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ABSTRACT

The performance of zirconium alloys in nuclear reactors is compromised by corrosion and
hydrogen pickup. The thermodynamics and kinetics of these two processes are governed by the

behavior of point defects in the ZrO2 layer that grows natively on these alloys. In this thesis, we
developed a general, broadly applicable framework to predict the equilibria of point defects in a

metal oxide. The framework is informed by density functional theory and relies on notions of
statistical mechanics. Validation was performed on the tetragonal and monoclinic phases of ZrO2

by comparison with prior conductivity experiments. The framework was applied to four

fundamental problems for understanding the corrosion and hydrogen pickup of zirconium alloys.
First, by coupling the predicted concentrations of oxygen defects in tetragonal ZrO2 with

their calculated migration barriers, we determined oxygen self-diffusivity in a wide range of

thermodynamic conditions spanning from the metal-oxide interface to the oxide-water interface.

This facilitates future macro-scale modeling of the oxide layer growth kinetics on zirconium

alloys.
Second, using the computed defect equilibria of the tetragonal and monoclinic phases, we

constructed a temperature-oxygen partial pressure phase diagram for ZrO2. The diagram showed

that the tetragonal phase can be stabilized below its atmospheric transition-temperature by
lowering the oxygen chemical potential. This work adds a new explanation to the stabilization of

the tetragonal phase at the metal-oxide interface where the oxygen partial pressure is low.
Third, using the developed framework, we modeled co-doping of monoclinic ZrO2 with

hydrogen and a transition metal. Our modeling predicted a volcano-like dependence of hydrogen

(proton) solubility on the first-row transition metals, which is consistent with a set of systematic
experiments from the nuclear industry. We discovered that the reason behind this behavior is the

ability of the transition metal to p-type-dope ZrO2 and hence lower the chemical potential of
electron. Therefore, the peak of the hydrogen solubility in monoclinic ZrO2 also corresponds to

an increased barrier for hydrogen gas evolution on the surface. This explanation opens the door

to physics-based design of resistant zirconium alloys, and qualitatively consistent with the

monoclinic ZrO2.
Finally, we uncovered the interplay between certain hydrogen defects and planar

compressive stress which tetragonal ZrO2 experiences on zirconium alloys. The stress enhances
the abundance of these defects, while these same defects tend to relax the stress. This interplay

was used to propose an oxide fracture mechanism by which hydrogen is picked up.
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Chapter 1 : Motivation and thesis contribution

1.1 Motivation
The engineering motivation to pursue the work presented in this thesis is the need to

develop predictive understanding of two degradation mechanisms which zirconium alloys, and in

particular zircaloy-4, experience in the nuclear reactors. These mechanisms are metal corrosion

and hydrogen pickup. Figure 1-1 schematically depicts these two degradation mechanism

attacking a zirconium alloy in a nuclear reactor. The need to fundamentally understand these two

processes stems from the fact that these alloys are currently pushed to withstand more

demanding operation regimes in the nuclear reactor. Thus it is crucial to predict the performance

of zirconium alloys under these demanding conditions to ensure a safe generation of the nuclear

power. Traditionally experimentation and macro-scale modeling were the tools that the nuclear

industry employed in order to design, model and simulate zirconium alloys response to the above

mentioned degradation mechanisms. However, several important questions that lie at the heart of

understanding the corrosion and hydrogen pickup of zirconium alloys remain unanswered* and

so were typically circumvented through empiricism. This approach is not very desirable and

there is a strong motivation (especially after the infamous Fukushima accident) to replace it with

the robust fundamental understanding on the level of atoms and electrons. This sets the

engineering goal of this thesis; that is to provide a fundamental understanding for few selected

processes underlying the complex phenomena of corrosion and hydrogen pickup. These selected

processes are to be discussed in the subsequent section on the thesis contribution.

* Confer chapter 2 for detailed account of these unanswered questions.
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Figure 1-1: Schematic of the zirconium oxide passive layer that grows natively on zirconium alloys. SPP
denotes the metallic secondary phase particles (alloying elements).

The engineering motivation we discussed above furnishes the ground for a deeper

scientfic motivation. It turns out that the medium through which the corrosion and hydrogen

pickup take place is an electrically insulating layer of zirconium oxide (ZrO2) that grows natively

on zirconium alloys. Furthermore, the major players that control the thermodynamics and

kinetics of metal corrosion and hydrogen pickup are the point defects of this oxide. In the nuclear

reactor environment this oxide layer is exposed to a gradient of thermodynamic variables; these

are the temperature, the oxygen chemical potential, and the mechanical stress. Thus, the

engineering problem of understanding and predicting the corrosion and hydrogen pickup of

zirconium alloys has a scientifc incarnation which is the understanding and prediction of point

defect equilibria in a metal oxide (in particular ZrO 2) under the effect of the thermodynamic

forces mentioned above. The scientific goal of this thesis is to develop a framework to predict

and understand charged defect equilibria in an insulating metal oxide and apply this framework

to problems of relevance to the corrosion and hydrogen pickup of zirconium alloys. The

scientific tool utilized to develop this framework is atomistic simulation using density functional

theory combined with the general principles of statistical thermodynamics.
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1.2 Thesis contribution
The theory of charged defects equilibria in a material with a band gap was analyzed in

1930's by Wagner and Schottky [1]. However expanding it to its full power and making useful

predications out of it was accomplished in 1950's by Kr6ger and Vink [2]. At that time the

whole theory relied on classical thermodynamic notions and utilized the concept of reaction

constants which can be determined experimentally. The fact that this theory requires an input

from experiments and for almost all materials it needs an assumptionl about the type of the

underlying defects confined it its applicability to the experimental side of materials science and

semiconductor physics. More recently with the advances in electronic structure theory and in the

computational power, the interest in the theoretical and predictive understanding of charged

defects emerged again especially in semiconductor physics. But this time the theory relied on

statistical mechanical notions and predictions from electronic structure calculations without prior

assumptions about the type of the defects. The problem is that these theoretical predictions did

not account for the finite temperature effects and was presented in the form of formation

energies, which make them hard to compare with experiments. Van de Walle and Neugebauer

pointed out that there is equivalence between the old theory (Kr6ger and Vink approach) and the

modem one and asserted that, in principle, one can construct the Kr6ger-Vink formulation

starting from the modem theory of charged defects [3]. There were recent successful attempts,

prior to my work, to demonstrate this equivalence and to construct the "more useful" Kroger-

Vink formulation starting from electronic structure calculations [4-6]. The missing ingredient

was still the account for finite temperature effects and, in my opinion, to take full advantage of

the ability to predict charged defect equilibria. Here comes the contribution of my thesis to this

field.

A framework was developed to predict the equilibria of charged defects in the limit of

non-interacting defects in a material with a band gap. The framework is informed by density

functional theory calculations and takes into account the finite temperature effects, in particular

the phonon and electronic entropy contribution to the defect free energy of formation. The

framework naturally produces the Kr6ger-Vink diagram of the defect equilibria which is directly

t These constant are related to the mass action law.
Or at least a hint from experiments.
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comparable to electric conductivity measurements. We applied this approach to both the

tetragonal and monoclinic phases of ZrO2 and could reproduce some of the experimental

findings about their defect equilibria (without any prior assumptions). In addition, in certain

thermodynamic conditions, where experiments had fallen short in resolving the nature of the

predominant defect, the developed approach was able to resolve the controversy. As I stated

above, I believe that the ability to predict and understand the equilibria of charged point defects

has not been fully taken advantage of. In this thesis I demonstrate some of the immediate

applications of this framework which address important questions related to the corrosion and

hydrogen pickup of zirconium alloys. Here is a summary of these applications classified

according to the engineering problem they address:

1) Corrosion related applications

a) The predicted defect concentrations in tetragonal zirconia were combined with the

migration barriers of the oxygen-related defects. We evaluated the latter utilizing

the so-called nudged elastic band method [7]. The outcome was a prediction of

the self-diffusion coefficient of oxygen in tetragonal zirconia in a wide range of

thermodynamic conditions. On the engineering level, this computation provides a

necessary input to model the growth of the oxide scale on zirconium alloys as a

function of oxygen chemical potential. Scientifically, we performed a careful

analysis for the predicted isobaric and constant off-stoichiometry self-diffusivities

and showed that this approach predicts a spectrum of the activation barriers of

self-diffusion depending on the thermodynamic conditions. This predicted

spectrum provides one way to reconcile the scatter in the experimentally

determined activation barriers for self-diffusion in metal oxides.

b) Utilizing the predicted defect concentrations in both the monoclinic and tetragonal

phases of ZrO2, we constructed for the first time starting from first principles a

temperature-oxygen partial pressure phase diagram for ZrO2. This phase diagram,

analogous to an Ellingham diagram, explains the role of point defects in

stabilizing the tetragonal phase at temperatures lower than the atmospheric-

pressure transition temperature. In relation to the corrosion of zirconium alloys,

this work provides another perspective for the reason of stabilizing the tetragonal
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phase at the metal/oxide interface in the nuclear reactor temperature although the

monoclinic is supposed to be the thermodynamically favorable phase at this

temperature. Scientifically, we showed that point defects through their

configurational entropy can thermodynamically stabilize a phase below its

stoichiometric stability temperature. This fact, while known experimentally and is

widely used to extract metals from their ores, has not been demonstrated

previously starting from first principles.

2) Hydrogen pickup related applications

a) We applied the developed framework to model doping and co-doping in

monoclinic zirconia. The motivation was an experimental observation from

1960's [8] that hydrogen pickup of zirconium alloys exhibits a volcano-like

relationship when plotted against the first raw of transition metals that are

used to alloy zirconium. The phenomenon has important implication in

designing these alloys. In particular the peak of the volcano was found

coincident with nickel and hence the latter was excluded from the design of

zircaloy-4. The volcano has not been explained since then. We computed the

Kr6ger-Vink diagram of monoclinic zirconia co-doped with hydrogen and a

transition metal and provided an explanation for the volcano based on the

extent to which the transition metal facilitate the solubility of hydrogen in the

zirconium oxide. Deeper analysis showed that the transition metal that is able

to lower the chemical potential of electrons as much as possible, is the one

that lowers the formation energy of interstitial protons in the oxide and hence

cause the undesirable hydrogen pickup. The same conditions also lead to

inhibition of hydrogen gas evolution on the surface because of higher charge

transfer barrier. This explanation equipped with the modeling approach we

developed can provide a scientific basis to design hydrogen pickup resistant

alloys. But even on a broader level, the fact that our approach is able to trace

the chemical potential of electrons (Fermi level) as a function of doping and

the thermodynamic conditions; it can have an impact on other fields such as

catalysis, fuel cells and water splitting.
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b) We examined the interplay between hydrogen defects in tetragonal zirconia

and the planar stress that this phase experiences in the oxide scales grown on

zirconium alloys. An interesting feedback loop was identified that shows that

the stress can enhance the abundance of certain hydrogen defects, while these

very defects tend to relax the stress. The outcome would be destabilization of

the tetragonal phase of zirconia, possible initiation of cracks in the oxide due

to volume change during tetragonal to monoclinic transition, and direct

exposure of the underlying metal to hydrogen. This work provides a possible

explanation for the mechanism through which hydrogen can get into

zirconium alloys. Although in this work we did not propagate the zero kelvin

results to finite temperature, it is possible to perform this in future work to

show for the first time how stress (particularly non-hydrostatic) can impact the

Kr6ger-Vink diagram of the defect equilibria.

1.3 Thesis organization

The thesis is divided into four components. The first is a literature review of the

phenomenological observations related to the corrosion and hydrogen pickup of the zirconium

alloy, zircaloy-4. This component is presented in chapter 3. The second component is concerned

with the development of the framework to predict charged defect equilibria in a metal oxide and

its application on the tetragonal and monoclinic phases of zirconia. This component is in chapter

3. The third component is related to the application of the developed framework to study

corrosion-related phenomena and this can be found in chapter 4 on oxygen self-diffusion in

tetragonal zirconia and in chapter 5 on the role of defects in the thermodynamics of the

tetragonal-monoclinic phase transition in zirconia. The last component is related to hydrogen

pickup and can be found in chapters 6, 7, and 8. Chapter 6 is a thorough analysis of the hydrogen

defects in tetragonal zirconia, while chapter 7 is an examination of the interplay between these

hydrogen defects and the planar stress applied to tetragonal zirconia. In chapter 8 we provide an

explanation for the volcano of the hydrogen pickup based on analysis of co-doping monoclinic

zirconia with hydrogen and a transition metal utilizing the approach developed in chapter 3.

Finally we conclude the thesis in chapter 9 by a summary and outlook.
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Chapter 2 : Literature review of waterside corrosion and

hydrogen pickup of zircaloy-4

Zirconium alloys are the major structural materials employed within the fuelled region of

all water cooled nuclear reactors [9, 10]. In particular Zircaloy-4 is currently in use as a fuel

cladding in Pressurized Water Reactors (PWR). There is a substantial need to understand the

mechanisms of the processes that degrade zirconium alloys in order to achieve higher fuel

burnup and push these alloys to operation regimes where the currently used empirical models are

of no predictive help.

The objective of this chapter is to review the current state of knowledge on the physical

and chemical phenomena relevant to the corrosion and hydrogen pickup of Zircaloy-4 in

pressurized water reactors (PWR). These are two of the most challenging degradation processes

of zirconium alloys in nuclear reactors. The topic has been comprehensively reviewed in 1998 in

a technical document produced by IAEA[11] and more recently in 2005 in a review paper [10]

by Brian Cox. This chapter expands these excellent reviews to include the more recent literature.

We also include our perspective and interpretation of the state of knowledge reported in

literature, especially the contradictions on the governing unit processes in the corrosion of

zirconium alloys and the factors that accelerate it.

The organization of the rest of the chapter is as follows. First, we discuss corrosion

kinetics. In particular we discuss the electrochemical reactions that govern corrosion kinetics; the

transport of oxygen, zirconium cations, and electrons in the passive oxide film and the

microstructure of that film. We end this part by a summary of the controversy in literature on the

origin of the transitions in the corrosion kinetics of zirconium alloys. Second, we examine the

processes that accelerate the kinetics of zirconium alloys. These processes include: Li absorption,

radiation effects, secondary phase precipitates, and CRUD-induced localized corrosion. Finally

we discuss the current knowledge of the mechanism of hydrogen pickup and the interplay

between corrosion kinetics and hydrogen pickup kinetics.
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2.1 Water Side Oxidation of Zircaloy-4

In this section, we provide a description of the corrosion kinetics, the corrosion reaction

as an electrochemical process, the transport processes through the oxide scale, taking into

account the diffusion of point defects and their diffusion pathways, and finally the effects of the

microstructure of the oxide scale on corrosion kinetics.

2.1.1 Corrosion Kinetics

The initial stage of protective zirconium alloys oxidation (including zircaloy-4) follows a

cubic law up to an oxide thickness of about 2 micron [10, 12]. This stage is commonly termed

the "pre-transition" stage. Such a cubic growth law is not in accordance with what one would

expect on the basis of diffusion controlled oxidation§ or a surface reaction controlled oxidation**.

Beyond the first 2 microns, the oxide growth undergoes a transition to obey a series of cubic

cycles. The duration of each of these cycles decreases with time and is less than the pre-

transition cycle duration. This regime of oxide growth is typically termed "post-transition" and is

well-approximated by a linear law that encompasses the underlying short cubic cycles [10-12].

Figure 2-1 from Ref. [12] schematically shows the overall oxide growth. The possible origin of

the transition from the cubic law to the linear one is discussed in section 2.1.4.5 below.

24

This would lead to a parabolic law.
** This would lead to a linear law.



UN4EAR

pWRa
0

0

CORROSION TIME -

Figure 2-1: Schematic of zirconium oxidation quantified in terms of weight gain vs. time [12].

2.1.2 Zircaloy-4 oxidation as an electrochemical process

The overall waterside corrosion reaction is

Zr +2H 20 - ZrO2 ± 4H (2-1)

This reaction can be divided into several steps. However, there is no agreement in the literature

about this break down. We report here one of the proposed reaction steps by Billot et al. [13]

using Krnger-Vink notation.

1. Dissociative water adsorption at the oxide/water interface with the aid of an oxygen vacancy.

H 2 O+V0 9 +Ox -> 20H; (2-2)

2. Oxygen and part of the hydrogen diffuse to the grain boundaries.

3. Oxygen dissolution into the interstitial sites of the metal to form solid solution (Zr,O).

e' + OHO -). Ox + H|x
(2-3)

O V;" + Ol,,, + 2e
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4. Zirconium oxide (zirconia) production

Zr(met) + 20,7,ta) --+ Zr; + 20 (2-4)

The part of hydrogen produced by the corrosion reaction and managed to diffuse through the

oxide layer, reaches the metal and remains in solution in the metal until the solubility limit is

exceeded at which point zirconium hydrides precipitate. The other part of hydrogen may

recombine and form hydrogen molecules that remains dissolved in water. However, there are

several important mechanistic details that are not known. First, it is not known whether the

proton that was produced in the corrosion reaction diffuses into the oxide layer in a correlated

fashion with the oxygen ion to which it binds as a hydroxyl unit or it diffuses independently [14,

15]. Second, where does the recombination of the proton and electron to form a neutral hydrogen

atom take place? And how long does the proton diffuse in the oxide layer before it discharges to

become a neutral species in order to enter the metal? Third, how is it possible for the electrons to

transport in a good insulator material such as zirconia to meet the protons? In the next section we

examine the transport processes that take place through the zirconia layer which govern the

growth kinetics.

2.1.3 Transport processes through the oxide layer

The continuous growth of the oxide layer on zircaloy-4 according to the general

corrosion reaction described in the previous section is achieved by the transport of the charge

carriers through this oxide layer starting from the oxide/water interface to the metal/oxide

interface and vice versa. In general, the oxide growth on zirconium and its alloys is known to

proceed by inward oxygen transport from the oxide/water interface to the metal/oxide interface

[16, 17] while it was indicated by diffusion measurements [18, 19] that zirconium is not mobile

through its oxide until very high temperatures in the range of the loss of coolant accident

(LOCA). This general picture of the transport dictates that charge neutrality across the oxide has

to be maintained by electron transport through the oxide from the metal/oxide interface to the

oxide/water interface in a direction opposing that of the diffusion of oxygen. The latter process is

known to be very slow as zirconia is a very good insulator [20] and hence it was suggested by
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Cox [10] that electron transport through zirconia is the rate limiting process for the corrosion

reaction of zirconium and its alloys.

The above described picture is definitely very general and lacks the mechanistic details

about the nature of the diffusing species and their diffusion pathways. The mechanistic details

are essential in providing the underpinnings of a predictive physics-based corrosion model.

Furthermore, while hydrogen diffusion in the oxide is not necessary for the completion of the

corrosion reaction, this process is inevitable and needs to be understood for two good reasons.

The first is that hydrogen presence in zirconia has an effect on the corrosion kinetics as described

in the hydrogen pick up section below. The second is that hydrogen diffusion through zriconia is

followed subsequently by hydride precipitation in zirconium metal which has detrimental

embrittlement effects. Thus, there is a need to understand the mechanistic and quantitative

aspects of the transport of the corrosion related species in zirconia, including the electronic,

cationic, oxygen and hydrogen related defects. In the rest of this section we review what is

known about these transport processes in the literature. Before delving into the details, we

present in Table 2-1 an example set of data (collected by Delgueldre et al. [21]) to provide an

order-of-magnitude comparison of diffusivities concerning various species in zirconia at 500 K.

Table 2-1: Comparison of the diffusion coefficients for corrosion-critical species in zirconia at 500 K
from Ref. [21]. The data for H and H' are collected from zirconia scale on zircaloy. Zr" and 02-

diffusivities are taken from yttria doped zirconia.

Species Diffusivity (m2 s 1 )

Zr4* 10-20

02 1012

H 16

HW 10-

It is known that in atmospheric pressure there are three phases of zirconia; cubic,

tetragonal and monoclinic as shown in Figure 2-2. The latter is the stable phase up to -1170 0C

[22]. The oxide scale grown on zirconium alloys contains both the tetragonal and monoclinic

phases. The tetragonal phase is usually stabilized by a compressive planar stress at the

metal/oxide interface and/or by alloying elements that gets incorporated in the zirconia lattice

[10].
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(a) (b)

Figure 2-2: The conventional unit cells of atmospheric pressure phases of zirconia. (a) cubic, (b)
tetragonal. (c) monoclinic. Zirconium ions are blue and oxygen ions are red. Figure is adapted from [23].

2.1.3.1 Oxygen transport

Oxygen transport takes place via point defects within the lattice, or via short circuit paths

as dislocations, grain boundaries and the porosity that develops in the zirconia layer on zircaloy-

4. We examine each of these four paths for oxygen diffusion in zirconia. Oxygen point defects

form in various configurations in zirconia and they can all collectively contribute to the oxygen

transport kinetics, and thus corrosion. Therefore it is important to determine the dominant

oxygen defect species and their diffusion properties.

Oxygen point defects: In general there are three types of oxygen point defects that can

be present in zirconia lattice; vacancies (V), interstitials (0) and antisites (Oz,). Moreover, each

of these types can be neutral or charged. One last further complication is that in monoclinic

zirconia there are two crystallographic types of oxygen; three fold coordinated (03) and four-fold

coordinated (04). In the case of charged defects, the charge tends to be localized on the defect

and do not exhibit a bandlike character [24, 25]. Zheng et al. [24] performed comprehensive

density functional theory calculations for the native point defects in monoclinic zirconia and

hafnia and showed that the oxygen antisites are not thermodynamically favorable.

We are not aware of such a comprehensive study for the tetragonal phase (prior to our work

presented in the next chapter). However, Eichler [26] employed density functional theory to

compute the vacancy formation energy, Ef, at the valence band maximum of the perfect crystal of

tetragonal zirconia and the results are summarized in Table 2-2. It was not clear which chemical

potential was used as a reference in these calculations.
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Table 2-2: Oxygen vacancy formation energy in tetragonal zirconia from Ref. [26]

Vacancy Ej (eV)

Voy 5.73

V; 2.69

V;' -0.76

Eichler also reported the dependence of the formation energy of the different charge

states of the vacancy in zirconia as a function of the chemical potential of electrons (Fermi level

EF). These results are shown in Figure 2-3. In the figure, the vacancy is denoted by F to express

the fact that they it is actually an F-center.

6F

0~
0 1 2 3 4

Figure 2-3: The formation energy of neutral, singly and doubly charged F-centers in zirconia as a function
of the Fermi level [26].

Oxygen point defect diffusion pathways: The diffusion of oxygen species through

zirconia lattice is an activated process that is achieved either by direct hopping from defect site to

a nearby defect site or by some exchange mechanism in which more than one atom are involved

[27]. Computing the energy barriers for such activated processes is possible through density

functional theory and classical atomistic potentials. However, such evaluation for the energy

barriers for the diffusion of oxygen species was not considered for the monoclinic phase of

zirconia. For the tetragonal phase, only vacancy hopping was considered using density functional

theory in two crystallographic directions [110] and [001] in Ref. [26] The computed energy

barriers in eV are shown in Table 2-3 for the different stable charge states of the hopping

vacancy.
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Table 2-3: Diffusion barriers in eV for vacancies in tetragonal zirconia along [110] and [001] directions
[26].

Direction Vl V7

[110] 1.35 0.22

[001] 1.43 0.61

Similarly Safonov et al. employed ab initio embedded cluster calculations and found an

energy barrier for the hopping of a neutral oxygen vacancy of 1.95 eV. The hopping direction

was not specified in the reference [28]. The theoretical work on point defects in zirconia (and

indeed on all metal oxides) always considered the formation energies of the defect in isolation

from the migration barrier. Hence, the overall picture of self-diffusivity was never clearly

depicted. In chapter 4 we show how this can be done and demonstrate it on the case of oxygen

self-diffusion in tetragonal zirconia.

The diffusion coefficient of oxygen in zirconia was also measured experimentally.

However, it should be noted, however, that in an experimental setup, the distinction between in-

lattice diffusion, and diffusion through grain boundaries or any other form of extended defects

(dislocations or three dimensional networks of interconnected pores) may not be possible. In

such cases what is usually measured is an effective diffusion coefficient. Figure 2-4 taken from

Ref. [18] summarizes the results of such measurements for oxygen diffusion in different types of

zirconia at various temperatures. The collected data in this figure indicate an activation energy

that ranges from 1.3 eV to 4.2 eV.
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Figure 2-4: The diffusion coefficient of oxygen in various zirconia samples [18].

To distinguish between grain boundary diffusion and in-lattice (or in-crystallite)

diffusion, Brossmann et al. used 18 0 as a tracer and secondary ion mass spectroscopy profiling to

measure the in-lattice and grain boundary oxygen diffusion in ultrafine grained mionoclinic

zirconia [29]. The grain boundaries considered in their study separate between nanocrystals of

width 80-300 nmi and the boundaries average width is ~ 0.5 nm. It was found that thle grain

boundary diffusion is 103- 104 times faster than in-crystallite diffusion throughout a temperature

range of 450 to 950 OC. The diffusivities were independent of the crystallite size in the range of
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70-300 nm. The effective activation energies for grain boundary and in-lattice diffusion were

1.95 and 2.29 eV respectively. The authors of Ref. [29] suggest that the reduced oxygen

diffusivity in pure zirconia indicate diffusion mechanism that involves both the thermal

formation and migration of oxygen defects. On the other hand, the activation energy for the

oxygen diffusion in a single crystal tetragonal zirconia was concluded to be 0.65 eV by Park and

Olander based on oxygen tracer diffusion measurements [30]. Care should be taken when

comparing these results with diffusion in the oxide scale grown on zircaly-4. The oxide scale as

will be discussed in a subsequent section has what is commonly termed the sub-oxide region

close to the metal/oxide interface. The chemistry and crystallography of this sub-oxide is

expected to be different than zirconia. Furthermore, the large compressive planar stress that

exists in actual oxide scales formed in a corrosion environment is not accounted for in such a

clean experimental setup used in studying diffusion in zirconia.

It was proposed that the hydroxyl group (OH) can diffuse as an entity in zirconia [14].

However, Doung et al. using secondary ion mass spectroscopy found no evidence that OH- ions

are mobile species in tetragonal zirconia single crystals [31]. Since it is known that in many

proton conductors, OH~ ion is rarely mobile, Chevalier et al. concluded that 02. and H' species

follow parallel but independent paths into zirconia lattice [15].

A high density of dislocations was observed in zircaloy-4 oxide scales obtained under

pressurized water reactor conditions [32]. On the other hand, Otsuka et al. showed that

dislocation enhances the ionic conductivity in Yttria-stabilized zirconia [33]. These two facts

together led Angel to conclude that the presence of high compressive stress at the metal/oxide

interface as well as irradiation can generate dislocations in the oxide scales formed on zircaloy-4

[16]. These dislocations serve as a fast migration path for oxygen species.

The generation of porosity on the oxide scale grown on zirconium and its alloys is

inevitable [10]. The pores start to appear in the zirconia scales once the so-called post-transition

regime of corrosion begins. Figure 2-5 from Ref. [34] shows the average radius of the pores in the

oxide scale grown on zircaloy-4 as a function of the oxide thickness. Zhou et al. introduced a

reasonable interpretation for the emergence of porosity in the zirconia scales as they grow which

we present here [35]. The new layers of the oxide that form at the metal/oxide interface as

zirconia are known to grow by the inward diffusion of oxygen ions. Due to the lattice mismatch
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between the oxide and the metal, the latter being smaller, the new layers of the oxide grow under
compressive planar stress. This leads to the presence of various point and line defects within the
crystallites of the grown oxide. With the continuous growth of the oxide, the older layers depart
away from the metal and hence the compressive stress relaxes and with the action of temperature
and time, the defects tend to migrate and get absorbed at the grain boundaries. The accumulation
of the absorbed defects at the grain boundaries leads to the formation of these pores.
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Figure 2-5: Average radius of the pores as a function of the oxide thickness evaluated by out-of-pile loop
mercury measurements [34].

Regardless of the validity of this hypothesis by Zhou et al.; the generation of pores wide

enough to allow the penetration of water molecules into the oxide layers, shortens the distance

between the corrosion reaction products including oxygen species and the bottom of the oxide

layers which is the metal/oxide interface. Not only the presence of the pores allows water

diffusion, but also we expect the walls of these pores to be highly defective (at least based on the

hypothesis described above) and hence the oxide/water part of the corrosion reaction gets

enhanced. The origin of this enhancement is that energy barrier for water adsorption and

dissociation is generally reduced in the presence of oxygen vacancies on the oxide surface [36].

In addition to this, Ramasubramanian et al. suggested that the dominant diffusion path for

oxygen species in the presence of porosity will be along the walls of the pores [37]. Indeed there
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is an indirect support for this suggestion from the ab initio calculations in Ref. [28]. These

calculations show that there is a migration pathway for the oxygen vacancy on the (001) surface

of tetragonal zirconia which has an energy barrier of 1eV compared to 1.95 eV for the migration

in the bulk of the crystal.

2.1.3.2 Zirconium transport

It is generally believed that zirconium cation is not mobile in its oxide at the reactor

operation temperature [10, 11]. However, at elevated temperatures such as those during the

course of a LOCA, the outward diffusion of zirconium from the metal/oxide interface can be

significant. A classification of diffusion pathways similar to that of oxygen species can be

assigned to zirconium. However, only data about the in-lattice diffusion of zirconium in zirconia

is available and nothing can be said about the diffusion across or along the extended defects.

Melikhova et al. showed by combining density functional theory and positron lifetime

spectroscopy that zirconium vacancies exist natively in zirconia and that hydrogen can reduce

their formation energies [38]. This effect of hydrogen in reducing the formation energies of

zirconium vacancies in addition to another effect which is the reduction of the migration barrier

for the zirconium vacancy was suggested and demonstrated experimentally" (see chapter 2 in

Ref. [16] and the references therein.). Computer simulations using classical interatomic potential

were used to show that the migration barrier of cations vacancies in the cubic phase of zirconia

ranges between 3.1 and 5.8 eV [39]. The indicated numbers show that this type of diffusion is

important only at high temperatures (LOCA conditions).

2.1.3.3 Electron transport

As we mentioned in the introduction to this section, it is assumed that charge neutrality

through the oxide layer is achieved by electron transport from the metal/oxide interface toward

the oxide/environment interface. However, since zirconia is an insulator, it is expected that this

electronic transport process is slow and hence the rate limiting step. Additional support for the

hypothesis that the electronic transport can be the rate limiting step is the fact that the measured

potential on the metal in always negative [10] indicating that electron transport is the most

t In chapter 6 we show using density functional theory calculations that hydrogen tend to thermodynamically stable

complexes with zirconium vacancies in tetragonal zirconia.
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difficult process. Further support for this hypothesis comes from comparing the chemical

diffusion coefficient in single crystal tetragonal zirconia with the chemical diffusion in zirconia

formed on pure metal or zircaloy-4 during the course of corrosion reaction [30]. The comparison

is shown in Figure 2-6 below. The three order-of-magnitude discrepancy between the tracer

diffusion-based chemical diffusivity and the corrosion-based was attributed (among other

reasons) to the possibility that zirconium oxidation kinetics is not controlled by anion diffusion.

In other words, if the oxygen transport is as great as implied by the upper line in Figure 2-6 , the

corrosion rate could be controlled instead by slow electron transport in the growing oxide film.

Zry-4

10

Pure Zr

0.55 0.60 0.65 0.70 0,75 0.80

1/T X 1000 ( K~1)

Figure 2-6: The total chemical diffusion coefficient in zirconia; the upper line is deduced from measured
tracer diffusivities in single crystal tetragonal zirconia. The two lower lines are obtained from corrosion
kinetic data. The figure is adapted from Ref. [30].

It is known that gamma irradiation enhances the electronic conductivity in zirconia [40].

Such enhancement can occur during the operation conditions in nuclear power plants. According

to Ref. [40]; increased rates of adsorbed water dissociation on the surface of gamma irradiated

zirconia were observed. This behavior was attributed to gamma-induced exciton formation

within zirconia that has a band gap close to but slightly greater than the O-H bond dissociation
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energy. This behavior is pronounced in tetragonal zirconia compared to the monoclinic phase. It

was shown using density functional theory calculations that the origin of this distinction between

tetragonal and monoclinic phases is due to the fact that the exciton pair motion is not restricted

in any direction in the former while it is limited only to the [010] direction in the later [41].

Additional electronic states can be introduced in the band gap of zirconia by impurities

and dopants. Nishizaki et al. used first-principles molecular orbital calculations to show that

hydrogen generates a new impurity states below the conduction band of zirconia which reduces

its band gap [42]. Such impurity states enhance the electronic conductivity. A similar situation

occurs when the secondary phase particles in the oxide dissolves and gets incorporated in the

zirconia lattice. Such incorporation is associated with enhanced corrosion rates and degradation.

On the other hand, if a secondary phase particle is still in the metallic state (unoxidized) and

connects the zirconium metal with the oxide/water interface, it can act is a short circuit for

electronic transport. However, such situation is relevant only for the early growing phase of the

oxide scale after which it is improbable to find unoxidized secondary phase particle long enough

to connect the metal with water.

2.1.4 Oxide phases, microstructure, stoichiometry and stresses

In this section we describe the phases that form in the passive zirconium oxide layer and

the interrelationships between them and their effect on the protectiveness of the oxide. Second,

we give a description of the microstructural features that arise in the passive zirconia layer.

Third, we examine the stoichiometry of the oxide as a function of the distance from the

metal/oxide interface to the oxide/water interface. Fourth, we discuss the stress state in the

zirconia layer and its effect on the phases and the microstructural features that grow during the

corrosion process. Finally we review te theories that attempt to explain the transition behavior in

corrosion kinetics. This transition is the net effect of the microstructural, chemical features and

the stress state in the oxide layer. Before discussing these points, we emphasize the following:

1. There is an uncertainty in the literature in terms of distinguishing between the "cause"

and the "outcome". While that is common to most of the underlying processes of the

corrosion of zircaloy-4, it is much more pronounced when it comes to characterizing
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the oxide layer. In spite of that, it was possible recently to elucidate some of these

dependencies and thus we focus more on these resolved aspects.

2. Cox emphasized in his review [10] that the experimental characterization of the oxide

layers from corroded zirconium samples is difficult because of:

a) Possible oxide cracking and zirconia phase transformation due to stress relaxation

during sample preparation, which could confuse both the phase information and

porosity measurements.

b) The electrically insulating nature of zirconium oxide.

2.1.4.1 Oxide phases

In a wide range of low pressure and in a temperature range up to 1170 0C the monoclinic

phase is the ground state phase of zirconia. However, stress, doping and the size of the grains of

zirconia crystallites can stabilize phases other than the monoclinic.

In the bottom layer of the oxide film, which is in close vicinity to the metal matrix, monoclinic,

tetragonal, cubic, metal-oxygen solid solution and amorphous phases can be detected [10, 35,

43]. The tetragonal and cubic phases can be stabilized at this interface in part due to the large

compressive stresses due to the lattice mismatch between the metal and the oxide. The

hypothetical pressure-temperature (P-T) phase diagram for zirconia [44] shown in Figure 2-7

suggests that a high stresses the tetragonal phase can be stabilized at reactor operation

temperature. This phase diagram, however, cannot explain the presence of the cubic phase.

Bouvier et al. showed that if the zirconia crystallite sizes are smaller than 30 nm, which is the

case for the oxide scale on zircaloy-4, the monoclinic-tetragonal equilibrium line in the P-T

diagram is strongly downshifted in temperature [45]. In addition they found that the tetragonal

phase obtained in high temperature under high pressure can be quenched to room temperature, if

the pressure is maintained, and it is destabilized and transforms completely to monoclinic if the

pressure is released. These observations may provide an interpretation for the presence of the

cubic phase, if we assume that the tetragonal-cubic equilibrium line in the P-T will follow the

monoclinic-tetragonal line downshift in the P-T diagram when the crystallite sizes are small.
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Figure 2-7: Hypothetical pressure-temperature phase diagram for zirconia [44].

The presence of an oxygen-zirconium interstitial solid solution at the metal/oxide

interface is expected as oxygen has a strong affinity to dissolve in zirconium as shown in the

phase diagram in Figure 2-8. In particular at 200 OC, about 28.6 atomic percent oxygen can

dissolve in zirconium and the solubility increases with increasing temperature.

The presence of an amorphous zirconia phase at the metal/oxide interface is also

expected because of the nature of growth of this scale. In other words, each new layer of zircnoia

grows at the metal oxide/interface and since it is not possible kinetically to form the whole layer

at once in its full crystalline structure, intermediate amorphous structures have to appear as a

precursor before crystallization. This idea is supported by molecular dynamics simulation of the

oxidation of Zr (0001) surface in oxygen gas [46].
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Figure 2-8: Zirconium-Oxygen phase diagram [11].

As we depart from the metal/oxide interface towards the oxide/water interface the lattice-

mismatch-driven compressive stress on the oxide decreases and the monoclinic phase becomes

the dominant phase with remnants of the tetragonal phase but no evidence for cubic or

amorphous phases. The gradual decrease in the tetragonal phase as a function of distance from

the metal/oxide interface is commonly attributed to the stress relaxation in the oxide layer as it

grows. The addition of a new oxide layer at the metal oxide interface moves the older oxide

layers away from that interface reducing the compressive stress on these older layers.

We conclude this subsection by discussing one of the most controversial and important

issues in the literature which is the relationship between the corrosion rate and the fraction of the

tetragonal phase. Some authors observed that zirconium alloys with a high tetragonal fraction

near the metal/oxide interface exhibit a higher corrosion rate, whereas others observed the

opposite (See Ref. [47] and the references therein). We present here two perspectives from the

literature in trying to resolve this issue:
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1. Qin et al. think that looking only at the fraction of the tetragonal phase is misleading and

one has to consider the gradient of the compressive stress normal to the metal/oxide

interface [47]. In particular, if there is large amount of the tetragonal phase at the

metal/oxide interface, then this will lead to more of it being transformed to monoclinic

when the stress decreases as the oxide grows. Since this phase transformation is

accompanied by volume expansion, more cracks will form in the zirconia layer. On the

other hand, if the compressive stress were to decrease sharply, then the tetragonal to

monoclinic phase transformation would take place in the close vicinity of the metal/oxide

interface breaking the oxide layer. They concluded that the optimum situation for a

resistive oxide layer is having small fraction of the tetragonal phase near the metal/oxide

interface and a low gradient of the compressive stress.

2. Motta et al. observed that highly oriented tetragonal grains that show (002) texture in X-

ray diffraction measurements exist in all the resistant zirconia layers in the first 0.2

microns near the metal/oxide interface [43]. They claim that these particular grains are

correlated with the protectiveness of the oxide. On the other hand, tetragonal grains that

show (101) peak in XRD exist throughout the zirconia scale and have no correlation with

protectiveness of the oxide. They deduced this observation from a comprehensive study

on alloys of variable contents of alloying elements. The message of this study is that

thinking in terms of tetragonal fraction is misleading and one has to consider the texture

of the tetragonal grains. It is also reasonable to think that the texture and the energy

minimization by accommodating a coherent compressively stressed zirconia at the metal-

oxide interface are actually linked.

It is clear based on this discussion that the tetragonal fraction alone is not a suitable metric to

characterize the corrosion resistance of zirconium alloys, and one has to consider simultaneously

other factors such as the stress gradient and the texture of the tetragonal grains.

2.1.4.2 Microstructure

In the close vicinity of the metal/oxide interface the oxide grains have columnar shape

that grows perpendicular to the interface as shown in Figure 2-9. These grains are surrounded by

amorphous regions. As we depart from the metal/oxide interface the grains become equiaxed and
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periodic lateral cracks parallel to the metal/oxide interface start to develop. The periodicity of the

lateral cracks matches the cyclic behavior in the corrosion kinetics as shown in Figure 2-10. In

general the grains have a size less than 100 nm with the tetragonal grains smaller than the

monoclinic grains [48, 49].

Several research groups attempted to establish coherent relationships between the grains

of the different phases at the metal oxide interface. Such relationships are useful in modeling the

microstructure of the zirconia scale. For example Zhou et al. showed that the cubic (c), tetragonal

(t) and monoclinic grains can have the following coherent orientations relationship:

(00 1)m/(1 10)t //(200)c [35]. Also, Motta et al. established on the basis of a comprehensive study

in several alloys that form protective zirconia scale (including zircaloy-4) the following

relationship that also includes the metal grains: (101 1)Zr //(002)t//(020)m [43]. We recall that

(002)t grains were observed only within 0.2 microns from the metal/oxide interface.
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Figure 2-9: TEM images (top) and sketch of grains (bottom) of the oxide layer on (a) Zircaloy-4, (b)
ZIRLO and (c) Zr-2.5Nb alloys near the metal/oxide interface in 360 0C. The arrows indicate the growth
directions [48].
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Figure 2-10: (a) Long-term reference oxidation kinetics. (b) Microscopic observation of the oxide layer of

Zircaloy-4 in autoclave at 360 0C in 3.5 ppm LiOH and 1000 ppm H3BO 3 chemistry [50].

2.1.4.3 Stoichiometry

The oxygen-to-zirconium ratio decreases smoothly from the stoichiometric oxide (66.67

atomic percent) to the metal-oxide solid solution limit (29 atomic percent) over a distance of

about 0.5 micron as shown in Figure 2-11. Similar gradient in the oxygen content was established

by molecular dynamics simulation for the early stage oxide phase that forms on Zr(0001) surface

[46]. Of course this 0.5 micron region is above the solubility limit of oxygen in zirconium and

still quite far from being considered an oxide. Yilmazbayhan et al suggested that this region is a

suboxide of the form Zr3O [48]. This chemical form can account for oxygen content of 25 atomic

percent which cannot account for the smooth gradient over 0.5 micron. We think that this region

may correspond to an irregular interface between the metal and the oxide in which there are

metallic region interfering with oxide phases. Thus the net stoichiometry projected on a one

dimensional plot may be misleading.
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Figure 2-11: Measured oxygen content fromzircaloy-4 oxide formed in 360 0C pure water environment
using EDS point spectra in TEM [48].

2.1.4.4 Stress state
The Pilling-Bedworth ratio, which relates the unit cell volume of the oxide to the unit cell

volume for the untransformed metal from which it was made, is typically quoted as 1.56 for the

monoclinic ZrO2/Zr system. This indicates that the volume of zirconia is greater than the volume

for an equivalent number of zirconium atoms in its native HCP crystal structure. Thus, when

forming an oxide layer from zirconium, the oxide is under planar compressive stress. Kim et al.

measured the compressive stress as a function of the oxide thickness in the zirconia scale grown

on pure zirconium metal [51]. Figure 2-12 summarizes their measurements and indicates that the

stress level can reach 5 GPa in the close vicinity of the metal oxide interface.
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Figure 2-12: Measured stress vs. oxide film thickness [51].

It is expected that the stress level in the zirconium alloys will be slightly less than that in

the pure metal because the secondary phase particles (SPP) are not oxidized immediately and

hence remain in the metallic state for a period of time. The metallic SPPs are flexible compared

to the oxide and can have a relaxing effect on the stress. Kim et al. compiled the previous stress

measurements on the oxide scale grown on zirconium and its alloys [51]. This compilation is

shown in Table 2-4 and includes the work of Kim et al. in the last row. Most of the previous

measurements are in the range 0.2-2.0 GPa. It seems that the origin of these low values, which

are actually very low to stabilize the tetragonal zirconia, is that these measurements were

performed on thick oxides (greater than one micron) as an overall average. Apparently these

previous studies could not capture the high stress level in the close vicinity of the metal oxide

interface
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Table 2-4: Compilation of the measured
alloys adapted from Ref. [51].

Measurement technique Specimen info.

Deflection Zr
XRD Zr/Zry-2

Curvature Zr/Zry-2
Deflection Zry-2
Curvature Zr/Zry-2

Zr-1Nb
Curvature Zry-4(pickled)

Zry-4(polished)
XRD Zr-1.2Sn-0.2Fe

Zr-0.5Sn-0.2Fe
XRD Zry-4
Raman Zry-4

Zr-INb-0.120
Curvature Zr

stress in the zirconia

Oxidizing conditions

Chem. agent/25 *C
0 2 /500 *C

02/500-700 -C
02/500 *C
Steam/400 *C

Steam/550 OC
Steam/400 *C

Steam/420 OC

Steam/400 *C
Water/360 *C

Steam and 02/450 *C

scale grown on zirconium and its

Stress (GPa) vs. oxide thickness (ptm)

0.2 1.2
1.2 1.9
(2.4) (0.4)
0.6 (max.) ~3.0
1.7 (max.) ~3.8
0.5-1.3 Not available
0.2-0.6
0.9-0.2 0.5-6
0.6 (max.) ~3
2.0-1.5 1.8-3.6
1.8-1.5 1.4-2.6
0.7-0.2 1.0-2.5
0.7-1.3 1.0-1.6
0.8-1.5 1.0-2.5
5.1-0.5 0.1-1.0

There are two fundamental phenomena in the corrosion for zirconium and its alloys that

were attributed to stress in the literature. First, the appearance of the columnar grains close to the

metal/oxide interface. Motta et al. explained that this type of growth is needed to accommodate

the Pilling-Bedworth ratio in the normal direction to minimize the planar compressive stress on

the oxide [43]. Second, Van Overmeere and Proost studied the very early stage (hundreds of

seconds) of anodizing pure zirconium metal [52]. They showed that the tetragonal phase does not

grow immediately upon oxidizing fresh metal. Instead, the monoclinic phase first is formed and

after tens of seconds some of the monoclinic transforms to tetragonal and cubic phases to relax

the large compressive stresses on the oxide. They observed a sudden drop in the stress upon the

completion of the transformation. The same scenario can be the origin of the appearance of the

cubic and tetragonal phases in the oxide scale of zircaloy-4. This early stage transition was

denoted as type-I breakaway to distinguish it from type-II breakaway or what is commonly

termed as the corrosion transition in the nuclear fuel cladding community which requires days to

occur. The next subsection is intended to shed some light on type-I breakaway

2.1.4.5 The origin of the transition from cubic to linear growth law

In spite of the importance of understanding this transition, it remains one of the most

controversial issues in the literature. All empirical corrosion models postulate certain oxide

thickness at which the transition takes place. We are not aware of any model that can predict the
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transition without a priori postulated transition criterion. Thus, predicting the transition in

corrosion kinetics is still a grand challenge for any physics-based corrosion model. Here we

mention three of the most common explanations for the origin of the corrosion transition:

1. It was suggested that the transition is caused by the tetragonal or cubic to monoclinic

phase transition when the stress relaxes on the tetragonal and cubic phases [53]. This

stress relaxation occurs when the grains move away from the metal/oxide interface during

the continuous growth of the oxide. The resulting phase transition is accompanied with

large volume expansion which leads to the cracking of the oxide and accelerating the

oxidation.

2. A second theory links between the formation of percolated porosity and the transition in

corrosion kinetics. It is unavoidable to form porosity in the oxide scale grown on

zirconium and its alloys. At some critical condition the pores percolate allowing easy

penetration for water through the oxide layer and easy access to the metal/oxide interface

and hence causing the transition [10]. However, the origin of the formation of porosity is

not well understood. We quote, as an example, one hypothesis about the origin of the

formation of porosity from Ref. [35]. Various point and line defects are present within the

crystallites of the new oxide that forms at the metal/oxide interface. These defects are

thought to be generated by the compressive stress at the interface. With the continuous

growth of the oxide, the older layers depart away from the metal and hence the

compressive stress relaxes, and with the action of temperature and time, the defects tend

to migrate and get absorbed at the grain boundaries. The accumulation of the absorbed

defects at the grain boundaries leads to the formation of pores.

3. The origin of the transition was also suggested to be purely mechanical. For example,

Van Overmeere and Proost built a constitutive mechanical model that attribute the

transition in corrosion kinetics and the formation of lateral cracks in the oxide to the

arrival to a critical compressive stress value during the growth [52]. This critical stress

leads to what they called buckling-induced delamination event.
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2.2 Factors that accelerate the corrosion kinetics
Here we review the factors that can accelerate the corrosion process on zircaloy-4 in

PWR. These include the effects of lithium and boron, secondary phase particles and CRUD

induced localized corrosion. The interrelationship between accelerating corrosion and hydrogen

pickup is discussed below in 2.3

2.2.1 Lithium and boron effects

About 0.5-3.5 ppm Lithium hydroxide (LiOH) is added to pressurized water reactor

(PWR) primary water to control the pH value to be in the range of 7.2-7.4. Specifically LiOH is

added to neutralize the effect of the boric acid (B(OH) 3) that is added to the primary water to

control the neutronic reactivity. In such minute amounts, the LiOH is not particularly degrading

for zirconium alloys. However, certain scenarios are expected to occur in PWR that can lead to

locally elevating the concentration of LiOH to a level that can cause accelerated corrosion for

zirconium alloys. One scenario is the formation of cracks (crevices) in the oxide layer due to

delayed hydride cracking. These cracks can concentrate LiOH. Another scenario which is the

most important is the concentration of LiOH in the pores of the CRUD deposited on the nuclear

fuel clad. Since the current trend is to increase the burnups of the fuel in the reactor, the

probability of the occurrence of these scenarios is high. We divide this section in two

subsections. In the first we review the most important experimental observations regarding the

potential role of LiOH in accelerating the corrosion of zirconium alloys, while in the second we

present the attempts in the literature to explain the role of LiOH.

2.2.1.1 Observed phenomena related to the role of lithium hydroxide and boric acid

1- In autoclave corrosion experiments, when we compare the rate of corrosion in pure water

to the rate of corrosion in lithiated water with LiOH concentration as high as 70 ppm, we

find significant acceleration in the latter case. In some zirconium alloys, the pre-transition

stage of corrosion is not even observable and the corrosion process starts with a linear

growth rate for the oxide. Figure 2-13 from Ref. [48] demonstrates this trend.
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Figure 2-13: Corrosion weight gain vs. exposure time of Zircaloy-4, ZIRLO and Zr-2.5Nb in (a) 360 0C
pure water (solid arrows show the transition) and (b) 360 OC lithiated water (solid arrow shows transition
in ZIRLO, transition is not discernible in Zircaloy-r and Zr-2.5Nb) [48].

2- In trying to decide whether the elevated concentration of lithium or the elevated

concentration of the hydroxyl groups is the origin of the observed corrosion acceleration,

corrosion experiments were performed to compare between the effects of LiOH, NaOH

and KOH. The accelerated corrosion was reported only in the case of lithium [54, 55].

This is a clear indication that the concentration of lithium is the major player in

accelerating corrosion.

3- The enrichment factor is defined as the concentration of the Li' that gets into the zirconia

scale to the concentration of Li' that was originally added to water. Enrichment factors as
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high as 10 were reported in autoclave corrosion experiments [55] (with no CRUD or

delayed hydride cracking). When boiling of water is allowed in the corrosion

experiments, the enrichment factor was found to increase with increasing the fraction of

steam as shown in Figure 2-14 from Ref. [34]. However, the majority of this lithium that

gets into the zirconia scale was found to be leachable upon washing by nitric acid [35]

indicating that the major part of lithium was adsorbed in the pores and cracks of the oxide

rather than being incorporated into its grains.
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Figure 2-14: Lithium enrichment in the oxide layers as a function of void fraction in out-of-pile-loop tests
[34].

4- When examining the microstructure in the zirconium alloys that suffered accelerated

corrosion, it was found that at the metal oxide/interface only equiaxed grains exist [13,

55]. Away from the metal/oxide interface, the microstructure does not change that much

compared to the corrosion in pure water, except that the pores and cracks are wider [35].

5- If a sample was oxidized in a LiOH environment and then switched to a new

environment, the corrosion rate is adjusted quickly to that expected in the new

environment [56].

6- If a sample is corroded in lithiated water in the presence of an equivalent amount of the

boric acid, no acceleration is observed [13].
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2.2.1.2 Hypotheses in the literature to explain the role of lithium and boric acid

First, we start with the three hypotheses about the role of lithium and then we present a

hypothesis about the role of the boric acid in mitigating the detrimental lithium effects.

Explanation of the role of lithium

1- Cox suggested that the origin of the lithium-induced/-accelerated corrosion is due to

preferential dissolution of tetragonal zirconia in the bottom of the pores of zirconia in

which LiOH is concentrated [57]. This is to be followed by partial precipitation on the

surface of the oxide scale later on. Mechanistically he suggested that once the dissolution

/redeposition have occurred, the compressive stresses would be lowered and mainly

monoclinic zirconia would grow, resulting in denser columnar layer. The growth of this

layer will build up the compressive stresses again, increasing the tetragonal to monoclinic

ratio, and leading to further increase in the oxide dissolution. It is worth noting here that

some research groups found no evidence for zirconia dissolution in lithiated water [58].

2- The corrosion rate is expected to increase with increasing the number of the anion

vacancies in the oxide. Thus, it was suggested that lithium in zirconia can be in a

substitutional solid solution. For each Li' substituting Zr*, 3/2 of oxygen vacancies will

form and hence the corrosion rate increases [55].

3- Perkins and Busch suggested that lithium accelerates the tetragonal to monoclinic

transition which leads to the accelerated corrosion since this phase transition is associated

with volume expansion [56]. Phase transformations induced by high concentration of

interstitial lithium were observed in titanium oxide [59]. Furthermore, in a study for the

dielectric properties of lithiated zirconia, it was suggested that lithium ions can exist in

interstitial sites in zirconia [60].

Explanation of the role of boron in mitigating Li-effects

It is known from the isotopic exchange studies that Lithium can be replaced by boron [61].

Thus, it was proposed that boron existing as B(OH) 3 or H4B0 4- functions as a blocking agent

reducing the access of LiOH to the surface of zirconia [13]. Therefore, the presence of boron in

these forms can actually serve to block the degrading effects of LiOH on zirconia surface.
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2.2.2 The role of secondary phase particles (SPP)
Fe and Cr are added to zircaloy-4 to improve its corrosion resistance. The solubility of

these elements in zirconium is very low and hence they precipitate an intermetallic phase of the

form Zr(Fe,Cr)2 which is known as the Laves phase. In general corrosion resistant precipitates in

zirconium alloys are termed secondary phase particles (SPP). In a PWR relatively large SPPs (>

0.1 micron) are needed for corrosion resistance. The small particles can easily dissolve in the

zirconium matrix under irradiation and hence become of no benefit for corrosion resistance.

Figure 2-15 indicates this fact. Thus, the major concern in operating a PWR in a high burn-up

regime is the dissolution of the SPPs in the zirconium metal which leads to accelerated corrosion.

It is worth noting that the increased corrosion rate in BWR with the large SPP size is related to a

phenomenon termed nodular corrosion that is not relevant to PWR environment and hence

beyond the scope of this review.

Relative corrosion rate
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Figure 2-15: Effect of secondary phase particles size on corrosion [10].

When the oxidation front reaches an SPP, it was observed that Fe is very mobile in that

case and migrate away from the SPP while chromium remains in the SPP [62]. Upon migration

of iron, a-Fe, Fe30 4 , Fe2
+ and Fe3, were detected by M6ssbauer experiments [63]. The migrated

iron atoms get oxidized and incorporated in the zirconia matrix and stabilize the tetragonal

phase. Furthermore, upon oxidizing the remaining part of the SPP (after the migration of most of
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the iron content), the volume increases which induces compressive stresses in the neighboring

zirconia matrix leading to stabilizing the tetragonal phase [64].

We conclude this section by highlighting a contradiction that we could not resolve from

our literature review. We discuss in the next section of this chapter (2.3) that SPPs in their

metallic form can act as a short circuit path for electron and hydrogen transport in zirconia.

Furthermore, if the metallic SPP are exposed to water (for any reason such as a lateral crack in

the oxide that leads to this exposure) then they catalytically increase the effective activity of

dissociated species such as 02-, OH~ and H+ [16, 65, 66]. However, if SPPs disappear by

irradiation-induced dissolution in the metallic matrix, the corrosion and the hydrogen pick-up

rates becomes severely large [67]. The majority of the literature that we reviewed focuses on the

adverse effects of not-having SPPs in the metal matrix, but when it comes to why the SPPs

improve the corrosion resistance and reduce the hydrogen pick up, we found nothing significant

to quote here.

2.2.3 CRUD induced localized corrosion (CILC)

CRUD" is the corrosion products of all nickel and steel alloys in the primary loop of a

PWR that gets deposited on the upper parts of the fuel cladding as a result of the subcooled

boiling of the coolant. Thus CRUD is primarily made of porous nickel, iron and chromium

oxides with some boron, lithium and zirconium related deposits. CRUD can accelerate the

general corrosion of the cladding locally primarily by two effects, 1) thermal feedback, and 2)

concentration of LiOH. In the first mechanism, the low thermal conductivity of the CRUD leads

to higher clad temperature which in turn increases the general corrosion rate. The increased

corrosion rate increases oxide thickness which lowers the overall thermal conduction of the clad

and hence elevates the clad surface temperature leading to more and more CRUD deposits and

the cycle goes on. Figure 2-16 from Ref. [11] shows a schematic for the thermal effect of CRUD.

" It is sometimes assumed to be acronym for Chalk River Unidentified Deposits.
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Figure 2-16: Thermal impact of CRUD deposition [11].

However, it is also believed that there are local chemical effects of CRUD that leads to

what is commonly termed as CRUD Induced Localized Corrosion (CILC). The origin of the

CILC hypothesis is the unexplained acceleration factor for corrosion rates in some regions of

excessive subcooled boiling on the upper parts of the clad. Explaining these acceleration factors

based on the thermal conductivity barriers of CRUD and zirconia failed [11]. It was suggested

that the pores of the CRUD work as chimneys that enhance the boiling of the coolant. These

chimneys can act as LiOH concentrators since the latter is known to be non-volatile. Thus the

base of each of these chimneys has a local supersaturation of LiOH. On the other hand it was

demonstrated that the intrinsic corrosion properties of Zircaloy are affected when lithium is

incorporated into the lattice of the oxide [68] or into the micro-cracks of the post transition film

[37]. Thus, the consequence of this local effect of concentrating lithium is increasing the

corrosion rates locally and then the oxide thickens significantly leading to a later thermal

activation of corrosion by the thermal feedback effect explained above. This picture has been

demonstrated in some failures observed in the Saxton reactor [11]. The only missing link in this
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picture is what actually lithium does to accelerate the corrosion. If the latter is known, a

predictive model for corrosion can be introduced to account for these local effects.

2.3 Hydrogen pickup and its relation to corrosion kinetics
Hydrogen gas is added to pressurized water reactor (PWR) coolant to reduce the

corrosion of iron and nickel alloys. Furthermore it is a product of the waterside corrosion of

zircaloy-4. It is well documented that hydrogen penetrates the oxide scale on zircaloy-4 reaching

the metal substrate and forms solid solution with zirconium. Once the solubility limit is

exceeded, zirconium hydrides precipitate which lead to embrittlement. The focus of this section

is analyzing the source term for hydrogen pick up in the zirconium alloy. By this we mean the

mechanism and kinetics by which hydrogen gets incorporated into the oxide, transported through

it and enters the metal. This forms the first subsection of this section. The second subsection

focuses on the effect of the presence of hydrogen in zirconia layer on the corrosion kinetics.

2.3.1 Hydrogen pickup and its transport

The hydrogen gas dissolved purposefully in PWR coolant does not get into the metal as

was shown through oxidation studies using tritium/water mixtures (T 2/H2 0) [11]. The only

remaining hydrogen source in PWR conditions is the hydrogen produced due to corrosion. What

is actually produced in the corrosion reaction is protons and OH groups. The protons get

neutralized by recombination with electrons forming hydrogen atoms; it is not known where

exactly this reaction takes place, on/in the oxide or when proton reaches the zirconium metal or

when it reaches an interphase with the SPPs. If the unoxidized interrmetallics (undissolved

secondary phase particles) are still present, they may act as optimal sites for proton-electron

recombination. Upon the dissolution of the intermetallics, the whole zirconia lattice can serve as

the recombination medium. Part of the neutral hydrogen atoms recombines to form hydrogen gas

molecules that evolve back to water and part of it penetrates through the oxide and eventually

reaches the metal. The ratio of the hydrogen that reaches the metal to the total amount of

hydrogen produced during the corrosion reaction is called the hydrogen pickup fraction (HPUF).

For PWR condition, it is assumed to be constant. For example in the code FRAPCON-3 it is

assumed to be 0.15 [69]. It should be emphasized that is not known how long the distance

through which the proton migrates through the oxide scale before it recombines with an electron.
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Another important point is that even when there are cracks in the oxide scale, there will always

be a coherent zirconia layer at the metal oxide interface that hydrogen (in the form of a proton or

a neutral atom) has to cross, so we believe that the bulk transport of hydrogen in zirconia must be

taking place eventually.

As we pointed out, the unoxidized secondary phase particles act as optimal sites for

hydrogen recombination with electron and moreover they act as short circuits for hydrogen

diffusion. Hatano et al. performed an experiment to determine the influence of second phase

particles on hydrogen transport through the oxide layer on zircaloy-4 [70]. It was determined that

specimens with larger second phase particles had higher hydrogen uptake than those with smaller

particles, and it was proposed that a) the second phase particles act as short-circuit diffusion

paths, and b) the large particles remain unoxidized for longer, remaining as short-circuit paths for

longer than the small particles. Furthermore there is a strong correlation between the hydrogen

uptake percentage and the nature of the elements in the secondary phase particles. Figure 2-17

from Ref. [8] illustrates this correlation. The peak at nickel was the reason of excluding it from

zircaloy-4. It was argued [11] that when the secondary phase particles dissolve into the oxide

matrix, they remain as metal atoms embedded in the oxide lattice and these metal atoms cantinue

to facilitate the transport of hydrogen through the oxide layer. We do not think that this argument

is valid for two reasons. First, M6ssbauer experminsts [63, 71] demonstrate nonzero oxidation

state for the secondary phase particles elements when dissolved in the zriconia matrix. Second, in

chapter 8 we will show using density functional theory calculations that neutral metal atoms

either are not stable in the lattice of zirconia or have a very high formation energy.
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Figure 2-17: The effect of alloying elements on hydrogen pickup percentage [8].

We turn now to discuss literature data regarding the presence and diffusion of hydrogen

in zirconia. Miyake et al. showed that the solubility of hydrogen in monoclinic zirconia (denoted

by a-ZrO2) is in the range of 10-5-104 mol H/mol oxide and decreases with increasing

temperature. Figure 2-18 shows that the solubility of hydrogen in tetragonal zirconia (denoted by

f-ZrO2) is higher than in monoclinic phase (denoted by a-ZrO2). It was observed that hydrogen

diffusivity is inversely proportional to the amount of the tetragonal phase in the scale [72]. In

other words, hydrogen diffuses faster in the monoclinic phase compared to the tetragonal one. In

fact Duong et al. demonstrated through employing secondary ion mass spectroscopy (SIMS) on

single crystals that. hydrogen can diffuse in tetragonal zirconia but not in the cubic phase and

extrapolated that hydrogen should diffuse faster in the monoclinic phase [31].
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Figure 2-18: Temperature dependence of hydrogen solubility in some oxides [73].

Regarding the presence of protons in zirconia, it is believed that interstitial protons in

zirconia are bonded to lattice oxygen [16]. The term "substitutional hydroxide" is frequently

used to refer to this defect [16]. However, this type of defect cannot account for all the hydrogen

observed in zirconia. This is due to the fact that the intensity of the O-H stretching frequencies

measured by infra-red spectroscopy appears to be less than what would be necessary to account

for the amount of hydrogen measured by SIMS [11, 74, 75]. The SIMS measurements indicate

higher concentrations of hydrogen to be present in zirconia. Both the Infrared and the SIMS data

were taken in corrosion experiments.

It is clear that there is significant uncertainty in identifying the nature of the hydrogen

species that penetrates zirconia. Also, while it is admitted that there is always a coherent zirconia
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layer that hydrogen has to cross to reach the metal beneath, it is unclear what the diffusion

mechanism is. In spite of this, we present here some mechanistic and quantitative aspects of

hydrogen diffusion in zirconia.

Bulk (through lattice) diffusion in single crystal tetragonal was studied by Doung et al.

They concluded that hydrogen diffuses in the form of proton in zirconia in a path that is parallel

but independent from the diffusion of the oxygen anion. That means that the hydroxyl group

does not diffuse as a coherent entity in zirconia. Instead they suggested that protons associate

with oxygen vacancies and they jump whenever the vacancy jumps. Vacancy hopping is the

mechanism by which oxygen ions diffuse and hence the description "parallel but independent".

The suggested mechanism has an inherent assumption that was not discussed by the authors.

They assumed that the oxygen vacancies implicitly trap electrons (F-center), otherwise it will

repel the proton.

Grain boundary diffusion of protons in fluorite-based oxides has been recently studied.

Confer Ref. [76] and the references therein. It was shown that zirconia and ceria in

nanocrystalline forms are proton conductors below 200 0C in atmospheric environments. The

smaller crystallites - 20 nm showed the faster conductivity. In fact the zirconia crystallites that

grow at the metal/oxide interface have similar size, and it is worth considering this path for

hydrogen diffusion leading to hydrogen pick up.

Khatamian and Manchaster determined that hydrogen in the oxide scale formed on pure

zirconium metal diffuses with an activation barrier of 1.04 eV and a prefactor of 1.13x10~2 m2/s

[77]. In addition Angel estimated that at 400 0C, the hydrogen diffusivity in the metal is 7-10

orders of magnitude faster than its diffusivity on the oxide scale formed on the metal [16].

2.3.2 Effect of hydrogen on the corrosion kinetics

To the best of our knowledge, correlating the presence of hydrogen in zirconia with the

corrosion kinetics has not been discussed in the literature on a sound ground except from a recent

paper by Harada and Wakamatsu [78]. In their corrosion experiments in pure water on zircaloy-

4, they found in inverse correlation between the oxidation (weight gain) and the hydrogen pick-

up within each cycle of the corrosion kinetics cycles. At the beginning of each cycle including

the very first one, the oxidation rate is slow while the hydrogen pick-up is fast. At the end of
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every cycle, they observed the opposite behavior, where the oxidation rate

hydrogen-pickup decrease. Figure 2-19 summarizes this trend.
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Figure 2-19: Corrosion behavior and hydrogen pick-up of Zircaloy-4 in pure water at 360 0C [78].

To interpret this behavior Harada and Wakamatsu suggested that right after the transition

between two cycles, the increased corrosion rate is due to the growth of the columnar grains in

the oxide and they judged that these columnar grains suppress the hydrogen ingress to the metal.

Right before the transition between the two cycles, the corrosion rate is suppressed by the

substoichiometric interfacial oxide layer, but the hydrogen accumulated in the oxide diffuses

through the interface layer to the metal. Figure 2-20 is a schematic description of this hypothesis.
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They went one step further by suggesting that hydrogen in the oxide assists the growth of the

columnar grains at the beginning of each cycle. They based this suggestion on comparing the

morphology of the oxide that grows in pure water corrosion experiments and the oxide scale that

grows in a mixed gas environment (3% 02 and 97% Ar). Before a cycle transition the

oxide/metal interface had a wavy shape. However, after the cycle transition, the wavy interface

changed into a smooth interface for the specimens corroded in water.
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Figure 2-20: Schematic diagram of the morphology of the oxide before and after transition [78].
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Chapter 3 : Modeling defect equilibria in metal oxides:
Application to tetragonal and monoclinic zirconium oxide

Abstract
We present a density functional theory (DFT) framework taking into account the finite

temperature effects to quantitatively understand and predict charged defect equilibria in a metal

oxide. Demonstration of this approach was performed on tetragonal (T-ZrO2) and monoclinic

(M-ZrO2) zirconium oxide. We showed that phonon free energy and electronic entropy at finite

temperatures add a non-negligible contribution to the free energy of formation of the defects.

Defect equilibria were conveniently casted in Kr6ger-Vink diagrams to facilitate realistic

comparison with experiments.

For T-ZrO2, consistent with experiments, our DFT-based results indicate the predominance of

free electrons at low oxygen partial pressure ( P0 2 10-6 atm) and low temperature (T 1500K).

In the same regime of P0 2 but at higher temperatures, we discovered that the neutral oxygen

vacancies (F-centers) predominate. The nature of the predominant defect at high oxygen partial

pressure has been a long standing controversy in the experimental literature. Our results

revealed this range to be dominated by the doubly charged oxygen vacancies at low temperatures

( T 1500 K) and free electrons at high temperatures. T-ZrO2 was found to be hypostoichiometric

over all ranges of T and P, mainly due to the doubly charged oxygen vacancies, which are

responsible for inducing n-type conductivity via a self-doping effect. A range of 1.3 eV in the

band gap of T-ZrO2 starting from the middle of the gap towards the conduction band is

accessible to the chemical potential of electrons (Fermi level) by varying T and Po without

extrinsic doping.

For M-ZrO2, we showed that at low P02, the predominant defect is free electrons compensated

with fully ionized oxygen vacancy. This result is consistent with the experimental determination.

In high Po2 there is a consensus that free holes are the predominant defects, but no similar

agreement on the compensator. Our approach showed that below 800K, fully ionized zirconium

vacancies charge-balance the free holes, while above 800K doubly charged oxygen interstitials

are the compensator.
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The approach and the results related to tetragonal ZrO2 were published in Physical Review B

[79].

3.1 Introduction

In this chapter we introduce a theoretical framework to quantitatively understand and

predict charged defect equilibria in a metal oxide. To facilitate realistic comparison with

experiments we cast these equilibria in the convenient representation of Kr6ger-Vink diagrams.

The framework is informed by density functional theory (DFT) total energy calculations and

takes into account finite temperature effects. We demonstrate this framework on both tetragonal

and monoclinic zirconium oxide (T-ZrO2 and M-ZrO 2). As discussed in the previous chapter

these are the most relevant phases for the oxide scale that grows on zirconium alloys and so

understanding their defect equilibria is essential in order to develop deeper understanding of the

atomic processes that control the corrosion and hydrogen pickup of zirconium alloys

Beyond the fact that zirconia is the scale that protects zirconium alloys in nuclear

reactors, ZrO2 actually ) belongs to the list of the most important metal oxides due its wide

usage in different technological applications [15]. In energy systems it is used in fuel cells [80],

in gas sensors [81], and as a thermal barrier coating [82]. Its applications were recently extended

to include usage as a gate dielectric for metal oxide semiconductor devices [83] and in

biomedical applications such as hip implants [84] and dental restorations [85]. This diversity in

zirconia applications is attributed to its superior properties; in particular it has high strength and

fracture toughness [14], an ionic conductivity that can be significantly enhanced by doping [86]

and straining [87], and high dielectric constant [83]. Thus our analysis presented here has an

impact on these applications of zirconia too.

In the rest of this chapter we introduce the theoretical approach to model defect

equilibria, next we present a demonstration of this approach on T-ZrO2 and finally on M-ZrO2.

3.2 Theoretical approach to model charged point defect equilibria in a

metal oxide

This section is presented in four subsections. First, we present the relevant

thermodynamics of defect formation in a metal oxide. Second, we describe the algorithm of
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constructing the Kroger-Vink diagram. Third, we explain how we included finite temperature

effects in our calculations. Finally, we describe the needed DFT calculations.

3.2.1 Thermodynamics of the formation point defects

To understand the energetics of the formation of a point defect in a metal oxide

exemplified here by ZrO2, we appeal to the picture of a constrained grand canonical ensemble. In

this picture a crystal of ZrO2 of a fixed volume is constrained to exchange oxygen, but not

zirconium, with an oxygen reservoir of a fixed temperature and oxygen chemical potential. In

fact the volume does not have to be fixed but we assume that the change of volume due to the

creation of point defects is negligible when these defects have dilute concentrations which is the

case for ZrO2. In this constrained ensemble, physically, the creation of all types of point defects

occurs by exchanging only oxygen with the reservoir. Thus an oxygen vacancy forms by

removing an oxygen atom from the crystal and inserting it in the reservoir. Conversely,

incorporating an oxygen atom from the reservoir into an interstitial site in the crystal leads to the

formation of an interstitial oxygen. To create a zirconium vacancy, two oxygen atoms get

incorporated in the crystal in regular lattice sites representing a ZrO2 unit formula missing

zirconium cation. On the other hand creating a zirconium interstitial requires moving two oxygen

atoms from the crystal into the reservoir and displacing a zirconium cation from its original

lattice site to an interstitial site. In all these reactions charge neutrality has to be maintained. We

elaborate on the latter condition in the next subsection. While this formalism does not rely on the

traditional concepts of Frenkel and Schottky disorder, accounting for them is still amenable

within this constrained ensemble as can be readily understood on the basis of the defect creation

processes described above (simply by composing Frenkel or Schottky from their constituents)

and as will be shown quantitatively later in this subsection. The picture described above is

necessary to understand the energetics of point defect creation, however, the actual modeling of

these defects in a DFT supercell is described in subsection 3.1.4. We can now define the Gibbs

free energy of formation, Gjq ,of the defect D that has a charge q as follows:

Gf = AEoid + AE - T(ASso"' + AS,'d +) PAV ±p, (3-1)D,q potential vib vl e
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where AEd,,,, AE bid, ASo"ld, ASold AV are the differences in potential energy, vibrational

energy, electronic entropy, vibrational entropy, and volume between the defected and perfect

crystals. P is the pressure, T is the temperature, and PD is the chemical potential of the species D.

As discussed above the change in volume is negligible and hence the PAV term can be set to

zero. The term AE" - TASso' = F ' represents the phonon contribution to the free energy of

formation of the defect. This contribution is significantly enhanced with temperature. The term

-TAS;"'is also enhanced with the temperature and adds a non-negligible contribution to the

free energy of formation of the defect. Subsection 3.1.3 addresses these finite temperature

effects. It is worth noting that the convention is to exclude the configurational entropy of the

defects from the definition of the Gibbs free energy. However, the contribution of this entropy is

still accounted for implicitly when computing the concentrations of the defects as described in

the next subsection. Indeed defects are stabilized in crystals at finite temperature mainly due to

the configurational entropy [88]. Finally, we define the term AE,,, ± ptD as the formation

energy of the defect and denote it by E ,q Next we describe the details of the latter term.

The formation energies of oxygen and zirconium defects can be computed as follows:

Ef, = Ed,,, -Epefct ± 1 P +q(EvBm + YF)+ EMP, (3-2)

N +E jq = EderCfe -- N3 Epe,,,f p1Q+q( EvBM+JF )+ Eg,, (3-3)

where the top signs are for vacancies and the bottom signs are for interstitials. Edefeced is the DFT

energy of the supercell that contains the defect. Eperfect is the DFI' energy of the perfect supercell.

p2 is the chemical potential of oxygen. EVBM is the energy of the valence band maximum in the

perfect supercell. pF is the chemical potential of electrons (or the Fermi level) relative to the

valence band maximum and hence it can take values from 0 to the width of the band gap in the

perfect crystal. EMP is the Makov-Payne correction for the multipole interactions between the

periodic images of the charged defects [89]. We considered only the leading term of the Makov-
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Payne correction which accounts for the monopole-monopole interaction. This term scales as ilL

where L is the length of the supercell (- 10.3 A in our simulations) and is considered to be the

dominant term for charged defects in ionic crystals [89, 90]. Higher order terms are not

considered here as their contribution is expected to be smaller because (1) the leading term of the

neglected part of the correction scales as 1IL; (2) All terms are scaled by the high dielectric

constant of tetragonal zirconia which is 39.8 [91] and for monoclinic zirconia is 20 [92]. Further

details about the computation of formation energies and the accuracy of the Makov-Payne

correction are given in section 3.5 .

The chemical potential of oxygen, p,, is defined as follows [93]:

po (T,po )=E T +,p62(T, + PO kBT ln(9) (3-4)

where, EDI" is the total energy of an isolated oxygen molecule as computed by DFT, po is the022

partial pressure of the oxygen gas, and k8 is Boltzmann constant. p (T, PO) is the difference in

chemical potential of 02 between T=O K and the temperature of interest at the reference pressure

P0 which is typically taken as 1 atm. The term pg (T, PO) was obtained from thermo-chemical

tables [94]. It is important to note that equation (3-3) implicitly indicates that the chemical

potential of zirconium, pz, is defined as:

pr =ErO2 Po , (3-5)

where Ez/"is the DFT energy of the unit formula of ZrO2 in the perfect crystal of zirconia. As

mentioned in the beginning of this subsection, it is still possible to account for the traditional

concepts of Frenkel and Schottky disorder. The formation energy of composite defects such as

Frenkel pair or Schottky defect becomes the sum of the individual formation energies of the

components of the composite defects as can be readily seen from equations (3-2), (3-3).
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3.2.2 Construction of the Kr6ger-Vink diagram

The basic idea that governs the Krnger-Vink diagram is that at a given temperature and oxygen

partial pressure, the concentration of ionic and electronic defects should sum up to achieve

charge neutrality in the bulk of the ionic crystal. This statement can be expressed in

mathematical terms as follows:

Iq[D ]+p n, =0, (3-6)
D,q

where [D ] is the concentration of a point defect D of charge q, p, is the concentration of holes in

the valence band, n, is the concentration of electrons in the conduction band, and the summation

is taken over all charged defects. The concentration of a point defect D with charge q was

derived by Kasamatsu et al. [5] by minimizing the Gibbs free energy of the defected crystal and

hence accounting for the configurational entropy. The expression is:

Gf
exp(- D'q)

kBT
[Dq]=nD e kB (3-7)

1+ exp(- D')

kBT

where nD is the number of possible sites for the defect D in the lattice per chemical

formula of ZrO2 and thus the concentration is given in units of number of defects per chemical

formula. The functional form of the concentration of a point defect is similar to the Fermi-Dirac

distribution, although no quantum mechanical considerations were accounted for in the

derivation. The assumption Gq >> kBT for all charges q' leads to neglecting the summation in

the denominator and obtaining the familiar Boltzmann-like expression for a point defect

concentration. However, we are not adopting this assumption as it breaks down at high

temperature and/or extreme oxygen partial pressure conditions. Special care needs to be taken in

applying the summation in equation (3-7) This is a summation over the charge states of the

defect that compete for the same site in the lattice. As an illustration for this subtle point we

consider the case of oxygen interstitial defects in tetragonal zirconia in the charge states -2,-1,0.

As will be shown in section 3.2 below, the charge states -1 and 0 compete for the <110>

dumbbell site while the -2 charge state favors an octahedral site. Thus, in computing the

concentration of the charges -1,0 the summation in the expression has to run over those two
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charges, while for -2, the summation includes only -2 because there is no other charge states that

compete for the same site. Indeed, the negative U-behavior of the oxygen interstitial led to a

further simplification which is excluding the -1 charge state at all.

The concentration of electrons in the conduction band and holes in the valence band is given by

applying Fermi-Dirac statistics to the electronic density of states [95] as follows:

dE
n= = gc(E) E

kBT

(3-8)

pV= g,(E) dE
1+exp( F E

kBT

where ge(E), g,(E) are the density of electronic states in the conduction band and valence band

per volume of the chemical formula ZrO2 , respectively. EcBM is the energy of the conduction

band minimum.

With the above expressions, the construction of the diagram at a fixed temperature

proceeds by examining a wide range of the oxygen partial pressure. At each value of the later,

there is only one value for the chemical potential of electrons, pF, that achieves the charge

neutrality condition. This value of the electron chemical potential has to satisfy two constrains,

otherwise we designate the oxygen partial pressure under examination as inaccessible. The first

constraint is that the electron chemical potential has to have a value between the valence band

maximum and the conduction band minimum. The second is that the formation energies, E, q,

of all the defects have to be positive because a negative value of the formation enthalpy indicates

that the crystal is not stable at these values of the electron chemical potential and a phase

transition or phase separation would take place at such values to avoid instabilities in the crystal.

A final constraint that we applied to the overall construction of the Kr6ger-Vink diagram is

limiting the search for accessible thermodynamic conditions (T, PO,) to an off-stoichiometry, x,

in ZrO2,,, in the range lx <0.065. These extrema of the values of x corresponds to the extrema

of the actual off-stoichiometry modeled in our DFT supercells. We regard this range of x as the

67



range in which the assumption of non-interacting defects holds. Typical off-stoichiometries of

undoped ZrO2 fall within the limit of non-interacting defects that we specified. On the other

hand, this does not hold for other metal oxides that exhibit higher off-stoichiometries such as

CeO2 and UO2.

It should be emphasized at this stage that the temperature, the oxygen partial pressure and

the electron chemical potential are not independent variables. Indeed, specifying two of them is,

in principle, enough to determine the third.

3.2.3 Finite temperature effects

A major challenge that confronts bringing the DFT calculations (at 0 K) closer to the

realm of experimental conditions is capturing the finite temperature effects. Ignoring these

effects can lead to results that are far from being quantitative [96]. The major difficulty in

capturing these effects is that they are typically very expensive computationally. In our modeling

of defect equilibria in tetragonal zirconia we found out that the free energy of phonons and the

electronic entropy have important quantitative contribution. This is the case especially because

the undoped T-ZrO2 is stable at very high temperatures. In this subsection we examine these

finite temperature effects. For monoclinic zirconia we only considered the phonon free energy

and discarded the electronic entropy (to reduce the computational cost).

We illustrate these finite temperature effects on the neutral oxygen vacancy in T-ZrO2 as

an example here (The same approach and analysis are applicable to all the other defects to

monoclinic zirconia of course). The creation of this defect is associated with a change in the

vibrational free energy of the system, AF,,,, that can be written as:

AF,,j - Fda''e + F0 
- F peI* (3-9)vFb ib + ii vi

The vibrational free energy of the oxygen atom in the gas phase, F, is already included

in the chemical potential term for the oxygen atom in the gas phase, po. What is typically

neglected in defect calculations are the vibrational free energies of the perfect crystal, Fpif ,

and the defected crystal, F .ed We accounted for these two terms within the harmonic

approximation as follows:
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F.Olid = NkBTJ g(o)ln 2sin hcldo, (3-10)

Where N is the number of degrees of freedom, o is the phonon frequency, g(w) is the phonon

density of states, h is Planck's constant.

Similarly a change in the electronic entropy occurs in the system upon creating a neutral

oxygen vacancy as follows:

AS = Sfe'e + Si - S p"' (3-11)
elc le eec dlec

The electronic entropy for the oxygen atom in the gas phase, SO, is already accounted for in the

chemical potential term for the oxygen atom, po. However, it is common to neglect the electronic

entropies of the perfect crystal, S f"', and the defected crystal, Sf'W . In fact the electronic

entropy for a wide band gap perfect crystal is negligible. However, if a point defect was

introduced in the crystal and this defect subsequently introduced electronic states in the band

gap, then the electronic entropy contribution of these states can be significant [97] The electronic

entropy for a solid crystal was calculated as follows [95, 98]:

Se"" = -kB g(E)[f In f + (1- f) ln(1 - f)]dE, (3-12)

where g(E) is the electronic density of states and f is the Fermi-Dirac distribution which is a

function of temperature, energy and the chemical potential of electrons. It is worth noting that all

the temperature dependence of S""c is embedded in the Fermi-Dirac distribution since we

neglected the temperature dependence of the electronic density of states. An accurate

determination of the temperature dependence of g(E) is still beyond the current computational

capabilities. However, in the Results and Discussion section we present Kr6ger-Vink diagrams

calculated at different band gaps and thus indicating how the reduction of the band gap, which is

the main impact of temperature on g(E) [99], can alter the defect equilibria.

In Figure 3-1 (a), we plotted the correction to the free energy of formation of the neutral

oxygen vacancy due to the phonon vibrational contribution in the solid (Fid"'f - FP') and

the electronic entropy contribution in the solid (- T(Sdf'l - S e4') Both the temperature and
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oxygen partial pressure dependence of these corrections are also shown in the figure. It is clear

that phonons add a significant quantitative correction to the free energy of formation especially

at the very high temperatures. This correction is further amplified by the exponential dependence

of the defect concentration on the free energy of formation. Within the assumptions adopted

here, the phonon correction is independent of the variation of P0 , on an isotherm. Quantitatively

the correction due to the change of the electronic entropy of the solid is not as significant as that

of phonons. However on an isotherm, this correction exhibits an interesting dependence on

P0 , that originates from the -TSd""d term. As will be shown in section 3.2 , at P 2 =1 (atm) the

chemical potential of electrons uF is located almost at the middle of the band gap. Then by

lowering P02 it starts moving up towards the conduction band edge. Once /pF reaches a value of

about 2.6 eV (i.e. coincident with the defect state shown in Figure 3-1(b)) it resonates with a

defect-induced state in the band gap and as a result the electronic entropy is enhanced and this

leads to the minima observed in Figure 3-1(a). The role of electronic entropy in defect equilibria

is not well-studied particularly in non-metal systems. The insights that we demonstrated here

conveys an important message that whenever a defect state arises in the band gap within the

reach of #F, the electronic entropy contribution should be assessed carefully.
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Figure 3-1: (a) Corrections to the free energy of formation of the neutral oxygen vacancy due to the
change in the phonon vibrations and the electronic entropy in the solid. (b) The total electronic density of
states (DOS) for tetragonal ZrO2 in a perfect supercell and in a supercell with a neutral oxygen vacancy.
The arrow in (b) indicates the electronic state in the gap due to the neutral oxygen vacancy that enhances
the electronic entropy of the defect. The position and magnitude of the resonance (in (a)) between pF and
the defect state (in (b)) depends on temperature and oxygen partial pressure.

3.2.4 Density functional theory calculations

Density functional theory calculations were performed using the projector-augmented

plane-wave method [100] as implemented in the Vienna Ab-initio Simulation Package (VASP)

[10 1-104]. Exchange-correlation was treated in the Generalized Gradient Approximation (GGA),

as parameterized by Perdew, Burke, and Ernzerhof (PBE) [105, 106]. In this work we chose to

apply standard PBE instead of a hybrid functional that incorporates a fraction of the exact

exchange interaction for the following reasons. First, typical practice of using hybrids requires a

precise knowledge of the band gap in order to choose a fraction of the exact exchange that

reproduces the priorly known band gap. In the case of ZrO2 the reported values of the band gap

are widely scattered [107, 108] to be useful while choosing the exact exchange fraction. Second,

zirconium oxide is not among the family of strongly correlated metal oxides [109] and hence

standard PBE is able to reasonably describe this system. Third and most importantly, the picture

that hybrid functionals can act as the norm, to which the errors in standard PBE predictions can

be referenced, has been recently challenged by Ramprasad et al [110]. Those authors

demonstrated that while standard PBE underestimates quantities such as the valence band width
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and the formation energies with respect to accurate experimental determination, hybrid

functionals overestimate these quantities. Fourth, a major goal in the current work is to

emphasize the contribution of finite temperature effects (in particular phonons and electronic

entropy) to the defect equilibria in metal oxides. At the temperatures of interest in this work,

these effects can be more dominant compared to any error due to standard PBE band gap issues.

In addition, evaluating these finite temperature effects using hybrid functionals is too expensive

computationally and is not anticipated to be more accurate than standard PBE as they tend to

overestimate the vibrational frequencies [111].

For zirconium the 4s2 4p6 4d2 5s2 electrons were treated as valence electrons. For oxygen

the 2s2 2p4 electrons were treated as valence electrons. These electrons were represented by a set

of plane waves expanded up to a kinetic energy cutoff of 450 eV. The error in the total energy

with respect to calculations performed using a kinetic energy cutoff of 600 eV was found to be

less than 5 meV per chemical formula. Bulk point defect calculations were performed in a

supercell that is 2x 2x 2 of the conventional unit cell. The later has 4 zirconium cations and 8

oxygen anions for both tetragonal and monoclinic zirconia. A 2 x 2 x 2 Monkhorst-Pack k-point

mesh was used to perform reciprocal space integrals. The error in the total energy with respect to

calculations performed with a 6x 6x 6 k-point mesh was found to be less than 1 meV per

chemical formula. Gaussian smearing with a smearing width of 0.05 eV was used to accelerate

the convergence of the electronic structure. All ionic relaxations were considered converged

when the forces on all ions were less than 0.01 eV/A. For computational efficiency, all

calculations were done initially by seeking a net zero magnetic moment solution and after

convergence, spin polarized calculations were performed on the pre-converged structure.

Single defects were introduced in the super cell one a time. No defect-defect association

was considered as the equilibrium concentrations of all defects in undoped tetragonal zircnoia

are expected to be dilute. We considered oxygen vacancies with charge states from 0 to 2+,

oxygen interstitials with charges from 2- to 0, zirconium vacancies with charges from 4- to 0 and

zirconium interstitials with charges from 0 to 4+. Antisites were not considered here as they are

expected to have high formation energies in particular for zirconia[24] and in general for all

binary ionic materials due to electrostatic considerations [112]. During phonon calculations the

electronic structure was sampled using 2 x 2 x 2 Monkhorst-Pack k-point mesh for T-ZrO2 but
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1 x 1 x 1 for M-ZrO2 . The monoclinic structure is very asymmetric and it is very expensive

computationally to go beyond the gamma point sampling in the phonon calculations of this

phase.

To calculate the concentration of free electrons and holes and to quantify the contribution

of electronic entropy to the free energy of formation of the point defects, the electronic density of

states were calculated for the perfect and defected. In these calculations for the tetragonal phase a

finer k-point mesh of 7 x 7 x 7 centered at the F point was used in combination with the

tetrahedron method with Blchl corrections [113]. However, for monoclinic zirconia the

electronic entropy was not evaluated but the density of states for the perfect crystal was

calculated to evaluate the electron and hole concentrations using a 6 x 6 x 6 centered at the r point

again in combination with the tetrahedron method with B16chl corrections.

DFT calculations were also performed to account for phonons within the harmonic

approximation. According to the symmetry of the supercell, certain atoms in certain directions

were displaced twice, backward and forward, a distance of 0.004 A for T-ZrO2 and 0.008 A for

M-ZrO2 and the electronic ground state was calculated. This allowed, utilizing a central finite

difference, the construction of the Hessian matrix and the determination of the vibrational

frequencies of the system. The code Phonopy [114] was then used to calculate the phonon

density of states using 15x15x15 k-point sampling centered at the gamma point.

3.3 Defect equilibria in tetragonal zirconium oxide
This section is presented into four subsections. In the first subsection we discuss the dependence

of the formation energies of the charged point defects on the electron chemical potential. In the

second subsection, we present our calculated Kroger-Vink diagrams and compare them with

conductivity measurements from the literature. In particular, the slopes of the calculated defect

concentrations in the Kriger-Vink diagrams are found consistent with the slopes of the total

conductance in the conductivity measurements from literature. Hence, our prediction of the

predominance of free electrons at low P2 is consistent with prior experimental conclusion. A

key contribution of our DFT-based results is the finding that the doubly charged oxygen

vacancies are the dominant defects in the high PO2 regime, where the prior experiments had fallen

short of revealing the type and charge state of the predominant defect. In the third subsection
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we discuss the variations of T-ZrO2 off-stoichiometry and electron chemical potential with the

thermodynamic conditions. T-ZrO2 was found to be hypostoichiometric in the entire T and P0 2

range. Furthermore, the chemical potential of electrons has access to a range of 1.3 eV of the

band gap of T-ZrO2 by a self-doping effect mainly from the doubly charged oxygen vacancies.

Finally, we discuss our key observations related to the atomic and electronic structure of the

point defects.

3.3.1 Defect formation energies at OK

Figure 3-2 (a,b,c) is a plot of the formation energies at 0 K (excluding the zero point

energy) for all the defects we considered as a function of the electron chemical potential. Part (d)

of the figure summarizes the thermodynamic transition levels between the dominant charge

states of each defect as extracted from (ab,c). An important note needs to be clarified for this

figure. The formation energies were allowed to take negative values in Figure 3-2. This is not be

confused with the fact that the Gibbs free energy of a defective crystal is more negative than that

of a perfect crystal at finite temperature [112] since what we plotted in Figure 3-2 is indeed the

formation enthalpy of the defects neglecting the pressure-volume term. The enthalpy of

formation for a point defect is a positive quantity [88, 112] and this was taken care of while

constructing the Kriger-Vink diagram as pointed out in the Theoretical and Computational

Approach section.

As was shown previously for T-ZrO2 by Eichler [26], we found that the oxygen vacancies exhibit

negative-U behavior with a U value of -0.037 eV. This behavior indicates that the singly charged

vacancies are not stable with respect to the disproportionation reaction into neutral and doubly

charged vacancies. We also found out that oxygen interstitials exhibit negative-U behavior with a

U value of -0.838 eV. Although the negative-U behavior indicates that the intermediate charge

state is never stable thermodynamically, signatures of this banned charge state were observed in

electron spin resonance spectra [115] in the context of studying hydrogen defects in wide band

gap oxides. This was explained by metastability due to sufficient isolation of the charged defect

[115]. However, there is no transparent way to quantify the concentration of the defects that are

in a metastable charge state and at any case it is expected that this concentration is less than what

would be calculated based on their formation energies. Thus, to simplify the analysis we will
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assume that the disallowed charge states, VJ and o, always have negligible concentration. If

under any circumstances their concentrations increases to a non-negligible level, once

equilibrium is reached the majority of these defects will undergo the disproportionation reaction

and hence their concentration drops to a very low level again.

The quadruply charged is the predominant zirconium vacancy throughout most of

the band gap compared to the other charge states as in part (b) of Figure 3-2. This can be

understood on the basis that this is the only charge state for zirconium vacancies that does not

lead to the formation of the 0- ion as will be explained in subsection 3.2.4. While 0- is favorable

to 02- in the gas phase, the Madelung potential in an ionic crystal favors the 02- ion [116], thus

V"" is the predominant. On the other hand, zirconium interstitials have in general high

formation energies compared to all other native defects as shown in Figure 3-2 (c). Part (d) of the

same figure depicts the thermodynamic transition levels of all the native defects. A

thermodynamic transition level indicates the value of the electron chemical potential at which the

dominant charge state of a defect changes from a value to another. These levels are amenable to

experimental determination. Deep levels in the band gap can be measured by deep-level transient

spectroscopy (DLTS) experiments, while shallow levels can be determined through temperature

dependent Hall measurements [3]. This diagram in Figure 3-2 (d) is more relevant to studying

zirconia as a gate dielectric material compared to the traditional Kr6ger-Vink diagram that is

more common in ceramics literature. Furthermore, the thermodynamic transition levels can

directly correspond to a separation between two regions in the Kr6ger-Vink diagram as will be

discussed in the next subsection 3.2.2
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Figure 3-2: Defect formation energies as a function of the electron chemical potential. (a) Oxygen defects.
(b) Zirconium vacancies. (d) Zirconium interstitials. (d) The thermodynamic transition levels for the
native defects determined from (ab,c).

We turn now to compare our results of the formation energies with the values available in

the literature. The detailed comparison is in Table 3-1. Our results for the oxygen vacancy

formation energies are in a good agreement with the DFT calculations of Eichler [26] and of

Ganduglia-Pirovano et al [117]. We also have a reasonable agreement with the embedded cluster

Hartree-Fock and B3LYP-DFT calculations of Safonov et al [28]. We are not aware of any

published electronic structure calculations of defects other than oxygen vacancies in undoped

tetragonal zirconium oxide. However, the study of Dwivedi et al. [91] using classical interionic

potential considered all fully ionized defects of T-ZrO2 . The predictions of this potential are far
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from being reasonable and this is expected since a simple pair potential with a fixed charge for

each ion is not able to reproduce the complex charged defect structures of zirconium oxide. To

the best of our knowledge, the only experimental value of a defect formation energy for undoped

tetragonal ZrO2 is that of the V" + 2V " Schottky defect determined by Wang and Olander [118]

They performed a thermodynamic analysis for the thermogravimetric measurements of Xue

[119] and obtained a value of 4.12 eV, while we obtained a DFT value of 5.53 eV for the same

defect. Although such quantitative discrepancy is common between DFT and experimentally

derived formation energies, it is worth mentioning that Wang and Olander relied in their analysis

on the assumption that quadruply charged zirconium vacancies has to be the predominant native

defect at high oxygen chemical potential to simplify the charge neutrality equation in this

regime. The nature of the predominant defect in tetragonal ZrO2 at high oxygen chemical

potential is a long standing controversy in the literature [119, 120], hence such an assumption is

definitely questionable. Furthermore, in their analysis, Wang and Olander obtained negative

entropy of formation for that particular defect, a result that they suspected in their concluding

remarks. We will discuss more the potential origins of discrepancy between DFT calculations

and experiments in the next subsection.

Table 3-1: Formation energies in eV of several isolated defects in tetragonal ZrO2. These values are at
zero chemical potential of electrons.

07/VOX Vo' V,7 0; Vz''/ Zr""

This work 5.62 2.68 -0.29 1.79 6.11 1.96

PW91-DFT [26] 5.73 2.55 -0.76 - - -

PW91-DFT 5.41-5.92 - - - - -

[117]

Embedded 6.1 - - - - -

cluster HF and

B3LYP DFT

[28]

Classical - - 15.62 -10.42 85.04 -67.41

potential [91]
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3.3.2 Defect equilibria at finite temperature

In this subsection we discuss the equilibria of the electronic and point defects of

tetragonal ZrO2 utilizing Kr6ger-Vink diagrams. We further compare our results with the

experimental results in the literature that attempted to explain the defect equilibria in tetragonal

ZrO2. We found that our results are consistent with experiments in terms of the predominant

defect at low T (< 1500K) and low P0 (5 10-6 atm). In this regime, both experiments and our

calculations confirmed the predominance of electrons followed by the doubly charged oxygen

vacancies. There is also consistency between our computational results and experiments in terms

of predicting the increase of electronic transference number by elevating the temperature.

However, prior experiments could not resolve the type and the charge of the predominant defect

at high Po.. Our DFT calculations were able to uncover the nature of this defect and we found it

to be the doubly charged oxygen vacancies at low temperatures and free electrons at high

temperatures. Confidence in our conclusions is enhanced by the agreement between the slope of

the predominant defect concentration in the calculated Kriger-Vink diagrams and the slope of

conductance as a function of P2 in conductivity experiments [120].
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Figure 3-3: Calculated Kroger-Vink diagram for tetragonal ZrO2 at (a) 1500 K using the DFT7 predicted
band gap of 3.9 eV, (b) 1500 K using the experimental band gap of 4.2 eV, (c) 2000 K using the DFT
predicted band gap. (d) Conductivity measurements on tetragonal zirconia by Kofstad and Ruzicka [120].
In a,b,c only the defects that have concentrations greater than 10.8 are shown. The dash-dot lines in a,b,c,d
are guide for the eye showing the (-1/2) and (-1/6) slopes.

Figure 3-3 (a,c) shows the calculated Krdger-Vink diagrams at 1500 K and 2000 K,

respectively using the DFT band gap of 3.9 eV. Part (b) of the figure is the calculated diagram at

1500 K using the experimental value of 4.2 eV [107] and part (d) is a reproduction of the

conductivity measurements of Kofstad and Ruzicka [120]. In our calculated diagrams we show

only the defects that have concentrations greater than 10- per ZrO2 chemical formula. Moreover,

we limit the horizontal axis to a range of P% that extends from 1 (atm) to i0-0 (atm) unless there
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is no value for the electron chemical potential in the band gap that achieves both charge

neutrality and positivity of all formation energies. We chose those two representative

temperatures for our calculated Kr6ger-Vink diagram because they represent two distinct classes,

i.e. the low temperature behavior is exemplified by the diagram at 1500K and the high

temperature behavior is represented by the one at 2000K. The distinction between the two

behaviors is the predominant defect at each regime of Po2 as detailed below. Before discussing

the details of the diagrams, we introduce the notation logio[D] for logio of the defect

concentration.

3.3.2.1 The Kroger-Vink diagram at 1500 K

The diagram at 1500 K using the DFT band gap in Figure 3-3(a) can be divided into two

regions. The first is a high PO2 region that extends from 1 atm up to 10-'A atm in which the

doubly charged oxygen vacancies are the predominant defect. In this region charge

compensation mainly takes place through the creation of quadruply charged zirconium vacancies

and free electrons. The slope of logjo[D] for the predominant defect in this region is slightly

negative but close to zero. This region is characteristic for ionic materials that predominantly

form Schottky defects around the stoichiometric composition [88]. The second region extends

from 10-14 atm up to 10-5 atm and the predominant defects here are the free electrons followed

by the doubly charged oxygen vacancies. Charge compensation mainly takes place among these

two types of defects and hence their logio[D] have a slope of (-1/6) as predicted by applying the

law of mass action. This behavior of the concentrations leads to an n-type electric conductivity.

It is worth noting that the log o[D] of neutral oxygen vacancies grows with a slope of

approximately (-1/2) by lowering P. in this region until it becomes comparable to the

concentration of free electrons. The slope of the logio[D] of this defect is roughly independent of

the PO2 as it does not participate in achieving charge neutrality. The calculated diagram at 1500 K

using the experimental value of 4.2 eV for the band gap is shown in part (b) of Figure 3-3. The

same qualitative features described above still apply to this diagram. The major difference is that

extending the band gap expands the horizontal region down to 10-5 atm. This is in a better

agreement with conductivity measurements shown in part (d) of the figure and discussed below.

Increasing the band gap adds a penalty to the process of creating free electrons and holes. Hence
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the region in which free electrons predominates is delayed until a pressure as low as 10-5. 7 atm is

achieved.

3.3.2.2 The Kroger-Vink diagram at 2000 K

Figure 3-3(c) shows the calculated Kroger-Vink diagram at 2000 K using the DFT band

gap. The first distinction to note here compared to the lower temperature diagram, is that there

are more defects that have concentrations greater than 10-8 and this is anticipated as the

concentration is temperature activated. Second, there is no region in which logio[DI of the

predominant defect has a horizontal slope. This is an indication of an off-stoichiometric

composition and indeed it is hypostoichiometric as we elaborate more in the next subsection.

However, the diagram can still be divided into two regions. The first region extends from 1 atm

to 10-8^8 atm. In this region the free electrons are predominant followed by the doubly charged

oxygen vacancies. Charge compensation takes place mainly among these two types of defects

and hence the (-1/6) slope for both of them. It is evident in this region that doubly charged

oxygen interstitials have higher concentration compared to quadruply charged zirconium

vacancies. This indicates that if tetragonal ZrO2 were stable at P0 . higher than 1 atm and can

approach stoichiometric composition at 2000 K, then it would be an ionic compound in which

the intrinsic region around the stoichiometric composition is dominated by oxygen Frenkel pairs.

This is a significant difference compared to the finding at 1500 K where the intrinsic region

around the stoichiometric composition is dominated by Schottky defects. The second region in

the Kroger-Vink diagram at 2000 K extends from 10-8.8 atm to roughly 10-14-5 atm. The border

between the first and second region is due to the thermodynamic transition level for oxygen

vacancies from charge state 2+ to 0 as shown in part (d) of Figure 3-3. As discussed above we did

not find a value for the chemical potential of electrons that achieves both charge neutrality and

positivity of the formation energies of all defects at pressures lower than 1014- atm. In this

region the neutral oxygen vacancies predominates with logio[D] slope of approximately (-1/2). It

is also noticeable that the concentrations of three charge states of zirconium interstitial grow in

this region by lowering Po2 but still below the concentrations of oxygen and electronic defects in

this region.
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3.3.2.3 Comparison with experiments

To compare our theoretical results with the experimental findings in the literature, we

show in Figure 3-3(d) the conductivity measurements of Kofstad and Ruzicka [120]. On an

isotherm, the defect motilities are constant. Therefore, the logio of the total conductance of a

metal oxide exhibits a slope with P 2 that is governed by the logio[D] slope of the predominant

defect. This is what justifies the comparison between our DFT calculated concentrations and the

conductivity measurements. The conductivity measurements in Figure 3-3(d) are in a reasonable

agreement with our calculated Krtger-Vink diagram at 1500K in terms of exhibiting a slightly

negative slope that is very close to zero at high P02. At lower P02 the slope of the logio of the

conductance changes to roughly (-1/6). It is important to note that according to these

conductivity measurements, the first horizontal region extends down to 10 4atm and then the (-

1/6) starts somewhere between 10-6 and 10-7 atm depending on the temperature. This is more

consistent with our calculated Kroger-Vink diagram using the experimental band gap of 4.2 eV.

The trends exhibited by the conductivity measurements shown here are also obeyed by

the conductivity measurements of Vest and Tallan [121]. In addition, thermogravimetric

measurements by Xue [119] reproduced the (-1/6) slope at low P02 . Thus, there is a firm

agreement that at low P02 the predominant defect is free electrons followed by doubly charged

oxygen vacancies. However, the experimental efforts could not resolve the nature of the

predominant defect at high P2. Kofstad and Ruzicka whose results are reproduced in Figure 3-3

(d) suggested that at high P02 both oxygen vacancies and interstitials are predominant. Authors of

Ref. [121] could not deduce the predominant defect at highP 02. The thermogravimetric

measurements of Xue [119] at high P02 exhibited a positive slope that can be fitted well by

either +1/6 (0," predominant) or +1/5 (V"" predominant) slopes but the latter was chosen to

conform to the classical potential predictions of Ref. [91]. As we mentioned above the results of

this classical potential are highly unphysical and cannot be used as a support of the nature of

charged defects. We believe that the reasonable agreement between our DFT results and the

conductivity measurements of Ref. [120, 121] provides a solid ground to propose that this defect

is the doubly charged oxygen vacancies at high P02
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There is another aspect in which our DFT calculations are consistent with the

experiments. We showed that at low temperatures (with respect to the range of stability of T-

ZrO2) the electronic conductivity predominates in the region of low P2 . At higher temperatures,

the electronic conductivity predomination starts at high P12 and extends over a wide range of

P0 2 . Measurements of the electronic and ionic transference numbers are consistent with this

finding [121, 122].

3.3.2.4 Origins of the gap between theory and experiment

Beyond the finite temperature effects (which we demonstrated in subsection 3.1.3 and

incorporated into our analysis), there are several other challenges that obstruct improving the

level of agreement between theory and experiments for determining the nature and

concentrations of defects at a given thermodynamic state. On the experimental side, impurities

are unavoidable and those can significantly affect the conductivity measurements. For example

the conductivity measurements of Guillot and Anthony [123] could not resolve the nature of the

intrinsic predominant defects in T-ZrO2 because of the interfering role of impurities. Moreover to

the best of our knowledge all the experiments on T-ZrO2 to understand its defect equilibria were

performed on polycrystalline samples. Grain boundaries and the associated space charge zones

can significantly affect defect equilibria [112]. Not only the presence of grain boundaries, but

also the size of the grains themselves can alter the equilibria [124]. The current DFT

computational limits do not allow realistic calculations for charged defect energies at grain

boundaries. Another factor that is pertinent to undoped T-ZrO2 is that it is thermodynamically

stable at very high temperatures, which poses limitations on the feasibility and accuracy of the

measurements. On the theoretical side, the well-known DFT problem of underestimating the

band gap has an exponentially amplified impact on determining the concentration of free

electrons and holes, and hence on the overall equilibria of the charged defects. As shown in

Figure 3-3 (a,b) applying a rigid shift of 0.3 eV to the conduction band improved the agreement

with the conductivity measurements. Applying rigid shifts to the conduction band to match the

experimental band gap is a common practice [25, 125]. However, the spread in the

experimentally determined band gap values, as in the case of T-ZrO2 [107, 108], makes it

difficult to choose one of these values with confidence. Furthermore, the well-known GGA-DFT
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issue of over-binding the oxygen molecule introduces an error of about 1.36 eV when using the

PBE functional as estimated by Wang et al. [126] by fitting the formation enthalpy of simple

non-transition metals to the experimental values. This over-binding impacts the accuracy of

determining the chemical potential of oxygen. The outcome of applying such correction is

introducing a positive shift to the oxygen molecule energy. Hence, it becomes more favorable to

create defects that lead to incorporate more oxygen gas into the solid which are oxygen

interstitials and zirconium vacancies. This simultaneously reduces the concentration of oxygen

vacancies and zirconium interstitials. In other words, the concentration of the negatively charged

point defects increases and the concentration of the positively charged point defects decreases.

This, in turn, reduces the concentration of free electrons and increases the concentration of free

holes to maintain charge neutrality. Furthermore, the actual value of the correction depends

strongly on the DF' simulation parameter. In section 3.6 we evaluate this correction following

the approach in Ref. [126] but using the same simulation parameters used in the defect

calculations. A value of 1.22 eV was obtained.

3.3.3 Off-stoichiometry and electron chemical potential

The temperature and the oxygen partial pressure are the thermodynamic independent

variables that determine the defect concentrations in the stress-free undoped T-ZrO2 as discussed

in the previous subsection. Two other important observables that are determined by T and P0 2

are the sample off-stoichiometry, x, and the chemical potential of electrons, pF. The former is an

integral quantity that represents the collective defect equilibria and can be measured in

thermogravimetric experiments [119]. The latter is a fundamental quantity that affects the

transport and transfer of electrons, and can be measured in electrochemical impedance

spectroscopy experiments [127]. In our DFT calculations, the calculated defect concentrations

can be used to compute x and the charge neutrality condition determines the value of pF. In this

subsection we discuss the relations among T- P0 2 -x- pF on the basis of our DFT calculations.

Figure 3-4(a,b,c) depicts the relations among T- P 2 -x- iF for stress-free undoped T-ZrO2.

Part (a) of the figure shows that the off-stoichiometry of a T-ZrO 2 sample is almost independent

of Po2 for several orders of magnitude, and then at a very low PO2 the off-stoichiometry decreases
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significantly. The PO2 at which LxI (hypostoichiometry here) sharply increases is reduced with

increasing the temperature.
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Figure 3-4: (a) Off-stoichiometry in ZrO2+x as a function of the oxygen partial pressure, PO , at different

temperatures. The dependence of the electron chemical potential, pF, on the oxygen partial pressure at

different temperatures (b), and on the off-stoichiometry, x, at different temperatures (c).

As shown in the resulting Kr6ger-Vink diagrams, oxygen vacancies are responsible for

the observed off-stoichiometry. This plot indicates also that T-ZrO2 is always hypostoichiometric

in the T- P02 range considered here, and this is consistent with the experimental results of

Carnigila et al [128]. Part (b) of Figure 3-4 shows that at 1 (atm), the chemical potential of
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electrons pF is close to the middle of the DFT calculated band gap. By lowering PO2 , we find that

pF moves towards the conduction band minimum within a range of about 1.3 eV. This is a self-

doping effect due to the native defects particularly the doubly charged oxygen vacancies and

consistent with the n-type conductivity identified in the previous subsection. Finally in part (c) of

the figure, we plotted the two dependent variables pUF and x. Close to the stoichiometric

composition, 1 F is very sensitive to very small changes in x. A very small change to a

hypostoichiometric composition leads to a jump in the electron chemical potential towards the

conduction band and then pF levels off by further decrease of x. The value of x at which pUF

levels off in part (c) of the figure corresponds the value at which the sharp decrease in the off-

stoichiometry takes place in part (a). It is evident from part (c) that the lower the temperature, the

greater the maximum achievable electron chemical potential by self-doping.

The chemical potential of electrons in the bulk of a metal oxide controls the transport of

electrons [129]. Furthermore the transfer of electrons across interfaces is governed by the

matching of pF across the interface. These two issues are of great importance in corrosion,

catalysis, gate dielectrics and dye-sensitized solar cells among other applications. We

demonstrated here that our theoretical approach for defect equilibria in the bulk of a metal oxide

consistently determines the value of PF according to the surrounding thermodynamic conditions.

While we did not address here determining the variations of UF across an interface, we believe

that our determination for UF in bulk zirconia sets a necessary boundary condition needed for the

accurate determination of its variations at interfaces with the same approach described here [130,

131].

3.3.4 Defect atomic and electronic structures

So far our discussion of the point defects was based on the energetics. However, we

believe that it is also important to elucidate the atomic and electronic structure of the defect. This

is because the atomic and electronic characteristics of each defect provide a signature to help in

detecting it experimentally. Moreover, these characteristics are needed to understand the

transport kinetics of the point defects and their effect on the mechanical properties of the

material, and thus, can be important for future work concerned with these defects. In this

subsection we describe our key observations related to the atomic and the electronic structures of
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the major defects that we assessed in the analysis presented above, starting with vacancies and

ending with interstitials.

Several experiments and DFT calculations confirmed that oxygen vacancies in all phases

of zirconium oxide have the ability to trap electrons forming F-centers [25, 26, 117, 132]. Our

calculations are consistent with these prior reports as we observed electron localization on the

vacant oxygen site for both VJ and V . The ground state for the two electrons localized in the

V0 defect is singlet. It is energetically very unfavorable for zirconium cations to get reduced to

the oxidation state 3+ and hence the electrons get trapped in the vacant site. On the other hand,

we observed in our calculations that all zirconium vacancies except Vl'" lead to the formation of

the antimorph of the F-center, namely the V-center. In a V-center, a hole gets trapped in an oxide

ion that is the nearest neighbor of a cation vacancy. This means that each of the zirconium

vacancies other than V"j" is a cluster of point defects. For example, a more accurate notation for

V; would be (40;V")X, however, we kept the former as a simplified notation throughout this

chapter. As we showed in the previous subsections the V-centers associated with all zirconium

vacancies except V.1" always have a minute concentration.

Our calculations indicate that for the charge states 0 and -1, the <110> split dumbbell is

the energetically most favorable structure of the interstitial oxygen. The lengths of the dumbbells

are 1.47A and 1.99 A respectively larger than our calculated bond length for the oxygen

molecule which is 1.23 A. Examination of the charge the density shows that the charge is almost

evenly distributed on the two ions of the dumbbell. Moreover, for the charge state 0, there is a

very distinct feature that appears in the phonon density of states which is a characteristic peak at

a frequency of 939 cm'l. While this peak is at a frequency much higher than any vibrational

mode in the crystal, it is still much lower than 1560 cm-1, our calculated vibrational frequency for

the oxygen molecule. On the other hand for the charge state -2 the octahedral site is the most

favorable. The strong columbic repulsion does not allow the doubly charged interstitial oxygen

ion to have a dumbbell or a crowdion configuration.
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3.4 Defect equilibria in monoclinic zirconium oxide

In this section we discuss first the OK calculated formation energies and then the

calculated Kr6ger-Vink diagrams at finite temperature.

3.4.1 OK formation energies

Figure 3-5 shows the calculated native defect formation energies for monoclinic ZrO2

(M-ZrO2) as a function of the chemical potential of electrons, PF. The latter was allowed to take

values between 0 which corresponds to the edge of the valence band maximum and 3.5 eV which

is our calculated band gap of M-ZrO2 using standard PBE functional. The chemical potential of

oxygen was set to represent 600K and 1 atm indicating the oxygen rich part of the oxide scale

grown in zirconium alloys in the water cooled nuclear reactor. For each defect we exhibit the

dominant charge states only. Per ZrO2 unit formula there are two nonequivalent oxygen sites.

One is three fold coordinated and is denoted here by 03 and the other is four fold coordinated

and hence the notation 04. In these thermodynamic conditions, V" predominates for most of

the values of PF as shown in the figure.

We found the oxygen interstitials to exhibit negative-U behavior consistent with GGA

calculations of both [25] and [24]. However, oxygen vacancies whether in 03 or 04 are normal

positive-U defects consistent also with the GGA calculations of Foster et al. [25] and the hybrid

functional (HSE) calculations of Lyons et al. [133] but contrary to the finding of Zheng et al.

[24]using standard PBE functional. This means that there is a possibility for a magnetic defect to

exist in monoclinic ZrO2 which is V', but as we show in the finite temperature subsection

below, this only takes place in extreme temperature and oxygen partial pressure

§ The issue of defect-induced magnetism is still under debate for ZrO2 phases. See for example [134] J. Zippel, M.

Lorenz, A. Setzer, G. Wagner, N. Sobolev, P. Esquinazi, M. Grundmann, Phys. Rev. B, 82 (2010) 125209.
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Figure 3-5: Native defect formation energies in monoclinic ZrO2 as a function of the chemical potential of

electrons. The chemical potential of oxygen was set to represent 600K and 1 atm.

3.4.2 Defect equilibria at finite temperature

First we discuss the calculated Kr6ger-Vink diagram at 1200 K as this sets the ground to

compare with experimental attempts to understand the defect equilibria in M-ZrO2. Next we

discuss the Kroger-Vink diagram at 600K which is more relevant to the nuclear reactor operation

temperature.

3.4.2.1 The Kroger-Vink diagram at 1200K

Using the correction for 02 molecule binding energy outlined in section 3.6 at the end of

this chapter, we calculated the Kr6ger-Vink diagram for pure monoclinic zirconia. The result is

shown at 1200 K in Figure 3-6. The diagram shows that monoclinic zirconia is amphoteric;

exhibiting p-type behavior at high Po2 where free valence band holes are compensated by fully

ionized oxygen interstitials, and n-type conductivity at low P02 where free electrons are

compensated by fully ionized oxygen vacancies fist and then at very low PO, the compensation
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is by singly charged oxygen vacancies. The transition pressure from p-type to n-type happens to

be at 10-10 atm at this particular temperature. There is a consensus in the experimental literature

on the compensating ionic defect at low Po2 . Both electric conductivity [121, 135] and

thermogravimetric [119] measurements suggested VJ' to be predominant at low P 2 consistent

with our results.
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Figure 3-6: Calculated Kr6ger-Vink diagram for undoped monoclinic zirconia at 1200K.

There is no agreement in the literature on the high P 2 predominant ionic defect. While

the experiments of Ref. [119, 121] suggested Vz" to be the compensator for the valence band

holes, the electric conductivity measurements of Kumar et al. [135] suggested singly charged

oxygen interstitials to be the compensator. Our modeling indicate that at high temperature the

compensator is 0" and low temperature the compensator is V," and the transition temperature

happens to be at 800K.

3.4.2.2 The Kroger-Vink diagram at 600 K

Figure 3-7 shows the calculated the Kr6ger-Vink diagram at 600K. The equilibria are

slightly more complicated here but the amphoteric nature of the oxide is still preserved. At high
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P0 2 (1-10-8 atom) the free holes are compensated by fully ionized zirconium vacancies. Then

from 10-8 to 10-" at the fully ionized oxygen interstitials compensate the free holes. At still lower

P02 the compensation mechanism changes to be mutual between free electrons and free holes.

Finally the n-type behavior is recovered at very low P 2 where free electron are compensated

with fully ionized oxygen vacancies. At such lower temperatures and for undoped zirconia, it is

not possible to experimentally determine the underlying defect equilibria and hence our results

are more of a prediction in such low temperatures.
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Figure 3-7: Calculated Kr6ger-Vink diagram for undoped monoclinic zirconia at 600K.

3.5 The accuracy of the Makov-Payne correction

The leading term of the Makov-Payne (MP) correction was shown to overshoot the

formation energies of charged defects in some cases [136]. To assess whether this the case for

zirconia, we performed a test for this correction scheme on 3 selected defects (Vo",Vz"",0,") in

tetragonal zirconia. Our rationale behind the choice of these defects is that the first is the most

predominant; the second represents the highest possible charge state, while the last represents the
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category of interstitials. As detailed in Ref. [136], the test is conducted by performing finite size

scaling correction to the formation energies of the defects and regarding the obtained results by

this scheme as the "reference" values. Then the error in MP corrected values in the 2x2x2 super

cell used in our work can be evaluated based on the reference values obtained from finite size

scaling. While finite size scaling is more robust, it is too expensive computationally and

impractical when it comes to studying very large number of defects as in our work. As we

demonstrate here, the simple MP correction performs reasonably, especially for the highest

charge state (Vz",") and thus it was adopted throughout this work for all the defects.

To perform finite size scaling on the three selected defects, we calculated the formation

energies using 4 supercells for each defect. Table 3-2 summarizes the relevant details for each

supercell.

Table 3-2: The details of the supercells used to perform finite size scaling on the native defects of
tetragonal zirconia.

Number of T-ZrO2

conventional unit cells ix1x1 2x2x2 3x3x3 4x4x4

Number of atoms 12 96 324 768

k-points 4x4x4 2x2x2 2x2x2 2x2x2

Kinetic energy cutoff 450 eV

For each defect the reference formation energy Ef (which is essentially the energy that

would be obtained if the supercell size is infinite) is obtained by fitting the 4 supercell results

using the following equation [136]:

Efa b
EL (L)E +-L+-F, (3-13)

where Ef (L)is the uncorrected formation energy of the defect calculated from a supercell of

length L which is defined as the cubic root of its volume. Ef, a, and b are obtained from the

fitting. In the following figure, we present the uncorrected, MP-corrected and the fitted equation

for the formation energies (at zero chemical potential of electrons) for the selected defects. The

first thing to observe from the figure is that the MP correction does not overshoot the formation
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energy even for the smallest supercell (12 atoms). Second the analytic form of the above
equation fits well the DFT data indicating the correct dependence on L and the adequacy of two
L-dependent terms (no higher orders are needed).

1

0

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

5

-5'-
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

6'04 0.06 0.08 0.1 0.12 0.14

1/L (A-')
0.16 0.18 0.2

Figure 3-8: Scaling of the relaxed defect formation energy energies. The fitting is according to equation
(3-13) using the four points that have no correction.

In Table 3-3 we summarize the "reference" formation energies (Es) along with the MP-

corrected and the uncorrected values in units of eV. The error in the latter two was calculated

with respect to E . Clearly the MP correction is performing reasonably well and significantly

improves the raw uncorrected result and brings it closer to the "reference" value for the highest

charge state (V'"). Moreover adding the MP correction yields better results compared to the raw

uncorrected results except for the doubly charged oxygen vacancy.
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Table 3-3: Summary of the values of the formation energies of the defects at
electrons

zero chemical potential of

Reference value Raw results without Makov-Payne results

obtained by finite size correction (error) (error)

scaling

V- -1.16 -0.52 (0.64) -0.33 (0.83)

V1" 6.29 5.27 (-1.02) 6.06 (-0.23)

0, 4.62 4.16 (-0.46) 4.35 (-0.27)

3.6 Correcting the 02 molecule overbinding

For the simulation parameters and DFT functional used throughout this work, we fit a

correction for 02 molecule overbinding following the approach outlined in Ref. [126]. As

discussed by Wang et al. [126] this error is not limited to the strongly correlated transition metal

oxides, but it is also relevant to non-transition metal oxides (even semiconductor oxides). Table

3-4 summarizes the oxides that were used in the fitting and the evaluation of the overbinding.

These particular oxides were chosen as they are related to the study presented in chapter 8 on the

effect of 3d transition metals on zirconium alloys hydrogen pickup. Figure 3-9 shows the

comparison between the calculated formation energies using DFT and the experimental

formation enthalpies at room temperature taken from Ref. [94, 137]. As shown in the figure a

shift of 1.22 eV is needed to bring the best line fit for the calculated values to the line that

corresponds to the perfect matching with the experimental enthalpies. The shift we obtained is

close to the value of 1.36 evaluated by Wang et al. [126] and the small difference is due to the

difference in the set of oxides used and most importantly due to the different simulation

parameters (such as the kinetic energy cutoff and k-space sampling).
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Table 3-4: Crystal and magnetic structure for the oxides used in evaluating the oxygen overbinding.

Reference Oxide Crystal Structure of the Oxide Magnetic Structure

ZrO2  P21 /c (baddeleyite) -

Sc 2O3  Ia3 (bixbyite) -

TiO2  P4 2 / mnm (rutile) -

V 20 5  Pmmn -

Cr2O 3  R3c (corundum) Antiferromagnetic

MnO2  P42 / mnm (rutile) Antiferromagnetic

MnO Fm3m (rock salt) Antiferromagnetic

Fe2O 3  R3c (corundum) Antiferromagnetic

CoO Fm3m (rock salt) Antiferromagnetic

NiO Fm3m (rock salt) Antiferromagnetic

Cu20 Pn~m

ZnO P63rm (wurtzite)

NbO Pm3m

SnO2 P42 / mnm (rutile)
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Figure 3-9: Comparison between the calculated formation energy per 02 for some transition metal oxides
and the corresponding formation enthalpies. The latter are adapted from Ref. [94, 137]. The best fit for
the computed formation energies is shifted by 1.22 eV from the line that corresponds to the perfect
agreement with the experimental enthalpies.
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Chapter 4: Predicting self-diffusion of oxygen in tetragonal
zirconium oxide from first principles

Abstract
Theoretical prediction of self-diffusion in a metal oxide in a wide range of thermodynamic

conditions has been a long standing challenge. Here we establish that rigorously combining the

formation free energies and migration barriers of all charged oxygen defects as calculated by

density functional theory within the random walk diffusion theory framework is a viable

approach to predict oxygen self-diffusion in metal oxides. We demonstrate this approach on

tetragonal ZrO2 by calculating oxygen self-diffusion as a function of temperature and oxygen

partial pressure or alternatively temperature and off-stoichiometry. Arrhenius analysis on the

isobaric (or constant off-stoichiometry) self-diffusivities yields a spectrum of effective activation

barriers and prefactors. This provides reconciliation for the wide scatter in the experimentally

determined activation barriers and prefactors for many oxides.

4.1 Introduction
In this chapter we extend the framework of predicting defect equilibria in metal oxides to

account for defect diffusion kinetics as epitomized in the self-diffusion coefficient. Self-

diffusivities in metal oxides are critical to model processes such as corrosion, crystal growth,

sintering and diffusional creep [88]. For zirconium alloys, modeling the growth of the oxide

layer requires knowledge of the stoichiometry dependent self-diffusivity of oxygen in the oxide

scale. Since the tetragonal phase (T-ZrO2) is the one that is in the vicinity of the metal it is

desirable to obtain the self-diffusivity of oxygen in this phase of the zirconia. Although grain

boundary diffusion could be more important to determine, developing the capability to predict

the in-lattice bulk diffusion is more reasonable starting point especially that such prediction from

first principles is not well-analyzed in the literature as we discuss below.

Experimental determination of self-diffusivities and identifying the mediating defect is a

challenging task, and for many oxides there is no consensus neither on the effective activation

barriers nor the mediating defect [88, 138]. Theoretical work focused on computing the

formation and/or the migration energies of the defects [138-140] However, extending the

formation energies to defect concentrations as a function of thermodynamic conditions, which is
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nontrivial for a metal oxide, and combining them with migration barriers to obtain self-

diffusivities has not been accomplished satisfactorily. For example, earlier work had to assume

the domination of a certain defect to compute self-diffusivities as a function of the concentration

of that particular defect [141]. Recently, self-diffusivity due to neutral oxygen defects in SiO 2

were obtained starting from DFT calculations without prior assumptions about the predominant

defect [142]. However, for most oxides charged defects prevail, and their varying and competing

concentrations as a function of temperature leads to phenomena such as the non-Arrhenius

behavior on diffusivity isobars, which we demonstrate also in this chapter. In Ref. [140] oxygen

charged defects were included in computing the isothermal self-diffusivity of oxygen in ZnO.

However, the resulting diffusivity was presented as a function of both oxygen and electron

chemical potentials. Those results have some validity when the variation in electron chemical

potential is due to dopants in dilute solid solutions. However, these two variables are in fact not

independent for a fixed composition and at a fixed temperature. Resolving the dependence of

electron chemical potential on temperature (1) and oxygen partial pressure (PO2 ), enables

evaluating the diffusivity as a function of (7) and (P 0 2) which are independent variables .

In this chapter, we focus on the diffusion of oxygen since the growth of the oxide scale

on Zr alloys proceeds through oxygen diffusion, although the approach is also applicable to

cation diffusion. Without prior assumptions about the dominant defect, we employed random-

walk diffusion theory, to combine the herein computed migration barriers of oxygen defects with

their previously determined concentrations (cf. chapter 3) to obtain oxygen self-diffusivity as a

function of T and PO,. To compare our results to experiments in which oxide off-stoichiometry

was fixed [30], we recast the calculated diffusivity in the form of a function of temperature and

off-stoichiometry. By performing Arrhenius analysis on both the isobaric and the constant off-

stoichiometry diffusivities, two spectra of effective activation barriers and prefactors emerge,

providing an explanation for the wide scatter in effective activation energies and prefactors

documented in the literature [138, 140].
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4.2 Theoretical and computational approach
From random-walk diffusion theory [88, 140], the one-dimensional self-diffusivity of a

defect d, is given by

1
D =-[d -] '' rd" (4-1)2 k '"

where [d] is the defect concentration and the summation is taken over all the crystallographic

directions, k, that has a nonzero projection on the one dimension under investigation. For each

crystallographic direction k, 4
k is its multiplicity, 2k is the length of its projection on the one

dimension of interest, and F' is the jump frequency of the defect d in the direction k.

In a constant volume ensemble, FJ7 is given by [143]

r d d - E d
Fk = t4 exp( ) (4-2)

kT

where kB is Boltzmann constant. For the defect d that jumps in the direction k, v and E d are

the attempt frequency and the migration energy barrier, respectively. The migration entropy is

carried by the term V4 which is taken as 5 THz in this work. By adopting the vectors [100],

[010], [001] as a basis for the conventional unit cell of T-ZrO2 and calculating D for each defect

in the directions of the basis vectors, we obtained a diagonal diffusivity tensor. Table 4-1

summarizes the multiplicities and projections for the diffusive jumps in T-ZrO2. One needs to

not that [100] and [010] are equivalent. Figure 4-idepicts the relationship between the

conventional and primitive cells of tetragonal zirconia.
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Table 4-1: The Multiplicities 4 k and projections 4k for the diffusive jumps in T-ZrO2. We report 2A in

units of the lattice constants of the conventional unit cell (a=b=5.153 A, c=5.303 A).
Jump [100] [001]

{, 2
k (in units of a) 4k Ak(in units of c)

Vacancy

<100 > 2 1 - -

<001> - - 2 1

<110> 2 1 - -

< 10> 2 1 - -

<101> 2 1 4 1

<101> 2 1 4 1

<111> 8 1 8 1

Interstitial

2.44 A 4 x (2/3) 1/2 4 x (2/3) 1/2

2.10 A 4 x (2/3) 1/2 4 x (2/3) 1/2

010]

[100
001]

Figure 4-1: Two tetragonal zirconia conventional cells projected on the (001) plane are depicted with their

boundaries shown in continuous white line. One primitive cell (projected on the same plane) is also

shown with its boundary in dashed blue. The crystallographic directions on the right belong to the

conventional cell. Both cells share the [001] vector. Green (small) balls represent zirconium ions and red

(large) balls represent oxygen ions. The chemical formula of the conventional cell is (Zr4O8), while that

for the primitive cell is (Zr2O 4).
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The trace of the diagonal diffusivity tensor is the quasi-isotropic self-diffusion coefficient

of the defect. By summing the self-diffusivities of all oxygen defects, we obtain the oxygen self-

diffusivity, Do. Including correlation effects to obtain tracer-diffusivity introduces a negligible

correction [88, 140]. and is beyond the scope of this work. In what follows all diffusivities are

understood as self

In a metal oxide the defect concentration depends on P0 , and so does the defect self-

diffusivity. In chapter 3, we determined the P0 , dependence of defect concentrations utilizing the

charge neutrality condition. Here, we evaluated the migration barriers for oxygen defects, and

combined their concentrations and migration barriers as indicated in equations (4-1) and (4-2).

The oxygen defects considered are V1", VJ, and 0> The singly charged vacancy and interstitial

were deemed disallowed by the negative-U behavior and the neutral oxygen interstitial, QX ,was

found to have very low concentration and hence these defects are not considered here.

The migration barriers were calculated using the climbing-image nudged elastic band

method [7] using 3-5 intermediate images. DFT total energies were calculated using the

projector-augmented plane-wave method [100] as implemented in the VASP package [101-104].

Other details of the computational method are the same as in chapter 3. The experimental [107]

band gap of 4.2 eV was adopted in our calculation of defect concentrations because of better

consistency with conductivity measurements in T-ZrO2 as shown in chapter 3.

4.3 The migration barriers of oxygen defects
Table 4-2 summarizes the calculated migration barriers and the corresponding jump

distances for all the oxygen vacancies and interstitials considered. For V17and V , we

considered all the possible and distinct diffusive jumps within the conventional unit cell. Seven

distinct jumps were identified as shown in the table. The DFT results of Eichler [26] who

considered the migration of V11 and VJ in only the <100 > and <001> are in agreement with

our calculations.

The V0X is an F-center with two electrons localized on the vacant site as shown in chapter

3. Its ground state is singlet. The diffusive jump of an F-center involves two simultaneous events,
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namely, the jump of a neighboring oxide ion to the vacant site and the transport of the two

electrons of the F-center to the new vacant site. For some diffusive jumps, we discovered that the

migration barrier is lowered when the two electrons of the F-center form a triplet state (net spin

= 2 ,B) at the saddle point. In evaluating the overall oxygen diffusivity, we used the lowest

migration barriers found for Vj along each direction.

Fully ionizing the F-center leads to the formation of V '. For the shortest diffusive jumps

(along <100> and <001>), the migration barrier of V ' is significantly less than that of Vj. This

is consistent with a common trend identified for the diffusion of F-center in oxides [83] and was

explained by the columbic repulsion between the localized electrons and the oxide ion during the

hop of VJ.

The interstitial O occupies the octahedral site in the conventional unit cell, eight-fold

coordinated by lattice oxygen as shown in chapter 3. We found the migration barrier for the

direct diffusive jumps of O" to be very high (> 5eV). Instead, this defect migrates by the

interstitialcy mechanism, where the migrating interstitial replaces one lattice oxygen which is

then pushed to the next interstitial site. Because of the tetragonal distortion of the oxygen

columns in T-ZrO2, four of the lattice oxygens that coordinate O are at a distance of 2.44 A and

the other four are at 2.10 A, hence two distinct interstitialcy migration barriers exist as shown in

Table 4-2
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Table 4-2: The calculated migration energy barriers (in eV) of oxygen defects in T-ZrO2. The
crystallographic directions and the jump distances are based on the perfect conventional unit cell. DFT
results from Ref. [26] are shown for comparison. For VJ, barriers based on both the triplet (net spin
2 pB ), and the singlet (OpB ) saddle points are shown.

Jump distance along the given crystallographic direction

<100> <001> <110> <T10> <101> <101> <111>

Defect 2.64 A 2.65 A 3.64 3.64 A 3.30 A 4.13 A 4.51 A

V 0.38 0.58 2.64 3.82 4.32 1.79 3.70

V 0.22 0.61 - - - - -

Ref.[26]

Vg (2PB ) 1.59 1.24 2.83 2.90 2.16 3.76 3.88

V (0jP ) 1.48 1.65 3.11 3.39 2.34 3.96 2.91

V0(0PB ) 1.35 1.43 - - - - -

Ref. [26]

Interstitialcy (2.44 A) Interstitialcy (2.10 A)

Oi" 1.41 0.28

4.4 Analysis of the self-diffusivity of oxygen in tetragonal zirconia
By combining the migration barriers and the concentrations, we obtained the self-

diffusivity of each defect and the total oxygen self-diffusivity, Do, as a function of T and PO,.

We consider the range 1500 K S T 5 2300 K, in which T-ZrO2 is thermodynamically stable

without doping. Figure 4-2 (a,b) is a reproduction of the previously calculated concentrations of

all electronic and ionic defects in T-ZrO2 at 1500 K and 2000 K (cf. chapter 3). Figure 4-2 (c,d)

shows the calculated diffusivities at the same temperatures. Part (c) is at 1500 K and represents

the low T behavior (T 5 1700K), while pat (d) is at 2000 K and represents the high T behavior.

The criterion for this temperature classification is the number of different slopes that log Do

exhibits as a function of log P0 2 . For T-ZrO2 these slopes of log Do conform mainly to those of

log D of V " since this defect predominates within a wide range of T and PO2 and also has a low
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migration barrier along <100>. The exception is at very low PO2 where the contribution of VO' to

total diffusivity becomes significant.
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Figure 4-2: (a) and (b) are reproduction of the previously calculated concentrations of electronic and ionic
defects at 1500 K and 2000K from chapter 3. Zirconium interstitials are not shown for clarity. Ionic
defects are denoted by Kr6ger-Vink notation, while nc an p, denote conduction band electrons and
valence band holes, respectively. (c) and (d) depict the calculated self-diffusivities for oxygen defects and

the total oxygen self-diffusivity as a function of PO2 at 1500 K and 2000 K.

The low T behavior as in Figure 4-2 (c) is characterized by two main regimes of PO2. In

the high PO regime, V'" is mainly charge-balanced by the zirconium vacancies, V'r. Hence,

log[ V '] and consequently log Do are roughly independent of PO2 as expected based on the law

of mass action combined with the charge neutrality condition ([V"]~ 2[Vz]). In the low
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P0 2 regime free electrons charge-balance V '. Thus, both log[V'] and log D0 exhibit a (-1/6)

slope in accordance with the new charge neutrality condition (2[V '] [e']) and the law of mass

action. At very low PO2 , the (-1/6) slope of log Do is modified by the contribution of VJ . The

latter defect is neutral and except for a small electronic entropy contribution (cf. chapter 3), its

concentration is not affected by the charge neutrality condition. It follows that log[VJ] has

always a (-1/2) slope. In Figure 4-2 (c), VJ contribution is not shown as we limited the PO, axis to

10-1 atm to facilitate the comparison with part (d) of the figure. At high temperatures as in Figure

4-2 (d), the zero slope region at high PO, disappears and the (-1/6) slope for both log[ V * ] and

log Do dominates for most of PO values. At very low P0 2, the contribution of V X to diffusion

changes the slope of log Do to be a weighted average between (-1/6) and (-1/2).

The gradual transition from the low T to the high T behavior is illustrated in Figure 4-3(a),

which depicts the isothermal Do as a function of P0 2 . In order to perform Arrhenius analysis and

extract an effective activation barrier, we plot in Figure 4-3(b) the isobaric Do as a function of

1/T. The hallmark of Figure 4-3(b) is the non-Arrhenius behavior on high PO, isobars, which do

not lend themselves to identifying one effective diffusion barrier over the entire temperature

range. The explanation of such non-Arrhenius behavior resides in the different mechanisms of

charge neutralization as a function of temperature in T-ZrO2 introduced above. To rationalize

this, imagine an isobaric (e.g. PO =1 atm) cooling experiment. At high temperatures (T>1700K),

V ' is charge-balanced by free electrons. Upon cooling, the concentration of V ' decreases in an

Arrhenius fashion until about 1700 K, below which the charge neutralization mechanism

changes to involve cation vacancies such that [VZ"]~ 2[Vz] . Further cooling continues to

decrease [V ''] in an Arrhenius fashion but with (- alog[VZ' ]/a(1/T)) having a value less than

the corresponding one at the higher temperatures. This leads to the overall non-Arrhenius

behavior over the entire range of temperatures considered here. The low P 2 isobars, on the other

hand, have one charge neutrality mechanism (2[V ] [e']) for all temperatures shown and

hence they conform to the Arrhenius behavior.
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Figure 4-3: (a) Isothermal oxygen self-diffusivities as a function of PO2 . (b) Isobaric oxygen self-

diffusivities as a function of 1/T. (c) Isothermal oxygen self-diffusivities as a function of the off-

stoichiometry, x, in T-ZrO2,. (d) Constant off-stoichiometry oxygen self-diffusivities as a function of 1/T.

The experimental data shown in (d), adapted from Ref. [30], are self-diffusivities obtained by scaling the

measured tracer-diffusivities by the appropriate correlation factor (of about 0.69) determined in Ref. [30].

To the best of our knowledge, the only experiments in the literature to determine oxygen

diffusivity in single crystal undoped T-ZrO2 were performed at constant off-stoichiometry, x, by

Park and Olander [30]. Maintaining constant off-stoichiometry in the experiments allows probing

the migration barrier of the dominant defect that causes the given off-stoichiometry, decoupled

from the temperature dependence of the concentration of that defect. To compare with these

experiments and to understand the variation of diffusivity with an experimentally accessible
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quantity, x, we plot in Figure 4-3(c) the isothermal oxygen diffusivities as a function of logx and

in Figure 4-3 (d) the oxygen diffusivities at constant off-stoichiometry as a function of 1/1. The

experimental data from Ref. [30] are also shown in part (d) of the figure.

Close to stoichiometric composition and at low T where V* is charge-balanced byV ,

log Do is roughly independent of x (Figure 4-3(c)). This zero slope region is absent at high T. As

the degree of off-stoichiometry increases, the slope of log Do increases toward a value of 1 at all

temperatures. The value of 1 is what is expected based on equation (4-1) when the off-

stoichiometry is attributed solely to V1" (xoc [V "]) which is approximately the case when V " is

the predominant ionic defect and simultaneously neutralized by free electrons. By continuous

deviation from stoichiometry on an isotherm, the slope of log Do decreases toward a value of 1/3.

In this range of x, V0X predominates concentration-wise but diffusion is still mainly due to

V* because of its much lower migration barrier (see Table 4-2). Thus, the predomination of Vo

leads to the proportionality relation of x oc [VJ] oc: P 2 , and the fact that V17controls the total

oxygen diffusivity leads to, Do oc [V7''] oc P02 6. Combining these two proportionalities produces

Do oc x 3 , explaining the 1/3 slope. Beyond the 1/3 region, further departure from stoichiometry

results in a monotonic increase of the slope of log Do toward a value of 1 indicating that [Vo ]

reaches to values high enough to surpass the impact of the low migration barrier of V ' and

hence self-diffusion is dominated by Vo.

In the experiments of Ref. [30] shown in Figure 4-3 (d) the P02 was adjusted at each

temperature to achieve a stoichiometric composition of T-ZrO2. However, the inevitable

presence of aliovalent cationic impurities in the samples leads to off-stoichiometric composition

by x=10 4 . The level of quantitative agreement in our calculated diffusivity in pure T-ZrO2-x at

x=104 and the measured values in the impurity-containing samples is reasonable. On the other

hand, it is not surprising that the experimental data have a different slope (lower effective

barrier). The reason is that in the experiments the off-stoichiometry is solely due to V1" which is

107



needed to charge-balance the aliovalent impurity cations, while in the simulation of undoped T-

ZrO2-x, the off-stoichiometry is due to both V ' and VX. By consulting Table 4-2 and noting that

the easiest migration pathway for VJ has a higher barrier than that of V ", the different slope of

the experimental data compared to simulation can be readily understood.

Using the marked points in Figure 4-3(b), (c) (or similar ones for the not shown isobars

and constant x lines), we fit the isobaric and constant off-stoichiometry diffusivities to the

Arrhenius relation, D,,, = Do exp(- Ef /kBT). Thus, we obtained an effective activation

barrier, Ef , and a prefactor, Do, as a function of PO in Figure 4-4(a) and as a function of x in

Figure 4-4(b). For the non-Arrhenius isobars we fit a single activation barrier and prefactor to

facilitate the comparison with the Arrhenius ones.
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Figure 4-4: The effective activation barrier, Ef (blue circles), and effective prefactor, Do (red squares),

for oxygen diffusion in T-ZrO2-.x as a function of (a) PO2 ,and (b) x.

A diffusion barrier evaluated at constant PO2 (Figure 4-4(a)) represents both the formation

and the migration of the defects. As PO2 decreases, the oxygen chemical potential decreases, the

chemical potential of electrons (Fermi level) increases, and [VJ] gradually dominates over

[V * ]. The first factor decreases the formation energy of both vacancies, the second increases the
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formation energy of V ", and the last factor increases the average migration barrier for oxygen.

The second and third factors win and we observe in Figure 4-4(a) an increase in the effective

activation barrier as P0 , decreases. Moreover, the non-Arrhenius behavior on the high P0 2

isobars is reflected in the figure by lowering the effective barrier at high P0 2 more than what

would be expected by extrapolating from low P0 2 -

On the other hand a diffusion barrier evaluated at constant x (Figure 4-4(b)) represents

primarily the migration barriers of the defects. Since oxygen in T-ZrO2 diffuses mainly through

V * and VJ, the effective diffusion barrier at constant x is a weighted average of the migration

barriers of these two defects. Close to stoichiometric compositions, V 'is predominant and the

effective diffusion barrier is relatively low as in Figure 4-4(b). By continuous departure from

stoichiometry, V0 gradually predominates and the effective diffusion barrier consequently

increases until it reaches about 1.4 eV conforming to the lowest migration barrier for VJ.

Ironically in Figure 4-4 (a,b) the highest values for oxygen diffusivity are coincident with the

highest activation barriers emphasizing the importance of the prefactor (affected by the defect

concentration) in deciding the magnitude of the overall diffusivity.

4.5 Conclusion
In conclusion, we presented a framework based on random walk diffusion theory to

predict self-diffusion in metal oxides, informed by first principles based calculations of defect

formation and migration energies. We demonstrated the approach on oxygen diffusion in

tetragonal zirconia and validated our results with prior experimental results. Defect

concentrations evaluated through charge neutrality condition are combined with defect mobilities

within the random-walk diffusion theory. The resultant self-diffusivity is, as expected, a function

of two independent thermodynamic variables, either (T, Po) or (T, x). Performing Arrhenius

analysis on isobaric or constant x diffusivities yields a spectrum of activation barriers and

prefactors. We believe that the systematic analysis presented here can reconcile the scatter in the

measured self-diffusion activation barriers in many metal oxides such as the 1.9-3.3 eV scatter

for zinc diffusion in ZnO [138] or the 0.9-1.3 eV for oxygen diffusion in U0 2 [144].
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Chapter 5 : The role of defects in the thermodynamics of
monoclinic-tetragonal phase transition in zirconium oxide

Abstract

Theoretical consideration of the transition temperature between solid phases focused on

the free energy of the perfect crystals of these phases. Here we demonstrate that point defects

through their configurational entropy can significantly change the thermodynamic transition. In

particular we construct a temperature-oxygen partial pressure phase diagram for zirconia by

considering the free energy of the defected tetragonal and monoclinic crystals. The tetragonal

phase is shown to admit more defects compared to the monoclinic phases and hence it can be

stabilized at temperatures lower than the perfect crystal transition temperature. The latter effect

takes place at low oxygen partial pressure. This provides another perspective on the stabilization

of the tetragonal phase close to the metal/oxide interface in zirconium alloys.

5.1 Introduction
The tetragonal to monoclinic phase transition plays a crucial role in the transition of the

corrosion kinetics of zirconium alloys. As discussed in chapter 2, it is hypothesized in the

literature that relieving the planar compressive stress on tetragonal zirconia by the continuous

growth of the oxide scale is responsible for inducing the thermodynamic driving force for the

phase transition to take place. The implicit assumption here is that planar compressive stress is

the stabilizer for tetragonal zirconia in the low temperature*** of the nuclear reactor. In spite of

being a reasonable assumption, there could be other reasons for the stabilization as well. For

example, when the alloying elements such as iron and chromium gets oxidized, they get

incorporated into zirconia as cations having oxidation state lower"I than that of zirconium and

so they provide a means to stabilize the tetragonal phase. Here we present another perspective

on the stabilization of the tetragonal phase close to the metal/oxide interface. This oxygen poor

part of the oxide is rich of defects and in particular oxygen vacancies. We will show in this

chapter that ease of creating oxygen vacancies in the tetragonal phase (compared to the

monoclinic) phase in the oxygen poor part of the oxide provides a thermodynamic stabilization

Low with respect to the stress-free transition temperature (-1440K).
Confer chapter 8 for detailed analysis of the oxidation states of the alloying elements.
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through the configurationally entropy of these defects. In other words, the defects provide a rout

for supercooling the tetragonal phase below its perfect-crystal transition temperature. We

demonstrate this by constructing a temperature-oxygen partial pressure phase diagram for ZrO2

based on the on the Helmholtz free energy of the tetragonal and monoclinic phases. For the

perfect crystal, the phase diagram collapses into a temperatures-only phase diagram which

indeed was computed previously for ZrO2 [145-147] using density functional theory (DFT). The

addition we present here, is that we superimpose the contribution of the defects to the free energy

which is dominated by their configurationally entropy, and calculate for the first time a T- Po, for

ZrO2 . To the best of our knowledge, such a temperature-activity diagram has never been

theoretically constructed for any material starting from first principles. However, the key

underlying idea that the thermodynamic stability of a metal oxide depends on both the

temperature and the oxygen activity has been widely used in extracting metals from their ores

and is typically depicted in the form of the so-called Ellingham diagrams [148].

The backbone for this work is the calculated Kr6ger-Vink diagrams for the tetragonal and

monoclinic phases presented in chapter 3 as they provide the input concentrations of the defects

as a function of T and PO,. In the rest of the chapter, we summarize the theoretical and

computational approach and present the calculated phase diagram.

5.2 Theoretical and computational approach
The point defects in a crystal are stabilized through their configurational entropy which

lowers the total free energy of the crystal. If we denote the Helmholtz free energy per chemical

formula (ZrO2) of the perfect crystal by FJ and denote the same quantity of the defected crystal

by F, then the contribution to the free energy of the defected crystal is given by:

F - F = J [d q ]Ff, -T'S , 5-1F~o=[d]Fq ThnV(5-1)
d,q

Where [dy] is the concentration of the defect d whose charge is q. Fdq is the Helmholtz free

energy of formation of the defect with charge q, and Sco, is the total configurational entropy of

the defects. A derivation for how to compute Scof in the limit of non-interacting defects is given

in [5]. To perform this computation all what is needed is the concentration of the point defects

which were determined for both the monoclinic and tetragonal phases in chapter 3.
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To construct the T- PO. phase diagram, we considered a range of temperatures between

1300-1800K and a range of oxygen partial pressure between 1-10~30 atm. At each point of the

phase diagram, we computed the Helmholtz free energy of both the defected tetragonal and

monoclinic phases according to equation (5-1). The phase that has the lower free energy was

deemed to be the one that this stable at this point of the diagram. At any point of the diagram

(especially at low PO2), if any of the phases has a defect that has a negative formation energy,

then we designate this point of the diagram is "unexplored zone". More about this zone will be

discussed in the subsequent section.

In this study we did not apply any correction to the defect energies except for the Makov-

Payne correction. In other words, no band shifts or correction for the over binding of the 02

molecule was considered for this study. The purpose was to remove any empiricism especially

that we are not after accuracy in this study; instead we would like to highlight the major role that

the defects can play in changing the thermodynamic stability of metal oxides.

All the calculations details are the same as in chapter 3 except one point related to

equation (3-4). This equation relates the chemical potential of oxygen and its partial pressure and

it requires as an input the reference value p (T,P 0 ). In chapter 3, we used the values of

,2 (T, PO) tabulated in the thermochemical tables [94]. The resolution of this tabulation is 100K

which is not convenient for the construction, so we appealed to the statistical mechanical

formulation for an ideal di-atomic molecules (see for example [149] for the theoretical treatment

and [150] for an example application to defects in metal oxides) as shown in the following

equation:

PO (T, PO) p0x 12hkB02 _ = ln - ln 2 +-hOo +In 1-exp I (5-2)
kBT kBT) ( 2 0 BT _]

where as before kB is Boltzmann constant and PO is a reference pressure which is taken 1 atm.

A is de Broglie thermal wavelength, I is the moment of inertia of the 02 molecule, a-is a

symmetry factor which is 2 for 02 molecule, h is the reduced Planck's constant, and O is the

DFT calculated vibrational frequency of the 02 molecule which was found to be 1560 cm-1. A
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comparison between the prediction of equation (5-2) and the thermochemical tables is shown in
Figure 5-1. It is clear that the agreement is good at low temperatures, but at high temperatures
the predictions of equation (5-2) deviate due to the assumptions of harmonic and rigid-rotator
molecule which are not accurate at high temperature.
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Figure 5-1: Comparison between the theoretical calculation of the reference chemical potential of the 02
molecule using the statistical mechanical formulation of ideal di-atomic molecules and the tabulated
values from thermochemical tables [94].

5.3 The tetragonal-monoclinic phase transition temperature
In Table 5-1 we present a comparison between our calculated value for the tetragonal-

monoclinic transition temperature based on the Helmholtz free energy of the perfect crystal and
previous theoretical calculations. In addition we show in the table two experimental reports for

the transition temperature representing the lower limit 1395 K and the upper limit 1478K. The
value we obtained using a GGA (Generalized Gradient Approximation) functional and the

harmonic approximation is 1790K which is too high than the experimental report. The main

reason behind this disagreement is that at such high temperatures anharmonic effects are very

important to get accurate results. In Ref. [147] the authors used a GGA functional as well, but

they improved by treating lattice vibrations using a quasi-harmonic approximation and obtained

a value of 1350K close to the experimental determination. This supports what we asserted above
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that the missing ingredient is to take into account the anharmonicity of phonons. We believe that

the reasonable agreement between prior LDA calculations (reported in the table) combined with

the harmonic approximation and the experimental determination is fortuitous. Explicit treatment

of the anharmonic effects is needed to obtain physically justified accurate results. However, as

we stated above our goal here is not to achieve the highest possible accuracy, instead

highlighting the role of the defects is what we seek.

Table 5-1: Comparison between the theoretical calculations and the experimental determination of the
thermodynamic transition temperature between the monoclinic and tetragonal phases.

Energy Zr Valence DFT Approximation Transition

Cutoff (eV) Electrons functional Temperature

(K)

Ref. [145] 494.5 4 LDA Harmonic 1560

[146] 800 4 LDA Harmonic 1560

[147] 500 12 GGA-PW91 Quasi-Harmonic 1350

This work 450 12 GGA-PBE Harmonic 1790

Experiment - - - 1478

Ref. [151]

Experiment - - - 1395

Ref. [152]

Figure 5-2 shows that main result of this chapter; that is a temperature-oxygen partial

pressure phase diagrams based on considering the Helmholtz free energy of the tetragonal and

monoclinic phases of zirconia. At high PO2 where the concentration of all defects is negligible

(cf. the Kr6ger-Vink diagrams in chapter 3), the transition temperature does not change

compared to the result based on the perfect crystal free energy which is 1790K. As Po2 is reduced

the concentrations of the defects and in particular oxygen vacancies increase. However, it turns

out that the tetragonal phase admits more defects compared to the monoclinic phase and hence

the configurational entropy of these defects lowers the free energy of the tetragonal phase. The

net effect is that there is a region of the diagram below 1790 K where the tetragonal phase is

stabilized by the configurational entropy of its oxygen vacancies.
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The region of the diagram designated as "unexplored zone" requires more analysis if one
desires to elucidate the phases that dominate in it. By more analysis we mean taking into account

the cubic phase of zirconia, the solid solution of oxygen dissolving in zirconium metal and any
zirconium sub-oxide. Indeed even the boundary between the region of the tetragonal phases and

the "unexplored zone" should not be considered strictly correct. Close to that boundary the
concentration of the defects increases significantly to the extent that the dilute limit assumption

does not hold anymore.
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Figure 5-2: The calculated temperature-oxygen partial pressure phase diagram for ZrO2.

Based on this result we suggest that the fact the chemical potential of oxygen is low close

to the metal/oxide interface in an oxide scale grown on zirconium alloy, is a contributing

mechanism to the stabilization of the tetragonal phase at lower temperatures.
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Chapter 6 : Hydrogen defects in tetragonal zirconium oxide

Abstract

In the energy-structure paradigm, we analyzed the defects that can arise in tetragonal

zirconium oxide (T-ZrO2) involving the hydrogen atom and the hydrogen molecule using density

functional theory. Our results indicate that the dominant hydrogen defect in reducing conditions

is H;, a complex formed between the hydride ion and a doubly charged oxygen vacancy. This

result is consistent with the experimental observation that in reducing conditions, the solubility

of hydrogen is proportional to the degree of hypostoichiomtery of T-ZrO2. In oxidizing

conditions we found three different hydrogen defects, each predominate in a specific range of

chemical potential of electrons. Starting from the valence band top toward the conduction band

bottom, these defects are the interstitial proton, H, a complex formed between two hydrogen

species and a zirconium vacancy with a net effective charge of (2-), (2H)"zr, and finally a

complex similar to the latter but with a net effective charge of (4-), (H 2 ) . In (2H)" the two

hydrogens exist in the form of hydroxyl groups, while in (H2)z they exist in the form of a

hydrogen molecule. In addition, we found that up to three hydrogen species can favorably

accumulate in a zirconium vacancy in oxidizing conditions. The clustering of hydrogen in cation

vacancies can be a precursor for the deleterious effects of hydrogen on the mechanical properties

and stability of metal oxides, in an analogy with hydrogen embrittlement in metals. Finally we

observed a red-shift and a blue-shift for the vibrational frequencies of all the hydroxyl groups

and all the hydrogen molecules, respectively, in T-ZrO2 when compared to the gas phase

frequencies. This is an important characteristic for guiding future experimental efforts to detect

and identify hydrogen defects in T-ZrO2. The insights presented in this work advance our

predictive understanding of the degradation behavior of T-ZrO 2 as a resistant corrosion passive

layer, as a gate dielectric and in biomedical applications.

6.1 Introduction

The pickup of hydrogen through the oxide scale until it reaches the underlying metal can

proceed by several mechanisms. One possible mechanism is simply solid state diffusion through

the oxide [153]. Another mechanism [154] suggests that the hydrogen generated by the corrosion
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reaction can accumulate in the tangential cracks in the oxide. Then by a synergistic chemical and

mechanical action it can break the oxide until the metal surface is directly exposed at which point

hydrogen enters the metal. A fundamental understanding of any of these mechanisms requires a

critical analysis for the form in which hydrogen exists in zirconia. The goal of this chapter is to

unravel the complex interaction between hydrogen and tetragonal zirconium oxide. In particular

we used density functional theory to study the energy and structure of hydrogen point defects

and defect complexes that can arise in T-ZrO2. In the next chapter we examine the interplay

between hydrogen defects and the planar compressive stress that T-ZrO2 experiences at the

metal/oxide interface due to the lattice mismatch between the oxide and the metal.

The urge to thoroughly understand the physics of hydrogen defects in T-ZrO2 arises in

other fields as well. We briefly describe here two other examples.

Zirconia was suggested to replace silica in metal oxide semiconductor devices due to its

good thermal stability and high dielectric constant [83]. However, hydrogen is unintentionally

incorporated in ZrO2 films during the manufacturing process. Some of the incorporated hydrogen

persists in the oxide in spite of post annealing. The adverse consequence is that certain forms of

hydrogen defects can lead to undesirable fixed charge in the oxide [155] and can further reduce

its dielectric constant [156]. Thus, mitigating these adverse effects of hydrogen requires a

fundamental understanding for how it exists in zirconia films which can contain the tetragonal

phase after the annealing process [83].

The second example comes from the biomedical applications of zirconia as in hip

implants and dental restorations. These applications of zirconia rely on stabilizing the tetragonal

phase since it exhibits high fracture toughness. However, the continuous exposure of T-ZrO2 to

moisture in a range of temperatures (30-300 0C) leads eventually to an expansive phase

transformation to the monoclinic phase. The volume expansion accompanying this phase

transformation leads to severe degradation and cracking of the oxide and hence limits its long

term stability in usage. This phenomenon is known as the low temperature degradation of T-

ZrO2 [14, 15]. All the attempts to explain and overcome this phenomenon relate to hydrogen

defects that appear in T-ZrO 2 as a consequence of water splitting on the surface of the oxide [14,

15].
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Although the above examples clearly point toward the need of a thorough and a

fundamental understanding of hydrogen defects in tetragonal ZrO2, up till now this has not been

realized. The earliest attempts to elucidate the types of hydrogen defects in zirconia and

particularly the tetragonal phase were motivated by the nuclear industry and relied on the

measurement of hydrogen permeability and solubility in zirconia [153, 157]. Collectively these

experiments suggested that, in reducing conditions, oxygen vacancies are needed for the

dissolution and migration of hydrogen in ZrO2. More recently, muon spin spectroscopy

experiments [115] were performed on wide band gap oxides and focused on identifying the

charge state of interstitial hydrogen (indeed the analysis did not account for any possibility of

hydrogen trapping in the native defects). The results suggested that in monoclinic ZrO2 neutral

interstitial hydrogen, H', predominates at low temperatures (10-100 K) while at higher

temperatures (300 - 600 K) a diamagnetic form of hydrogen, H7 or H , predominates.

Atomistic simulations using density functional theory (DFT) were proved to be a

powerful tool in studying hydrogen defects in semiconductors and insulators [133, 158-164]. In

spite of this, only very few studies appeared recently to address specific types of hydrogen

defects in monoclinic [133, 159], and yttria stabilized cubic zirconia [165]. For tetragonal

zirconia, Shluger et al., in their review article about atomisitc simulation of defects in wide band

gap oxides [83], considered performing a brief DFT comparison between the interstitial proton

and the interstitial neutral hydrogen atom. They showed that the interstitial proton is stable and

binds to one of the lattice oxygen to form a hydroxyl group, while the neutral interstitial

hydrogen is only metastable and the electron delocalizes immediately leaving interstitial proton

behind upon thermal activation.

Given the importance of deciphering the nature of hydrogen defects in T-ZrO2, and the

current status of our limited knowledge about these defects, we performed a comprehensive DFTF

investigation of the energetics and structure of hydrogen defects and defect complexes in T-

ZrO2. We identified the hydrogen defects that predominate separately in oxygen rich and in

oxygen poor conditions. In addition, we introduced a new definition for the binding energy of a

defect complex, and with it, quantified the thermodynamic stability of the complexes that forms

between the hydrogen and the native defects of T-ZrO 2. Finally, we examined the electronic and
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atomic structure of all hydrogen-related defects and computed the vibrational frequencies of the

hydroxyl group or hydrogen molecule that may exist in these defects. The latter computation is

useful in guiding future experimental efforts to detect and identify hydrogen defects in T-ZrO2.

6.2 Theoretical and computational approach

6.2.1 Defect structures and charges
We considered the defects that can arise in bulk tetragonal zirconia due to both hydrogen

atom and hydrogen molecule. These defects can be classified according to the lattice site as an

interstitial, a complex with an oxygen vacancy and a complex with a zirconium vacancy. The

native interstitial defects were found to have very low concentration (cf. chapter 3) and hence

their complexes with hydrogen were not considered here. We describe here the structures we

investigated for these defects and the logic behind the charge states that we examined for each.

The initial guess for hydrogen complexes with native vacancies was obtained by

replacing zirconium or oxygen with a hydrogen atom or molecule. In the case of the molecule,

the center of the H2 molecule was placed coincident with the site that was originally occupied by

oxygen or zirconium. We considered 5 possible orientations of the H2 molecule in 5

nonequivalent crystallographic directions which are <001>, <100>, <110>, <101>, and <111>.

In most cases after relaxation, the molecule splits to two hydrogen species, as will be presented

in the Results and Discussion section.

We performed an extensive search for the lowest energy interstitial site for the mono-

hydrogen. We considered five dumbbell configurations (in some literature termed anti-bonding

sites) formed by the lattice oxygen and the interstitial hydrogen in the crystallographic directions

<001>, <100>, <110>, <101>, and <111>, and two dumbbell configurations formed by the

lattice zirconium and the interstitial hydrogen in <001>, and <100>. We also examined two so-

called bond center sites by inserting the interstitial hydrogen at the center of the bond between

zirconium and oxygen. There are two distinct bond center sites because of the tetragonal

distortion of the oxygen columns in tetragonal zirconia. Finally, we considered interstitial

hydrogen in the octahedral site, i.e., in the middle of the conventional unit cell of T-ZrO2 and in

two crowdion sites in the directions <001> and <100>. Interstitial hydrogen molecule was

examined by placing its center in the octahedral site and allowing it to take one of five
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orientations in the directions <001>, <100>, <110>, <101> and <111>. For illustration, we show
in Figure 6-1 representative examples of the defect structures that we summarized above.

(a) (b) (c)

<001>

<100>

(d) (e)

Figure 6-1: Representative hydrogen defect structures. Interstitial mono-hydrogen: (a) forming a
<111> dumbbell with lattice oxygen, (b) in a <001> crowdion site between two lattice oxygens,
and (c) in a bond center site. Hydrogen molecule: (d) substituting a lattice oxygen and oriented in
<110>, and (e) in an interstitial octahedral site and oriented in <001>. Green (large), red
(medium), and white (small) balls represent zirconium, oxygen, and hydrogen, respectively. The
sticks are guide for the eye and have no physical significance.

For each one of the hydrogen defect configurations described above, we examined

multiple possible charge states. The rationale behind what was considered as a possible charge

state is the following. We regard the zirconium vacancy, oxygen vacancy, and both the atomic

and molecular interstitial hydrogen as elementary defects. Each of these elementary defects, D,

can have a charge state that ranges from qD,0 to qD. The values of these two extrema were

taken to be (4-,0), (0,2+), (-,+) and (-,+) for zirconium vacancy, oxygen vacancy, and atomic and

molecular interstitial hydrogen, respectively. For both the cation and anion vacancies, a wider
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range of charge states is possible, however, modeling these extra charge states need

computationally expensive non-local DFT functionals and they are anticipated to have high

formation energies [4, 9, 166]. When a complex is formed as the union of two elementary defects

(D,,D2) , its charge state can in principle take any value in the range from q' + q to

q2 + q . This simple rule sets the ground for a systematic way to investigate the possible

charge states for charged defect complexes.

However, not every charge state expected for the defect complex based on the previous

rule can be actually realized. As extensively discussed in Ref. [125, 167] certain charge states

(including neutral) may not be possible to realize because the last added electron (hole) does not

localize on the defect and favors relaxation into the conduction (valence) band. Examining the

charge density and the net spin density, and performing Bader charge analysis [168, 169] were

our tools to investigate and decide charge localization on the defect. Kr6ger-Vink notation for

charged defects will be used throughout the paper.

So far we presented a systematic way to investigate the possible configurations

and charge states of atomic and molecular hydrogen defects in a T-ZrO2. However, there is

evidence both from our results discussed below and from prior DF' calculations [170] on A12 0 3

that hydrogen can cluster in the cation vacancy. This phenomenon can have a significant

deleterious impact on the mechanical stability of metal oxides as hydrogen is known to be bond

breaker. As a technological consequence of this, the metal oxide can fail to act as a protective

passive layer for the underlying metal in a corrosive environment. Thus, it is important to

quantify the energetics and understand the structure of these clusters in order to assess any

potential degradation of the mechanical properties of the metal oxide. However, once the number

of hydrogen species in a defect exceeds two, the possible configurations and charge states

become intractable. In spite of that, our systematic investigation guided us to intuitively consider

only two important clusters between hydrogen and zirconium vacancy. Those are (3H)zr in the

charge state (-) and (4H)z, in the charge state (0). The rationale behind our choice for those two

particular defects will be examined in details in section 6.4.3. Here we suffice to state that these

combinations of the number of hydrogen species and the charge of the defect lead to hole-free

oxygen ions around the defect which is energetically favorable.
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6.2.2 Defect energetics

The abundance and stability of hydrogen defects were characterized by two energy

metrics; the formation energy and the binding energy, respectively. While the former metric is

applicable to any defect, the latter is devoted for complexes. The theoretical formalism to

understand the energetics of defect equilibria is detailed elsewhere [3, 79]; here we summarize

the relevant notions.

The formation energy of a defect D with charge q is denoted by Efq and defined as:

Ef= +Ee~ q(Ektk + +/F)+ Emp, (6-1)
ED, = Ed,,t,, - E,,,,+ 2]An,p"+k g F)+EM'(-

k

where Edef,cte and Eperfect are the DFT energies of the supercell that contains the defect and the

perfect crystal supercell, respectively. Ank is the number of atoms of the species k in the perfect

crystal supercell less the number of the atoms of the same species in the defected cell. pk is the

chemical potential of the species k, EvBM is the energy of the valence band maximum in the

perfect crystal supercell, and pF is the chemical potential of electrons (or the Fermi level)

referenced to the valence band maximum of the prefect crystal. Thus, pF can take a value in the

range from 0 to the value of the width of the band gap in the perfect crystal. The latter was found

to be 3.9 eV. Finally, EMP is the Makov-Payne correction [89]. In applying this correction, we

used the experimental value [91] for the static dielectric constant of yttria-stabilized tetragonal

zirconia 39.8. As demonstrated in chapter 3 on the native defects of tetragonal zirconia,

considering the leading term of this correction is adequate in comparison with the

computationally expensive finite size scaling correction [136]. Here we demonstrate this

adequacy also for selected hydrogen defects in section 6.5 at the end of this chapter. In particular

we found the absolute error in the formation energies to be within 0.3 eV from the values

obtained by finite size scaling for hydrogen defects.

In thermodynamic equilibrium, there are constraints on the chemical potentials of the

species present inT-ZrO 2. The chemical potential of oxygen, po, in T-ZrO2 cannot exceed the

chemical potential of the oxygen atom in the 02 molecule in the gas phase. The latter is taken as

1
'/2 the DF' energy of the oxygen molecule, thus, po 'E . The chemical potential of

2 '2
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hydrogen is constrained in the same way and hence, PH I ED:r. Similarly, the upper bound of
2 H

the chemical potential of zirconium, uzr, in T-ZrO2 is the chemical potential of the zirconium

atom in bulk zirconium metal. The latter is taken to be the DFT calculated cohesive energy of

zirconium atom in hexagonal close-packed zirconium, thus, pzr ! Ezr.. The lower bounds of

the chemical potentials of both zirconium and oxygen are constrained by the expression:

2pO + uzr = E zJ, where Ez is the DFT calculated energy of the ZrO2 unit formula in the bulk

of perfect crystal T-ZrO2 . Finally, the introduction of hydrogen into the system imposes an

additional constraint, which is: 2 pH +pO ED",where ED* is the DFT calculated energy ofaddtina costait, hih s: PH+JO H 2 0' H 2 0

the water molecule in the gas phase. In our modeling for hydrogen defects in tetragonal zirconia,

we considered the two extremes which are oxygen rich (zirconium poor) and oxygen poor

(zirconium rich). The chemical potential of hydrogen was always set to the highest value

possible (hydrogen rich) but limited by the formation of water as discussed above. The values of

the chemical potentials of all the species in the two limiting cases and the DFT energies of the

reference states that set the bounds discussed above are summarized in Table 6-1.

Table 6-1: The chemical potential of all the species in the two limiting extremes considered in this work.
Also shown the DFT energies of the reference states that sets the bounds on the chemical potentials. All
energies are in eV.

Chemical potential oxygen rich oxygen poor

PO -4.93 -9.93

PH -4.65 -3.38

PZ, -18.56 -8.55

EDa E D, EDp E D E D -8.55, -9.85, -6.77, -14.23, -28.41
Z O Hz ' H 2 0 ' ZrOz

The binding energy is a measure of the thermodynamic stability of a complex against

dissociation into its constituents. We define the binding energy, Eb, of a complex C whose charge

is q to be:
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Eb= max(Ef - E: ), (6-2)
k

where k represents each constituent defects of the complex C, and the triple prime over the

summation sign indicates the three constraints imposed on the summation. The first is the

conservation of species, that is the defects DI, D2,... when combined together have to be

chemically equivalent to the complex C. The second constraint is the conservation of charge, that

is q = Zq . Thus, the binding energy is neither dependent on the chemical potential of species
k

forming the complex, nor the chemical potential of electrons. The third constraint is physically

motivated, and discards the dissociation pathways for the complex that can lead to the formation

of a disallowed charge state for certain constituent defect, Dk. The last constraint is concerned

with the defects that exhibit negative-U behavior. The latter are the singly charged oxygen

vacancy as shown in our previous study on the native defects (cf. chapter 3), and the neutral

interstitial hydrogen atom as discussed below. The max function in the definition indicates that

the stability of the complex is determined by its easiest dissociation pathway. This is an

important point to emphasize as we believe that most of the binding energy values for hydrogen

complexes in ionic materials reported in the literature are somewhat exaggerated because of

limiting the search to one dissociation pathway. To the best of our knowledge, only the work of

Kang et al. on hydrogen defects in HfO2 considered this important aspect [155]. The convention

we adopt for the binding energy in equation (6-2) is such that negative values indicate stable

complexes and positive values indicate unstable complexes.

Strictly speaking the binding energy alone is not enough to characterize the stability of

defect complexes. A better metric would be, - Eb + E,, where E, is the activation energy

needed for the dissociation of the constituents of the defect complex [160]. In other words, a

defect may possess a positive binding energy (thermodynamically unstable) but could be

kinetically trapped and be present because of the high activation energy for dissociation at a

given temperature. The formation of kinetically stabilized defect complexes can occur in a non-

equilibrium process such as crystal growth or corrosion. In this work we focus on the

thermodynamically stable defect complexes as these are anticipated to be the predominant in

terms of concentration.
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We emphasize here based on sections 6.2.1 and 6.2.2 that we will limit the discussion in

what follows to the defects in the configurations that has the lowest formation energy and in the

charge states that are both physically realizable and thermodynamically stable against

dissociation. In this context, "a thermodynamically stable defect" means it has a negative binding

energy, while "a stable defect" indicates that its charge is possible to realize in the simulation

cell without delocalization of electrons or holes. In the following, the defects that satisfy both of

these definitions are presented.

6.2.3 Density functional theory calculations

The projector-augmented plane-wave method [100] as implemented in the Vienna Ab-

initio Simulation Package (VASP) [101-104] was utilized to perform the density functional

theory calculations. The parameterization of Perdew, Burke, and Ernzerhof (PBE) [105, 106]

was used to represent the exchange-correlation. Consistent with our previous work on the native

defects of tetragonal zirconia (cf. chapter 3), we used a kinetic energy cutoff of 450 eV, a

supercell composed of 2 x 2 x 2 conventional unit cells, and 2 x 2 x 2 Monkhorst-Pack k-point

mesh.

In order to understand the effect of the local structure in a crystalline solid on the

vibrations of hydrogen and also to provide a computationally derived database that can be

validated by Infra Red and Raman spectroscopy measurements, we calculated the vibrational

frequencies for certain hydrogen defects. In particular, whenever a hydroxyl group or a hydrogen

molecule is part of a thermodynamically stable defect, we calculated their stretch mode

frequency in the harmonic approximation. We targeted these particular species because their

stretch mode frequency is known to be much higher than the host vibrational modes and hence

justifying fixing the host ions while calculating the vibrational frequencies of hydrogen. The

details of the calculations are similar to what is presented in chapter 3 except that we found a

finite difference distance of 0.008 A is needed to obtain converged frequencies for hydrogen

defects in contrast to 0.004 A used in our study of the native defects. Since anharmonic effects

and the limitations inherent in DFT functionals (including hybrids) can significantly affect the

absolute values of the vibrational frequencies [161], it was suggested that , Aco, the difference

between the harmonic frequency in the crystalline solid and the harmonic frequency in the gas

phase, is a better metric to utilize when comparing with experiments. Thus, the stretch mode of
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the hydrogen molecule and the hydroxyl group in the solid was referenced to the same mode of

these species in the gas phase. Our calculated reference values are 4317 cm~1 for H2 and 3684

cm-1 for OH~ both in the gas phase. The experimental values (anharmonic) for these modes are

4161 cm' and 3556 cm-1, respectively [171, 172].

6.3 The energetics of hydrogen defects in tetragonal zirconia

In this section we discuss the formation energies of the three categories of hydrogen

defects, namely, the interstitial, the complex with an oxygen vacancy, and the complex with a

zirconium vacancy in the two limiting cases of oxygen rich (oxidizing) and oxygen poor

(reducing) conditions. This is followed by a discussion of the thermodynamic stability of the

complexes utilizing the binding energy as a metric.

6.3.1 Formation energies and thermodynamic transition levels

Figure 6-2 is a plot of the formation energies of hydrogen defects as a function of the

chemical potential of electrons in (a) oxygen poor conditions, and (b) oxygen rich conditions.

For each defect we show only the predominant charge states. For comparison, we show also the

formation energies of oxygen and zirconium vacancies. The shading in the figure indicates the

range of the chemical potential of electrons accessible by self-doping due to the native defects of

T-ZrO2 as determined in chapter 3. The presence of hydrogen in T-ZrO2, regarded as an extrinsic

dopant, can affect this range. Quantifying the effect of hydrogen on this range requires

thermodynamic analysis similar to what is presented in chapter 3 which is not the scope of this

work. Thus, the shaded range shown in Figure 6-2 has to be regarded as a very probable initial

guess for the accessible range in hydrogenated T-ZrO2. On the other hand, the remaining range

of pF can also be made accessible by doping with aliovalent cations or anions, making it

important to consider the region outside the shading as well. Before discussing the details of

Figure 6-2, it is important to stress that the thermodynamic transition levels from charge q, to

charge q2 for each defect are independent of the chemical potentials of species. Hence, in the

discussion we will quote the values of these levels. On the other hand, the range of pF over

which certain defects predominate over the others depends on the chemical potential of species.

Figure 6-2 depicts only the two extremes of yo (poor and rich) and the rich extreme of PH .
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Hence, it is not that meaningful to quote in the discussion exact ranges of pF over which

predomination of certain defect takes place. We will thus, limit the discussion of predomination

to qualitative trends. It is straightforward, however, to derive from Figure 6-2 quantitative ranges

of predomination at specific values of the chemical potential of species when desired.

Our calculations indicate that interstitial hydrogen, Hi, exhibits a negative-U behavior

with a U value of -1.96 eV. Moreover, the interstitial hydrogen defect was found to be

amphoteric, i.e., it can exist both as a hydride ion and as a proton in distinct ranges of pF. The

thermodynamic transition level (+/-) for interstitial hydrogen from proton to hydride ion happens

to be at 2.84 eV which is within the range of pF accessible by self-doping due to the native

defects. Recently, it was also shown that interstitial hydrogen is both amphoteric and a negative-

U defect in monoclinic zirconia [133]. A further confirmation for the negative U-behavior is

evident from the atomic and electronic structure of interstitial hydrogen defects in the next

subsection. The interstitial hydrogen molecule,(H 2)i, is predominantly neutral and has higher

formation energy compared to the interstitial mono-hydrogen.

(a) ~ ~(a)(4-) i(4)
6 (2-) 6.

4,4
(4-))

-2------ --I-------------- - 2

0 0

-0-2 (22)

HZr
E -4 E -4 -

-6 -6 - (2H)0  (4)
(2H/H 2)z

-8-8 V0

-10S12 3 4 1 2 34
Electron Chemical Potential (eV) Electron Chemical Potential (eV)

Figure 6-2: The formation energy of hydrogen defects in (a) oxygen poor conditions, (b) oxygen rich
conditions. Solid, dashed, dot-dashed lines indicate oxygen-related, interstitial, zirconium-related defects,
respectively. The shading indicates the range of the chemical potential of electrons accessible by self-
doping due to the native defects as determined in chapter 3.

127



The charge state (+) is predominant for the defect complex made of a mono-hydrogen

and an oxygen vacancy, Ho, in almost all the band gap except for a narrow range close to the

conduction band where the neutral charge state predominates. This behavior for this defect was

found recently in monoclinic ZrO2 and Hf02 [133]. However, in another n-type oxide (ZnO) only

the charge state (+) was found to be dominant [158], while in a p-type oxide (Cu2O) each of the

charge states (-,0,+) was found to predominate a certain region of the band gap [173]. We also

found that upon inserting another hydrogen species in the oxygen vacancy site to form (2H)0 ,

the formation energy of the complex increases compared to that of Ho (except for a narrow

range of pF in the oxygen poor conditions). The tendency of the oxygen vacancy to reject

hydrogen clustering was also observed in ZnO and MgO [158]. Contrary to the mono-hydrogen

case, the neutral charge state of the complex of two hydrogen and an oxygen vacancy, (2H)0 is

predominant in most of the band gap except for a range of 1.3 eV near the valence band where

the (+) charge state predominates.

The predominant charge state for the complex made of a mono-hydrogen and a

zirconium vacancy, Hz,, is (4-) and indeed it is the only thermodynamically stable charge state.

Interestingly adding another hydrogen species into the zirconium vacancy to form (2H /H 2 )Zr

lowers the formation energy of the complex compared to that of HZ, and in this case multiple

charge states are thermodynamically stable. The charge state (2-) predominates starting from the

valence band edge up to the thermodynamic transition level (2-/4-) at 3.4 eV. A similar tendency

for hydrogen accumulation in cation vacancies was also observed in A120 3 [170]. This

accumulation can take place in a non-equilibrium process such as crystal growth or corrosion.

The abundance of the clusters formed in this process depends on the formation energy of these

clusters. Once equilibrium is reached in the region in which hydrogen clusters were formed, the

binding energy would be the metric to decide their thermodynamic stability. Quantifying the

abundance, thermodynamic stability and electronic structure of these complexes is of paramount

importance to assess the resistance of the oxide layers natively grown on metal surfaces to the

deleterious effects of hydrogen. Hydrogen is known to interact strongly with the host lattice and

can lead to bond breaking subsequently followed by degradation of the mechanical properties of

the host. While this effect is well-studied in metals and is commonly termed as hydrogen
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embrittlement, it is by far less studied in oxides. The fact that two hydrogen species in a

zirconium vacancy have lower formation compared to the case of mono-hydrogen led us to

investigate two special cases where three or four hydrogen species accumulate in a zirconium

vacancy. These two cases are discussed later.

Figure 6-2 contrasts the predominant hydrogen defects in oxygen poor and oxygen rich

conditions. In the former case (Figure 6-2(a)), mono-hydrogen associated with an oxygen

vacancy, HO, in the charge state (+) predominates for most of the band gap except for a narrow

range close to the conduction band in which di-hydrogen oxygen vacancy complex, (2H)O, in

the neutral charge state predominates. In the oxygen rich conditions (Figure 6-2(b)) and starting

from the valence band edge, the interstitial proton predominates over a range of pF. For the rest

of the band gap and up to the conduction band edge, the di-hydrogen associated with a zirconium

vacancy, (2H / H 2 )Zr, predominates first in the charge state (2-) and then in the charge state (4-).

Our results in the oxygen poor conditions are consistent with the experimental findings of Park

and Olander [157]. They observed that in oxygen poor (reducing) conditions, the solubility of

hydrogen increases with the increase of the off-stoichiometry, x, in T-ZrO2-x in accordance with

our finding that hydrogen associates with oxygen vacancies in these conditions.

We examined the clustering of 3H and 4H in a zirconium vacancy in the charge states (-)

and (0), respectively. The choice of these particular charge states is justified in the atomic and

electronic structure section 6.4.3. In Figure 6-3 we present all the zirconium related defects in

oxygen poor (a) and oxygen rich conditions (b). It is clear from the figure that the clusters

(3H)'zr and (4H)r predominate the hydrogen-zirconium vacancy complexes in certain ranges of

pF mainly in the p-type region. In the oxygen rich conditions these clusters have low formation

energies. This demonstrates that zirconium vacancies can act as trapping sites for hydrogen and

the resulting complexes can be precursors for the adverse effects of hydrogen on the mechanical

stability of the oxide. Furthermore, as we show below, most of the hydrogen-zirconium vacancy

complexes have high binding energy.
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Figure 6-3: The formation energy of hydrogen defect complexes with a zirconium vacancy including the
two special clusters that contain 3H and 4H in (a) oxygen poor conditions and (b) oxygen rich conditions.
The formation energy of the zirconium vacancy is included for comparison. The shading indicates the
range of the chemical potential of electrons accessible by self-doping due to the native defects as
determined in chapter 3.

6.3.2 Binding energies

The calculated binding energies for the thermodynamically stable complexes are reported

in Table 6-2 Although in our classification of the defects presented above we regarded the

interstitial hydrogen molecule as an elementary defect, it is also possible to consider it as a

complex formed due to association between a proton and a hydride ion. Assuming the latter

picture, we found it to be stable against dissociation with a binding energy of -0.74 eV. The

predominant mono-hydrogen oxygen vacancy complex charge state identified above is (+) and

this indeed is a highly stable complex with a binding energy -2.22 eV. For this complex, the

calculation of the binding energy for the charge states (2+) and (0) according to our definition is

problematic. The only possible dissociation pathways for those two charge states involve the

formation of a disallowed charge state for a negative-U defect (that is the singly charged oxygen

vacancy and neutral interstitial hydrogen). We reported in the table values calculated upon

relaxing the constraint of discarding the negative-U disallowed charge states. Thus, H" was

deemed to be unstable, while H' was found to be stable with a binding energy of -1.5 eV. On
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the other hand, the calculated binding energies for the di-hydrogen oxygen vacancy complexes

indicate relatively shallow binding. We found the easiest dissociation pathway for these

complexes to involve the formation of H;.

Only the charge state (4-) is stable thermodynamically for mono-hydrogen zirconium

vacancy complex, Hz,, with a binding energy of -1.28. For the di-hydrogen zirconium vacancy

complex, the predominant charge states (2H).zr and (H 2 )zr have binding energies of -2.79 eV

and -1.06 eV, respectively. The latter charge state is distinct from the rest by the fact that is the

only one in which the hydrogen molecule exists as an entity in the vacant site. In the other charge

states, the two hydrogen species exist as hydroxyl groups. More details on the structure are

presented in the next subsection. The cluster of 3H and zirconium vacancy, (3H)zr , was found to

be stable with a binging energy of -1.17 eV, while the cluster formed between 4H and a

zirconium vacancy, (4H)'zr, has a very shallow binding energy of -0.02 eV. The limiting

dissociation pathway of the (4H)', cluster is the one that leads to the formation of the

(3H)zr cluster and an interstitial proton.

To reiterate, clustering of hydrogen in zirconium vacancies can lead to the formation of

thermodynamically stable defects; a result of significant importance when considering the

deleterious effects of hydrogen on the mechanical properties of oxides.

Table 6-2: The binding energy of the thermodynamically stable hydrogen defect complexes.

Complex Binding Energy (eV)

(H2) ~X-0.74

H--, H;, HX, H' +0.59a, -2.22, -1.55, -0.74

(2H)'o, (2H)"o, (2H)', -0.09,4-076, -0.78

H z -1.28

(2H)z , (2H)'z , (2H)",, (H 2)r -2.65, -2.79, -2.94, -1.06

(3H)'zr, (4H) , -1.17, -0.02

a The only possible dissociation pathways for these complexes involve the formation of a disallowed charge state for
a negative-U defect. Here we report the values computed based on equation (6-2) but by relaxing the constraint
related to the negative-U defects.
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6.4 The atomic and electronic structure of hydrogen defects in tetragonal
zirconia

Understanding the defect atomic and electronic structure is of utmost importance. On one

hand it can help in rationalizing many of the energy-based results. On the other hand it provides

a basis for fundamental measurable quantities that can be probed experimentally such as the net

spin of a defect that can be probed in muon spectroscopy [115] and characteristic vibrational

frequencies that can be detected in Raman and Infra Red spectroscopy [174]. Finally, the

underlying structure of a defect determines its response under mechanical loading. This response,

in turn, is needed to understand and quantify the adverse effects of hydrogen on the mechanical

properties of oxides.

In this section, we discuss the atomic and electronic structure of each of the three

categories of hydrogen defects. In particular, for each category we examine the geometry of the

minimum energy configuration of each defect. In addition, we utilize the net spin density and

Bader charge analysis as metrics to understand the electron distribution within the defect. This

analysis is complemented by examining the stretch mode frequency of any hydroxyl group or

hydrogen molecule that resides as an entity within the defect. As discussed in section 6.2.3, we

report the difference, Aw, between the harmonic stretch of the species in the condensed phase

and the harmonic stretch of the reference (OH or H2) in the gas phase. For comparison purpose,

we report here that our calculated 0-H and H-H bond lengths in the gas phase OH~ and H2 are

0.977 A and 0.751 A, respectively. For each of the upcoming figures, the color code and the

orientation of the simulation cell is the same as in Figure 6-1.

6.4.1 Interstitial defects

Figure 6-4 depicts the minimum energy configuration for the possible charge states of

interstitial mono-hydrogen (a,b,c) and interstitial hydrogen molecule (d,e). An isosurface of the

net electronic spin density is also shown whenever the defect exhibits a net magnetic moment.

Closely related to Figure 6-4 is Table 6-3 in which we present the calculated Bader charges, the

bond length of any OH- or H2 species and the quantity Ao defined above.
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Figure 6-4: The minimum energy structures for the thermodynamically stable interstitial hydrogen
together with an isosurface for the net spin density (if nonzero). (a) H, (b) H', (c) H;, (d) (H 2
(e) (H 2 )- . The yellow isosurface is taken at 0.01 A3.

Table 6-3: Calculated properties for the interstitial hydrogen defects. Bader charges
hydrogen only. The distance, d, is the bond length of H2 or OH- if either of them was
simulation cell. The frequency difference, Aa, is defined in section 6.2.3.

are shown for
detected in the

Defect Bader Charge (e) d (A) Aa (cnm)

H* +0.62 0-H: 0.986 -279 a

Hx +0.61 0-H: 0.987 -310 a

Hi -0.49 - -

(H2 -0.11, +0.04 H-H: 0.739 +84 b

-0.14, -0.01 H-H: 0.786 -825 b

a The reference is the stretch mode of OH
b The reference is the stretch mode of H2
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The underlying structure for both the charge states (+) and (0) of interstitial mono-

hydrogen is a hydroxyl group formed between hydrogen and one of the lattice oxygen and

oriented in <111>. The same structure was also identified through DFT calculations on T-ZrO2

in Ref. [83]. Furthermore, we found that the net spin localized on the defect in the case of neutral

charge state is zero, indicating that the is electron of the hydrogen atom is in a shallow electronic

state right at the edge of the conduction band. This was also found to be the case in monoclinic

zirconia through electronic density of states calculations [175]. Thus, in the neutral DFT

simulation cell the hydrogen is indeed a proton and most of the Is electron wave function is

delocalized. This is supported by the very similar Bader charge, O-H bond length, and Aco for

(+) and (0) cases. This also is in accordance with the negative-U behavior identified through the

energetics. A general feature that we observe for all the OH- groups that arise in the hydrogen

defects in T-ZrO2 is the reduction of the stretch frequency (e.g. -279 cm'1 for interstitial proton)

compared to the gas phase OH. This is an important signature that is amenable to investigation

in Raman and Infra Red spectroscopy experiments. A more strildng feature was identified for H2

vibrations and is discussed below.

The favorable site for the hydride ion was found to be the octahedral site as shown in

Figure 6-4(c). This is expected given the electrostatic repulsion between the eight oxygen ions in

the unit cell and the hydride ion. The zero net spin on the defect and the negative Bader charge

both indicate the pairing between two Is electrons on the interstitial hydrogen and confirm its

character as a hydride ion.

The neutral interstitial hydrogen molecule was found to be oriented in <001> direction as

depicted in Figure 6-4(d). The bond length of the interstitial molecule is shortened by 0.012 A

and the stretch mode frequency is enhanced by +84 cm'1 compared to the gas phase. Our

calculations indicate that this is a general feature for all the neutral hydrogen molecules that arise

in a defect in T-ZrO2. This is strikingly the opposite of what was found for the interstitial

hydrogen molecule in semiconductors both experimentally and theoretically[161]. The

shortening of the bond length of the molecule and the upshift of its vibrational frequency are the

signature of enhanced intramolecular interaction. Such enhancement of the intramolecular

interactions for a molecule due to the intermolecular interactions in the condensed phase is

counterintuitive [176]. We believe that this important finding requires future experimental
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confirmation. We also found that the di-hydrogen anion is stable in the crystalline environment

of T-ZrO2 in <100> direction. The extra electron added to (H 2 ) to form (H 2 ); is mainly shared

among the surrounding zirconium cations as indicated by the net spin density in Figure 6-4(e)

and the Bader charge analysis. On the other hand, the di-hydrogen cation was found to be

unstable in the crystalline environment of T-ZrO2. Our findings related to the di-hydrogen anion

and cation are consistent with what is generally known about these molecular ions, i.e., the

former is stable in a condensed phase but not in the gas phase while the converse applies for the

latter [177].

6.4.2 Hydrogen-oxygen vacancy complexes

The key to understand the structure of hydrogen-oxygen vacancy complexes is to recall

the electronic structure of the oxygen vacancy identified previously in chapter 3. The latter was

found to have a negative-U character. In addition, it was found that the neutral oxygen vacancy

has the electronic structure of an F-center where two d-electrons from the neighboring zirconium

ions localize on the vacant site. Removing one of these electrons to create a singly charged

vacancy leads to the localization of the remaining electron right on the vacant site. Removing the

last electron leads to the formation of the doubly charged oxygen vacancy. In Figure 6-5 we

show the minimum energy configuration for the possible charge states of the complexes formed

between the oxygen vacancy and the mono hydrogen (a,b,c), and between the oxygen vacancy

and the di-hydrogen (d,e,f). Whenever a defect exhibits a net magnetic moment, an isosurface of

the net spin density is also shown. In Table 6-4 we present the calculated Bader charges for the

hydrogen species associated with the oxygen vacancy and the distance between the two

hydrogen species if they coexist in the vacant site. This distance is not a bond length, because we

did not detect any chemically bonded species when hydrogen associates with an oxygen vacancy.

Thus, we did not calculate the vibrational frequencies of hydrogen in oxygen vacancies as the

lack of chemical bonding leads to severe reduction in its frequencies. This reduction makes

hydrogen vibrations not very distinguishable from the host vibrations.

The thermodynamically stable most positive charge state for mono-hydrogen oxygen

vacancy complex is (+). The association results in a hydride ion located almost at the center of a

doubly charged oxygen vacancy as shown in Figure 6-5 (a). Bader charge analysis also supports
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that the hydrogen species in this case is a hydride ion. This charge state was found to be

energetically predominant for most of the band gap of T-ZrO2. Adding one more electron to

obtain the charge state (0) leads to the localization of this electron in the d orbitals of two

neighboring zirconium ions at the edge of the conduction band minimum as shown in Figure 6-5

(b). This structure is akin to the so-called multicenter bond configuration for hydrogen in the

oxygen vacancy in metal oxides [158]. The charge state (-) is obtained by adding one more

electron, the resultant is a hydride ion associated with an F-center. The strong repulsion between

the two electrons of the F-center and the hydride ion renders this charge state very unfavorable

energetically.

We did not find any evidence that the hydrogen molecule can exist in an oxygen vacancy

in T-ZrO2. Thus, any two hydrogen species in an oxygen vacancy are not bonded together;

instead they exist as an oriented dumbbell. We found that this dumbbell is favorably oriented in

<110> for all the charge states. The thermodynamically stable most positive charge state for two

hydrogen species in an oxygen vacancy is (+). The structure of this complex, shown in Figure

6-5 (d), consists of two hydrogen atoms separated by a distance of 0.984A associated with a

singly charged oxygen vacancy. The charge density of the electron of the singly charged vacancy

is spread over the two hydrogen atoms and the surrounding oxygen and zirconium ions. The

distance between the two hydrogen atoms is significantly larger than the bond length of

hydrogen molecule or even the di-hydrogen anion. The charge state (0) of the complex, shown in

Figure 6-5(e), consists of two hydride ions associated with a doubly charged oxygen vacancy.

The partial charges on the two hydrogen species confirm their identification as hydride ions.

Finally, obtaining the charge state (-) by adding one further electron leads to its localization on

the d orbitals of two neighboring zirconium cations as shown in Figure 6-5 (f). The strong

repulsion between the two hydride ions and the extra localized electron elongated the H-H

distance to 2.071A and renders the charge state energetically unfavorable, but still

thermodynamically stable.
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(a) b C) 

e) (f)

Figure 6-5: The minimum energy structures for the thermodynamically stable hydrogen-oxygen vacancy

complexes together with an isosurface for the net spin density (if nonzero). (a) H;, (b) H', (c) HO, (d)

(2H);, (e) (2H)', and (f) (2H)O. The yellow isosurface is taken at 0.01 A3.

Table 6-4: Calculated properties for the hydrogen oxygen vacancy complexes. Bader charges are shown

for hydrogen only. The distance, d, is between two hydrogen species and does not correspond to a bond

length.

Defect Bader Charge (e) d (A)

H; -0.59

HX -0.66

H / -0.76 -

(2H)', -0.24, -0.19 0.984

(2H) X -0.50, -0.52 1.928

(2H)' -0.55, -0.56 2.071
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6.4.3 Hydrogen-zirconium vacancy complexes

Before discussing hydrogenated zirconium vacancies, we recall the electronic structure of

pristine ones that we identified previously in chapter 3. The neutral zirconium vacancy has the

V-center structure where the vacant site is surrounded by four holes localized on four

neighboring oxygen ions. By filling the four holes with electrons one by one, we obtain all the

possible charge states until filling all of them and obtaining Vz. The latter was reckoned to be the

predominant energetically. Figure 6-6 shows the minimum energy configuration for all the

possible and thermodynamically stable charge states for the hydrogenated zirconium vacancies.

An isosurface of the net spin density is shown whenever a defect exhibits a net magnetic

moment. Table 6-5 shows the calculated Bader charge for hydrogen in zirconium vacancies, and

the bond length and Aco for any OH~ or H2 species in the defect.

For the defect complex made of a mono-hydrogen and a zirconium vacancy, only

the (4-) charge state is thermodynamically stable. The atomic and electronic structure of this

defect depicted in Figure 6-6(a) reveals that hydrogen in atomic form is located in the center of

Vzj. The spherically symmetric net spin density of the is electron localized on hydrogen is

clearly observed. The key to comprehend hydrogen molecule-zirconium vacancy interactions is

the following rule that we deduced from our DFT simulations. The priority is to fill the holes

localized on the oxygen ions surrounding the zirconium vacancy. This is accomplished by

dissociating the H2 molecule and donating its two electrons to fill the holes. The resulting two

protons bind to two of the surrounding oxygens to form hydroxyl groups. Upon filling all the

holes, the H2 molecule can be stabilized in the vacant site. With this rule in mind we observe in

Figure 6-6(b) that the association between H2 and Vz lead to the dissociation of the molecule,

filling two holes on two oxygen ions, forming two OH~ groups between the resulting two protons

and the two hole-free oxygen ions, and finally leaving two holes localized on other two oxygen

ions. Adding one electron to obtain the charge state (-) leads to filling one more hole as in Figure

6-6(c). Adding one further electron fills the last hole and leads to the charge state (2-) shown in

Figure 6-6(d). This charge state is the one that predominates energetically for a wide range in the

band gap of T-ZrO2. At this stage trying to add one more electron to obtain the charge state (3-)

does not lead to the localization of the electron on the defect. The reason is that no more holes

are available for recombination and also the di-hydrogen cation cannot be stabilized in the
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condensed environment of T-ZrO2 as mentioned above. Thus, the charge state (3-) cannot be

realized. However, the charge state (4-) is possible where the last added two electrons lead to the

formation of the H2 molecule in the vacant site with <111> orientation being the most favorable

as shown in Figure 6-6(e). The Bader charge analysis supports the arguments presented above,

where all the identified protons have a partial charge of about +0.6 and all the neutral species (H 2

and H) have an almost zero partial charge as shown in Table 6-5. Also in accordance with what

we identified earlier, the stretch frequency of any OH- associated with zirconium vacancy is red-

shifted while that of the H2 molecule associated with zirconium vacancy is blue-shifted.

(a) b)

(2-) (e)f(4)j

Figure 6-6: The minimum energy structures for the thermodynamically stable hydrogen-zirconium

vacancy complexes together with an isosurface for the net spin density (if nonzero). (a) Hz,, (b)

(2H)Z,, (c) (2H), (d) (2H),, and (e) (H 2 )z,. The yellow isosurface is taken at 0.01 A3.
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Table 6-5: Calculated properties for hydrogen-zirconium vacancy complexes. Bader charges are shown
for hydrogen only. The distance, d, is the bond length of H2 or OH if either of them was detected in the
simulation cell. The frequency difference, Aw, is defined in section 6.2.3.

Defect Bader Charge (e) d (A) Aa) (cmi)

H z +0.04 -

(2H)r +0.63, +0.63 O-H: 0.974,0.974 -120, -130 a

(2H)z, +0.62, +0.62 0-H: 0.975, 0.975 -91, -103 a

(2H), +0.62, +0.62 0-H: 0.977, 0.977 -56, -71 a

(H2 )mr -0.04, +0.03 H-H: 0.738 +145 b

a The reference is the stretch mode of OH
b The reference is the stretch mode of H2

The rule identified above for the di-hydrogen interaction with a zirconium vacancy is

what guided our choice to examine the charge states (-) and (0) for the 3H and 4H, respectively.

Consider the neutral zirconium vacancy with 4 holes surrounding the vacant site as the starting

point. Inserting 3H leads to filling three holes and forming three OH- groups between the

resultant protons and hole-free oxide ions. Given that hole localization on the oxide ion is not

favored by the Madelung potential of the oxide [116], we decided to the fill the last hole by an

electron and hence considering the charge state (-). In the case of 4H, the electrons provided by

the hydrogen species are enough to fill all the holes and eventually forming four OH groups.

However, it seems that the repulsion between the four protons is strong such that the binding

energy of this complex is only -0.02 eV. Figure 6-7 shows the relaxed structure for these two

special clusters. In Table 6-6 we report the calculated Bader charge for the hydrogen species

together with the bond lengths and the vibrational frequencies for the hydroxyl groups. Bader

charge analysis confirms that all the hydrogen species in these two clusters are protons. In

addition to this, the vibrational frequencies of all the OH~ groups are downshifted conforming to

the trend we identified for all OH~ in T-ZrO2.

140



(a)

(-) t
V

Figure 6-7: The relaxed structures of the clusters (a) (3H)Z,., and (b) (4H);.

Table 6-6: Calculated properties for the two special clusters formed between hydrogen and the zirconium
vacancy. Bader charges are shown for hydrogen only. The distance, d, is the bond length of the OH~
detected in the defect. The frequency difference, Aw, is defined in section 6.2.3.

Defect Bader Charge (e) d (A) Ao (cm~)

(3H)r +0.61, +0.63, +0.62 0-H: 0.973, 0.982, -51, -239, -450 a

0.991

(4H)x +0.64, +0.64, 0-H: 0.979,0.979, -181, -188,

+0.62, +0.62 0.996,0.996 -489, -494 a

a The reference is the stretch mode of OH-

6.5 On the adequacy of Makov-Payne correction for hydrogen defects in
tetragonal ZrO2

We assessed the adequacy of the leading term of the Makov-Payne (MP) correction by

comparing its results with the results obtained by finite size scaling. This assessment was done

on four selected defects which are H*, H.', H;, and (H 2)". The first two are generally

regarded very important defects in metal oxides, the third is the predominant in oxygen poor

conditions in T-ZrO2, and the last predominates in oxygen rich conditions in T-ZrO2 and is

representative for the highest possible charge state for a hydrogen defect in this work. The details

of the simulation cells used to perform finite size scaling are summarized in Table 6-7.
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Table 6-7: The details of the supercells used to perform the finite size scaling on selected hydrogen
defects in tetragonal zirconia.

Number of T-ZrO2 unit cells 1x 1 x 1 2x2x2 3x3x3 4x4x4

Number of atoms 12 96 324 786

k-points 4x4x4 2x2x2 2x2x2 2x2x2

Kinetic energy cutoff 450 eV

The formation energy of a defect after performing finite size scaling is denoted by Ef. It

is obtained by fitting the raw uncorrected results from four (or more) simulation cells of different

sizes to the equation:

Ef (L) = E +-a+- - (6-3)
L L

where Ef (L)is the uncorrected formation energy of the defect calculated from a supercell of

length L which is defined as the cubic root of its volume. Ef, a, and b are obtained from the

fitting. We regard E as the reference value for the formation energy of the defect and calculate

the error in the results obtained from the 2 x 2 x 2 supercell (with and without MP correction) with

respect to this reference. Figure 6-8 summarizes the results of this procedure for the four selected

defects, H*, H', H;, and (H2) -
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Figure 6-8: The formation energy of H,, H', H;, and (H 2 ),' obtained without correction and with

the MP correction. The fitting was performed on the uncorrected results to obtain reference values.

In Table 6-8 we provide a summary for the formation energies (at zero chemical potential

of electrons and in oxygen rich conditions) for the selected defects using the three schemes:

finite size scaling, raw uncorrected results, and MP corrected results. We also show in the table

the value of the thermodynamic transition level (+/-) for the interstitial hydrogen. In general MP

correction performs reasonably well (maximum error in the formation energy is 0.3 eV) and

including it is better than leaving the formation energies without any corrections at all. Finite size

scaling is of course more robust, however it is computationally very expensive and indeed
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impractical when it comes to study 30 charged defect as in this work and for each one of the 30

we need to consider several crystallographic structures (for example 12 structures for H,' only).

Table 6-8: Summary of the values of the formation energies of the defects on which the finite size scaling
was performed. These values are at zero chemical potential of electrons and in oxygen rich conditions.
Also shown the (+/-) thermodynamic transition level for the interstitial hydrogen. All energies are in eV.

Reference value Raw results without Makov-Payne corrected

obtained by finite size correction (error) results (error)

scaling, E 2x 2x 2 unit cells 2x 2x 2 unit cells

H -1.22 -1.57 (-0.35) -1.52 (-0.30)

H' 4.53 4.22 (-0.31) 4.27 (-0.26)

H; 1.44 1.60(0.16) 1.65 (0.21)

(H2) 7.17 6.17 (-1.00) 6.96 (-0.21)

(+/-) for H, 2.87 2.91 (0.04) 2.91 (0.04)

6.6 Conclusion
The energy-structure paradigm was adopted to study hydrogen defects in tetragonal

ZrO2 by means of density functional theory simulations. Defect energies were analyzed by two

metrics; the formation energy and a new more comprehensive definition of the binding energy of

a defect complex. The atomic and electronic structures of the defects were examined utilizing

Bader charge analysis, shifts in the vibrational frequencies and the DFT-calculated relaxed

geometries and net spin densities.

Our results indicate that in oxygen poor conditions and for most of the values of the

chemical potential of electrons, the predominant form of hydrogen defects is H;. H; is a

complex formed by the association of a hydride ion and a doubly charged oxygen vacancy. This

complex is very stable thermodynamically with a binding energy of -2.22 eV. Furthermore, this

observation is consistent with the proportionality between hydrogen solubility and the degree of

hypostoichiometry observed experimentally in oxygen poor conditions. In oxygen rich

conditions several hydrogen defects predominate depending on the chemical potential of
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electrons. Starting from the edge of the valence band and toward the edge of the conduction band

these are, interstitial protons, then the complex (2H)r,, and finally for the rest of the band gap,

the complex (H 2 )zr. The latter two complexes are thermodynamically stable with binding

energies of -2.94 eV and -1.06 eV, respectively. In (2H)"zr the two hydrogen species exist in the

zirconium vacancy in the form of hydroxyl groups, while in (H 2 )z they exist as a hydrogen

molecule.

We found out that zirconium vacancies have a tendency to act as hydrogen accumulators

up to three hydrogen species per vacancy. This tendency of zirconium vacancies can be a

precursor for the degrading effect of hydrogen on the mechanical properties of T-ZrO2 and the

metal oxides in general.

Finally, in order to assist future experimental detection of hydrogen defects in T-ZrO2,

we calculated the shifts in the vibrational frequencies of hydroxyl groups and hydrogen

molecules that can arise as hydrogen defects in T-ZrO2 taking their gas phase frequencies as

reference. Without exception, we observed that all the hydroxyl groups experience a red-shift

while all the hydrogen molecules experience a blue-shift in tetragonal zirconia.

We believe that the comprehensive study presented here concerning hydrogen defects in

T-ZrO2 is a major milestone in our understanding of technologically important phenomena such

as hydrogen pickup in zirconium alloys in nuclear reactors, the low temperature degradation of

zirconia ceramics in biomedical applications, and the adverse effects of hydrogen on zirconia

gate dielectrics.
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Chapter 7 : The interplay between planar stress and hydrogen
defects in tetragonal zirconium oxide

Abstract
We studied the effect of planar compressive stress on the perfect and defected (001) and

(101) gains of tetragonal zirconia. For the perfect grains and up to a stain of 4%, the (001) grains

exhibit linear elastic behavior while the (101) shows a relaxation at about 2% strain. Moreover

these two types of grains exhibit different response to stress in the presence of defects (whether

hydrogen or native). In particular for the (101) grains, the formation energies of the defects that

dominate in the oxygen rich conditions is lowered by biaxial compression while the formation

energies of the oxygen poor defects increase by biaxial compression. The trend for the (001)

grains is the opposite. For both types of grains the underlying reason for decreasing or increasing

the formation energies of the defect is the stress induced by the defect. A defect that relaxes the

compression gains lower formation energy by applying compression and vice versa. A

mechanism for picking up hydrogen was proposed based on these observations.

7.1 Introduction

Once the oxide on zirconium alloys exceeds a thickness of about 2 microns, the corrosion

kinetics undergo an accelerating transition [10]. This transition repeats itself in a cyclic fashion

as the oxide continues the growth process and is usually associated with cracks in the oxide

parallel to the metal/oxide interface. Recently a strong correlation was demonstrated between the

kinetics of the corrosion process and the kinetics of hydrogen pickup [78, 178]. In particular it

was shown that within each corrosion cycle, hydrogen pickup has an inverse relationship with

the measured weight gain in corrosion experiments. At the start of each corrosion cycle the

oxidation is fast and hydrogen pickup is slow and the situation is reversed at the end of the cycle.

Moreover, recent experiments discovered that right before end of the corrosion cycle the

compressive stress in the tetragonal phase of the zirconium oxide (T-ZrO2) relaxes significantly

and then subsequently increases [179]. This stress evolution behavior was attributed to the

tetragonal to monoclinic phase transition where initially the relaxation of the compression on the

tetragonal phase leads to transforming part of it to monoclinic phase (M-ZrO2). The newly

formed M-ZrO2 has larger volume and hence exerts compressive stress on the remaining
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tetragonal phase which explains the restoration of the compression on T-ZrO2 as observed in the

experiments

In this chapter we introduced "a" missing link between the observed stress

evolution during the corrosion cycle and the discovered correlation between oxidation and

hydrogen pickup kinetics. In particular we demonstrate through density functional theory (DFT)

calculations that the formation energy of hydrogen defects in the oxygen rich part of T-ZrO2 (the

part close to the water/oxide interface) decreases significantly in the presence of biaxial

compressive stress. Furthermore, we showed that the same defects are able to relax the

compressive stress in T-ZrO2 . This observed interplay between certain defects and planar stress

was found to apply to the gains oriented in <101> direction but to the grains oriented in

<001>.TT1 We limited our investigation to these two orientations because, as reviewed in chapter

2, Motta et al. showed that all zirconium alloys that exhibit "protective" corrosion kinetics, share

a common feature which is the presence of highly textured tetragonal grains oriented in (001) at

the metal/oxide interface [43]. The (001) grains are limited to the first 0.3 micron of the oxide

and do not exist beyond this region, while (101) grains exist throughout the oxide.

Based on these DFT calculations we hypothesized that hydrogen pickup can takes place

by catalyzing a degrading tetragonal to monoclinic phase transition in the (101) tetragonal grains.

Initially the compressive stress is high enough in T-ZrO2 which thermodynamically facilitates

the incorporation of hydrogen into the oxygen rich part of the oxide. Continuous accumulation of

hydrogen in this part of the oxide leads to decreasing the level of compressive stress which

subsequently leads to the tetragonal to monoclinic phase transition. We think that this phase

transition can introduce interconnected cracks that can provide a direct path for hydrogen to the

metal. This does not exclude the possibility of the diffusion of hydrogen through a coherent

oxide layer; instead it provides another mechanism for hydrogen entry. Both can act

synergistically.

The organization of the rest of this chapter is as follows; first we present the details of the

DFT calculations. Next, we present our results for the defect-free (001) and (101) grains and then

1*1 Crystallographic directions in this chapter are based on the primitive cell of tetragonal zirconia. Confer Figure
4-1.
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for the grains that contains both hydrogen and native defects. Finally, we present a discussion of

the news findings.

7.2 Computational details
Since this chapter is built upon the comprehensive study of hydrogen defects in

tetragonal zirconia presented in chapter 6, we followed exactly the same simulation details

except for some exceptions due to the application of planar strain to the simulation cells. Here

summarize these exceptions and explain how the strain was applied.

The kinetic energy cutoff was increased to 520 eV to avoid Pullay stress issues. We

simulated the biaxial compression on (001) and (101) grains by orienting a single crystal of T-

ZrO2 such that the <001> and <101> directions are coincident with z-axis for each grain type,

respectively. The biaxial strain was applied to the x-y plane in steps of 0.002 from the zero strain

state up to a strain of 0.04. At each step both the ionic positions and the z-axis of the simulation

cell were allowed to relax. The simulation cell contained 32 and 36 ZrO2 formula units in the

case of (001) and (101) grains, respectively. A 2x2x2 k-point grid was used to perform integrals

in the reciprocal space.

The procedure described above was applied for the defect-free grains and for grains that

contain the most dominant hydrogen defects both in oxygen rich conditions (oxide/water

interface) and oxygen poor conditions (metal/oxide interface). As determined in chapter 6, for

the oxygen rich conditions (2H)' ,(3H)' , and (H 2 )" predominate while for oxygen poor HL

predominates. For the sake of comparison we also performed simulations were the simulation

cell contains one of the native defects V " and Vz"'.

7.3 The interplay between hydrogen defects and the biaxial stress

7.3.1 Defect-free (001) and (101) tetragonal ZrO2 grains under biaxial
compression

Figure 7-1 depicts the atomic configurations of the (101) and (001) tetragonal grains. It is

interesting to note that the area per ZrO2 unit formula on the (101) plane is about 11.72 A2 while

this characteristic area is about 13.28 A2 on the (001) plane. In other words the atomic packing

density on the (101) planes is higher than on the (001) planes. Intuitively one would think that it
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is easier to biaxially compress the (001) planes as compared to the (101) planes but our DFT
calculations surprisingly indicate the converse as we explain below.

<101> <001>

eo o*o *0*: :
0 0 . 000

* 000

0* 0 : :

10.0 0 00 . 00 00
* 000

00 * *0 0 0000a

* * :::
0 0 00

Figure 7-1: Schematic shows the simulation cell of the (101) grains (left) and the (001) grains (right). The
box indicates the actual size of the DFTC supercell and was doubled in z-axis for clear visualization. Green
and red balls represent zirconium and oxygen, respectively.

In Figure 7-2 we present the calculated stress-strain response of both grain types. In

addition, we show the change of the energy of the ZrO 2 unit formula under biaxial compression
with respect to the energy of the zero strain state. The level of stress response in the (001) grains
is much higher than the corresponding stress level in the (101) grains and is linear with strain all
the way up to 4% strain as indicated in the figure. On the other hand, the stress level in the (101)

grains reaches a value of about 2.64 GPa at a strain of 2% and decreases till 3% strain and then
builds up again. Energetically it is also clear that deforming the (001) grains is more unfavorable

energetically compared to the (101) grains. It is important to note that these energy changes in

the figure are not too small to be evaluated by DF' since they are presented here on "per

chemical formula" basis but indeed these changes are large enough to be adequately predicted
using DFT. Again we emphasize that these results are counterintuitive considering that the (101)
plains are atomically denser than (001) planes. The defect-free results hint that the response of
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these two types of grains to hydrogen defects will also be markedly different and this is actually

the case as we present in the next subsection.

25 0.2

0.1
0
1 5

O 0110- C

0 .0

01 0.01 0.02 0.03 -...0.04 0- 0.01 0.02 0.03 0.04
planar strain planar strain

Figure 7-2: (left) The stress-strain response of the (101) and (001) grains under biaxial compression.
(right) The change of the energy of the ZrO2 chemical formula in biaxially compressed (001) and (101)
grains with respect to the energy at the zero strain state.

7.3.2 Interplay between biaxial compressive stress and hydrogen defects in

(001) and (101) tetragonal Zr02 grains

We examine the impact of biaxial compression on the formation energies of the dominant

hydrogen and native defects. Figure 7-3 depicts the relative formation energy of these defects in

both (001) and (101) grains as a function of applied strain with respect to the zero strain state.

For the (101) grains shown in the top part of the figure, the epitaxial compression favors

the formation of the defects that predominates in oxygen rich conditions but not the ones in

oxygen poor conditions. For all the defects (except (3H)'r) the change in the formation energy

due to strain is not significant up to a strain of about 0.014%. Beyond this strain the formation

energy of the metal/oxide interface predominant defects starts increasing significantly while for

the water/oxide interface defects, the formation energy starts decreasing significantly. The

formation energy of the (3H)z defect has an interesting behavior were it initially decreases upon

applying the strain and then reaches a minimum at about 0.014% strain and then increases again.

The changes in the formation energy shown in the figure are very significant and can lead to

orders of magnitude changes in the defect concentrations.
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For (001) grains, the impact of strain on the defect formation energies is reversed when

we compare with the (101) grains. In particular, we can clearly see that the defects that

predominate in oxygen rich conditions will be suppressed by applying compression on (001)

grains while those defects that arise in oxygen poor conditions will get enhanced by applying

compression. This is the converse of the trend in the (101) grains.
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Figure 7-3: The relative formation energies of the predominant hydrogen and native defects with respect
to the zero strain state. [Top] is the results of the (101) grains, [bottom] is the results of the (001) grains.
[Left] is the defects that predominate in oxygen poor conditions, [right] is the defects that predominate in
oxygen rich conditions.
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The defect that introduces relaxation of the compressive stress in the lattice will in

general be favored energetically. This can be readily seen once we consider Figure 7-4 in which

we plot the stress-strain response of the defect-free T-ZrO2 and also for T-ZrO 2 grains that

contains hydrogen or native defects. In relating Figure 7-4 with Figure 7-3, we observe that any

defect that leads to a stress level higher than that of the defect-free crystal would immediately be

favored energetically.
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Figure 7-4: The stress-strain response for defect-free T-ZrO2 and for T-ZrO2 with hydrogen and native
defects. [Top] is the results of the (101) grains, [bottom] is the results of the (001) grains. [Left] is the
defects that predominate in oxygen poor conditions, [right] is the defects that predominate in oxygen rich
conditions.
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It is important to note two observations from the DFT calculations presented here. First,

the defect-free (101) grains show an immediate stress relaxation at about 2% strain even though

the corresponding stress level is not very high (less than 5 GPa). This is not a typical behavior of

a ceramic material investigated by atomistic simulation in a defect-free setup. Indeed we checked

that this behavior is special for the tetragonal crystal structure by performing the same

calculations on the (001) and (101) grains of several cubic (fluorite) ceramics and on tetragonal

hafnia. None of the cubic structures showed this early stage relaxation under biaxial compression

on the (101) grains but tetragonal hafnia showed exactly the same behavior as tetragonal

zirconia. Second, both Figure 7-3 and Figure 7-4 show that substitutional hydrogen defects

follow the trends of the native defects on which they were substituted. So the oxygen-rich

hydrogen defects more or less follow the behavior of the underlying zirconium vacancy while the

oxygen-poor hydrogen defects adhere to the behavior of the oxygen vacancy.

7.4 Implication for the mechanism of hydrogen pickup
Based on the results presented in the previous section, we believe that hydrogen can

induce the degrading tetragonal to monoclinic phase transition by acting on the (101) tetragonal

grains. It is important to recall that the experiments showed that (101) grains exist throughout the

oxide and are not limited to the metal/oxide interface as is the case for the (001) grains [43]. This

implies that (101) grains are far from the strong constraint dictated by the metal/oxide interface

lattice mismatch and thus amenable to stress relaxation by hydrogen defects. Moreover, the

presence of the (101) grains throughout the oxide indicates that hydrogen have easier access to

them compared to the (001) grains that resides in the metal/oxide interface. For hydrogen to

reach the (001) grains, it has to diffuse through the coherent solid oxide. While for (101) grains,

it could be a matter of surface-to-subsurface incorporation (without subsequent diffusion) for

hydrogen to reach them. Recall that our DFTI calculations indicated that hydrogen can degrade

the (101) grains through the defects that arise in the oxygen-rich region that is at the water/oxide

interface. This confmns the easy access of the degrading hydrogen defects to the (101) grains

compared to the (001) grains.

We propose that hydrogen defects that dominate the oxygen rich part of the (101) grains

in the oxide scale grown on zirconium alloys can induce the tetragonal to monoclinic phase
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transition by relaxing the compressive stress in the grains. This phase transition is associated

with large volume expansion which can lead to cracking the oxide layer. By cracking the oxide,

the underlying metal gets exposed directly to hydrogen which can then be picked up directly.
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Chapter 8 : The impact of transition metal dopants on the
hydrogen pickup capacity of zirconium oxide - solubility and

surface reactivity

Abstract
In early 60's the nuclear industry discovered experimentally that hydrogen pickup in zirconium

alloys exhibits a volcano-like shape as a function of the 3d transition metal alloying elements.

The peak of the volcano is coincident with nickel, so nickel was subsequently excluded from

zircaloy-4. Here we elucidate the underlying physical reason behind this volcano behavior by

combining density functional theory (DFT) calculations and thermodynamic analysis of defects

and electronic structure. The key is the ability of the transition metal to p-type-dope the

zirconium oxide (Zr02) layer that grows natively on zirconium. The more p-type doping, the less

the value of the chemical potential electrons (Fermi level) in the ZrO2 is, and subsequently the

more hydrogen can dissolve in ZrO2 in the form of interstitial protons. Simultaneously, the

charge transfer barrier to hydrogen on the surface is increased, and thus, the hydrogen gas

evolution is expected to be suppressed. Across the 3d transition metal, our modeling showed a

volcano of the solubility of hydrogen with the peak coincident on cobalt. The approach

demonstrated here can be used to design hydrogen-pickup-resistant zirconium alloys starting

from first principles.

8.1 Introduction

In the last two chapters we addressed the effect of hydrogen on mechanically degrading

the oxide layer once it manages to reach to the bulk of the oxide. This degradation exposes the

underlying metal direct to hydrogen insertion. However, one fundamental question remains; why

does part of the hydrogen generated from the splitting of water molecules on the surface of

zirconia manages to penetrate the oxide layer while the remaining part evolves as hydrogen gas?

A closely related question is why the hydrogen pickup exhibits a volcano-like dependence when

plotted as a function of the 3d transition metal alloying element as discussed in chapter 2 and as

shown in Figure 8-1 below. The key to answer these questions is to consider the fate of the water

molecule subsequent to its splitting on the surface of zirconia.
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Figure 8-1: The effect of alloying elements on hydrogen pickup percentage [8].

Figure 8-2 shows schematic description of the elementary processes that can take place at

the oxide/water interface. Upon the splitting of an H20 molecule, the resulting OH~ adsorbs on a

cation site forming a terminal hydroxyl group, while the H' adsorbs on an anion site forming a

bridging hydroxyl [180]. The oxygen ion that is part of the terminal hydroxyl will eventually get

into the oxide, diffuse towards the underlying zirconium metal and oxidize it. The actual

mechanism is not known [15] but it is not hard to imagine that oxygen vacancies in the oxide

play a major role in the mechanism of incorporating the oxide ion. Moreover the incorporation of

the whole terminal hydroxyl group into the oxide is also a possibility which should not be

excluded. The result on the surface is the protons that are part of the bridging hydroxyls in

addition to any protons reminiscent of the terminal hydroxyls. This point is the onset of two

competing scenarios. In the first scenario, these protons get incorporated into the oxide in the

form of interstitial defects or via the native defects of the oxides (particularly cation vacancies).

Needless to say, this is the undesirable scenario. In the second scenario, two electrons from the

surface of the oxide discharge two adsorbed protons facilitating their recombination to from H 2

molecule. The presence of alloying elements in the oxide layer can promote one of these two

scenarios over the other. The goal of this work is to delineate the impact of 3d transition metals

on the hydrogen pickup in monoclinic ZrO2 utilizing the approach we developed to predict defect
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equilibria in a metal oxide in the limit of non-interacting defects (cf. chapter 3). The 3d transition

metals include iron and chromium which are currently used in zircaloy-4, in addition they

include nickel which was excluded from zircaloy-4 as it was observed experimentally to enhance

the pickup of hydrogen. The choice of monoclinic zirconia (M-ZrO2) as a host instead of the

tetragonal phase is natural since it is anticipated for the monocinic phase to dominate close to

the water/oxide interface (i.e. far away from the metal/oxide interface where the tetragonal phase

is stabilized by the planar strain or the low oxygen chemical potential as we showed in chapter

5).

i_0~ ZrO2Z~zZ0

Zr Zr Zr Zr Zr

H2 0 H20 02- H+ H2

adsorption splitting incorporation incorporation evolution

Figure 8-2: Schematics show the elementary processes that can take place at the oxide/water interface.

In particular we constructed the Kr6ger-Vink diagram for the hydrogen-doped M-ZrO2.

Subsequently we constructed the Kr6ger-Vink diagram for M-ZrO2 co-doped with hydrogen and

one of the 3d transition metals. It is known that certain alloying elements in Zr remain as

secondary phase precipitates (SPP). However, the dissolution of the transition metals from the

SPP (and their oxides) into the M-ZrO 2 phase is expected at high temperatures and especially

under the irradiation conditions in a nuclear reactor.

This analysis allowed us to quantify the impact of the transition metal on enhancing or

suppressing the solubility of hydrogen in M-ZrO2. Our analysis revealed a volcano-like behavior

for the change in hydrogen solubility in M-ZrO2 when plotted as a function of the 3d transition

metal with the peak coincident with cobalt. Further analysis showed that the underlying reason

for this behavior is the extent to which the transition metal lower the chemical potential of
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electrons (pF) in monoclinic ZrO2, i.e., the extent to which the transition metal p-type-dope M-

ZrO2. The lower pF , the more favorable it is for the interstitial proton to form inside M-ZrO2

which overall increases the solubility of hydrogen in the oxide. While these results are

thermodynamic in nature, they have a kinetic incarnation. Lowering pF leads to increasing the

activation barrier for the transfer of free electrons from the surface of the oxide to the adsorbed

protons. This is in turn increases the residence time of these protons on the surface of the oxide

and hence facilitates hydrogen pickup and inhibits the evolution of H2 gas. Thus, a transition

metal dopant that lowers pF ' will synergistically enhance the solubility of hydrogen in zirconia

and increase the chance of incorporating the adsorbed protons into the oxide.

The organization of the rest of the chapter is as follows. First, we outline the

computational approach which relies on the defect equilibria model introduced earlier in chapter

3. Second, we discuss the Kr6ger-Vink diagram for hydrogen doped M-ZrO 2. Finally we present

and discuss the trends related to hydrogen pickup and observed across the 3d transition metal

row. These trends are extracted from the calculated Kr6ger-Vink diagrams for M-ZrO 2 co-doped

with hydrogen and one of the 3d transition metals.

8.2 Computational approach

8.2.1 Defect structures and charges
The same type of hydrogen defects that were modeled in tetragonal zirconia (cf. chapter

6) were also considered in monoclinic zirconia. These defects are interstitials and complexes

with both anion and cation vacancies. We also considered the clustering of hydrogen in cation

vacancies again along the lines of our investigations on tetragonal zirconia. The only exception is

that we did not consider several orientations for every single defect as this would render the

computational cost very expensive and intractable given the very asymmetric structure of

monoclinic zirconia. Instead for every defect we chose only one orientation to study, guided by

our work on the tetragonal phase, but allowed relaxation of all ionic and electronic degrees of

freedom.

Transition metals are expected to be present in the lattice in the form of substitutional

defects on the cation sites. However, we also considered interstitial defects in our simulations.
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The minimum oxidation state for the transition metals were taken to be zero, that is the metallic

state, while the maximum was taken from general inorganic chemistry texts (see for example

[181]) and is summarized in Table 8-1.

Table 8-1: The maximum oxidation state of the 3d transition metals considered in the modeling.

Sc Ti V Cr Mn Fe Co Ni Cu Zn

3+ 4+ 5+ 6+ 7+ 6+ 4+ 4+ 3+ 2+

Charge localization on the defects was determined by performing Bader charge and spin

analysis"'* [168, 169] and by examining isosurfaces of the DFT calculated charge density.

However, contrary to hydrogen defects, transition metal defects pose a challenge to their

examination using Bader charge analysis or indeed any charge analysis method. The reason is

that the local charge on the transition metal site undergoes a negligible change whenever the

oxidation state of the metal atom changes formally by integer values. This phenomenon was

recently explained by the so-called charge self-regulation mechanism [182]. To overcome this

issue, we employed a very dense grid during computing the Bader volume in order to obtain very

accurate Bader charges (and spins).

8.2.2 Defect energetics and Kr6ger-Vink diagrams

The formalism described in detail in chapters 3 and 6 to calculate the zero Kelvin

formation energies and to construct the Kroger-Vink diagram was adopted here as well. The

exception is that we did not include the defect electronic entropy in the work presented here. The

temperature of interest for the hydrogen pickup problem is the nuclear reactor coolant operation

temperature (500-600K) and at these temperatures defect electronic entropy can be safely

neglected. However, we included the vibrational free energy in our analysis which still has a

non-negligible contribution even at 500K.

In constructing the Kr6ger-Vink diagram a reference chemical potential is needed for

each element. In chapter 3 we showed how to compute the chemical potential for the native

* Bader spin is simply the net spin inside the Bader volume. The latter is readily computed during the evaluation of
the Bader charge.
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elements (Zr, 0). Here we clarify the computation of the chemical potential for hydrogen and

the transition metals. The chemical potential of hydrogen, PH, was computed as follows:

1
PH(T) = 1[PH20'(T,PH2 = lat~) -P (T,P0 2 = latm)], (8-1)

2

where PH2O and pO are corrected from thermochemical tables[94] as in chapter 3. The choice of

temperature only dependent PH in (8-1) represents the situation where water is only located at

the oxygen rich part of the oxide (water/zirconia interface) and provides the source term for all

hydrogen defects throughout the oxide layer all the way up to the metal/oxide interface (oxygen

poor part of the oxide).

The chemical potential for a transition metal, pm , was computed as follows:

PM (T,P02) = 2 [ PMXOY - p0 (T,P 02)], (8-2)
x y

where pM.O, is the chemical potential for the metal oxide MOy which is taken to be the DFT

calculated energy for the chemical formula of this oxide. The choice of both T and P 2 dependent

chemical potential for the transition metal is consistent with the situation taking place in the

zirconium alloy in the reactor. In this alloy the transition metal exists as a metallic precipitate

which gets oxidized and forms the source term for the transition metal in zirconia. Since these

precipitates are distributed throughout the zirconium alloy, it is expected to be present

throughout the zirconia layer and hence exposed to the gradient of the chemical potential of

oxygen across zirconia. In spite of this justification, all what we really need for the purpose of

this particular study related to hydrogen pickup is the results in the oxygen rich part of zirconia,

i.e. the results at Po = latm. The reason is that the oxygen rich part is the closest to the interface

with water were protons are adsorbed.

The reference oxide MxOy is not to be chosen arbitrarily. Rigorous justification for the

choice of the oxide (i.e. the particular x and y) requires performing comprehensive DFT

calculations coupled with finite temperature thermodynamic analysis for all the oxides known for
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each metal, in order to determine the one that is most stable in the thermodynamic conditions of

interest. Being computationally prohibitive, we resorted to choosing the most widely known and

used oxide for each metal. This is did not lead to any difficulty in the construction of the Kriger-

Vink diagrams except in the case of Mn where initially chose MnO in the rock salt structure. It

turns out that this highly reduced form of the manganese oxide leads to negative formation

energies for Mn defects in zirconia in the oxygen rich parts of the Kr6ger-Vink diagram.

Physically this is equivalent to say that if MnO was the only form to precipitate manganese oxide

in oxygen rich condition, then it is energetically favorable for manganese defects to dissolve in

zirconia rather than to precipitate as MnO. Thus, we replaced MnO with MnO2 in the rutile

structure which is a more oxidized form of manganese. Table 8-2 summarizes the reference

oxides used in this study.

Table 8-2: The transition metal oxides
potential of the transition metal.

that were used as reference states to compute the chemical

Element Reference Oxide Crystal Structure of the Magnetic Structure

Oxide

Sc Sc 20 3  Ia3 (bixbyite)

Ti TiC 2  P42 /mnm (rutile)

V V20 5  Pmmn

Cr Cr2O3  R~c (corundum) Antiferromagnetic

Mn MnO 2  P42 /mnm (rutile) Antiferromagnetic a

Fe Fe20 3  R3c (corundum) Antiferromagnetic

Co CoO Fm~m (rock salt) Antiferromagnetic b

Ni NiO Fm3m (rock salt) Antiferromagnetic b

Cu Cu20 Pnm

Zn ZnO P63 mc (wurtzite)

a. This phase has a helimagnetic structure which is difficult to model, so it is approximated here by
antiferromagnetic structure.
b. The so-called type-II antiferromagnetic structure.
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8.2.3 Density functional theory calculations

The same calculation details used in chapter 3 and 6 were also applied in this study

except that phonon calculations for the defects were performed using gamma point sampling.

The monoclinic structure is very asymmetric and using 2 x 2x 2 k-point sampling was found to

be very demanding.

For the transition metals, we summarize in Table 8-3 the electrons that were explicitly

treated as valence electrons in the DFT calculations.

Table 8-3: Summary of the electrons that were treated as valence electrons for the transition metals.

Element Valence

Sc 3s2 3p" 4s2 3d'

Ti 3s2 3p6 4s2 3d2

V 3s2 3p6 4s2 3d'

Cr 3s2 3pP 4s2 3d

Mn 3s2 3p" 4s2 3d

Fe 3s2 3p6 4s2 3d6

Co 3s 2 3p6 4s2 3d

Ni 3p6 4s2 3d

Cu 3p" 4s2 3d9

Zn 3p" 4s2 3d

8.3 Hydrogen doped monoclinic Zr02
In this section we present the Krdger-Vink diagram for Hydrogen doped monoclinic ZrO 2

calculated at 600K which is representative of the nuclear reactor operation temperature. In all

diagrams we limit the range of log PO, to the range between -15 and 0, and focus on the defects

that has concentration greater than 10-16 per ZrO2 chemical formula. The most relevant region in

the diagrams for the problem of hydrogen pickup is the high PO2 region (- 1 am). The equilibria

in this region decide the equilibrium solubility of hydrogen and the chemical potential of

electrons close to the metal/oxide interface. These two quantities are crucial in deciding the

pickup of hydrogen in the oxide and subsequently in the underlying metallic alloy.
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Figure 8-3 depicts the calculated Krdger-Vink diagram for hydrogen doped monocinic

zirconia at 600K. Free holes, the dominant native defects in this regime of Po2 in M-ZrO2, are

now compensated by the complex HZ. The latter is a complex between a zirconium vacancy and

trapped hydrogen in the vacant site in the form of a hydroxyl group. Other hydrogen defects

which are still present by comparable concentrations are the interstitial proton H*and the

complex(2H) z. The hydrogen related complexes are anticipated to be trapping sites for

hydrogen that render it less mobile compared to its interstitial defects.
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Figure 8-3: Calculated Kr6ger-Vink diagram for hydrogen doped monoclinic zirconia at 600K.

8.4 The origin of the hydrogen pickup volcano

The solubility of hydrogen at a given temperature and oxygen partial pressure is the

weighted sum of the concentration of all hydrogen defects, where the weights are the number of

hydrogen species in each defect. We extracted the solubility of hydrogen in monoclinic zirconia

in the presence of 3d transition metals at P0 , of 1 atm from the calculated KrOger-Vink diagrams

and reported in Figure 8-4 the effect of the 3d transition metals on the solubility of hydrogen at

three different temperatures. Important observations can be readily seen on the figure, which we

summarize here:
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1. Scandium which was not considered before to alloy zirconium for nuclear cladding (see

Figure 8-1) is indeed the worst in terms of hydrogen pickup. The solubility of hydrogen

increases by 4-5 orders of magnitude by doping ZrO2 with scandium.

2. Titanium does not change the hydrogen pickup compared to the pure ZrO2. This element

dissolves in the form of Ti, substituting zirconium and hence and does not change the

defect equilibria in ZrO2 at all since it is neutral with respect to zirconium.

3. At 600K chromium indeed reduces the solubility of hydrogen compared to the pure ZrO2.

4. Starting from Ti all the way to Zn, the solubility ratio exhibits a volcano-like shape with a

peak on Cobalt. This is in line with trend observed experimentally except that the peak

position is on Cobalt instead of Ni. The resolution of this difference calls for more

accurate and "modem" experiments and also more accurate DFT calculations.

0~

o 2

0 - Sc Ti V Cr Mn Fe Co Ni Cu Zn
Figure 8-4: The ratio between hydrogen solubility in the transition metal doped monoclinic zirconia to the
hydrogen solubility in the pure zirconia. These values were obtained from the calculated Kr6ger-Vink
diagrams at 600 K and oxygen partial pressure of 1 atm.

In order to explain the origin of this volcano, we plot in Figure 8-5 the chemical potential

of electrons (piF) at a 600K and P of 1 atm as a function of the alloying element. In the same

figure we show PF in the absence of any alloying element. We observe that the elements who

significantly increased the solubility of hydrogen are those who are able to p-type dope zirconia
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as much as possible (i.e. lower pF as much as possible). In particular in the case of Co, we

found that p1 F is reduced by 0.7 eV at 600K. Such reduction in pF enhances the solubility of

hydrogen since it reduces the formation energy of interstitial protons as show in Figure 8-6.
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Figure 8-5: The chemical potential of electrons in the monoclinic zirconia co-doped with hydrogen and a
transition metal element. The horizontal blue line shows the value of the chemical potential of electrons in
pure zirconia. These values were obtained from the calculated Kr6ger-Vink diagrams at 600 K and
oxygen partial pressure of 1 atm.
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Figure 8-6: The zero kelvin formation energy of interstitial hydrogen as a function of the chemical
potential of electrons. The defect is stable in two charge states; proton (+) and hydride ion (-).
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The reduction of pF has also kinetic considerations as schematically shown in Figure 8-7.

The value of pF compared to the energy state of the adsorbate on the surface of the oxide

(adsorbed protons in our case) sets the lower bound for the energy barrier for free electron

transfer from the surface of the oxide to the adsorbate. If this charge transfer does not take place,

the hydrogen gas evolution cannot take place, and the residence time of the adsorbed protons on

the surface of zirconia will increase, ultimately increasing the probability of its incorporation in

the bulk of the oxide.

HL

Thermodynamic

PF -barrier

Figure 8-7: Schematic showing the thermodynamic barrier to transfer a free electron from the surface of
the oxide to an adsorbed proton.

We believe that the analysis presented here gives a reasonable explanation for the

observed trends for hydrogen pickup as a function of the 3d transition metals. However, it also

motivates further controlled experiments in order to confirm and validated the explanation that

we propose.
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Chapter 9 : Epilogue

9.1 Summary
In this thesis we presented a framework to model non-interacting charged defect equilibria in a

metal oxide informed by density functional theory and relying on notions of statistical

mechanics. The framework was validated on the tetragonal and monoclinic phases of zirconium

oxide and then applied to four problems of importance to understand the corrosion and hydrogen

pickup of zirconium alloys in nuclear reactors.

The first problem is concerned with the self-diffusion of oxygen in tetragonal zirconia.

We combined the predicted oxygen defects concentrations using the developed framework with

the calculated migration barriers (using the Nudged Elastic Band method) to determine oxygen

self-diffusivity as a function of independent thermodynamic variables such as the temperature

and oxygen partial pressure. Our analysis naturally produces a spectrum of effective self-

diffusion barriers as a function of oxygen partial pressure (or alternatively off-stoichiometry)

providing a possible reconciliation for the scatter in the experimentally determined activation

barriers for metal oxides in general. The computed self-diffusivity of oxygen in tetragonal

zirconia can be fed to future macro-scale modeling of the growth of the oxide scale on zirconium

alloys.

In the second application of the framework, we utilized the evaluated defect equilibria for

both the monoclinic and tetragonal phases of zirconia to construct a temperature-oxygen partial

pressure phase diagram. The diagram showed that the tetragonal phase can be stabilized at

temperatures lower than its atmospheric transition-temperature by lowering the oxygen partial

pressure. The reason is that the tetragonal phase admits more oxygen vacancies compared to the

monoclinic phase. The configurational entropy of these oxygen vacancies lowers the free energy

of the tetragonal phase and so stabilizes it. This analysis provides a different perspective on the

stabilization of the tetragonal phase at the nuclear reactor temperature close to the metal/oxide

interface on zirconium alloys. In addition to prior suggestions for the reason of this stabilization

we add here that this region is oxygen poor which promotes a stabilization mechanism for the

tetragonal phase.
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Third, in 1960 the nuclear industry discovered that the hydrogen pickup of zirconium

alloys exhibits a volcano-like dependence on the first raw transition metals that are used to alloy

zirconium. This empirical discovery was utilized in the design of more resistant alloys but was

never explained on physical grounds. Here we applied the developed defect equilibria formalism

to model monoclinic zirconia co-doped with hydrogen and a first raw transition metal. The

modeling revealed that the solubility of hydrogen exhibits a similar volcano-like dependence on

the first raw transition metals. This was found to be related to the ability of the transition metal to

p-type-dope zirconia by lowering the chemical potential of electrons. In particular, the metals on

the top of the volcano (Fe, Co, Ni) are the ones that can minimize the chemical potential of

electrons in zirconia. This, in turn, lowers the formation energy of interstitial protons and thus

increases the solubility of hydrogen in zirconia. Moreover, this thermodynamic analysis has a

kinetic flavor as well. Lowering the chemical potential of electrons also corresponds to

increasing the activation barrier for the free electron transfer from zirconia to the adsorbed

protons. This would obstruct the discharging of the adsorbed protons and the evolution of H2 gas.

The overall result is that the metals on the top of the volcano enhance the hydrogen pickup by

facilitating the solubility of hydrogen and obstructing the charge transfer on the surface of

zirconia. This physics-based explanation can open the door to design resistant zirconium alloys

starting from first-principles. Moreover, it is much more efficient and economical to

computationally screen dopants to design hydrogen-pickup-resistant alloys than to actually

perform expensive experiments. The search space can be significantly broadened if one

considers combinations of dopants and in that case, modeling and simulation, as demonstrated

here, can help in down-selecting the most promising candidate combinations. These candidates

can be subsequently tested experimentally.

Finally, we discovered a marked interplay between certain hydrogen defects in tetragonal

zirconia and the planar compressive stress that this phase experiences in the nuclear reactor at the

metal/oxide interface on zirconium alloys. We found out that the stress reduces the formation

energies of these defects and in return these defects tend to relax the compressive stress. We

proposed based on this interplay a hypothesis for the mechanism by which hydrogen can enter

the zirconium alloy. First, these defects become abundant in the tetragonal zirconia under the

influence of the stress, and then these very defects relax the compressive stress. The stress
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relaxation leads to the tetragonal-monoclinic phase transition which is accompanied by large

volume expansion and crack generation. Cracking the oxide directly exposes the underlying

metal to hydrogen leading to hydrogen pickup.

9.2 Suggested future directions
I believe that the framework presented in this thesis to model the equilibria of non-interacting

charged defects in metal oxides can be further advanced, improved and coupled with other

approaches to solve more challenging problems in the realm of materials physics and chemistry.

Here I propose few future directions:

1. The density functional theory calculations that are needed to feed the framework can be

obtained by more accurate computationally intensive exchange-correlation functionals.

While we believe that for zirconium oxide standard PBE functional is sufficient to

capture the essence of the electronic structure of its defects, for other metal oxides this

might not be the case especially for strongly-correlated oxides. A more balanced

approach would be to use standard PBE so sample the electronic structure of a large

number of possible point defects, and then based on PBE results we can down-select a

few of the most important defects to study them with more accurate approaches. This line

of thinking was also suggested by J. Perdew [183].

2. There is also a room to improve the sampling of finite temperature effects and to consider

more of these effects as well. In particular, throughout this work we relied on the

harmonic approximation to model the vibrational free energy of the solid. We also

showed that this approach can have a shortcoming at very high temperatures when it

comes to predict the solid-solid phase transition temperature (cf. chapter 5). It is possible

to resort to more expensive methods such as the quasi-harmonic approach. Again I

believe a more balanced approach is to first sample a large number of defects using the

harmonic approximation and then focus on the most important ones using a quasi-

harmonic approximation. Moreover, there are some finite temperature excitations which

we did not consider here either because they are not relevant to zirconia, or they are very

computationally expensive to determine. Two examples I can mention here are the

configurational electronic entropy of the point defect and the dependence of the band gap
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on temperature. The first is actually not relevant to zirconia since none of its dominant

defects is associated with localized polarons which can lead to a configurational

electronic entropy contribution to the free energy of formation of the defect. This,

however, is relevant to other oxides such CeO2 where its most dominant defect, that is the

oxygen vacancy, is associated with two localized electrons. The second example, the

change of the band gap with temperature, is relevant to all materials but is very expensive

computationally to determine. With the advance in computational power, sampling such

excitations can be possible.

3. The approach we presented here targets the limit of non-interacting defects. This is very

sufficient for oxides that do not exhibit large deviations from stoichiometric compositions

such as ZrO2 and MgO. However, other oxides exhibit large stoichiometric compositions

such as U0 2 and CeO2. There are techniques to model the interaction between defects

that have large concentrations, for example the cluster expansion combined with Monte

Carlo which was recently used to model the thermodynamics of oxygen vacancies in

CeO2 [184]. These interacting defects technique are inefficient to sample the dilute limit.

Conversely, the dilute limit technique is inaccurate when the concentration of the defects

increases significantly. Linking the two approaches can lead to successful modeling of

oxides such as UO2 and CeO2 starting from fully stoichiometric compositions and

spanning the whole off-stoichiometry spectrum.

4. The approach we presented in this thesis to model the defect equilibria in the bulk of a

metal oxide can be used to set a necessary boundary condition to model the defect

equilibria at an extended defect such as a grain boundary or a dislocation. The idea is to

apply the herein developed framework at the bulk of the oxide and at the core of the

extended defect and then connect these two boundary conditions by Poisson-Boltzmann

equation. This approach was recently applied to model the defect equilibria at a grain

boundary [131] in BaZrO3 without finite temperature effects. Adding the missing finite

temperature ingredient to this modeling idea can improve its predictions and reliability.

5. Finally, and I believe this is the most challenging, is to use the framework developed in

this thesis to set a necessary boundary condition to model the defect equilibria close to a

metal oxide/gas or a metal oxide/liquid interface. The idea is similar to what discussed in
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the previous suggestion above. The difficulty here stems from two factors. First, it has

been very challenging to model charged defects at the surface of a solid due to

electrostatic convergence issues. However, very recently a correction was suggested to

resolve this problem and successfully applied to model charged defects on the surface of

NaCl [185]. The second difficulty arises from the lack of understanding how the gas or

the liquid sets a boundary condition for the defect equilibria in the solid. This is even

more pronounced when the gas (or the liquid) and the solid have a common element (for

example 02 gas and ZrO2 have oxygen in common). There have been recent attempts to

model this boundary condition [130] . We believe that ensuring that these two issues have

been rigorously address, and then developing an overarching framework to model the

defect equilibria at nonhomogeneous interfaces will have a great impact on the science

and technology of metal oxides.
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