
Title: Eugene McDermott Professor
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Chapter 1

Introduction

Unlike Athena, the new ventral stream theory foreshadowed in these pages did

not spring fully-formed from the head of Zeus. We: primarily Tomaso Poggio,

Fabio Anselmi, Lorenzo Rosasco, Jim Mutch, Andrea Tacchetti, and myself, de-

veloped it—and continue to refine it—within a context in which the questions

considered in this dissertation loom large. Each of its four main chapters can be

read independently, but a common thread runs through them. In other manuscripts—

some already released, and some currently in preparation—we spin the same

thread into the cloth of the new theory. Most of the chapters of this dissertation

propose (or analyze) specific models designed to elucidate particular aspects of

the ventral stream and the object recognition algorithm it implements. Some of

them (chapters two and three) were mostly completed before we knew they were

parts of a larger story. Whereas, the work of chapters four and five was under-

taken more consciously as part of the larger theory’s development. A version of

each chapter has appeared, or soon will appear, as a standalone article.

Chapter one, the introduction, has two parts. The first part gives general

background on learning and perception. The second part introduces the theory

of the ventral stream which is used throughout this thesis—particularly in its last

two chapters.

Chapter two, Measuring invariance, proposes an operational definition of in-

variance which can be used to compare neural data, behavior, and computational
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models. It then describes the application of the definition to an analysis of the

invariance properties of HMAX, an older model of the ventral stream [3, 4], which

motivated much of our later work. In particular, we showed that, from a certain

point of view, there really is no selectivity-invariance trade-off. HMAX can be al-

most perfectly invariant to translation and scaling. Furthermore, we showed that

high similarity of the template images to the to-be-recognized images is not a re-

quirement for invariance and that, in many cases, surprisingly small numbers of

templates suffice for robust recognition despite translation and scaling transfor-

mations. The finding that random dot pattern templates are perfectly reasonable

templates to use for invariant recognition was surprising at the time, but thanks

to subsequent development of the theory, is now well-understood. Other groups

made similar observations around the same time [5, 6]. A version of chapter two

appeared as a CSAIL technical report in 2010: [7], and we also published some

of the same ideas in [8].

Chapter three, Learning and disrupting invariance in visual recognition with

a temporal association rule, was joint work. Leyla Isik and I contributed equally.

We modeled Li and DiCarlo’s “invariance disruption” experiments [9, 10] using a

modified HMAX model. In those experiments, monkeys passively viewed objects

which changed identity while saccades brought them from a peripheral retinal

position to the fovea. As little as one hour of exposure to this strange visual en-

vironment caused significant effects on the position invariance of single units.

But don’t “errors of temporal association” like this happen all the time over the

course of normal vision? Lights turn on and off, objects are occluded, you blink

your eyes—all of these should cause errors in temporal association. If temporal

association is really the method by which invariance to larger patterns is devel-

oped and maintained, then why doesn’t the fact that its assumptions are so often

violated lead to huge errors in invariance? In this work, we showed that these

models are actually quite robust to this kind of error. As long as the errors are

random (uncorrelated), then you can accumulate surprisingly large numbers of

them before there is an impact on the performance of the whole system. This
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result turns out to be an important one for the later plausibility of our ventral

stream theory’s reliance on temporal association learning.

Chapter four builds on the results from a paper I wrote for NIPS in 2011 [11]

entitled “Why The Brain Separates Face Recognition From Object Recognition”.

In that paper, we conjectured that the need to discount class-specific transfor-

mations (e.g., 3D rotation in depth) is the reason that there are domain-specific

subregions (e.g., face patches [12–14]) of the ventral stream. We also give an

explanation, based on the new theory, for why the cells in the anterior (high-

level) ventral stream are tuned to more complex features than those in the more

posterior lower-levels.

Chapter five is concerned with biologically plausible learning rules through

which the brain could develop the necessary circuitry to implement these mod-

els. As a consequence, we predict that neuronal tuning properties at all levels

of the ventral stream are described by the solutions to a particular eigenvalue

equation we named the cortical equation. In the case of small receptive fields,

as in primary visual cortex, its solutions are Gabor wavelets. In the case of large

receptive fields, corresponding to a face-specific region, the predicted tuning

curves for 3D rotations of faces resemble the mysterious mirror-symmetric tun-

ing curves of neurons in the anterior lateral face patch [15].
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1.1 A theory of invariant object recognition

Figure 1-1: Properties of the ventral stream are determined by these three factors. We are not

the only ones to identify them in this way. For example, Simoncelli and Olshausen distinguished

the same three factors [16]. The crucial difference between their efficient coding hypothesis and

our invariance hypothesis is the particular computational task that we consider. In their case,

the task is to provide an efficient representation of the visual world. In our case, the task is to

provide an invariant signature supporting object recognition.

The new theory of object recognition [1]—applied here to the ventral stream—is very

general. It encompasses many non-biological hierarchical networks in the computer

vision literature in addition to ventral stream models like HMAX. It also implies the exis-

tence of a wider class of hierarchical recognition algorithms that has not yet been fully

explored. The conjecture with which this paper is concerned is that the algorithm imple-

mented by the ventral stream’s feedforward processing is also in this class. The theory

is based on four standard postulates: 1. Computing a representation that is unique

to each object and invariant to identity-preserving transformations is the main com-

putational problem to be solved by an object recognition system—i.e., by the ventral

stream. 2. The ventral stream’s feedforward, hierarchical operating mode is sufficient

for recognition [17–19]. 3. Neurons compute high-dimensional dot products between

their inputs and a stored vector of synaptic weights [20]. 4. Each layer of the hierarchy
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implements the same basic “HW-”module, performing filtering and pooling operations

via the scheme proposed by Hubel and Wiesel for the wiring of V1 simple cells to com-

plex cells [21]. We do not claim to have identified the ventral stream’s algorithm exactly.

Instead, we argue that as long as these postulates are reasonably true, then the algo-

rithm implemented by the (feedforward) ventral stream is in the class described by the

theory, and that that is sufficient to explain many of its mysteries.
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1.2 High-level perception: recognition and invariance

Visual information passes from the retina along the optic nerve to the thalamus, from

there it goes to primary visual cortex (V1): a large region in the extreme posterior part

of the brain (occipital lobe). V1 cells are commonly divided into two categories: simple

and complex. Hubel and Wiesel, who first made the distinction, found that some V1

cells—which they named simple cells—were optimally tuned to oriented bars. That is,

one simple cell may respond when a horizontal line appears in its receptive field while

another simple cell may respond when a diagonal line appears in its receptive field.

Simple cells are sensitive to the exact location of their preferred stimulus within the

receptive field. They have oriented “on” and “off” regions; the appearance of a stimulus

in the former increases the cell’s firing, while in the latter it suppresses it. Complex

cells are also tuned to oriented lines but tolerate shifts in the line’s exact position within

their receptive field. That is, they have no “off” regions. Most complex cells also have

somewhat larger receptive fields than simple cells [21].

Simple cells represent stimuli by an orientation at each position (the coordinates

are x,y and angle). Complex cells also represent stimuli by those three coordinates

but their spatial sensitivity is diminished. In this sense, the pattern of activity over the

population of complex cells can be thought of as a blurred version of the representation

carried by the simple cells. V1 inherits the retinotopic organization of its inputs. Thus,

cells with receptive fields in nearby regions of the visual field are also located nearby

one another in cortex.

Hubel and Wiesel conjectured that complex cells are driven by simple cells [21]. A

complex cell tuned to an orientation θ tolerates shifts because it is receives its inputs

from a set of simple cells optimally tuned to θ at different (neighboring) positions. In

the popular energy model, the response of a complex cell is modeled as the sum of

squares of a set of neighboring simple cell responses [22].

In downstream higher visual areas, cells respond to increasingly large regions of

space. At the end of this processing hierarchy, in the most anterior parts of the ventral

visual system—particularly in the anterior parts of inferotemporal cortex (IT)—there are
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Figure 1-2: Left: Illustration of a model with a convolutional architecture. In early layers, units
represent simple stimuli like oriented bars. In later levels, units are tuned to complex stimuli like
patches of natural images. Right: Hubel and Wiesel’s illustration of their proposal that complex
cells are driven by simple cells. It also shows that simple cell tuning can be produced by a
combination of “center-surround” receptive fields like those in the lateral geniculate nucleus
(LGN) of the thalamus [21].

cells that respond invariantly despite significant shifts (up to several degrees of visual

angle) [23–25]—but see also [26]. A small object could be translated so that it no

longer falls in the receptive fields of any of the photoreceptors that originally imaged it.

Even then, the representation in IT could remain largely unchanged. Hubel and Wiesel

proposed that a similar organization to the one they discovered in V1 may be repeated

beyond early vision; the cells in downstream visual areas could be optimally tuned to

more complex image fragments, e.g., corners and T’s may come after V1’s lines—all

the way up to whole object representations in IT.

Fukushima’s neocognitron is an early example of a computational model of object

recognition built around Hubel and Wiesel’s proposal [27]. In that model, alternating

layers of “simple” (S) and “complex” (C) cells compute either a “tuning” or a “pooling”

operation; other more recent models maintain this organization [3, 4, 28, 29]. S-cells

can be thought of as template detectors; they respond when their preferred image (their
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template) appears in their receptive field. Since visual areas are approximately retino-

topically organized, the pattern of activity of all the cells tuned to a particular template,

each at a different location in the visual field—the feature map—can be understood as

a map of where in the visual field the template appears. That is, the feature map is

the convolution of the inputs with the template. A layer that represents many different

features, like V1 with a template for each orientation, is said to contain many feature

maps.

C-cells pool together the responses of S-cells at different locations. Thus C-cells

are tuned to the same templates as their input S-cells, but they are invariant to stimulus

translations within their receptive field. Pooling is typically modeled with a nonlinear

operation—as in the energy model: sum of squares of a set of S-cell responses—or

the HMAX model: the max of a set of S-cell responses. Since cortex is retinotopically

organized, the S feature maps are computed by convolving the template with the in-

puts. C-feature maps are computed by applying the nonlinear pooling function to local

neighborhoods of S cells.

A good question to ask at this point is: how could the proposed organization be

wired up through either visual experience or evolution? There are two separate ques-

tions here, one is how to learn the templates (the wiring into the S cells), the other

is how to learn the pooling (the wiring into the C cells). One answer to the former

question is the statistics of commonly viewed image fragments (e.g. [30]). On small

spatial scales, low complexity features like the oriented edges of V1 are represented.

On larger spatial scales, the cells represent more complex features.

The second problem, that of developing invariance via this scheme, is equivalent to

the problem of associating units representing the same template at different positions

(and scales) in the visual field. While it is straightforward to achieve this in a computa-

tional model, for visual cortex it is one of a class of notoriously difficult correspondence

problems. One way the brain might solve it is via temporal-association-based (TAB)

methods. The most famous TAB method is Foldiak’s trace rule [31]. The trace rule

explains how many cells having the same selectivity at different spatial positions could

be wired to the same downstream cell by exploiting continuity of motion: cells that fire
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to the same stimulus in close temporal contiguity are all presumably selective to the

same moving stimulus.

TAB methods are based on the assumption that objects normally move smoothly

over time. In the natural world, it is common for an object to appear first on one side of

the visual field and then travel to the other side as the organism moves its head or eyes.

A learning mechanism that takes advantage of this property would associate tempo-

rally contiguous patterns of activity. As a system employing such an algorithm gains

experience in the visual world it would gradually acquire invariant template detectors.

Psychophysical studies have tested the temporal association hypothesis by expos-

ing human subjects to altered visual environments in which the usual temporal contigu-

ity of object transformation is violated. Exposure to rotating faces that change identity

as they turn around leads to false associations between faces of different individuals

[32]. Similarly, exposure to objects that change identity during saccades leads to in-

creased confusion between distinct objects when asked to discriminate at the retinal

location where the swap occurred [9].

There is also physiological evidence that the brain uses a TAB method to acquire

invariance. Li and DiCarlo showed that exposure to an altered visual environment

in which highly-dissimilar objects swap identity across saccades causes anterior IT

neurons to change their stimulus preference at the swapped location [10]. They went

on to obtain similar results for scale invariance [33]; objects grew or shrank in size and

changed identity at a particular scale. After an exposure period, AIT neurons changed

their stimulus preference at the manipulated scale. A control unswapped location and

scale was unaffected in both experiments.
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1.3 Sketch of the general theory of learning invariant

representations for object recognition

Note: The primary reference on the theory is the forthcoming paper: Anselmi,

Leibo, Mutch, Rosasco, Tacchetti, and Poggio. Unsupervised Learning of Invari-

ant Representations in Hierarchical Architectures (and in Visual Cortex) [1]. Until

that paper appears the primary reference is [34].

1.3.1 Architecture

It is known that Hubel and Wiesel’s principle—that complex cells (C-units) are driven

by sets of simple cells (S-units) with identical orientation preferences but differing reti-

nal positions—can be used to construct translation-invariant detectors for any visual

form. This is the insight underlying many networks for visual recognition including

HMAX and convolutional neural nets. But, as we show here, the subsequent devel-

opment of these models has been impeded by an unnecessarily limited application

of the principle through which they operate. An HW-module with Hubel and Wiesel’s

proposed organization can compute invariant representations for any affine transforma-

tion. Furthermore, since it is possible to (piecewise) approximate any diffeomorphism

by locally-supported affine transformations, a hierarchy of such modules is able to com-

pute approximately invariant representations for a much wider class of non-uniform

transformations.

Consider a single HW-module consisting of one C-unit and all its afferent S-units.

Let the response of an S-unit to an image I be modeled by a dot product with a stored

template t, indicated here by 〈I, t〉. Since 〈I, t〉 is maximal when I = t (assuming

normalized I and t), we can think of S-units as template detectors. An S-unit’s response

is a measure of I ’s similarity to t. Since there are several S-units, each detecting their

stored template at a different position, we introduce the translation operator T~x which,

when applied to an image, returns its translation by ~x. This lets us write the response

of the specific S-unit which detects the presence of template t at position ~x as 〈I, T~xt〉.



1.3. SKETCH OF THE GENERAL THEORY OF LEARNING INVARIANT REPRESENTATIONS FOR
OBJECT RECOGNITION 19

Then, introducing a nonlinear function η, the response rC of the C-unit (equivalently:

the output of the HW-module) is given by

rC(I) =
∑
i

η(〈I, T~xit〉) (1.1)

where the sum is over all the S-units in the module. The region of space covered by

a module’s S-units is called the HW-module’s pooling domain and the C-unit is said

to pool the responses of its afferent S-units. This is a standard formulation (though

possibly written in unfamiliar notation).

Figure 1-3: A. A hierarchical architecture built from HW-modules. Each red circle represents
the signature element computed by the associated module. Double arrows represent complex
cell pooling domains, i.e., receptive fields in the case of translation. The vector computed at the
top of the hierarchy consists of invariant features for the whole image. B. One HW-module. A
set of S-units connect to one C-unit. Thanks to Fabio Anselmi for contributing the left side of
this figure.

The usual examples of HW-modules are intended as models of V1 so they gener-

ally use oriented edge or Gabor templates. However, as illustrated in figure 1-3, the

principle by which HW-modules convert position-sensitive inputs into position-invariant

outputs is exactly the same when other patterns are considered. Let P = [−b, b] in-

dicate a one-dimensional pooling domain. Consider a “small” pattern I. We use the
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adjective “small” to give intuition for the important localization condition which states

that the support of 〈I, Txt〉 must be a compact subset [−a, a] of P (see [1]). Write TxI

to indicate the image obtained after translating I by x, and assume it does not fall out of

the pooling domain, i.e., |x+a| ≤ b. Then, applying (1.1), the output of the HW-module

is rC(I) =
∑

i η(〈TxI, Txit〉). Under what conditions is rC invariant? Equivalently, when

does rC(TxI) = rC(I)?

In the next section, we consider a vector of HW-module responses and review the

conditions under which it is invariant and unique to each object.

1.3.2 Pooling and template orbits

Our aim is to compute a unique signature for each image x that is invariant with respect

to a group of transformations G. We consider the orbit {gx : g ∈ G} of x under the

action of the group. In this section, G is the 2D affine group so its elements correspond

to translations, scalings, and in-plane rotations of the image (notice that we use g to

denote both elements ofG and their representations, acting on vectors). We regard two

images as equivalent if they are part of the same orbit, that is, if they are transformed

versions of one another (x′ = gx for some g ∈ G).

The orbit of an image is itself invariant with respect to the group. For example,

the set of images obtained by rotating x is exactly the same as the set of images

obtained by rotating gx. The orbit is also unique for each object: the set of images

obtained by rotating x only intersects with the set of images obtained by rotating x′

when x′ = gx. Thus, an intuitive method of obtaining an invariant signature for an

image, unique to each object, is just to check which orbit it belongs to. We can assume

access to a stored set of orbits of template images τk; these template orbits could have

been acquired by unsupervised learning—possibly by observing objects transform and

associating temporally adjacent frames (e.g. [31, 35]).

The key fact enabling this approach to object recognition is this: It is not necessary

to have all the template orbits beforehand. Even with a small, sampled, set of template

orbits, not including the actual orbit of x, we can still compute an invariant signature.
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Observe that when g is unitary 〈gx, τk〉 = 〈x, g−1τk〉. That is, the inner product of the

transformed image with a template is the same as the inner product of the image with

a transformed template. This is true regardless of whether x is in the orbit of τk or not.

In fact, the test image need not resemble any of the templates (see [5–7, 36]).

Consider gtτk to be a realization of a random variable. For a set {gtτk, : t =

1, ..., T} of images sampled from the orbit of the template τk, the distribution of 〈x, gtτk〉

is invariant and unique to each object. See [36] for a proof of this fact in the case that

G is the group of 2D affine transformations.

Thus, the empirical distribution of the inner products 〈x, gtτk〉 is an estimate of an

invariant. Following [36], we can use the empirical distribution function (CDF) as the

signature:

µkn(x) =
1

T

T∑
t=1

σ(〈x, gtτk〉+ n∆) (1.2)

Since the distribution of the 〈x, gtτk〉 is invariant, we have many choices of possible

signatures. Most notably, we can choose any of its statistical moments and these may

also be invariant—or nearly so—in order to be discriminative and “invariant for a task”

it only need be the case that for each k, the distributions of the 〈x, gtτk〉 have different

moments. It turns out that many different convolutional networks can be understood in

this framework1. The differences between them correspond to different choices of 1.

the set of template orbits (which group), 2. the inner product (more generally, we con-

sider the template response function ∆gτk(·) := f(〈·, gtτk〉), for a possibly non-linear

function f—see [36]) and 3. the moment used for the signature. For example, a simple

neural-networks-style convolutional net with one convolutional layer and one subsam-

pling layer (no bias term) is obtained by choosingG =translations and µk(x) =mean(·).

The k-th filter is the template τk. The network’s nonlinearity could be captured by choos-

ing ∆gτk(x) = tanh(x · gτk); note the similarity to Eq. (1.2). Similar descriptions could

be given for modern convolutional nets, e.g. [5, 37, 38]. It is also possible to capture

HMAX [3, 4] and related models (e.g. [27]) with this framework. The “simple cells”

compute normalized dot products or Gaussian radial basis functions of their inputs with

1The computation can be made hierarchical by using the signature as the input to a subsequent layer.
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stored templates and “complex cells” compute, for example, µk(x) = max(·). The tem-

plates are normally obtained by translation or scaling of a set of fixed patterns, often

Gabor functions at the first layer and patches of natural images in subsequent layers.

The templates-and-signatures approach to recognition permits many seemingly-

different convolutional networks (e.g. ConvNets and HMAX) to be understood in a

common framework. We have argued here that the recent strong performance of con-

volutional networks across a variety of tasks (e.g., [37–39]) is explained because all

these problems share a common computational crux: the need to achieve representa-

tions that are invariant to identity-preserving transformations.

Discussion

This framework for understanding invariance in object recognition cuts across levels

of analysis [2]. On the level of biological implementation, its explanations of ventral

stream receptive field properties are in accord with the available data. For example,

it predicts Gabor tuning in V1 [40]. It can also be applied beyond V1. In that case its

predictions may motivate new experiments which could potentially falsify the theory. On

the computational level, it gives a unified account of why a range of seemingly different

models have recently achieved impressive results on recognition tasks. HMAX [3], and

most other convolutional networks, including [37], are among those explained. On the

algorithmic level, it motivates the consideration of a new class of models which includes

the previous models as special cases. We believe that the algorithm implemented by

the ventral stream is in this class.
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1.4 Specific contributions

1.4.1 Concerning invariance

1. An empirical measure of transformation invariance (ADT) that can be used to

compare results across modeling, psychophysics, physiology, and neuroimaging

experiments. —Chapter 2.

2. Demonstration that HW-modules can be approximately invariant to face viewpoint

changes, and empirical investigations of the conditions under which this approach

is effective. Demonstration that rotation in depth, and several other transforma-

tions (e.g., illumination and body pose) are class-specific. The need to compute

invariant representations for class-specific transformations may explain the mod-

ular architecture of the anterior ventral stream i.e., why the processing of faces

(and a few other classes) is separated from the circuitry processing other objects.

—Chapter 4.

3. One requirement for HW-modules to be approximately invariant to non-affine

transformations is for the set of templates and test objects to be nice. We devel-

oped a quantitative index of niceness that can be measured from a set of videos

of objects undergoing the transformation. Among the objects we tested, faces

were the nicest with respect to viewpoint changes (3D rotation in depth), and

the wire objects used in [25] (and elsewhere) were the least nice. This implies

that face templates can be used to recognize new faces despite depth rotations

(approximately). However, templates from the wire objects are not helpful for

recognizing new wire objects invariantly to depth rotations. This provides an ex-

planation for previous psychophysics results from other groups (e.g. [41, 42]).

—Chapter 4.

4. We created a suite of synthetic face datasets—which we called "Subtasks" of Un-

constrained Face Recognition (SUFR)—for testing face recognition models and

computer vision systems. Each dataset isolates a specific transformation. We
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tested many frequently used computer vision algorithms on the full suite of sub-

tasks as well as several "unconstrained" natural image datasets: Labeled Faces

in the Wild (LFW) and a new one we gathered (SUFR-W). Qianli Liao and I con-

tributed equally to this work. —Appendix A

1.4.2 Concerning learning

1. A Foldiak-like temporal adjacency based learning rule for HMAX which we used

to model Li & DiCarlo’s “invariance disruption” experiments [9, 10, 33]. Leyla Isik

and I contributed equally to this work. —Chapter 3.

2. A model of macaque face patch properties using an unsupervised learning rule

for HW-modules—related to Oja’s and Foldiak’s rules. This model explains the

mysterious finding of mirror-symmetric orientation tuning curves in the face patch

AL as an essential intermediate step toward the computation of an approximately

view-invariant representation in patch AM. In other work [40], we (primarily Jim

Mutch, Andrea Tacchetti, and Tomaso Poggio) showed that the same learning

rule with a different set of parameters can also explain Gabor-like tuning in pri-

mary visual cortex. —Chapter 5.



Chapter 2

Measuring invariance

In this chapter, we numerically investigate the invariance of properties of HMAX,

one architecture which is consistent with the new theory. Toward that end, we

propose an operational definition of the invariance range (with respect to a trans-

formation). This definition is general and could be employed in a wide variety of

physiology and computational modeling studies. We find that surprisingly small

numbers of templates—that need not resemble the test images—are sufficient to

achieve good performance on translation and scaling invariant recognition tasks.

This chapter is an updated version of a technical report we published in 2010 [7].

We also published some of this material in [8].

2.1 Introduction

This paper considers the case of initial translation invariance for novel objects. [43]

showed that subjects could distinguish novel animal-like stimuli with no drop in accu-

racy despite shifts away from the training location of (up to) 8 degrees of visual angle.

Similarly, [44] found that visual priming effects transfer between hemifields. Invariant

recognition in primates depends on representations in inferotemporal visual (IT) cor-

tex. In the IT physiology literature, smaller invariance ranges have often been reported.

Typical single-unit experiments report ∼ ±2◦ of translation invariance and ±1 octave

of scale [25, 26, 45]. Additionally, decoding analyses show that populations of IT cells
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support invariant classification of viewed objects presented at shifts of up to 4 degrees

from the trained location [18].

It is possible that the larger initial invariance ranges reported in some psychophysics

experiments arise due to the use of stimuli that were too similar to familiar objects. Anal-

ogous translation-invariant recognition experiments using random dot pattern stimuli

showed that discriminability declines when objects are presented as little as 2 degrees

away from the trained location [46–49] in accord with the physiological measurements

of receptive field sizes of cells in IT cortex. This paper is primarily concerned with

models of this robust finding of translation invariance for novel objects in the central 4

degrees of the visual field. This is not a trivially small region over which to study invari-

ance; the receptive field of an IT cell covering the central 4 degrees is indirectly fed by

∼ 125,000 cones on the retina [50]. How the ventral stream builds such invariant re-

sponses and how to replicate this process with computational models is an interesting

scientific problem.

Standard models of the ventral stream by Fukushima and others [3, 27, 51, 52]

attempt to replicate the process by which large IT receptive fields supporting invariant

recognition are built from position-specific responses of photoreceptors (regarded as

pixels in this case). In these models, units in layers corresponding to inferotemporal

cortex (IT) achieve invariance due to the wiring of the model1 —sometimes described

as a convolutional architecture2 [28].

Networks with this architecture achieve invariance using receptive fields that pool

together the responses to the same set of templates at many different locations. This

operation is repeated in each successively higher layer until, in the top layer, unit re-

sponses are invariant across a large region. In the case of the HMAX model [4], the

templates are derived from previously-seen image fragments; a unit’s response is a

measure of the similarity between the image patch it’s seeing now and its optimal

1See [53], section 2.2 for conjectures on how the wiring could be learned during development and
during visual experience.

2The choice of a convolutional architecture corresponds to the assumption that photoreceptor density
is constant over the relevant region (the central 4 degrees in this case)—an assumption that is not valid
for real retinas [50]. Models that assume a convolutional architecture can be seen as describing an
“upper bound” for invariance (c.f. [54] and references therein). We study convolutional architectures
because their simplicity allows other aspects of the invariant recognition problem to be highlighted.
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stimulus—the remembered image fragment. In the top layer, each unit will respond

invariantly to its optimal stimulus no matter where it appears. The combined activities

of the top-layer units are the network’s representation of an object. This representation

is a signature for the object which can be used as input by a classifier for recognition; it

inherits its invariance from that of its component units.

A recent theory of learning invariant representations for object recognition [55] de-

scribes how an HMAX-like [3, 4] recognition architecture could be learned during devel-

opment in an unsupervised way. In such an architecture the responses of top layer cells

are invariant under affine transformations of the input image. The responses of these

cells can be used as a signature for recognition—forming a vector that can be fed into

a classifier. However, an invariant signature is not automatically useful for recognition.

The argument in [55] guarantees that two images that are related by an affine trans-

formation will always evoke the same signature. The converse does not need to be

true. There may be a substantial numbers of false alarms—confusing images evoked

by dissimilar objects3. This problem seems especially worrisome when small numbers

of templates that do not resemble the recognition target are used. In this paper we re-

port an empirical investigation of the extent to which invariant recognition performance

is affected by the number of templates and by their similarity to the test images. To that

end, we first give an operational definition of a neural population’s invariance range with

respect to a transformation. This definition is general and allows suitable specializa-

tions for a variety of perceptual tasks. We then show that, for a given acceptable false

alarm rate, a classifier operating on [55]’s signature vector is invariant. Moreover, sur-

prisingly small numbers of templates suffice to achieve impressively small false alarm

rates—even if the templates are very dissimilar from the test images4.

3But see more recent accounts of the theory, we know a lot more about the uniqueness of signatures
than we did when this was written [1, 34].

4Another of our forthcoming papers describes more extensive empirical tests along tests along the
same lines as those described here [56]. Even more recently we developed a whole set of tests, with syn-
thetic data, that can be used systematically to measure invariance for subordinate-level face recognition
tasks. The latter report is included as an appendix to this thesis A, and [57]
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2.2 An operational definition of invariance

We are mostly concerned with the problem of recognizing a target object when it is pre-

sented again at a later time, usually after undergoing a transformation. In our specific

problem, an image of a target object has already been presented. The task is to tell

whenever a newly presented test image represents the target object. Test images may

be instances of the target object under various transformations or they may be images

of entirely new objects called distractors.

To study and measure invariance, we formulate an operational definition of invari-

ance range in terms of classification accuracy. To do this, we first define a quantity

called Accuracy Despite Transformation (ADT ). This quantity is related to the discrim-

inability measure (d′) used in psychophysics [58]. In this context, we use ADT in order

to highlight the dependence on a transformation. The quantity of interest here, the

Invariance Range, is defined in terms of ADT .

To start, we describe a procedure for measuring translation invariance. This proce-

dure could be used either in physiology experiments with neural data or computational

simulations with computed features.

1. Choose a disk of radius r and a universe U of target and distractor objects.

2. Train a classifier C with the target at the center of the disk.

3. Test the classifier on the case where all target and distractor objects can appear

anywhere on the disk with their locations drawn from a uniform distribution. Let

X denote the set of images of the objects in U at all these locations.

4. We will define the Accuracy Despite Transformation as a summary statistic de-

scribing the classifier’s performance on this test and indicate it as ADTC,X(r).

5. Choose a threshold θ. Increase the radius of the disk until the Accuracy Despite

Transformation falls below θ. The Invariance range I is the largest r for which

ADTC,X(r) > θ.



2.2. AN OPERATIONAL DEFINITION OF INVARIANCE 29

More generally, we can define the Accuracy Despite Transformation and Invariance

Range for any geometric transformation. Let X denote the set of all images of targets

and distractors. For a test image x ∈ X there are two possibilities:

y = −1 : x contains a distractor object

y = 1 : x contains the target object

The problem is described by the joint probability distribution p(x, y) over images and

labels.

We consider the classifier given by a function C : X → R and a decision criterion η.

Any choice of classifier partitions the set of images into accepted and rejected subsets:

X = Xη
A ∪X

η
R.

Xη
A = {x : C(x) ≥ η}

Xη
R = {x : C(x) < η}

In an experimental setting, the classifier may refer to any decision-maker. For ex-

ample, C(x) could be a human observer’s familiarity with image x, upon which the

decision of “same” (target) or “different” (distractor) will be based. This is the inter-

pretation normally taken in psychophysics and signal detection theory. Our approach

is more general and could also apply to situations where C(x) is interpreted as, for

instance, the membrane potential of a downstream neuron or the test statistic from a

machine learning classifier operating on data.

Next we define the classifier’s true positive and false positive rates in the usual way:

TP (η) :=

∫
X

P (y = 1, C(x) ≥ η : x)p(x)dx = True positive rate (2.1)

FP (η) :=

∫
X

P (y = −1, C(x) ≥ η : x)p(x)dx = False positive rate (2.2)
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Varying η generates the operating characteristic (ROC) curve:

ROC(η) = [FP (η), TP (η)] (2.3)

Both TP (η) and FP (η) are defined as integrals of probability distributions. Thus, all

values of ROC(η) will fall on the unit square: (0 ≤ TP (η) ≤ 1) and (0 ≤ FP (η) ≤ 1).

Let ROC(z) denote the ROC curve viewed as a function of the false positive rate.

We propose to use the area under the ROC curve (AUC) as a bias-free summary

statistic for the definition of Accuracy under Transformation (ADT ).

Definition: Accuracy Despite Transformation ForX a set of images with labels y

and P (x, y) the joint distribution over images and labels and C(x) a classifier partition-

ing X according to a parameter η. Let TP (η), FP (η) and the ROC curve be defined

as above. The Accuracy Despite Transformation ADTC,X is the area under the ROC

curve:

ADTC,X =

∫ 1

0

ROC(z)dz (2.4)

It is simple to extend this operational definition to study parametrized transforma-

tions such as translation, scaling and rotation. This is done by defining a sequence of

image sets depicting the objects under wider ranges of transformation parameters. Let

X be the union of a sequence of sets of images Xr ordered by inclusion.

X =
⋃
r

Xr with Xr ⊂ Xr′ ∀(r, r′) with r′ > r (2.5)

Then we can compute the corresponding ADTC,Xr for each index r. Intuitively,

increasing r corresponds to increasing the “difficulty” of the task; thus ADTC,Xr will be

a non-increasing function of r.

As an example, translation invariance can be characterized by letting Xr contain

all the images of target and distractor objects at each position in a circle of radius

r. Subsequent sets Xr′ contain objects at each position within radius r′ > r thus

Xr ⊂ Xr′ . For a fixed classifier, we can write the Accuracy Despite Transformation

as a function of the radius of the circle over which objects may appear: ADT (r) :=
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ADTC,Xr .

Finally, in order to study invariance, it is essential to separate relevant from irrelevant

dimensions of stimulus variation [59, 60]. For example, the shape of the object could

be the relevant dimension while its position in space may be the irrelevant dimension.

The notion of Accuracy Despite Transformation extends to capture this case as well.

To illustrate, we consider the case of two parametrized dimensions. Let r, s index the

union X =
⋃
r,sXr,s. So for each pair r, s there is a corresponding subset of X. We

require that:

Xr,s ⊂ Xr′,s and Xr,s ⊂ Xr,s′ ∀(r, r′, s, s′) with r′ > r and s′ > s (2.6)

Accuracy Despite Transformation may be computed for each pair of indices r, s us-

ing equation 2.4. If one of the stimulus dimensions is not continuous then this situation

is accommodated by letting either r or s take on only a few discrete values.

We can define the invariance range by picking a threshold level θ of Accuracy De-

spite Transformation and determining the maximal region size r for which ADT (r)

remains above θ. The same procedure could be employed when varying any aspect

of the classifier (e.g. number of training examples) and determining the corresponding

Accuracy Despite Transformation for each.

Definition: Invariance range Let Xr be a sequence of sets of images ordered

by inclusion, Cr an ordered sequence of classification functions and ADT (r) be the

classification accuracy obtained by using Cr(x) to partition Xr. Let θ be a threshold

value. Then the invariance range I is the maximal r for which ADT (r) > θ.

I =


∞ ADT (r) > θ ∀r

max{r : ADT (r) > θ} otherwise

(2.7)

In practical situations, ∞-invariance range implies good selectivity only over the

entire range of transformation parameters under consideration. In these situations we

will typically say “invariance range is the size of the entire visual field” or “invariance
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range is the size of a downstream cell’s receptive field”.

Remark: The definition of invariance range given here is general. For certain

choices of classifiers it can be chosen to be equivalent to other operational definitions

of invariance in the literature. For example, many single-unit studies measure a quantity

known as rank-order invariance [25, 26, 61]. In the case of translation invariance, these

studies measure the rank order of the responses evoked by a set of test objects. The

rankings are measured at a range of positions and a cell is said to be more invariant if

the rank order of the responses to the test objects is maintained over a larger region.

In the language we developed here, this procedure corresponds to choosing a nearest

neighbor classifier with a particular metric for the computation of ADT 5. The proposed

definition is useful in that it focusing the discussion on the essential choices being made

in any experiment that attempts to measure invariance: the choice of the universe of

target and distractor objects and the choice of classifier.

Remark: If the invariance range is as large as the visual field, then we can say that

there is no “selectivity-invariance trade-off”. In this case objects could appear under

arbitrarily extreme transformations with ADT (r) never declining below θ. Conversely,

a finite invariance range indicates the existence of a selectivity-invariance trade-off.

A small invariance range indicates a stronger trade-off, i.e. more accuracy is lost for

smaller increases in allowable transformations. We can compare selectivity-invariance

trade-offs across transformations (e.g. translation and scaling versus 3D rotation or

illumination) or tasks (novel versus familiar objects) by comparing their associated in-

variance ranges.

5Many studies that measure rank-order invariance calculate the response rankings separately for
each position. While our definition is general enough to encompass this case, we would like to point out
that a measurement which corresponds better with the intuitive notion of invariance involves measuring
ADT over regions of increasing size (as described in the discussion of equation 2.5). This also allows
the Invariance range I to be interpreted most straightforwardly as the last task for which performance is
above a threshold where each subsequent task allows a greater range of distortion in the target objects.
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2.3 Measuring Accuracy Despite Transformation

2.3.1 Physiology

We can measure ADT (r) in physiology experiments. A typical experiment consists

of an animal viewing stimuli, either passively or while engaged in a task, at the same

time as the experimenter records neural data. The neural data could consist of any of

the various electrophysiological or neuroimaging methods. In the case of a single-unit

electrophysiology experiment, the data consists of the evoked firing rates of a collection

of cells in response to a stimulus.

Assume we have recorded from n cells while presenting images of target y = 1 and

distractor objects y = −1. Define a classifier C(x) on the neural responses evoked by

each image. Then vary the threshold η accepting images with C(x) > η to draw out an

ROC curve. ADT (r) is the area under the ROC curve for each r.

Remark: Most electrophysiology experiments will not allow simultaneous record-

ings from more than a few cells. In order to obtain larger populations of cells you can

bring together cells recorded at different times as long as their responses were evoked

by the same stimuli. These pseudopopulations have been discussed at length in else-

where [18, 62].

Remark: We can also measure ADT from other kinds of neural data. Many re-

searchers have recorded fMRI data while presenting a human or animal subject with

stimuli. Replace cells with fMRI voxels and apply the same measurement process

as for single-unit electrophysiology. This is a particular application of “multi-voxel pat-

tern analysis”. The same approach can be taken to analyze Magnetoencephalography

(MEG) data. See [19, 63] for examples.

2.3.2 Computer Vision

Many computer object recognition systems can be described as having two basic mod-

ules. An initial feature transformation converts input images into a new representation.

Then a classifier C(x) operates on a set of feature-transformed versions of images to
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answer questions about the images e.g. do two test images correspond to the same

object? We can directly compute ADT using the classifier and the labels yx.

Remark: The classifier must be chosen appropriately for the task being modeled.

For example, a same-different task involving novel objects appearing under various

transformations, e.g. [46, 49], could be modeled with a classifier trained on a single ex-

ample of the target image that accepts inputs judged likely to be a transformed version

of the trained image and rejects inputs judged likely to be distractors. An alternative

same-different task using familiar objects which the subject had seen at all positions

prior to the experiment could be modeled using a classifier involving a larger number

of training images under different transformation conditions.

Remark: The area under the ROC curve for popular same-different matching tasks

like Labeled Faces in the Wild [64] has a somewhat similar interpretation to ADT. How-

ever, in that case the images are considerably less constrained and it is not possible

to attribute performance (or lack thereof) to how well a model tolerates (or fails to tol-

erate) a particular transformation. See Appendix A.2.1 for more additional results on

transformation-invariant face recognition and its relationship to performance on natural

image datasets.

2.3.3 Psychophysics

We can compute ADT in behavioral experiments by making a few extra assumptions.

First, the subject must be engaged in a same-different task e.g. the task is to accept

images that show the target object and reject images that show a distractor object. Test

images may be transformed versions of either target or distractor objects.

We regard the subject’s response analogously to the thresholded output of a classi-

fier. The subject’s choice of a decision criterion - called response bias in this context - is

not controllable by the experimenter. However, we can still estimate the area under the

ROC curve without explicit access to the threshold as long as we assume that the un-

derlying distributions PN and PP are both Gaussian. This is the standard assumption of

signal detection theory [58]. In this case ADT is related to the standard psychophysical
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measure of discriminability d′ by the following:

ADT =
1

2
+

1

2
erf
(
d′

2

)
,

where erf() denotes the error function:

erf(z) =
2√
π

∫ z

0

e−t
2

dt

and d′ = Z(TP ) − Z(FP ) where Z() denotes a Z-score. See [65] for a simple

derivation of this relationship.

2.3.4 Invariant signatures for classification

In the setting we have developed here, the natural recognition architecture, for both

the ventral stream, as well as for computer vision systems, is one in which a classifier

is trained and tested on the signatures of its inputs. In this section we discuss the

Invariance range and Accuracy Despite Transformation achieved by such systems.

Consider a classification function CΣ : ΣX → R operating on the signatures of

images. We are particularly interested in the case of novel objects—just one training

example x0. A natural choice of classifier for this case is:

CΣ(Σx) = e−‖Σx−Σx0‖
2
2 (2.8)

As in section 2.2 we can define a sequence of progressively more difficult classifi-

cation problems by testing on sets containing a wider range of transformations of the

original images. Then, as above, we can define the ADTC,Xr for each r.

Xr =
⋃
p

Tp(X0) for 0 ≤ p ≤ r (2.9)

If Tr is a family of affine transformations then we know that Σx = ΣTrx for all r (see

1.3.2). Since the signature is unchanged by Tr, it follows that the classification problem

on Xr is exactly the same as the classification problem on X0 for all r. Thus:
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ADTCΣ,Xr = ADTCΣ,X0 for all r (2.10)

This means that, for affine transformations, a plot of ADTCΣ,Xr as a function of

r will always be a flat line. A system that classifies images based on their encoding

relative to an invariant signature achieves the same level of performance when tested

on transformed test images as it does on untransformed test images. It is always

possible to choose a threshold θ so that the invariance range I is∞. This is true even

if only a single example image is available for training.

2.3.5 Discriminability

We showed above that these signature-based systems can always achieve∞-invariance

range. We can then ask about how discriminative these systems are. In our language,

this is a question about the Accuracy Despite Transformation. Since ADTCΣ,Xr is a

constant function of r we only need to consider ADTCΣ,X0 .

It is easy to construct systems whereADTCΣ,X0 is very low. For example, consider a

system with a single template that has 0 similarity to all the test images. This signature

would map all images to the same point and any classifier using this representation

would never achieve a performance level better than chance. The invariance range

would be∞, but the system would still be worthless. This will happen whenever the set

of template images is not rich enough to accurately preserve the difference between

target and distractor images.

In the remainder of this paper we describe the results of numerical simulations of

translation and scaling-invariant object recognition using different sets of templates. In

section 2.4.1 we show the performance of the HMAX model in a situation similar to one

that is commonly tested in physiology experiments. In section 2.4.2, we investigate the

role of the similarity of the templates to the test images and the number of templates

used to form the signature.
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Figure 2-1: At the first stage of processing, the S1 units compute the responses of Gabor
filters (at 4 orientations) with the image’s (greyscale) pixel representation. At the next step of
processing, C1 units pool over a set of S1 units in a local spatial region and output the single
maximum response over their inputs. Thus a C1 unit will have a preferred Gabor orientation
but will respond invariantly over some changes in the stimulus’ position. Each layer labeled “S”
can be regarded as computing a selectivity-increasing operation (normalized dot product) while
the “C” layers perform invariance-increasing operations. The weights w at layer S1 define the
Gabor filters. At layer S2, the weights are the stored templates. In this case, we chose these
weights to either be (C1-encoded) natural images or random dot patterns.

2.4 Simulations

For numerical simulations of invariant object recognition, we used a simple version of

the HMAX model from [52]6. This 4-layer model converts images into signature vectors

6Matlab code to run this model is available online at http://cbcl.mit.edu/jmutch/cns/
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via a series of processing stages referred to as layers. In order, the layers of the model

were: S1 → C1 → S2 → C2. Unlike most implementations of the HMAX model, we

used only a single scale.

At the first stage of processing, the S1 units compute the responses of Gabor filters

(at 4 orientations) with the image’s (greyscale) pixel representation (256 x 256 pixels).

At the next step of processing, C1 units pool over a set of S1 units in a local spatial

region and output the single maximum response over their inputs. Thus a C1 unit

will have a preferred Gabor orientation but will respond invariantly over some changes

in the stimulus’s position. The S2 units signal the similarity of their input to a stored

template by computing a normalized dot product of the input with the template. The

model has a “convolutional architecture” because there is an S2 cell at every position,

tuned to every template’s appearance at that position. The S2 stored templates are

either patches of natural images or random dot patterns; see the figure captions for the

choice of templates in each simulation.

The S2 units compute the following function of their inputs x = (x1, ...xn)

r = exp

(
− 1

2σ

n∑
j=1

(wj − xj)2

)
(2.11)

All of the simulations were performed as follows. The classifier ranked all images

by their correlation to a single “trained” image. The trained image was always a single

image containing the target at the center of the transformation range.

All the AUC (equivalently: ADT ) values reported here are averages over several

simulations. Each dataset contained a number N of objects. We chose each in turn to

be the target object and used the remaining N − 1 objects as distractors. The reported

AUC values are the means over all N simulations.

For all the translation invariance experiments, targets and distractors appeared only

on an interval of length 2r as opposed to the entire disk of radius r. This was done

for computational efficiency reasons. We also repeated a subset of these simulations

using the full disk and obtained the same results.

The templates, τn (preferred featured of S2 units) were patches of images. These
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were chosen differently for each simulation; details are in the captions of the relevant

figures.

2.4.1 Translation and scaling-invariant recognition

Figure 2-2A shows the model is translation invariant. It has∞−invariance range. Clas-

sification is based on a signature with templates tuned to patches of natural images

(2000 templates). The target class consists of an image of a single face appearing

at various positions in the visual field. All the variation in the target class is due to

translations. The classifier measures the distance between the signature vector of the

reference image and any input. In accord with the analysis above, the performance is

perfect (ADT = 1), and unaffected by translation (red curve). The blue curve shows

the results from a classifier trained in the same way, operating on a lower layer of the

HMAX model. In this layer, the model does not aggregate all the transformed versions

of each template so recognition performance is not invariant.

The simulation shown in figure 2-2B complicates the perceptual task by allowing

greater variability in the target class. In this case, the target class consisted of 10 im-

ages of the same face acquired under slight variations in pose and facial expression.

The classifier still only sees one positive example (it measures the input’s similarity to

a single reference image), however, it now has to correctly generalize over variations in

pose and expression in addition to discounting translation. The results show that trans-

lation does not “interact” with these other sources of variability in image appearance.

The same performance level is obtained no matter how extreme the translations. The

invariance range is still∞ (i.e. the size of the readout cell’s receptive field) for this more

realistic perceptual task.

2.4.2 Accurate recognition with small numbers of random dot tem-

plates

Previous models have assumed that that templates only enable recognition of novel

objects that resemble the templates or are built from them (as for instance Ullman’s
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Figure 2-2: Accuracy under Translation over intervals of increasing size. The size of the
interval over which targets and distractors could appear is plotted as the abscissa with the
corresponding ADT as the ordinate. For these simulations there were 2000 C2 layer cells
with patches randomly sampled from natural images. Panel A: The classifier computes the
correlation from the representation of a target face presented at the center to the repre-
sentation of an input face presented at variable locations. The targets and distractors are
faces modified from the Max Planck Institute face database [66] The images are 256x256
pixels and the faces are 120 pixels across. Panel B: The classifier still computes the cor-
relation from the representation of a target face presented at the center to the represen-
tation of an input face presented with variable location. However, now the positive class
contains additional images of the same person (slightly variable pose and facial expres-
sion). A perfect response would rank the entire positive class as more similar to the single
“trained” example than any members of the negative class. The images used in this sim-
ulation were modified from the ORL face dataset, available from AT&T laboratories, Cam-
bridge http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html. These images were
256x256 pixels and the translated face was 100 pixels across. The error bars show +/-1 stan-
dard deviation over multiple runs of the simulation using different templates.

fragments are [67]). Our results, instead, support the alternative hypothesis: most ob-

jects can be recognized using an invariant signature based on computing the similarity
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Figure 2-3: AUC (ADT ) for recognizing targets versus distractors appearing anywhere within
an interval of a particular radius (using C2-layer features only). Upper left: 2000 templates were
extracted from natural images. Upper right: 2000 templates extracted from random dot patterns.
Bottom row: 20 templates extracted from natural images and random dot patterns respectively.
We build invariant signatures by sampling randomly chosen patches from the template set of
images. Error bars display +/- one standard deviation. The test images here were the same as
those used in figure 2-2B.

to essentially any set of templates.

As evident from figure 2-3 (bottom right panel), even invariant templates extracted

from highly unnatural objects (random dot patterns) are sufficient to support invariant

face identification (same task as in figure 2-2B). The left panels display the results from

simulations with very small numbers of templates (20) drawn from images of either ran-

dom dot patterns (blue curve) or natural images (red curve). Surprisingly, these results

show that the∞-invariance range for affine transformations is maintained despite using

these very small numbers of templates. Figure 2-4 shows classification accuracy as a
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Figure 2-4: AUC (ADT ) for the face identification task as a function of the number of templates
used to build the model. Here invariant templates were derived from random patches of 20
natural images (red curve) or 20 random dot patterns (blue curve). Restarting the simulation
and choosing different random patches gave us a measure of the variability. Error bars are +/-
one standard deviation. The test images here were the same as those used in figure 2-2B.

function of the number and type of templates.

2.5 Discussion

Geometric transformations distort an object’s appearance while preserving its identity.

Recognizing objects by the images they evoke requires a system that discounts such

transformations. Models of object recognition, and the ventral stream, can be inter-

preted as computing a signature vector that measures an input image’s similarity to a

set of previously encountered template images. As long as the transformations to be

discounted are all affine, the signature can, in principle, be completely invariant. A clas-

sifier operating on these invariant signatures can be used to recognize novel objects

from a single example image.

Recognizing objects using invariant signatures could lead to false alarms. However,
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Figure 2-5: Average percent correct on the Caltech 101 dataset [68] using a regularized least
squares (RLS) classifier [69] with 30 training images per class. The templates were extracted
from random patches drawn from either the training images (green curve), an unrelated set of
natural images (blue curve) or random dot patterns (red curve). Each datapoint is the average
accuracy from 8 runs using different training/test image splits and different randomly selected
templates. The error bars show +/- one standard deviation. This simulation used the publicly
available implementation of the HMAX model accompanying [4].

increasing the number of templates decreases the false alarm rate. Computational

simulations of translation invariance show that small numbers of templates suffice to

achieve low false alarm rates. Moreover, the templates do not need to resemble the test

images. To investigate the role of task-suitable features more generally, we tested the

same random dot templates on a standard computer vision dataset for natural image

categorization (figure 2-5). The surprisingly strong performance of random dot tem-

plates on this task can be attributed to the translation and scale invariance of HMAX.

It seems that a substantial portion of what makes this categorization task difficult can
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be attributed to training and test images appearing at different positions and scales.

This result is related to other recent studies that found convolutional architectures with

random templates perform well on a variety of computer vision tasks [5, 6, 70].

2.6 Acknowledgments

We would like to thank Jim Mutch for many discussions relating to this project and

his contributing the Caltech101 simulation in figure 2-5. This report describes research

done at the Center for Biological and Computational Learning, which is in the McGovern

Institute for Brain Research at MIT, as well as in the Department of Brain and Cognitivie

Sciences, and which is affiliated with the Computer Science and Artificial Intelligence

Laboratory (CSAIL). This research was sponsored by grants from DARPA (IPTO and

DSO), National Science Foundation (NSF-0640097, NSF-0827427), AFSOR-THRL

(FA8650-050C-7262). Additional support was provided by: Adobe, Honda Research

Institute USA, King Abdullah University Science and Technology grant to B. DeVore,

NEC, Sony and especially by the Eugene McDermott Foundation.



Chapter 3

Learning and disrupting invariance in

visual recognition with a temporal

association rule

Leyla Isik and I contributed equally to this chapter

Learning by temporal association rules such as Foldiak’s trace rule is an at-

tractive hypothesis that explains the development of invariance in visual recog-

nition. Consistent with these rules, several recent experiments have shown that

invariance can be broken at both the psychophysical and single cell levels. We

show a) that temporal association learning provides appropriate invariance in

models of object recognition inspired by the visual cortex, b) that we can repli-

cate the “invariance disruption" experiments using these models with a temporal

association learning rule to develop and maintain invariance, and c) that despite

dramatic single cell effects, a population of cells is very robust to these disrup-

tions. We argue that these models account for the stability of perceptual invari-

ance despite the underlying plasticity of the system, the variability of the visual

world and expected noise in the biological mechanisms.
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3.1 Introduction

A single object can give rise to a wide variety of images. The pixels (or photoreceptor

activations) that make up an image of an object change dramatically when the object is

moved relative to its observer. Despite these large changes in sensory input, the brain’s

ability to recognize objects is relatively unimpeded. Temporal association methods are

promising solutions to the problem of how to build computer vision systems that achieve

similar feats of invariant recognition [31, 35, 51, 71–76]. These methods associate

temporally adjacent views under the assumption that temporal adjacency is usually a

good cue that two images are of the same object. For example, an eye movement from

left to right causes an object to translate on the visual field from right to left; under such

a rule, the cells activated by the presence of the object on the right will be linked with

the cells activated by the presence of the object on the left. This linkage can be used

to signal that the two views represent the same object—despite its change in retinal

position.

Recent experimental evidence suggests that the brain may also build invariance

with this method. Furthermore, the natural temporal association-based learning rule

remains active even after visual development is complete [9, 10, 32, 33, 77]. This paper

addresses the wiring errors that must occur with such a continually active learning

rule due to regular disruptions of temporal contiguity (from lighting changes, sudden

occlusions, or biological imperfections, for example.)

Experimental studies of temporal association involve putting observers in an altered

visual environment where objects change identity across saccades. Cox et al. showed

that after about an hour of exposure to an altered environment, where objects changed

identity at a specific retinal position, the subjects mistook one object for another at

the swapped position while preserving their ability to discriminate the same objects

at other positions [9]. A subsequent physiology experiment by Li and DiCarlo using

a similar paradigm showed that individual neurons in primate anterior inferotemporal

cortex (AIT) change their selectivity in a position-dependent manner after less than an

hour of exposure to the altered visual environment [10].
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The Li and DiCarlo experiment did not include a behavioral readout, so the effects

of the manipulation on the monkey’s perception are not currently known; however, the

apparent robustness of our visual system suggests it is highly unlikely that the monkey

would really be confused between such different looking objects (e.g. a teacup and a

sailboat) after such a short exposure to the altered visual environment. In contrast, the

Cox et al. psychophysics experiment had a similar timecourse (a significant effect was

present after one hour of exposure) but used much more difficult to discriminate objects

(“Greebles” [78]).

In this paper, we describe a computational model of invariance learning that shows

how strong effects at the single cell level, like those observed in the experiments by

Li and DiCarlo do not necessarily cause confusion on the neural population level, and

hence do not imply perceptual effects. Our simulations show that a population of cells

is surprisingly robust to large numbers of mis-wirings due to errors of temporal associ-

ation.

3.2 Simulation methods

3.2.1 Hierarchical models of object recognition

We examine temporal association learning with a class of cortical models inspired by

Hubel and Wiesel’s famous studies of visual cortex [21]. These models contain al-

ternating layers of simple S-cells or feature detectors to build specificity, and complex

C-cells that pool over simple cells to build invariance. [3, 4, 27]. We will focus on one

particular such model, HMAX [4]. The differences between these models are likely

irrelevant to the issue we are studying, and thus our results will generalize to other

models in this class.

3.2.2 The HMAX model

In this model, simple (S) cells compute a measure of their input’s similarity to a stored

optimal feature via a Gaussian radial basis function (RBF) or a normalized dot product.
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Complex (C)-cells pool over S-cells by computing the max response of all the S cells

with which they are connected. These operations are typically repeated in a hierarchical

manner, with the output of one C layer feeding into the next S layer and so on. The

model used in this report had 4 layers: S1 → C1 → S2 → C2. The caption of figure

3-1 gives additional details of the model’s structure.

In our implementation of the HMAX model, the response of a C2 cell – associating

templates w at each position t – is given by:

rw(x) = max
t

(
exp

(
− 1

2σ

n∑
j=1

(wt,j − xj)2

))
(3.1)

In the hardwired model, each template wt is replicated at all positions, thus the C2

response models the outcome of a previous temporal association learning process that

associated the patterns evoked by a template at each position. The C2 responses of

the hardwired model are invariant to translation [4, 7]. The remainder of this report

is focused on the model with learned pooling domains. Section 3.2.3 describes the

learning procedure and figure 3-2 compares the performance of the hardwired model

to an HMAX model with learned C2 pooling domains.

As in [4], we typically obtain S2 templates from patches of natural images (except

where noted in figure 3-3). The focus of this report is on learning the pooling domains.

The choice of templates, i.e„ the learning of selectivity (as opposed to invariance) is a

separate issue with a large literature of its own1.

3.2.3 Temporal association learning

Temporal association learning rules provide a plausible way to learn transformation

invariance through natural visual experience [31, 35, 51, 71? –75]. Objects typically

move in and out of our visual field much slower than they transform due to changes in

pose and position. Based on this difference in timescale we can group together cells

that are tuned to the same object under different transformations.

1See [7] for a discussion of the impact of template-choice on HMAX results with a similar translation-
invariant recognition task to the one used here
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Figure 3-1: An illustration of the HMAX model with two different input image se-
quences: a normal translating image sequence (left), and an altered temporal image
sequence (right). The model consists of four layers of alternating simple and complex
cells. S1 and C1 (V1-like model): The first two model layers make up a V1-like model
that mimics simple and complex cells in the primary visual cortex. The first layer, S1,
consists of simple orientation-tuned Gabor filters, and cells in the following layer, C1,
pool (maximum function) over local regions of a given S1 feature. S2: The next layer,
S2, performs template matching between C1 responses from an input image and the
C1 responses of stored prototypes (unless otherwise noted, we use prototypes that
were tuned to, C1 representations of, natural image patches). Template matching is
implemented with a radial basis function (RBF) network, where the responses have
a Gaussian-like dependence on the Euclidean distance between the (C1) neural rep-
resentation of an input image patch and a stored prototype. The RBF response to
each template is calculated at various spatial locations for the image (with half over-
lap). Thus the S2 response to one image (or image sequence) has three dimensions:
x and y corresponding to the original image dimensions, and feature the response to
each template. C2: Each cell in the final layer, C2, pools (maximum function) over all
the S2 units to which it is connected. The S2 to C2 connections are highlighted for both
the normal (left) and altered (right) image sequences. To achieve ideal transformation
invariance, the C2 cell can pool over all positions for a given feature as shown with the
highlighted cells.

Our model learns translation invariance from a sequence of images of continuously

translating objects. During a training phase prior to each simulation, the model’s S2 to

C2 connections are learned by associating the patterns evoked by adjacent images in
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the training sequence as shown in Figure 3-1, left.

The training phase is divided into temporal association periods. During each tem-

poral association period the highly active S2 cells become connected to the same C2

cell. One C2 cell is learned during each association period. When modeling “standard”

(undisrupted) visual experience, as in figure 3-2, each association period contains all

views of a single object at each retinal position. If temporally adjacent images really

depict the same object at different positions, then this procedure will group all the S2

cells that were activated by viewing the object, no matter what spatial location elicited

the response. The outcome of an association period is illustrated in Figure 3-1, left.

The C2 cell produced by this process pools over its connected S2 cells. The potential

effect of a temporally altered image sequence is illustrated in Figure 3-1, right. This

altered training will likely result in mis-wirings between the S2 and C2 neurons, which

could ultimately alter the system’s performance.

Learning rule

In Foldiak’s original trace rule, shown in Equation 3.2, the weight of a synapse wij

between an input cell xj and output cell yi is strengthened proportionally to the input

activity and the trace or average of recent output activity at time t. The dependence of

the trace on previous activity decays over time with the δ term [31].

Foldiak trace rule:

∆w
(t)
ij ∝ xj ȳ

(t)
i

(3.2)

ȳ
(t)
i = (1− δ)y(t−1)

i + δy
(t)
i

In the HMAX model, connections between S and C cells are binary. Additionally,

in our training case we want to learn connections based on image sequences of a

known length, and thus for simplicity should include a hard time window rather than a

decaying time dependence. Thus we employed a modified trace rule that is appropriate

for learning S2 to C2 connections in the HMAX model.
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Modified trace rule for the HMAX model:

for t in τ :

if xj > θ, wij = 1 (3.3)

else, wij = 0

With this learning rule, one C2 cell with index i is produced for each association

period. The length of the association period is τ .

3.3 Results

3.3.1 Training for translation invariance

We model natural invariance learning with a training phase where the model learns to

group different representations of a given object based on the learning rule in Equation

3.3. Through the learning rule, the model groups continuously-translating images that

move across the field of view over each known association period τ . An example of a

translating image sequence is shown at the top, left of Figure 3-1. During this training

phase, the model learns the domain of pooling for each C2 cell.

3.3.2 Accuracy of temporal association learning

To test the performance of the HMAX model with the learning rule in Equation 3.3, we

train the model with a sequence of training images. Next we compare the learned

model’s performance to that of the hard-wired HMAX [4] on a translation-invariant

recognition task. In standard implementations of the HMAX model, the S2 to C2 con-

nections are hard-wired, each C2 cell pools all the S2 responses for a given template

globally over all spatial locations. This pooling gives the model translation invariance

and mimics the outcome of an idealized temporal association process.

The task is a 20 face and 20 car identification task, where the target images are
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similar (but not identical) for different translated views2. We collect hard-wired C2 units

and C2 units learned from temporal sequences of the faces and cars. We then used

a nearest neighbor classifier to compare the correlation of C2 responses for translated

objects to those in a given reference position. The accuracy of the two methods (hard-

wired and learned from test images) versus translation is shown in Figure 3-2. The two

methods performed equally well. This confirms that the temporal associations learned

from this training yield accurate invariance results.

3.3.3 Manipulating the translation invariance of a single cell

In their physiology experiments Li and DiCarlo identified AIT cells that responded pref-

erentially to one object over another, they then performed altered temporal association

training where the two objects were swapped at a given position [10]. To model these

experiments we perform temporal association learning described by Equation 3.3 with

a translating image of one face and one car. For this simulation, the S2 units are tuned

to the same face and car images (see Figure 3-1 caption) to mimic object-selective

cells that are found in AIT. Next we select a “swap position" and perform completely

new, altered training with the face and car images swapped only at that position (see

Figure 3-1, top right). After the altered training, we observe the response (of one C2

cell) to the two objects at the swap position and another non-swap position in the visual

field that was unaltered during training.

As shown in Figure 3-3, the C2 response for the preferred object at the swap posi-

tion (but not the non-swap position) is lower after training, and the C2 response to the

non-preferred object is higher at the swap position. As in the physiology experiments

performed by Li and DiCarlo, these results are object and position specific. Though

unsurprising, this result draws a parallel between the response of a single C2 unit and

the physiological response of a single cell.

2The invariance-training and testing datasets come from a concatenation of
two datasets from: ETH80 (http://www.d2.mpi-inf.mpg.de/Datasets/ETH80) and ORL
(http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html). Except when noted, the im-
age patches used to obtain the S2 templates were obtained from a different, unrelated, collection of
natural images; see [4] for details.
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Figure 3-2: The area under the ROC curve (AUC) (ordinate) plotted for the task of
classifiying (nearest neighbors) objects appearing on an interval of increasing distance
from the reference position (abscissa). The model was trained and tested on separate
training and testing sets, each with 20 car and 20 face images. For temporal association
learning, one C2 unit is learned for each association period or training image, yielding
40 learned C2 units. One hard-wired C2 unit was learned from each natural image
patch that S2 cells were tuned to, yielding 10 hard wired C2 units. Increasing the
number of hard-wired features has only a marginal effect on classification accuracy.
For temporal association learning, the association period τ was set to the length of
each image sequence (12 frames), and the activation threshold θ was empirically set
to 3.9 standard deviations above the mean activation.

3.3.4 Individual cell versus population response

In the previous section we modeled the single cell results of Li and DiCarlo, namely that

translation invariant representations of objects can be disrupted by a relatively small

amount of exposure to altered temporal associations. However, single cell changes do

not necessarily reflect whole population or perceptual behavior and no behavioral tests

were performed on the animals in this study.

A cortical model with a temporal association learning rule provides a way to model

population behavior with swap exposures similar to the ones used by Li and DiCarlo

[10, 33]. A C2 cell in the HMAX model can be treated as analogous to an AIT cell (as
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Figure 3-3: Manipulating single cell translation invariance through altered visual expe-
rience. (A) Figure from Li and DiCarlo 2008 [10] summarizing the expected results of
swap exposure on a single cell. P is the response to preferred stimulus, and N is that
to non-preferred stimulus. (B) The response of a C2 cell tuned to a preferred object be-
fore (left) and after (right) altered visual training where the preferred and non-preferred
objects were swapped at a given position. To model the experimental paradigm used
in [9, 10, 32, 33], altered training and final testing were performed on the same al-
tered image sequence. The C2 cell’s relative response (Z-score) to the preferred and
non-preferred objects is shown on the ordinate, and the position (swap or non-swap) is
shown on the abscissa.

tested by Li and DiCarlo), and a C2 vector as a population of these cells. We can thus

apply a classifier to this cell population to obtain a model of behavior or perception.

3.3.5 Robustness of temporal association learning with a popula-

tion of cells

We next model the response of a population of cells to different amounts of swap ex-

posure, as illustrated in Figure 3-1, right. The translating image sequence with which

we train the model replicates visual experience, and thus jumbling varying amounts of

these training images is analogous to presenting different amounts of altered exposure

to a test subject as in [10, 33]. These disruptions also model the mis-associations that

may occur with temporal association learning due to sudden changes in the visual field

(such as light, occlusions, etc), or other imperfections of the biological learning mech-

anism. During each training phase we randomly swap different face and car images in
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the image sequences with a certain probability, and observe the effect on the response

of a classifier to a population of C2 cells. The accuracy (AUC) versus different neural

population sizes (number of C2 cells) is shown in Figure 3-4 for several amounts of

altered exposure. We measured altered exposure by the probability of flipping a face

and car image in the training sequence.
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Figure 3-4: Results of a translation invariance task (+/- 40 pixels) with varying amounts
of altered visual experience. To model the experimental paradigm used in [9, 10, 32,
33, 77], training and testing were performed on the same altered image sequence. The
performance (AUC) on the same translation-invariant recognition task as in figure 3-2,
with a nearest neighbor classifier, versus the number of C2 units. Different curves have
a different amount of exposure to altered visual training as measured by the probability
of swapping a car and face image during training. The error bars show +/- one standard
deviation.

A small amount of exposure to altered temporal training (0.125 probability of flipping

each face and car) has negligible effects, and the model under this altered training per-

forms as well as with normal temporal training. A larger amount of exposure to altered

temporal training (0.25 image flip probability) is not significantly different than perfect

temporal training, especially if the neural population is large enough. With enough C2

cells, each of which is learned from a temporal training sequence, the effects of small
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amounts of jumbling in training images are insignificant. Even with half altered exposure

(0.5 image flip probability), if there are enough C2 cells then classification performance

is still reasonable. This is likely because with similar training (multiple translating faces

or cars), redundant C2 cells are formed, creating robustness to association errors that

occurred during altered training. Similar redundancies are likely to occur in natural vi-

sion. This indicates that in natural learning mis-wirings do not have a strong effect on

learning translation invariance, particularly with familiar objects or tasks.

3.4 Discussion

We use a cortical model inspired by Hubel and Wiesel [21], where translation invariance

is learned through a variation of Foldiak’s trace rule [31] to model the visual response

to altered temporal exposure. We first show that this temporal association learning rule

is accurate by comparing its performance to that of a similar model with hard-wired

translation invariance [4]. This extends previous modeling results by Masquelier et al.

[73] for models of V1 to higher levels in the visual recognition architecture. Next, we test

the robustness of translation invariance learning on single cell and whole population

responses. We show that even if single cell translation invariance is disrupted, the

whole population is robust enough to maintain invariance despite a large number of

mis-wirings.

The results of this study provide insight into the evolution and development of trans-

formation invariance mechanisms in the brain. It is unclear why a translation invariance

learning rule, like the one we modeled, and those confirmed by [9, 10, 33], would re-

main active after development. We have shown that the errors associated with a con-

tinuously active learning rule are negligible, and thus it may be simpler to leave these

processes active than to develop a mechanism to turn them off.

Extending this logic to other transformations is interesting. Translation is a generic

transformation; all objects translate in the same manner, so translation invariance, in

principle, can be learned during development for all types of objects. This is not true

of “non-generic" or class-specific transformations, such as rotation in depth, which de-
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pends on the 3-D structure of an individual object or class of objects [7, 11, 79]. For

example, knowledge of how 2-D images of faces rotate in depth can be used to predict

how a new face will appear after a rotation. However, knowledge of how faces rotate is

not useful for predicting the appearance of non-face objects after the same 3-D trans-

formation. Many transformations are class-specific in this sense3. One hypothesis as to

why invariance-learning mechanisms remain active in the mature visual system could

be a continuing need to learn and refine invariant representations for more objects

under non-generic transformations.

Disrupting rotation in depth has been studied in psychophysics experiments. Wallis

and Bulthoff showed that training subjects with slowly morphing faces, disrupts view-

point invariance after only a few instances of altered training [32, 77]. This effect occurs

with a faster time course than observed in the translation invariance experiments [9].

One possible explanation for this time discrepancy is that face processing mechanisms

are higher-level than those for the “greeble objects" and thus easier to disrupt. How-

ever, we conjecture that the strong, fast effect has to do with the type of transformation

rather than the specific class of stimuli.

Unlike generic transformations, class-specific transformations cannot be general-

ized between objects with different properties. It is even possible that we learn non-

generic transformations of novel objects through a memory-based architecture that

requires the visual system to store each viewpoint of a novel object. Therefore, it is

logical that learning rules for non-generic transformations should remain active as we

are exposed to new objects throughout life.

In daily visual experience we are exposed more to translations than rotations in

depth, so through visual development or evolutionary mechanisms there may be more

cells dedicated to translation-invariance than rotation-invariance. We showed that the

size of a population of cells has a significant effect on its robustness to altered training,

see Figure 4. Thus rotation invariance may also be easier to disrupt, because there

could be fewer cells involved in this process.

3Changes in illumination are another example of a class-specific transformation. These depend on
both 3-D structure and material properties of objects [11].
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Two plausible hypotheses both point to rotation (class-specific) versus translation

(generic) being the key difference between the Wallis and Bulthoff and Cox et al. ex-

periments. We conjecture that if an experiment controlled for variables such as the

type and size of the stimulus, class-specific invariances would be easier to disrupt than

generic invariances.

This study shows that despite unavoidable disruptions, models based on tempo-

ral association learning are quite robust and therefore provide a promising solution

for learning invariance from natural vision. These models will also be critical in un-

derstanding the interplay between the mechanisms for developing different types of

transformation invariance.
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Chapter 4

Class-specific transformation

invariance implies modularity of the

ventral stream

In everyday visual experience class-specific transformations like 3D rotation severely

distort the appearance of objects and yet, most of the time, they are easily dis-

counted by the human visual system. Unlike image-based (2D affine) transfor-

mations, which can be learned from experience with any objects, invariance to

these transformations can only be learned from similar objects. It follows that a

wide class of popular models of the ventral stream, hierarchical view-based mod-

els, cannot employ generic circuitry to solve the task of invariantly recognizing

unfamiliar objects from a single example view. Class-specific invariance can be

obtained by separating the processing of objects that transform differently from

one another into different domain-specific modules. Importantly, each module

can perform analogous computations to all the others and could be wired-up by

learning or evolution in the exact same manner (e.g. association of temporally

adjacent views), but each needs to operate on a different domain in order to work.

The extent to which invariance learned on some objects of a class transfers to

other objects in the class predicts human performance on tests of generalization

from a single example view. We propose a quantitative “niceness” index which
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can be measured for any class of objects. The index predicts poor performance

on 3D-rotation invariant recognition of the paperclip stimuli used in some psy-

chophysics experiments and stronger (but not perfectly invariant) performance

for faces. A range of other object classes fall in between these extremes. A

strong modularity conjecture argues that the index predicts which object classes

are expected to have domain-specific modules in the ventral stream and which

are not. It suggests a monotonic relationship between the index and the size of

the corresponding module as observed in fMRI imaging.

4.1 Introduction

The ventral stream contains discrete patches dedicated to the visual processing of

specific visual categories—e.g. faces [12, 13, 80], scenes [81], words [82, 83], and

bodies [84]. Despite decades of study the underlying computational reason that the

brain adopts this modular architecture remains unknown; the role—if any—played by

modularity in the ventral stream’s recognition algorithm has not been determined. In

this chapter we argue that the modular architecture is necessary. Dedicated processing

modules may exist because they are the only way that the brain could accomplish some

of its recognition tasks.

For the purposes of this report, a module is a localized patch of cells in the ven-

tral stream that respond selectively to a specific class of objects1. The example for

which the most detailed experimental data is available—and consequently our primary

motivating example—is the macaque face-processing system [14]. Many of the regions

found in human neuroimaging experiments with faces, bodies, and words are also mod-

ules under our definition. These include the fusiform face area (FFA), the extrastriate

body area (EBA), the visual word form area (VWFA) and others. We believe that our

use of the word “module” is relatively standard in the field; however to avert semantic

1This usage of the word module is, unfortunately, at odds with HW-module, as used in this thesis’s
introduction and discussion. This chapter was written before those were. When the present chapter was
written we had not yet settled on a name. This paper refers to the same class of networks as considered
in the introduction and discussion, but it calls them “hierarchical view-based models”. It’s actually a good
name in this context, just not general enough for all the things we wanted to say about them elsewhere.
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confusion we explicitly note that early visual areas, e.g. V1 and V2, are not modules

with our definition. The lateral occipital complex (LOC) is also not a module in this

sense.

The purpose of this report is to propose a new explanation at the level of computa-

tional theory (see [85]) for why there are domain-specific modules in the ventral stream.

The argument is quite general, but for ease of exposition we will mostly develop it in

the context of an extended example: 3D rotation-invariant face identification and the

face-specific patches in macaque visual cortex. After developing the argument in that

setting we explain how it generalizes to other modules.

Figure 4-1: Layout of face-selective regions in macaque visual cortex, adapted from

[15] with permission.

In macaques, there are 6 discrete face-selective regions in the ventral visual path-

way, one posterior lateral face patch (PL), two middle face patches (lateral- ML and

fundus- MF), and three anterior face patches, the anterior fundus (AF), anterior lateral

(AL), and anterior medial (AM) patches [13, 14]. At least some of these patches are

organized into a feedforward hierarchy. Visual stimulation evokes a change in the local

field potential ∼ 20 ms earlier in ML/MF than in patch AM [15]. Consistent with a hier-

archical organization involving information passing from ML/MF to AM via AL, electrical

stimulation of ML elicits a response in AL and stimulation in AL elicits a response in AM

[86]. In addition, spatial position invariance increases from ML/MF to AL, and increases
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further to AM [15] as expected for a feedforward processing hierarchy.

The firing rates of cells in ML/MF are most strongly modulated by face viewpoint.

Further along the hierarchy, in patch AM, cells are highly selective for individual faces

but tolerate substantial changes in viewpoint [15]. Freiwald and Tsao conjectured that a

goal of this processing hierarchy is to compute a representation of faces that is invariant

to 3D rotation-in-depth, and that this representation may underlie face identification

behavior [15].

Our argument follows from a few simple and widely held premises:

1. The computational goal of the ventral stream is to compute representations that

are at once selective for individual objects and invariant to identity-preserving

transformations of their appearance.

2. The ventral stream implements a feedforward recognition algorithm. Note: This

does not preclude an important computational role for recurrent connections; we

only need to assume that the ventral stream can solve the “core” problems of

object recognition in its feedforward mode [17, 87].

3. The ventral stream’s recognition algorithm is view-based and hierarchical [41, 88,

89].

The main thrust of our argument—to be developed below—is this: The ventral

stream computes object representations that are invariant to transformations. Some

transformations are generic; the ventral stream could learn to discount these from ex-

perience with any objects. Translation and scaling are both generic (all 2D affine trans-

formations are). However, it is also necessary to discount many transformations that

do not have this property. Many common transformations are non-generic; 3D-rotation-

in-depth is the primary example we consider here.

From a single example view it is not possible to achieve a perfectly invariant repre-

sentation with respect to a non-generic transformation. These transformations depend

on information that is not available in a single image, e.g. the object’s 3D structure. De-

spite this, approximate invariance can still be achieved using prior knowledge of how
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similar objects transform. Many non-generic transformations are class-specific. The

transformation of object appearance caused by a 3D-rotation-in-depth is not the same

2D transformation for two objects with a different 3D structure, e.g. a face simply does

not rotate like a car. However, within a restricted class where all the objects have sim-

ilar 3D structure, all objects do rotate (approximately) the same way. Faces are the

prototypical example of such a nice class, where all its members transform similarly (cf.

“linear” classes in [79, 90])).

The conclusion of our argument will be the claim that any view-based recognition

architecture that discounts class-specific transformations must be modular. The cir-

cuitry that underlies view-invariant unfamiliar face-identification must be separated from

the circuitry that computes the same transformation invariance for other objects. We

propose that the need to discount class-specific transformations is the underlying com-

putational reason for modularity in the ventral stream.

4.2 Results

4.2.1 Hierarchical view-based models

Figure 4-2: Illustration of a hierarchical view-based model.
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A wide range of view-based object recognition models are compatible with our premises.

View-based models encode images by their similarity to a set of stored templates—

pooled over transformations. Hubel and Wiesel’s model of how V1 complex cell re-

ceptive fields are built from simple cell receptive fields is an example of this sort of

computation. Simple cells are (approximately) tuned to oriented bars at specific posi-

tions in the visual field. Complex cells are orientation-tuned, but less sensitive to the

exact position of the stimulus. Hubel and Wiesel proposed that complex cells pool over

several simple cells with the same preferred orientation but slightly different preferred

positions [21]. In our transformation-focused language we can say that a complex cell

pools over translations of a particular oriented template.

With the term “hierarchical view-based models” we intend to refer to the whole class

of models that extend Hubel and Wiesel’s model hierarchically, perhaps pooling over

different transformations besides translation. This is a very wide class of models that

includes Fukushima’s neocognitron [27], the HMAX family of models [3, 4, 91], convolu-

tional neural networks [28], VisNet [92], and many others (e.g. [93–96]). By necessity,

the simulations in this paper use a particular model but the computational properties of

generic and class-specific transformations are model-independent. None of our claims

here rely on a specific model choice; all the simulation results could be replicated using

any hierarchical view-based model.

View-based models work by storing templates which can be thought of as frames

from the movie of an object undergoing a transformation. The signature that arises

at the top level can be thought of as measuring the similarity of the input pattern

to the templates—pooled over their previously-viewed appearances. Numerous al-

gorithms have been proposed to solve the problem of how to wire up these models

through temporal association [31, 35, 74, 75, 92, 97]. There is also psychophysical

and physiological evidence that visual cortex employs a temporal association strategy

[9, 10, 32, 33, 77]. None of our claims depend on the details of the learning process,

thus we can restrict the subsequent analysis to the “mature” form of these models.

Consider a mechanism that stores frames as an initial pattern transforms under the

action of a specific transformation (such as rotation). This is the “developmental” phase
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of learning the templates. At run time, the model computes the similarity of the viewed

image to each of the templates under all their stored transformations—e.g. with a

normalized dot product. This set of similarities is analogous to the responses of simple

cells in Hubel and Wiesel’s model. In the second stage (analogous to complex cells),

each element of the signature is computed by applying a pooling function over the

similarities of the viewed image to all the stored transformations of one base template—

e.g. computing the max or the average.

The entire view-based model computation can be repeated hierarchically by taking

the signature at the previous layer for the input and tempate-encoding used in the simi-

larity computation at the subsequent layer. The properties of generic and class-specific

transformations affect single layer architectures just as they do deeper architectures.

Thus, for simplicity, we use a 1-layer view-based model for our simulations. [11] con-

tains the analogous simulation results for a more complex hierarchical model (HMAX).

4.2.2 Generalization from a single example view

We simulated tests of initial invariance for unfamiliar objects. The specific task we

modeled is a same-different task. In human behavior, it would correspond to a task

where the subject is first shown a reference image and then asked to compare it to a

query image. The query may be an image of the same object as the reference (the

target), or it may depict a distractor object. In either case, the query image may be

transformed. For example, in one trial, the task could be to recognize “Tommy’s face”—

oriented 0◦ in the reference image—versus distractor images of other people’s faces.

Both target and distractor query images might be rotated away from the reference view.

This task is modeled using a nearest-neighbors classifier. The reference image’s

signature is chosen to be the center. The classifier then ranks all the query images’

signatures by their distance from the reference. We vary the threshold for which the

classifier will respond ‘same’ to compute a bias-free measure of performance (AUC)—

analogus to d′ for the corresponding behavioral experiment [7, 58]. Figures 4-3, 4-4,

and 4-5 show the AUC computed for a range of task difficulties (the abscissa). These
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figures show how discriminability declines as the range of transformations applied to

the query images is widened. A task at a larger invariance range subsumes all the

tasks at smaller invariance ranges; thus the discriminability curves can never increase

as the invariance range is widened. A flat AUC curve indicates that discriminability is

unaffected by the transformation. That is, it indicates that the model is invariant to that

transformation.

Variations on the modeled task are commonly used in psychophysics experiments.

For example, Bülthoff et al. measured how many degrees of 3D rotation that human

observers could generalize from a single example view of an unfamiliar object [41].

Logothetis et al. performed a similar experiment with two classes of unfamiliar objects

and monkey subjects [88]; they also measured the 3D rotation invariance of neurons

in IT cortex [25]. There are also many of the analogous experiments for other transfor-

mations in the literature, e.g. translation [43, 48] and in-plane rotation [49].

4.2.3 Invariance to generic transformations

Figure 4-3 shows the results of a test of translation-invariant novel face recognition (left

column). The view-based model performs perfectly on this task (blue curves) while a

control pixel-based model’s performance declines rapidly with translation (red curves).

The template views could be acquired either from faces (top row) or from random noise

patterns (bottom row) with no change in performance. Likewise, random noise pat-

terns could be recognized using either face templates or random noise templates (right

column).

We introduce the term generic transformation to indicate a transformation for which

invariance learned on any templates exactly transfers to all other objects. That is, a

transformation is generic if it satisfies the following two conditions:

1. It generates transformed images from a single given image of an object.

2. Invariance to it can be learned for any new image from transformations of any

image.
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Figure 4-3: Generic invariance to translation. Bottom panel (II): Example images from the two
classes. The faces were obtained from the Max-Planck Institute dataset [66] and then contrast
normalized and translated over a black background. Top panel (I): The left column shows the
results of a test of translation invariance for faces and the right column shows the same test
for random noise patterns. The view-based model (blue curve) was built using templates from
class A in the top row and class B in the bottom row. The abscissa of each plot shows the
maximum invariance range (a distance in pixels) over which target and distractor images were
presented. The view-based model was never tested on any of the images that were used as
templates. Error bars (+/- one standard deviation) were computed over 5 cross validation runs
using different (always independent) template and testing images.

See supplementary section 4.6.1 for additional discussion of generic transforma-

tions. The results in figure 4-3 are an empirical demonstration that translation is a

generic transformation. [36] contains a mathematical argument that all 2D affine trans-
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formations are generic.

4.2.4 Approximate invariance to class-specific transformations

Viewpoint (rotation in depth)

Non-generic transformations like 3D rotation-in-depth depend on information that is not

available in a single image. Perfect invariance to non-generic transformations is not

possible for unfamiliar objects. However, approximate invariance can still be achieved

as long as the template objects transform similarly to the test objects. One view of this

is to say that the missing information in the object’s 2D projection is similar between

template and test objects. For example, 3D rotation is a non-generic transformation—

as a map between projected 2D images it depends on the object’s 3D structure. If the

template and test objects have the same 3D structure then the transformation learned

on the template will apply exactly to the test object. If they differ in 3D structure then

the error incurred is a function of the difference between their 3D structures (see Supp.

Mat. 4.6.2).

Faces all approximately share a common 3D structure; thus approximate invariance

to 3D rotation of faces can be transferred from template faces to unfamiliar faces (fig.

4-4—upper left plot). This only works if the templates are actually views of faces. Using

templates drawn from 3D rotations of non-face objects does not yield approximate in-

variance or boost discriminability beyond the level achieved by using the raw pixels for

classification (fig. 4-4—left column, bottom two plots). These results are an empirical

demonstration that 3D rotation is a class-specific transformation for which faces are a

particularly nice class.

Other object classes besides faces are nice with respect to 3D rotation. We used 3D

graphics software to render images of two additional object classes under 3D rotations

(fig. 4-4—class B and C objects). Just as with faces, within each class there is a shared

gross 3D structure, e.g. class B objects are all conical and have a centered protrusion

near the top; class C objects all have a pyramidal protrusion in the center and two wall-

like bumps on either side. Individuals were defined by smaller variations in 3D structure
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Figure 4-4: Class-specific approximate invariance to rotation in depth. Bottom panel (II):
Example images from the three classes. Top panel (I): The left column shows the results of a
test of 3D rotation invariance on faces (class A), the middle column shows results for class B
and the right column shows the results for class C. The view-based model (blue curve) was built
using images from class A in the top row, class B in the middle row, and class C in the bottom
row. The abscissa of each plot shows the maximum invariance range (degrees of rotation away
from the frontal face) over which target and distractor images were presented. The view-based
model was never tested on any of the images that were used as templates. Error bars (+/-
one standard deviation) were computed over 20 cross validation runs using different choices of
template and test images.

within each class e.g. the position and orientation of several smaller protrusions. View-

based models were approximately invariant to 3D rotation whenever they were built

using templates drawn from the same object class that they were tested on (fig. 4-4—
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plots on the diagonal). Performance of the view-based models trained using templates

from the wrong object class followed the performance of the pixel-based model, that is,

they declined to chance level (AUC = .5) by ∼ 25◦ of rotation. Thus object classes B

and C are also nice with respect to 3D rotation. This simulation also demonstrates that

the combined class consisting of all three object classes together is not nice. Encoding

unfamiliar members of that class relative to template views of its other members will

only sometimes (1/3 of the time) yield an approximately invariant signature.

Illumination

Illumination is also a class-specific transformation. The appearance of an object af-

ter a change in lighting direction depends both on the object’s 3D structure and on its

material properties (e.g. reflectance, opacity, specularities). Figure 4-5 displays the

results from a test of illumination-invariant recognition on three different object classes

which can be thought of as statues of heads made from different materials—A: wood,

B: silver, and C: glass. The results of this illumination-invariance test follow the same

pattern as the 3D rotation-invariance test. In both cases the view-based model im-

proves the pixel-based models’ performance when the template and test images are

from the same class (fig. 4-5—plots on the diagonal). Using templates of a different

class than the test class actually lowered performance below the pixel-based model in

some of the tests e.g. train A–test B and train B–test C (fig. 4-5—off diagonal plots).

This simulation demonstrates that these object classes are nice with respect to illumi-

nation transformations. However, the weak performance of the view-based model on

the silver objects indicates that it is not as nice as the others. This is because the

small differences in 3D structure that define individual heads give rise to more extreme

changes in specular highlights under the the transformation.

Body pose

Let B = {b1, b2, ..., bn} be a set of bodies and P = {p1, p2, ..., pn} be a set of poses. Let

d be the dimensionality of the images. We define the rendering function tp : B → Rd.
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Figure 4-5: Class-specific approximate invariance to illumination changes due to movement
of the light source. The light source moved vertically in front of the object. Same organization
as figure 4-4.

In words, we say tp[b] renders an image of body b in pose p. In that case the argument

b is the template and the subscript p indicates the transformation to be applied.

We obtain the signature vector µ : X → Rm by pooling the inner products of the

input image with different renderings of the same template.
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Figure 4-6: A. Example images for the pose-invariant body-recognition task. The images
appearing in the training phase were used as templates. The test measures the model’s per-
formance on a same-different task in which a reference image is compared to a query image.
‘Same’ responses are marked correct when the reference and query image depict the same
body (invariantly to pose-variation). B. Model performance: area under the ROC curve (AUC)
for the same-different task with 10 testing images. The X-axis indicates the number of bodies
used to train the model. Performance was averaged over 10 cross-validation splits. The error
bars indicate one standard deviation over splits.

µ(x) =



max(〈I, t1(τ1)〉, 〈I, t2(τ1)〉, . . . , 〈I, tn(τ1)〉)

max(〈I, t1(τ2)〉, 〈I, t2(τ2)〉, . . . , 〈I, tn(τ2)〉)
...

max(〈I, t1(τm)〉, 〈I, t2(τm)〉, . . . , 〈I, tn(τm)〉)


(4.1)

For this experiment we used a Gaussian radial basis function to model the S-unit

response.

〈I, ti(τj)〉 = exp{σ ∗
∑

((I − ti(τj))2)} (4.2)

Where σ is the Gaussian’s variance parameter.
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The model can be made hierarchical. It takes in any vector representation of an

image as input. We investigated two hierarchical architectures built off of different layers

of the HMAX model (C1 and C2b)[52]—referred to in fig. 4-6 as the V1-like and IT-like

models respectively.

For the pose-invariant body recognition task, the template images were drawn from

a subset of the 44 bodies—rendered in all poses. In each of 10 cross-validation splits,

the testing set contained images of 10 bodies that never appeared in the model-building

phase—again, rendered in all poses (fig. 4-6).

The HMAX models perform almost at chance. The addition of the class-specific

mechanism significantly improves performance on this difficult task. That is, models

without class-specific features were unable to perform the task while class-specific fea-

tures enabled good performance on this difficult invariant recognition task (fig. 4-6).

Downing and Peelen (2011) argued that the extrastriate body area (EBA) and fusiform

body area (FBA) “jointly create a detailed but cognitively unelaborated visual represen-

tation of the appearance of the human body”. These are perceptual regions—they

represent body shape and posture but do not explicitly represent high-level information

about “identities, actions, or emotional states” (as had been claimed by others in the lit-

erature cf. commentaries on [98] in the same journal issue). The model of body-specific

processing suggested by the simulations presented here is broadly in agreement with

this view of EBA and FBA’s function. It computes, from an image, a body-specific

representation that could underlie many further computations e.g. action recognition,

emotion recognition, etc.

Discussion

Fundamentally, the 3D rotation of an object class with one 3D structure, e.g. faces, is

not the same as the 3D rotation of another class of objects with a different 3D struc-

ture. Generic circuitry cannot take into account both transformations at once. The

templates used by a view-based model to recognize unfamiliar faces despite 3D rota-

tion must also be faces. We conjecture that the reason the macaque face-processing

system is segregated into discrete patches is to facilitate class-specific pooling. To ob-
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tain a rotation-invariant representation in an anterior face patch (e.g. patch AM) it is

necessary to ensure that all the AM cells’ inputs transform like faces (here we mean

necessary, and sufficient, on the computational level of analysis, in the sense that we

have an “if and only if” theorem. See [1]). This connectivity is most simply achieved if

the upstream face-selective cells are nearby one another in a particular patch of cortex.

We call this conclusion the weak modularity implication. If the premises are sat-

isfied, i.e. the ventral stream’s core view-based feedforward operation computes as-

invariant-as-possible representations for novel objects, then it must separate the pro-

cessing of some object classes from others in order to achieve class-specific gener-

alization for unfamiliar objects. The following sections expand on this argument and

articulate a strong modularity conjecture.

4.2.5 Nice classes

Niceness is a graded notion. It is possible for one set of objects and a transformation

to be more or less nice than another. For example, we saw in figure 4-4 that the set

of faces was nicer with respect to 3D rotation than the combined set of class A, B and

C objects. In figure 4-3, we saw that faces were even nicer with respect to transla-

tion. We define a quantitative index of niceness that can be computed directly from

the sequence of images depicting a set of objects transforming. Since generic trans-

formations apply the same way to all objects we can say that the maximum possible

niceness is achieved for generic transformations. Intuitively, the set consisting of any

single object with respect to any transformation would also be maximally nice (though

that case is not accomodated in our simulations since we always require the template

and test sets to be independent).

We have demonstrated that approximate invariance to some non-generic transfor-

mations can be obtained by processing each nice class separately (figures 4-4 and

4-5). Consider an object recognition system with a number of distinct modules. One

extreme example is the “grandmother cell” system that has a separate module for every

object. This system would maximize the total niceness over all its modules. However,
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it would defeat the whole purpose of having a view-based model; if every object is in

a separate module from every other object then there could never be any transfer of

invariance from templates to unfamiliar objects. At the other extreme we have the “fully

distributed” system with only one, highly not-nice, module that processes all objects.

Most of the elements of its signature would indicate similarities to templates that do not

transform similarly to the test object. This signature would change drastically when the

unfamilar object transforms.

The claim that the ventral stream falls somewhere on the spectrum between the two

extremes of grandmother cells and completely distributed codes is not controversial.

The argument we have developed here makes some stronger predictions than this

though. In some cases we can even make specific statements about which modules

are expected and which are not.

The “paperclip” objects used in many psychophysics and physiology experiments

on 3D rotation-invariant recognition (e.g. [25, 41, 88]) are defined entirely by their 3D

structure. They do not have any relevant 3D structure in common with one another.

Thus the class of paperclip objects is very not-nice with respect to 3D rotation (see

the table of niceness values below). This is why experience with invariantly identifying

template paperclips does not facilitate subsequent invariant identification of unfamiliar

paperclips [41, 88].

4.2.6 The strong modularity conjecture

Object representations may be assigned to modules in order to maximize niceness.

Consider an object recognition system with a number of modules. When a new object

is learned, add its representation (set of associated template images) to the module for

which its addition gives the highest niceness. Most of the time, adding a new object

representation to a module will decrease its niceness. If there is no module to which

the object can be added without decreasing niceness below a threshold then create a

new module to contain that object’s representation. After repeating this procedure for

many objects—sampled according to the distribution of objects encountered in natural
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vision—there will be a few large modules with many objects in them and many small

modules with very few, or just one, object.

The largest module generated by this procedure would almost certainly be a face

module. Modules representing human bodies—perhaps invariantly to posture—would

also be one of the larger modules. If the objects are sampled according to their distri-

bution in natural vision, then orthography in a literate viewer’s native language would

also likely have a large module. The orthography module might be invariant to transfor-

mations induced by differences in viewing angle or even more exotic—but common—

transformations like font or handwriting styles. The smallest modules would contain

objects that do not transform similarly to any other objects. The paperclip objects com-

monly used for experiments would end up being isolated in their own modules (they are

not a nice class with respect to 3D rotation).

Neuroimaging methods like fMRI have limited resolution, thus only the largest mod-

ules will be visible to them. The strong modularity conjecture predicts that the region of

cortex containing the smaller modules will appear in neuroimaging experiments not to

be specifically tuned to any particular object class—and it will have the additional prop-

erty that it will not respond strongly to objects represented by the large modules. That

is, the predictions of the strong modularity conjecture are in accord with the results of

neuroimaging experiments that show dedicated face regions—e.g. FFA, OFA [12, 99]—

body regions—EBA, FBA [84, 100]—and an orthography region—VWFA [82]—as well

as experiments that report strong responses to other object stimuli in LOC [101].

The strong modularity conjecture predicts that additional modules will be found with

higher resolution scans. In accord with this prediction, a recent high-field (higher res-

olution) primate fMRI study reported that there is a small fruit-selective patch in visual

cortex [80]. Another implication of our argument is that the paperclip-tuned cells de-

scribed in [25] would not have been localized in a discrete patch of cortex. To our

knowledge, the spatial distribution of these cells (or similar ones) was never measured;

so this may be a true experimental prediction. In general, the strong modularity conjec-

ture predicts a monotonic relationship between an object class’s niceness and the size

of its corresponding module.
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4.3 Discussion

We have argued that the ventral stream implements a modularity of content rather

than process. The computations performed in each module can remain quite similar

to the computations performed in other regions. Indeed, the connectivity within each

region can be wired up in the same way, e.g. through temporal association. The only

difference across areas is the object class (and the transformations) being encoded.

In this view, the ventral stream must be modular in order to succeed in the tasks with

which it is faced.
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4.4 Methods

4.4.1 Stimuli

All objects were rendered with perspective projection.

Generic fig: there were 100 faces and 100 random noise patterns randomly parti-

tioned into 30 for templates and 30 for testing.
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3D rot: there were 40 faces, 20 class B, 20 class C. Randomly picked 10 templates

and 10 test for each of 20 cval runs.

Ilum: 40 wood, 40 silver, 40 glass. Randomly picked 20 for templates and 20 for

test, in 20 cval runs.

3D rotation: We obtained 3D models of objects from 3 different classes and used

Blender [102] to render images of them at each orientation in 5◦ increments from −95◦

to 95◦. Class A consisted of faces; we used Facegen [103] to create the 3D mod-

els. The faces were all untextured so the task required the use of shape to identify

individuals. Class B and C objects were modeled with Blender.

Illumination: Within each class the texture and material properties were exactly the

same for all objects. We used Blender to render images of each object with the scene’s

sole light source placed in different locations. The 0 position was set to be in front of

the object’s midpoint; the light was translated vertically. The most extreme translations

brought the light source slightly above or below the object. We obtained the material

data files from the Blender Open Material Repository (http://matrep.parastudios.de/).

The 3D meshes and material data for all the faces and other objects created for our

simulations will be made freely available from http://cbcl.mit.edu (or as supplementary

data).

4.4.2 Niceness index

We define a compatibility function ψ(A,B) to quantify how similarly two objects trans-

form, where Ai is ith frame/image of object A. i = 1 . . .m and Bi is ith frame/image of

object B. i = 1 . . .m.

Then we can define the niceness index to be the average ψ over all pairs in the

class.
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4.5 Table of niceness values for various classes

Object class Transformation ψ

fig. 4-4-class A (faces) Rotation in depth 0.57600

fig. 4-4-class B Rotation in depth 0.95310

fig. 4-4-class C Rotation in depth 0.83800

All fig. 4-4 Rotation in depth 0.26520

Chairs (Digimation) Rotation in depth 0.00540

Wire objects [88] Rotation in depth -0.00007

COIL-100 [104] Rotation in depth 0.00630

Glass statues-fig. 4-5 illumination 0.56320

Sliver statues-fig. 4-5 illumination 0.35530

Wood statues-fig. 4-5 illumination 0.53990

4.6 Supplementary material

4.6.1 Generic transformations

For X the set of all 2D images and T : X → X an invertible transformation, we say

that T is generic if for any pair of images x1, x2 ∈ X

< T (x1), x2 >=< x1, T
−1(x2) > (4.3)

Where < ·, · > indicates the template response function. For example, < x, τ >

could model the response evoked by x for a simple cell tuned to τ . Different models

use different template response functions; the simulations in the present paper use the

normalized dot product.

The signature obtained by pooling over template images depicting a generic trans-

formation of any familiar object is invariant, for example, maxt(< x, Tt(τ) >) is invariant.

Any other pooling function besides the max could also be used. The Tt(τ) could be
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frames of the video of a transforming object. Or the template responses could all be

computed by a convolution (as in [28]). The specific templates and their relationship

to the test image does not enter the argument; in principle, cells that are particularly

selective for the test object are not required to obtain a signature that is invariant to

generic transformations.

4.6.2 Approximate invariance to 3D-rotation

Hierchical view-based models can achieve approximate invariance for non-generic trans-

formations as long as the template objects transform similarly to the test objects. One

view of this is to say that the missing information in the object’s 2D projection is similar

between template and test objects. For example, 3D rotation—as a map between pro-

jected 2D images depends on the object’s 3D structure. If the template and test objects

have the same 3D structure then the transformation learned on the template will apply

exactly to the test object. If they differ in 3D structure then the error incurred depends

on the difference between their 3D structures.

See [1] for this argument. A version of it will also be included in the supplementary

information of the journal version of this chapter.



Chapter 5

View-invariance and mirror-symmetric

tuning in the macaque

face-processing network

Joel Z. Leibo, Fabio Anselmi, Andrea Tacchetti, Jim Mutch, Winrich A. Freiwald, and

Tomaso Poggio

The ventral stream rapidly computes image representations which are si-

multaneously tolerant of identity-preserving transformations and discriminative

enough to support robust recognition and memory-indexing. One algorithmic

approach to this task involves subjecting the image to a cascade of selectivity-

increasing AND-like operations (filtering) and tolerance-increasing OR-like oper-

ations (pooling) [1, 3, 4, 21, 27, 28, 94]. Many networks of this type have been

used as models of the ventral stream [11, 52, 60]. The macaque face process-

ing system, with its progression from view-specific neurons in the middle lateral

and middle fundus (ML/MF) patches to view-tolerance in the anterior medial (AM)

patch [15], seems like a good candidate for modeling along these lines. How-

ever, such an explanation renders mysterious the finding of mirror-symmetric

orientation tuning curves in the anterior lateral (AL) face patch: the interme-

diate step between view-specificity and view-tolerance. Here we show that a
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new biologically-plausible unsupervised learning rule for models in this class—

related to Oja’s [105] and Foldiak’s [31] rules—yields a network which computes

a representation resembling AL in its penultimate layer, prior to computing a

view-tolerant representation in its AM-like final layer. Furthermore, we show that

it leads to the implication that neuronal tuning properties at all levels of the ven-

tral stream hierarchy are given by solutions to a particular eigenvalue equation

we named the cortical equation. It can also be solved with parameters modeling

other parts of the ventral stream besides the face patches. In particular, we show

that in the case of small receptive fields, as in primary visual cortex, its solutions

resemble Gabor wavelets.

5.1 View-based HW-modules

Consider the special case of a filtering and pooling circuit proposed by Hubel and

Wiesel as a model of V1 simple and complex cell connectivity [21]. For I, the input

image, tk a stored template, {g~x} a family of translations parameterized by i, and σ a

nonlinearity (e.g., a sigmoid), the k-th element of the signature vector µ is given by

µk(I) :=
∑
i

σ(I · g~xitk). (5.1)

This way of writing the basic HW-module, named for Hubel and Wiesel’s contribu-

tion, highlights that the pooling is done over a particular family of transformations—

translations in this case. It can be generalized by considering other transformations of

the stored templates. It can be shown that, under very general conditions, the output of

an HW-module which pools over any locally compact groupG (e.g. affine or translation,

scaling, in-plane rotation), will be invariant to that transformation [1]. In the case of g

an affine transformations µ(gI) = µ(I).

In order for an HW-module to be invariant, the orbit Ok = {gtk, g ∈ G} under

the transformation must be stored in the preferred features of the (analogs of) simple

cells—called S-units here. One way to obtain transformation sequences, i.e., subsets
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of orbits, is by memorizing the frames of the video of a transforming object. Let V

be the matrix with each frame of the video as a column vi. For simplicity, think of a

single object transforming on an white background. Thus, vi = g~xiv0, v0 = t. An HW-

module built in this way, using a video of a transforming template object, will be invariant

to that transformation [1]—see S.I. section 2. Note that when the transformation is

affine, the HW-module will be invariant, regardless of any resemblance (or lack thereof)

between the stored templates and the test image. When the transformation is not

affine, the HW-module cannot be guaranteed to be invariant, but its output will still

tolerate stimulus transformations to some degree proportional to the similarity between

the transformations of the template and test objects [1, 11, 56] (see S.I. section 2 and

3).

Now consider the macaque face-processing system. A view-based HW-module

with C-units modeling patch AM neurons could pool view-tuned S-units modeling AL

neurons. Proposals along these lines have been the subject of many previous stud-

ies (e.g., [11]), and it is known that they can yield representations with similar view-

tolerance properties to patch AM. However, they cannot explain why the macaque sys-

tem goes through a mirror-symmetric intermediate representation (patch AL) along the

way to computing a view-tolerant representation in AM.

Figure 5-1: A. Layout of face-selective regions in macaque visual cortex [15]. B. Possible
feedforward organization of the face-selective regions proposed in [15]. C. Tuning curves of
four representative AL cells. Normalized response above baseline is plotted as a function of
stimulus orientation, averaged over rotations around the other two axes in 3D (data from [15]).
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In the following, we propose a new biologically-plausible unsupervised learning

procedure through which HW-modules modeling the macaque face system could be

learned from experience. View-based HW-modules can also be seen as memory-

based ; they store (partial) orbits. From that point of view, the HW-modules learned

via our proposal can be seen as compressed versions of the standard view/memory-

based HW-modules. Not only does this compression dramatically reduce storage re-

quirements (something that was always viewed as an issue with the standard propos-

als), it turns out that having a mirror-symmetric representation in the layer before the

view-tolerant layer can be explained as a side-effect of the compression.

5.2 Learning HW-modules

How could HW-modules develop? In the affine case, their development could be in-

nately specified—i.e., evolution could be their learning algorithm. However, there are

many reasons to favor a unified account where the circuitry for both affine and non-

affine cases develop through similar mechanisms and there are only quantitative dif-

ferences between them. Unified accounts are supported by the similarity of cortical

structure aacross many different regions [106] and its plasticity [107]. The properties

of HW-modules imply that they must be specifically tuned to templates which resemble

the test objects if they are to be recognized invariantly to non-affine transformations,

e.g., view-based HW-modules [11]. Despite this difference between the affine regime,

where generic circuitry suffices, and the non-affine regime, where circuitry must be

class-specific—as we show below, there is a single unified learning procedure which

can be used to predict properties of both.

We propose the following biologically-plausible unsupervised learning procedure—

first stating it succinctly, then explaining its motivation. Consider the continuous stream

of visual experience as a sequence of frames v0, v1, . . . , vi, . . . . Let δ be a spatiotem-

poral scale parameter that controls the aperture size of a simple cell both in space and

time. Let V k
δ be the matrix of frames from the video corresponding to the orbit of tk.
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The response of a learned HW-module is given by

µk(I) :=
∑
i

σ(I · ωki ). (5.2)

where the learned templates ωki are the solutions to the following eigenvector-eigenvalue

equation

V k
δ V

k
δ

ᵀ
ωki = λki ω

k
i (5.3)

We call (5.3), the cortical equation.

This procedure operates on a local spatiotemporal neighborhood, it falls into the

class of unsupervised temporal-adjacency-based learning algorithms. Since adjacent

frames of visual experience tend to depict the same object, these mechanisms can

be used to associate the appearances of an object under different transformation con-

ditions. The phenomenon of unsupervised temporal-adjacency learning was demon-

strated in both physiology [10, 33, 108] and psychophysics [9, 32] experiments. It has

been formalized in several different ways [31, 35, 97, 109], the most famous being

Foldiak’s trace rule.

A key parameter of any temporal-adjacency based learning rule is the temporal

scale on which it operates. In our case, HW-modules also have a spatial scale so we

can treat them together and consider a unified spatiotemporal scale. There need only

be one parameter to describe the aperture size in both space and time since mean-

ingful transformations are only observed on small spatial windows over short periods

of time or on large windows over a long time. It is not useful to be invariant to fast

transformations over large spatial windows or slow ones in a small visual field, these

transformation are akin to noise for object recognition purposes—see supplementary

information section 5.3.4. When the spatiotemporal scale is short, the HW-modules

obtained will be appropriate for the generic (affine) regime, see SI section 3. That

is, they will tend to learn to tolerate localized (2D) affine transformations. When the

spatiotemporal scale is wide, HW-modules for the class-specific regime will arise (see

figure 5-4).

Another standard assumption, which this theory also invokes, is experience evokes
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synaptic plasticity in accord with Hebb’s principle [110] that “neurons that fire together

wire together”, this concept can be written as: ∆wk = γ(wk)Tvδ, where vδ is a trans-

formation sequence i.e. a column of V k
δ , and wk is the vector of presynaptic weights.

This dynamical system converges if the weights are normalized and there is substantial

experimental evidence in support of normalization in the cortex [111]. Mathematically,

this implies a modification to Hebb’s rule the simplest version of which has been pro-

posed by [105]. It has been shown that Oja’s version of Hebb’s rule converges to the

eigenvector associated to the largest eigenvalue of the covariance of its inputs, that is,

the vector of presynaptic weights converges to a solution of the cortical equation.

Recall that a view-based HW-module is memory-based since it stores frames of the

video depicting a face’s rotation. Now consider the HW-module learned with a wide

spatiotemporal scale from watching the same video. It is a compressed version of the

view-based HW-module. The specific compression algorithm is principal components

analysis (PCA). Figure 5-2 shows that very few components are needed to obtain the

same performance as the view-based model on a difficult test of view-invariant face

recognition. In principle, this compression could lead to a dramatic easing of storage

requirements. It also motivates a study of the properties of the first few eigenvectors of

the covariance of the video of a rotating face, i.e., solutions of the cortical equation for

the case of a high-level face-specific region of the ventral stream.

Consider a developing HW-module, trained on the video of a rotating face. Since

faces are approximately bilaterally-symmetric, the video will generally contain the re-

flection of each of its frames over the vertical midline. It turns out, in the case where

this holds exactly, the solutions to the cortical equation must be either symmetric or

antisymmetric (i.e., the eigenfunctions of the associated covariance operator are either

even or odd); see S.I. section 5.3.6 for a proof.

An S-unit tuned to a symmetric feature will always have a symmetric orientation

tuning curve. Furthermore, if the nonlinearity σ is an even function, as in the energy

model [22], then S-units tuned to antisymmetric features will also always have symmet-

ric orientation-tuning curves. Figure 5-3 shows example tuning curves from the same

simulation as in figure 5-2. That is, it plots σ(ωki · Iθ) as a function of the test face’s
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Figure 5-2: A. Results from a test of viewpoint-invariant face identification. This test models
the psychophysics task used in [66] (and many others). Test faces were presented on a gray
background. The task was to correctly categorize images by whether or not they depict the
same person shown in a reference image—despite changes in viewpoint. This is a test of
generalization from a single example view. The abscissa shows the maximum invariance range
(maximum deviation from the frontal view in either direction) over which targets and distractors
were presented. The ordinate shows the area under the ROC curve (AUC) obtained for the
task of recognizing an individual despite changes in viewpoint (nearest neighbor classifier).
The model was never tested with any of the images that were used to produce eigenvectors (or
stored frames). We averaged the AUC obtained from experiments on the same model using all
20 different reference images and repeated the entire simulation (including the developmental
phase, using a different choice of 20 training faces) 5 times with different training/test splits
(for cross validation). The error bars shown on this figure are 1 standard deviation, over cross
validation splits.

orientation, at angle θ, for 5 example units tuned to features with different correspond-

ing eigenvalues. All of these tuning curves are symmetric about 0◦ corresponding to a

frontal face.
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Figure 5-3: A. The S-response y = xθ ·ω as a function of the test image’s orientation (rotation

in depth). The leftmost column is the projection onto the first eigenvector. The second column

is the projection onto the second eigenvector, and so on. This simulation was done directly on

the raw pixel representations with no preprocessing. B. Example eigenvectors (contrast nor-

malized) from the pixel-based (no preprocessing) simulation. The corresponding eigenvalues

decrease from left to right.

Since another goal of this work was to find a unified learning procedure that could

be used to wire up HW-modules serving as models of any layer of the ventral stream

(not just the face patches), we studied solutions to the cortical equation at a variety of

spatiotemporal scales (figure 5-4). No matter what transformation actually happens in

the world, when viewed through a small enough spatiotemporal window it will always

look like a translation. For example, rotation in depth of a face, viewed through a small

spatiotemporal window looks like the translation of an eye (figure 5-4-D). This follows

from the fact that a very wide class of transformations can be approximated by locally-

affine transformations. An implication is that the developing ventral stream only needs

to set up a hierarchy of layers which learn at different spatiotemporal scales—with small

scales toward the beginning and wider scales later on. As a result of the statistics of

natural vision, and the inherent spatiotemporal scales of different transformations, a

hierarchy developing along these lines will come to learn HW-modules for the generic

regime in its early layers, and HW-modules for the class-specific regime in later layers.

Thus, properties of neurons in all layers of the ventral stream could be predicted by
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solving the cortical equation with different parameters, and in the second regime, dif-

ferent template videos. Figure 5-4 shows first principal components (solutions to the

cortical equation with highest eigenvalue) for two different videos of rotating heads for

four different values of the spatiotemporal scale aprameter δ. In the generic regime,

small δ it leads to the prediction of Gabor-like tuning, and in the case of a face-specific

(rotation in depth) module, leads to the explanation of mirror symmetric tuning curves.
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Figure 5-4: Numerical solutions of the cortical equation with different (Gaussian) spatiotem-
poral scales. The spatiotemporal parameter δ was implemented by feeding the input transfor-
mation video through a Gaussian mask with equal variance in space and time (see Methods
section for more details). In the figure δ increases in size from left to right. A. Each eigenvector
of the matrix Vδ is a solution of the cortical equation. Here only the principal component asso-
ciated to the largest eigenvalue is shown for the values of the aperture shown directly below
it in B. The depicted Gaussian is an XY slice at the time corresponding to angle = 0, (where
the maximum is achieved). C. The difference-of-Gaussians filter which was convolved with
all frames of the video before applying the spatiotemporal aperture. D. Restricted to a small
spatiotemporal window, the transformation induced by a 3D rotation in depth may appear as a
translation.
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5.3 Supplementary Material

5.3.1 Methods: Stimuli

Faces, objects, and bodies (FOB) set : The simulation set was modified from the

FOB set used in [15] by replacing all the photographs of human faces with computer-

generated faces from FaceGen (Singular Inversions Inc.), rendered with Blender (The

Blender foundation). This ensured that the faces in the set were more similar in ap-

pearance (no hair, etc) to the faces used for training the model. The other images in

the FOB set were the same as those used in [15], except, in this case they were on a

uniform gray background.

Face views (FV) set : The simulation’s FV set consisted of 25 FaceGen faces ren-

dered at the same orientations used in [15] (0◦,−90◦,−45◦, 90◦, 45◦, 20◦-pitch,−20◦-pitch, 180◦).

The original FV set in [15] consisted of photographs.

The fine-angle sets: The images used for figures 5-3, 5-2, and ?? were a set of

FaceGen faces rendered every 5◦ (where 0◦ was a frontal face). For all simulations,

training (PCA) was done with an independent set of FaceGen faces, rendered with the

same procedure. No faces used to build the model appeared in any of the test sets.

5.3.2 Methods: The test of viewpoint-invariant generalization from

a single example view

We simulated tests of initial invariance for unfamiliar faces. The specific task we mod-

eled is a same-different task. In human behavior, it would correspond to a task where

the subject is first shown a reference image and then asked to compare it to a query

image. The query may be an image of the same face as the reference (the target), or

it may depict a distractor face. In either case, the query image may be transformed.

For example, in one trial, the task could be to recognize a specific face—oriented 0◦ in

the reference image—versus distractor images of other people’s faces. Both target and

distractor query images might be rotated away from the reference view.

This task is modeled using a nearest-neighbors classifier. The reference image’s
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signature is chosen to be the center. The classifier then ranks all the query images’

signatures by their distance from the reference. We vary the threshold for which the

classifier will respond ‘same’ to compute a bias-free measure of performance (AUC)—

analogous to d′ for the corresponding behavioral experiment [7, 58]. Figure 4 (main

text) shows the AUC computed for a range of task difficulties (the abscissa). These

figures show how discriminability declines as the range of transformations applied to

the query images is widened. A task at a larger invariance range subsumes all the

tasks at smaller invariance ranges; thus the discriminability curves can never increase

as the invariance range is widened. A flat AUC curve indicates that discriminability is

unaffected by the transformation. That is, it indicates that the model is invariant to that

transformation.

5.3.3 Some background on face patches

A high proportion of cells in the macaque face patches [14] respond selectively to faces;

viewed-as HW-modules, they may implement the computation of invariant representa-

tions for face-specific transformations. 3D rotation in depth is one example of a face-

specific transformation [11]. In line with the property that HW-modules for non-affine

transformations are only (approximately) invariant when their templates resemble (and

transform similarly to) the test images. In accord with the theory, Freiwald and Tsao’s

experiments in a subnetwork of the macaque face processing system suggest that at

least some of the face patches are organized into a feedforward hierarchy which com-

putes a representation which is invariant to 3D rotation in depth [15].

The macaque face patches differ qualitatively in how they represent identity across

head orientations [15]. Neurons in the middle lateral (ML) and middle fundus (MF)

patches are view-specific, while neurons in the most anterior ventral stream face patch,

the anterior medial patch (AM), are view-invariant. Puzzlingly, neurons in an interme-

diate area, the anterior lateral patch (AL), have mirror-symmetric orientation tuning

curves. That is, neurons in patch AL typically have bimodal (or multimodal) tuning

curves. For example, one might respond maximally, and roughly equally, to a left pro-
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file and a right profile while responding more weakly to other orientations (fig. 5-1-C).

5.3.4 The spatiotemporal aperture

Simple cells in HW-modules are defined by their tuning functions (called templates in

the text) and by their spatiotemporal aperture. We assumed throughout this chapter

that the spatiotemporal aperture is hard coded (unlike the tuning functions which are

learned according to the cortical equation), that is, a simple cell’s position and aperture

in the visual field is not acquired during development, it is a property of the cell itself.

In the simulation shown in figure 5-4, we implemented the spatiotemporal parameter

by feeding the input video (i.e. the columns of Vδ in the cortical equation) through a

Gaussian mask with equal variance in space and time. The effect of this is to dim the

intensity in the first and last few frames of the video. The role of the aperture mask is

similar in space: the images intensity is stronger in the center of the receptive field and

weaker at the edges. Both in space and time the transition from low to high intensity

due to the mask follows a Gaussian whose variance is the same in space and time.

As stated in the main text, we are only interested in transformations that occur

quickly and over small windows, or slowly and over large windows. Rapid transforma-

tions over large windows as well as slow ones over small areas of the visual field are

akin to noise for object recognition purposes. This is because a long video sequence

seen through a small aperture window is likely to contain more than one object under-

going a simple transformation. HW-modules pooling over frames from this video would

be “too invariant” i.e. not discriminative between different objects. On the other hand,

a stream of frames that only spans a few moments but is seen through a large window

likely contains only a small chuck of a transformation. HW-modules learned from such

videos would not be invariant enough. This reflects a fundamental principle, related to

the temporal adjacency assumption, and (probably) to the Markov nature of physics:

small windows of space are self-correlated over short timescales while larger windows

are self-correlated over longer timescales.
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5.3.5 Hebb/Oja plasticity

We assume that experience evokes synaptic plasticity in accord with Hebb’s princi-

ple [110]—the specific form of which we consider here is Oja’s rule [105]. Since the

naive version of Hebb’s rule is unstable, it must be replaced by a suitable alternative.

Oja’s rule fixes the Hebb rule’s instability by assuming a quadratic leakage term. Alter-

natively, Oja’s rule can be motivated by noting that normalization mechanisms which

could prevent instability of Hebbian plasticity are widespread in cortex [111], and Oja’s

rule can be derived as the first order expansion of the normalized Hebb rule.

Oja’s rule updates a synaptic weight vector w (with convergence rate η) by

∆w = η(xy − y2w) = η(xxᵀw − (wᵀxxᵀw)w). (5.4)

where x is the input vector, in our case the set of all transformations of an image. The

original paper of Oja showed that the weights of a neuron updated according to this

rule will converge to a principal component of the neuron’s past inputs, equivalently:

an eigenvector of the input’s covariance. Informally, this can be seen by averaging

the right side of (5.4), i.e. replacing xxᵀ with its covariance C, and setting ∆w = 0.

Notice that the quadratic factor wCw is a scalar. Thus, after renaming the scalars, the

synaptic weights at convergence are seen to be solutions to the eigenvector-eigenvalue

equation Cw = λw. Oja additionally showed that the basic version of his rule only gives

the eigenvector corresponding to the top eigenvalue. However, it was later shown that

1. various plausible modifications of the rule can give other eigenvectors [112, 113],

and 2. the basic Oja rule gives other eigenvectors beyond the first as long as the

eigenvalues are relatively close to one another and there is noise [36].

5.3.6 Properties of the spectrum of the covariance of templates

and their reflections

For an image I ∈ Rd2
, we use I to indicate its representation as a matrix, i.e., I ∈ Rd × d.

Any image matrix can be written as I = [A,B] where the submatrices A and B are the
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left and right sides of the image respectively.

Let R : Rd2 → Rd2
denote the reflection operator. It permutes the elements of an

image such that if I = [A,B], then the matrix representation of RI is [RB, RA]. R is an

involution, i.e., R2I = I ∀I.

For simplicity, we consider a cell that has been exposed to just one template τ and

its reflection Rτ . Consider the matrix representation of the (two-frame) video V =

(τ, Rτ)ᵀ. We are interested in the eigenvectors of the covariance matrix V
ᵀ
V . We

show that V
ᵀ
V commutes with the reflection R. Then, applying the fact that whenever

two matrices commute they must have the same eigenvectors, we show that V
ᵀ
V ’s

eigenvectors must be symmetric or antisymmetric

First, we note that the eigenvectors of R, regarded as image matrices, are symmet-

ric or antisymmetric about the vertical midline. That is, all the solutions of Rv± = ±v±
are either of the form v+ = [A, RA] or v− = [A,−RA].

Next, we want to show that RV
ᵀ
V = V

ᵀ
V R.

Notice that we can write the covariance matrix as the sum of the outer products of

V ’s columns:

V
ᵀ
V = ττ ᵀ + (Rτ)(Rτ)ᵀ. Thus:

RV
ᵀ
V = Rττ ᵀ +RRτ(Rτ)ᵀ

= Rττ ᵀ + ττ ᵀR

and

V
ᵀ
V R = ττ ᵀR +Rτ(Rτ)ᵀR

= ττ ᵀR +Rττ ᵀ

Therefore the covariance matrix commutes with the reflection; RV
ᵀ
V = V

ᵀ
V R.

Thus they must have the same eigenvectors. Since the eigenvectors of R are symmet-

ric and antisymmetric, the same must be true of the eigenvectors of V
ᵀ
V .
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5.3.7 Properties of learned S-units as a function of their eigen-

value

Figure 5-5: :Left: Face-selectivity index as a function of eigenvalue rank. Right:Eigenvalue

distribution.

Only the first few eigenvectors give model units that are face-selective.

5.3.8 Yaw, pitch and roll rotations

A critical prediction of the theory is that AL cells should have equal responses to faces

and their reflection over the vertical midline. The available data from [15] (figure 3,

reprinted here) is in accord with this. However, a quirk of the way the data is presented

in that paper obscures this fact somewhat. Example cell 4 appears to exhibit bimodal

tuning curves for other rotations in addition to left-right angle rotation (yaw). Notice

however, that the images for which this cell responds maximally are still reflections

over the vertical midline of one another. Since a cell tuned to a symmetric template will

always have a symmetric tuning curve [114], the response of this cell is in accord with

the theory. Cell 1 appears to have a bimodal tuning curve over in-plane rotation, a result
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which, if true, would go against the theory. However, a closer inspection of the data

shows that this cell isn’t really bimodal over in-plane rotation. Even in [15]-figure 3, you

can see from the marginal tuning curve for “picture-plane angle” that this cell is barely

modulated by in-plane rotation. To further confirm that this type of bimodal tuning curve

does not appear in the available data, we manually inspected the analogous figure for

all 57 cells recorded in the original study and did not find any with responses that were

not in accord with the theory.

Figure 5-6: From [15].



Chapter 6

Discussion

6.1 Concerning modularity

6.1.1 Why should HW-modules for objects that transform similarly

by arranged near one another on cortex?

The bulk of our argument has been concerned with why a recognition system ought

to have dedicated circuitry to implement subordinate-level recognition for each object

class. On its own, this does not say anything about the arrangement on cortex of the

domain-specific circuitry. In principle, any HW-module could be anywhere, as long as

the wiring all went to the right place. From this “only the synapses matter” perspec-

tive, there could be many, completely equivalent ventral streams with radically different

spatial layouts. However, there are several reasons to think that the actual constraints

under which the brain operates and its available information processing mechanisms

favor a situation in which, at each level of the hierarchy, all the specialized circuitry

for one domain is in a localized region of cortex, separate from the circuitry for other

domains.

1. The wiring economy principle [115–118]

(a) Intra-layer wiring economy — We argue by counterexample. Suppose the

cells comprising HW-modules for two objects A and B are intermixed in one
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cortical region. The only intra-area connections are from A-cells to A-cells or

from B-cells to B-cells. In particular, they are from A’s S-units to A’s C-units,

or from B’s S-units to B’s C-units. We assume—only in this section—that

there is more than one C-unit for a given HW-module. Saying that A and B

cells are intermixed implies that in between any two to-be-connected A-cells

there might be a B-cell getting in the way. Inserting B-cells in between to-

be-connected A-cells increases the length of wiring needed for the system

to function. Thus, the wiring economy principle implies the regional segre-

gation of different HW-modules. This is essentially the same argument used

by Mitchison to explain the existence of multiple visual areas [117].

(b) Inter-layer wiring economy — If many cells all need to project to the same

far-away place, then the length of wire required is smallest if both the presy-

naptic and postsynaptic cells are clustered.

2. Modulation / attention — There is substantial evidence that some forms of neu-

romodulation operate on local neighborhoods of cortex [119]. For example, neu-

romodulatory substances could diffuse beyond specific synapses and affect en-

tire neighborhoods. Attention may operate through mechanisms of this sort—

possibly involving acetylcholine or norepinephrine [120]. Given that the brain em-

ploys neuromodulatory mechanisms operating on local cortical neighborhoods,

it makes sense that cells with similar functions would be grouped nearby one

another. If it were not so, then such mechanisms could not be used effectively.

6.1.2 Other domain-specific regions besides faces and bodies

There are a few other domain-specific regions in the ventral stream besides faces and

bodies; we consider several of them in light of our results here. It is possible that

even more regions for less-common (or less transformation-compatible) object classes

would appear with higher resolution scans. One example is the macaque fruit area,

recently discovered with high-field fMRI [80].

Lateral Occipital Complex (LOC) [101]
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The present work implies that LOC is not really a dedicated region for general ob-

ject processing, rather, it is a heterogeneous area of cortex containing many domain-

specific too small to be detected with the resolution of fMRI. It may also include clusters

that are not dominated by one object category as we sometimes observed appearing

in simulations.

Parahippocampal Place Area (PPA) [81]

A ventral stream region that appears to be specialized for scene processing seems, at

first, to be problematic for our hypothesis. It is unclear whether or not there are any

transformations with respect to which the category of “scene” would be nice, but would

not also apply to other objects. One possibility, which we considered in preliminary

work, is the hypothesis that “perspective”, i.e., depth-cues from 2D images could be a

transformation with this property [121]. Another possibility could be that the PPA is not

really a ventral stream domain-specific region in the same sense as the Fusiform Face

Area (FFA) or the Extrastriate Body Area (EBA). Afterall, it is arguable that it is not really

properly considered part of the ventral stream. In particular, Schacter, Bar, and others

in the medial temporal lobe (memory) literature, have emphasized parahippocampal

cortex’s role in contextual associations and constructive simulation of future events

over place/scene processing [122, 123].

The Visual Word Form Area (VWFA) [82]

In addition to the generic transformations that apply to all objects, printed words un-

dergo several non-generic transformations that never occur with other objects. We can

read despite the large changes in the images received by our retina when a page is

viewed with even a slightly different orientation. Even more severe, we are not con-

fused by changing typefaces (font, weight, italics, etc). Many properties of printed

letters change with typeface, but our ability to read—even in novel fonts—is preserved.

Reading hand-written text poses an even more severe version of the same computa-

tional problem. Every writer draws their letters slightly differently, yet typical readers are

invariant to all of this. Thus, VWFA is well-accounted for by the invariance hypothesis.

Words are frequently-viewed stimuli which undergo class-specific transformations.

We note, however, that VWFA has some interesting other properties with respect to
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our hypothesis. In particular, VWFA could not have evolved in the short (evolutionary)

time since humans have been reading. Since we have not discussed how HW-modules

could be learned here, this discussion is beyond the scope of the present paper (but

see this technical report [36] for additional discussion).

6.1.3 Psychophysics of viewpoint-tolerance

There is a large literature emphasizing the view-dependence of human vision when

tested on subordinate level tasks with unfamiliar examples—e.g. [41, 66, 89]. Our

proposal is consistent with most of this literature. We merely emphasize the substan-

tial view-tolerance achieved for certain object classes, while they emphasize the lack

of complete invariance. Their emphasis was appropriate in the context of earlier de-

bates about view-invariance [93, 124–126], and before differences between the view-

tolerance achieved on basic-level and subordinate-level tasks were fully appreciated

[42, 127, 128].

The view-dependence observed in experiments with novel faces [66, 129] is fully

consistent with the predictions of our theory. The 3D structure of faces does not vary

wildly within the class, but there is certainly still some significant variation. It is this vari-

ability in 3D structure within the class that is the source of the imperfect performance.

Many psychophysical experiments on viewpoint invariance were performed with syn-

thetic “wire” objects defined entirely by their 3D structure. We found that they were

by far, the least nice (lowest ψ) objects we tested (see supplementary table 1 above).

Thus our theory predicts particularly weak performance on viewpoint-tolerance tasks

with (novel examples of) these stimuli and that is precisely what is observed [88].

An interesting experiment by Tarr and Gauthier is relevant here [42]. They found that

learned viewpoint-dependent mechanisms could generalize across members of a ho-

mogenous object class. They tested both homogenous block-like objects, and another

class of more complex novel shapes. They concluded that this kind of generalization

was restricted to visually similar objects. These results seem to be consistent with our

theory. Interestingly, in light of our results here, it would be natural to predict better
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within-class generalization of learned “view-dependent mechanisms” (to use Tarr and

Gauthier’s vocabulary) for object classes with higher niceness. That is, transformation

compatibility, not visual similarity per se, may be the factor influencing the extent of

within-class generalization of learned view-tolerance.

6.2 Concerning learning, plasticity, and mirror-symmetric

tuning

We showed in chapter 5 that a biologically-plausible learning rule—related to Oja’s and

Foldiak’s rules—can be used to learn HW-modules from video. The HW-modules so-

learned have a few different properties than the standard view-based/memory-based

modules. In particular, they can be seen as compressed memory-based models;

their templates are given by solutions to an eigenvector equation we called the cor-

tical equation. We studied the results of applying this rule in simplified settings with

videos that depict only a single object undergoing a single transformation (chapters

3 and 5). In those cases, we showed that the compressed modules have properties

resembling ventral stream neurons. When we solved the cortical equation with param-

eters modeling early visual areas (small/short spatiotemporal timescale) we obtained

Gabor-like tuning. Solving the cortical equation with parameters modeling a high-level

face/depth-rotation specific area (large/long spatiotemporal timescale) produces model

units with mirror-symmetric face orientation tuning curves similar to those observed in

the macaque face patch AL.
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In my opinion, the most interesting aspect of the work on learning HW-modules is

the future research directions it opens up. Despite the hype about “big data”, the next

fundamental challenge for machine learning and artificial intelligence is understanding

how humans learn from very small numbers of examples, and replicating that behavior

in a machine. The learning mechanism proposed here is a form of representation learn-

ing. It is a way of learning to compute representations for new data that are invariant

to the transformations undergone by the old data (in the case of group transformations,

these are exactly the same). In object recognition the natural use for HW-modules

is invariance to identity-preserving image transformations. However, that is not the

only setting where HW-modules, and the proposed learning rule, can be applied. In

the standard machine learning supervised categorization setting, HW-modules with S-

units tuned to examples from one class can be used to classify new inputs. In that case,

building an HW-module can be seen as a particular method of training a classifier—a

highly efficient method at that. Learning a compressed HW-module would be training

another classifier, possibly related to spectral regularization methods [130]. The lat-

ter method has a convenient interpretation as an incremental (online as opposed to

batch) algorithm via Oja’s rule, or one of its variants. We have already applied some

of these “supervised” HW-modules and obtained good results on unconstrained face

recognition benchmarks [56]. Notice that I’m putting the scare-quotes around the word

“supervised” for a specific reason. I don’t actually think that the brain needs supervi-

sion to learn how to recognize faces. Rather, exposure to faces, and the operation of

the right unsupervised rule leads to the emergence of representations that are invari-

ant to face-specific transformations. One possible way to study this further could be

to move away from the simplified settings we have so far considered and apply these

learning rules to natural (or semi-natural computer-generated) video. Many new ques-

tions arise in that setting: e.g., how do you prevent all the HW-modules from learning

the same thing as one another? How should the spatiotemporal apertures and layers

be arranged? What about gating—and splitting off during learning—of class-specific

hierarchies? This research direction is really wide open at present—the limits of what

hierarchies of HW-modules can learn to compute is still far from clear. There is much
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more work to be done!

I conclude with a conjecture. Extensions of the general theory of invariance beyond

vision, and beyond the ventral stream, are possible. Since domain-specific regions for

abstract concepts like “number” and various aspects of language apparently exist in

other brain areas [131], it is interesting to consider the hypothesis that these too may

be explainable in this framework. One possible connection could be through Tarski’s

characterization of logical objects by their invariance under arbitrary transformations

[132].



Appendix A

Subtasks of Unconstrained Face

Recognition

Unconstrained face recognition remains a challenging computer vision problem

despite recent exceptionally high results (∼ 95% accuracy) on the current gold

standard evaluation dataset: Labeled Faces in the Wild (LFW) [64, 133]. We offer

a decomposition of the unconstrained problem into subtasks based on the idea

that invariance to identity-preserving transformations is the crux of recognition.

Each of the subtasks in the Subtasks of Unconstrained Face Recognition (SUFR)

challenge consists of a same-different face-matching problem on a set of 400 in-

dividual synthetic faces rendered so as to isolate a specific transformation or

set of transformations. We characterized the performance of 9 different models

(8 previously published) on each of the subtasks. One notable finding was that

the HMAX-C2 feature was not nearly as clutter-resistant as had been suggested

by previous publications [7, 134]. Next we considered LFW and argued that it is

too easy of a task to continue to be regarded as a measure of progress on un-

constrained face recognition. In particular, strong performance on LFW requires

almost no invariance, yet it cannot be considered a fair approximation of the out-

come of a detection→alignment pipeline since it does not contain the kinds of

variability that realistic alignment systems produce when working on non-frontal

faces. We offer a new, more difficult, natural image dataset: SUFR-in-the-Wild
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(SUFR-W), which we created using a protocol that was similar to LFW, but with

a few differences designed to produce more need for transformation invariance.

We present baseline results for eight different face recognition systems on the

new dataset and argue that it is time to retire LFW and move on to more difficult

evaluations for unconstrained face recognition.

A.1 Introduction
Current approaches to face recognition perform best on well-posed photographs taken

for identification purposes, e.g., passport photos. However, in the real world, images of

faces undergo many transformations—including aging, pose, illumination, expression,

and many more. Not only do transformations degrade the performance of current algo-

rithms, but in many cases they are known to lead to their catastrophic failure [135, 136].

The computer vision and biometrics communities have responded to this challenge

by shifting their focus to unconstrained benchmark datasets, of which Labeled Faces in

the Wild (LFW) is generally considered to be the gold standard [64]. LFW and similar

datasets (e.g., PubFig83) consist of publicly available images of celebrities gathered

from the internet and thus contain considerable variability.

The state-of-the-art on LFW has steadily improved in recent years to the point that

it now arguably rivals human performance (on same-different matching of unfamiliar

faces). At the time of writing, the best LFW performance is above 95% [133]. However,

we argue in this paper, there are several reasons that a declaration of victory over

unconstrained face recognition remains premature.

1. The strong performance achieved on Labeled Faces in the Wild does not transfer

to another, ostensibly quite similar, dataset we gathered.

2. The failure modes of state-of-the-art algorithms remain unclear. Moreover, when

an algorithm does not perform well on an unconstrained test like LFW, it is not

clear what aspect of the task is responsible.

3. Another goal is to understand the brain’s solution to the unconstrained face recog-

nition problem. In the Visual Psychophysics and Cognitive Neuroscience litera-
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ture there is a wealth of available information concerning the robustness of human

vision with respect to specific transformations, e.g, [66, 137]. This data is typically

gathered in highly controlled laboratory settings with one transformation varied at

a time. Unless artificial systems are tested in comparable settings then there is

no way to connect to this large body of previous work.

In this paper, we argue that in order to make further progress, it is necessary to

simultaneously consider unconstrained face recognition along with its component sub-

tasks. To that end, we contribute a collection of synthetic datasets (produced using 3D

graphics) which, taken together, constitute a (partial) decomposition of unconstrained

face recognition into its component subtasks. Our parsing of the full problem into sub-

tasks is based on the premise that transformation invariance is the crux of recognition

[36, 87]. We also gathered a new unconstrained dataset, similar to LFW (publicly avail-

able images on the Internet), but apparently more difficult. The entire collection of new

datasets is available to researchers1.

A.2 Subtasks

Our decomposition of unconstrained face recognition into subtasks is based on the idea

that invariance to transformations is the main computational problem of recognition.

The subtasks can be used to test face recognition systems. Unlike LFW, and similar

datasets for which only a single accuracy score is measured, testing on all the subtasks

gives a detailed analysis in terms of which transformations a system handles well and

which cause it to fail.

The Subtasks of Unconstrained Face Recognition (SUFR) challenge is a collec-

tion of datasets which we call subtasks. Each subtask was designed to test specific

aspects of the unconstrained face pair-matching (same-different) task. There are 400

individuals in each subtask. The total numbers of images range from 2, 000 for some of

the smaller subtasks, to 10, 000 for some of the larger interaction tasks (tests with two

transformations applied simultaneously). Each image is 512 × 512 pixels and in color.
1It can be downloaded from cbcl.mit.edu.
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Since our goal in creating these datasets was precise control of transformation param-

eters, we employed 3D graphics software to synthesize the images. In section A.3.1

we also describe a separate component of the challenge which uses natural images:

SUFR-W.

The 400 textured head models were randomly generated using FaceGen [103] and

rendered onto a transparent background with Blender [102] using the CYCLES ray

tracing engine. Most of the transformations required 3D information, e.g., rotation in

depth and simulated movement of the illumination source. These transformations were

applied with Blender. In other cases, images were transformed by explicitly specifying

an affine matrix and using Matlab’s image processing toolbox.

The SUFR challenge can be divided up in different ways. The “core” of the chal-

lenge is a set of six datasets which test transformation invariance directly. They consist

of images of faces on a uniform black background. Another set of subtasks are con-

cerned with transformation invariance in the presence of background clutter. Each

image has a different randomly chosen natural scene or semi-structured random noise

image in the background. Several subtasks are suitable for studying robustness to oc-

clusion. Strong performance on these tasks requires invariance to whether or not a

face is wearing sunglasses. Finally, there are also interaction tests. It is possible for

a face recognition system to employ methods that successfully ensure invariance to

any single transformation, but fail in combination. The interaction tests could quickly

diagnose such issues. The full list of subtask datasets and benchmark results (without

the random noise background sets for space reasons) is in table A.1.

Testing face recognition algorithms on all the SUFR datasets yields a lot of informa-

tion. However, it should be noted that SUFR is still only a partial decomposition of the

unconstrained face recognition problem. In general, it would have to include transfor-

mations that are quite difficult to parametrize, e.g., facial expressions and aging. Thus

our parsing of the full task remains somewhat incomplete since it only contains the

transformations which we were able to simulate using 3D graphics software. Neverthe-

less, the SUFR benchmark contains many tests which are quite difficult for recent face

recognition systems.
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Figure A-1: Example images.

A.2.1 Performance of benchmark face recognition models

The intended use of the SUFR datasets is same-different matching of unfamiliar indi-

viduals (never seen during the training phase). This problem is sometimes called face-

verification. It is identical to the standard procedure used with LFW. Unless mentioned

otherwise, each test was performed by training a Support Vector Machine (SVM) using

the difference between the feature representations of the two images to be compared.

4000 image pairs were used for training and 4000 independent pairs for testing.

The SUFR benchmark results in table A.1 include all nine models we tested. How-

ever, some care in interpretation is needed since they are not all directly comparable

with one another. For example, some entries in table A.1 correspond to testing con-

catenated vectors of local descriptors for their translation invariance. Obviously, they

are not translation invariant—they were never intended to be.
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Local descriptors
Many computer vision features (e.g. Histograms of Oriented Gradients (HOG) and Lo-

cal Binary Patterns (LBP)) are extracted independently on a block-by-block basis. That

is, first each image is subdivided into many relatively small blocks, then each is fed into

a “feature extraction blackbox” which returns a vector of feature values. Vectors from

all the blocks are concatenated to represent the entire image. Within this category,

we tested Histograms of Oriented Gradients (HOG), Local Binary Patterns (LBP), and

Local Phase Quantization (LPQ). Note: Many of these features could be used as com-

ponents of Global methods using bag of words or spatial pyramid approaches. We list

them as “local” since their particular variant tested here was local.

Histograms of Oriented Gradients (HOG)

Originally proposed by (author?) [138], our experiments are based on the variant

proposed by (author?) [139]. The image was divided into blocks. For each one, a his-

togram of gradient orientations for each pixel is accumulated. The histogram of each

block is then normalized with respect to neighboring blocks. We used an open source

implementation from the VLFeat library [140].

Local Binary Patterns (LBP)

LBP [141] and its generalizations to three-patch-LBP, four-patch-LBP and Local

Quantized Patterns have been shown to be powerful representations for face recog-

nition with LFW [142–144]. These methods work by thresholding the pixel intensities

in a small region surrounding a central pixel and treating the resulting pattern as a

binary number. As in HOG, histograms of local descriptors are accumulated in non-

overlapping blocks. We used the implementation from VLFeat [140].

Local Phase Quantization (LPQ)

LPQ [145] is a blur-insensitive feature computed by quantizing the Fourier transform

phase in local neighborhoods. Variants of LPQ were previously shown to outperform

LBP on several datasets including LFW [146]. We used an implementation provided by
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the author.

Features inspired by primary visual cortex
Hierarchical Model and X — C1 (HMAX-C1)

HMAX is a (partial) model of the primate ventral stream [3], the part of cortex that

is believed to be involved in object recognition. The elements of its C1 layer model

complex cells in primary visual cortex (V1). We used the open source “CVPR06” im-

plementation of HMAX which is distributed with the CNS simulation system [147].

V1-like model (V1-like)

V1-like features are another family of low-level features intended to model the output

of primary visual cortex [135]. Variants of V1-like features were shown to be effective in

various object and face recognition tasks [96, 135]. In all of our experiments, we used

V1-like(A)—the best performing variant according to [96]. We used an implementation

provided by the author. Following their testing procedure, we reduced the dimensional-

ity of the V1-like features by PCA2 [148].

Global features
Hierarchical Model and X — C2 (HMAX-C2)

Another layer of HMAX. It was developed as a model for regions involved in later

stages of ventral stream visual processing beyond primary visual cortex. We used the

open source “PNAS” implementation of HMAX from CNS [147]. This version corre-

sponds to the “C2b” layer of [52].

Scale-Invariant Feature Transform + Bag of Words or Spatial Pyramid (SIFT-BoW and

SIFT-Pyr)

The Scale-invariant feature transform (or SIFT) [149] is performed on a point-by-

point basis. Canonically, 128 dimensional features can be extracted from a keypoint,

but one cannot directly use it for classification. A common practice is to use a Bag-

2Due to the large size of the features (86,400 per image) we only used 1,000 random training samples
(out of 4,000) to compute principal components.
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of-words (BoW) or spatial pyramid representation (Pyr), which treats each keypoint as

a visual word and ignore its spacial location in the whole image (BoW) or each block

(Pyr). A histogram of all visual words is computed as the final features. We used k-

means clustering to quantize these visual words into 1024 clusters producing a final

feature size of 1024 (BoW) or N*1024 (Pyr), where N is the number of blocks in the

spatial pyramid. The open source implementation is provided by [150].

An alignment-based system
SIFT-RANSAC→Warping→HOG features

We developed and tested the following pipeline—SIFT-RANSAC→Warping→HOG

features. The idea is: given a pair of test images, warp the first image, A, to match

the other image, B. If the warping is successful then A could be aligned with B and

substantial affine transformations discounted. Since many other transformations are

approximately affine (e.g. small yaw rotations) it is possible that this approach may also

be successful in those cases. We implemented the common SIFT-RANSAC algorithm

that is usually used for panoramic photo stitching. Then we extracted HOG features

from image B and the warped image A. After that, we followed the same testing process

as with the HOG features.

The SUFR benchmark clusters models by type
We used multidimensional scaling (MDS) to visualize the similarities between the pat-

tern of results obtained with each feature set (fig. A-2). Distance between points in

the scatter plot corresponds to the Euclidean distance between each model’s vector of

accuracy values on the “core SUFR” subset: all single transformation subtasks with a

uniform background. It shows that the feature types can be distinguished from one an-

other by their pattern of SUFR results. Unsurprisingly, one MDS dimension appears to

represent “globalness”, HMAX-C2, the two SIFT-based models, and the RANSAC-HOG

system are located at its extremes. The more local models inspired by primary visual

cortex: HMAX-C1 and Pinto’s V1-like model also cluster closer to one another than to

other models, though interestingly, they are farther apart than we expected. A more sur-

prising finding was that HOG, LPQ, and LBP all had quite similar patterns of results on
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Figure A-2: Multidimensional scaling based on the vector of performances on cure
SUFR. Distance in the scatter point corresponds to the Euclidean distance between
each model’s vector of accuracies on the core SUFR tests.

the SUFR benchmark and all were relatively different from the local biologically-inspired

features. As expected, the RANSAC-HOG system is isolated and far from other fea-

tures. It works very well for all the affine transformations (even with background). But

for non-affine transformations, it is fairly unstable and largely compromised, the same

reason it is not applicable to real-world data.

Disrupting translation invariance with cluttered backgrounds
HMAX-C2 and SIFT-Bag-of-Words performed nearly perfectly on the tests of transla-

tion invariance without background clutter. However, both failed the same test in the

presence of natural image clutter. This result was surprising since there are at least

two previous reports in the literature that HMAX-C2 was translation-invariant on tasks

with cluttered backgrounds [7, 134].

(author?) [7] tested translation-invariant face pair-matching with and without back-

ground clutter. They reported that there was very little loss of accuracy due to clutter.

However, it is likely that the clutter they used was too noise-like and not similar enough

to the target class (natural faces). We observed that random semi-structured noise
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Figure A-3: Top diagrams: Accuracy curves of C2 and SIFT-BoW over different trans-
formations and background types (Blue: translation, Green: translation + scaling,
Red:translation + yaw rotation). Y axis is verification accuracy in percentage. X axis
is background type. 1 = no background. 2 = noise. 3 = natural images. Bottom row
shows the example images used for the three curves, respectively.

backgrounds do not have much effect on translation invariance for either HMAX-C2 or

SIFT-BoW (fig. A-3).

(author?) [134] followed a similar approach to ours. They also generated datasets

of transforming objects using 3D graphics. However, they studied a basic level cat-

egorization task: cars vs. airplanes. They found that HMAX C2’s performance was

unaffected by translation over natural clutter. It is possible that this result was due to

a difference between subordinate level face matching and their basic level task. But

there were many other differences between the two studies that may also have been

responsible. We also investigated a pure background-invariance task which was triv-

ially easy for the local features and found that C2 and the SIFT-BoW method were

quite disrupted by very small amounts of clutter—even when no translation invariance

is necessary (fig. A-4).



A.3. FACE RECOGNITION IN THE WILD 115

−40 −20 0 20 40 60 80 100 120
55

60

65

70

75

80

85

90

95

100

Background Size

V
e

ri
fi
c
a
ti
o

n
 A

c
c
u

ra
c
y
 (

b
y
 S

V
M

)

 

 

lbp

lpq

hog

C1

sift

C2

Figure A-4: Performances of different models over different background sizes. It shows

that global features (e.g., C2, SIFT) are much less tolerant of clutters, adding even a

small amount of background lower their performances significantly.

A.3 Face recognition in the wild
If you accept the premise that transformation invariance is the crux of visual recognition

then performance on the subtasks ought to be a good predictor of performance on the

unconstrained task. However, if the meaning of “the unconstrained task” is “Labeled

Faces in the Wild”, this turns out not to be true. Figure A-6 shows that many of the

models we tested actually perform better on LFW than they do on most of the subtasks.

How can this be?

It turns out that LFW doesn’t really require substantial invariance to many of the

transformations that the SUFR datasets were designed to test. The creators of LFW

filtered its set of candidate images by the Viola-Jones face detector [151] which, for the

most part, only detects nearly frontal faces. Thus LFW contains hardly any rotation in

depth. Also, the faces are all centered and roughly the same size so translation and

scale invariance are also unnecessary.
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Table A.1: Subtasks of Unconstrained Face Recognition benchmark results
(% correct).

Core C1 C2 HOG LBP LPQ SIFT-BoW SIFT-Pyr V1-like RANSAC+HOG

translation 52.8 99.6 53.0 55.0 55.9 98.0 89.6 69.6 93.7

scaling 61.7 87.5 61.7 61.0 62.7 64.7 63.7 55.3 80.5

in-plane rotation 61.4 85.9 71.3 79.3 71.2 77.9 71.5 63.1 99.4

pitch rotation 79.5 90.0 79.8 84.1 76.5 79.7 75.9 70.5 76.2

yaw rotation 57.1 70.8 58.6 64.8 60.3 67.1 63.1 59.8 55.1

illumination 96.0 94.6 93.2 92.5 87.2 93.1 95.5 96.3 71.7

Core + clutter C1 C2 HOG LBP LPQ SIFT-BoW SIFT-Pyr V1-like RANSAC+HOG

translation 55.5 57.7 57.1 57.6 57.3 61.6 55.5 49.6 97.1

scaling 49.6 48.4 53.3 53.5 52.6 51.0 52.2 49.4 89.5

in-plane rotation 54.6 50.7 54.5 60.2 55.7 51.3 51.0 53.2 96.6

pitch rotation 54.1 52.5 54.5 60.1 55.9 51.0 52.7 55.4 68.2

yaw rotation 49.6 48.5 50.7 52.2 51.4 49.7 49.8 50.5 52.7

illumination 56.0 49.6 67.0 62.9 60.6 50.1 50.6 58.2 54.7

Interactions C1 C2 HOG LBP LPQ SIFT-BoW SIFT-Pyr V1-like RANSAC+HOG

translation + scaling 53.5 96.5 53.0 53.2 53.3 77.7 67.6 51.5 84.5

translation + in-plane rotation 53.4 87.1 53.3 53.3 52.5 79.2 57.6 51.5 91.8

translation + yaw rotation 50.5 62.7 51.3 51.2 51.3 62.0 52.1 51.3 51.7

yaw rotation + illumination 56.5 58.5 52.6 54.2 54.9 59.3 57.1 57.4 52.7

Occlusion C1 C2 HOG LBP LPQ SIFT-BoW SIFT-Pyr V1-like RANSAC+HOG

sunglasses + pitch rotation 76.6 69.5 79.7 84.5 77.6 75.8 73.5 64.2 63.6

sunglasses + yaw rotation 57.0 50.0 59.8 69.3 61.3 67.9 63.6 59.5 54.8

A.3.1 SUFR in the Wild (SUFR-W)

In order to address these shortcomings of LFW, we created a new “unconstrained”

natural image dataset using a very similar protocol to the one used by the creators of

LFW. The new dataset, which we call SUFR-in-the-Wild (SUFR-W), is similar in size to

LFW. It contains 13,661 images, slightly more than LFW’s 13,233. While LFW contains

a small number of images per person and a large number of people (5749 individuals),

SUFR-W contains a much larger number of images of exactly 400 people (picked for

uniformity with the synthetic SUFR datasets). See figure A-5 for example SUFR-W

images.

We gathered the images for SUFR-W using Google images. In order to avoid the
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Figure A-5: Example images in the SUFR-in-the-Wild dataset (SUFR-W). Top row:
Bette Davis. Middle row: Burt Reynolds. Bottom row: Christopher Lloyd. The degree
of alignment shown here is typical for the dataset. Profile faces as in the top row are
rare.

same Viola-Jones filtering issue that prevented LFW from containing non-frontal faces,

we did the following: First we manually eliminated all the images for each name that did

not have a single isolated face, were not the correct person, or were too low resolution.

Next, to prevent the dataset from being too difficult, we ran the (author?) [152] face

detection and landmark localization method. This method works particularly well with

rotations in depth. It managed to detect all but ∼ 30 of the candidate faces (which we

then removed). To introduce some additional difficulty, but not too much, we allowed

the (author?) [152] system to attempt to align the images based on the landmarks it

localized. However, it frequently failed to achieve a good alignment. Many of the faces

(but not too many) remain clearly misaligned. Since we performed no further alignment,

all these images are still misaligned in the final dataset.

SUFR-W contains none of the same individuals as LFW so it is straightforward to
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Figure A-6: Results on natural image tasks (LFW-a closely cropped, LFW original
and SUFR-W). The x axis is type of features. All the results are from our experiments,
except that the LFW V1like is from [148] and LFW-a close crop V1like is reported in [96].
Our attempts to replicate these were stymied by a lack of computational resources

conduct experiments that train on one dataset and test on the other. As an unintended

consequence of this, since so many celebrities are already in LFW, we had to look

farther afield to find the individuals for SUFR-W. Many of them are actors and politicians

who were active in the first half of the 20th century. Since these individuals are older

today, we found that SUFR-W has considerably more variation in age than LFW. Of

course, one unfortunate bias is that age is very clearly correlated with photography

style (e.g. ‘younger’ implies ‘probably black and white’). This is not a problem for the

same-different matching task; though it does mean that successful algorithms will need

to be reasonably tolerant of “the aging transformation”.

While the systems we tested are not quite at the state-of-the-art, it is clear from the

difference in performance between LFW and SUFR-W that the latter is a considerably

more difficult dataset (fig. A-6). At the same time, it is also clear that it is not so difficult

that it cannot be used productively to guide future research.
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Figure A-7: Top: Three typical images from LFW. Bottom: The same three images in
LFW-a.

Upon seeing figure A-7, a colleague of ours remarked that the images in the bottom row

are the ones for the task of face recognition. Depending on what part of the community

you come from, that statement will either be obviously true or completely absurd.

Of the 123 papers indexed by Google Scholar that report results on LFW, at least

95 of them actually used a different, even more tightly aligned version3. Most of these

paper (at least 58 of them) used LFW-a, a version of LFW which was very finely aligned

with a commercial software package [143]. The vast majority of papers using LFW-a

crop all the images to an extremely tight, fixed, bounding box like the one shown in A-7.

Even the relatively simple features we tested here are improved by up to 10% by

using (cropped) LFW-a (fig. A-6). Similar results have been reported before (e.g.

(author?) [143]).

The argument in favor of taking results on the tightly cropped LFW-a test as a proxy

for performance on unconstrained face recognition appeals to the detection → align-

ment→ recognition (DAR) pipeline. In that framework, recognition is only the last step

in a process through which transformations have already been discounted. It is ac-

3There were 9 papers that reported results on both and 23 papers for which we were unable to
determine which dataset was used.
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ceptable to focus on a dataset containing hardly any transformations since normalizing

those was already supposed to have been accomplished at earlier stages. However,

there are several reasons not to take this argument at face value.

1. At best, the DAR framework guarantees that recognition systems will receive

data that is as well-normalized as detection and alignment systems can deliver within

application demands (e.g. processing time or cost). The creators of LFW referred to

this issue when they wrote

“every face image in our database is the output of the Viola-Jones face detection

algorithm. The motivation for this is as follows. If one can develop a face alignment

algorithm (and subsequent recognition algorithm) that works directly on LFW, then it is

likely to also work well in an end-to-end system that uses the Viola-Jones detector as

a first step.” [64].

This view of LFW is very conservative with respect to its implications for the full

unconstrained face recognition problem. In this vein, the honest interpretation of the

fact that the state-of-the-art on LFW-a is now 95% is: Consider the algorithm that first

runs Viola-Jones (missing all the non-frontal faces), then has humans manually remove

false positives, then passes the remaining images to the commercial system used to

create LFW-a, and finally, then runs the best performing system on LFW-a. 5% of this

algorithm’s error rate would be attributed to the last step.

2. Within the DAR framework, a more fair natural image recognition test along

the lines of LFW would, at least, have to include the kinds of images obtained by the

errors of the previous stages. At least, these images should be included if the results

are to be understood as measuring progress on unconstrained face recognition. Even

if one expects to have relatively strong detection and alignment in the pipeline, it is

still desirable for the last step to tolerate transformations. This allows the recognition

system to “rescue” some alignment errors. It introduces redundancy into the system

and prevents alignment from being a single point of failure.

3. It is interesting to consider to what extent, if any, the DAR framework is applicable

to the brain’s method of recognizing faces. Eye movements serve to approximately

align images across time. However, numerous studies have shown that the brain’s
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visual system is surprisingly tolerant of transformations, even when the images are

flashed more quickly than the eyes can move [18]. One interpretation is that the brain’s

visual system has two operating modes. One mode is faster and more automatic; it

does not involve eye movements. The other mode operates more slowly, engages

specific task-related information, and employs eye movements for alignment.

A.4 Conclusion
It has long been appreciated that the development of appropriate recognition tests to

isolate subproblems is essential to advancing computer vision. Notable datasets in

this tradition include the Face Recognition Grand Challenge (FRGC) [153] and Multi-

PIE datasets [154]. Approaches based on synthetic data have fallen out of favor in

recent years. While synthetic tests clearly have limitations: the variability within the

class of synthetic faces does not approach that of natural faces. Tests with synthetic

data also have numerous advantages. In particular, appearance transformations can

be specified with a level of detail that could never be obtained in a dataset of natural

photographs. Very large synthetic datasets can be created with no extra cost, in the

case of the SUFR challenge, it was simple to include tests that address interaction

effects between transformations. This could not have been done in a set of natural

photographs without a costly investment.

We advocate an approach that combines tests on unconstrained natural image

datasets like Labeled Faces in the Wild with detailed testing of particular subtasks.

However, the results presented here, and (much more so) the work of (author?) [133]—

the creators of the current (95%) state-of-the-art system for LFW—argue that LFW may

simply be too easy of a dataset to guide future progress. We suggested that the next

generation of datasets ought to focus more on the problem of transformations. To that

end, we are making the new SUFR-W dataset, as well as the complete set of synthetic

datasets, available to interested researchers.
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