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Abstract

Sustainable nuclear energy will likely require fast reactors to complement the cur-

rent light water reactor paradigm. In particular, breed-and-burn sodium fast reactors

(SFRs) offer a unique combination of fuel cycle and power density features. Unfor-

tunately, large breed-and-burn SFRs are plagued by positive sodium void worth. In

order to mitigate this drawback, one must quantify various sources of negative reactivty

feedback, among which geometry distortions (bowing and flowering of fuel assemblies)

are often dominant. These distortions arise mainly from three distinct physical phe-

nomena: irradiation swelling, thermal swelling, and seismic events.

Distortions are notoriously difficult to model, because they break symmetry and

periodicity. Currently, no efficient and fully generic method exists for computing neu-

tronic effects of distortions. Computing them directly via diffusion would require con-

struction of exotic hyperfine meshes with continuous re-meshing. Many determinis-

tic transport methods are geometrically flexible but would require tedious, intricate

re-meshing or re-tracking to capture distortion effects. Monte Carlo offers the only

high-fidelity approach to arbitrary geometry, but resolving minute reactivities and flux

shift tallies within large heterogeneous cores requires CPU years per case and is thus

prohibitively expensive. Currently, the most widely-used methods consist of various

approximations involving weighting the uniform radial swelling reactivity coefficient by

the power distribution. These approximations agree fairly well with experimental data

for flowering in some cores, but they are not fully generic and cannot be trusted for

arbitrary distortions. Boundary perturbation theory, developed in the 1980s, is fully

general and mathematically rigorous, but it is inaccurate for coarse mesh diffusion and

has apparently never been applied in industry.

Our solution is the "virtual density" theory of neutronics, which alters material den-

sity (isotropically or anisotropically) instead of explicitly changing geometry. While

geometry is discretized, material densities occupy a continuous domain; this allows

density changes to obviate the greatest computational challenges of geometry changes.

Although primitive forms of this theory exist in Soviet literature, they are only appli-

cable to cases in which entire cores swell uniformly. Thus, we conceive a much more

general and pragmatic form of "virtual density" theory to model non-uniform and

localized geometry distortions via perturbation theory.

In order to efficiently validate "virtual density" perturbation theory, we conceive

the "virtual mesh" method for diffusion theory. This new method involves constructing



a slightly perturbed "fake" mesh that produces correct first-order reactivity and flux

shifts due to anisotropic swelling or expansion of individual mesh cells. First order

reactivities computed on a "virtual mesh" agree with continuous energy Monte Carlo

to within 1- uncertainty.

We validate "virtual density" theory via the "virtual mesh" method in 3-D coarse
mesh models of the Fast Flux Test Facility (FFTF) and J6y6 benchmarks using the

MATLAB-PETSc-SLEPc (MaPS) multigroup finite difference diffusion code, which we
developed for this purpose. We model a panoply of non-uniform anisotropic swelling
scenarios, including axial swelling of individual assemblies, axial swelling of each mesh

cell in proportion to its fission power, and radial core flowering with arbitrary axial

dependence. In 3-D coarse mesh Cartesian cores with explicit coolant gaps, we model

individual assembly motion, assembly row motion with arbitrary axial dependence, and
assembly row "s-shape" bowing. In all cases, we find that "virtual density" pertur-
bation theory predicts reactivity coefficients that agree with "virtual mesh" reference
cases to within 0.01%. These reactivity coefficients are two to four orders of magni-

tude more accurate than those computed via boundary perturbation theory. We also
develop the Pseudo-Seismic (PseuSei) Animator within MaPS to explore point-kinetic
effects of arbitrary assembly motion for 3-D coarse mesh Cartesian cases. In general,
this "virtual density" perturbation method can precisely predict reactivity coefficients
due to anisotropic swelling or expansion of any core region in any direction.

Furthermore, we compute flux and power shift distributions due to geometry dis-
tortions. We find that our "virtual density" formalism couples seamlessly with existing
modal expansion perturbation theory (MEPT) formalism, and we use the resulting new
hybrid method to compute flux and power shifts due to arbitrary anisotropic swelling

of arbitrary core regions. We test this new method for a large, highly-heterogeneous
Cartesian core, and we find that predicted (global and local) flux and power shift dis-
tributions typically agree with "virtual mesh" reference cases to within a few percent.

Development of the "Virtual Density" Theory (VirDenT) industry code constitutes
the culmination of this work. This parallelized Python code computes "virtual density"

reactivity coefficients given a DIF3D flux solution as input. VirDenT contains a flux
reconstruction module that computes individual pin powers from a homogenized nodal

diffusion solution. It also contains PyPinPlot, a high-resolution visualization tool for

pin-level powers, fluxes, and current vector fields. Most importantly, VirDenT com-

putes reactivity coefficients due to local anisotropic swelling of assembly zones (which

direct diffusion theory cannot compute) in CPU seconds, while Monte Carlo (currently

the only high-fidelity approach) requires CPU years to do the same.
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List of Common Terms

An anisotropic enlargement of a core zone in direction i changes its shape such that only
the i component of each linear dimension F is scaled up by the same factor: ri = fFj.

Boundary perturbation theory (BPT) is a surface integral expression derived in the
early 1980s to predict the first order reactivity due to movement of a material interface.

Classic perturbation theory is a first order material density perturbation computed via

unperturbed real and adjoint fluxes and operators. This is the most widely used form of

perturbation theory in neutronics.

An expansion is an enlargement of a core zone such that density is conserved and mass
increases.

First order perturbation theory is any perturbation technique that correctly predicts

the first derivative of eigenvalue (a reactivity coefficient) with respect to a given perturbation.

An isotropic enlargement of a core zone preserves the precise shape of that zone such
that all its linear dimensions F are scaled up by the same factor: r = fF.

A non-uniform swelling or expansion scales up linear dimensions by different factors through-

out the same core.

Second order perturbation theory is any perturbation technique that correctly pre-
dicts the first and second derivatives of eigenvalue with respect to a given perturbation.

This is a subset of generalized perturbation theory and variational methods.

A swelling is an enlargement of a core zone such that mass is conserved and density de-
creases.

A uniform swelling or expansion scales up all linear dimensions by the same factor through-

out a whole core.

"Virtual density" theory (VirDenT) encompasses both a new perturbation technique

and a new set of generic neutronic principles. A VirDenT perturbation can be a swelling or
an expansion, uniform or non-uniform, and isotropic or anisotropic.
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List of Common Variables

This list is not inclusive, but it serves as a reference for certain variables that are defined

once and used extensively throughout this thesis. We omit variables which are ubiquitous

throughout the literature, such as cross-sections and other nuclear data. We use , to repre-

sent an operator (a matrix), x to represent a vector, and xt to represent any adjoint quantity.

Non-adjoint scalar quantities have no adornment.

F a spatially-dependent scalar value representing reactivity due to surface leakage.

rj a spatially-dependent scalar value representing reactivity due to surface leakage

in direction i.

Ap the reactivity due to a small perturbation, computed via a reference eigenvalue

calculation or via first order perturbation theory.

Ap" the second order reactivity, computed via second order perturbation theory.

f the "magnitude" of a swelling or expansion perturbation, usually equal to f - 1.

0, #t the scalar real and adjoint fluxes.

A the absorption operator in multigroup diffusion.

P the fission operator (or "neutron source" operator) in multigroup diffusion.

f the fraction by which a core region swells or expands in one or more directions.

This is either slightly greater than or less than unity for small perturbations.

f,J the vector real and adjoint currents.

k equivalent to keff, the fundamental eigenvalue. This usually represents an

unperturbed eigenvalue, while k' represents a perturbed eigenvalue.

Li the leakage operator in multigroup diffusion.

L a spatially-dependent scalar value representing reactivity due to volume leakage.

Li a spatially-dependent scalar value representing reactivity due to volume leakage

in direction i.

MI the "neutron loss" operator in multigroup diffusion. This includes absorption,
leakage, and scattering.

N a material or nuclide density.

S a spatially-dependent scalar value representing reactivity due to "spectral"

physics: fission, absorption, and scattering.

T the scattering (or "transfer") operator in multigroup diffusion.
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1 Motivation and Overview

1.1 Chapter Abstract

Nuclear energy occupies an essential niche in our society, and it is necessary for future

sustainability as the only source of energy that is base load, scalable, and carbon-free. How-

ever, truly sustainable deployment of nuclear reactors will likely require fast reactors to
complement the current light water paradigm. In particular, breed-and-burn sodium fast
reactors (SFRs) offer a unique combination of sustainability, fuel efficiency, and power den-

sity. Paramount to the wide deployment of these reactors is the assurance of their neutronic
safety, which is encapsulated by reactivity coefficients. Unfortunately, large breed-and-burn

SFRs suffer from positive sodium void worth. In order to mitigate this drawback, we must

accurately quantify the negative reactivity feedback due to geometry distortions - assembly

bowing and flowering. These distortions arise mainly from three distinct physical phenom-

ena: irradiation swelling, thermal swelling, and seismic events.

1.2 Nuclear Energy

Seven decades ago, beneath some old bleachers in Chicago, we brought nuclear technology
into the world. A few of our finest physicists piled up some blocks of uranium and graphite,
and they changed society forever [167].

Few technologies progress from scientific discovery to practical application as rapidly as

nuclear fission. The bomb dropped less than seven years after Meitner and Frisch discovered

fission [166] and about thirteen years after Chadwick discovered the neutron [165].
Fortunately, nuclear technology did not end in violence. After Truman signed the Atomic

Energy Act [1681, a twenty-year global nuclear frenzy ensued. Scientists and engineers from
around the world proposed all sorts of exotic designs for every conceivable application. How-

ever, none of this caught on in the private sector [170].
In the 1950s, Admiral Hyman G. Rickover chose to design and develop a reactor cooled by

light water and fueled by uranium oxide (a solid ceramic) clad with a zirconium shell [169].

After five years of work, the world's first nuclear-powered submarine, the USS Nautilus,
was commissioned and launched. This was an astounding feat, as the design methods and

physics data that today's nuclear engineers require simply did not exist yet. Furthermore,
the reactor was nestled within a submarine hull twenty-eight feet in diameter, while other

reactors built in the 1950s were as large as city blocks. The USS Nautilus demonstrated her

ability to remain submerged for exceptionally long periods of time by becoming the world's

first vessel to sail beneath the North Pole, traversing the polar ice cap from the Pacific to
the Atlantic [171].

Rickover's light water reactor was not only superb for naval vessels - it was also amphibi-
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ous. Four years after the USS Nautilus set sail, Rickover oversaw completion of a land-based

light water reactor: the Shippingport Atomic Power Station in Pennsylvania. It was con-

nected to the electric grid, making it "the world's first full-scale atomic electric power plant

devoted exclusively to peacetime uses" [172].

Terrestrial light water reactors (LWRs) quickly sprung up around the world and remain

dominant across the globe. Unfortunately, they are pressurized and thus susceptible to loss

of coolant accidents (LOCAs). After a few accidents, most infamously the Three Mile Island

(TMI) incident in 1979, much of the world (save France and a few other nations) largely

abandoned efforts to pursue nuclear energy programs.

Recently, however, the paradigm has shifted. The ascendancy of climate change as a

salient political issue has been a major boon for nuclear energy. The 2005 Energy Policy Act

authorized loan guarantees for potential new nuclear plants to help offset their large capital

cost [173]. As of 2011, two new reactors are under construction in Georgia, the first built

in the U.S. in over 30 years. Two more will soon be underway in South Carolina. Around

the world, 109 commercial reactors are either under construction or on order as of December

2010. These new reactors, mostly in Asia, will increase worldwide nuclear energy production

by 28% [174].
Ultimately, the world has realized that nuclear energy is the only source of electricity that

is base load, scalable, and carbon-free, the three main criteria necessary for a sustainable

energy future. Base load energy supplies are constant in time. Solar energy, which oscillates

daily with the sun, and wind energy, which vacillates intermittently with the breeze, cannot

provide constant power supply. Tidal energy, like solar energy, is diurnal. Even biomass

energy (produced from living or recently living biological material) is often seasonal. Fossil

fuels, such as coal, petroleum, and natural gas, are base load but not carbon-free - if the

current consensus is correct, they exacerbate climate change. Many experts argue that

biomass also shares this drawback. Scalable energy sources can be "scaled up" or multiplied

without restriction to meet any level of electricity demand. Hydroelectric and geothermal

energy, although base load and nearly carbon-free, are not scalable. There are only so many

suitable dam sites, and there are only so many suitable geologic "hot spots". Thus, nuclear

energy stands alone as a triune of sustainability - base load, scalable, and carbon-free.

Furthermore, nuclear energy is unique in that it is almost entirely geographically inde-

pendent. The performance and viability of a wind or solar plant depends strongly on its

location - wind doesn't blow steadily everywhere, and the sun doesn't shine brightly every-

where. Geography severely restricts hydroelectric, geothermal, and tidal energy - suitable

sites are few and far between. Although we can build a fossil fuel plant anywhere, building

it far from the fossil fuel resources is disadvantageous due to the costs and logistics of trans-

porting large volumes of those fossil fuels over long distances. Consequently, we build most

fossil fuel plants near natural deposits of fossil fuels. In contrast, nuclear fuel is so small
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in volume that its transportation costs are negligible. There is no advantage to building
nuclear plants near uranium mines. The only geographic constraint on nuclear plant sites
is that they must be proximate to a body of water (such as a river, lake, or ocean) for
cooling purposes. However, even the absence of a natural body of water does not preclude a
safe nuclear plant. For example, the Palo Verde Nuclear Generating Station operates in the
Arizona desert by extracting water from a sewage treatment facility. Thus, nuclear energy

is geographically independent in that its location does not affect its performance. It's the
same everywhere. It's an excellent option for regions poor in natural resources.

Despite the perils of the 2011 Fukushima crisis and the even greater perils of political

opportunism in reaction to it, the "nuclear renaissance" is still well underway. Unlike thirty
years ago, the political salience of climate change precludes an en masse return to fossil
fuels.

If the "nuclear renaissance" fails to be realized in the U.S., the reason likely won't be
Fukushima, the green movement, or the waste conundrum. Instead, it will be economics.

Currently, natural gas prices are low and have deterred utilities from constructing new nuclear
plants. However, while the price and availability of uranium is stable, natural gas prices are
volatile. In this vein, one recent study concludes that nuclear energy has lower long-term

investment risk than natural gas [1851. Although natural gas is cheaper today, its volatility

creates large uncertainties later in plant lifetime.

For more discussion on these points, see the author's six-part exposition on the history,
virtues, and vices of nuclear technology {176,177,178,179,180,181]. This exposition grew out
of an article written in MIT's The Tech in wake of the Fukushima crisis in the spring of 2011
[175]. Later, this six-part series was the basis for a talk given by Eric Loewen (2011-2012
President of the American Nuclear Society) at the National Academy of Sciences [182]. It
was also the subject of a presentation at the 2012 American Nuclear Society Winter Meeting

[183] and subsequently featured in the January 2013 edition of Nuclear News [184].

1.3 The Art of Reactor Design

The world's first man-made nuclear reactor was the Chicago Pile - Fermi's crude heap of
uranium and graphite blocks. Subsequently, the Manhattan Project covertly constructed

the world's first large-scale reactor at the Hanford Site in the deserts of eastern Washington

State. Its purpose was to breed plutonium for the bombs. The next natural step was to

design and develop a large-scale reactor optimized to produce a long-term steady flow of

electricity.

The two most important aspects of nuclear reactor design are the choices of fuel and
coolant. The fuel must contain a fissionable material - some combination of uranium, plu-
tonium, or thorium - but it can take on just about any chemical form. It can be solid or
liquid. If solid, it can be metal or ceramic. If liquid, it can be a molten salt or an aqueous
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solution. The coolant's primary purpose is to transport energy from the fuel to a turbine to

generate electricity, but it also (sometimes incidentally and sometimes purposefully) serves

to modify the behavior of the neutrons so that they can more or less readily spur fission in

the fuel. Coolants can be liquids or gases. The wide range of coolants proposed or actually

incorporated into real reactors includes light water, heavy water, sodium, sodium-potassium,

lead, lead-bismuth, various molten salt mixtures, various organic compounds, helium, car-

bon dioxide, and even mercury. Each of these coolants has advantages and disadvantages

in terms of its thermal and chemical properties, and each constrains the neutron behavior

and thus the fission reaction and fuel composition. The fuel and coolant are interwoven

such that nuclear design is an intricate process of weighing and optimizing the multifaceted

interactions between the two.

Thus, reactor design is an art. There's never a "right" answer. Although there are cer-

tainly objective metrics by which some designs can be deemed infeasible or unsafe, choosing

among a plethora of feasible and safe designs is a subjective process. One's choice depends

on one's weighting of multifaceted design goals.

1.4 Fast Reactors

Nuclear reactors can be subdivided into two overarching classes: fast reactors and thermal

reactors. Thermal reactors are based on an incongruity: while fission produces high-energy

neutrons, low-energy neutrons can much more readily spur fission. Thermal reactors resolve

this incongruity by slowing or moderating the high-energy neutrons so that they become

low-energy neutrons.

Fast reactors don't bother resolving this incongruity - they simply obviate it by enriching

the content of heavy metal that is highly susceptible to fission. Figure 1.1 shows cumulative

distribution functions (CDFs) for the fission reaction rates in typical fast and thermal spectra.

Figure 1.1 encapsulates the fundamental distinction between thermal and fast reactors. Since

fast reactors contain no moderating material to slow their neutrons, they contain exotic

coolants consisting of heavier elements such as sodium, lead, or lead-bismuth. They also

offer a distinct set of advantages.

First, sodium has unparalleled thermal properties, which are advantageous for core power

density. In LWRs, the coolant serves two separate purposes - the thermodynamic purpose

of cooling the reactor, and the neutronic purpose of moderating the neutron spectrum. In

contrast, fast reactor coolants serve only a thermodynamic purpose. Although these coolants

certainly have neutronic effects, those effects are not their purpose. Therefore, fast reactor

pin lattice design depends primarily upon thermal properties, not neutronics. Thus, sodium

fast reactor (SFR) fuel pins are closely packed in hexagonal/triangular arrays to achieve high

power density.

Second, fast reactors can produce waste that is less hazardous and less long-lived. Fast
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neutrons can more readily fission many of the most hazardous long-lived actinides, trans-

muting them into fission products.

Third, fast reactors can breed substantial amounts of fissile material. They can convert

fissionable 238 U into fissile 239Pu and fissionable 232 Th into fissile 233 U. Sometimes, fast

reactors can breed even more fuel than they burn, and this scenario allows for far more

efficient utilization of the world's uranium and thorium resources.

The main disadvantage of fast reactors is that they simply don't have as much operational

and design experience as LWRs. Their exotic coolants often possess inconvenient chemical

properties. For example, sodium reacts exothermically with air and violently with water. It

is also opaque, complicating fuel shuffling and maintenance procedures. One cannot visually

inspect the core when it is immersed in a sodium pool. Futhermore, many fast reactor

designs cope with significant thermal hydraulic and materials challenges [141].

Nearly all operating commercial reactors worldwide today are thermal reactors. Most

of those are LWRs - either pressurized water reactors (PWRs) or boiling water reactors

(BWRs). This status quo originated from Rickover's original choice of pressurized water

coolant, uranium oxide fuel, and zirconium alloy fuel cladding [169]. Rickover built one SFR

submarine (the USS Seawolf) but later rejected the concept due to superheater troubles and

concerns over sodium reacting with seawater. Nearly the whole commercial nuclear industry

followed his lead in adopting LWRs, because they wished to take advantage of previous con-

struction and operational experience from both submarines and the Shippingport reactor.

Rather than risk investment in an untried technology, industry leaders pursued what had al-

ready been done. Consequently, the nuclear industry chose LWRs for terrestrial deployment

based on Rickover's original choice for marine deployment.

Thus, since widespread adoption of LWRs was a choice of convenience, it is plausible

that other reactor types (such as fast reactors) could be far more advantageous in terms of

both safety and long-term sustainability.
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1.5 Breed-and-Burn Fast Reactors

Let us consider which reactor type might be most advantageous in terms of long-term sus-
tainability and efficient use of uranium and thorium resources. LWRs fission only a very
small fraction of actinides and designate the remainder as waste. Although LWRs have
served us well, they are clearly neither the most efficient nor sustainable choice.

An ideal nuclear fuel cycle would utilize 100% of uranium and thorium resources and
fission 100% of actinides to leave a waste form that is purely fission products. Unfortunately,
this objective is not possible to meet with pure fission reactors, because some actinides must
always remain in order for the reactor to maintain criticality. Much more limiting than
criticality, however, is the practical reality that solid fuel forms cannot withstand burnups
beyond about 40%. In order to burn more actinides, one must reprocess spent fuel outside
the reactor - a task that is both expensive and inherently vulnerable to proliferation.

Molten salt reactors (MSRs) come closest to this ideal fuel cycle. As MSR fuel is dissolved
in a liquid salt, MSRs are not limited by the structural or chemical performance of any
solid fuel form. Thus, they can achieve exceptionally high burnups. However, they still
cannot fission all the actinides, because they must retain enough to maintain criticality.
Furthermore, much skepticism surrounds MSRs due to their lack of conventional solid fuel
forms as well as chemistry and materials challenges related to tritium containment [130].
Wide deployment of MSRs would require extensive research and testing in order to resolve
these issues.

Fission-fusion hybrids have been touted as another option. Since these rely on a high-
energy neutron source produced by fusion, they can operate subcritically and without any
initial fissile enrichment [134]. Also, since they need not achieve criticality, they can (at
least in theory) fission every last actinide. See Lidsky's comprehensive and prescient review
of fission-fusion hybrid concepts [119]. Unfortunately, there is some "trouble with fusion"
[122].

Given these challenges and doubts regarding MSRs and fission-fusion hybrids, much fuel
cycle innovation research has centered around conventional SFRs operating as "breeders".
These SFRs take 2 3 5U and 2 38U as fuel and breed 2 3 9 Pu. When spent fuel is removed from
the core, the fissile 2 3 9 Pu is reprocessed as fuel for a host of other reactor types - including

LWRs. In this way, the energy potential of the world's uranium resources can be multiplied

by nearly 100 over what is possible with a fleet of pure LWRs. Unfortunately, reprocessing

is stigmatized in the U.S. and considered vulnerable to proliferation throughout much of

the world. Funding for the Integral Fast Reactor (IFR) design [126] and its prototype the

Experimental Breeder Reactor II [123] was cut in the 1994 anti-nuclear deluge.

Fortunately, "breed-and-burn" fast reactors obviate expensive, precarious, and politically-
charged reprocessing. First proposed by Feinberg [118], these were studied in-depth by
Driscoll in the 1970s [121]. One can begin reactor operation with a small amount of fissile
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material (23 5U or 239 Pu) and a large amount of fertile (fissionable) material (238U or 232Th),

and then one can sustain reactor operation by continually breeding more fissile material from

the fertile material. Eventually, one can extract energy from a very large fraction of the fis-

sionable material. Ultimately, burnup is limited by mechanical fuel performance (typically

between 30% and 40% of fissionable atoms), but a large core can still hold enough fertile

material to potentially run for decades without refueling.

The Traveling Wave Reactor (TWR) is a type of fast reactor that breeds and burns

plutonium in a "traveling" or "standing" wave within depleted uranium [133,135]. Only an

minimal initial 23 5U loading is necessary to achieve and maintain criticality. In order to

maximize power density and consequently minimize capital cost, most TWR designs choose

sodium coolant over lead or lead-bismuth eutectic. TWRs promise the most sustainable fuel

cycle and fuel utilization options. A global fleet of TWRs could "generate electricity for 10

billion people at United States per capita levels for million-year time-scales" [135].

1.6 Fast Reactor Safety

As we have said before, fast reactor coolants have no neutronic purpose - only some unfortu-

nate neutronic "side effects". Thus, they do not share the inherent neutronic safety of LWRs

in loss-of-coolant accidents and various temperature transients (LWR safety revolves around

cooling after depressurization, not neutronics). Thus, fast reactor designs must ensure that

the core is "stable" during operation and plausible accident scenarios.

1.6.1 Reactivity Coefficients

Reactivity coefficients serve as metrics for a core's neutronic safety. We prefer the net

temperature reactivity coefficient, the derivative of reactivity with respect to temperature,

to be negative. Thus, when a small temperature excursion occurs, the core power will

not multiply due to positive feedback. This temperature reactivity coefficient has several

constituent parts, and we present the main ones here.

" The fuel density reactivity coefficient is the derivative of reactivity with respect

to fuel density. Fuel swelling as a function of temperature is required input.

" The structure density reactivity coefficient is the derivative of reactivity with

respect to the density of various structural materials - mostly pin cladding and assembly

ducts. Structure swelling as a function of temperature is required input.

" The coolant density reactivity coefficient is the derivative of reactivity with re-

spect to coolant density. Coolant density change as a function of temperature is re-

quired input.
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" The Doppler reactivity coefficient is the derivative of reactivity with respect to
changes in the microscopic cross-sections due to the Doppler effect, manifested mainly
via resonance broadening (and thermal scattering in thermal reactors). Note that this
is the only reactivity coefficient that involves microscopic cross-sections. All the others
can be defined in terms of only the macroscopic cross-sections.

" The radial swelling reactivity coefficient is the derivative of reactivity with respect
to the core radius. When temperature increases, core structural materials swell in a
way that causes the whole core to swell radially by a small factor - typically less than
1%. Nevertheless, experimental data from the Fast Flux Test Facility (FFTF) has

shown that this small radial swelling is often the dominant reactivity feedback in fast

reactors [108].

" The axial swelling reactivity coefficient is the derivative of reactivity with respect

to the core axial height. When temperature increases, fuel swells axially, increasing

the core height in the high-power region. Realistically, different assemblies (especially

different assembly types) swell axially by different factors.

" The geometry distortion reactivity is the reactivity "inserted" by arbitrary geom-

etry distortions within the core. Unlike radial and axial swelling, these distortions are

non-uniform and often localized. Furthermore, this reactivity cannot easily be quan-

tified as a "coefficient", because there is no quantity with respect to which we can

differentiate reactivity. Thus, we typically express it as a reactivity magnitude, not a

reactivity coefficient.

One goal of reactivity safety analysis is to evaluate and amalgamate all these constituent

reactivity coefficients to obtain the net temperature reactivity coefficient. Ideally, this should

be negative. However, a slight positive temperature coefficient is tolerable if other safety
mechanisms exist.

Much effort has been poured into developing fast reactors that are passively safe based on

their reactivity coefficients alone. For example, Experimental Breeder Reactor II (EBR-II)

was demonstrated to be passively safe in the 1980s [123]. The core is immersed in a pool of

sodium, and it swells enough to counteract positive reactivity insertion from various accident

scenarios.

However, the EBR-II was really only a prototype for the planned Integral Fast Reactor

(IFR), a passively-safe breeder reactor with excellent waste and non-proliferation features

[126]. Unfortunately, funding for the IFR was terminated in 1994.
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1.6.2 Sodium Void Worth

Large breed-and-burn sodium fast reactors (SFRs) have been touted as a means to achieve

high fuel utilization and long-term sustainability. An initial loading of depleted uranium

breeds plutonium, eventually achieving an "equilibrium" burnup level. Although such breed-

and-burn SFR designs face design challenges in terms of materials, the most salient neutronic

challenge is positive sodium void worth. As sodium coolant voids, the spectrum hardens

slightly, and reactivity increases. Although small test reactors such as the EBR-II and the

Fast Flux Test Facility (FFTF) [146] had negative sodium void worth, the issue remains a

great challenge for large reactors with less leakage.

Physically, there are two main mechanisms for sodium void worth reduction: increased

leakage and spectrum softening. Unfortunately, neither mechanism is viable in the case of

large, breed-and-burn sodium fast reactors. Here we will discuss why, and we will also discuss

two other potential strategies for mitigating void worth - thorium fuel and lead coolant.

Increasing leakage certainly reduces sodium void worth. Cores with "pancake" or "par-

fait" (axially multilayered) geometries have been shown to obviate the void worth problem

[124,132]. Unfortunately, when neutrons are more likely to leak, they are less likely to breed.

Thus, high-leakage geometries are ruinous for breeding and thus not suitable for large breed-

and-bum cores.

Spectrum softening also reduces sodium void worth. Strategically inserting small quan-

tities of moderating material into a large SFR core can soften the neutron spectrum enough

such that sodium voiding does not significantly harden the spectrum or increase reactivity

[125,128]. Unfortunately, this spectrum softening also results in power peaking and intoler-

ably high equilibrium burnup.
Substituting a uranium-plutonium breed-and-burn cycle for a thorium-uranium cycle

would also mitigate the void worth problem. Let q = vEf/E, be the average number of

neutrons produced (via fission) per neutron absorbed in the fuel. 233U has a lower value of

d77/dE than 2 39Pu in the fast spectrum energy range. Figure 1.2 illustrates this. Thus, when

sodium voids and the spectrum shifts to higher energy, a reactor fueled primarily by 2 33U

will produce less reactivity than a reactor fueled primarily by 239Pu. Furthermore, 2 33U also

has a higher delayed neutron fraction than 239Pu, which further enhances safety. See Table

1.1. Unfortunately, metallic thorium fuel has a much lower density than metallic uranium

fuel, and it also causes an intolerably high equilibrium burnup [139].
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Table 1.1: Delayed Neutron Fraction 3 in a Fast Spectrum [163]

nuclide #
2 32 Th 0.0203
233 U 0.0026
235 U 0.0064
238u 0.0164
2 39 PU 0.0020
240Pu 0.0029
241Pu 0.0054

Substituting sodium coolant for lead or lead-bismuth eutectic (LBE) coolant would cer-

tainly mitigate coolant void worth for two main reasons: (1) lead and LBE have high boiling

points such that voiding is extremely unlikely and (2) lead and bismuth have relatively low
neutron cross-sections and are heavy nuclides such that neutrons lose little energy per elastic

scatter. Unfortunately, lead and LBE do not allow for power densities as high as sodium

due to thermal properties and material limitations [143,140]. This presents a significant

economic disadvantage in terms of capital cost. Recent work at MIT has shown that a new

corrosion-resistant steel alloy could allow for dramatic increases in LBE flow rate (and thus
core power density), but development is still underway [144].

Thus, sodium void worth remains the greatest neutronic challenge of large breed-and-

burn SFR cores. There exist few known mechanism to passively mitigate this void worth.

Various techniques involving absorber/poison insertion via gas expansion modules have been

studied, but time scales are often too slow. Only active safety mechanisms, such as control

rod insertion, can truly solve the problem. Fortunately, many negative reactivity coefficients

(such as metallic fuel swelling and the Doppler effect) exist to counter sodium voiding such
that the overall temperature coefficient can remain safely negative. However, any large fast

reactor design will likely be wanting of negative reactivity feedback wherever it can be found.
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Figure 1.2: y and V~f as a function of energy for 2 33U, 235U, 238U, 23 9Pu, and 23 2Th. This
illustrates the fundamental reason why fast reactors often have positive coolant void reactivity
coefficients. When coolant voids, the neutron spectrum hardens slightly, which increases the fission
reacton rate. The slope dhj/dE is larger for 239 Pu than for 235U or 233U.
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1.7 Geometry Distortions

As we discussed in the previous section, there is currently no passive solution to the sodium

void worth problem in large breed-and-burn sodium fast reactors. Thus, anyone designing
a large breed-and-burn SFR must meticulously count cents of negative worth wherever they
can be found.

One place they can be found is in geometry distortions. This is the "geometry distortion
reactivity" that we mentioned in Section 1.6.1. When fast reactors overheat, as in a reactivity
or temperature transient, the hexagonal assemblies tend to bow or flower radially outward

from the core center. This increases leakage and thus induces a negative reactivity feedback.

Unlike the radial and axial swelling coefficients, which are uniform, geometry distortions are
non-uniform and often localized. In order to count as many negative cents (or potentially
dollars) as possible, we must ascertain how much these distortions are worth.

Unfortunately, distortions are notoriously difficult to calculate. As most neutronics cal-
culations map a reactor geometry to a fixed computational mesh, capturing the neutronic

effects of sinuous assembly shapes and flexuous flowering can be tortuous and toilsome. Of
course, we could appraise this worth with Monte Carlo, which allows for arbitrary geometry.
Unfortunately, that would be far too slow given the large number of distortions we wish to
evaluate, especially considering the tight convergence needed to resolve small reactivities.

Assembly distortion can have significant reactivity effects in any reactor, but these ef-
fects are likely more pronounced in metal-fueled fast reactors [127]. Metal fuel tends to
thermally swell much more than ceramic fuel, and the relatively low delayed neutron frac-

tion in plutonium-fueled fast reactors means that every nudge in reactivity is "worth" more.
In one sense, geometry distortions are a "double-edged sword" in reactor design. On one

hand, distortions greatly complicate reactor modeling and can cause mechanical failure that
limits operational lifetime. On the other hand, distortions also provide crucial reactivity
feedback to ensure safety.

Geometric distortion arises from three main physical phenomena: irradiation swelling,
thermal swelling, and seismic events.

1.7.1 Irradiation Swelling

Irradiation swelling occurs gradually over very long time scales (years). This is an irreversible
process. It is slow enough to be considered steady-state at each instant in the reactor lifetime.

This swelling can cause significant bowing.

Although metal fuel swells significantly more than ceramic fuel, the neutronic desirabil-

ity of metal fuel (to achieve an extremely hard spectrum for breeding) is often enough to
outweigh any adverse effects due to swelling. Metal-fueled fast reactors must include extra

space between fuel and clad to avoid the detrimental consequences of pellet-clad mechanical
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interaction (PCMI) and pellet-clad chemical interaction (PCCI) [127].

The code NUBOW-3D has been developed to quantify assembly displacements due to

irradiation swelling (also known as irradiation "creep") [1923. However, NUBOW-3D does

not account for reactivity or power distribution changes due to these irradiation-induced

distortions.

1.7.2 Thermal Swelling

Thermal swelling occurs over very short time scales (seconds) during temperature transients.

This is often a reversible process, as long as no melting occurs. Thermal swelling also occurs

in steady-state due to axial temperature profiles that induce bowing. Figure 1.3 illustrates

flowering in a small 19-assembly fast reactor model.

Although core flowering due to thermal swelling is an important negative reactivity feed-

back mechanism in transients, it can also be undesirable in terms of controlling the reactor.

Thus, many fast reactors, including the FFTF, have "core restraints". These are mechanical

binding mechanisms that clamp assemblies in place at a certain axial position, often at the

core top. Unrestrained cores have a "free flowering" effect, while restrained cores have a

"limited free bowing" effect [104].
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Figure 1.3: Illustration of a fast reactor core flowering scenario.
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1.7.3 Seismic Events

Seismic events can also distort pin or assembly geometry. These distortions are distinct from

irradiation swelling and thermal swelling in that they oscillate in time - they are rattling

vibrations.

In terms of seismic effects, much work has been performed on determining the time-

dependent mechanical response of core components to seismic oscillations [149,1501. How-

ever, very little (if any) work has been done to determine the neutronic response to seismic

oscillations.

Recent probabilistic risk analysis (PRA) work by Johnson and Apostolakis concludes

that seismic risk actually "dominates" SFR designs [151,152]. This risk stems primarily

from mechanical failure of plant components, not neutronics. However, because neutronic

responses to seismic events have never been quantified, doing so could better inform future

PRA work.
Figure 1.4 compares the global distributions of earthquakes and nuclear plants. Most nu-

clear plants are clustered in three main regions: eastern North America, Europe, and eastern

Asia. Two of those three regions tend not to have large earthquakes. However, the third

region (eastern Asia) poses significant seismic risk, which manifested itself during the 2011

Fukushima crisis. The resulting salience of seismic analysis within the nuclear community

means that someone should quantify the neutronic consequences of seismic events. Even

though reactors are intended to immediately shut down during an earthquake, we should

still know what might occur if that doesn't happen.
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Figure 1.4: The global distributions of nuclear plants and large earthquakes. dots represent
nuclear plant sites in 2011 [174]. Red dots represent earthquakes of magnitude 7.0 or greater [153].
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1.8 Summary and Chapter Outline

Nuclear energy has a rich, painful, and beautiful history. It has an important place in our

society, and it is necessary for future sustainability as the only source of energy that is base

load, scalable, and carbon-free. However, truly sustainable deployment of nuclear reactors

will require fast reactors to supplement or complement LWRs. In particular, breed-and-

burn SFRs offer a unique combination of sustainability, fuel efficiency, and power density.

Unfortunately, large breed-and-burn SFRs suffer from positive sodium void worth. In order

to mitigate this drawback, we must quantify negative reactivity feedback due to geometry

distortions.

In this body of work, we aim to develop methods to rapidly quantify reactivity effects

due to practical geometry distortions in realistic full-core 3-D fast reactor models. Although

we could certainly quantify these effects via Monte Carlo, doing so would be very inefficient

(and even impractical) given the vast hordes of histories required.

Instead, we turn to perturbation theory, around which this thesis revolves. Here we

present a brief outline for the content of each chapter.

2: A Review of Perturbation Theory in Neutronics

We review perturbation theory throughout Western literature: material density perturba-

tions and boundary perturbations in first and second order. We place particular emphasis

on (1) classic first order material density perturbations, (2) second order material density

perturbation functionals derived by Stacey, (3) traditional boundary perturbation theory as

derived by Pomraning, Larsen, and Rahnema in the early 1980s, and (4) the higher order

boundary perturbation techniques in transport theory studied by Favorite during the past

decade. 'Finally, we review the models of Knutson, Wigeland, and Kamal for computing

reactivities in fast reactor bowing and flowering scenarios.

3: A Review of Uniform Isotropic "Virtual Density" Theory

We explain the basic concept of "virtual density" in its most basic form: reactivities due

to uniform isotropic swellings and expansions of whole cores. Although this concept is

well-known within a small segment of the neutronics community, it appears only scarcely

throughout the literature. Thus, we take this opportunity to define it formally and provide

a few numeric examples. See Section 3.3.2 for explicit definitions of "swelling", "expansion",

"isotropic", "anisotropic", "uniform", and "non-uniform".

4: A Review and Independent Derivation of Uniform Anisotropic "Virtual Den-

sity" Theory

We review the Soviet and Russian literature pertaining to the same "virtual density" con-

cept that appears in Western literature. The Russian literature develops the concept much
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further, to the point of explicitly laying out formalism for uniform anisotropic swellings and
expansions of whole cores. Since this formalism is obscure in modern, readily-accessible lit-
erature, we take this opportunity to define it formally and provide several numeric examples.
We perform our own independent derivation via anisotropic diffusion.

5: The Non-Uniform Anisotropic "Virtual Density" Theory: An Original So-
lution to the Problem of Non-Uniformity and a new Theory of Localized Non-
Uniform Distortions

We derive an original theory for non-uniform anisotropic swellings and expansions. This con-
stitutes the most general form of "virtual density" theory - the prior Russian work applies
only to the special case of uniformity. This new theory allows one to compute reactivity coef-
ficients due to anisotropic swellings or expansions of any arbitrary interior zone within a core.

6: The "Virtual Mesh" Method: Generating a "Virtual Reference" for Validat-
ing Reactivity Coefficients due to Non-Uniform Geometry Changes in Diffusion

Theory

We develop an original technique for validating reactivity coefficients due to geometry dis-
tortions in finite difference diffusion theory. This involves constructing a "virtual mesh" and

solving the generalized eigenvalue problem (a "virtual reference" case) on that mesh. We
validate this technique via Monte Carlo.

7: Numeric Validation of Non-Uniform "Virtual Density" Theory via the "Vir-

tual Mesh" Method

We employ the "virtual mesh" method to numerically validate the non-uniform anisotropic
"virtual density" theory for a variety of cases, including simple 2-D and 3-D Cartesian ge-

ometries as well as 3-D hexagonal-z full-core benchmarks.

8: Performance of "Virtual Density" Theory Relative to Traditional Bound-

ary Perturbation Theory

We directly compare our original "virtual density" theory to traditional boundary perturba-
tion theory in both analytic and numeric examples.

9: The "Virtual Density" Theory (VirDenT) Code: Practical Distortion Sce-

narios in Fast Reactors

We develop the "virtual density" theory (VirDenT) code for computing reactivity coefficients

due to practical geometry distortions in fast reactors with hexagonal assemblies. The VirD-
enT code is currently being used in industry, and we validate it for a few full-core benchmarks.
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10: "Virtual Density" and Point Kinetics: Reactivity Safety via the Pseudo-

Seismic (PseuSei) Animator

We demonstrate how reactivities obtained via "virtual density" theory can be inserted di-

rectly into point kinetic theory to show how core power evolves in time due to arbitrary,

seismic-like assembly motions in 3-D Cartesian geometry.

11: The VirDenT-MEPT Method: Flux and Power Distributions due to Dis-

tortions

We couple "virtual density" theory to modal expansion perturbation theory (MEPT) to ob-

tain perturbed flux and power distributions due to geometry distortions.

12: When Adding Material Increases Leakage: Reconstruction of Current and

Adjoint-Weighted Quantities in Fast Reactors

In the process of developing the VirDenT code, we create a pin-level flux reconstruction

module. In addition to the real flux, this module can reconstruct adjoint flux as well as real

and adjoint current vector fields. Along the way, we notice an intriguing localized effect in

which adding material actually increases leakage.

13: Executive Summary and Future Work

We succinctly summarize the entire thesis work with emphasis on crucial results and signif-

icance. We also speculate on future work that could stem from "virtual density" theory.
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2 A Review of Perturbation Theory in Neutronics

2.1 Chapter Abstract

We review past work and literature on the subject of perturbation theory in neutronics

within the Western literature. We focus mainly on (1) classic first order material density

perturbation theory, (2) second order variational functionals for material density perturba-

tions derived by Stacey, (3) first order boundary perturbation theory as derived by Pom-

raning, Larsen, and Rahnema in the early 1980s and (4) variational boundary perturbations

in transport theory studied by Favorite during the past decade. Originally developed to

derive analytic approximations for equations that have no precise analytic solution, pertur-

bation theory has become less frequently used with the advent of nodal methods and high-

performance computing. However, we contend that perturbation theory remains relevant to

neutronics. Not only can it expedite the computation of reactivity coefficients by orders of

magnitude, but it can save countless manhours in the analysis of geometry distortions in

nuclear reactors (no re-meshing is required). Thus, the forward thrust of perturbation the-

ory research should be primarily in the area of geometry perturbations, not material density

perturbations. We review past attempts to quantify geometry distortions in fast reactors

using perturbation theory, most notably those of Knutson, Wigeland, and Kamal. Finally,
we lay out the objective of this thesis work as it relates to perturbation theory.

2.2 A Brief History of Perturbation Theory

Here we briefly describe the origin and history of perturbation theory, which originated in

celestial mechanics, experienced its heyday in quantum mechanics, and was later adopted

by nuclear engineers.

2.2.1 The Origin of Perturbation Theory: Quantum Mechanics

Perturbation theory arose in the 1 9 th century. In those days, solving differential equations

was hard, so mathematicians used perturbation theory to approximate solutions to celestial

mechanics - how the earth, moon, and sun move about. If precise equations describing the

orbit of a certain celestial body were too cumbersome to solve directly and analytically, a

well-versed mathematician could solve a much simpler set of equations that differed only

slightly - and that slight difference defined a perturbation.

Perturbation theory attained its zenith with the advent of quantum mechanics. The

Schr6dinger equation, which governs quantum mechanics, is notoriously difficult to solve

analytically for most cases.
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h2( V20( t) V( 2,ih (' - V2 ir,t) ± V(,,t) it) = Ho (F,t) (2.1)
dt 2m

Here $(x, t) is the wavefunction, and V(x, t) is the quantum potential [162]. The operator
H is known as the Hamiltonian. This is a second order partial differential equation, and
precise analytic solutions exist only for very few simple potentials. Thus, the great physicists

of the early 2 0 th century applied perturbation theory to solve very simple systems exactly,
and then they could introduce complexities into those simple systems as perturbations.

For example, consider the well-known Zeeman effect, which describes energy level shifting

in the presence of a magnetic field. One can solve the Schr6dinger equation for energy levels

in a spherical Coulomb potential - electron orbitals surrounding an atomic nucleus - because

a spherical potential V(r) oc 1/r happens to be one of the few Hamiltonians for which

the Schr6dinger equation has an analytic solution. However, placing that atomic nucleus

into a magnetic field causes those energy levels to shift, often breaking degeneracy. When

a Hamiltonian includes the extra magnetic field term -1 - B, it is not possible to solve
analytically, and so physicists introduced the magnetic field potential as a perturbation
of the Hamiltonian. As long as the magnetic field is not too large, perturbation theory

allows one to derive equations that accurately describe the Zeeman effect. This practice is
ubiquitous throughout physics today [162].

2.2.2 Perturbation Theory and Variational Methods Applied to Material Den-
sities in Neutronics

Quantum mechanics begat nuclear physics, which in turn begat nuclear engineering. The
earliest nuclear engineers were nuclear physicists, and they were well-versed in quantum
mechanics. Thus, they knew perturbation theory, and so it was natural for them to apply it
to the physics of nuclear reactors. They did not have computers, and they needed methods
for computing changes in reactivity due to additions of various materials or neutron sources
[154].

The main limitation of basic perturbation theory is that it is linear - it only predicts the

first order reactivity response due to small changes in system properties. This works well

for very small changes or for larger changes that produce very linear effects, but it fails for

larger changes that produce non-linear effects. In order to obtain higher order perturbation

techniques, variational methods are needed.
Variational methods, often referred to as second order perturbation theory or "general-

ized perturbation theory", require one to choose an appropriate functional - a scalar function

of the real and adjoint fluxes integrated over all space and energy. One must "guess" a func-

tional that (1) yields the exact desired value when the exact perturbed fluxes are input and (2)

yields an approximate value that differs from the exact value by O( 2 ) when the unperturbed
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fluxes are input [163]. Here E << 1 represents the small dimensionless magnitude of a per-

turbation. Guessing an effective functional often requires experience and is somewhat of an
"art".

Roussopoulos is credited with pioneering variational methods in neutronics [1], although

they were first proposed by Wigner as early as 1945 [26]. These methods can estimate per-

turbed quantities (such as reactivity) with second order error. While first order perturbation

theory correctly predicts the first derivative of reactivity with respect to a perturbation, sec-

ond order perturbation theory (variational methods) correctly predicts the second derivative

of reactivity with respect to a perturbation. Thus, variational methods capture the "cur-

vature" of an reactivity. For an excellent primer on this topic, see Chapter 6 of Bell and

Glasstone's textbook [156]. Two of the most well-known variational functionals applied to

material density perturbations are the Roussopoulos functional and the Schwinger functional,
which are discussed in standard neutronics texts [15.5,156,163].

In the late 1950s, people derived explicit variational functionals for neutron transport

[2]. Throughout the 1960s, 1970s, 1980s, and even the 1990s, much effort was poured into

deriving improved variational techniques for diffusion and transport [3,6,14,18,21,24,25,30].

Particularly noteworthy is the work by Pomraning, who laid out much of the general

theory [7,12,8,9,11]. Also noteworthy is the work by Cacuci, who aptly characterized the

subject as "sensitivity theory" [22,23]. Gandini wrote a wonderful paper in 1987 summarizing

the development of variational methods to date, and in that same paper he proposed a

new 'heuristic approach" [26]. In the 1990s, Yang and Downar extended the earlier work

of Gandini [20] to apply perturbation theory to depletion, employing the transmutation

equations [27,28].

Stacey was also quite prolific in this area, writing a tome on the subject [155]. His aca-

demic papers focused on applying variational methods to realistic reactor models [15,16,17].

He also wrote the code VARIlD, which implemented these techniques in arbitrary 1-D prob-

lems [190]. Much later, other developers created VARI3D, which became widely used [205].
In the 1990s, Stacey revisited variational methods with his student Favorite, and they suc-

cessfully applied second order perturbation techniques to simple light water reactor (LWR)

problems involving flux tilts and point-kinetics [29,31]. Later, Favorite continued in this vein

with improved variational functionals to preferentially treat negative or positive reactivities

[33].
Since 2000, much less work has been done on variational methods applied to material den-

sity perturbations, although isolated papers occasionally appear for particular applications

[32].
Note that all the perturbation work we have discussed this far has been limited almost

entirely to material density perturbations, which are small changes in material compositions

within individual reactor zones. None of these perturbation techniques were designed to
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capture changes in geometry or boundaries.

2.2.3 Modal Expansion Perturbation Theory (MEPT)

In the late 1970s, Gandini proposed a fundamentally new type of perturbation theory based

on explicit computation of the modal flux harmonics [35]. This method was loosely based on

a quantum mechanical problem introduced by Mitani [34]. It is often referred to as "explicit

high order" and sometimes curiously dubbed "the standard method".

When one solves the neutron diffusion or transport eigenvalue equations deterministically,

many eigenvalues exist. If one performs a standard power iteration, one will obtain only the

largest eigenvalue and its corresponding eigenfunction - the others exist but rapidly dwindle

away. However, if one performs an Arnoldi iteration (an eigenvalue iteration technique based

on Krylov subspaces [186]), one can obtain a multitude of eigenvalues and corresponding

eigenfunctions (commonly called "modes" or "harmonics"). These sets of eigenfunctions have

two important properties: they are orthogonal and complete. Their orthogonality implies

that the inner product (integration over all space and energy) of any non-identical pair of

eigenfunctions will be zero. Their completeness implies that any function in the neutron flux

domain (space and energy) can be expressed as a weighted sum of them. In order to express

(or expand) any function in terms of such a weighted sum, one must know the weight (the

expansion coefficient) of each. Of course, if any function can be expressed, then certainly

perturbed fluxes can be expressed! Thus, it is possible to explicitly and precisely determine

perturbed flux and power distributions in terms of the complete unperturbed flux harmonics.

Palmiotti first applied this method in diffusion theory to small and large fast reactor mod-

els [36]. He successfully computed perturbed flux distributions due to enrichment changes

and control rod insertions. Soon after, Moreira and Lee applied the method to a high-

temperature gas-cooled reactor (HTGR) model [37,38]. They achieved limited success with

very few eigenfunctions. They noted that perturbed fluxes tend to have both "local" and

"global" components. A given perturbation will introduce a "tilt" in the core-wide global

flux distribution, and it will also produce a highly localized flux change in the immediate

vicinity of the perturbation. Moreira and Lee found that while global flux changes were well

predicted, local flux changes were not.

As the order of a flux harmonic increases, it tends to vary more rapidly within small

spatial regions. The more localized a perturbation, the more harmonics are necessary to

capture its effect on the flux distribution. Thus, it is not surprising that this modal expansion

method would be much more accurate (and more feasible) for fast reactors than for thermal

reactors, as longer mean free paths lead to smoother (and less localized) flux distribution

effects.

Nearly a quarter century later, Lee and his student Touran revisited the topic. Touran

derived a more general formula for the expansion coefficients and dubbed the process "modal
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expansion perturbation theory " (MEPT) [39,40]. Since computers sped up quite a bit from

1988 to 2012, Touran was able to compute hundreds of (real and adjoint) flux harmonics for

the unperturbed flux distribution. He successfully used these harmonics to accurately com-

pute both global and local perturbed fluxes in realistic, full-core sodium fast reactor (SFR)

cases. Although global perturbed flux shapes can be captured with only a few harmonics,

hundreds of harmonics are often necessary to achieve high accuracy for more localized effects.

However, Moreira and Lee surmised that a "global-local" or "modal-local" method might

work best [38]. This involves using a modal expansion to obtain an accurate global flux shift

and then using a direct calculation in the vicinity of a perturbation to obtain the local flux

shift. These two can simply be summed to obtain the full "global-local" flux shift.

2.3 A Technical Overview of Material Density Perturbations

Here we show the basic mathematics necessary to apply perturbation theory to material

density changes in first and second order. We will refer to these equations continually

throughout this thesis document. When we refer to perturbation theory as "classic", we

mean any perturbation theory that is applied to material density changes - not geometry

changes.

2.3.1 Neutron Balance in Transport Theory

We solve the neutron diffusion and transport equations by conserving (or balancing) neu-

trons, which must be produced and lost at equal rates. Of course, if the reactor model is not

precisely critical, then neutrons will not actually balance. However, we account for this by

dividing the fission source by the eigenvalue k (the neutron multiplication constant). The

neutron transport equation is [157]

St ( = -E(, E)7P(-, f, E) (2.2)

0o0 
4-x

+ dE' d'E(F, n Q-! ', E' -+ E)y(F, 2', E') (2.3)

+ 47E f' dE'v(F, E')Ef (F, E') dn'4(F, (2', E') (2.4)
4irk o

Here 0/(F, , ) is the angular neutron flux at a certain point F with a certain energy E

traveling in a certain direction (2. Here Q is a unit vector representing a single direction out

of a total 47r steradians in a sphere. Now let us define a characteristic as a direction of travel

along n2 at energy E.

The left-hand term in Equation 12.1 is the flux gradient along this characteristic. This

represents how many net neutrons are gained or lost along this characteristic. Since we
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conserve neutrons, this term must be balanced by gains or losses from scattering, absorption,
and fission.

The right-hand term in Equation 12.1 represents the total loss of neutrons along this

characteristic. The total cross-section E(#?, E) contains capture, fission, and scattering.

In principle, any scattering reaction will remove a neutron from this characteristic due to

changes in both energy and direction.

The term in Equation 12.2 represents the gain of neutrons from scattering. Neutrons

scatter onto this characteristic from some other characteristic with a different energy E'
and a different direction f'. The "transfer function" from one characteristic to another is

represented by E(i, -Q', E' -+ E), the macroscopic scattering cross-section. Note that the

angular dependence of scattering depends only upon Q - f', which is equal to the cosine of

the angle between the characteristics.

The term in Equation 12.3 represents the gain of neutrons from fission. Ef(?, E') is the

fission cross-section. The quantity v(F, E') is the number of neutrons produced per fission

induced by a neutron of energy E', while x(?, E) is the fraction of those fission-produced

neutrons born at energy E. Thus, the combination of Ef, v, and x represents a transfer

function from E' to E. The factor 1/47r represents the fraction of fission neutrons (per unit

steradian) born traveling in direction Q, because we assume that fission produces neutrons

isotropically.

One can solve the transport equation stochastically via Monte Carlo methods, or one

can solve it deterministically via a manifold of methods including discrete ordinates (SN),
spherical harmonics (PN), method of characteristics (MOC), and the collision probability

method (CPM) [163,164].

2.3.2 Neutron Balance in Diffusion Theory

The neutron transport equation depends on space, energy, and angle. Consequently, it is

challenging to solve deterministically, especially when high resolution of all three variables

is desired. One way to simplify the transport equation is to approximate the flux as having

linear angular dependence. One can accomplish this by applying the PN method to the

transport equation for N = 1. This derivation, which is ubiquitous throughout neutronics

curriculum, leads to diffusion theory, in which the flux is a scalar function #'(F, E) of only

space and energy [163].

Typically, we solve the neutron diffusion equation by discretizing cross-sections and other

nuclear data in space and energy. Let there be a finite number of energy groups G. The index

g represents the energy group number, which begins at 1 for the highest-energy group and

increases to G, the lowest-energy group. The full multigroup diffusion equation for group g,
neglecting up-scattering, is
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G g-1 G

V 9g ~b a,gqog + 1: ES,g--+g09~ E j S,g --*g091 + k gY VgZf,gK,
5 gI (2.5)

g'=g+1 g'=1 9/=1

Here the left-hand side represents neutron loss, while the right-hand side represents neu-
tron gain. D9 is the diffusion coefficient, which is a function of the transport-corrected total
cross-section Et,,g. Ea,g is the macroscopic absorption cross-section, which includes neutron
capture and fission. Es,,gg, represents scattering from group g to group g'. Efg is the fission
cross-section. The quantity vg, is the number of neutrons produced per fission induced by a
neutron in group g', while Xg is the fraction of those fission-produced neutrons born in group
g. Note that we could also write this same equation in terms of the removal cross-section
Er,, which includes capture, fission, and out-of-group scattering.

- V- DgVg ± r =g-1 Sg'-+gg G gZfgOgI (2.6)

9'=1 g'=1

All these group cross-section data and fluxes are functions of space. We typically dis-
cretize space in addition to energy. Let there be N discrete spatial regions. Then there are
NG + 1 unknowns in this multigroup diffusion equation - the global eigenvalue k plus NG
multigroup fluxes #g,n. The natural mathematical approach to solve this is linear algebra.
The left-hand and right-hand sides of Equation 2.5 can each be represented by a NG x NG
matrix.

Consider what these matrices will look like for a simple 3-group problem. For convenience,
we will collapse the matrices to be G x G so that each element actually represents an
embedded N x N spatial matrix. The absorption matrix A is entirely diagonal, because it
involves no transfer of neutrons between different energy groups.

[Za1 0 01

A = 0 Ea,2  0 (2.7)

-0 0 Ea,3_

The leakage matrix L is also entirely diagonal, because it also involves no transfer of
neutrons between different energy groups. If we were considering NG x NG matrices, then
these leakage terms would tridiagonal (for 1-D problems), pentadiagonal (for 2-D problems),
or heptadiagonal (for 3-D problems).

-_V -D1V 0 0 ~

0 -V - D2 V 0 (2.8)

0 0 -V-D 3VJ
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The scattering matrix T contains out-of-group scattering as diagonal terms and into-

group scattering as off-diagonal terms. Note that we still neglect up-scatting.

Throughout this

A+T + L.

-V - D1 V +

Es,142 + Es,1-*3

' = -Es,1-+2

-Es,1-43

0 01

Es,2-+3 0j

- Es,2-+3 0-

(2.9)

body of work, we will denote the total "neutron loss" matrix as M =

Ea,1 + Es,l-.>2 + Es,1+3

-Es, 1-4 2

0

-V - D 2 V + Ea,2 + Es,2-4 3

-Es,2- 3

0
0

-V D 3 V + Ea,3J
(2.10)

Now the fission matrix P is typically the least sparse

V1X1If,1 V2X1If,2 V3X1EI,3

F = 1X2f,1 V2X2Zf,2 V3X2Z f,3

LVIX 3 -f,l V2 X3 Ef,2 V3X3Ef, 3 .

(2.11)

Assuming access to veracious multigroup cross-section data, all quantities in these ma-

trices are straightforward to compute from material properties. Now that we have defined

the matrix operators M and P, we can construct an eigenvalue problem. If M and F are

both NG x NG, then the scalar diffusion flux # is an eigenvector of length NG.

(2.12)MO = -FOk

This is basic neutron balance in the diffusion approximation. It is a standard generalized

eigenvalue problem, and we can solve for it via a standard power iteration, an Arnoldi

iteration [186], a Krylov-Schur iteration [201], or many other iteration techniques.

56



The "Virtual Density" Theory

2.3.3 The Importance Function

However, there is a second way to balance neutrons - a "backward" way. We call this

the mathematical adjoint flux Ot, and we can solve for it with a modified set of diffusion

operators. Determining these modified adjoint operators from the unmodified operators is

simple - an adjoint of a matrix is the complex conjugate of the transpose of that matrix,

although the complex conjugate operation is unnecessary in neutronics given that nuclear

data is never complex. Given different operators, the adjoint flux requires a separate iterative

eigenvalue calculation. Both the real and adjoint neutron balances have the same eigenvalue

1/k. The real and adjoint fluxes are identical for one-group problems but different for

multigroup problems. The one-group diffusion equation is self-adjoint (meaning that the

real and adjoint operators are identical), while the multigroup diffusion equation is not.

M q$o = -I tt (2.13)
k

See Bell and Glasstone's textbook for a thorough conceptual and mathematical expla-

nation of the adjoint flux [156]. Essentially, it reflects the "importance" of a hypothetical

neutron with respect to some arbitrary "adjoint source". For example, if we were analyzing

a fixed-source detector problem, we could choose the adjoint source to be the detection rate,

and then the adjoint flux would reflect neutron importance with respect to detection. How-

ever, throughout this body of work, we will always choose the adjoint source to be fission, and

so the adjoint flux will reflect neutron importance with respect to the fission rate. This "im-

portance" concept was first articulated by Lewins in the 1960s [4]. If we place a hypothetical

neutron with a certain energy at a certain point in space, the adjoint flux reflects how likely

that neutron is to contribute to the overall neutron population of the system. Knowledge of

the adjoint distribution is essential for proper application of perturbation theory. Once we

have defined a perturbation, we must know how "important" it will be.

See Figure 2.1 for a comparison of energy distributions of the real and adjoint fluxes

in a typical sodium fast reactor (SFR) spectrum. The real flux is concentrated at high

energies, because this is a fast neutron spectrum. In contrast, the adjoint flux is more evenly

distributed. If one were to insert a neutron at very low energy, it would have a high likelihood

of (sooner or later) spurring a fission reaction. Thus, the adjoint flux is high even at very

low energies, where few real neutrons exist.

For completeness, we can write down the adjoint transport equation with a fission source

term [157]:
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= -Et(F,E)Oft(i-,3, E) (2.14)

± dE' dn'E (F, -Q', E -+ E') t(-, Q', E') (2.15)

v(F, E)Z1 (F, E)
+ ' j dE'X(F, E') df'?l (F, Q', E') (2.16)47k fo f

Comparing this with the real transport equation (Equations 12.1 - 12.3) shows that one
can convert the real transport equation to the adjoint transport equation by performing three
simple operations: (1) replacing Q with -n, (2) replacing E -+ E' with E' -+ E, and (3)
switching v(F, E')Ef(F, E') and x(F, E). These three operations elucidate why the adjoint
flux is often referred to as the "backward" flux. In the adjoint solution, neutrons travel
backward in the -! direction rather than forward in the Q direction. Furthermore, neutrons
undergo scattering and fission operations backwards.
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Figure 2.1: Energy distributions of the real and adjoint fluxes in a typical sodium fast reactor
spectrum. The real flux is concentrated at high energies, while the adjoint flux is more evenly
distributed.
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2.3.4 Classic First Order Perturbation Theory

We can perturb both M and F operators in some arbitrary (small) way. These operators are

composed entirely of macroscopic cross-sections and other nuclear data - they are functions

of material composition. They are the input to perturbation theory. Any material density

perturbation (fuel density, coolant density, Doppler, temperature, etc.) can be quantified in

terms of them.

k'= + d (2.17)

P'= + d (2.18)

The perturbed neutron balance now includes a perturbed flux #' and a perturbed eigenvalue

1/k'.
Il1k.

= P'0 (2.19)
k'

The goal of perturbation theory is to estimate this perturbed eigenvalue 1/k' in order to

determine the reactivity Ap associated with the perturbation.

Ap 1 I - 1 = k'-k (2.20)
k k' k'k

We can express the perturbed flux and eigenvalue in the same fashion. In contrast to k' and

F', these constitute the output of perturbation theory. Although Ap is the primary output

that we are most interested in, determining Ap to greater than first order accuracy will also

require knowledge of d#.

= # + d# (2.21)

11 1 1
- +d -( =--Ap (2.22)

k' k k k

A simple derivation leads to the first order (linear) change in whole-core reactivity Ap.

This first order result is especially convenient in that it avoids computation of the perturbed

flux do. Only the perturbed operators along with the unperturbed real and adjoint fluxes

are necessary.

#t (1dP-dM )
Ap= K (2.23)

ot I#

Equation 2.23 is ubiquitous throughout neutronics and derived in most standard text-

books [156,157,163]. It exactly predicts the first derivative (or sensitivity) of reactivity with
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respect to a given perturbation. Thus, it is ideally suited for the computation of reactivity

coefficients. The bra-ket notation (aj b) represents the inner product of vectors a and b

integrated over all space and summed over all energy groups.

2.3.5 Second Order Perturbation Theory (Variational Methods)

While first order perturbation theory precisely predicts the first derivative of eigenvalue

with respect to a perturbation, second order perturbation theory precisely predicts the second

derivative of eigenvalue with respect to a perturbation. While first order perturbation theory

relies on the unperturbed flux, second order perturbation theory accounts for first order

changes in the flux distribution.

Employing the same derivation (as in first order) while simply neglecting to truncate the

second order terms leads to the second order reactivity Ap"[163] :

$ot I (d- - dll $) 5t{5-$ dt {dP -_dlf 0) $tf IPd4

Ap" =+ Kot (!dP - dM) do)

ot I4 po4 t I4 pot I 4)
(2.24)

We can rearrange factors here to express the second order result as the first order result

multiplied by a "correction factor". Note that the second and third terms in this "correction

factor" are of order d#/4, which will be much smaller than 1 for any small perturbation.

Ap -t (1d.P - d M) $ [1 t I (.dP - d M) do) Kot ) Pd 1( 2

ApK I+ KO' ('dP-dM)k) Kot Po) (2.25)

The ratio of Ap" to Ap is simply

___t (df - dM) do) Kot Id)(
=P 1 + (226

P =t (dP - dM) ( - 2.p

This result complicates the perturbation theory evaluation, as it requires knowledge of

the perturbed flux do. Since obtaining do from a separate deterministic calculation would

severely detract from our goals of speed and efficiency, we will need to employ variational

methods to estimate do. By choosing an appropriate variational functional, we can arrive

at a set of relations that specify d# [155,163]. Sparing the lengthy derivation, the resulting

functional is

AP= t (!dP-dA)r>) (2.27)
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Here Ot is a generalized adjoint function, mathematically similar to an adjoint flux. In

Equation 2.27, it serves as a modified "importance" weighting to reflect how the adjoint flux
has shifted due to the perturbation.

We can determine ?$t by expressing it in terms of known quantities:

d~t - dlt) #7 tt

( - MI) ?/?t = - (2.28)

It (kd -d) ,# -PO)

Note that solving for Ot requires solving a matrix equation - inverting the operator on

the left hand side of Equation 2.28. The matrix I.t - Mt is NG x NG, where G is thek
number of energy groups and N the number of spatial grid cells. Essentially, Equation 2.28
is a full-core fixed-source problem. Thus, solving this second order perturbation formula
has the same complexity as solving one outer iteration of a generalized eigenvalue problem.

Although it is still faster than directly re-solving the full eigenvalue problem, it is only faster

by a factor equal to the number of outer iterations required for that eigenvalue problem.

Note that Equations 2.27 and 2.28 define Ot as unitless. This allows us flexibility in
terms of how we define the variational functional and its generalized adjoint. In fact, we can

easily modify Equations 2.27 and 2.28 in terms of a modified generalized adjoint Ot:

t= Ot O) (2.29)

Now the modified variational functional in terms of 7/4 is

AP= 1  + () (2.30)
AP Kt 4'P)

(Ipt - i - W -d dA) t - dlf) tf + Ft O (2.31)

-ET (pdft - dft) #t + ftt (2.32)

Now the modified functional in Equation 2.30 conveniently has the same form as a standard

first order perturbation.

Finally, here is a third way to formulate the second order equations in terms of still
another generalized adjoint 714:

ot t d - 0)K0 = ( - =M) _K dP - d) < (2.33)
Kt P)k
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The modified variational functional in terms of t/3 is

3 ( (df - dM) 0) Kt + O (d -dM) #)
Ap" = A p+ (2.34)

K#t F#) - Kf #~)
(# t ) - # - dft - dlrt) #f + (Ap) ft (2.35)

Now the (further modified) functional in Equation 2.34 expresses the second order re-

activity as the sum of the first order reactivity and a second order term of the same form.

Note that in Equation 2.34, we can express the second order functional as a simple first

order perturbation weighted by #f + ,O instead of only #t. Thus, we surmise that qf + V1

represents the perturbed adjoint flux #f' and that 03 represents dot.

As it turns out, we have surmised astutely. According to Stacey [155], the perturbed

adjoint flux is proportional to the generalized adjoint function:

dot = of #t ( dP - dMb (2.36)

Comparing Equation 2.36 with Equation 2.33 reveals that O$ does in fact represent dot

to first order. Thus, the fixed-source problem defined in Equation 2.35 will produce the

change in adjoint flux without any proportionality factor. So we can now dispense with the

"generalized adjoint" terminology and express the second order functional in terms of only

of' = #t + dot.

#t' Idt - dtd
Ap" I (d M (2.37)

#ot IF#)

(}ft - KIt) dobt d~F - df) #f + (Ap) fot (2.38)

Although Equations 2.37 and 2.38 define how to obtain a second order eigenvalue estimate

and a first order dot estimate, one also might wish to estimate the perturbed real flux do.

Stacey specifies how to obtain this perturbed flux distribution [155]. Just as we defined

a generalized adjoint function ?/t in Equation 2.28, we can also define a generalized real

function 0:

F -)0) - ( F (2.39)
kK of (Id- - dM) ) o±
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Conveniently, the explicitly perturbed real flux is actually directly proportional to ', just
as the perturbed adjoint flux is proportional to ot in Equation 2.36:

do =1 7P t (.d -dM)f (2.40)

However, we can again eliminate the "generalized real function" terminology to express
Equation 2.39 in terms of do.

(p?- M d@= (o d - d ) +5(Ap)F## (2.41)

Note that Equation 2.41 is the analog of Equation 2.38.
In conclusion, we have now succeeded in expressing second order estimates of eigenvalue,

flux, and adjoint flux without reference to any "generalized" flux functions. We can use
Equations 2.37, 2.38, and 2.41 to determine all these perturbed quantities for arbitrary
material density perturbations defined by dE and dM.

2.4 Boundary Perturbation Theory

All the perturbation and variational techniques we have discussed so far have been centered
around one class of perturbations: material density changes. However, there is a second
major class of perturbations: geometry changes. Pomraning aptly characterized the fun-
damental distinction between these two perturbation classes [45]. Let E << 1 be a small
perturbation parameter. Then material density perturbations are 0(c) cross-section changes
over 0(1) volumes. In contrast, geometry perturbations are 0(1) cross-section changes over
0(E) volumes. Thus, geometry perturbations are inherently more difficult, because they
require relatively large changes in cross-sections.

Komata published the first major paper on geometric perturbation theory in 1977 [41]. He
showed that one can convert a boundary perturbation into a boundary condition perturbation
[53]. This obviates part of the problem, but, of course, it only applies to external boundaries
(where boundary conditions exist).

2.4.1 First Order Transport and Diffusion (1980s)

Pomraning, Larsen, and Rahnema carried out most of the seminal work on boundary pertur-
bation theory in both diffusion and transport simultaneously. Their first paper "Boundary
Perturbation Theory" succeeded in becoming the revered authority [42]. Larsen and Pom-
raning derived explicit first order perturbation expressions (in both diffusion and transport)
to evaluate reactivities due to small perturbations in the external boundary of a reactor.
Their result for one-group diffusion is
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f dSI - rD (f -Vqt) (i -V#) (2.42)
Ap = (2.42)~jq

f dVotv E 5

Here we have negated the vacuum boundary extrapolation condition. The denominator

contains the usual core-wide fission source integration, identical to that in classic perturba-

tion theory. The numerator contains a surface integral over the unperturbed surface S. The

quantity Ir' - r is the magnitude of the distance between the unperturbed surface r- and

the perturbed surface r'. The unit vector n is perpendicular to the unperturbed surface.

Although we have only written this for one energy group, the extension to multigroup is

simple - simply sum up the numerator and denominator over all energy groups.

Shortly after deriving this formula for external surfaces, the trio began to study inter-

nal interface perturbations - slightly moving an internal boundary between two materials so

that one material "substitutes" the other. However, Rahnema and Pomraning discovered

an "anomaly" in the application of boundary perturbation theory to these internal interface

shifts. Specifically, the classic first order perturbation formula (Equation 2.23) does not cor-

rectly predict the first derivative of reactivity as it does for material density changes. This

"anomaly" does not appear in transport theory - it is an artifact of the diffusion approxi-

mation that appears at internal material interfaces [43]. They corrected the "anomaly" and

proposed a general expression for an internal interface perturbation in one-group diffusion:

f dSr' - r [(DR - DL) Vq5R - VOL + qt (( VEf - Ea)L - ( vEf - Ea)R)

f dVotvE 0
(2.43)

This applies to an internal interface shift to the right. The subscripts R and L denote

quantities evaluated immediately to the right and left of the boundary. Note that although

the flux gradient is discontinuous across the interface, the flux itself is always continuous.

In terms of a material density perturbation, one could consider the R quantities to be the

unperturbed case while the L quantities are the perturbed case. When a surface moves to

the right, the L quantities replace the R quantities. Also note that Equations 2.42 and 2.43

have an additional minus sign that does not appear in the literature, but this is only because

A(1/k) = -Ap.

Later on, Pomraning revisited this "anomaly" and derived another corrected first order

perturbation formula for an internal interface shift in one-group diffusion theory [45]:

Ap f dSjr' - [-dDVkt - VO + t [ d(vEf) -d~a]# (2.44)

f dVotvE k(.

Note that Equation 2.44 is precisely equivalent to Equation 2.43. Pomraning simply re-

formulates the perturbation in terms of a material density change. Here dEZ, = Ea,L - Ea,R
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and d(vEf) = VEf,L - VZf,R. Similarly, dD = DL - DR, D = DR, and D' = DL. The
two unperturbed flux gradients are evaluated to the right of the perturbation, because the
rightward region is the unperturbed region. Conservation of (real and adjoint) current across
the interface can allow one to convert the leakage term in Equation 2.44 to that in Equation
2.43.

Pomraning notes that Equation 2.44 is fully general to both material density and bound-
ary perturbations. In the case of a small material density perturbation, one can estimate
D/D' ~ 1. Then the numerator in Equation 2.44 is identical to a classic first order pertur-
bation formula (for material densities).

These expressions in Equations 2.42, 2.43, and 2.44 correctly predict the first order (one-
group diffusion) reactivity due to small perturbations in external and internal boundaries.
However, the predictions will only be correct if one has obtained very accurate (real and
adjoint) flux gradients on the unperturbed boundary.

Rahnema and Pomraning derived one-group first order perturbation formulas for changes
in various quantities (anything that is a linear functional of the flux - not just eigenvalue) due
to changes in external boundaries in fixed-source problems [46]. Rahnema and Pomraning
later wrote a paper generalizing these methods to full multigroup transport and diffusion
[48]. This leap was crucial, as previous papers had demonstrated the methods only for simple
one-group examples.

Pomraning showed that one can obtain first order estimates for reactivities due to non-
analytic perturbations in the external boundaries of a reactor [47]. The previous methods
allowed for only an analytic continuous extension of the material adjacent to the external
boundary, but Pomraning's work here allows for adding arbitrary material compositions to
the external boundary such that the boundary perturbation is "non-analytic".

At last, Rahnema and Pomraning presented multigroup transport and diffusion perturba-
tion formulas for internal interface perturbations coupled with material density perturbations
[49]. This was the final step in demonstrating that first order boundary perturbation theory
was possible for both internal and external boundaries in both transport and diffusion.

2.4.2 Higher Order Transport and Diffusion (1990s-2000s)

After the initial flurry of work by Pomraning, Larsen, and Rahnema, the literature is mostly
silent on the topic for about a dozen years. Rahnema revisited the internal interface problem
in the mid-1990s, and he re-derived the first order expressions via the "crossmultiplication"
method [50].

Then, Gheorghiu and Rahnema developed the first higher order (variational) estimates
of reactivity due to boundary perturbations [51,52]. This work covers both transport and
diffusion, but it is only valid for external boundary perturbations. Internal boundaries are
not covered.

66



The "Virtual Density" Theory

Rahnema and Ravetto later built on the original work of Komata [41] to convert first order

boundary perturbations into first order boundary condition perturbations [53]. Rahnema

and McKinley did much further work on these boundary condition perturbation methods,

and they applied higher order formulas for both diffusion and transport [54,55]. Note that

because these methods require converting a boundary shift into a boundary condition change,

they apply only to external reactor boundaries. Like the work by Rahnema and Gheorghiu,

they are not applicable to internal boundaries.

During the past ten years, Favorite has performed most of the substantial work on bound-

ary perturbation theory. His work is almost entirely in transport theory. He developed the

first higher order (variational) estimates for internal interface perturbations by combining

elements of the Roussopoulos and Schwinger functionals [59,60]. Favorite and Bledsoe dis-

cussed the sensitivity of eigenvalue with respect to uniform expansions or contractions of

surfaces [61], and they showed equivalence with Rahnema's earlier work [49].

Favorite compared the Roussopoulos formula [1] to the first order linear functional equa-

tions derived by Rahnema and Pomraning for external boundary perturbations [46]. Essen-

tially, he finds that the Roussopoulos formula fails in predicting volume-integrated quantities

in external boundary perturbations but succeeds in predicting perturbed quantities on that

boundary [64]. The methods developed by Rahnema and Pomraning succeed for the volume-

integrated quantities but cannot be applied to quantities on the perturbed boundary.

Much of Favorite's work has been related to fixed-source shielding problems for applica-

tions in non-proliferation, and he has applied boundary perturbations in transport theory to

such scenarios [65].

However, some aspects of Favorite's work are very pertinent to realistic distortions in

critical reactors. He attempted to apply his higher order transport perturbation techniques

to the Godiva and Zeus experiments [63,62], which we will discuss in detail shortly.

In summary, higher order (variational) boundary perturbation techniques have been de-

veloped for external boundaries in both transport and diffusion, but they have been devel-

oped for internal boundaries only in transport. We have not found higher order (variational)

techniques for internal boundaries in diffusion in the literature.

2.4.3 Perturbed Flux and Power via Variational Methods

While computing the perturbed eigenvalue to first order requires only first order perturbation

theory, computing the perturbed flux to first order requires second order perturbation theory

(variational methods).

Although the literature is rife with examples for eigenvalue perturbations due to boundary

shifts, flux perturbations due to boundary shifts are much less common. Pomraning and

Rahnema derived variational functionals to evaluate changes in integrated reaction rates

(such as fission or absorption) due to external boundary perturbations [46]. Much later,
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Rahnema and McKinley were able to estimate perturbed fluxes due to external boundary
shifts [54,55].

Rahnema, Ilas, and Mosher employed variational methods to develop coarse mesh trans-

port methods [56,58]. After solving a large heterogeneous system on a coarse mesh, they
could apply variational techniques to each coarse mesh cell in order to determine the intra-
cell flux distribution [57]. Given (1) a fission source within a cell and (2) a flux source on the

cell boundary, one can construct trial functions to approximate the flux distribution within
the cell. However, none of this work deals with boundary changes.

Although Favorite's work in transport theory succeeds in deriving variational methods

for reactivities due to internal boundary perturbations, he has not yet extended his methods
to predict perturbed flux distributions in critical reactors (although he has applied them
to fixed-source detector problems). It appears that virtually no work has been done on

perturbed flux distributions due to internal boundary perturbations in diffusion.

2.4.4 Application to Practical Reactor Models

Throughout the literature, analytic and numeric examples for boundary perturbation theory
are given for only very simple geometries, often only 1-D slabs. Very little application to
complex geometries exists in the literature, and no application to realistic full-core 3-D
models can be found.

Rahnema, Pomraning, and others studied neutronic effects of practical "distorted core
configurations" in a 2-D gas-cooled fast reactor (GFR) model [44]. Due to strong anisotropic
neutronic effects in GFRs, they performed all the calculations in transport theory. However,
even though this work came out of Rahnema's Ph.D. thesis on boundary perturbation theory,
perturbation theory was not applied to the GFR model. All the GFR reactivity effects shown
in this work were directly computed via transport theory.

Rahnema and McKinley applied their variational techniques for external boundaries to
two-region and three-region fuel assembly slab problems [54,55].

Favorite applied variational boundary perturbation techniques in transport theory for a
number of fairly realistic scenarios, but many of these were fixed-source shielding and detec-
tion problems [65]. However, Favorite's application of higher order boundary perturbation
theory to the Godiva and Zeus experiments provides great insight into potential application
to realistic reactors [63,62].

The Godiva device at Los Alamos consisted of a pure 235 U sphere centered within (and
surrounded by) a larger spherical shell of pure light water. See Figure 2.2. Considered
"naked" with neither reflector nor shield, it was named for the 1 1 th century Anglo-Saxon
noblewoman Lady Godiva. Favorite applies higher order perturbation methods (based on
Rahnema's original work [49]) in transport to translate the sphere in one direction, breaking
the problem's spherical symmetry. Thus, the perturbation methods require two surface
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integrals, each over a half sphere. Favorite finds that the perturbation methods work much

better for each half-sphere perturbation individually than for the whole-sphere translation,

which cannot even predict the reactivity to within 20% [62]. However, one must note that

because this problem breaks the initial symmetry, the first order reactivity is precisely zero.

Only the second order reactivity is non-zero. Thus, this 20% error is entirely second order,

not first order. Figure 2 in Favorite's American Nuclear Society (ANS) summary [62] suggests

that he does in fact correctly predict the zero first order reactivity.

H20

235 U

Figure 2.2: The Godiva sphere translation problem. A solid 235 U sphere is initially centered

within a larger sphere of water. It is perturbed slightly in one direction (represented by the dashed

circle), breaking the problem's initial spherical symmetry [62].

As illustrated in Figure 2.3, the Zeus problem consists of alternating 3-D finite slabs of

highly-enriched uranium (HEU) and graphite [145,148]. Thus, the problem contains numer-

ous internal interfaces between HEU and graphite. Favorite models the system in transport

theory, and he demonstrates that first order boundary perturbation theory correctly pre-

dicts the first derivatives of the eigenvalue with respect to shifts of each single interface.

However, he finds that the boundary perturbation techniques completely fail to predict the

first derivative of the eigenvalue with respect to shifting the lower 40% of the core (many

interfaces moving together). While the sum of first derivatives due to each single interface
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shift produces an error of only 1.3%, the first derivative due to multiple interface shifts pro-
duces an error of 32% [63]. So it appears that the reactivities due to internal interfaces do
not add - not even in first order! Favorite even states that "the first order theory has no
way to account for interacting effects of multiple perturbations" and that the derivative of
eigenvalue "with respect to the location of the Zeus lower core is not the simple sum of the
derivatives with respect to the location of the individual surfaces". Thus, one major barrier
to applying boundary perturbation techniques to practical reactor models may be that the
reactivity effects due to individual interface perturbations are not always additive.

In summary, application of boundary perturbation techniques to practical core distortion
scenarios has been extremely limited - mostly to simple 1-D or 2-D models or to simple
benchmark problems like Godiva. Zeus represents the most complex geometry to which
boundary perturbation techniques have been applied in the literature, and the techniques
fail for some practical scenarios in that problem.
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Figure 2.3: The Zeus critical assembly experiment at Los Alamos National Laboratory [145].

Copper reflector slabs surround an "assembly" of alternating cylindrical slabs of HEU and graphite.

The bottom 40% of this assembly can be moved downward.
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Table 2.1: What Has and Hasn't Been Done in Perturbation Theory

mat. density ext. boundary int. boundary

1st order eigenvalue in transport

2nd order eigenvalue in transport

flux in transport

modal expansion in transport No No

1st order eigenvalue in diffusion

2nd order eigenvalue in diffusion No

flux in diffusion No
modal expansion in diffusion No No

2.5 A Summary of the Perturbation Theory Literature

Here we present a succinct summary of our literature review of perturbation theory applied to
neutronics. Table 2.1 clearly shows which categories of perturbations have been implemented,
and which haven't. Here we present a few general trends:

e Arbitrary material density perturbations have been solved in both transport and dif-
fusion.

e External boundary perturbations have been much more widely studied than inter-
nal boundary perturbations, in part because external boundary perturbations can be
converted into boundary condition perturbations.

e Internal boundary perturbations have not been applied beyond first order in diffusion,
while they have been applied much more extensively in transport. Perhaps this is due
to the diffusion "anomaly" that arises on internal surfaces [43].

* In the main body of literature, modal expansion techniques have only been applied to
diffusion theory. However, since application to transport is straightforward, it would
be surprising if no one has ever applied modal expansion to transport. Thus, we use
the word "Maybe" for this place in Table 2.1.

e Modal expansion techniques have not been applied to boundary perturbations.
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2.6 Attempts at Modeling Practical Assembly Distortions in Fast
Reactors

Despite the fact that boundary perturbation theory has not been applied to practical reactor

models, there have been valiant attempts to quantify practical distortion scenarios in fast

reactors. Most notably, Knutson, Wigeland, and Kamal devised methods to model hexagonal

assembly bowing and flowering.

2.6.1 Knutson's Model of Assembly Bowing

In 1981, Knutson, Lucoff, Harris, and Hecht conceived a model to estimate the reactivity due

to individual assembly movements in the Fast Flux Test Facility (FFTF) [101,102]. He does

not employ boundary perturbation theory, but only classic first order perturbation theory

(for material densities). Consider a fuel assembly immersed in sodium. Now imagine that

assembly shifting radially outward very slightly. There will be two reactivity effects - one

due to the fuel motion, and another due to the sodium "backfill". For example, the fuel

reactivity worth Wfei per unit displacement is

Wfuel = (Wfue],outer - Wfueiinner) Vfuel (2.45)

Here Wfefei,outer is the fuel worth (per unit volume) on the outer edge of the assembly,
while Wfueiiner is the fuel worth on the inner edge of the assembly. Vei represents the

displaced sodium volume per unit radial displacement. Now in order to obtain the total

reactivity effect, one must simply add Wefi to Wc0 0,, the sodium "backfill" worth gradient.

W = Wfe + Woo (2.46)

Here W represents the reactivity worth gradient for a given assembly at a given axial

position. Knutson calculates W in both the x and y directions. He obtains the mechanical

displacements from NUBOW-3D [192].

Knutson benchmarks his model against a direct 2-D hexagonal diffusion calculation of

uniform radial swelling in the FFTF core. He attempts to predict the reactivity due to a

100 mil = 1/10 inch uniform radial swelling. This very small shift corresponds to a radial

increase of about 0.2%. Knutson's model predicts the exact reactivity to no less than 12%. He

subsequently performs analysis to conclude that nearly all of this error arises from spatial

effects rather than spectral effects. His model, which is based solely on material density

perturbations, cannot capture the effect of decreased leakage due to increased core size.
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2.6.2 Wigeland's Model of Assembly Bowing

In the 1980s, Wigeland developed a model [105,107] that was incorporated into the SASSYS

and SAS4A codes [196,195]. The bulk of Wigeland's work focuses on computing assembly

displacements as functions of temperature using simple models that agreed with the me-

chanical distortion code NUBOW-3D [192]. However, he also extends the work to reactivity

analysis. In his model, the reactivity Ap is

Ap = WAR (2.47)

Here AR is the (axially-dependent) radial displacement of an "average" outer assembly -

the average distance by which the assemblies on the core edge are pushed radially outward.

W is the "uniform dilation" radial swelling reactivity worth for the whole core, which is

determined by a full 3-D neutronics eigenvalue calculation. The pitch of each assembly is

increased by 1%, and the reactivity is recorded. In order to capture the axial dependence of

W, Wigeland assumes that W is proportional to the axial power shape. He finds that the

reactivities predicted by Equation 2.47 agree with detailed 3-D calculations to within 20%.

In his detailed report, Wigeland estimates the reactivity uncertainty to be approximately

30% [107].
Wigeland compares his model to empirical correlations and to experimental results from

the Fast Flux Test Facility (FFTF) [146] in two American Nuclear Society (ANS) confer-

ence proceedings [106,108]. Agreement is fairly strong, although the model differs from

experimental data by as much as 20% in some cases.

It is important to note that Wigeland's model is not based on perturbation theory. The

"uniform dilation" radial swelling worth input is a direct calculation, not a perturbation.

This allows Wigeland's model to avoid the pitfall of Knutson's work, which does not account

for changes in core size.

Nevertheless, Wigeland's model has a few limitations of its own. First, the "uniform

dilation" worth does not account for non-uniformities in radial swelling [105]. The entire

model is based on the amount by which the outer ring of assemblies is pushed outward.

In reality, one or two hexagonal assembly rings (located in the high power gradient region)
account for most of the whole-core radial swelling. Although these non-uniformities appear

not to be terribly important for the FFTF, we surmise that they would be much more

important for larger cores with annular power profiles (such that the peak power is not near

the core center). Second, the assumption that the axial reactivity worth profile is equal to

the axial power profile likely introduces considerable error. This error could be reduced by

introducing multigroup adjoint-weighting into the axial worth distribution.
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2.6.3 Kamal's Model of Assembly Bowing

In the mid-1980s, Kamal and Orechwa devised a third model for the reactivity worths of

assembly bowing and core flowering [103,104]. Their reactivity model is conceptually similar

to Knutson's, except that they allow each assembly to move in an arbitrary direction (instead

of only radially outward). They compute "displacement reactivity worths" W, and W, for

assembly movement in the x and y directions, and then they assume a simple cosine axial

worth distribution shape. These displacement worths are computed one at a time via direct

DIF3D eigenvalue calculations, although the precise methodology is unclear.

Ap = WXAx + WYAy (2.48)

Here Wx and W are the worth gradients in the x and y directions, while Ax and Ay

represent the small assembly displacements.

Kamal and Orechwa apply this method to both the "limited free bowing" and "free

flowering" core restraint systems with distortion input obtained from NUBOW-3D [192].

They conclude that the "limited free bowing" case actually provides greater reactivity safety,

because the upper core restraint forces the assemblies to bow outward in the central core

region where reactivity worths are greatest.

While Wigeland's model requires direct calculation of the uniform radial swelling co-

efficient, Kamal's model seems to require a lengthy direct eigenvalue calculation for each

assembly. Thus, the required pre-computation time is extremely large. Furthermore, Ka-

mal's simple cosine axial worth shapes are even less accurate than Wigeland's power axial

worth shapes.

Note that these three models proposed by Knutson, Wigeland, and Kamal all assume

that reactivity is a linear function of assembly position. Thus, first order perturbation theory

should be sufficiently accurate to model these distortions. This linearity is not surprising,

as each assembly movement amounts to a sodium displacement, and the linearity of sodium

reactivity in fast reactors is widely known. Stacey even states that "the sodium void coeffi-

cient varies directly with the ratio of the number of sodium atoms removed to the number

of fuel atoms present" [163].

2.7 Why We Still Need Perturbation Theory

Since the inception of perturbation theory, computers have appeared and become quite fast.

Thus, we can solve partial differential equations numerically. The fact that few analytic

solutions exist for the Schr6dinger equation is no longer such a big deal - if no analytic

solution exists, we can just solve it numerically. This is also true for the neutron diffusion

and transport equations.
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So why do we still need perturbation theory? Why would we employ clever mathematical

tricks to obtain an approximate solution when we can directly obtain the exact solution via

numeric methods? Is there really still a need for this, or is it merely an outmoded relic of

the past?

We believe that perturbation theory is still necessary for two main reasons:
First, perturbation theory is fast. Solving the neutron transport equation deterministi-

cally for large, heterogeneous, 3-D problems on a fine mesh is still an active area of research.

Determining the neutron distribution as a function of energy, angle, and 3-D space is very
computationally intensive. In contrast, perturbing an already-solved neutron distribution is

fast. There are no eigenvalue problems to solve, no unknowns to determine. The process is

simply adding and multiplying known values, and it can be thousands of times faster than

re-solving the full problem. Furthermore, since classic first order perturbations are linearly

independent, perturbation theory is "embarrassingly parallel". One can compute the re-
activity effects due to multiple perturbations in parallel (on multiple processors) and then

simply add up the results at the end. Although perturbation theory is fast, parallelization

may still be desirable if working with high-level languages such as Python [207] or MATLAB
[210].

One might argue that these gains in speed and computational efficiency are not worth

the loss of accuracy and increase in uncertainty that perturbation theory introduces. How-
ever, this depends on the chosen application. For example, perturbation theory is widely

used throughout the fast reactor community to compute reactivity coefficients - the instan-
taneous derivatives of reactivity with respect to material densities and temperatures. While

perturbation theory is certainly not precise for large perturbations, it is exactly precise for
infinitesimally small perturbations. First order perturbation theory can predict the first
derivative of reactivity with respect to cross-sections changes exactly. Thus, in the case

of computing reactivity coefficients, perturbation theory is no less accurate than directly
re-solving the system - and it's orders of magnitude faster.

Second, perturbation theory acts within the same spatial domain - the same geometry

- as the original unperturbed solution. In the case of neutronics, re-solving the neutron

transport or diffusion equations for arbitrary material densities or compositions is trivial.

One simply inputs different numbers and re-runs the code. In stark contrast, re-solving

these equations for arbitrary geometries is most certainly not trivial. Constructing meshes

to accurately model arbitrarily-perturbed geometries is a quagmire. However, the elegance

of perturbation theory is that no change in domain (no re-meshing) is required. Perturbation

theory can estimate changes in reactivity due to small geometry changes based on the solution
in an unperturbed geometry. This obviation of re-meshing is tremendously expeditious - not
just in computation expense, but in manhours.

Thus, we still need perturbation theory for (1) instantaneous eigenvalue derivatives in
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reactivity coefficients and (2) geometry distortions. All other material density perturbations

beyond (1) may be unnecessary with today's computational tools. As we saw previously,
second order material density perturbations require as much computational power as one

outer iteration in a generalized eigenvalue problem. That's not a huge gain in computational

efficiency considering the loss of accuracy and increase in uncertainty. First order perturba-

tion theory to compute reactivity coefficients is rapid and accurate, but it is already fully

known. What isn't fully known, however, is (2). Boundary perturbation theory has still not

been developed to the extent that we can accurately apply it to arbitrary core distortion

scenarios. In our humble opinion, that should be the forward thrust of perturbation theory

research.

2.8 Summary and the Path Forward

The objective of this thesis work is to apply geometric perturbation theory to models of

practical core distortions in real reactor models. So far, boundary perturbation theory hasn't

quite made that leap. Knutson's model employed only material density perturbations(not

boundary perturbations), and the Wigeland and Kamal models did not employ perturbation

theory at all. None of these three models could predict distortion reactivities more precisely

than the range 10-20%. Knutson's model could not account for decreased leakage due to

increased core size. The Wigeland and Kamal models required lengthy direct eigenvalue

calculations as pre-computation, and they employ simple power shape weighting instead of

multigroup adjoint weighting.

In order to accomplish this objective, we will develop a new type of perturbation theory

that treats material density and boundary perturbations as a single entity. We will validate

this new theory numerically for numerous simple geometries in finite difference diffusion.

Furthermore, we will show that this new theory is analytically equivalent (but not numeri-

cally equivalent) to traditional boundary perturbation theory. The culmination of this work

will be application of perturbation theory to distortions in full-core, hexagonal-z fast reactor

diffusion models with unprecedented accuracy.
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3 A Review of Uniform Isotropic "Virtual Density"

Theory

3.1 Chapter Abstract

We introduce the uniform isotropic "virtual density" theory of neutronics, which equates

uniform isotropic changes in core size to uniform density changes. A change in core size is

isotropic if the "shape" of each core region remains fixed. We present the basic concept,
which has been mentioned sparsely throughout the literature but rarely stated formally. We

opt to define new formalism and demonstrate its validity, both analytically and numerically.

First, we show that it is equally valid in diffusion, deterministic transport, and Monte Carlo.

We then apply it to perturbation theory to predict reactivity coefficients for reactor swellings

and expansions in isotropic cases. This limits us to two classes of perturbations: (1) uniform

swellings and expansions of 2-D heterogeneous full-core models and (2) arbitrary geometry

perturbations in 1-D problems. We demonstrate (1) with a simple 2-D Cartesian sodium fast

reactor (SFR) model and with a 2-D hexagonal model of the Fast Flux Test Facility (FFTF).

Furthermore, we show the precise equivalence of "virtual density" and traditional boundary

perturbation theory using analytic solutions to simple homogeneous geometries. We leave

(2) for discussion in Chapter 8. We conclude that the uniform isotropic "virtual density"

theory allows for highly accurate prediction of reactivities in coarse mesh finite difference

solutions, even for highly-heterogeneous cores.

3.2 Introduction

Core reactivities are sensitive to geometry distortions arising from three distinct phenomena:

(1) irradiation swelling of fuel throughout core lifetime, (2) thermal swelling of fuel during

transients, and (3) mechanical oscillations during seismic events. Performing comprehensive

reactivity analysis of these distortions requires methods for rapidly computing a multitude

of small shifts. Traditionally, these reactivity effects have been studied via boundary pertur-

bation theory developed by Pomraning, Larsen, and Rahnema [42,46,48,49]. However, those

methods were never applied to full-core 3-D reactor models, and there is evidence to suggest

that multiple boundary perturbations interfere with one another [63].

Thus, we introduce the "virtual density" theory of neutronics as a new perturbation

method based on fundamentally different principles. Essentially, this "virtual density" theory

converts geometric perturbations into equivalent material density perturbations, which are

more accurate and much simpler to evaluate. In this chapter, we introduce and validate

this technique for uniform isotropic cases, which include swellings and expansions of 2-D

heterogeneous full-core models.
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3.3 The "Virtual Density" Concept

For now, let us consider an idealized uniform core swelling in which every material in the

entire reactor swells by the same factor. Of course, in real scenarios the liquid coolant would

not swell at the same rate as other materials, but we will neglect that effect for now. Let the

reactor volume be V, and let any given material atom density be N. If mass is conserved,
then N will vary inversely proportional to V.

1
N oc- (3.1)

V
If we let A be any given neutron mean free path in the core, then A will vary proportional

to V. Let Et and o- be the macroscopic and microscopic total cross-sections, respectively.

1 1
A oc -= oc V (3.2)

Et Na-

During this core swelling, the neutron mean free path increases at a rate greater than the

rate at which all linear core dimensions increase. Thus, the net reactivity will be negative

- the negative reactivity effect due to reduced material densities overcomes the positive

reactivity effect due to increased core size, and so the net effect is increased leakage. This

is true for any arbitrary reactor (homogenous or heterogeneous) except an array of infinite

1-D slabs, for which the net reactivity is precisely zero.

If we wished to keep reactivity constant during a uniform swelling of an arbitrary reac-

tor, we would need to scale up the neutron mean free path proportional to the core linear

dimensions (VI/ 3 ).

A oC V1 /3 - N oc V-1/ 3  (3.3)

Thus, if we uniformly swell the core volume V and simultaneously reduce all core material

densities proportional to V 1/3 , the neutron leakage rate does not change. Of course, it

follows that the relative magnitudes of neutron fluxes between internal core regions do not

change such that the spatial neutron distribution does not change. Furthermore, because

the relative proportions of all materials in the core are fixed, the neutron energy spectrum is

also fixed. Thus, the reactor is essentially "scaled up" with no change to reactivity, spatial

flux distributions, or local flux spectra.

3.3.1 Three Axioms

Intuitively, we can summarize this generic principle with three closely-related axioms:

Axiom 1: Swelling all linear dimensions of any reactor by a certain factor while simultane-

ously reducing all material densities by that same factor will result in exactly zero change
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to reactivity and relative flux distributions.

Axiom 2: The reactivity and flux distribution effects of a uniform core swelling (or contrac-

tion) can be exactly replicated by manipulating material densities with no change to core

geometry.

Axiom 2 is a direct logical consequence of Axiom 1. While Axiom 1 states that we can

counteract a dimension change with a density change, Axiom 2 states that we can replicate

a dimension change with a density change. Naturally, this begs for a third axiom:

Axiom 3: If any arbitrary dimensional change can be counteracted by a material change,
then that same dimension change can be replicated by a different material density change.

These three axioms encapsulate the basic "virtual density" theory for isotropic expansions

and swellings.

3.3.2 Definitions: "Swelling", "Expansion", "Isotropic", "Anisotropic", "Uni-

form", "Non-Uniform"

Throughout this thesis, we define a swelling as a dimension change with a corresponding

density change that conserves mass. Thermal enlargement of a solid is one example of a

swelling. In contrast, we define an expansion as a dimension change without a density

change. Coolant flowing into an expanding inner core region is one example of this - the size

of the region increases, but the coolant density occupying that region remains constant. Note

that while expansions and swellings are both geometry changes, they differ from each other

by only a density change. We define enlargement as a neutral term to describe a change in

core size that could be either a swelling or an expansion.

A swelling or expansion of a reactor core zone is isotropic if it retains its "shape" when

it enlarges. Thus, a cube expanding isotropically in all directions is still a cube - it has

retained its shape. However, a cube expanding anisotropically in only one or two directions

becomes a rectangular parallelepiped - its shape has changed. Similarly, a sphere expanding

isotropically is still a sphere, but a sphere expanding anisotropically is an ellipsoid. Thus,
isotropic swellings and expansions have only very limited application in neutronics. We can

isotropically (radially) swell 2-D heterogeneous full-core models. We could also do the same

for 3-D heterogeneous full-core models, but that would not be terribly realistic, as cores do

not swell axially and radially by the same factor. Finally, we can always apply isotropic

expansion to infinite 1-D slabs, because 1-D slabs always retain their "shape" regardless of

their thickness.

An isotropic or anisotropic swelling or expansion is uniform if it occurs throughout a
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whole core by the same factor, such as uniform radial or axial swelling of a whole fast

reactor core. An isotropic or anisotropic swelling or expansion is non-uniform if it occurs

in only one subregion of a core (such as a single assembly swelling axially) or by different

factors in different subregions (such as fuel and control rod assemblies swelling axially by

different factors).
See Figure 3.1 for illustrations of these terms. In this chapter, we analyze uniform

isotropic swellings and expansions, which are mentioned sparsely in Western literature. In

Chapter 4, we will analyze uniform anisotropic swellings and expansions, which are studied

in old Soviet and Russian literature. Most of the remainder of this thesis is concerned with

non-uniform anisotropic swellings and expansions, which apparently do not exist in prior

literature.
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Figure 3.1: Pictorial definitions of "isotropic", "anisotropic", "uniform", and "non-uniform" ge-
ometry changes. Uniform isotropic cases are considered well-known and appear sparsely throughout
all neutronics literature. Uniform anisotropic cases appear only in old Soviet and Russian litera-
ture. Non-uniform anisotropic cases constitute an unsolved problem, and a major contribution of
this thesis is to solve it.
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3.3.3 Literature Review

Shikhov proposed what he called "similarity theory" in 1959 [87,90]. Since then, the Rus-

sian reactor physics community has used it to determine uniform core swelling reactivity

coefficients. The design of the BN-800, a sodium fast reactor currently under construction

in Russia, employed some of these methods [95]. However, these methods appear not to

have been extended to any non-uniform swellings or expansions. Thus, they are only useful

for whole-core uniform swellings and expansions, and they are not applicable to localized

geometry distortions.

Two Russian authors wrote a paper in 1985 that references both work by Shikhov and the

boundary perturbation theory methods that Pomraning, Larsen, and Rahnema had recently

developed [93]. However, this paper focuses on boundary perturbation theory and does not

draw any comparisons to Shikhov's "similarity theory".

Physicists working on the Manhattan Project also used the generic relationship between

material density and system dimensions [86]. Back then, performing an accurate eigenvalue

calculation (even for extremely simple geometries) was laborious, and so this "density law"

provided a simple way for them to know what would happen if they were to scale up (or

down) the dimensions of a critical system. As described in a later report by Stratton, they

knew that the critical radius of a system is inversely proportional to density and that the

critical mass is inversely proportional to the square of density [89]. Stratton also states that

the law applies precisely to the extrapolation distance in diffusion theory, which one would

expect. This early literature does not have any specific name for the principle, but it is

described as "the only law in criticality physics which is simultaneously exact, simple, and

useful" [89]. Stratton elegantly phrases the law like this:

"In a critical system, if the densities are increased everywhere to x times their initial

value and all the linear dimensions are reduced to 1/x times their initial value, the

system will remain critical."

However, it appears that application of this uniform isotropic "virtual density" theory

was limited to the early criticality experiments. The western literature does not describe

its application to full-scale reactor design, perturbation theory, or reactivity coefficients. It

appears that Shikhov conceived the concept independently, and then the Soviets developed

it further than their Cold War foes.

Furthermore, Cullen has published two reports on this subject. He recognizes the rela-

tionship between density and dimensions for isotropic uniform core swelling, and he gives

numeric examples for many simple geometries [96,97].

It is intriguing that Soviet authors could read western literature, while western authors

could not read Soviet literature until the early 1990s. Thus, all the Russian reactor physicists
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had access to the boundary perturbation work developed by Pomraning, Larsen, and Rah-

nema, but those three had no knowledge of the Russian work. If not for the Iron Curtain,
many of these connections and comparisons would have likely been made much earlier.

The central purpose of this thesis work is to generalize Shikhov's original theory so

that it applies to non-uniform core swellings and expansions, which can describe geometry

distortions. We will refer to this new generalized theory as the "virtual density" theory

of neutronics. We will closely follow and build upon our previously-published work on this

topic [98,99].

3.3.4 Defining a "Virtual" Uniform Radial Core Swelling in 2-D

Now let us examine a realistic uniform isotropic "virtual density" swelling scenario. Consider

a 2-D sodium fast reactor (SFR). We will define a uniform radial core swelling as a uniform

increase in pin pitch. Thus, the core swells uniformly in the radial direction but not in the

axial direction. If the core swells from radius R1 to a larger radius R 2 , the homogenized

fuel and structure densities in each assembly will decrease by a factor of (R 2/R 1 )2. As the

pin pitch increases, sodium flows into the core. Thus, the homogenized sodium density will

increase by the factor (R 1 /R 2)2 [(R 2 /R 1 )2 - F]/(1-F), where F is the initial volume fraction

of fuel and structure.

Given our three axioms, we can exactly replicate the reactivity of such a uniform core

swelling without actually swelling the core. Instead of enlarging the core, we simply contract

the neutron mean free paths by increasing all material densities by a factor of R 2 /R 1 above

what they would be during an "actual" core swelling. For example, we increase the fuel and

structure densities by a factor of R 2/R 1 after they have already been decreased by a factor

of (R 2/R 1 )2 during the "actual" swelling. Thus, the net effect of the "virtual" swelling is

that the fuel and structure densities are decreased by a factor of R 2/R 1 , which is less than

the factor they would have been decreased by during an "actual" swelling. See Figure 3.2

for a summary.

3.3.5 Numeric Equivalence in Diffusion, Deterministic Transport, and Monte

Carlo

We can demonstrate the universality of this "virtual density" theory by showing that it is

equally valid in diffusion, deterministic transport, and Monte Carlo simulations.

In all three simulations, we use the same very simple geometry: a 5x5 array of square

enriched uranium assemblies surrounded by a square sodium blanket. See Figure 3.3 for an

illustration. Without swelling, this reactor has keff = 1.04. The vacuum boundary condition

provides plenty of leakage. The fuel and structure volume fraction is F = 0.62, although the

square assemblies are homogenized with no pin-level detail. As each homogeneous assembly
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- swell linear core dimensions by R2/R1
- multiply fuel density by (R1/R2)2

expansion - multiply coolant density by (R1/R2)2 [(R 2/Rl )2_ f]/(1-f)

same Ak

virtual core - keep core dimensions constant

e-pansion multiply fuel density by (R1/R2)2 (R2/R) = R/R2
multiply coolant density by (R1/R2)[(R 2/R1)2 . f]/(1-f)

Figure 3.2: "Virtual" and "actual" uniform radial core swellings for a 2-D fast reactor model.
The core radius swells from R, to R2. The factor F is the unperturbed fuel and structure volume
fraction.

swells, F decreases such that the homogenized fuel and coolant densities change by different
factors. Refer back to Figure 3.2 for how to compute these factors.

We perform the diffusion simulation with a MATLAB [210] finite difference code in-
tegrated with the PETSc [200] and SLEPc [203] linear algebra packages. We dub this
MATLAB-PETSc-SLEPc solver MaPS. See Appendix A for a detailed description with val-
idation. MaPS uses the SLEPc generalized eigenvalue solver with Arnoldi or Krylov-Schur
iterations. We utilize 33-group cross-sections produced by the code MC**2, which is tailored
to process fast reactor cross-sections [187]. We subdivide each assembly in Figure 3.3 into
16 square mesh cells, each 4 cm x 4 cm.

We should note here that the "virtual density" theory involves altering material densities
and macroscopic cross-sections but not microscopic cross-sections. In a uniform swelling
core scenario, sodium flows into the core, causing the spectrum to soften very slightly. Thus,
the microscopic group cross-sections also change very slightly. However, because spectral
shifts are a second order effect, so are changes in group cross-sections. Thus, altering group
cross-sections does not change the first derivative of eigenvalue. Consequently, we do not
regenerate microscopic cross-sections when applying the "virtual density" theory. Doing so
would be fruitless.

We perform the deterministic transport simulation with OpenMOC, an open-source
method of characteristics (MOC) code developed at MIT [213]. We utilize the identical
33-group MC**2 cross-sections. We subdivide the fuel into square 1 cm x 1 cm flat source
regions (FSRs). The track spacing is 0.5 cm with 16 azimuthal angles.

We perform the continuous energy Monte Carlo simulation with MCNP5 [202]. We utilize
continuous energy cross-sections from ENDF/B-VII.0.

In each of these simulations, we compare the reactivity induced by an "actual" core
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sodium blanket

80 cm 1140 cm

V

Figure 3.3: A 5x5 array of homogenized fuel assemblies immersed in a sodium blanket with zero-

flux vacuum boundaries. This 2-D sodium fast reactor (SFR) fuel is enriched to approximately 10%,

and the unperturbedfuel volume fraction within each assembly is F = 0.62. The dimensions of all

assemblies (and the reflector) swell isotropically by the same factor, which causes F to decrease.

swelling to that induced by a "virtual" core swelling (as defined in Figure 3.2), and we see

that they are precisely equivalent. Tables 3.1, 3.2, and 3.3 show the complete results. Indeed,

the "virtual density" theory is universal, and we could reproduce similar results for any core

geometry.

Note that the MCNP results agree surprisingly well. In all four cases, the keff uncertainty

is 1 pcm, and all four sets of two keff values round to the same nearest pcm. Although this is

not the most likely outcome, it is certainly not unlikely enough to warrant serious concern.

We examine Shannon entropy to ensure that the fission source distribution has converged.

Figure 3.4 illustrates and classifies methods for solving neutron distributions in reactors.

All methods can be classified as (1) either transport or diffusion and (2) either deterministic

or stochastic. Thus, the Venn diagram in Figure 3.4 puts methods in one of three categories:

deterministic diffusion, stochastic transport, or deterministic transport. The fourth category,

stochastic diffusion, has not been implemented for obvious reasons. The point of this diagram
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Table 3.1: Diffusion keff Values for "Actual" and "Virtual"

vergence)

Uniform Core Swellings (10-10 con-

R 2/R 1  actual keff virtual keff keff error (pcm)

1 1.0335072167 N/A N/A

1.001 1.0332285619 1.0332285619 0.00000
1.01 1.0307346898 1.0307346898 0.00000
1.1 1.0071396247 1.0071396247 0.00000
2 0.8708997837 0.8708997837 0.00000

Table 3.2: MOC keff Values for "Actual" and "Virtual" Uniform Core Swellings (10-6 convergence)

R 2 /R1 actual keff virtual keff keff error (pcm)

1 1.041188 N/A N/A

1.001 1.040907 1.040907 0.0
1.01 1.038388 1.038388 0.0
1.1 1.014440 1.014440 0.0
2 0.872294 0.872294 0.0

is to show that the "virtual density" theory is equally valid in all three categories, which

encompass all methods people use to analyze neutrons in reactors.
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Table 3.3: Monte Carlo keff Values for "Actual" and "Virtual" Uniform Core Swellings (4 billion
histories)

R2/R1 actual keff virtual keff keff error (pcm)
1 1.03867 ± 0.00001 N/A N/A
1.001 1.03841 ± 0.00001 1.03841 ± 0.00001 0 ± 1.4
1.01 1.03593 ± 0.00001 1.03593 ± 0.00001 0 ± 1.4
1.1 1.01257 ± 0.00001 1.01257 ± 0.00001 0 ± 1.4
2 0.87772 ± 0.00001 0.87772 ± 0.00001 0 ± 1.4

Deterministic Transport

Figure 3.4: A Venn diagram of methods for solving neutron distributions in nuclear reactors.
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3.4 Application to Perturbation Theory

Why does this "virtual density" theory matter? How is computing a "virtual" core swelling

any more efficient than directly computing an "actual" core swelling? The advantage is

twofold.
First, application of the "virtual density" theory does not require altering the computa-

tional mesh, which can be an arduous task for complex distortions. Spatial dimensions must

always be discretized, but material densities occupy a continuous domain. Thus, altering

material densities is tremendously simpler than altering spatial dimensions.

Second, the "virtual density" theory is expeditious if we wish to save time and effort

by evaluating core swelling reactivity effects using perturbation theory. Material density

perturbations are much more straightforward to evaluate than geometry perturbations, be-

cause they require nothing more than a classic (first or second order) perturbation theory

calculation. This process is identical to computing the reactivity coefficient of a material

density. No manipulation of the computational mesh is required, and no surface integrals

are required.

3.4.1 Diffusion Theory Formalism

Although the "virtual density" theory is equally valid for deterministic transport and Monte

Carlo, we will now proceed to narrow our scope to multigroup homogenized diffusion theory.

This section builds on the diffusion theory and perturbation theory described in Sections

2.3.2 - 2.3.4. Although the uniform isotropic "virtual density" theory appears sporadically

throughout prior literature, no perturbation formalism is ever laid out. Thus, we do so now.

Let us decompose the multigroup diffusion operators into four parts corresponding to

fission P, absorption A, scattering or transfer t, and leakage L. Let the real and adjoint

neutron fluxes be isotropic scalar functions 0 and Ot, respectively. In classic first order per-

turbation theory, we compute the adjoint-weighted average of each of these terms operating

on the real flux to obtain the reactivity Ap. Here k is the unperturbed eigenvalue.

#t !dP - dA - dt - d L
Ap = (3.4)

Essentially, we have split the familiar neutron "loss" operator M into its three constituent

parts:

dM=dA +dt dLA (3.5)

In addition to performing adjoint weighting for small perturbations of these operators

(such as df), we can also perform adjoint weighting for the whole operators (such as F).
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This is useful, as "virtual density" usually allows the perturbation magnitudes (the fractional
density changes) to fall out of the spatial integral in Equation 3.4. Thus, one can pre-compute
all spatial integrals based on unperturbed quantities. Evaluating these quantities for the F,
A, and T operators is straightforward [188]:

- G G

K1 dP) = JdV [Sxg09 ,5 d (vgEfg)
-g'=1 g=1

Kt I PO) dV xg'#b, Vg 2f,gog
.g'=1 g=1

G'

Kt dAb) dV [: $4dEa,,g]

J G[~

Zo o dV E OgtEa,gog

-g=j .

Kt dt) = JdV

K to) = JdV

#9 
1

-G G

g'= 1 - #4 , d1 sg g #
.g=1 g'=g+l

_G G~

E (#1 - 41f) Es,gsgg][g=1 g'=g+1

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

g]

Here Ef, Ea, and E, are the fission, absorption, and scattering macroscopic cross-sections.

There are G energy groups. vg is the number of neutrons produced per fission induced by a
neutron in group g, while xg, is the fraction of those fission-produced neutrons born in group

g'.
Note that if we uniformly change a material density N by the small fraction e = dN/N,

then this factor simply falls out of the integrals in Equations 3.6 - 3.11. Now we can write

dF#)

dA#)

dtc)

= o#ft )

= t Af )

=o to) ##

(3.12)

(3.13)

(3.14)

Evaluating dL is a bit more

[188]. We begin with direct
complicated and requires application of

integration of the leakage term:

Kt dL) = - J dV
[ G

5 (#V -dDgvog)
-g=1

the divergence theorem

I (3.15)
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Let the diffusion coefficient be D. We can apply the divergence theorem once to obtain

' G ~ G

Kf I dLb) = d -J (q5V#,) dD] + dV [ (Vq$ - V#,) dD, (3.16)
g=1 . g=1 9

Now we have a surface term and a volume term. The surface term is zero for one

of two reasons: (1) the adjoint flux vanishes on the outer reactor surface and (2) dDg
vanishes beyond the extent of the perturbation. When either of these cases applies, we need

only evaluate the volume term, which contains the dot product of the real and adjoint flux

gradients. Thus, the entire first term is zero.

Before proceeding, we can linearize the perturbed diffusion coefficient so that it is propor-

tional to perturbed material density. Here let Et, be the macroscopic transport cross-section.

dD = d rg (3.17)
3 3E2tr,g

When perturbing the leakage term, the only tangible perturbation resides in the transport

cross-section dEtr. Thus, the first order reactivity due to a material density perturbation

will always be linear as a function of material density. Note that Equation 3.17 introduces

an (important) extra minus sign to the leakage term. Intuitively, this minus sign shows that

an increase in Et, corresponds to a decrease in D.

Now the entire leakage perturbation term is

G

#1 dO#) = - dV E (V#4 . V,,) dl'tr"g (3.18)
g=1 tr,g

G

Kt 1 =J dV EZ (Vo * Vg) D (3.19)
g=1

Application of Equation 3.17 introduced a minus sign in Equation 3.18 that does not

exist in Equation 3.19. Now if we again define c = dN/N = dEtr/Etr, then we can write

K If di#) = -C K#' L#) (3.20)

The minus sign here in Equation 3.20 is not present in Equations 3.12 - 3.14. This is

crucial, as we shall see in the next section.

In Russian literature, Equations 3.18 and 3.19 are often expressed in terms of neutron

currents [91,95]:
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. G

K t dLq) = dV [ ( J g), 3d tr (3.21)

G

K#' Lq = - dV [ ( J g) 3Etr,,] (3.22)

Here the real and adjoint currents are proportional to the real and adjoint flux gradients.

jg = -DVg (3.23)

Jg = DV4 (3.24)

The adjoint current has no minus sign, which is consistent with the "backward" flow of
adjoint current in transport theory.

3.4.2 The Mathematical Definition of an Isotropic "Virtual Density" Pertur-
bation

We can always express an isotropic whole-core "virtual density" perturbation in one of three
ways: as purely a spatial perturbation, as purely a spectral perturbation, or as a combination
of both. We consider the L operator to determine the spatial components of perturbations,
while the other operators determine the spectral components of perturbations. Here c again
represents the perturbation magnitude - the small fractional change in a given material
density. The first order "virtual density" perturbation reactivity is

Ap = K = 2 K 4 ) 2 PO ) (3.25)

Kt FP) KOt F t F)

These three expressions are precisely equivalent, but only for uniform whole-core per-
turbations. Note the "+" sign in front of the L operator in the first expression, which
follows from Equations 3.4 and 3.20. These equalities (especially the conspicuous factor of
2) may seem puzzling, but we can elucidate them with some simple mathematics based on
the formalism we developed in the previous section. The basic diffusion neutron balance is

+t + Z#= 'PO (3.26)

Now simply rearrange terms to express leakage in terms of the other three operators.
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Lo#= 1 (3.27)

Now consider a uniform, whole-core density increase of magnitude e = dN/N encapsu-

lated within dF, dA, dt, and d.L.

-dLjO (. dfA-d-dit> (3.28)

Note that a minus sign has appeared in front of dL, which has the form of Equation 3.15.

Incorporating a density increase to the operators F, A, and t will result in positive signs in

front of dF, dA, and dt. However, because L is inversely proportional to density, dA will

have a minus sign in front of it.

Now weight each perturbation by the adjoint and integrate over all space (the whole

reactor) and energy.

- Kt dLA = t (ldP-dA- d)b (3.29)

Now apply Equations 3.12, 3.13, 3.14, and 3.20 to each respective operator perturbation.

eK~ L#O)= e t ( f -A-t)b (3.30)

Equations 3.29 and 3.30 show that we have introduced a minus sign in the leakage

term but not in any other terms. We can apply Equation 3.30 directly to the left-most

expression in Equation 3.25 in order to obtain the other two expressions in Equation 3.25.

This shows that for uniform, whole-core perturbations, the spatial and spectral components

of reactivity worth are precisely equal. Every uniform geometry change directly induces a

spatial reactivity, but that spatial reactivity is balanced (throughout the whole core) by an

equal spectral reactivity.

Intuitively, we can consider a uniform core swelling in which leakage increases. When

neutrons are more likely to leak, they are less likely to be absorbed or scatter down to lower

energies. Thus, the spatial reactivity due to increased leakage induces a spectral reactivity

due to decreased absorption and spectral hardening. The remarkable truth here is that these

two reactivities are precisely equal.

For perturbations within core subregions, the surface term in Equation 3.16 is non-zero

and invalidates the equalities in Equation 3.25. In these cases, only the first expression in

Equation 3.25 (containing both spectral and leakage operators) is valid.

The perturbation magnitude c in Equation 3.25 depends on the particular expansion

or swelling type. Throughout the remainder of this paper, let f be the fraction by which
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the reactor linear length scales increase. For example, a 1% increase in core dimensions

corresponds to f = 1.01.

f - 1 virtual expansion of any reactor

0 virtual swelling of a 1-D reactor
dN_

S= 1- virtual swelling of a 2-D reactor (3.31)
- s

-- 1 virtual swelling of a 3-D reactor

1- 1 virtual swelling of a Q-D reactor

Equation 3.31 fully specifies how to define material density perturbations for isotropic

expansions or swellings of a reactor. Again, if the isotropic expansion or swelling is uniform

throughout the whole core, all three expressions in Equation 3.25 are valid. However, if the

isotropic expansion or swelling occurs only within a core subregion (such as one slab in an

array of infinite 1-D slabs or one half of a spherical reactor), only the first expression in

Equation 3.25 is valid.

Finally, Equation 3.25 need not be applied evenhandedly to every nuclide in the core. As

shown in Figure 3.2, we can apply it separately to fuel and coolant nuclides. Each nuclide

would simply have a different value of c. However, even though we can treat nuclides sepa-

rately, the perturbation on each nuclide must be uniform and whole-core for the equalities

in Equation 3.25 to apply.

3.4.3 Uniform Isotropic "Virtual Density" Shorthand Notation

For convenience, let us define the scalar values S and L to be

#Kt (1P - A - t)
S = (3.32)

L K (3.33)

#Ot I#

Here S represents the total reactivity weight of the "spectral" operators: fission, ab-

sorption, and scattering. L represents the total reactivity weight of leakage. Note that the

fission perturbation denominators in both S and L are always integrated throughout the

whole core, while the numerators can be integrated over any core subregion. Thus, S and

L are scalar values with spatial dependence, since they can be evaluated for each mesh cell

in a finite difference solution. When they are each integrated throughout the whole core,
Equation 3.25 implies
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S = L (3.34)

This simple equality is a cornerstone of "virtual density" theory, and it will become even

more paramount when we examine anisotropic cases in the ensuing chapters. Essentially, it

elegantly expresses our earlier assertion that spectral and leakage reactivities balance each

other throughout a whole core volume. When a core swells uniformly, the spectral and

leakage reactivities will be equal in magnitude - each will constitute precisely half the total

reactivity.

3.5 Analytic Examples

Now that we have outlined the uniform isotropic "virtual density" formalism in diffusion

theory, we can begin with a few very simple analytic examples - homogenous slabs and

spheres. Although all these examples are one-group diffusion, extension to multigroup dif-

fusion amounts to a straightforward sum of the perturbation theory numerator and denom-

inator over all groups. Although these simple examples do not constitute full validation of

the "virtual density" theory, they serve to elucidate the physical phenomena at work.

3.5.1 1-D Slab Expansion

First let us consider a homogenous, infinite 1-D slab that is critical. We know from intuition

that swelling this slab will result in precisely zero reactivity - the neutron mean free path

will increase proportional to the slab thickness, and leakage rates will remain constant. So

applying the "virtual density" theory to slab swelling is fruitless.

However, let us consider expanding this 1-D slab, which will alter the eigenvalue. Let the

slab width be a, and let x = 0 correspond to the slab center. The simple neutron balance is

- DV 2q(x) + Eaq(X) = VEfqO(X) (3.35)

The eigenvalue is

k = (3.36)
DB2 + Ea

The flux distribution is

O(x) = cos (- (3.37)

We define the geometric buckling as

- V 2 4(x) = B 2 4(x) = 7, 4x) (3.38)
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Now consider a uniform expansion of this slab by a factor f so that its new width is a'.

f a (3.39)
a

Now the exact reactivity increase is

Ap (3.40)
= DB 2 +ra _ DB'2 +Ea (3.1

= (B2 - B'2 ) (3.42)

= (Z)2 (- (3.43)

The first derivative of this reactivity increase with respect to f is

[=] 2D )2 (3.44)
.df If= Ca )

This is the exact first derivative. If we perform first order perturbation theory correctly,
we should obtain a result that is precisely equal to this.

First we define a "virtual density" perturbation that is equivalent to the specified ex-

pansion. Instead of increasing the slab width by the factor f, we simply increase all the

macroscopic cross-sections E by the factor f.

dE = E' - E = E(f - 1) (3.45)

The flux gradient is

7r . rX
V# = a- sin( - (3.46)

Here . denotes a unit vector in the x direction. Now the numerator in first order pertur-

bation theory is simple to compute. Remember that the real and adjoint fluxes are equal in

one-group diffusion.

Kt I (.!dP - dMI) = (3.47)

= f2dx [(V#(x))2 f + (IvEf - Ea) (f - 1) (#(x))2] (3.48)

= (f - 1) [D (Z)2 a + (Ea - IVEf) 2] (3.49)

The perturbation theory denominator is even simpler to compute.
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la/2
qOt IFP) dx V~f (q5(X)) 2 = v~f a (3.50)

-a/22

So now the first order reactivity is simply the ratio of the numerator to the denominator.f

(f -- 1) [D (7)2 + ( vEf - Ea)
Ap =~ (3.51)

This is linear in f, and its slope is

[d(Ap) 1 D (Z)2 + ( VEf - Ea) (3.52)

df _ f VEf

Now there are two terms here - a spatial term and a spectral term. However, neutron
balance in diffusion theory requires that these two terms be precisely equal.

VEf - Ea = DB 2  (3.53)

So now we can express the reactivity one of two ways, either as twice the leakage term
or twice the spectral term.

_d(p) 2D 2 2 (!vEf - Ea)
= ) - = (3.54)

. f . f=1 P f a VI

Note that this is exactly equivalent to the actual reactivity coefficient that we obtained

in Equation 3.44. So this proves that "virtual density" perturbation theory works for a 1-D

homogenous slab case. Also note that Equations 3.52 and 3.54 can be written in shorthand

notation as

[d(Ap)] = L + S = 2L = 2S (3.55)

3.5.2 Sphere Expansion

Now we can perform the same "virtual density" verification for a bare sphere reactor of

radius R. The one-group flux distribution is

$(r) = -sin(-) (3.56)
r IR

The geometric buckling is

B 2 = - (3.57)W
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Consider a uniform expansion in the sphere radius by a factor f.

R'
f = -

R

Now the exact reactivity is

(3.58)

Ap =- - I= D(B 2 - B'12) = D
k k' Vt f w sp tf

The first derivative of this shift with respect to f is

L d(Ap) 1
2D

[( ) - ()2] (3.59)

SR2
(3.60)

Now we can derive the same expression using a "virtual density" perturbation.

(3.61)

The flux gradient is

VO = I cos I- I sin (rr
[rR \R r 2  R J

The first order perturbation numerator is

K (dft - dM) #)

= foR4wr2dr [(Vq(r)) 2  - + (IVrf - Za) (f - 1) (#(r))2

=47r(f - 1) [D ( 1 + (Ea - IvEf) E2

(3.62)

(3.63)

(3.64)

(3.65)

The first order perturbation denominator is

(3.66)#t P) = jR4rr2dr vEf (0#(r)) 2 = 47rvEf

The first order reactivity is

Ap = (3.67)

Just as in the 1-D slab case, the first derivative of Equation 3.67 can be represented
as purely spatial, purely spectral, or half spatial and half spectral. The diffusion equation
requires that the spatial and spectral parts be equal.
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d(Ap)1 _ D (L)2 + ( VEf - Ea) 2D 7r)2 2 (IvEf - Ea)R- = - - = (3.68)
. df .f-1 JEf vE R vEf

This is equivalent to the exact value in Equation 3.60. The fascinating fact here is that

one can use the "virtual density" theory to evaluate a geometry perturbation without even

utilizing the leakage term. The right-most expression in Equation 3.68 contains no diffusion

coefficient and no flux gradients. Thus, we can capture the reactivity effect due to a geometry

change by perturbing only fission, absorption, and scattering. Also note that Equation 3.68

can be written in shorthand notation as

[d(Ap)1  =L+S=2L=2S (3.69)

This is the identical result we obtained for the slab expansion case in Equation 3.55.

3.5.3 Sphere Swelling

Now let us consider the case of sphere swelling, in which mass is conserved as the sphere

radius increases. Unlike a swelling 1-D slab, a swelling sphere will experience a decrease in

reactivity.
Here the unperturbed flux solution is the same. Due to conservation of mass, we must

alter more than only R to evaluate the actual reactivity. We must also alter the material

densities, which manifest themselves in the macroscopic cross-sections and the diffusion

coefficient.

R'
(3.70)

R
B' 2 =B (3.71)

E= E/f 3  (3.72)

D'= Df 3  (3.73)

The exact reactivity is

Ap = = _ D'B'2+ (3.74)k k' vEif VE

= DB
2

+Ep _ DB
2 f+Ea/f3 . DB

2
+E, _ DB

2
f

4
+E" (3.75)

Vf £'f3 VEf VUf

= (1 - f4) (3.76)

The first derivative of this reactivity with respect to f is
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d(Ap)' 4D (3r72
df _ vEf R

Now let us define the equivalent "virtual density" perturbation. After dividing all ma-
terial densities by f3 to reflect the density decrease, we multiply them by f to shorten the
neutron mean free path by a factor of f.

dE = E'- E = E -1) (3.78)

Performing the same integrals as in the sphere expansion case leaves us with a first order
reactivity:

[ D (Z) 2 + (1VEf a
Ap= 1) ) (3.79)

f 2 y g,
The first derivative of this reactivity is

[d(Ap) D(1) 2 + (vEf - Ea) 4D r 2 4 (IvE - Ea)
=-2 = - - - -(3.80)L df I f VEf vEf R VEf

This is equal to the exact solution in Equation 3.77. Also note that we can again express
this reactivity effect without utilizing the leakage term and without computing the flux
gradient. Also, we can again conveniently express this solution (Equation 3.80) in shorthand
notation:

[d( f=] = -2(L + S) = -4L = -4S (3.81)

This is a swelling scenario, and so the result here is different than in the expansion cases.

3.6 Numeric Demonstration: Uniform Isotropic Swelling of a 2-D
Cartesian SFR Core

Now that we have developed the formalism in diffusion theory and worked out a few simple
analytic examples, we will proceed to validate uniform isotropic "virtual density" perturba-
tion theory using numeric multigroup diffusion. We use the same 2-D sodium fast reactor
(SFR) described in Section 3.3.5 and shown in Figure 3.3, which we used to show equivalence
between diffusion, deterministic transport, and Monte Carlo. We also use the same MaPS
diffusion code with 33-group MC**2 cross-sections [187]. We define the "virtual density"
perturbation as presented in Figure 3.2.
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Figure 3.5 shows results from a first order perturbation theory calculation of a "vir-

tual" uniform radial core swelling. First order estimates can predict the first derivative of

eigenvalue with respect to core swelling (213 pcm per percent) to within 0.1%.
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Figure 3.5: "Virtual density" perturbation theory prediction of the core radial swelling reactivity
coefficient. First order perturbation theory can predict this coefficient (213 pcm per percent) to

within 0.1%.
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3.7 Numeric Demonstration: Uniform Isotropic Swelling of a 2-D
Triangular FFTF Benchmark

Now let us test the "virtual density" perturbation theory for the Fast Flux Test Facility

(FFTF) benchmark [146] with homogenized assemblies in 2-D hexagonal geometry using

MaPS. In order to construct this 2-D model, we obtain material densities from the FFTF

axial midplane. See the FFTF benchmark description and core map in Appendix G. Also

see Figure 11.3, which shows the FFTF pin power distribution with three "lobes".

We compare the reactivity effects due to directly computing an "actual" swelling with

those predicted by applying first order perturbation theory to a "virtual" swelling. Figure

3.6 shows the first order perturbation theory prediction of this 2-D FFTF uniform radial

swelling. Figure 3.7 shows the error between first order perturbation theory and the actual

diffusion eigenvalue result. Essentially, one can predict the reactivity due to an x% radial

core swelling to less than x%. All the diffusion meshes here are the same with six triangular

mesh cells per assembly.

We should compare these results to those obtained by Knutson and his collaborators in

the early 1980s [101,102]. They attempted to predict the reactivity due to a 100 mil = 1/10

inch uniform radial swelling of FFTF using their model described in Section 2.6.1. This very

small shift corresponds to a radial increase of about 0.2%. They could use first order pertur-

bation theory to predict their diffusion eigenvalue solution to no less than 12% error. They

subsequently perform analysis to conclude that nearly all of this error arises from spatial

effects rather than spectral effects. First order perturbation theory uses the unperturbed

spatial and spectral flux distributions. Material density perturbations are simple, because

they include only spectral error. Geometry perturbations, however, include both spectral

error and (usually much larger) spatial error. However, because the "virtual density" method

essentially converts geometric perturbations into density perturbations, it completely elim-

inates the spatial error, leaving only the (usually much smaller) spectral error. In this core

swelling case, the spectral error arises from the flow of sodium into the core, which softens

the spectrum very slightly. Since the "virtual density" theory eliminates the spatial error,
we are left with only this tiny spectral shift as the source of error. Thus, for the same 100

mil radial swelling of FFTF, we can achieve 0.13% error with first order "virtual density"

perturbation theory.
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0
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1 st order perturbation theory
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diffusion eigenvalue solver
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Figure 3.6: Reactivity as a function of uniform core radial swelling for a 2-D FFTF benchmark.

First order perturbation theory (using "virtual density" theory) can predict the reactivity to 0.13%.
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Figure 3.7: First order error in reactivity due to uniform radial swelling of the 2-D FFTF bench-
mark. This corresponds to the data in Figure 3.6.
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3.8 Summary

We have conceived diffusion theory formalism for the "virtual density" theory of neutronics,
which converts geometric perturbations into precisely equivalent material density pertur-

bations. Here we have treated only uniform isotropic cases, which apply to (1) uniform

isotropic swellings and expansions of whole cores and (2) arbitrary geometry perturbations

in 1-D problems. We numerically verified the theory for a simple 2-D Cartesian sodium fast

reactor (SFR) model and a 2-D model of the Fast Flux Test Facility (FFTF).

In the next chapter, we will introduce the uniform anisotropic "virtual density" theory,

which is applicable to a host of localized swellings, expansions, and distortions in 2-D and

3-D cores.
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4 A Review and Independent Derivation of Uniform

Anisotropic "Virtual Density" Theory

4.1 Chapter Abstract

We unearth and review the uniform anisotropic "virtual density" theory described in old

Soviet and Russian literature, and we independently derive its formalism via anisotropic

diffusion. We demonstrate this uniform anisotropic formalism for simple analytic solutions.

Finally, we explain the unsolved problem of non-uniformity. Refer back to Figure 3.1 for a

conceptual illustration of uniform isotropic and uniform anisotropic "virtual density" cases.

4.2 Introduction

Previously, we described the basic concept of "virtual density" and laid out the most simple

version of its formalism for uniform isotropic swellings and expansions. However, the uniform

isotropic "virtual density" theory is extremely limited, and it is not practically applicable to

full-core 3-D reactor design. Real, heterogeneous reactors do not swell isotropically! Instead,
reactors swell radially and axially with different coefficients. Thus, in order to apply the
"virtual density" theory to any practical distortion scenarios in real reactors, we must allow

neutrons to diffuse at different rates in different directions.

4.3 Anisotropic Diffusion

Physically, neutron diffusion is isotropic. A neutron traveling through a homogenous medium
will have the same mean free path (and collision probabilities) regardless of its direction. It

follows that a neutron in any homogenous region within any reactor will always have the

same collision probability per unit length in any direction.

However, we don't always model reactors by breaking them down into tiny regions that are

truly homogenous. Instead, we simplify models by amalgamating numerous heterogeneous

regions into a single homogenous region. This process is called homogenization. In fast

reactors, long mean free paths allow for homogenization of whole assembly blocks.

Unfortunately, neglecting pin detail via assembly homogenization also neglects the di-

rectional preference of neutron streaming. Neutrons have much longer mean free paths in

sodium than in fuel or structure, so they can "stream" axially between fuel pins. When

a model contains pin-level geometry, it can capture this effect. However, when a model

contains homogenized assemblies, this effect is lost.

However, nuclear engineers often correct their homogenized models to regain much of

this lost effect. One correction is anisotropic diffusion, which employs directional diffusion

coefficients. Even though neutron diffusion is isotropic, we can pretend that it is anisotropic
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in order to capture heterogeneous streaming effects within a homogenized region. One might

aptly characterize this as a "transport correction" to diffusion.

4.3.1 A Brief Literature Review

Behrens first studied neutronic effects due to "holes" within reactors as early as the late

1940s [67]. He developed equations to correct homogenous transport theory to account for

neutron streaming through these holes - regions in which the neutron mean free path is much

longer than it is throughout most of the core [68]. In the early 1960s, Carter improved upon

Behrens's work, which he showed to be sufficient for streaming parallel along cylindrical

holes but insufficient for streaming transversely across those holes [70].

Benoist developed the first general formalism for anisotropic diffusion in the late 1950s

[69]. His equations are equivalent to those of Behrens to lowest order [70]. Nearly a decade

later, Benoist improved upon his model using transport collision probabilities to compute

diffusion coefficients to account for streaming effects [71].

During the 1970s and 1980s, much work in anisotropic diffusion was geared toward eval-

uating coolant voiding effects in sodium fast reactors (SFRs). As fast reactors have long

neutron mean free paths, coarse mesh diffusion is much more suitable for fast reactors than

for thermal reactors. However, mean free paths tend to be significantly longer in sodium

coolant than in fuel and structure. Thus, streaming occurs parallel to pins in the axial di-

rection. It follows that this streaming contributes to the sodium void reactivity coefficient,
which is crucial to SFR safety. As sodium density decreases, streaming effects become more

important. Consequently, incorporation of anisotropic diffusion coefficients can lead to more

accurate prediction of sodium void worth.

Nakagawa applied Benoist's anisotropic diffusion model to predict sodium void reactivity

in a single homogenized assembly model of the Jbyb reactor [147]. Nakagawa shows that

isotropic diffusion calculations underestimate the sodium void coefficient by about 30-40%

in 2-D and by about 10% in 3-D [72]. Wade and Gelbard demonstrated that Benoist's

model works well for sodium voiding in SFRs and for streaming in gas-cooled fast reactors

(GCFRs) [73]. Yoshida also applied Benoist's work to sodium voiding [74], and he also

applied it to streaming through withdrawn control assemblies [75]. Rowlands summarizes

past work on anisotropic diffusion, proposes his own model, and compares many models in

the case of streaming through axial cylindrical channels [76]. Finally, Lee compares isotropic

and anisotropic diffusion models of 3-D sodium voiding to transport theory solutions, and

he concludes that anisotropic diffusion agrees well with transport while isotropic diffusion

does not [79].

Benoist revisited anisotropic diffusion in the 1980s with a detailed numeric study of

sodium void reactivity in hexagonal pin lattices [77,78]. He develops a modified anisotropic

diffusion formalism tailored to the sodium voiding scenario, which had become the most
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prominent application of his original theory.

In 2002, Petrovic and Benoist summarized the current state of "BN theory", which

includes anisotropic (or buckling-dependent) leakage models [81]. This work has been widely

cited in various homogenization and diffusion studies.

Beyond fast reactors, anisotropic diffusion has been applied more recently to various

types of thermal reactors. Mathews studied anisotropic diffusion in deterministic pebble

bed lattices in the 1990s [80]. These reactors are gas-cooled and graphite-moderated, so the

diffusion coefficient varies dramatically between fuel and coolant. Thus, streaming effects

are significant enough that isotropic diffusion models cannot accurately predict neutronic

properties.

Poveschenko and Laletin studied anisotropic diffusion applied to the Voda Voda Energo

Reactor (VVER) [82]. The VVER is a variation of a PWR with a triangular pin lattice

(within hexagonal assemblies) and other modifications. They computed separate diffusion

coefficients in the axial direction to capture neutron streaming effects due to heterogeneity.

They found that this process changes the axial diffusion coefficient by approximately 2% in

the fast group and approximately 15% in the thermal group. This amounts to an eigenvalue

difference in the range of 200-300 pcm.

More recently, Larsen and Trahan studied anisotropic diffusion in gas-cooled reactors

with "optically thin" channels, such as the Very High Temperature Reactor (VHTR) [83,84].

Coolant channels in the VHTR are "optically thin", because one or two of their dimensions

are thin relative to the neutron mean free path in helium. This fact introduces strong

anisotropic effects within these channels. Thus, just as in the case of gas-cooled pebble bed

configuration, modeling VHTR neutronics requires either transport theory or anisotropic

diffusion.
Van Rooijen and Chiba employed Monte Carlo and method of characteristics (MOC)

codes to pre-calculate homogenized diffusion coefficients for SFRs [85]. They point out the

well-known drawback of Benoist's anisotropic diffusion model - that the diffusion coefficients

diverge in planar voids - as well as the simple fact that Benoist's early models are derived

from approximate analytic solutions.

In summary, past research in anisotropic diffusion theory has been applied almost exclu-

sively to capturing neutron streaming effects due to heterogeneity or coolant voiding. As

far as we can see, anisotropic diffusion formalism has never been applied to distortions or

geometry changes.

4.3.2 Formalism

Now let us define and lay out the anisotropic diffusion formalism that we will employ through-

out the remainder of this thesis. The mathematics here was independently developed but is

similar to that laid out by Trahan and Larsen [84]. We use the same notation and variable
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names as in Chapter 3.

First let us briefly review traditional isotropic diffusion, which is based on Fick's Law:

= J -DVO (4.1)

Here the isotropic diffusion coefficient D is a scalar quantity equal to 1/3Etr. We multiply

the vector Vq$ by the scalar -D to obtain the vector J. The full one-group diffusion equation

is

1
- V -DV + Ea = VlEf# (4.2)

k
We can express the leakage term explicitly in 3-D Cartesian geometry:

Fd dq$ d dq$ d d#]
- V-DVO = D-do + -D--O + -- D- (4.3)

dx dx dy dy dz dz

In anisotropic diffusion, the diffusion coefficient is no longer a scalar function of position

and energy. Instead, it is a diagonal tensor with three components corresponding to the

three spatial directions. We can represent this tensor as a diagonal 3x3 matrix:

1D 0 0_ 1 0 0

D= 0 D 0 = 0 (4.4)

L0 0 DJ 0 0 3

Now Fick's Law is a bit different. The matrix operator b operates on the vector V to

obtain the vector J.

J= -DV# (4.5)

The full one-group diffusion equation is

-V - (bvo) + Ea = VEf# (4.6)

Evaluating the leakage term yields

) \Fd d#5 d dq$ d d#b
V. v = dD-d-- + -- D + -Dz-- (4.7)

1dx dx dy Ydy dz dz]

This result is crucial. In diffusion, the leakage term determines the transfer of neutrons

through space. In the above equation, we can see that the contribution to this distribution

from each spatial direction i is multiplied by a factor Di. Thus, by manipulating the values

of Di, we can alter the neutron diffusion rate by different factors in different directions. This

is anisotropic diffusion!
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4.4 The Uniform Anisotropic "Virtual Density" Theory

So far, we have developed and validated the "virtual density" theory only for expansions

and swellings that occur uniformly in all directions. These are "isotropic" applications of

the "virtual density" theory. However, few practical expansions or swellings occur uniformly

in all three dimensions. Most fast reactors have different reactivity effects for axial and radial

swellings, because cores swell by different factors in the axial and radial directions. In order

to apply the "virtual density" to more practical geometric perturbations, we must somehow

disentangle the three spatial dimensions from one another. We must change the neutron

mean free path in one direction, while leaving it unchanged in the other two directions. We

must devise a way to introduce a kind of "directional density" so that the material density

a neutron "sees" depends upon which direction that neutron is traveling.

We could explore this concept in a number of ways, but for now let us formulate it in

terms of anisotropic diffusion. This concept does not introduce a directional dependence into

material densities, but it does introduce directional dependence into the diffusion coefficient.

Neutrons diffuse more or less readily in different directions, but they still "see" the same

absorption, scattering, and fission cross-sections in each direction.

4.4.1 Anisotropic Perturbation Theory

Now we can define perturbation theory for anisotropic diffusion. We use the same notation

defined in Section 3.4.1, which defines the isotropic perturbation theory formalism. We

encourage the reader to look over that section once again before proceeding.

The perturbed diffusion operator is proportional to the perturbed transport cross-section

operator.

dDx 01 dEtr,x 0 0 ~
df) 0 dD = E 0 dEt,, 0 = Et (4.8)

0 0 dD 0 0 dEtr,z.

Now the anisotropic leakage contribution to reactivity via perturbation theory is

G~

Kt dLb) = - dv [ (V ol - (dbtr,gVg) 3E] (4.9)
g=1 9 3Eg

Compare this with the isotropic case in Equation 3.18. The perturbed transport cross-

section is an operator acting on the real flux gradient but not on the adjoint flux gradient.

The unperturbed transport cross-section is a scalar. We can evaluate the quantity within

this integral for the Cartesian case as
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d o t d o g d t d o g d ot d o gV#4. (dhtr, Vg) - ' -dEtr,g,x + g d Etr,g, + g -dEtrgz (4.10)dx dx dy dy dz dz

Note that each of these three terms corresponds to one spatial dimension. Thus, it is
natural to decompose the leakage operator L into spatial components Li, where i denotes a
particular spatial direction (x, y, or z). The reactivity contribution of Li is simply

Kft ILjq) = J dV (V# ), (Vg)i D] (4.11)

The notation (V#5)i represents the real flux gradient in direction i. This could alterna-
tively (and equivalently) be written as i - Vqg, where i is the unit vector in direction i. Note
that Equation 4.11 lacks the minus sign that appears in Equation 4.9; this is consistent with
Equations 3.18 and 3.19 in the isotropic formalism.

The total leakage reactivity contribution is always the sum of all three directional leakage
reactivity contributions. This is always true for any perturbation, because it is a simple
mathematical definition from Equations 4.9 and 4.10.

KI Lq#)= t I -Ljq) (4.12)

Furthermore, if and only if our (isotropic or anisotropic) perturbation is whole-core and
uniform, then the surface integral in the divergence theorem (Equation 3.16) vanishes. Thus,
we can write the equality

P -A - K) )(4.13)

This equality is essentially the same as its isotropic counterpart in Equation 3.25, except
that it separates the leakage term into its three anisotropic components. The justification
for this equality is the same as that for the isotropic case derived in Equations 3.26 - 3.30.
We can also re-write Equation 4.13 to be in the same form as Equation 3.25, and now the
factor of 2 is apparent.

k= 2E 2 (4.14)
#ot IFP) i ot I Po t IFP)

Essentially, this equality states that each whole-core spatial perturbation must be bal-
anced by a whole-core spectral perturbation. When we considered only isotropic "virtual
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density" perturbations, we saw that a uniform whole-core density perturbation includes

equal spatial and spectral contributions. When we swell or expand a reactor, we alter the

leakage rate. If neutrons are more or less likely to leak, they will be less or more likely to

be absorbed or scatter. Thus, any spatial perturbation induces a corresponding spectral

perturbation. Since those two parts are precisely equal, we only needed to compute one and

then multiply by 2.

4.4.2 Uniform Anisotropic Shorthand Notation

Before we proceed, let us revise the shorthand notation we defined in Section 3.4.3 to describe

anisotropic cases. Again, let the scalar value S represent the spectral reactivity contribution.

SKtj (-1 - A - t) )(.5
S = k(4.15)

Now let the scalar value Li represent the leakage reactivity contribution in direction i.

L K ) (4.16)

Furthermore, the scalar value L represents the total leakage reactivity contribution.

K jL - 1(4.17)

Ot I#

Note that the lack of a "hat" on S, L, and Li distinguishes them as scalars rather than

operators.

Now we can express the spectral-leakage equality in Equation 4.13 simply and elegantly:

S = L= Li (4.18)

The shorthand variables S, L, and Li allow us to conveniently avoid writing the full

adjoint-weighted expressions (and fission denominator) a multitude of times. However, when-

ever these variables are used, one must assume that the spatial integral in the fission denom-

inators covers the entire reactor, while the spatial integral in the numerators covers only the

extent of the swelling or expansion. We will use this shorthand notation for the remainder

of this thesis.
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4.4.3 "Virtual Density" Formalism for Uniform Whole-Core Swellings and Ex-

pansions

Now we consider the anisotropic "virtual density" expressions for reactivity coefficients due

to uniform swelling (in one or more directions) of whole cores. Refer back to Section 3.3.2

for precise definitions of "swelling" and "expansion". We can simply guess the result by

intuition via adjusting the neutron mean free path in different directions. Suppose a core

swells in the direction i by the small fraction ei. In Chapter 3, we discussed the obvious fact

that swelling an infinite 1-D slab produces zero reactivity - the effects of reduced density

and increased slab width precisely counteract each other. Similarly, we can see that any core

swelling in the direction i will produce zero change to leakage in the i direction. However,
leakage will always increase in all other directions due to decreased density. So we can

express the reactivity by lengthening the diffusion coefficient (or decreasing the transport

cross-section) in all those other directions. Thus, the first order reactivity is

Apswe = -2iE L) (4.19)

This is the most general expression for a different uniform swelling magnitude Ci in

each direction i. The leakage reactivity contribution is non-zero in all directions except i.

Throughout the remainder of this thesis, we will always define Ei = fi - 1, where fi is the

fractional dimension change in direction i. So a 1% swelling in the x direction corresponds to

f, = 1.01 and c. = 0.01. This is a simplification of the definition of ci given in Equation 3.31

and used throughout Chapter 3. We find this simplification to be much more convenient in

the generalized anisotropic formalism.

Note the factor of 2 in Equation 4.19. Just as in the isotropic swelling case (see Equation

3.25), this factor accounts for the fact that any leakage reactivity induces an equal spectral

reactivity. In an isotropic case, we know that S represents the spectral reactivity, so we can

easily express the total reactivity using only S, only L, or both S and L. Thus, the reactivity

due to any uniform whole-core isotropic perturbation can be expressed using only S, a truly

remarkable fact. However, in an anisotropic case, we cannot break up S into directional

components. Thus, we cannot express the reactivity using only S. Fortunately, we can still

place a factor of 2 in front of the anisotropic leakage reactivity to account for the spectral

reactivity, even though we cannot compute it directly.

Now let us turn our attention to uniform whole-core expansions. Converting a swelling

into an expansion is intuitively easy - we can simply add a density perturbation to the

swelling. Equation 4.19 expresses a swelling of magnitude Ei in each direction i. In order

to convert this swelling into an expansion, we can express the reactivity due to a uniform

whole-core density increase. This means that the densities of all nuclides increase by the

same factor Ei Ei.
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APden = Ci(S + L, ± L. + L ) (4.20)

= ECi S +EL) (4.21)

Now we can easily write down the expression for a uniform whole-core expansion by
adding Equation 4.21 to Equation 4.19.

Apexpan = Ei (S+Li -EL (4.22)
i \ji /

This result is intuitive. An expansion does not conserve mass as a swelling does, so the

positive S term represents added material. The positive Li term represents decreased leakage

in the same direction as the expansion, because the core size in that direction increases

without a density change.

Note that for the special case of isotropic swelling, Equation 4.19 reduces to Equation

3.25. Let (EX,EY,EZ) = (CCC) so that the swelling is isotropic. Let c = f - 1 for a reactor

swelling uniformly y a factor f in all directions. If we write this as a reactivity coefficient

dp/df, then

df= -4L = -4S (4.23)
-] swell,iso

Note that this is equivalent to Equation 3.2.5 if one differentiates C with respect to f

(using Equation 3.31) and evaluates the result at f = 1. We have also applied the equality

S = L in Equation 4.18 to the expression above to show that the isotropic swelling reactivity

can be expressed via either only spectral or only leakage quantities.

We can do the same thing for isotropic expansion. Applying (CX,Cy,Cz) = (CCC) to Equa-

tion 4.22 yields 3S - L, but we can again apply the equality L = S to express the isotropic

expansion reactivity as either only spectral or only leakage quantities.

dp] = 3S - L = 3L - S = 2L = 2S (4.24)
df . expan,iso

These equivalent expressions lead us to wonder how many ways one can express the

anisotropic swelling and expansion reactivities.

4.4.4 An Infinitude of Equalities

The most intriguing, advantageous, and confusing aspect of "virtual density" theory is that

every reactivity can always be expressed in an infinite number of ways. Showing this is easy.
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First, we can take Equation 4.18 and rearrange terms to obtain a quantity that is equal to

zero:

S-Lx--LY -LZ =0 (4.25)

S - Li = 0 (4.26)

What happens when we add zero to something? That "something" does not change.

So we can add Equation 4.26 (multiplied by any factor) to Equation 4.19 to obtain an

infinitude of equivalent expressions for the swelling reactivity. Suppose that we restrict the

multiplication factor in each direction i to be Mici, where Mi is any integer. This allows

various S and Li terms to potentially cancel one another out. Now the swelling reactivity is

Apswei = c -2 ELj + Mi S - L (4.27)

This is the fully general expression for a reactivity due to anisotropic swelling. The Mi

values can be any integer, and so the expression can take on an infinite number of forms.

Only a few forms may be useful, however.

We can do precisely the same thing for anisotropic expansion:

Apexpan = E Ci S+Li - zL) +Mi S - L9 (4.28)
i \ 7 i / \ I /

In our Mathematics and Computation (M&C) 2013 conference paper, we gave three

expressions for anisotropic swelling and three expressions for anisotropic expansion [99]. The

three swelling expressions can be obtained from Equation 4.27 above. They correspond to

(MX,MY,MZ) = (0,0,0), (-2,-2,-2), and (-1,-1,-1), respectively. Here they are in our shorthand

notation:

Apswei = -2Eiz Lj (4.29)

= 2ei (Li - S) (4.30)

= S + Li - L) (4.31)

Note that we used a different sign convention for the L quantities in the M&C paper,
but the expressions are equivalent.
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The three expansion expressions given in the M&C paper can be obtained from Equation

4.28 above. They correspond to (MX,MY,MZ) = (-1,-1,-1), (1,1,1), and (0,0,0), respectively.

In our shorthand notation, they are

Apexpan - 2ciLi (4.32)

= Z2c S -L) (4.33)

- zci(S±Li-zLj) (4.34)

Equation 4.32 is insightful, especially when compared with Equation 4.29. As we've
discussed in depth, Equation 4.29 shows that reactivity due to swelling in direction i consists

of increasing leakage in all directions except i. In tandem, Equation 4.32 shows that reactivity

due to expansion in direction i consists of decreasing leakage in only direction i.

We can simplify Equations 4.27 and 4.28 for the isotropic swelling and expansion cases
in which (1E,EY,fz) =

[dp] = -4L+M(S-L) (4.35)
dfswell,iso

[=] (3S-L)+M(S-L) (4.36)df .expan,iso

Here M can be any integer, and it has no directional components in the isotropic case.
So now we have laid out the general anisotropic equations that define arbitrary uniform

whole-core swellings and expansions.

4.4.5 Cartesian Application

Now let us show a few examples for common scenarios. The expressions in previous sections

are fully generic and allow different swelling or expansion fractions in each dimension. Now

we consider a swelling fraction fx = f in only the x direction. Applying Equation 4.19 for
this case yields

[dpi = -2 (Ly + Lz) (4.37)
.df . swell,x

We can use Equation 4.27 to obtain an infinite list of equivalent expressions. Here are
several:
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['dp~- = 4 (-S + L.) + 2 (L, + L,) (4.38)
df swell,x

= 3 (-S + Lx) + Ly + Lz (4.39)

= 2 (-S + Lx) (4.40)

=-S + Lx - LY - Lz (4.41)

= -2 (Ly + Lz) (4.42)

= S-Lx-3(Ly+Lz) (4.43)

= 2 (S - L) -4 (Ly + Lz) (4.44)

Now let us consider an expansion fraction fx = f in only the x direction. Applying

Equation 4.28 for this case yields another infinite series of expressions, several of which are:

L pa = -2S +4L + 2 (Ly + Lz) (4.45)
df Jexpan,x

= -S +3L+ Ly + Lz (4.46)

= 2Lx (4.47)

= S + L - Ly - Lz (4.48)

= 2S - 2 (Ly + Lz) (4.49)

=3 - Lx - 3 (Ly + Lz) (4.50)

= S- 2Lx - 4 (Ly + Lz) (4.51)

These lists of equivalent expressions may seem superfluous, but they can be quite useful

when one does not know L in every direction. Perhaps one can only easily compute L in

one or two directions. Then one can choose an equivalent expression that only requires

knowledge of L in those one or two directions. In Equations 4.38 - 4.51, we have chosen to

list enough expressions to cover all the unique combinations of S and Li, but one can easily

see the pattern and write down the rest of the infinite sequences.

4.4.6 Hexagonal-Z or R-Z Application

Most fast reactors consist of triangular fuel pin arrays within hexagonal assemblies. Thus, a

hexagonal-z coordinate system is most appropriate, and we can condense Lx and L. into a

single quantity L,:

L,= L,+ LY
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Fast reactors typically swell axially and radially by different factors. Analysts compute

the "axial swelling reactivity coefficient" and the "radial swelling reactivity coefficient". We
can apply Equation 4.27 to obtain numerous expressions for each of these coefficients:

L d= 4 (-S + Lz) + 2Lr (4.53)
=sweax 3 (-S + Lz) + Lr 

(4.54)

= 2 (-S + Lz) (4.55)

= S+ Lz+-Lr (4.56)

= -2Lr (4.57)

= S - Lz -3Lr (4.58)

= 2 (S - Lz) -4Lr (4.59)

Note that the list of equivalent expressions in Equations 4.53 - 4.59 can be easily obtained

by modifying Equations 4.38 - 4.44. One must only replace L_ with Lz and also replace

Ly + Lz with Lr. When a fast reactor core swells axially, leakage remains constant in the

axial direction but increases in the radial direction. This is apparent in Equation 4.57 above.

Note that all these expressions are equally valid for an R-Z coordinate system in cylindrical

geometry.

Now let us consider radial swelling. We can obtain these expressions via Equation 4.27

with (EXIYEz) = (c,,0). The result is

[diwl = -6S + 4Lr + 2Lz (4.60)df swell,rad

5S + 3Lr + Lz (4.61)

-4S+2Lr (4.62)

= -3S + Lr - Lz (4.63)

= -2S - 2LZ (4.64)

=-S - Lr -3Lz (4.65)

-2Lr - 4Lz (4.66)

= S - 3Lr - 5Lz (4.67)

= 2S - 4Lr - 6Lz (4.68)

In contrast to axial swelling, radial swelling increases leakage in both the axial and radial

directions. This is most evident in Equation 4.66, which shows that the axial leakage increase

is weighted by twice as much as the radial leakage increase.
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Note that Equations 4.53 - 4.68 assume that all nuclides in the core swell uniformly. Al-
though this is certainly true for fuel and structure nuclides, it is not true for coolant nuclides.

In a practical fast reactor scenario, one would apply Equations 4.53 - 4.68 and then subse-

quently apply an appropriate coolant density perturbation (using traditional perturbation
theory methods). The amount by which the coolant density must be adjusted depends upon
the detailed pin and duct geometry in a specific design, so we will not delve into that here.

Since axial and radial expansions do not practically occur in fast reactors, we will skip
that analysis.

Conceptually, it should be obvious that simultaneous radial and axial swellings (by the

same factor f) are equivalent to an isotropic swelling. We can demonstrate this mathemat-

ically. Adding any expression in Equations 4.53 - 4.59 to any expression in Equations 4.60

- 4.68 and then subsequently applying the equality S = L, + L, will yield the result -4S,
which we already derived in Equation 4.23.

Furthermore, uniformly reducing all densities in a reactor by a fraction f (without chang-

ing core dimensions) will result in precisely half the reactivity decrease that an isotropic

swelling causes. This should be evident from

[d +d 1 [ -2 -- 2 -f -4S (4.69)
df swel,rad df .1 swellax [.fJ swelliso df den d [ expan,iso

Here we see that uniformly increasing all nuclide densities throughout a reactor is worth

2S, precisely equal to the worth of a uniform isotropic core expansion. Also note that adding

three density perturbations to an isotropic swelling is equivalent to an isotropic expansion

so that -4S + 3(2S) = 2S.

4.5 Comparison to the Russian Literature

Now that we have independently derived the uniform anisotropic "virtual density" formalism

via anisotropic diffusion, we compare it to what already exists in the old Soviet literature.

While the western literature contains only brief, scattered mentions of the uniform isotropic
"virtual density" theory, Soviet literature on the topic is much more extensive and extends

the theory to uniform anisotropic cases.

As we stated in Section 3.3.3, Shikhov is credited with first describing the isotropic
"virtual density" theory for uniform whole-core isotropic cases in the 1950s and 1960s [87,90],
and Cullen independently wrote two relatively recent reports on the subject [96,97].

The Soviet neutronics community also applied the anisotropic "virtual density" theory

to uniform whole-core cases, although it is not clear how they derived it or what formalism

they used. Design documentation for the BN-800, a Russian sodium fast reactor, contains

Equation 4.57 for axial swelling and Equation 4.65 for radial swelling [95]. A description of

119



Mark Reed

Table 4.1: A 1-D expansion of a 2-D reactor.

actual expansion virtual expansion

b' =bf t, = Ztryf

Soviet regulatory practices (published in an East German (DDR) journal) from the 1960s

also contains the same two equations for fast reactor axial and radial swelling coefficients

[91]. These reports and documents give no explanation or derivation for these equations;

they only reference Shikhov's early work on isotropic cases. They also do not show any of

the numerous equivalent swelling expressions shown in Equations 4.53 - 4.59. Their choice

of Equation 4.57 for axial swelling is sensible (it is the most direct expression that follows

most directly from Equation 4.19), but we do not understand why they chose Equation

4.65 (instead of the more direct Equation 4.66) for radial swelling. We have not found the

original formalism or derivation for these equations in the Soviet literature, so we derived our

formalism in Sections 4.3.2 - 4.4.6 independently. We do not know whether the Soviet nuclear

community obtained these equations via anisotropic diffusion or via some other route. We

also do not know whether the Soviet literature contains all the expressions and equalities we

have shown here; it may only contain some of them. In any case, no formal description of

the anisotropic theory exists in the readily available literature, so we took it upon ourselves

to lay it out in the previous sections.

4.6 Analytic Examples for Uniform Anisotropic Expansions and

Swellings

Simple analytic examples are often helpful to build intuition for how methods work. Here

we will walk through several examples of the uniform anisotropic "virtual density" theory.

4.6.1 1-D Expansion of a 2-D Reactor

Let us consider a homogenous 2-D "box" reactor of finite dimensions a and b. What is

the reactivity effect when this box is expanded in only the y direction? We cannot simply

uniformly alter the material densities by one factor, because that would inevitably change

leakage in the x direction. Instead, we can define a virtual expansion by manipulating the

macroscopic transport cross section in only the y direction.

Let us consider a one-group model. The unperturbed flux is

(5rX o ry
#(X, y) = Cos -- 7a)Cos - (4.70)
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xj

Figure 4.1: A 1-D expansion of a 2-D reactor.

The expansion fraction is

f b' f = -(4.71)
b

Keep in mind that this is an expansion, not a swelling. Therefore, as the box reactor

grows in the y direction, extra mass is added. The material density does not change. Thus,
the exact reactivity as a function of f is

Ap (4.72)
= DB 2 +Ea _ DB12 +ra (7

L'~f Vrf (.3

D (B 2 - B'2 ) (4.74)

= ()2 _ (4.75)

The slope of this shift for infinitesimally small perturbations, which first order perturba-

tion theory should be able to predict, is
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Sdp -2D )2 (4.76)

df f_1 P25

Now let us test whether the anisotropic "virtual density" theory can match this result.
Instead of expanding the reactor in the y direction, we shrink the neutron mean free path in

the y direction. We can do this by increasing the macroscopic transport cross-section in the
y direction.

dE, = E, - E, = E - 1) (4.77)

Now the unperturbed flux gradient in the y direction is

= cos () sin ( (4.78)

Now we can evaluate the reactivity perturbation numerator with one double integral:

.# o# = Ja/ 2 b/2 dxdy (V 2) - (4.79)

= (f - 1)D (Z)2 a (4.80)

The reactivity perturbation denominator is

Kt P# = j b/2 dxdy VEf 02 = a b (4.81)
-a/2 /222

Now the whole reactivity is

(f -1)D ( ) 2  

(

Ap = 2 (4.82)

This is a linear function of f. Its derivative is

d = -- 2D (-)2 (4.83)

This agrees precisely with the exact result we derived above. If we wish to use our

shorthand notation (defined in Section 4.4.2), then we can rewrite this result as

[dp] = 2LY (4.84)

[df f=
D f7\ 2

LY = (4.85)
vNtf xb

Note that this is Equation 4.47 for a uniform expansion in one direction.
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Table 4.2: A 1-D expansion of a 3-D reactor.

actual expansion virtual expansion

c cf trz = 5 tr,zf

4.6.2 1-D Expansion of a 3-D Reactor

Now let us consider a 1-D expansion of a 3-D "box" reactor. This "box" expands in only

the z direction.

K Nx*

Figure 4.2: A 1-D expansion of a 3-D reactor.

The unperturbed one-group flux is

O(x' y, z) = cos ( 7)

The expansion factor in the z direction is

c ry ( zCos -b)Cos -C

C,
f = -

C

The exact reactivity as a function of f is

Lz

(4.86)

(4.87)
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Ap = - y (4.88)
DB 2+rp _ DB'2+rp (4.89)

D (B2 - B'2 ) (4.90)

D [(1:) 2 -()2] (4.91)

The slope of this curve for the smallest perturbation magnitudes is

Sd --2D 2 (4.92)
.f f =1 = -PfC

Now we can see how the "virtual density" theory yields the same result. Instead of
expanding this box reactor in the z direction, we can simply decrease the neutron mean free
path in the z direction. So let us increase the z component of the macroscopic transport
cross section in the z direction:

dEz = E', - Ez = E(f - 1) (4.93)

The unperturbed flux gradient in the z direction is

(V)z= -- cos cos sin (4.94)

The first order reactivity numerator is

Ez I zo) fa/ 2 b/2 fc2 dxdydz (V) 1 (4.95)

(f - 1)D (2)2 ab(4.96)

The denominator is

~ a/2 p b/2 pc/2abc

K IP = '? ] ] dxdydz v E $ 2 = VE b c b c (4.97)
-a/2 -b/2 -c/2 2(4

So the whole first order reactivity is

(f - 1)D (7) 2

Ap = 2 Vf(4.98)

Note that we have again included an additional factor of 2. Now the slope of this linear
function of f is
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dp] 2D 2

.df e vE 

This agrees precisely with the exact result we derived above.

125

(4.99)

If we wish to use our

shorthand notation (defined in Section 4.4.2), then we can rewrite this result as

dfL. =1
= 2L

D 2
Lz -=

Note that this is Equation 4.47 for a uniform expansion in one direction.

(4.100)

(4.101)
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Table 4.3: A 2-D expansion of a 3-D reactor.

actual expansion virtual expansion

a'=af tr,x = tr,xf
b' = bf l = Zr,f

4.6.3 2-D Expansion of a

Now let us consider a uniform

3-D Reactor

2-D expansion of a homogenous 3-D box reactor.

HI\r
le1 1ILz

Figure 4.3: A 2-D expansion of a 3-D reactor.

The unperturbed flux is

q(x, y, z) = cos (-ia) cos (-b) cos ( IZ

The expansion fraction f is

a' b'
f =

a b
The exact reactivity is

(4.102)

(4.103)
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Ap

D )2 + ()2

=.1 - 1
k k'

DB 2 +E _B2+E

= ( B
D~~ (B 2 - B /2 )

(4.104)

(4.105)

(4.106)

(4.107)- )2- ()2]

The slope of this reactivity with respect of f is

[pdflf=1 _2D [7) ()2] (4.108)

Now let us consider an equivalent "virtual density" perturbation. Instead of expanding

the core in the x and y directions, we can simply increase the macroscopic transport cross-

sections in those directions.

dEX = E, - EX = E(f - 1) (4.109)

dE = E, - E = E(f - 1) (4.110)

The unperturbed flux gradients in the x and y directions are

(V#), = - sin a) cos (,Y)

O= - cos f-I sin (-I
b ta n ib

The reactivity numerator due to this perturbation is

Ex,, (#f ILX + ) 0) f a/2 b2 e/ 2 d[ dydz ( ) + ( #)

=a/2 (fb/2 J -/ ) ( +J2
-(f - 1)D [(7r)2 + (Z)2] a b

The denominator is

Kt F #O) = [/2
-a 2

Ic/2 ab cdxdydz v E 5 2 = VEf a b c
-C/22 2

The whole first order reactivity is

Ap = 2(f -)D
V~3f I 2 ± 2

(4.116)

cos ( i)

cos (-)

(4.111)

(4.112)

(4.113)

(4.114)

Jb/2-b/2
(4.115)
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As usual, we have added the factor of 2. Now the slope of this function with respect to
f is

] - (- + )] (4.117)
df f_= 1 s v a b

This agrees precisely with the exact result we derived above. If we wish to use our
shorthand notation (defined in Section 4.4.2), then we can rewrite this result as

[dpi

L- f=4 = 2 (Lx + Ly) (4.118)

=D (72
L= - (4.119)

D ((22
Ly = (4.120)

Note that this is Equation 4.47 for a uniform expansion in one direction.
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Table 4.4: A 1-D swelling of a 2-D reactor.

actual expansion virtual expansion

b'=bf trx = Etr,x/f
E'= E/fI

4.6.4 1-D Swelling of a 2-D Reactor

Now we consider swelling cases, in which mass is conserved. As the dimensions of a reactor

expand, the material densities uniformly decrease by an appropriate factor.

First, let us consider the 1-D swelling of a homogenous 2-D reactor.

I

Lx

Figure 4.4: A 1-D swelling of a 2-D reactor.

The unperturbed one-group flux is

#(x, y) = cos (-) cos -- (4.121)

We define the swelling in terms of an increase in b and a corresponding decreases in

E, which represents a generic macroscopic cross-section. We can easily see that mass is
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conserved.

f = -(4.122)b
E= E/f (4.123)

We can compute the exact reactivity for this swelling, which only requires one or two
more steps than computing the shift due to an expansion.

Ap - y (4.124)
= DB 2 +E _ DB' 2 +ra (4.125)

v D5 (4-25V~f V~
2
f

DfM .I " +Eff
D B 2+ r a _ L( +4a/

=f (4.126)

_ DB 2 +Ep _ D [()
2 f2+()

2 +Ea

D (J)2 (1 _ f 2) (4.128)

The first derivative of this reactivity for the smallest perturbation magnitudes is

-dP] 2D (7r)2 (4.129)

df f=1 v E

Now we perform the equivalent "virtual density" perturbation. Defining the perturbation
is slightly trickier than for an expansion. When the core swells in only one direction, the
leakage in that one direction does not change. We can shrink the neutron mean free path
(in that one direction) by the factor f to account for the larger dimension, but the neutron
mean free path has already been increased by the factor f due to the density reduction.
Thus, there is a net zero change to leakage in that direction. However, every other direction

does in fact experience a change in leakage. The material density has decreased, and so
the neutron mean free paths in the other directions increases by the factor f. In order to
define our perturbation, then, we simply decrease the macroscopic transport cross-section

magnitudes in those other directions.
In this specific case, that means we decrease the macroscopic transport cross-section in

the x direction. The macroscopic transport cross-section in the y direction does not change.

dEt,,x = E= -t, - 1 (4.130)

The unperturbed flux gradient in the x direction is
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(4.131)( = -sin cos ()

The reactivity worth numerator is

C Y I Lx0) f a2 b/ 2dxdy (

-(1- 1) D (i)2 a b

(4.132)

(4.133)

The denominator is

Kf F = a/2 /2 dxdy vzE = E a b
-Oa/2 (-b/2 22

The entire reactivity worth is

Ap = 2 - 1) D
(7)2

(4.134)

(4.135)

As always, we have added the factor of 2. The slope of this function with respect to f is

E dp]df if=_

2D
= ---

2
(4.136)

This agrees precisely with the exact result we derived above. If we wish to use our

shorthand notation (defined in Section 4.4.2), then we can rewrite this result as

L=dP
df f=1_

D
LX =

-2Lx

(7,)2

(4.137)

(4.138)

Note that this is the 2-D version of Equation 4.42 for a uniform swelling in one direction.
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Table 4.5: A 1-D swelling of a 3-D reactor.

actual expansion virtual expansion

c'=cf tr,x = Etr,x/f

l= Elf ' = Etr,y /f

4.6.5 1-D Swelling of a 3-D Reactor

Now let us consider the
uniform axial swelling of

1-D swelling of
a real reactor.

a homogenous 3-D reactor. This is equivalent to

t

K' N

Figure 4.5: A 1-D swelling of a 3-D reactor.

The unperturbed flux is

q(x, y, z) = cos () s cos - (4.139)
(a b C "z

We define this swelling as an expansion of the z dimension and a corresponding uniform

decrease of all the material densities.

SL,
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The exact reactivity is

Ap

_ DB 2
+rU _

DB 2+ _
VE5

1 1 - 1
k k/

DB
2

+E, _ DB'2
+2a

VE5 vEi

Df M) 2+Z)2+(f- +r f 2

D [(Z + )2f2 +()2f2+()2] +Fa
VEf

(4.142)

(4.143)

(4.144)

(4.145)

(4.146)
T f)2 + (E)2 - f2)

The slope of this function with respect to f is

dfP] f_1

2D
v= -

(4.147)
,1) 2 2

-+ 7,2a b

Now consider an equivalent "virtual density" perturbation. There is no change to leakage

in the z direction - only leakage in the x and y directions decrease.

macroscopic transport cross-sections in the x and y directions:

dEtr,x x Et,, - Etr,x = Etr

dEt,y, = Etry - Etr,y tr

The unperturbed flux gradient in the x and y directions is

(VO)q - sin ( )

(# = - cos (~
cos b

sin (~
cos (-)
cos

So we decrease the

(4.148)

(4.149)

(4.150)

(4.151)

The reactivity worth numerator is

z K (ZL + Za) 4 = j_"/
2  2 2dxdydz [(VO)2 + (V ])] ~

= I- 1( D [(7)2+ ()2 2 2 2

f C
f =

C
El Elf
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The denominator is

1ja 2  b2 JCF2 dxdydz VEf 5 2 = abc (4.154)
-a/2 -b/2 -c/2 222

So the total first order reactivity is

/ 1)\ D [(,r 2 + r 7,21
Ap= 2 1 +((4.155)

The factor of 2 is here again. The slope of this curve for the smallest perturbations is

1d 2D F,1 r 2 21
[ = -- a)+() ](4.156)
df f=1 v .f

This agrees precisely with the exact result we derived above. If we wish to use our
shorthand notation (defined in Section 4.4.2), then we can rewrite this result as

= -2 (Lx + Ly) (4.157)

LX = 7) (4.158)

L = 72(4.159)

Note that this is equivalent to Equation 4.42 for a uniform swelling in one direction,
except that here the direction is z instead of x.
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Table 4.6: A 2-D swelling of a 3-D reactor.

actual expansion virtual expansion

a' = af t,= Etr,x/f
b'bf ,= tr,y/f

E' = /f 2 trz tr,z

4.6.6 2-D Swelling of a 3-D Reactor

Now consider 2-D uniform swelling of a homogenous 3-D box reactor. This is equivalent to

radial swelling of a real reactor.

Figure 4.6: A 2-D swelling of a 3-D reactor.

The unperturbed flux is

y(X, y, z) = cos -- )
ry (z

Cos -b)Cos -7C

We can model this swelling by increasing both a and b by the same factor f.
also uniformly decrease all material densities by the factor f 2 to conserve mass.

a' b'

a b
'= /2

(4.160)

We must

(4.161)

(4.162)

The exact reactivity is

135



Mark Reed

Ap - y (4.163)
DB 2 +Es _ DB' 2 +Ep (4.164)

ZVi~f V~f

_ DB 2 +En _ Df[f) 2  + ( 2 +a/f 2  (4165)2+( v 71) 1-/f

= DB
2

+Ea _ D [(.M)
2

f2+(a )
2
f2+(Z)

2
fP +Ea (4.166)

()2 + (E)2) (1 - f 2) + (E)2 (1 - f4) (4.167)

The slope of this function with respect to f is

- f= ---- - +U + 2 - (4.168)
dp] 2D (.=)2( .r)2 (r)2](46

Now we consider an equivalent "virtual density" perturbation. For each spatial direction,
we multiply the macroscopic transport cross-section in that direction by the factor f if the
reactor dimension has increased in that direction. We also divide the macroscopic transport
cross-section in all directions by f N, where N is the total number of reactor dimensions that
have increased by the factor f. The resulting perturbation definition is

dEtr,x = E'irx - Ztr,x = Etr - 1 (4.169)

dEtr,y = Etr,y - Etr,,y = Etr - 1 (4.170)

dEtr,z = Etr,z - Etr,z = Etr - 1 (4.171)

The unperturbed flux gradients in all three directions are

(VO)X = - sina cos cos (4.172)

(V) = - cos ()sin cos (4.173)

(Vo)z = - cos cos sin (4.174)

The reactivity numerator is

CX7Y (LX + + z = (4.175)
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Ib/2 c/
2  

-b/I _jdxdydz ((VO)

=D [((7)

+ (Vo) I

+ ( 7)2)

The reactivity denominator is

Ot - a '2 ' 2 fc,2 dxyzVf2-V a b cjaF/ 2  dxdydz vZ1 5
2  222

KI P) _ a/2 -2 b2c

The total first order reactivity is

(7)2)(Dp2V~ [((7r)2+ (#-1)
Again, we have added the factor of 2. The slope of this curve for the smallest perturbation

magnitudes is

df =1

[D 2 ( r)2 ( ) 2]
(4.180)

This agrees precisely with the exact solution we derived above.

However, we must remember that

vf - a = DB2 = D -
k [ la

So we can also write this first order result as

dp]
-

2D (7r) 2

f=1 Vf 

± + 2]

2 -( vE -Ea)
VE 5

This form of the reactivity might be simpler to compute, as it requires accurate evaluation

of the leakage (and the flux gradient) in only one direction instead of in all three.

If we wish to use our shorthand notation (defined in Section 4.4.2), then we can rewrite

this result as

-a/2

1

3Etr

(11 ab c

(4.176)

(4.177)

(4.178)

(4.179)

(4.181)

(4.182)
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E df f= -2 (Lx + Ll + 2Lz) = -2Lz - 2S (4.183)

S = (4.184)

L= -(F) 2  (4.185)

D (7)2
L = - (4.186)

D (,r)2
Lz = - (4.187)

Note that this is equivalent to Equation 4.42 for a uniform swelling in one direction,
except that here the direction is z instead of x.

4.7 The Unsolved Problem of Non-Uniform "Virtual Density"

The whole history of "virtual density" consists of different people in different parts of the

world conceiving the uniform isotropic case independently. This is not surprising, as the

uniform isotropic case is quite obvious. As we mentioned in Section 3.3.3, early work at

Los Alamos (as part of the Manhattan Project) employed relationships between density and
dimensions for uniform isotropic cases [86]. Some of these simple relationships were used to
design the first atomic bombs. A later report referencing this "law in criticality physics"

stipulates "that the entire system be treated by the same factor throughout" [89]. So in
western literature, it appears that application of the generic "virtual density" theory was
limited to uniform isotropic cases.

Shikhov conceived the concept independently, and then the Soviets developed it further
to apply to uniform anisotropic cases. No one, however, has successfully generalized the
"virtual density" theory for non-uniform cases: swelling and expansion of interior zones. All
previous work is uniform and whole-core. Thus, this is an unsolved problem.

4.7.1 A Conceptual Interpretation

One can glean additional conceptual insight directly from the k eigenvalue expression. Con-

sider the general one-group anisotropic diffusion expression for the k eigenvalue of a generic

reactor:

1 fdxdydz Mo fdxdydz (Ea - V - bv (

k f dxdydz F0 f dxdydz vEf (
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fdxdydz (Ea - JDx - D J - 4.D18

fdxdydz vEf($

Now let us consider a uniform whole-core expansion in the x direction. If our theory is

correct, we should be able to adjust the x-component of the diffusion coefficient to completely

counteract the expansion so that k remains unchanged. Let dx' = dxf. Now let D' = Dxf 2 .

This will result in zero net change to the term yDxy0. Also note that J (f2 - 1) = 2f,
so that this modification of Dx would produce the infamous factor of 2 seen repeatedly

throughout Chapters 3-8. Of course, when integrating by dx' throughout the core, the factor

f will cancel out in the numerator and denominator of the above equation. So we can modify

Dx to fully and precisely counteract any uniform modification of the x coordinate.

Now, however, let us consider a non-uniform core expansion in the x direction. Consider

that dx expands by different factors in different regions. In these cases, we can still modify

Dx non-uniformly to keep the term yDx d# constant. However, now the dx' integrands will

not cancel out in the numerator and denominator. Thus, we can not precisely counteract a

modification of the x coordinate with a corresponding modification of Dx only.

This conundrum also holds true for swellings. Evidently, these whole-core uniform ex-

pressions fail for non-uniform expansions and swellings. Clearly, something is missing.

4.7.2 A Past Attempt at Non-Uniformity

In the 1990s, Abramov published a paper called "Calculation of Reactivity Effects in De-

formed Zones of Nuclear Reactors" in which he attempts to do precisely what we do in this

thesis - generalize the earlier uniform whole-core- "virtual density" theory to apply to non-

uniform localized cases [94]. Unfortunately, he is not successful. He shows an equality that

is equivalent to Equation 4.13, and he also shows Equation 4.19 for anisotropic swelling. He

claims that Equation 4.19 also applies to interior zones of a reactor, if only one integrates

the numerator in each Li value over only a single interior zone. Unfortunately, this asser-

tion is false. He provides no numeric examples, and we have found that the expressions he

derives do not work. If they produce suitable answers for some specific cases, that is merely

accidental. We will see why in Chapter 5.

However, we are certainly glad that Abramov wrote this paper in the late 1990s, because

it provides us reasonable assurance that the "virtual density" theory was never generalized

to non-uniform cases in the Soviet literature. Abramov was a student of Shikhov, and the

two co-authored several papers. Thus, it is extremely unlikely that Abramov would have

been unaware of prior Russian work on this topic.

Solving the non-uniformity problem would dramatically enhance the usefulness of "virtual

density" theory, which is currently only applicable to uniform radial and axial swelling (via

the Soviets) along with uniform isotropic swelling or compression of weapon materials (via
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the Manhattan Project). In reality, fast reactor cores do not swell uniformly. Different fuel

assemblies swell axially by different fractions, and radial swelling is never really uniform

- it is a complex jumble of bowing and flowering with an axial profile determined by core

restraint. Thus, substantial capabilities wait to be unlocked.

4.8 Summary

We have independently derived uniform anisotropic "virtual density" theory via anisotropic

diffusion, and we have shown that it agrees with what we have unearthed of the old Soviet

literature. We have demonstrated that it works precisely for simple 2-D and 3-D analytic

solutions, and we will demonstrate it numerically for full-core heterogeneous benchmarks in

Chapter 7. Furthermore, we have explained the problem of non-uniformity.

So far, this thesis has been largely a review and conceptual explanation of existing lit-

erature. Since much of this literature is obscure, not readily available, and not written in

English, we took time to independently derive and cleanly lay out the formalism. In doing

so, we have set the stage for our original non-uniform "virtual density" theory. Everything

from this point onward is our original theory.
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5 Non-Uniform Anisotropic "Virtual Density" Theory

for Localized Distortions

5.1 Chapter Abstract

We conceive a more general form of "virtual density" theory - that applied to arbitrary

non-uniform anisotropic swellings and expansions of interior zones within reactors. Previ-

ously, the "virtual density" theory has only been applied to whole-core uniform cases. While

the western literature contains only brief mentions of the uniform isotropic theory, which is

widely known, the Soviet literature extends the theory to uniform anisotropic cases. How-

ever, no previous literature contains the more general form of the theory, which is applicable

to non-uniform anisotropic cases. Refer back to Figure 3.1 of an elucidating illustration.

In this work, we define new leakage terms via the divergence theorem that do not previ-

ously exist in the literature. We use these terms to derive a new "virtual density" formalism

that successfully describes non-uniform anisotropic swellings and expansions. This more

general formalism constitutes our original theory, and it allows for rapid and precise predic-

tion of reactivity coefficients due to arbitrary non-uniform swelling scenarios (distortions)

in reactors. For example, we can swiftly and precisely compute axial swelling reactivity

coefficients for each individual assembly (and each of its axial segments).

5.2 Introduction

We now generalize the anisotropic "virtual density" theory for non-uniform localized swellings

and expansions. We aim to devise a solution that is as elegant as the uniform anisotropic

detailed in Section 4.4.

5.3 The Key to Non-Uniform "Virtual Density": The Divergence

Theorem

In Section 3.4.1, we laid out the isotropic diffusion perturbation theory formalism, and we

applied the divergence theorem to the adjoint-weighted leakage term in Equation 3.16. Here

it is again:

G ~~g~

(t dI A) = - dV ([z V -dDV#5) (5.1)
JD=D

G ~~G

=- ds (Opi7$,) dD, + dV (V ot - V $g) dDgj (5.2)
-g=1 -1l=l
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We chose to disregard the surface term, mostly because everyone else does. Using only

the volume term for density changes is standard practice in traditional perturbation theory.

The arguments for discarding the surface term are that (1) the adjoint flux vanishes on the

outer reactor surface and (2) dDg is zero beyond the extent of the density perturbation.

With respect to (2), one can simply draw the "control volume" V to be slightly larger than

the region in which dD is non-zero, and then the surface term becomes zero.

This reasoning is all quite valid for traditional density perturbations, but it is not valid

for "virtual density" perturbations. Consider a localized anisotropic swelling within a certain

interior cuboid volume enclosed by six planar surfaces. Since this anisotropic swelling does

not cover the whole core, we must account for neutrons crossing the surfaces perpendicular

to all non-zero leakage changes. When we say that a surface is perpendicular to a leakage

change, we mean that the surface normal vector is parallel to the direction of the leakage

that is changing. The conceptual basis for this goes back to neutron mean free paths -
when we increase (or decrease) a mean free path in a certain direction within a localized

region, we must account for the fact that some of those increased (or decreased) mean

free paths will "straddle" the boundary of that region - a boundary that marks an abrupt
"virtual" discontinuity in the mean free path and in the system dimensions scaling. Thus,
we cannot simply choose to draw the divergence theorem "control volume" to extend beyond

the swelling region, because this "virtual" discontinuity would still exist. In summary, the

surface term in Equation 5.2 is zero for material density perturbations but non-zero for

"virtual density" perturbations.

So in any "virtual density" perturbation, each Li term should be accompanied by a

directional surface term. Since no such surface terms are necessary in material density

perturbations, this fact was likely missed by others.

However, there is still one problem. If swelling is anisotropic, how can we decompose

the surface term into directional parts? This is not trivial, but we can make a guess based

on intuition. In Equation 5.2, we see that the surface term contains the dot product of the

surface vector integrand dS and the real flux gradient V#g. Here dS defines an arbitrary

closed surface that forms the entire boundary of a swelling or expanding volume within a

reactor. It is a unit vector normal to the surface and pointing outward. The dot product

looks like this:

dS -Vog = d -) (Vg), + (d - ) (Vog), + (d - ) (Vog). (5.3)

Here 1 is a unit vector in the x direction, and (Vg)x once again represents the magnitude

of the x component of V0g. Just as we separated out directional terms for the volume

quantity in Equation 4.10, we can also separate out directional terms for this surface quantity.

We will use of I'iq#) to express this quantity in direction i.
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Kf f# = J d( -)[ (V#g)iD (5.4)
g9=1 I

We could also choose to write this quantity in terms of the real neutron current:

G

Kf fu#) = - J (g (J[) (5.5)
.g=1 I

Here (Jg)j is the component of the real neutron current in direction i. Conceptually,
this quantity is simply the adjoint-weighted rate at which neutrons traveling in direction i

pass through the surface S. We assume the convention that a positive V points outward

through the closed surface, while a positive J points inward.

As we shall see in the coming sections, these "directional surface current" quantities

are the missing piece to the non-uniform "virtual density" theory. In uniform whole-core

swellings, these surface quantities still exist in principle, but they are zero because the adjoint

flux vanishes on the vacuum boundary. Also, the surface quantities between adjacent interior

zones cancel each other out due to the swelling uniformity. All the previous work in this

area, which is restricted to uniform whole-core applications, is merely a special case of the

more general theory.

5.3.1 Non-Separability of the Diffusion Equation and the Divergence Theorem

The diffusion equation is not separable; every reactor physicist knows that. The divergence

theorem is not separable; every mathematician knows that. When solving a system from

scratch, one can not simply separate the diffusion equation (applied to neutrons, heat, or

anything else) into three individual equations. The same is true of the divergence theorem,
which is an integral part of not only neutron diffusion, but also heat transfer (via the heat

equation), fluid mechanics (via the Navier-Stokes equations), and a myriad of other physical

processes.

When we split the leakage volume term in Section 4.4.1 and the leakage surface term

in Section 5.3, one might think that we assumed full separability of the divergence theorem

and the diffusion equation. Fortunately, we did not. We never assumed separability for

the purpose of solving systems from scratch. We only assumed separability for the purpose

of applying perturbation theory to determine reactivity coefficients. Even though we can

not disentangle the x, y, and z components of dot products when we solve an original

unperturbed system, we can do so when we merely perturb that original system. This

"limited separability" allows us to obtain accurate derivatives of eigenvalue with respect to

anisotropic geometry perturbations.
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5.3.2 Non-Uniform Spectral-Leakage Shorthand Notation

First let us add the scalar quantities F and 1i to our shorthand notation.

-i K (5.6)

Note that the numerator here applies only to one interior zone, while the denominator

is always integrated over the whole core. Of course, the isotropic F value is the sum of all

three directional Fi values.

F = E i (5.7)
i

The equality S = L in the uniform theory has an analog in the non-uniform theory:

S = L - F = (Li - Fi) (5.8)

This is the most general form of the equality, and it is applicable to any arbitrary zone

within a reactor. Now we see that S = L is really only a special case with very limited

applicability.

5.3.3 Two Types of Leakage: Intra-Cell Volume Leakage and Inter-Cell Surface

Leakage

Before moving on, it is important to note that L and F represent two distinct types of leakage.

L is a volume integral, and it represents leakage within a core zone (a mesh cell in numeric

calculations). F is a surface integral, and it represents leakage through a surface between two

adjacent core zones (or two adjacent mesh cells). In the previous uniform "virtual density"

formalism, opposing surface leakage terms canceled one another out in pairs on each surface.

However, non-uniformity means that these pairs no longer cancel out, and so the 1i terms

have net non-zero values. Thus, we can say that the failure of the uniform formalism is that

it accounts for only one type of leakage (the intra-cell volume leakage) but not both types.

5.4 General Non-Uniform Formalism

Now we can proceed to lay out the general "virtual density" formalism for non-uniform

swelling and expansion. This will roughly parallel the uniform whole-core formalism in

Sections 4.4.3 - 4.4.6.

The reactivity due to arbitrary swelling of an arbitrary interior zone is
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Apswei = Ei E (-2Lj + J) (5.9)

Compare this with Equation 4.19, which describes the uniform whole-core case. We have

simply added a surface term F3 corresponding to each non-zero leakage change Lj. As we

explained conceptually in Section 5.3, this accounts for the "virtual" discontinuity in the

dimension scaling in direction j.
In order to construct multiple non-uniform swellings throughout a core, one can simply

evaluate Equation 5.9 above for each individual swelling region separately - this theory is

additive.

In order to convert this swelling expression into its corresponding expansion expression,
we need to add a density expression. This is precisely unchanged from Equations 4.20 and

4.21. Traditional density perturbations, even when non-uniform and localized, require no

surface terms.

APden = C (S + L, + Ly + L,) (5.10)

= ~ s±ZL3 ) (5.11)

Now we can simply add the density perturbation (Equation 5.11) to the swelling pertur-

bation (Equation 5.9) to obtain the expansion perturbation:

Apexpan ejzi [S±+Li +ZH-Lj ± rj)] (5.12)

At this point we can show expressions for non-uniform isotropic swelling and expan-

sion just as we did in the uniform theory. However, we display these expressions with the

significant warning that very few non-uniform isotropic swelling or expansion cases are geo-

metrically feasible. For example, a single interior zone that does not touch the outer reactor

boundary can not swell or expand isotropically, because it would (impossibly) overlap with

adjacent zones. A rare example of a feasible isotropic scenario would be slicing a reactor in

half and allowing one full half to swell isotropically. Thus, not every mathematical expres-

sion represents a feasible scenario. It is each reactor physicist's responsibility to ensure that

these swelling or expansion equations are applied in ways that do not violate the laws of

geometry. That said, the non-uniform isotropic swelling expression is

[-1 = -4L + 2F (5.13)
df wlis
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So even isotropic swellings of interior zones require surface terms, although here the

surface term in the divergence theorem is not split into directional components. Furthermore,
we cannot express Equation .5.13 using only S as we did in the uniform isotropic case. The

non-uniform isotropic expansion expression is

d = 3S - L +2F = 2L - F (5.14)
df expan,iso

Again, this is similar to what we found for the uniform case, except that it is not equiv-

alent to the result of 2S in the uniform case. We cannot express it without surface terms,
no matter how many different ways we apply Equation 5.8.

5.5 The Infinitude of Equalities for Non-Uniform Cases

Now we can formulate the infinite series of equivalent expressions for this new non-uniform

theory just as we did for the old uniform theory. Using Equation 5.8, we can write an

expression that is exactly zero:

S -Lx - LY - L, +]x + FY +rZ =0 (5.15)

S + (-Li + Fi) = 0 (5.16)

Adding Equation 5.16 above to the swelling expression (Equation 5.9) in integer quantities

Mi in the same way we did for the uniform theory yields

Apsweii = E (-2L + ) ± M S + (-Lj + Fl) (5.17)

Here the Mi values can each be any integer. Adding Equation 5.16 to the expansion

expression (Equation 5.12) in the same way yields

Apexpan = ci [(S + Li + (-L + j)) + Mi (S+ (-L + F) (5.18)
i \ ji /)Ij/

Equations 5.17 and 5.18 constitute the most general expressions for non-uniform anisotropic

swelling and expansion. The Mi values can be any integer.

For the sake of completeness, we can write down similar expressions for non-uniform

isotropic swelling and expansion:
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dp]

df swell,isoEdp]
df . expan,iso

Here M can be any integer.

(-4L + 2F) + M (S - L + F)

=(3S - L + 2r) + M (S - L + IF)

5.6 Cartesian Application for Non-Uniform Cases

We can use Equation 5.17 to obtain an infinite series of equivalent expressions for swelling by

a fraction f, in the x direction in Cartesian coordinates. The most straightforward expression

for Mx = 0 is

['dpi--P = -2(L, +Lz,) +(r, + z)
1 swell,x

We use all possible Mx values in Equation .5.17 to obtain the infinite series:

L df = -4S - 4 (-Lx + rx) + 2 (Ly + Lz) - 3 (Fy + Fz)
P I swell,x

= -3S - 3 (-Lx + r2) + (Ly + Lz) - 2 (ry + Fz)

= -2S - 2(-Lx + F) - (± + Fz)

=-S - (-Lx + F) - (Ly + Lz)

=-2 (Ly + Lz) + (ry + r z)

=S + (-Lx + rx) - 3 (Ly + Lz) + 2 (ry + rz)

= 2S + 2 (-Lx + Fr) - 4 (Ly + L,) + 3 (Fy + F)

Now we can use Equation 5.18 to do the same thing for an expansion in the

df . expan,x
=-3S + 5Lx - 4rx + 3 (Ly + Lz) - 3 (Fy + rz)

=-2S + 4Lx - 3Fx + 2 (Ly + Lz) - 2 (Fy + Fz)

=-S + 3Lx - 2]Fx + (Ly + Lz) - (ITy + ]Fz)

= 2- IF

=S + L - (Ly + Lz) + (ry + rz)

= 2S + - 2 (Ly + Lz) + 2 (y + rz)

=3S - Lx + 2]Px - 3 (Ly + Lz) 3 (ry + rz)

=4S - 2Lx + 31FX - 4 (Ly + Lz) + 4 (IFy + rz)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

x direction:

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.19)

(5.20)
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Although expansions of entire cores are not practical (because they do not conserve fuel

mass), expansions of interior zones are actually quite common. For example, if assemblies

are immersed in a coolant pool, then assembly motion can be expressed as a superposition of

expanding (or contracting) interstitial coolant zones. Individual expansions do not conserve

mass, but the superposition of multiple expansions can conserve mass. Also, sometimes

coolant mass need not be conserved - core flowering scenarios involve widening of interstitial

zones such that net coolant flows into the core.

Equation 5.32 is a particularly attractive option for expansions, because it requires only

leakage quantities in the direction parallel to the expansion. This could potentially be very

convenient, as one does not always know the neutron current vector in every direction at

every point in a core.

In the same way that we related uniform whole-core expansions and swellings for isotropic

and anisotropic cases, we can also relate the non-uniform quantities. First, we can always
add one density perturbation to each swelling direction i in order to obtain an expansion

perturbation.

- =f -f + - (5.37)
d expan,i - [P swell,i +[] den

Thus, we can add three density perturbations to an isotropic swelling to obtain an

isotropic expansion. Also, one anisotropic swelling in each direction is equivalent to a single

isotropic swelling.

[dp [dp -[3 d[(5.38)
L J swell,i L swell,iso df expan,iso - I den

These relationships are intuitive and obvious, but they are still worth stating formally.

5.7 R-Z or Hexagonal-Z Application for Non-Uniform Cases

Now we turn back to fast reactors modeled in hexagonal-z or R-Z coordinate systems. We

define L, in the same way as in the uniform case, and we now also define F, in a similar

fashion.

Lr = L2 + LY (5.39)

0, = IF + FY (5.40)

We can easily convert Equations 5.22 - 5.28 to express radial swelling by substituting L,
with L2, F, with F2, L2 + L with L., and I. + F, with Fr.
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] sl = -4S + 4 (Lz - Fz) + 2Lr, - 3r (5.41).P. swell,ax

= -3S+ 3(Lz - rz) + Lr - 2r (5.42)

= -2S + 2 (Lz - Pr) - Fr (5.43)

= -S + (Lz - rz) - Lr (5.44)

= -2Lr+Pr (5.45)

= S-(Lz- z)-3Lr+2r (5.46)

= 2S - 2 (Lz - z) - 4L + 3r (5.47)

Equation 5.45 is attractive, because it requires knowledge of leakage quantities in only the

radial direction. Also, note that if the swelling zone consists of an entire through-core axial

slice, the surface term r, will be zero. Thus, for some special cases, non-uniform swellings

do not require computing surface terms.

Equation 5.44 is also potentially convenient. Consider a single assembly swelling axially

by the same factor along its whole length. The surface term Pz will be zero, because the top

and bottom of the assembly coincide with the top and bottom of the whole reactor. Thus,

single assembly axial swelling (or multiple assemblies each swelling by a different factor) is

another special case in which no surface terms are needed.

We can derive the non-uniform radial swelling expressions directly from Equation 5.17.

[dP = -6S + 2Lz - 4Pz + 4Lr - 51r (5.48)
df . swell,rad

5S + Lz - 3Pz + 3Lr - 4Pr (5.49)

= -4S - 2rz + 2Lr - 30r (5.50)

= -3S - Lz - rz + Lr - 2r (5.51)

= -2S - 2Lz - Tr (5.52)

=-S - 3Lz + z - Lr (5.53)

= -4Lz + 2Fz - 2Lr + Fr (5.54)

= S - 5Lz + 3Pz - 3Lr + 2r (5.55)

= 2S - 6Lz + 47,r - 4Lr + 3Fr (5.56)

We can quickly spot two more special cases in which surface terms are not required - any

expression that contains one of Fr and ],P but not both.

Equation 5.52 contains only Fr,, which vanishes if the swelling region is a through-core

axial slice. Thus, we can divide up a reactor into numerous axial slices and apply Equation
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5.52 to model radial swelling with any axial profile. Of course, we could use any equation
in the above list, but Equation 5.52 is most convenient due to its lack of surface terms.

The other special case is trickier. Equation 5.54 contains only IF, which vanishes if the
swelling region is a set of whole assemblies. However, single assemblies cannot simply swell
without unphysically overlapping neighboring assemblies, and so this case is merely a specter.
We will return to this conundrum in Chapter 11 when we attempt to model arbitrary single

assembly motion in the radial plane.

Although we did not bother laying out equations for axial and radial expansion in the
uniform whole-core theory, these scenarios do have potential practical application in the non-
uniform theory. Refer back to the discussion of expanding interior coolant zones in Section
5.6. The axial expansion expressions are

dp] = -3S + 5Lz - 4rz ± 3Lr - 31r (5.57)
df expan,ax

= -2S + 4Lz - 3Pz + 2Lr - 21r (5.58)

= -S + 3Lz - 2z + Lr - Ir (5.59)

= 2LZ - z (5.60)

= S + Lz - Lr+ Fr (5.61)

= 2S + Fz - 2Lr + 2Fr (5.62)

= 3S - Lz + 2Fz -3Lr + 3r (5.63)

= 4S - 2Lz + 31F - 4Lr + 4rr (5.64)

The radial expansion expressions are

dp] = -4S + 4Lz - 4Fz + 6Lr - 51r (5.65)
df . expan,rad

= -3S 3Lz - 3Fz + 5Lr - 4rr (5.66)

= -2S + 2Lz - 2Fz + 4Lr - 31Fr (5.67)

= -S + Lz - z + 3Lr - 2Fr (5.68)

= 2Lr - Fr (5.69)

= S - Lz + z + Lr (5.70)

= 2S - 2Lz + 2z + Fr (5.71)

= 3S - 3Lz + 3z - Lr + 2Fr (5.72)

= 4S - 4Lz + 4]Fz - 2Lr + 31Fr (5.73)

Note that we can obtain these expansion equations directly from the swelling equations
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by merely adding density perturbations of the form S + L, + L.. Here are a few useful and

insightful equations for swelling and expansion in hexagonal-z geometry.

- + - - - - 3 - (5.74)
df . swell,ax df sweI,rad d. swell,iso df expan,iso L . den

[dpi [d] [dp] (5.75)
df sweL,ax df df . expan,ax

L + 2 -dn [d p (5.76)
df swell,rad d. den d. expan,rad

This concludes our discussion of the non-uniform anisotropic "virtual density" formalism.

The remainder of this chapter will focus on its numeric demonstration.

5.8 Summary and Originality

The theory we have developed throughout Chapter 5 is, as far as we know, an original con-

tribution to diffusion theory. Although the most basic uniform isotropic "virtual density"

concept is obvious, widely known, and mentioned sporadically throughout the western lit-

erature, it appears that no one made the leap to the less obvious anisotropic theory. Soviet

reactor physicists developed the concept much further to include the uniform anisotropic

theory, but no one leapt to the non-uniform theory. The sole attempt by Abramov in the

late 1990s produced incorrect expressions that do not contain the surface leakage terms 17 in

the divergence theorem [94]. His expressions are equivalent to the uniform anisotropic for-

malism we derive in Chapter 4. The modern Russian literature, which is accessible online,
does not contain any other work on this topic that we have found. This is the basis upon

which we conclude that our non-uniform anisotropic theory is most likely original.

This novel non-uniform theory dramatically enhances the applicability of the "virtual

density" concept to a myriad of scenarios. Previously, the uniform isotropic principle was

only applicable to the design of weapons and simple criticality experiments. Even the much

more advanced uniform anisotropic theory developed by the Soviets is only useful for com-

puting the uniform axial and radial swelling reactivity coefficients, which do not capture

the true non-uniformity of core swelling. In contrast, our non-uniform anisotropic theory

could potentially be widely applicable to a plethora of non-uniform swelling and distortion

scenarios. It might even quantify neutronic effects due to seismic events, something which

is not currently well known.

Figure 5.1 classifies different versions of the "virtual density" theory via a Venn diagram.

Previously, all work on this topic fell within the and red circles. The enveloping hlue

circle represents our non-uniform anisotropic theory, which constitutes the more general
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version of the principle. All previous work by the Soviets is really a special case of this new
theory. Since these theories are not collectively known by any standard name, we will dub
our new general theory (along with its many special cases) the "virtual density" theory
of neutronics (VirDenT).
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generic geometry distortions

(anisotropic swelling of interior zones)

whole-core
radial/axial

\swelihng

uniform isotropic

"virtual density"

Figure 5.1: Classification of "virtual density" theories. Everything within the circle (and
likely also the red circle) exists in prior literature, but the enveloping blie circle is our original
contribution.
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6 The "Virtual Mesh" Technique: Constructing a "Vir-
tual Reference" for Geometry Change Reactivity Co-
efficients

6.1 Chapter Abstract

We develop an original technique for validating reactivity coefficients due to non-uniform

geometry distortions in finite difference diffusion theory. Rather than construct an exotic

mesh for a reference eigenvalue calculation, we show how to very simply perturb a standard

Cartesian or triangle-z mesh to generate a "virtual reference" case from which we can obtain

precise reactivity coefficient reference values. We validate this technique against continuous

energy Monte Carlo and find agreement within the l- Monte Carlo uncertainty for non-
uniform swellings and expansions of less than 1%.

6.2 Introduction

In previous chapters, we derived our original non-uniform anisotropic "virtual density" the-
ory of neutronics. We claim that this theory can precisely predict reactivity coefficients due
to non-uniform swellings and expansions. Unfortunately, these are not easy to compare to
reference cases. How can one build a reference case for non-uniform swellings and expan-
sions? Increasing the size of individual mesh cells often causes neighboring mesh cells to
be misaligned. Thus, we cannot easily construct a mesh on which to solve the reference

eigenvalue problem. Although our theory is elegant and self-consistent, we have no reference
with which to validate it. So how can we be sure it is really correct?

6.3 "Virtual Mesh" Theory

Fortunately, there is a solution. Although we cannot easily construct a reference case with
misaligned mesh cells, we can obviate this obstacle by simply constructing a "virtual refer-
ence" case with a "virtual mesh".

Validating uniform whole-core (radial and axial) swelling is simple. We construct a
reference case by simply increasing the axial mesh spacing (for axial) or the assembly pitch
(for radial) along with appropriate material density changes. Some non-uniform reference
cases are also trivial to construct. For example, swelling of a through-core axial slice requires
increasing the axial mesh spacing in only that slice - this does not cause misaligned mesh cells.
However, what if we wish to construct a reference for axial swelling of a single assembly?

Consider Figures 6.1 and 6.2, which illustrate a system in an unperturbed and perturbed
state, respectively. In Figure 6.1, the unperturbed "finite differences" dx and dy between
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neighboring Cartesian mesh cells are perpendicular. In Figure 6.2, a large central region

of the core has swollen anisotropically in the x direction by a factor f. Thus, the dx and

dy differences are no longer always perpendicular. The dx values in the swollen region

have increased by a factor f, while the dy values have remained constant. The dy values

between the swollen and unswollen regions are now

misaligned. This is the problem - how can we solve

oblique, and neighboring

such a mesh?

mesh cells are

Figure 6.1: An unperturbed finite difference

each cell and its six neighbors (four neighbors

lines, are perpendicular.

geometry. Finite differences are computed between

in 2-D). The dx and dy differences, marked by red

Let us look more closely at these oblique dy differences. See Figure 6.3, in which we

let s be the distance between neighboring (swollen and unswollen) mesh cell centroids. The

unperturbed distance is a vertical so, while the perturbed difference is an oblique s. The

lower mesh cell swells such that its centroid is displaced a distance a to the left. We know

that s is

(6.1)s = ds + s2

The derivative of s with respect of a is

The second derivative is

ds a
- = s~a

da fS -0+ a2

=0

d2S s + _c 2

d 2 2s + e3/

These first and second derivatives evaluated at a = 0 represent the sensitivity of s with
respect to a, and the first derivative represents the coefficient of s with respect to a.

0 0

* 4 0 0D

(6.2)

(6.3)
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* 0 0 0 0

e * 0 0

0 0
U - - U U

[0 e0 0e e e e :1:
Figure 6.2: A perturbed finite difference geometry in which a central region swells anisotropically.

Finite differences are computed between each cell and its six neighbors (four neighbors in 2-D).

The dx and dy differences, marked by red lines, are no longer always perpendicular as they were in

Figure 6.1. Specifically, the dy differences between the swollen and unswollen regions are oblique.

Neighboring mesh cells are misaligned.

=s 0 (6.4)
d a=

- I(6.5)

So the linear coefficient ds/da is zero. This is all we need to know. It means that this

swelling scenario will not affect the finite difference equations between swollen and unswollen

regions to first order. Thus, because the finite difference equations entirely determine keff,
changes in s between swollen and unswollen regions will not affect keff to first order. Changes

in s will not affect the reactivity coefficient dp/da, and dp/ds will be precisely zero.

As Equation 6.5 shows, the second derivative is non-zero, and so this mesh cell mis-

alignment will affect keff in second order - the second derivative d2 p/da2 will not be correct

without considering changes in s.

So in order to accurately construct a reference mesh to compute dp/df for the swelling case

in Figure 6.2, we need only change each finite difference quantity q if and only if dq/df # 0
(when dq/df is evaluated at the unperturbed value f = 1). So in the case of Figure 6.2, we

must only do two things: (1) decrease material densities in the swollen region by f and (2)

increase dx in the swollen region by f. That's it. No alteration of dy (even between the

swollen and unswollen regions) is necessary, and no fuss related to the misaligned mesh is

necessary. Of course, this will create a mesh that is geometrically impossible, but that is of

no concern. We can simply solve this "geometrically impossible" mesh to obtain eigenvalues
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S SO

Figure 6.3: The centroids of two cells are initially separated by a vertical distance so, but they

are separated by an oblique distance s in the perturbed case. Here the bottom mesh cell centroid

shifts to the left by a distance a.

for f = 1 and f = 1 + 6 (where 6 is a very small number less than 0.01) and obtain the

reactivity coefficient:

[dp = lim - 1/kfl+ 6  (6.6)

df Jf _ 6-+o 6

In the limit of 6 -4 0, this will produce the reactivity coefficient exactly. No approxima-

tions are involved, except those already inherent within diffusion theory. We can succinctly

summarize the general principle in an axiom:

Axiom: Let q be any arbitrary quantity in the finite difference equations. Let [dp/dv]v=v. be

any arbitrary linear reactivity coefficient with respect to some perturbed quantity v, which

is vo in the unperturbed state. If and only if [dq/dv]j,= = 0, then any change in q induced

by a perturbation in v will have no effect on [dp/dv]V=VO.

This technique is really nothing more than eliminating all complexities in the system

that do not affect the first derivative of reactivity with respect to the perturbation. We

will dub this technique the "virtual mesh" method, because it allows us to construct a
"virtual reference" case with which we can validate reactivity coefficients with respect to

core geometry changes.
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6.4 Monte Carlo Validation

6.4.1 Swelling of a Large Through-Core Slice

Even though the "virtual mesh" method makes sense intuitively, and even though we can

prove it mathematically, prudence prompts us to validate it via continuous energy Monte

Carlo.

We will start with the swelling case illustrated in Figure 6.2. Three 3-D slabs sit atop

one another, each with the same composition: pure uranium metal at 7% enrichment. All
three slabs have a length and width of 100 cm. The top and bottom slabs (which do not

swell) have a thickness of 40 cm, while the middle slab (which swells) has a thickness of 20

cm. So the entire unperturbed core is a homogenous 100 cm x 100 cm x 100 cm cube. The

perturbation consists of swelling the middle slab by a small factor in the x direction. The

absence of reflectors means that strong transport leakage effects will strain any agreement

between diffusion and Monte Carlo - this is a "stretch case".

We can build this precise geometry in MCNP to calculate the precise reactivity of this

swelling in continuous energy Monte Carlo [202]. We can also build the unperturbed geom-

etry in MaPS and test the "virtual mesh" method by building a "virtual mesh" to model

the swelling. Essentially, a swelling factor of f requires reducing the uranium metal density

in the middle slab by a factor f and increasing the mesh cell dx values by a factor f within

that middle slab. Nothing else must be done.

Table 6.1 shows the Monte Carlo reactivities of various swelling magnitudes. All l-
eigenvalue uncertainties are 1 pcm. Here swelling magnitudes are f - 1 expressed as a
percentage. Thus, when the percentage is negative, the middle core slab actually contracts

inward. Validation of reactivity coefficients via Monte Carlo is challenging, because (1)
larger swelling magnitudes include higher order effects that obscure the linear coefficient and
(2) smaller swelling magnitudes have large uncertainties that do not allow us to resolve the
coefficient. Thus, we survey a wide range of swelling magnitudes.

Table 6.2 shows the finite difference diffusion reactivities for two swelling magnitudes
(1% and 0.1%) generated using a "virtual mesh". We model this simple cubic core with

a 1Ox1Ox1O mesh and a 20x20x20 mesh, and both spatial resolutions produce very similar

results. Note that the unperturbed diffusion and Monte Carlo eigenvalues differ by over 900
pcm; this is probably due to strong transport leakage effects at the interface between metal

fuel and vacuum.

In general, the coefficients computed via Monte Carlo (Table 6.1) and "virtual mesh"

diffusion (Table 6.2) agree fairly well. All the coefficients computed via "virtual mesh"

diffusion lie between -41.65 pcm/% and -41.95 pcm/%. This range lies within the Monte

Carlo uncertainty for all swelling magnitudes less than 0.5%, although the uncertainties for

smaller magnitudes are relatively large.
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Figure 6.4 plots the Monte Carlo data points and fits them to a parabolic curve. The

linear reactivity coefficient predicted via the "virtual reference" is also shown in red. Al-
though the true reactivity curve represented by Monte Carlo is not quadratic, a parabola is

the simplest polynomial that captures both (1) a distinct first derivative and (2) curvature

to reflect higher order effects. The first derivative of this "best fit" parabola is -43.6 pcm/%.
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Figure 6.4: The reactivity due to swelling of a large through-core slice computed via Monte Carlo
(the Lue dots) fit to a parabolic curve (the black line) and compared with the "virtual mesh"
coefficient (the red line). The "swell fraction" is equal to f - 1. Note that the Monte Carlo curve

is slightly asymmetric.
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Table 6.1: Monte Carlo (MCNP) Reactivity Due to Swelling of a Large Through-Core Slice

keff pcm pcm/%
unperturbed 0.97430
-2% swell 0.97506 80.0 ±1.4 -40.0 +0.7
-1.5% swell 0.97489 62.1 ±1.4 -41.4 ±0.9
-1% swell 0.97469 41.1 ±1.4 -41.1 ±1.4
-0.75% swell 0.97462 33.7 ±1.4 -44.9 ±1.9
-0.5% swell 0.97452 23.2 ±1.4 -46.4 ±2.8
-0.4% swell 0.97446 16.9 ±1.4 -42.2 ±3.5
-0.3% swell 0.97443 13.7 ±1.4 -45.7 ±4.7
-0.25% swell 0.97439 9.5 ±1.4 -38.0 ±5.6
-0.2% swell 0.97437 7.4 ±1.4 -37.0 ±7.0
-0.1% swell 0.97433 3.2 ±1.4 -32.0 ±14.0
0.1% swell 0.97425 -5.3 ±1.4 -53.0 ±14.0
0.2% swell 0.97423 -7.4 ±1.4 -37.0 ±7.0
0.25% swell 0.97419 -11.6 ±1.4 -46.4 ±5.6
0.3% swell 0.97417 -13.7 ±1.4 -45.7 ±4.7
0.4% swell 0.97413 -17.9 ±1.4 -44.7 ±3.5
0.5% swell 0.97407 -24.2 ±1.4 -48.4 ±2.8
0.75% swell 0.97397 -34.8 ±1.4 -46.4 ±1.9
1% swell 0.97387 -45.3 ±1.4 -45.3 ±1.4
1.5% swell 0.97366 -67.5 ±1.4 -45.0 ±0.9
2% swell 0.97341 -93.8 ±1.4 -46.9 ±0.7

Table 6.2: "Virtual Mesh" Diffusion

Slice
(MaPS) Reactivity Due to Swelling of a Large Through-Core

keff pcm pcm/%
10xlOxlO unperturbed 0.983969097
lOxlOxlO 0.1% swell 0.983928486 -4.194110 -41.941101
lOxiOxIG 1% swell 0.983565073 -41.746795 -41.746795
20x20x20 unperturbed 0.983245229 _ _

20x20x20 0.1% swell 0.983204876 -4.174230 -41.742302
20x20x20 1% swell 0.982842528 -41.671354 -41.671354
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6.4.2 Shifting of a Large Through-Core Slice

Now we consider an intriguing thought experiment. Figure 6.5 shows the same simple ho-

mogenous core, except now the central slab shifts instead of swells. There is no material

density change - the whole middle of the core simply translates to the right or left. What

will be the reactivity coefficient?

It will be precisely zero. Our "virtual reference" axiom shows that the oblique dy dif-

ferences and the misaligned mesh cells do not affect the linear reactivity coefficient. Thus,
applying "virtual density" perturbation theory or solving a "virtual reference" case will pre-

dict precisely zero change in eigenvalue. Figure 6.6 shows the Monte Carlo results fit to a

parabolic curve. Note that the curve is symmetric and that its slope at the zero-shift point

is precisely zero. So this simple, obvious case confirms that our intuition is consistent with

the "virtual mesh" method.

Note that the reason for this zero reactivity coefficient is the same reason for the zero

reactivity coefficient in the Godiva sphere translation problem studied by Favorite and dis-

cussed in Section 2.4.4. Favorite cannot predict the reactivity very well when translating the

whole sphere (as opposed to each half sphere separately) [62]. As we discussed, Favorite's

unexpectedly large error arises from the fact that the first derivative of eigenvalue is zero -

only the second derivative is non-zero. So in the limit of the sphere displacement approaching

zero, the computed reactivity coefficient will also approach zero.

If, instead, the slab shifted and changed density (or swelled) simultaneously, then the

reactivity would have a non-zero first derivative and "virtual density" theory would predict

that derivative exactly.

Figure 6.5: A perturbed finite difference geometry in which a central region shifts in one direction.

__F 1 _
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6.4.3 Axial Swelling of a Single Assembly

Consider a 6x6 array of square assemblies as shown in Figure 6.7. Each assembly has side

length b, and all assemblies are separated from one another by an interstitial width a. The

geometry is constant through its axial height c. We will use this geometry often throughout

the remainder of this thesis.

Suppose that a single assembly swells axially by a factor f such that its height increases

from c to fc and its density decreases by f. Suppose that each of the 36 assemblies can be

identified by the index pair (i, j), where i = 1-6 and j = 1-6. We will select assembly (4,4)

to swell axially. See Figure 6.8 for a side view illustration. We build this scenario in both

MCNP and MaPS, and Table 6.3 shows the results. The "virtual mesh" method predicts a

reactivity coefficient of -14.7262 pcm per percent swelling. All the MCNP runs agree with

this to within the Monte Carlo uncertainty.

Now suppose that the four adjacent assemblies (4,4), (4,5), (5,4), and (5,5) all swell axially

by the same factor. Table 6.4 shows the results. The "virtual reference" method predicts a

reactivity coefficient of -46.8396 pcm per percent swelling. All the MCNP runs for swellings

of 1.5% or less agree with this to within the Monte Carlo uncertainty. Four assemblies

swelling together produces a much larger reactivity than one assembly swelling alone, and

thus the reactivity as a function of swelling magnitude has more curvature. Therefore, we

expect the MCNP results to depart from the linear coefficient at relatively large swelling

magnitudes.

Figure 6.9 shows both cases (one assembly and four assemblies) on the same axes. We fit

a parabolic curve to the MCNP data points, and we compare it to the linear coefficient com-

puted via a "virtual reference" in MaPS. Although the Monte Carlo data acquires curvature

(due to its second derivative) for relatively large swelling magnitudes in the four assembly

case, the "virtual reference" clearly predicts the first derivative correctly.

Note that the degree to which reactivity has "curvature" usually depends more on the

magnitude of the reactivity, not the magnitude of the perturbation. We have observed this

throughout a multitude of various perturbation types.
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Table 6.3: "Virtual Reference" Validation via Monte Carlo for a Single Assembly Swelling Axially

keff pem pcm/%
"virtual reference" -14.7264

MC unperturbed 0.99761

MC 0.5% swell 0.99753 -8.0 ± 1.4 -16.0 ± 2.8
MC 0.7% swell 0.99751 -10.0 t 1.4 -14.3 ± 2.0
MC 1% swell 0.99747 -14.1 t 1.4 -14.1 ± 1.4
MC 1.5% swell 0.99739 -22.1 ± 1.4 -14.7 ± 0.9
MC 2% swell 0.99732 -29.1 ± 1.4 -14.6 ± 0.7
MC 2.5% swell 0.99723 -38.2 ± 1.4 -15.3 ± 0.6
MC 3% swell 0.99716 -45.2 ± 1.4 -15.1 ± 0.5

Table 6.4: "Virtual Reference" Validation via Monte Carlo for Four Assemblies Swelling Axially

keff pcm pcm/%
"virtual reference" -46.8396
MC unperturbed 0.99761
MC 0.2% swell 0.99753 -8.0 1 1.4 -40.0 ± 7.0
MC 0.5% swell 0.99738 -23.1 t 1.4 -46.2 ± 2.8
MC 0.7% swell 0.99729 -32.2 ± 1.4 -46.0 ± 2.0
MC 1% swell 0.99715 -46.2 ± 1.4 -46.2 ± 1.4
MC 1.5% swell 0.99690 -71.4 ± 1.4 -47.6 ± 0.9
MC 2% swell 0.99665 -96.6 t 1.4 -48.3 ± 0.7
MC 2.5% swell 0.99638 -123.7 t 1.4 -49.5 ± 0.6
MC 3% swell 0.99610 -152.0 ± 1.4 -50.7 ± 0.5
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Figure 6.7: An unperturbed 6x6 array of square assemblies. Each assembly (hln ) has a side
length of b = 10 cm. The interstitial sodium coolant zones ( ) are a = 1 cm thick. The outer
natural uranium reflector (red) is 2b = 20 cm thick. The geometry is constant through its axial
height, which is c = 110 cm. The fuel assemblies have a 38% coolant volume fraction, and the
metal fuel is enriched to 13%. We neglect structural materials. Typically, we set a to be 1 mesh
cell thick, b to be 2 or 3 mesh cells thick, and c to be 20 mesh cells thick.
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Figure 6.8: One assembly swelling axially. This is a side view of the same geometry shown in

Figure 6.7.
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Figure 6.9: Comparing the "virtual mesh" method against Monte Carlo for one and four assem-
blies swelling axially. The Monte Carlo calculations are performed via MCNP, and the "virtual
mesh" method is implemented via MaPS finite difference diffusion. The linear reactivity coeffi-
cient computed via the "virtual mesh" method accurately captures the first derivative of the true
reactivity to within the Monte Carlo uncertainty, which is ~ 1.4 pcm for all data points.
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6.4.4 "Swinging" of an Assembly Row

Now let us try a more complex case. Consider the same geometry that is shown in Figure

6.7, which we just used for the assembly axial swelling. Now suppose that an entire assembly

row (six assemblies) remains fixed at the core top but free at the core bottom. Thus, this

row can "swing" back and forth as if it were hinged at the core top. See Figure 6.10 for an

MCNP geometry illustration.

In order to model this scenario in "virtual density" theory, we recognize that the "swing-

ing" motion is equivalent to anisotropically expanding and contracting the interstitial coolant

zones on either side of the assembly row (with an axial dependence). This is not a swelling

case, because the interstitial coolant density does not change - it only changes volume. We

anisotropically expand the coolant to the right of the "swinging" assembly row, and we

anisotropically contract the coolant to the left of the "swinging" row.

We can apply Equation 5.32, which becomes

Ap ~ (ztoP - z) ([2LX - ]Fx]R - [2Lx - FX]L) (6.7)
\ztop/

Here the subscripts R and L denote spatial integrals over the interstitial sodium regions

to the right and left of the "swinging" row. The core top is at position z = ztp. The small

parameter c = f - 1 represents the maximum interstitial zone expansion at the core bottom.

In order to construct a "virtual reference" case for this scenario, we must do nothing

more than vary the dx finite difference within the interstitial coolant regions like this:

dXR = dxO (1 + ztO - z) (6.8)

dXL = dxO (1 - (zt0, - z)) (6.9)

Here dxO is the initial interstitial coolant zone width a = 1 cm.

Table 6.5 shows the numeric comparison between the "virtual reference" linear coefficient

and the Monte Carlo reactivities. Here a "full swing" indicates that the assembly row

bottom just barely touches the neighboring assembly row, and a "half swing" is half as much

movement. Figure 6.11 plots this same data, which is highly linear.
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Figure 6.10: One row of assemblies "swinging" outward. This is a side view of the same geometry

as in Figure 6.7, the same side view (with a different perturbation) as in Figure 6.8. In this case,
the assembly row "swings" enough to just barely touch the neighboring assembly row at the core

bottom. We increase the number of axial mesh cells from 20 to 40.
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Figure 6.11: Comparing the "virtual mesh" method against Monte Carlo for one assembly row

"swinging" outward as shown in Figure 6.10. The Monte Carlo calculations are performed via

MCNP, and the "virtual mesh" method is implemented via MaPS finite difference diffusion. The
"swing fraction" is the fraction by which the assembly row bottom "swings" over to touch the

neighboring row.
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Table 6.5: "Virtual Reference" Validation via Monte Carlo for One Assembly Row "Swinging"

keff pcm pcm per full swing

"virtual reference" -101.503

MC unperturbed 0.99761

MC full swing 0.99865 -103.4 ± 1.4 -103.4 ± 1.4
MC half swing 0.99814 -52.2 t 1.4 -104.4 + 2.8

MC quarter swing 0.99787 -25.1 t 1.4 -100.4 ± 5.6
MC eighth swing 0.99775 -13.1 ± 1.4 -104.8 ± 11.2

6.5 Summary and a Warning

We have now demonstrated that we can easily construct a "virtual mesh" in order to solve

a "virtual reference" case for non-uniform anisotropic swellings and expansions within re-

actor cores. The linear coefficients agree quite well with continuous energy Monte Carlo

calculations via MCNP, usually within lo, for small perturbations.

However, we must stress to any potential users that a "virtual mesh" will only accurately

predict the linear reactivity coefficient for very small perturbation magnitudes. Typically,
we choose swelling magnitudes of 0.1% or even less to ensure accuracy. Constructing and

solving a "virtual reference" case for much larger swellings will not produce a meaningful

reference, because non-linear effects become significant.
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7 Numeric Validation of Non-Uniform Anisotropic "Vir-

tual Density" Theory

7.1 Chapter Abstract

We numerically validate the non-uniform anisotropic "virtual density" theory in finite differ-

ence diffusion using standard reference cases and, when necessary, "virtual mesh" reference

cases. We find that the non-uniform anisotropic "virtual density" perturbation theory pre-

dicts reactivity coefficients that agree precisely with all diffusion reference cases. We verify

this for simple 2-D and 3-D Cartesian cases as well as for various swelling scenarios in

full-core 3-D hexagonal-z FFTF and Jay6 benchmarks. Reference case errors are typically

below 0.1%, but we show that all errors approach zero as the reference case perturbation

magnitude approaches zero. Thus, the non-uniform anisotropic "virtual density" formalism

predicts diffusion reactivity coefficients exactly.

7.2 Introduction

Now that we have derived the original non-uniform anisotropic "virtual density" perturbation

theory and also developed a new technique with which to validate it, the time has come to

produce convincing numbers for realistic cases! First, however, we must show how to derive

finite difference equations for the non-uniform anisotropic "virtual density" theory.

7.3 Finite Difference Equations for the Non-Uniform "Virtual Den-
sity" Theory

Although we have laid out the "virtual density" formalism and demonstrated it for very

simple analytic cases, we have yet to show how one might discretize it for implementation in

a finite difference solution. We will do that now for both Cartesian and triangular/hexagonal

cases. Here we assume that both real and adjoint multigroup flux distributions have already

been solved on a finite difference mesh for the unperturbed system. The finite difference

equations could be set up in more than one way, so we must be cautious to construct the

perturbation difference equations in a way that is precisely consistent with the difference

equations used to solve the unperturbed system.

7.3.1 Cartesian Coordinates

Evaluation of the "virtual density" shorthand quantities S, Li, and Fj in a finite difference

solution is not difficult, but it can be ambiguous. See Figure 7.1 and consider evaluating

these quantities for the central rectangular cell. Computing the perturbation denominator
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K#' FO) is straightforward - one only needs the cell fission cross-section and the volume-
averaged fluxes # and #t. Computing the numerator of S is similarly straightforward - one

only needs the fission, absorption, and scattering cross-sections in the cell as well as keff. We

will not review these here.

Computing Li and ri is a bit less straightforward. Consider computation of L, and IF
in Figure 7.1. A 2-D rectangular cell is surrounded by surfaces 1-4 and neighboring cells 1-4.

We can obtain the surface fluxes 0,1 and 0,3):

Dodo ± D 10 1

s dx/2 dx/2 (7.1)
_sl Do _+ D,
dx/2 dx1/2

Dooo ± D 3 # 3
dx/2 dx3/2

Os3 _Do_+ D3 72
dx/2 dxs/2

This is nothing more than applying Fick's law while conserving current at surfaces 1 and

3. The expressions for the adjoint #f values are identical in form. Now consider computing

two flux gradients in the x direction within the central cell:

Vol = (7.3)

# 733 - #
V# 3 = dx/2 (7.4)

One could say that Vo 1 is the x-directed gradient in the right half of the cell, while Vq 3
is the x-directed gradient in the left half of the cell. Both gradients point outward from the

cell, toward its neighbors. Now the numerator of Lx for one energy group is

#K I x# = dxdy (Vo# 1 ±1 + V#tV0 3 ) Do (7.5)

This is how we evaluate the volume integral in Equation 4.11 in finite difference. Com-

putation of L. is the same process, and extension to 3-D Cartesian is trivial.

Multiplying the real and adjoint gradients in Equation 7.5 nullifies the direction in which

we chose to compute the gradients - we could just have easily computed them to point inward

to the cell or in the positive or negative x directions. The factor of 1/2 represents averaging

the two gradient products over the whole cell.

Now the numerator of l? for one energy group is

#1 f.x) = dy ( ±t,1o# + #t V0 3) Do (7.6)
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This is how we evaluate the surface integral in Equation 5.4 in finite difference. Again,
computation of L. is the same process, and extension to 3-D Cartesian is trivial. Note that

in Equation 7.6 above, the direction of the flux gradient matters. We have appropriately

chosen it to point outward from the cell to be consistent with Equation 5.4.
If an arbitrary region within a core swells uniformly and contains multiple finite difference

cells, these ri surface terms will cancel one another out (in pairs) on all interior cell surfaces

- only cell surfaces that form part of the boundary of the whole region will have non-zero

surface terms. For example, in Figure 7.1, #t1V# 1 (the surface term on the right surface

of the central cell) will be equal and opposite to the surface term on the left surface of

neighboring cell 1. Thus, if both the central cell and cell 1 swell by the same factor in the

same direction, the portion of F, evaluated on surface 1 will be zero.
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dx
< --- - - - ->

dx 3<- -- -- -- ------
dx,

<--------------->

Figure 7.1: "Virtual density" implementation in Cartesian geometry. Each cell has volume-
averaged real and adjoint fluxes # and #t as well as a diffusion coefficient D. Each interface
between cells has real and adjoint surface fluxes #, and #.
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7.3.2 Triangular-Z or Hexagonal-Z Coordinates

We can also lay out the difference equations for triangular-z geometry. This is actually

equivalent to hexagonal-z geometry, because each hexagonal cell is usually subdivided into

six triangular cells in finite difference meshes. Again, we will not bother with the fission

denominator or with the numerator of S, which are trivial. The z component in triangular-

z geometry is identical to the Cartesian case, so we will derive the equations for the r

component in an array of 2-D equilateral triangular cells as shown in Figure 7.2. The surface

fluxes are

_Doqo + D1q51D 00 = D(7.7)
Do + D1

_D 0ob 0 + D2q52
.2 = D +(7.8)

Do + D 2

3 =D 000 ± D3 b3  (7.9)Do + D3

Note that ds cancels out, because it must be the same in every cell. If half the dis-

tance between neighboring triangle centroids is x/3ds/6, then the three outward-directed

flux gradients are

Vo =- (7.10)

V0 2 = ds/6 (7.11)
v3d s/6

V0 3 = 3- (7.12)
-v3ds/6

If the triangle area is V5(ds)2 /4, then the numerator of L, for one energy group is

K N/=3# (ds)2 V41v~l + V42V 2 + V0v 3) Do (7.13)

The factor of 2/3 is really the product of two factors: (1) a factor of 1/3 for averaging

the three flux gradient products throughout the cell and (2) a factor of 2 to account for the

fact that Lr = L2 + L. is two dimensions.

The numerator of r for one energy group is

#K I fro) = ds (#fs1v41 + ±t2VO2 + 3 V0 3 ) Do (7.14)

Again, the fact that each flux gradient points outward from the cell is crucial.
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s11
P2' (2' tI2 1'1' /l

~s2
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Osr 0 10
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Figure 7.2: "Virtual density" implementation in triangular geometry. This is equivalent to hexag-

onal geometry, because finite difference solutions always subdivide each hexagonal cell into six tri-

angular cells. Each cell has volume-averaged real and adjoint fluxes # and #t as well as a diffusion

coefficient D. Each interface between cells has real and adjoint surface fluxes #, and #t..
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Table 7.1: FFTF and Jay6 Finite Difference Diffusion Benchmarks

Benchmark keff deviation (pcm) from DIF3D

Jay6 fine axial DIF3D 0.974222662
Jay6 fine axial MaPS 0.974266044 4.57
Jay6 coarse axial MaPS 0.973187327 -109.20
FFTF fine axial DIF3D 0.982859575
FFTF coarse axial MaPS 0.980185174 -277.60

7.4 The FFTF and Jay6 Finite Difference Diffusion Benchmarks

In order to validate the anisotropic non-uniform "virtual density" formalism for realistic

cores, we will employ two full-core 3-D benchmarks: FFTF and Jay6. See Appendices J and

K for detailed benchmark descriptions and core maps.

We build these two benchmarks in coarse mesh finite difference diffusion via our MATLAB-

PETSC-SLEPc (MaPS) code, which we describe in Appendix A. In each benchmark, we fill
in the outermost hexagonal assembly ring (with additional shield assemblies) for convenience.

This alters ken' by less than 20 pcm. We divide each hexagonal assembly into 6 triangles and

generate 33-group cross-sections for each benchmark via MC**2 [187].
Furthermore, we have two different versions of each benchmark: a fine axial mesh and a

coarse axial mesh. The fine axial mesh versions are obtained directly from DIF3D models

within the Advanced Reactor Modeling Interface (ARMI) [211]. We also coarsen each axial

mesh (by a factor of 4 for FFTF and a factor of 3 for Jay6) in order to achieve greater

efficiency for a multitude of eigenvalue calculations in MaPS. Coarsening the mesh involves

simply homogenizing 3 or 4 axial mesh cells to conserve average cross-sections.

With outer assembly rings filled in, both FFTF and Jdy6 have 11 full rings (331 assem-

blies). Both also have 6 triangles per assembly and 33 energy groups. In the FFTF model,
the fine and coarse axial meshes have 111 and 28 cells, respectively. In the Jdya model, the

fine and coarse axial meshes have 66 and 22 cells, respectively.

Table 7.1 shows keff values for the fine and coarse versions of FFTF and Jay6 in DIF3D

and MaPS. In the Jdy6 fine mesh case, MaPS agrees with DIF3D to less than 5 pcm.

Coarsening the axial meshes results in losses of approximately 115 pcm for Jay6 and 280
pcm for FFTF. We will use only the coarse mesh versions of FFTF and Jayd from this point

onward.
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Table 7.2: Whole-Core Uniform

in the FFTF

Table 7.3: Whole-Core Uniform
in the Jdy6

179

Anisotropic "Virtual Density" Spectral and Leakage Quantities

FFTF pcm/%
S 239.500929
Lr 148.90210
L_ 90.587839
S - Lr - Lz 0.011078

Anisotropic "Virtual Density" Spectral and Leakage Quantities

J6y6 pcm/%

S 349.349521
Lr 223.980760
L_ 125.492411
S - L - Lz -0.123650

7.5 Numeric Results for Whole-Core Uniform Swelling

First let us validate the anisotropic whole-core uniform "virtual density" formalism laid out

in Section 4.4. We can calculate the quantities S, L, and L, in coarse mesh finite difference

as shown in Section 7.3 for the FFTF and Jby6 benchmarks. Tables 7.2 and 7.2 show the

quantities in units of "pcm per percent", where the "percent" is a one percent change in

a linear dimension or a one percent density change. Note that we carefully defined the

quantities S, L, and L, in Sections 4.4.1, 4.4.2, 5.3, and 5.3.2 so that they will always

be positive when integrated through a whole core (although they could be negative when

integrated over an interior zone).
Note that the equality S = L, + L, holds true even in this coarse mesh problem. As

shown in Tables 7.2 and 7.3, the quantity S - L, - L, is negligible in size relative to the

quantities S, L, and L, separately. It should be zero in theory, and we find that it is

0.0046% of S. We deem this "zero enough".

SLrLz = 0.0046%
S

(7.15)

In Jbyd, the same quantity is
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S - Lr - L -0.0354% (7.16)
S

This is also "zero enough" for our purposes.

Now we can easily compute the whole-core uniform reactivity coefficients for radial

swelling, axial swelling, and isotropic swelling. We can also compute the reactivity coefficient

for whole-core uniform density reduction. We simply use the whole-core uniform formalism

for hexagonal-z geometry laid out in Section 4.4.6. Table 7.4 shows the coefficients for the

FFTF, while Table 7.5 shows the same coefficients for Jby6.

We compare these coefficients directly to a reference case, which is a direct eigenvalue

solution in MaPS. For example, in order to compute a reference reactivity coefficient dp/df for

a swelling magnitude of 1% (or f = 1.01), we simply perform two full eigenvalue calculations

and take their difference:

[dp] 1/kf- 1 - 1/kf=.ol (7.17)

df Jf=1  0.01

Unless stated otherwise, we will use swelling/expansion fractions of f = 1.01, 1.001, or

1.0001 for reference cases throughout this chapter. Constructing a reference case for uniform

axial swelling requires increasing all axial mesh heights by f while reducing all material

densities by f. Constructing a reference case for uniform radial swelling requires increasing

all assembly hexagonal "flat-to-flat " pitches by f while reducing all material densities by f2 .
Constructing a reference case for uniform isotropic swelling requires increasing both axial

mesh heights and assembly pitches by f while reducing all material densities by f 3.
As shown in Tables 7.4 and 7.5, "virtual density" perturbation theory (VirDenT) pro-

duces reactivity coefficients that agree with reference values to within 0.1%. The PETSc-

SLEPc Arnoldi eigenvalue convergence is 1010, so all the decimal places are warranted.

Evidently, VirDenT is quite precise even in coarse mesh hexagonal-z geometry for a highly

heterogeneous full-core benchmark. Furthermore, these numbers verify the simple fact that

an isotropic swelling coefficient is (1) exactly twice a density reduction coefficient and (2)

the exact sum of axial and radial swelling coefficients.

Note that any realistic axial or radial swelling scenario would require adjusting the coolant

density by a different factor than the fuel and structure materials. This can be easily

accomplished by performing a traditional coolant density perturbation after the uniform

swelling computation. Since knowing the factor by which to adjust the coolant density

depends upon the heterogeneous pin and duct detail of each assembly, we will neglect the

coolant density effect in this chapter - it is trivial, and it adds complexity that is both

unnecessary and distracting.
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Table 7.4: Uniform Anisotropic "Virtual Density" Reactivity Coefficients for FFTF

FFTF keff ref. pcm/% ref. pcm/% VirDenT error (%)

unperturbed 0.980185174
density reduce 0.979725102 -479.085954 -478.9978652 0.018%
isotropic swell 0.979264821 -958.8400146 -957.9957304 0.088%
axial swell 0.979899114 -297.8294504 -297.8080172 0.007%
radial swell 0.979550936 -660.5673529 -660.1907084 0.057%

Table 7.5: Uniform Anisotropic "Virtual Density" Reactivity Coefficients for Jdy6

Jby6 keff ref. pcm/% ref. pcm/% VirDenT error (%)

unperturbed 0.973187327
density reduce 0.972526291 -698.4371254 -699.0095938 0.082%
isotropic swell 0.971865128 -1397.958826 -1398.019188 0.004%

axial swell 0.972763834 -447.3447816 -447.6509682 0.068%
radial swell 0.97228858 -949.8298723 -950.1353052 0.032%
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Table 7.6: Non-Uniform Anisotropic "Virtual Density" Spectral and Leakage Quantities within

an Internal Zone of Jdy6

Jay6 interior zone pcm/%

S 81.1912694381
Lr 23.4637520600
Lz 8.0590066902
Fr -24.4585146833

_ _z -25.2099959654
S - Lr - Lz + F + ]z 3.9 x 10-8

7.6 Numeric Self-Consistency of the Non-Uniform Anisotropic "Vir-

tual Density" Formalism in Triangular-Z Geometry

Now let us turn to the non-uniform anisotropic "virtual density" formalism, which is our

original invention. We select an arbitrary internal zone within Jay6 as illustrated in Figure

7.3. This zone consists of an axial slice (4 mesh cells thick) of 24 contiguous assemblies.

We can now proceed to evaluate S, L,, L,, Fr,, and IF, for this arbitrarily-selected internal

zone. We compute the F values as described in Section 7.3. The unperturbed real and adjoint

flux distributions for Jay6 are pre-computed with 10-16 eigenvalue convergence.

Table 7.6 shows the five spectral-leakage shorthand quantities. It also demonstrates that

the non-uniform "virtual density" equality S = L, + L_ - F, - IF holds true such that

S = 4.8 x 10-8% (7.18)S
This is tighter agreement than what we saw for the whole-core uniform cases in Equations

7.16 and 7.17. The reason for this may be due in part to tighter eigenvalue convergence for

the unperturbed case, but it may also be due in part to a lack of vacuum boundary leakage

in this internal zone.

Table 7.7 shows the various expressions for axial swelling shown in Equations 5.41 - 5.47

in Section 5.7. This verifies that the sets of equivalent expressions shown throughout Chapter

5 are in fact equivalent. Here the equivalent expressions differ by no more than 4 x 10 7 %.

Even tighter eigenvalue convergence for the unperturbed case would make these equivalent

expressions agree even more closely. As the unperturbed eigenvalue convergence approaches

zero, the differences among these equivalent expressions also approach zero.

Note that computing an "axial swelling coefficient" for any arbitrary interior zone is

perfectly reasonable. Figure 7.4 illustrates this. Axial segments of a single assembly can

swell by different factors, causing the assembly top to "stick out" above the core top. This
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Table 7.7: "Virtual Density" Equivalent Expressions for Axial Swelling of an Interior Zone

Jayd interior zone pcm/%

-4S + 4(Lz - Fz) + 2Lr - 31r -71.3860189602
-3S + 3(Lz - lz) + Lr - 2F -71.3860189209

-2S + 2(Lz - lZ) - Pr -71.3860188817

-S + (Lz - 1z) - Lr -71.3860188425
-2Lr + Pr -71.3860188033

S - (Lz - 1z) - 3Lr + 217 -71.3860187641

2S - 2(Lz - Iz) - 4Lr + 31r -71.3860187249

is allowed geometrically, and it is consistent with what would actually occur physically -

assemblies (and fuel pins) swell more near the core center, where power and temperature are

highest.
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Figure 7.3: An arbitrary internal zone within Jdy6 marked by the salmon/coral color. This is a

contiguous cluster of 24 assemblies in rings 3, 4, and 5. The "C" marks the central core assembly.

Within each of these 24 assemblies, we select axial zones 11-14.
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no
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dz'= dz f

N' =N/f
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Figure 7.4: Axial swelling of an interior core zone. Suppose a certain assembly (bounded by the

dashed line) extends through the entire core height. Now suppose that a certain axial segment of

that assembly swells axially. Within that segment, the dimensions in the axial (z) direction swell

by a factor f, while the material densities decrease by that same factor f in order to conserve

mass. Other segments of this assembly (above and below this swelling segment) are left unchanged.

However, all segments above the swelling segment shift upward such that the assembly now "sticks

out" at the core top. Evaluating the reactivity coefficient dp/df requires integrating the spectral-

leakage quantities throughout only the swelling segment.
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7.7 Numeric Results for 2-D Cartesian Assembly Distortions

In Chapter 6, we validated the "virtual reference" against Monte Carlo. Moving forward, we

will validate "virtual density" perturbation theory against "virtual references" and, when

feasible, "actual references". When a reference case is "virtual", we will label it in data

tables as "virtual ref.". When a reference case is not virtual, we will label it as simply "ref.".

Now let us return to the 6x6 square assembly array first illustrated in Figure 6.7. In this

section, we will reduce it to a 2-D problem. See Figure 7.5 for an illustration. Each assembly

has side length b and area b2 . Each interstitial sodium region has width a. We can divide a

and b into as many or as few mesh cells as we wish. The accuracy of the "virtual density"

theory is not sensitive to mesh fineness, as we demonstrated in Section 8.6 for 1-D cases.

Figure 7.5: A 6xA array of square enriched uranium assemblies immersed in a sodium pool. Each

assembly has edge length b and is separated from its neighbors by an interstitial width a filled with

sodium. A depleted uranium reflector surrounds the entire reactor. We can vary both a and b in

terms of both their absolute size (cm) and the number of mesh cells into which we divide them.
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7.7.1 Radial Assembly Flowering

First let us demonstrate "virtual density" for a case of uniform assembly "flowering" in the

2-D Cartesian geometry shown in Figure 7.5. Let a be 1 cm and 1 mesh cell thick, and

let b be 11 cm and 2 mesh cells thick. Let us divide up these 36 assemblies into 3 square

"rings". The inner ring contains the 4 central assemblies. The outer ring contains the 20

outer assemblies. The middle ring contains the remaining 12 assemblies.

First suppose that all assembly rings move radially outward such that a increases while b

remains fixed. We can apply "virtual density" to this scenario by anisotropically expanding

all the interstitial sodium regions such that a' = fa. We also consider the case in which all

assemblies move outward from the core in the x direction (not radially). Applying "virtual

density" to this second case requires anisotropically expanding only the vertically-directed

interstitial zones. Since each of these interstitial sodium zones slices through the entire core,
we need not construct a "virtual reference" case - a true reference case will suffice. See Figure

7.6, which shows that "virtual density" predicts the reference case reactivity coefficient to

less than 0.1%.

Now consider moving each assembly ring separately. Figures 7.7, 7.8, and 7.9 compare
"virtual density" to reference cases for the inner, middle, and outer rings, respectively.

The non-uniform anisotropic "virtual density" equations always predict the reference case

reactivity coefficients to within 0.1%.

Throughout all cases involving anisotropic expansion of Cartesian interior zones, we prefer

to employ Equation 5.32.
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Figure 7.6: The reactivity due to all 36 assemblies moving outward from the core center. The
"zone expansion fraction" is the factor by which all the interstitial sodium regions widen so that
a' = f a, where a 10% "zone expansion fraction" corresponds to f = 1.1. Here we consider outward
assembly movement in only the x direction and in both the x and y directions. The solid black line
represents the reference case, while the dashed red line represents the linear reactivity coefficient
computed via "virtual density". The reactivity coefficients agree to within 0.1%.

all rings, X

alrings, :x and y:

-..... ..... ............... ..... .... .........-. .. ....... ...

-.. ........-. .- ... -.... ...... -....... .......................

188



The "Virtual Density" Theory

E
0.

-C

CO)

C
CD0)

-100

-200

-300

-400

-500

-600

-700

-800

On'-

189

0 10 20 30 40 50 60 70 80 90 100
zone expansion fraction (%)

Figure 7.7: The reactivity due to the inner ring of 4 assemblies moving outward from the core
center. Here we consider outward assembly movement in only the x direction and in both the x and
y directions. The solid black line represents the reference case, while the dashed red line represents
the linear reactivity coefficient computed via "virtual density". The reactivity coefficients agree to
within 0.1%.
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Figure 7.8: The reactivity due to the middle ring of 12 assemblies moving outward from the core

center. Here we consider outward assembly movement in only the x direction and in both the z and

y directions. The solid black line represents the reference case, while the dashed red line represents

the linear reactivity coefficient computed via "virtual density". The reactivity coefficients agree to

within 0.1%.
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Figure 7.9: The reactivity due to the outer ring of 20 assemblies moving outward from the core
center. Here we consider outward assembly movement in only the x direction and in both the x and
y directions. The solid black line represents the reference case, while the dashed red line represents
the linear reactivity coefficient computed via "virtual density". The reactivity coefficients agree to
within 0.1%.
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7.7.2 Assembly Row Motion

Now consider motion of a whole row of 6 assemblies in the same 2-D geometry shown in

Figure 7.5. Figure 7.10 illustrates this motion. Consider that each vertical row is bounded

by two vertically-directed interstitial sodium zones - one on each side. If the assembly row

shifts to the left, the right-side sodium zone expands anisotropically, while the left-side

sodium zone contracts anisotropically. So we can simply apply Equation 5.32 to each zone

separately.

Figure 7.11 compares the "virtual density" reactivity coefficient prediction to reference

cases and examines its sensitivity to geometry parameters. We vary the "aspect ratio",
which is a/b, while keeping b fixed. When the interstitial sodium zones are relatively thin,
the reference case reactivities are (1) smaller and (2) more linear. Remember that reactivity

linearity scales more closely with reactivity magnitude than with perturbation magnitude.

Due to (2), "virtual density" can more accurately predict relatively large assembly move-

ments when the interstitial sodium zones are thinner relative to the assembly size and the

neutron mean free path. Figure 7.11 shows three row shifting scenarios:

" A single row of 6 assemblies shifting in a 6x6 assembly array with aspect ratio a/b =

0.1.

" A single row of 6 assemblies shifting in a 6x6 assembly array with aspect ratio a/b =

0.05.

" A single row of 6 assemblies shifting in a 6x6 assembly array with aspect ratio a/b =

0.0357.

" A single row of 10 assemblies shifting in a 10x10 assembly array with aspect ratio a/b

= 0.0357.

We chose a/b = 0.0357 to be approximately consistent with the FFTF benchmark, al-

though the FFTF has hexagonal assemblies.

As expected, non-uniform "virtual density" predicts the reference case reactivity coeffi-

cients to within 0.1%. However, the reference case reactivities exhibit appreciable curvature

in the case of a/b = 0.1 in the 6x6 assembly array. Thus, "virtual density" may under-

predict the reactivity magnitudes by as much as 14% when an assembly row shifts enough to

touch a neighboring row. Fortunately, very few reactors have an aspect ratio this large, and

very few reactors have so few assemblies. As shown in Figures 7.11 and 7.12, we find that

(1) decreasing a/b and (2) increasing the number of assemblies both result in more linear

reactivities that "virtual density" can better predict. In the case of a/b = 0.0357 in the

1Ox1O assembly array, non-uniform "virtual density" predicts the reactivity to within 5%

when assembly rows shift enough to touch one another. When the assembly array is 18x18,
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the "virtual density" reactivity magnitude is accurate to within 3%. Since most realistic

cores have many hundreds of assemblies, we can wager that the "virtual density" reactivity

magnitudes will be accurate to within a few percent for even the largest distortions.

Figure 7.10: An illustration of a whole row of assemblies shifting to the left within a 6x6 assembly

core. The vertically-directed interstitial zone to the right of this row widens, while the interstitial

zone to the left of it contracts.
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Figure 7.11: The reactivity due to a single row of assemblies shifting to the right and left. Here the

"row shift fraction" is the fraction by which the assembly row shifts over to touch the neighboring

assembly row. When this fraction is positive, the assembily row shifts to the right. The solid

black lines represent the reference cases, while the dashed red lines represent the linear reactivity

coefficients computed via "virtual density". The reactivity coefficients agree to within 0.1%. Here

the "aspect ratio" is a/b.
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Figure 7.12: The "virtual density" error magnitudes for the four cases in Figure 7.11 plus one

additional case: an aspect ratio a/b = 0.0357 in an 18x18 assembly array.
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7.7.3 Arbitrary Motion of a Single Assembly

Now let us consider arbitrary motion of a single assembly in the same 2-D Cartesian geom-

etry. This time we will stick to our original 6x6 array. See Figure 7.13 for an illustration

of this scenario. We divide a into 4 mesh cells and b into 5 mesh cells. Note that we could

just as easily choose a very coarse mesh, because mesh resolution does not strongly affect

the accuracy of "virtual density" perturbation theory.

Unlike the cases of assembly row shifting and assembly ring flowering, we can not con-

struct a true reference case for this scenario. The expanding and contracting coolant zones

on either side of the moving assembly do not constitute a through-core slice, and so any

reference case will have misaligned mesh cells. Thus, we must employ the "virtual mesh"

method to validate "virtual density" perturbation theory for this case.

Table 7.8 shows the results. We construct "virtual reference" cases for expansion/contraction

fractions of f = 1.01, 1.001, 1.0001, and 1.00001. If dx in the expanding coolant region mul-

tiplies by a factor of f, then dx in the contracting coolant region multiplies by 2 - f. Here

the MaPS eigenvalue convergence is 10-20. As expected, the "virtual density" reactivity

coefficient is exact, and the "virtual reference" reactivity coefficient approaches it as f ap-

proaches 1. Why the error increases so quickly with f is not clear, but this should serve as

a warning to always select f as close as possible to 1 in any "virtual reference" case. This

rapid increase in error with respect to the "virtual reference" does not necessary reflect the

true error, because the "virtual reference" is only truly valid in the limit of zero perturbation

magnitude.

Regardless, "virtual density" perturbation theory clearly predicts the reactivity coefficient

very precisely. We can easily expand and contract the two interstitial zones above and
below the same assembly to obtain the reactivity coefficient for vertical movement. Once

we have separate coefficients for horizontal and vertical movement, we can easily compute

the coefficient due to movement in any arbitrary direction. For example, if a given assembly

moves a distance r the 9 direction (0 < 0 < 27r), then the reactivity coefficient for that

movement is

dp dp dpdp = - cos + - sin 0 (7.19)
dr dx dy

Here dp/dx and dp/dy are the reactivity coefficients with respect to movement in the

x and y directions, and they are trivial to obtain from dp/df. Thus, we can now compute

reactivity coefficients due to any combination of arbitrary assembly motions. This is the

gateway to neutronic seismic analysis!
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Figure 7.13: An illustration of single assembly motion to the right. The vertically-directed
interstitial zone to the right of this row narrows, while the interstitial zone to the left of it widens.

Table 7.8: Shift of a Single Assembly in 2-D Cartesian Geometry

keff pcm/% error (%)
unperturbed 1.07116770839566
VirDenT -0.180820212394
"virtual reference" 0.001% 1.07116770632100 -0.180813519712 0.003701
"virtual reference" 0.01% 1.07116768765537 -0.180758982227 0.03386
"virtual reference" 0.1% 1.07116750162353 -0.180209275724 0.3379
"virtual reference" 1.0% 1.07116570374087 -0.174713098344 3.377
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Table 7.9: Radial Assembly Flowering with Axial Dependence in 3-D Cartesian Geometry

keff virtual ref. pcm/% virtual ref. pcm/% VirDenT error (%)

unperturbed 1.025845055

0.1% flat 1.025795779 -46.82647027 -46.83187358 -0.011539008
0.1% cosine 1.025803335 -39.6453831 -39.63532896 0.025360179
0.1% linear 1.025819163 -24.60432957 -24.58673361 0.071515706
0.1% quadratic 1.025829865 -14.43470344 -14.4209074 0.0955755

7.8 Numeric Results for 3-D Cartesian Assembly Distortions

Now we turn to 3-D Cartesian cases. We will keep using the same basic 6x6 assembly array

shown in Figures 6.7 and 6.8, but now it is 3-D again.

7.8.1 3-D Cartesian Assembly Flowering

In Section 7.7.1, we studied various flowering scenarios in the 2-D model. Now we will

examine the radial flowering of all three assembly "rings" in 3-D, but now the flowering

magnitude has an axial dependence that could be any arbitrary function. We can directly

compare the "virtual density" perturbation theory result to a "virtual reference" case for a

variety of axial form functions.

If f(z) is the fractional widening of all interstitial sodium zones as a function of axial

position 0 < z < ztop, then we can define various axial flowering profiles:

1 + 0.01 flat

1 + 0.01 (si) linear
f (z) = t 2 (7.20)

1+0.01 () quadratic

1+0.01cos (wY 1 cosine

Here we have scaled f(z) so that its maximum value (on any axial plane) is 1.01, a 1%

expansion of the interstitial zones. So when we state a reactivity coefficient as "per percent",
this "percent" is the maximum swelling percent in the core.

Table 7.9 shows results for each f(z) form. The non-uniform "virtual density" perturba-

tion theory predicts all reactivity coefficients to within 0.1%.
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Table 7.10: "Swing" of an Assembly Row in 3-D Cartesian Geometry

keff pcm/% error (%)

unperturbed 1.006183941228

VirDenT -0.989498173787

"virtual reference" 0.1% 1.006183841052 -0.989490243075 0.0008015

7.8.2 3-D Cartesian Assembly Row "Swing"

We now return to the assembly row "swing" case that we used to compare a "virtual refer-

ence" to Monte Carlo in Section 6.4.4. Previously, we compared the "virtual reference" to

Monte Carlo; now we compare "virtual density" perturbation theory to the "virtual refer-

ence". Table 7.10 shows agreement to less than 0.001%.

7.8.3 3-D Cartesian Assembly Row "S-Shape" Bow

The assembly row "swing" is nothing more than assembly row shifting with a linear axial

dependence. Now let us consider a true "bowing" scenario. Since we have already examined

flowering cases with cosine axial shapes, we will now examine bowing with an "s-shape" axial

dependence. Let Ax be the displacement of an assembly row in the x direction.

Ax(z) = E sin (z -2zt/3)] (7.21)
2ztop/3

Here c is a small perturbation distance. In our "virtual reference" case, we set it to a/1000

(0.1% of the interstitial sodium zone width). Note that this sinusoidal curve is not axially

symmetric - its zero-points occur at z = 0 and z = (2/3)ztop. This is important, because

core symmetry would cause any axially symmetric bowing to produce a linear reactivity

coefficient of zero.

Table 7.11 shows the results for this "s-shaped" row bow. Here we define a 1% bowing

as c/a = 0.01. The "virtual density" perturbation theory and its "virtual reference" agree

to 0.002%.

7.9 Numeric Results for Full-Core 3-D Distortions in Hexagonal-Z

Geometry

Now that we have exhausted various distortion scenarios for simple Cartesian geometries,

let us now turn to realistic fast reactor models: the full-core 3-D hex-z FFTF and Jbyd

benchmarks. We already validated the whole-core uniform "virtual density" theory for these
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Table 7.11: "S-Shape" Bowing of an Assembly Row in 3-D Cartesian Geometry

keff pcm/% error (%)
unperturbed 1.006183941228
VirDenT -0.908252341874
"virtual reference" 0.1% 1.006183849278 -0.908233319663 0.002094

benchmarks, but now we return to them for validation of the non-uniform "virtual density"
theory.

7.9.1 Spatial Distributions of Reactivity due to Anisotropic Swelling

Before we analyze specific distortion cases, we can study the axial and radial distributions
of the short-hand reactivity quantities: S, Lz, L,, r,, and Fr. We can also study the axial
and radial distributions of their sums: axial swelling, radial swelling, isotropic swelling, and
density reduction. Figures 7.14 and 7.15 show axial distributions for Jbyb. Figures 7.16 -
7.23 show radial distributions for Jayd. Figures 7.24 and 7.25 show axial distributions for
FFTF. Figures 7.26 - 7.31 show radial distributions for FFTF. Note that we skip over the
isotropic swelling and density reduction reactivity coefficients for FFTF so not to be too
redundant. Many of these distributions are intuitive, and they are all instructive. Read
each caption for detailed observations, and see Appendices J and K for Jdy6 and FFTF
benchmark descriptions and core maps.

Note that the axial distributions of F, are zero, because F, integrated over any through-
core axial slice is always zero. Similarly, the radial distributions of F are zero, because IF
integrated over any whole assembly is always zero.
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Figure 7.16: Spectral reactivity S in each assembly in J6yb. This is very positive in the fuel

assemblies, very negative in the "regulation" control assemblies, and slightly negative in the reflector

and shield assemblies.
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especially positive in the four "safety" control assemblies.

E
0

204

0



The "Virtual Density" Theory 205

L r (porn)

1000

80o 0 ~ . 200HA 10

.: 0:.: 100

40- :.. ....
-605

050
-80 ...:.. 04

-50 0 100 0 580 100
-2- 0.. ...... 00 0 01O1cm-0

Figue 7.8: Rdialleaage eactvity4. i eah asembl in ~5yd Ths isalwas.poitiv.an

has ~ 4 loo 0nnula ditiuin



Mark Reed

Fr (pCM)
- -- - - - - - - -- -- - ---. .-- - - -- --- -- -- -

.... .. . . .... .... . ..-. . .--. .- -.-- -- -.-.-.-- --.-- --- --.- -.-- - --. -

100

Q0

6 0 - -. -. -. - .- .

0E
0

-20

40 - -.

2 0 ----..----.-.

*0

04WX

-.. -. -.. -.-.--.-------.---.

-~~ --.-.--.-.-.---.

9..---.---.-.-.----- .- .

--.. . .. . . .--- .-.- . -. --. ---. ---. -.

-40 - -.

-60

-80

.4 flf~I

-50 0
cm

50 100

1500

1000

500

0

-500
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positive in the reflector and shield assemblies.

206

--. . -.. -.-. . -. . --.

- --- .......... ......

-1V0O



The "Virtual Density" Theory

axial swell (pcm / %)
1001

80

60 ........

40

20

0
-9

:-..

-- -

-60 -40 -20

. ..- .

. -.. .....

-... . .

-. ..........

.........

...-. ...

0 20 40 60 80 100
cm

Figure 7.20: Axial swelling reactivity in each assembly of Joy6. This is strongly negative in fuel
assemblies and strongly positive in control assemblies.
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radial swell (pcm / %)
100

60 ..... .... 0 0

20- - -**%* * .@
~ -2 ON:0:

-40 - -0

-60 -... -- - -

-80 - - - - - - - - - - - -

.0 0 000

-15

-80 -60 -40 -2 0 0 40 60 80 10
cm

Figure 7.21: Radial swelling reactivity in each assembly of Jdyd. Note that radial swelling of

a single assembly will cause it to unphysically "overlap" with neighboring assemblies, but this

distribution may still be useful for analyzing core flowering scenarios. It is negative everywhere but

especially so in the control assemblies. It is almost precisely zero in the central assembly.
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density reduce (pcm / %)
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Figure 7.23: Density reduction reactivity in each assembly of Jby6. This is precisely half the

isotropic swelling distribution in Figure 7.22.
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Figure 7.24: Axial distributions of S, Lz, Lr, and IF, in FFTF. Note that Pr is not shown, because

it is zero for each through-core axial slice. Adding these distributions yields S - L; - L, + Fz = 0.

The spectral distribution S is positive in the fueled region and negative in the axial reflectors and

shields. L, and L, are always positive, while rz can be either positive or negative.
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Figure 7.25: Axial distributions of axial, radial, and isotropic swelling (as well as density reduc-

tion) in FFTF. Note that axial and radial swelling add to precisely equal isotropic swelling, which

itself is twice a density reduction. Thus, a density reduction is the average of axial and radial

swelling.
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Figure 7.26: The spectral reactivity S in each assembly in FFTF. This is strongly positive in fuel

assemblies, strongly negative in control assemblies, and slightly negative in "shim" and reflector

assemblies.
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Figure 7.27: Axial leakage reactivity L in each assembly in FFTF. This is positive everywhere,
especially in the primary control assemblies and the "in-reactor thimble".
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Figure 7.28: Radial leakage reactivity L, in each assembly in FFTF. This is positive everywhere,
but roughly "lobed annular" in shape.
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Figure 7.29: Radial surface leakage reactivity Fr, in each assembly in FFTF. Note that Fz is zero

within each whole assembly. This is negative in fuel assemblies, positive in control assemblies, and

less positive in test and reflector assemblies.
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Figure 7.30: Axial swelling reactivity in each assembly of FFTF. This is negative in the fuel and
positive in control and test assemblies.
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Figure 7.31: Radial swelling reactivity in each assembly of FFTF. Note that radial swelling of

a single assembly will cause it to unphysically "overlap" with neighboring assemblies, but this

distribution may still be useful for core flowering scenarios. This distribution is always negative,
especially so in control assemblies.
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Table 7.12: "Virtual Density" Axially Non-Uniform Axial Swelling for Jay6

Jbyd keff ref. pcm/% ref. pcm/% VirDenT error (%)

unperturbed 0.973187327
z = 10-15 0.972846003 -360.5174435 -360.9862082 0.130%
z = 12-19 0.972985511 -213.1340199 -213.5042931 0.170%

z = 1-8 0.973159281 -29.61341677 -29.68877639 0.250%

z = 16-22 0.973177772 -10.0886773 -10.12323552 0.340%

z = 16-17 0.973178469 -9.35277827 -9.381242643 0.304%

z = 1-8, 16-17 0.973150422 -38.96822254 -39.07001903 0.261%

z = 11-12, 14-15 0.972974942 -224.2983084 -224.5937528 0.132%

z = 8-9, 15-16 0.973099677 -92.55462961 -92.7119564 0.170%

7.9.2 Axially Non-Uniform Axial Swelling

Now we can begin to apply "virtual density" perturbation theory to practical swelling sce-

narios. Here we use the triangle-z finite difference equations derived in Section 7.3.2.

First consider axial swelling that is non-uniform in the axial direction. This constitutes

axially swelling an entire through-core axial slice as illustrated in Figure 7.32. Fortunately,

constructing a reference case for this scenario requires no "virtual mesh". Table 7.12 shows

the results, in which we swell various sets of axial core slices by 1%. The errors are greater

than 0.1% merely because we chose a 1% swelling reference case - they would be smaller had

we chosen a 0.1% swelling reference case.

Throughout these non-uniform triangular-z and hexagonal-z analyses, we will employ the

coordinate system (i, j, z) to identify a single axial segment z of a given assembly (i, j). The

axial position is z > 1, the assembly ring index is i > 1, and the assembly index within each

ring (clockwise from 30 degrees) is j > 1.

We compute the "virtual density" perturbation theory coefficients in Table 7.12 using

Equation 5.45. In these through-core axial slices, F, is always zero. Thus, the reactivity

coefficients are simply

[dI = -2Lr (7.22)
.f.swell,ax

This is a prime example of why the "infinitude of equalities" can be expeditious. We can

now compute the reactivity coefficient via only one term!
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Figure 7.32: Axially non-uniform axial swelling of a through-core axial slice. Here one axial

slice of the core swells in the axial direction, increasing the total core height. This is one of few

non-uniform distortion cases for which we can easily construct a true reference case (not a "virtual

reference").
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Table 7.13: "Virtual Density" Radially Non-Uniform Axial Swelling for Joy6

Jdy6 keff ref. pcm/% virtual ref. pcm/% VirDenT error (%)

unperturbed 0.973187327
i = 1-2 0.973123114 -67.80409977 -67.87510217 0.105%

2 = 3-4 0.973044661 -150.6577384 -150.7823601 0.083%

f for i = 5, f 2 for j = 1 0.972992614 -205.6311762 -205.8215998 0.093%

f (i, j) oc assembly power 0.972873912 -331.0295589 -331.0559652 0.008%

7.9.3 Radially Non-Uniform Axial Swelling

Now consider axial swelling that is non-uniform in the radial direction. This amounts to

different assemblies swelling axially by different factors. Figure 7.33 illustrates assemblies

swelling axially by different factors such that the innermost assemblies swell more (perhaps

proportional to power or temperature). Figure 7.34 illustrates assemblies swelling axially by

random factors.

Unlike axially non-uniform axial swelling, radially non-uniform axial swelling requires a

"virtual reference". Table 7.13 shows the results for four different scenarios:

" Assembly rings 1 and 2 (i = 1-2) swelling axially. These are the 7 innermost assemblies.

" Assembly rings 3 and 4 (i = 3-4) swelling axially. This is an annular group of 30

assemblies.

" Assembly ring i = 5 swelling axially by a factor f in tandem with all j = 1 assemblies

(a "radial row" of assemblies) swelling axially by a factor f2 . Thus, the single assembly

(i, j) = (5,1) constituting the intersection of these regions swells axially by a factor f 3.

" Each assembly swelling axially by a factor f(i, j) in proportion to its total power.

We compute the "virtual density" perturbation theory coefficients in Table 7.13 using

Equation 5.44. In whole assemblies, ', is always zero. Thus, the reactivity coefficients are

simply

=]-S + Lz - Lr (7.23)
df swell,ax

So we have once again utilized the "infinitude of equalities" to simplify the computation,

because we can simply choose whichever equivalent expression results in zero surface terms!
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Figure 7.33: Radially non-uniform axial swelling. Here each assembly swells axially by a different

factor, perhaps proportional to power or temperature. Validating cases like this requires a "virtual

reference".
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Figure 7.34: Radially non-uniform axial swelling. This is conceptually similar to Figure 7.33,
except now each assembly swells axially by a randomly-selected factor.
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Table 7.14: "Virtual Density" Axially and Radially Non-Uniform Axial Swelling for Jay6

Jcy6 keff ref. pcm/% virtual ref. pcm/% VirDenT error (%)

unperturbed 0.973187327

i = 3-5, z = 8-11 0.973053911 -140.8879898 -140.9419228 0.038%
i = 4-6, z = 9-15 0.972974044 -225.2468139 -225.3048945 0.026%
i = 3-5, z = 11-13 0.973051788 -143.1303975 -143.1722496 0.029%
i = 1-2, z = 10-13 0.973142535 -47.29663122 -47.3381405 0.088%
i = 1-4, z = 8-12 0.973048321 -146.7922989 -146.8807177 0.060%
f (i, j, z) oc power 0.972927112 -274.8249477 -274.8326436 0.003%

7.9.4 Axially and Radially Non-Uniform Axial Swelling

Now consider axial swelling that is non-uniform in the axial and radial directions. This is

simply a combination of the previous two scenarios. Now each axial segment of each assembly
can swell axially by a different factor. Refer back to Figure 7.4 for an illustration.

Table 7.14 shows the results. We arbitrarily select various axial segments of various

assembly groups. We also perform one case in which each (i, j, z) zone swells axially in
proportion to its fission power.

We could compute the "virtual density" perturbation theory coefficients in Table 7.14
using any expression among Equations 5.41 - 5.47. Both IF and F, cannot be zero for an

arbitrary triangular mesh cell, so we cannot avoid computation of at least one surface term.
However, even though we cannot avoid computation of either surface term, we can avoid
computation of both surface terms. Choosing Equation 5.45 avoids computation of 17, while
choosing Equation 5.44 avoids computation of r,.
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Table 7.15: "Virtual Density" Axially Non-Uniform Radial Swelling for Jby6

Jy_ keff ref. pcm/% virtual ref. pcm/% VirDenT error (%)
unperturbed 0.973187327
z = 12-14 0.972836558 -370.4969511 -371.0293602 0.144%

z = 15-19 0.973127562 -63.10773091 -63.21006741 0.162%

z = 11 0.973026313 -170.0362912 -170.3488787 0.184%

z = 1-8 0.973136617 -53.54554599 -53.66346039 0.220%

f (z) linear 0.972722422 -491.1101011 -491.1816011 0.015%

f (z) quadratic 0.970705725 -262.6928069 -262.4647498 0.087%
f (z) cosine 0.972327156 -909.0252531 -908.8938323 0.015%

f (Z)2 oc power 0.97245447 -774.3787431 -774.4514445 0.009%

7.9.5 Axially Non-Uniform Radial Swelling

Now consider radial swelling that is non-uniform in the axial direction. Figure 7.35 illustrates

one through-core axial slice swelling radially outward. Figure 7.36 shows numerous axial

slices swelling by different magnitudes to reflect a cosine flowering scenario. This may occur

when a core is constrained at its top and bottom but permitted to "bulge" outward around

its center.

Table 7.15 shows the results for a variety of radial swelling cases. First we swell single axial

slices (defined by a range of z values). Then we swell every axial slice with linear, quadratic,
and cosine axial distributions. The cosine distribution reflects the "restrained" illustration in

Figure 7.36, while the linear or quadratic distributions reflect the "unrestrained" illustration

in Figure 1.3. Finally, we swell each axial slice so that f2 (the fractional volume increase) is

proportional to the slice's total fission power.

In order to construct these "virtual reference" cases, note that if the hexagonal assembly

pitch in an axial slice increases by the factor f, then all material densities within that slice

decrease by the factor f2.
We compute the "virtual density" perturbation theory coefficients in Table 7.15 using

Equation 5.52. Remember that IF. is zero in through-core axial slices, so the reactivity

coefficients are simply

Ldp] = -2S - 2Lz (7.24)
df swell,rad

Again, we have chosen an equivalent expression to avoid computation of the surface

terms.
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Figure 7.35: Axially non-uniform radial swelling. Here a through-core axial slice swells radially
outward, increasing core diameter but not affecting core height. Validating cases like this requires
a "virtual reference".
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Figure 7.36: Axially non-uniform radial swelling with an axial profile. Here the core top and

bottom do not radially swell, but the core middle "bulges" outward. This could be a model for a

core that is restrained at only its top and bottom.
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7.9.6 The Enigma of Radially Non-Uniform Radial Swelling

Now we have covered three fundamentally distinct swelling types in triangular-z or hexagonal-

z geometry:

" axial swelling that is non-uniform in the axial direction

" axial swelling that is non-uniform in the radial direction

" radial swelling that is non-uniform in the axial direction

Of course, there is one swelling type missing here: radial swelling that is non-uniform in

the radial direction. This swelling type is particularly cumbersome, because an individual

assembly cannot swell radially without unphysically "overlapping" its neighboring assem-

blies. We can compute radial swelling for a whole core or a through-core axial slice, but can

we compute it for a single assembly?

In reality, individual assemblies are separated by interstitial coolant zones, so a given

assembly can move (slightly) radially outward without violating geometry. However, this is

a localized heterogeneous effect, and so how can we model it on a coarse mesh of homogenized

assemblies? We will devote much of Chapter 11 to solving this enigma.

7.10 The Exact Precision of Non-Uniform Anisotropic "Virtual
Density" Perturbation Theory

Throughout all this numeric verification of the non-uniform anisotropic "virtual density"
formalism, we have shown very small errors between perturbation theory and the (virtual or

actual) reference cases - usually less than 0.1% and oftentimes much smaller.

It is crucial to understand that these errors originate not from the reactivity coefficient
computed via "virtual density", but from the reference cases. All the reference cases contain

curvature in reactivity, because the reactivity has non-zero first and second derivatives. The
"virtual density" formalism predicts the first derivative exactly; all the errors we have shown

here originate from the non-zero second derivative in the reference cases.

We now return to the case in which each axial segment of each assembly in Jayb swells

axially in proportion to its power. This computation appears in Table 7.14. We can compute

the axial swelling reactivity coefficient via "virtual density" perturbation theory and compare

it to a "virtual reference" case. As the swelling fraction f approaches 1 (and f -I approaches

0), the error between the "virtual density" and "virtual reference" reactivity coefficients

approaches 0. We illustrate this in Figure 7.37.
The reason for this decrease in error is not anything in "virtual density" perturbation the-

ory, which predicts the same linear coefficient regardless of the swelling magnitude. Only the
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reference reactivity coefficient changes (converges to the correct answer) as the swelling mag-

nitude approaches zero. Thus, we can say with confidence that the non-uniform anisotropic

"virtual density" perturbation theory formalism is precise.

10

1 T1

10-
0

1 T

,-
4

10
1 T

maximum swelling (%)
10 0 10 1

Figure 7.37: The error magnitude (%) between "virtual density" perturbation theory and a

"virtual reference" eigenvalue calculation for the case in which each axial segment of each assembly

in Jbyb swells axially in proportion to its power. Here the "maximum swelling" is the maximum

value of f - 1 throughout the core. Clearly, the error approaches zero as the swelling approaches

zero.

7.11 Summary

We have numerically validated the non-uniform anisotropic "virtual density" theory for a

plethora of swelling cases in simple 2-D and 3-D Cartesian geometries as well as in full-core
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3-D hexagonal-z benchmarks. In all cases, we find that reactivity coefficients agree precisely
with diffusion reference cases. Errors are usually below 0.1% and often below 0.01%. We
showed that these errors arise entirely from non-zero second derivatives of reactivity in the
reference eigenvalue calculations, not the perturbation theory itself. Thus, the perturbation
theory predicts reactivity coefficients that are exact in diffusion theory.

Moving forward, we write the "Virtual Density" Theory (VirDenT) distortion code, which
computes reactivity coefficients due to non-uniform anisotropic swelling scenarios in fast
reactors.
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8 Performance of "Virtual Density" Perturbation The-

ory Relative to Traditional Boundary Perturbation

Theory

8.1 Chapter Abstract

We compare and contrast "virtual density" perturbation theory with the traditional bound-

ary perturbation theory developed by Pomraning, Larsen, and Rahnema. First, we mathe-

matically prove that "virtual density" perturbations and traditional boundary perturbations

are precisely equivalent for arbitrary 1-D problems, which constitute non-uniform isotropic

expansions. We also mathematically prove that these two perturbation theories are equiva-

lent for 2-D boundary shift problems, which constitute non-uniform anisotropic expansions.

Extension of this proof to swellings or 3-D problems is straightforward. We compare the

two theories numerically for a series of alternating uranium and sodium 1-D slabs in finite

difference diffusion, and we show that "virtual density" theory predicts reactivities much

more accurately and efficiently than traditional boundary perturbation theory. Boundary

perturbation theory is often very inaccurate on a coarse mesh but converges to the "virtual

density" solution as the mesh becomes finer. We also compare the two theories for axial as-

sembly swelling in an abbreviated FFTF benchmark with a coarse mesh. Here we find that

reactivity coefficients obtained via "virtual density" perturbation theory agree with reference

solutions to less than 0.1%, while those obtained via boundary perturbation theory exhibit

sporadic accuracy - sometimes in the range of 1-5% error, more frequently in the range 5-

20% error, and occasionally well over 100% error in control rod assemblies. We conclude

that although "virtual density" perturbation theory and boundary perturbation theory are

analytically equivalent, boundary perturbations are often thwarted in coarse mesh finite dif-

ference solutions due to inaccurate flux gradients along mesh cell surfaces in heterogeneous

cores.

8.2 Introduction

Now that we have numerically validated non-uniform anisotropic "virtual density" theory

against "virtual mesh" diffusion reference cases, we seek to ascertain how well"virtual den-

sity" theory performs relative to traditional boundary perturbation theory. Showing that

our new theory works is nice, but showing how it compares to previous methods could "seal

the deal".
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8.3 Analytic Comparison for Uniform Isotropic Expansions

First, we can easily show that "virtual density" perturbation theory and boundary pertur-

bation theory are equivalent for uniform isotropic expansions of 1-D slabs and spheres. Here
we use the traditional boundary perturbation theory as derived by Pomraning, Larsen, and
Rahnema in the early 1980s [42,43,45]. For simplicity, we assume zero-flux vacuum boundary

conditions.

Pomraning and Larsen derived the following one-group expression for the reactivity due
to an external boundary perturbation.

= f dS|r - I|D (f . VO(r)) 2  (8.1)
f dVv Ef5(r)2

Here ' and r' are vectors pointing to the unperturbed and perturbed surfaces, respectively.
h is the unit normal vector of the unperturbed surface S.

8.3.1 1-D Slab Expansion

Let us return to the infinite homogenous 1-D slab of thickness a that we studied in Section
3.5.1. Here the domain is -a/2 < x < a/2. Let the perturbed thickness be a + 2a so that

a' a
- = + a (8.2)
2 2

The equivalent expansion fraction f is

f = 1 + (8.3)
a/2

We can usefully express the relationship between f and a as a derivative.

df = 2 
(8.4)

da a

Now the simplified Pomraning expression for the first order reactivity in one group is

Ap _ f dSaD (V#O(ir)) 2  (8.5)
f dVvEpk(r) 2

This expression assumes that the surface perturbation vector r - r = a is always per-

pendicular to the normal unit vector ft of surface S. Now expressing the first derivative of
the eigenvalue with respect to the perturbation magnitude a is simple:

d(Ap) f dSD (V(F))2  (8.6)
da f dVvE fq(i) 2
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Considering our particular 1-D infinite slab geometry and evaluating this derivative at a

= 0 yields

d(Ap)
doa=

2 [D (VO(x))2 ] 1 2

a/;2a/2dx V~f t(X) 2
(8.7)

The factor of 2 here simply accounts for the fact that the infinite 1-D slab has two

surfaces, each perturbed by the same distance a. Performing the integral leaves

E d(Ap) 1da J (8.8)2D(Fr/a)2

SEf 5(a/2)

Now in order to compare with our "virtual density" results, we must evaluate the deriva-

tive with respect to f. We can do this by multiplying our result by the derivative da/df.

L d(Ap) I
da
df

[d(Ap)]
_ da o 

2D (7)2
=7-
vf a5

(8.9)

This result is precisely consistent with our "virtual density" result shown in Equation

3.54.

8.3.2 1-D Sphere Expansion

Now let us perform the same comparative analysis for the case of a homogenous sphere

bounded by vacuum. We previously studied this in Section 3.5.2. We perturb its radius by

a distance a.

R' = R + a (8.10)

The corresponding expansion fraction we use in "virtual density" theory is

f =+ t

The differential relationship between f and a is

df 1
da R

(8.11)

(8.12)

Now the reactivity per unit a is

L d(Ap)~.hda J p_r

The reactivity per unit f is

[D (VV ((r))2

f R47er2dr PEf (#(r))2

47rR 2D __)

47rvf
(8.13)
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d(Ap) da [d(Ap) 2D r2 (8.14)
df If df [- I =0 - f R )

Again, this result is precisely consistent with our "virtual density" theory result in Equa-
tion 3.68.

8.4 Analytic Equivalence for Non-Uniform Isotropic Expansions
in 1-D

We have shown that "virtual density" perturbation theory is equivalent to boundary pertur-
bation theory for the two very simple cases of uniform isotropic expansion of homogeneous
slabs and spheres. Now we will mathematically prove this equivalence for any geometry
change in any arbitrary 1-D Cartesian geometry.

Consider the single internal boundary shift in an array of 1-D slabs. As illustrated in
Figure 8.1, an internal boundary shifts slightly to the right by a distance Ax. The "virtual
density" theory transforms this boundary shift into two material density changes: a factor of
-Ax/a density change in the right slab and a factor of Ax/a density change in the left slab.
In one group, we can express the uniform isotropic "virtual density" perturbation numerator
as

Ap K#t F5) = fdx [Ot (x) (IvEf - Ea) L(x) + DLVf (x) - Vq(x)] (8.15)

-g fodx [# (x) ( VEf - Ea)R #(x) + DRVqft(x) - VO(x)] (8.16)

Here the subscripts L and R denote material properties in the left and right slabs, re-
spectively. Although there is obviously no fission in the sodium slab, we leave the fission
term there for completeness. These expressions are precisely equivalent to the isotropic S
and L quantities defined in Section 3.4.3.

However, if we consider the conceptual underpinnings of the "virtual density" theory
- the basic reasoning we employed to conceive it - there is no reason why we must alter
material densities throughout the whole two slabs. Instead, we could alter material densities
in only half of each slab - the half adjacent to the shifting boundary. Now the perturbation
numerator will look like this:

Ap K(# f #) = g f_ al 2dx [Ot(x) (pVif - Ea)L k(x) + DLV~t (x) - VO(x)] (8.17)

-9 Jf 1 2 dx [kt(x) (1vE - Ea)R O(x) + DRVqt(x) - V#(x)] (8.18)

Believe it or not, Equations 8.17 and 8.18 are precisely equivalent to Equations 8.15 and

8.16. No approximation is involved. We can even take this further - if we can integrate over
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a half slab instead of a whole slab, why can we not integrate over only a very small slice of

the slab immediately adjacent to the shifting boundary? In fact, we can. We now choose to

integrate over a small slice in each slab with thickness Ax, the same thickness as the volume

displaced by the shifting surface.

Ap (qft PO) = f Axdx [qOt(x) (}vEf - Ea)L O(x) + DLV~t(x) -V#(x)] (8.19)

- fxdx [4t(x) ( vEf - Ea),q#(x) + DRVqft(x) - V4(X)] (8.20)

Again, Equations 8.19 and 8.20 are precisely equivalent to Equations 8.15 and 8.16.

Now, assuming that Ax << a, we can transform each of the volume integrals in Equations

8.19 and 8.20 into a surface integral over the unperturbed surface S at x = 0. This is the same

volume-to-surface transformation performed by Rahnema and Pomraning when describing

the diffusion perturbation "anomaly" [43]. Note that we now add L and R subscripts to VO,

because flux gradients are discontinuous across material discontinuities.

Ap (#f FI#) = Ax fsdS [+() ( vf - Ea)L #(0) ± DLV~I(0) VL (0)] (8.21)

-Ax fsdS +() ( v'Z - Za)Rcb(0) ± DRV4t(0) -VO(0)] (8.22)

Now we notice that both integrals (for R and L quantities) have the same domain - the

unperturbed surface. Thus, we can easily combine them into a single surface integral. We

now denote 0(0) as simply q.

Ax dS #t ( Q Ev - Ea) L- - Ea R) + DL VOL - VL - DR R Vq R

(8.23)

Now consider the difference in leakage terms in Equation 8.23. We know that the real

and adjoint currents are conserved across the surface S due to Fick's Law:

- DLVOL = -DRVOR (8.24)

DLVt = DRV~t (8.25)

Now we can cleverly apply Equations 8.24 and 8.25 to the leakage difference in Equation

8.23 to obtain

Ax dS [f VE - Ea - vzf - a) R + (DR - DL) Vt -VOL (8.26)
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Note that we could alternatively (and equivalently) express the leakage term in Equation
8.26 using the left adjoint flux and the right real flux:

VOt-VOL = V~t Vq5R (8.27)

Equation 8.26 is equivalent to Equation 2.43, which Rahnema and Pomraning derived to
correct for the diffusion perturbation "anomaly" [43]. Thus, we have successfully re-derived

the diffusion internal boundary perturbation proposed by Rahnema and Pomraning from
scratch based on different fundamental principles.

Rahnema and Pomraning describe this "anomaly" as an unexpected failure of the usual
first order diffusion perturbation formula for internal boundary shifts. Boundary shifts are
an order 1 change in cross-sections over an order E << 1 volume, while density changes are
an order E << 1 change in cross-sections over an order 1 volume. Pomraning shows that the
"classic" perturbation formula fails and re-derives the correct revised formula [45]. However,
we have shown here that no such "anomaly" occurs via the "virtual density" theory - the
classic first order perturbation formula is correct if we only define the perturbation as a
"virtual" density change rather than as a boundary shift. Thus, this "anomaly" is really not
so anomalous.

Although we have only mathematically proven this for a single boundary shift, it is
obvious that 1-D geometry perturbation can be decomposed into individual boundary shifts.
Thus, we have shown that "virtual density" perturbation theory is equivalent to traditional

boundary perturbation theory for any arbitrary geometry perturbation in 1-D problems.
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Ax

Na U

L R

x=0
a a

Figure 8.1: An illustration of a single internal boundary shift. The boundary shifts rightward

by a small distance Ax so that fuel mass is lost. Each slab has unperturbed width a. Let x = 0
correspond to the position of the unperturbed boundary. Quantities in the right slab are denoted

by the subscript R, while quantities in left slab are denoted by the subscript L.
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8.5 Analytic Equivalence for Non-Uniform Anisotropic Expan-
sions in 2-D

In the previous section, we proved the analytic equivalence of isotropic "virtual density" and

traditional boundary perturbation theory in 1-D slab geometry. Here we will walk through a

similar proof for a boundary shift in 2-D Cartesian geometry. Although this is all one-group,
extension to multigroup is trivial. Multigroup first order perturbations are always the simple

sum of perturbations in each group.

As illustrated in Figure 8.2, an internal boundary (between two mesh cells) shifts slightly

to the right by a distance Ax. The "virtual density" theory transforms this boundary shift

into two material density changes: a factor of -Ax/a density change in the right slab and a

factor of Ax/a density change in the left slab. In shorthand notation, the "virtual density"

eigenvalue perturbation is

AX A
Ap= a [S+L -LY +Yx- b [S + Lx - LY + IIVa (8.28)

Here we have chosen to use Equation 5.33, because it contains the spectral reactivity S

with a "+1" coefficient.

In one group, we can express the full spatial integrals in the perturbation numerators of

this shorthand notation as

ApKOt $) = (8.29)

A jdx j tdy [(x, y) av - E $(x, y) (8.30)

± A dx jdy [DL [Vkt (x, y)]x [V#(x, y)] - DL [V~t (x, y)], [V#(x, y)]y] (8.31)

± dx [DLt(x, c) [VO(x, c)]y - Drqft(x, 0) [V#(x, 0)]J (8.32)

- AX bdx Cdy [#t (x, y) ( -vE - Ea q$(x, y) (8.33)

- AX jbdx Cdy [DR [V (x, y)] [V#(x, y)] - DR [Vt(x, y)] , [V(x, y)]y] (8.34)

- A Jdx [DRbt(x, c) [VO(x, c)] - DRe t (x, 0) [VO(x, 0)]] (8.35)

Here the subscripts L and R denote material properties in the left and right slabs, re-

spectively. The subscripts x and y denote the x and y components of the real or adjoint flux

238



The "Virtual Density" Theory

gradients. The S, L2, and L. quantities are volume integrals, while the I', quantities are

surface integrals.

However, if we consider the conceptual underpinnings of the "virtual density" theory - the

basic reasoning we employed to conceive it - there is no reason why we must alter material

densities throughout the whole two slabs. Instead, we could alter material densities in only

half of each slab - the half adjacent to the shifting boundary. Now the same perturbation

numerator looks like this:

2AX 0  1
da dy ( Ea) (X, y) (8.36)

a f-a/2 JO lk JI

+ 2Ax 0 d dy [DL [Vt- DL [V (x, y)] [V(x, y)I (8.37)
a f-a/2 JO, V0,y] L[0 X ), V(,YJ

+ A id DX t(X, c) [V4(XC)],- DL t (X, 0) [Vk(x, 0)] (8.38)

- 2Ax b/2 jdy [#t(x, y) (-vE - Ea 4(X, y) (8.39)

- 2Ax b/2 d Cdy [DR[ [Vt(x,y)]x [V(x,y)] - DR [V (X,Y)] [Vk(X,Y)]y] (8.40)

- 2Ax b/ 2dx [DRObt, c) [V#(x, c)], - DRqft(x, 0) [V4(x, 0)]V (8.41)

Believe it or not, the expressions in Equations 8.36 - 8.41 are precisely equivalent to those

in Equations 8.30 - 8.35. No approximation is involved. We can even take this further - if

we can integrate over a half slab instead of a whole slab, why can we not integrate over only

a very small slice of the slab immediately adjacent to the shifting boundary? In fact, we

can. We now choose to integrate over a small slice in each slab with thickness Ax, the same

thickness as the volume displaced by the shifting surface.
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j dx dy #f (x, y) VEf - E, L(X, y) (8.42)
-A 0, .,X J

+ j dx jdy [DL [Vok (x, y)]x [V#(x, y)]x - DL [V~t (x, y)], [VO(x, y)],] (8.43)

+ j dx [Dpkt(x, c) [V#(x, c)]y - DLrt(x, 0) [V#(x, 0)] (8.44)/A
- JAdx jdy [t (X, Y) VEf - E, #(X, Y) (8.45)

JO f . k R .

- j dx jdy [DR [V#t(x,y)] [Vo(x,y)]x - DR [Vt(x,y)], [VO(x,y)] (8.46)

- [dx DRt (x, c) [V(x, c)], - DRat (x, 0) [VO(x, 0)I] (8.47)
0

Again, Equations 8.42 - 8.47 are precisely equivalent to Equations 8.30 - 8.35. No ap-

proximation is made.
Now, assuming that Ax is extremely small, we can transform each of the volume integrals

in Equations 8.42 - 8.47 into surface integrals over the unperturbed surface S at x = 0.
This is the same volume-to-surface transformation performed by Rahnema and Pomraning
when describing the diffusion perturbation "anomaly" [43]. Note that we now add L and R
subscripts to V#, because flux gradients are discontinuous across material discontinuities.
Also, we denote #(0) as simply #. The surface S is vertical, and so the dot product dS-
will have a magnitude of 1.

Ax jd - ot (k Vf - a )L (8.48)

+Ax j(dS [DL (Vt)xL (V#)x,L - DL (VD)yL (v4)y,L] (8.49)

-Ax j(d-2)#t [ kV -( ia)RO] (8.50)

-Ax j(d ) [DR (Vt)xR (VO)xR - DR (V#)y,R (Vq5y,R] (8.51)

Note that the surface integral IF, terms have disappeared. When we converted the volume
integrals to surface integrals, we also (implicitly) converted the surface integrals to zero. The
]FY terms are only non-zero at a single point on the surface 5, and that single point has zero
area. Thus, the integral of F, over the surface area is zero.

Now we notice that the right-hand and left-hand integrals both have the same domain -
the unperturbed surface. Thus, we can easily combine them into a single surface integral.
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Ax Jd -) [ t ( # a)L - #t (v E - R (8.52)

+AX j -( S DL ( V~tDxL(V)x,L - DR (Vt)x,R x,R (8.53)

-Ax j(ds - ) [DL (Vy,)y, (VO)YL - DR (Vt)yR (Vk)R] (8.54)

Now consider the difference in leakage terms in Equations 8.53 and 8.54. We know that

the real and adjoint currents perpendicular to the surface S are conserved across S due to

Fick's Law:

- DLV~x,L = -DRV'bx,R (8.55)

DLV# t = DRVqa (8.56)

We also know that the the real and adjoint gradients parallel to the surface S must be

equal on either side of S. Were these gradients not equal, the flux magnitude would not be

continuous along S.

V#,,L = V#y,R (8.57)

V# , = V,R (8.58)

Now we can cleverly apply Equations 8.55 - 8.58 to the leakage differences in Equations

8.53 and 8.54 to obtain

Axj dS ) [t (. vz - Ea q -# t ( Ez - 01 (8.59)

+ AX j(d .i) [(DR - DL) (VO)x +(V),L ±(DR - DL) (V~t)yR (V),L] (8.60)

Now the leakage terms in Equation 8.60 are nothing but DR - DL multiplied by the dot

product of the real and adjoint flux gradients! So now the full surface integral simplifies to

AX i (ds ) [ k vEf - Ea - VE - Ena + (DR - DL) V~4t V5L]

(8.61)
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Note that we could alternatively (and equivalently) express the leakage term in Equation
8.61 using the left adjoint flux and the right real flux:

'70' - VOL = V q5R - VO (8.62)

Equation 8.61 is equivalent to Equation 2.43, which Rahnema and Pomraning derived
to correct for the diffusion perturbation "anomaly" [43]. Thus, we have successfully re-

derived the diffusion internal boundary perturbation proposed by Rahnema and Pomraning

from scratch based on different fundamental principles. We did this in Section 8.4 for the

isotropic case, and now we have done the same for the fully general anisotropic case.

Although we have only mathematically proven this for a single 2-D boundary shift, any
2-D geometry perturbation can (obviously) be decomposed into individual 2-D boundary

shifts. Figure 8.2 could represent two adjacent mesh cells within a core, and so any 2-D
perturbation can be expressed as a superposition of many mesh cells behaving similarly.

Thus, we have shown that "virtual density" perturbation theory is equivalent to tradi-

tional boundary perturbation theory for any arbitrary geometry perturbation in 2-D prob-
lems. Extension to 3-D is trivial given what we have shown in this section - it merely requires
the addition of Lz and IF terms, which one could carry through the proof in precisely the
same manner as L. and r,.
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Ax

J I L

L R

~1 I-
I

a
x=U

P- C

b

Figure 8.2: An illustration of a single internal boundary shift in Cartesian 2D geometry. The

boundary shifts rightward by a small distance Ax without changing material densities, so mass is

not conserved. The region to the left has unperturbed width a, while the region to the right has

unperturbed width b. Both regions have the same height c. Let x = 0 correspond to the position

of the unperturbed boundary. Quantities in the right slab are denoted by the subscript R, while

quantities in left slab are denoted by the subscript L.
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8.6 Numeric Comparison for Arbitrary 1-D Perturbations

Now that we have proven the analytic equivalence of "virtual density" perturbation theory

and boundary perturbation theory, we will compare them numerically. Since a proper com-

parison will require a range of coarse to very fine meshes, we begin with a 1-D slab problem

that can be solved very quickly.

Any 1-D Cartesian problem can be modeled as a series of infinite 1-D slabs. Even

though shifting one slab is often a very non-uniform and asymmetric distortion, we can still

apply the isotropic "virtual density" theory to it. When an infinite 1-D slab is expanded

or contracted, it remains an infinite 1-D slab - it retains its "shape". Thus, in this section,
we demonstrate that the isotropic "virtual density" theory is applicable to any arbitrary

geometry perturbation in 1-D problems.

Consider the test geometry shown in Figure 8.3. Six uranium metal slabs interspersed

with seven sodium slabs comprise a 1-D reactor model. In this model, we can define any

geometry perturbation in either of two paradigms: (1) as shifting inter-slab boundaries or

(2) as expansions or contractions of slabs. Paradigm (1) corresponds to traditional bound-

ary perturbation theory, while paradigm (2) corresponds to "virtual density" perturbation

theory.

We model this 1-D test geometry in MaPS. We employ mesh-centered finite difference,
and we can vary the number of mesh cells per slab. We always use a strict zero-flux boundary

condition without extrapolation. Figure 8.4 shows the spatial distribution of the real and

adjoint fluxes in this 1-D test geometry at four different energies. Refer back to Figure 2.1

for the real and adjoint flux spectra within the central sodium slab.
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1 2 3 4 512345i 6 7 8 9 10 11
I I
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1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 8.3: Six uranium metal slabs interspersed with seven pure sodium slabs. The uranium is

enriched to 11%. All slabs are 6 cm thick with vacuum boundary conditions on the outer sodium

slabs. We have numbered the slabs 1-13 and the surfaces 1-14.
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Figure 8.4: Spatial distributions of the real and adjoint fluxes in the alternating uranium-sodium
slab geometry shown in Figure 8.3. At high energies, both real and adjoint fluxes tend to be spatially
smooth. In the keV range, the real flux peaks sharply in the sodium slabs, because neutrons are
strongly absorbed in the uranium slabs. In the eV range, very few neutrons exist. However, the
adjoint flux peaks sharply in the sodium slabs, because neutrons are more "important" when they
scatter down to lower energies.
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8.6.1 Evaluation of Surface Currents

Pomraning and Rahnema formulated traditional boundary perturbation theory for internal

boundary shifts in diffusion theory, correcting a curious "anomaly" that has no analog in

transport theory [43].

f dSK' - r [(DR - DL) Vqt - VOL + 0' ((1v f - Ea)L - f Ea) R)

f dVot)IvZy
(8.63)

This applies to an internal interface shift to the right. The scalar Ir - r is the distance

between the unperturbed surface S and the perturbed surface. The subscripts R and L

denote quantities evaluated immediately to the right or left of the boundary (the unperturbed

surface S). Note that although the flux gradient is discontinuous across the interface, the

flux itself is always continuous. Although this expression is only one-group, extension to

multigroup requires nothing more than summing over all energy groups and adding scattering

terms.

Equation 8.63 requires precise knowledge of the real and adjoint flux gradients to the right

and left of each inter-slab boundary. Although finite difference solutions produce volume-

averaged fluxes, they also provide implicit knowledge of surface fluxes. Thus, we can estimate

surface fluxes and flux gradients on either side of a boundary with some simple math.

As we are implementing methods developed by others, it is crucial to define our imple-

mentation precisely. We have found no finite difference implementation of Equation 8.63 in

the literature. We strive to implement Equation 8.63 in the most accurate way possible, but

others may propose different implementations.

See Figure 8.5 for an illustration. Let OR denote the flux in the mesh cell immediately

to the right of the boundary, and let #L denote the flux in the mesh cell immediately to the

left of that same boundary. Let 40 represent the flux magnitude directly on the boundary.

The right mesh cell has thickness AXR and diffusion coefficient DR, while the left mesh cell

has thickness AXL and diffusion coefficient DL.
We can begin by expressing the right and left flux gradients as simple finite differences

including o.

V 0L = (8.64)
AXL12

VRO = (8.65)
AXR/2

Now let us conserve current across the boundary and then substitute in the finite differ-

ences above.
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DLVOL = DRV #R (8.66)

DL = DR OR- (8.67)
AXL12 AXR12

Now solving for #0 is trivial:

D L R
__ = (8.68)00 D--+ DR

AXL AXR

Once we know 0, then we may return to Equations 8.64 and 8.65 to obtain VR and

VOL. We can then repeat the identical process to obtain Vq5t and V#5t.
As for external boundary shifts, Larsen and Pomraning derived a similar expression for

external reactor boundaries [42].

Ap = f dSIrl - rID (. -Vqt) (h -V) (8.69)
f dVtv E 5

Since we have chosen a strict zero-flux boundary condition, we can express V0 at the
outer boundary as -/(Ax/2), where # is the flux in the mesh cell adjacent to the boundary
and Ax is the width of that mesh cell.

These difference techniques will not provide perfect surface currents, but they are perhaps
the best one can do with finite difference solutions.
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Figure 8.5: Estimating flux gradients on either side of a boundary from a mesh-centered finite

difference solution. Let #R and OR denote the fluxes in the mesh cells immediately to the right and

left of the boundary. 0 represents the flux directly on the boundary. AXR, DR, AXL, and DL are

the thicknesses and diffusion coefficients in the right and left mesh cells.
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8.6.2 Single Internal Boundary Shifting

Now let us compare "virtual density" perturbation theory and traditional boundary pertur-

bation theory. We begin with the simplest of all geometry perturbations - shifting a single

internal boundary slightly to the right. We shall arbitrarily choose surface 8 in Figure 8.3.

We will not change the densities of slabs 7 or 8, so surface 8's movement to the right will

decrease the mass of uranium and increase the mass of sodium. Thus, we should expect a

large decrease in reactivity.

In traditional boundary perturbation theory, we can simply apply Equation 8.63 to sur-

face 8 to obtain the first order reactivity. This is a surface integral over surface 8, which is

equivalent to a volume integral in the small region between the unperturbed surface 8 and

the perturbed surface 8. This corresponds to the "actual" movement of surface 8.

In "virtual density" perturbation theory, we perform no surface integrals at all. Instead

of actually moving surface 8, we increase the neutron mean free path in slab 8 and decrease

the neutron mean free path in slab 7. This is equivalent to decreasing the uranium density

in slab 8 and increasing the sodium density in slab 7.

Figure 8.6 compares these two approaches to the exact reactivity. Here the "boundary

shift fraction" is equal to dx/a, where dx is the distance by which the boundary shifts and

a is the slab width. As expected, this surface shift causes a large decrease in reactivity,
primarily due to loss of fuel mass.

Figure 8.6 gives the impression that boundary perturbation theory is more accurate than

"virtual density" perturbation theory in this case, but that impression is actually false.

Figure 8.7 shows the percent error between the perturbation theory predictions and the

exact reactivity. Now it is clear that "virtual density" perturbation theory predicts the first

derivative of eigenvalue exactly for the smallest perturbations, while boundary perturbation

theory is in error by over 2%. In this particular case, boundary perturbation theory is more

accurate for larger perturbations, but that accuracy is due to coincidence rather than any

virtue of the method. The virtue of a first order perturbation method should be judged by

how well it predicts the first derivative of eigenvalue for infinitesimally small perturbation

magnitudes, and Figure 8.7 shows that "virtual density" perturbation theory predicts that

first derivative precisely.

Figure 8.7 motivates us to directly compare how well "virtual density" perturbation

theory and boundary perturbation theory predict the first derivatives of reactivities. We

already did this in Figure 8.7, which has 4 mesh cells per slab. Now let us vary the number

of mesh cells per slab and shrink the "boundary shift fraction" down to 0.0001 so that

each perturbation method can best capture the first derivative of eigenvalue - the reactivity

"coefficient" for this boundary shift.

Figure 8.8 compares the perturbation theory errors as a function of mesh cells per slab.

While the accuracy of "virtual density" perturbation theory is completely independent of the
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mesh resolution, the accuracy of traditional boundary perturbation theory depends strongly

on mesh resolution. This should not be terribly surprising, because the "virtual density"

formulation allows one to express the perturbation in the same domain as the unperturbed

solution - a simple difference of diffusion operators. In contrast, the boundary perturbation

formulation can not be expressed in terms of the unperturbed diffusion operators - it requires

accurate surface currents. Since this is a finite difference model, the surface current accuracy

depends strongly upon the mesh resolution. Thus, while traditional boundary perturbation

theory is only accurate for very fine meshes, "virtual density" perturbation theory is accurate

for even very coarse meshes.

The solid black line in Figure 8.8 shows how well the direct eigenvalue solution (the

"exact value") at each mesh resolution agrees with its value computed on the most hyperfine

mesh. Since "virtual density" perturbation theory agrees precisely with this "exact value" at

each mesh resolution, this black line also represents how well "virtual density" perturbation

theory predicts the hyperfine "exact value". Thus, "virtual density" perturbation theory is

always correct on a given mesh, but it can never be more accurate than that mesh itself.

Figure 8.8 does not imply that boundary perturbation theory agrees more closely with the

hyperfine "exact value", because the errors are actually of opposite sign (despite being the

same order of magnitude).

251



252 Mark Reed

0

- -- boundary PT-20C .................................

"virtual density" PT
-40C .......-- ..........................

exact value

-60C......... .................... ............... ............

E
-80C -....------ ------ -- ----------- .....-.............. -

-100(...........--------------- - - - ...............................

- 1 2 0 ( - - - - - - - - ------ ------ ---. ... ..- ----- -----.. ... .. .. .. . . . .............
(D

-140( --------------- - - --.................... ----- ----...... ..-.-..

- 1 6 0 ( -- --- --- -- - --- -- - --- --- -- ---- - -.-- - - - -.- ..-

- 1 8 0 - - - - - - - - - - - - - - - .- - .-- - - - - - - - - --.-- - - - - - - - - - - - --. .-- - - - -.-- - - . -

-20OW
0 0.05 0.1 0.15 0.2 0. 25

boundary shift fraction

Figure 8.6: Reactivity due to movement of a single internal surface - surface 8 in Figure 8-3.
The exact value (computed via finite difference diffusion) is compared to that predicted by "virtual
density" and traditional boundary perturbation theory. Here the "boundary shift fraction" is equal
to dx/a, where dx is the distance by which the boundary shifts and a is the slab width. Here each
slab contains 4 finite difference mesh cells.
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Figure 8.7: Perturbation theory error in reactivity due to movement of a single internal surface

- surface 8 in Figure 8.3. Here the "boundary shift fraction" is equal to dx/a, where dz is the

distance by which the boundary shifts and a is the slab width. Here each slab contains 4 finite

difference mesh cells.
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Figure 8.8: Perturbation theory error in eigenvalue derivative with respect to movement of a

single internal surface (surface 8 in Figure 8.3) as a function of mesh cells per slab. The solid black

line represents the error between the diffusion reference eigenvalue at each mesh resolution and at
the most hyperfine mesh.
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8.6.3 Single External Boundary Shifting

Now let us try shifting an external boundary - surface 14 in Figure 8.3. In boundary per-

turbation theory, we actually move surface 14 to the right by applying Equation 8.69. In

"virtual density" perturbation theory, we simply decrease the neutron mean free path in

slab 13 by increasing the sodium density in that slab. Since this perturbation amounts to

thickening a reflector, we should expect reactivity to increase.

Figure 8.9 compares these two approaches to the exact reactivity. Here the "slab expan-

sion fraction" is equal to dx/a, where dx is the distance by which the boundary shifts and a

is the slab width. As expected, this surface shift causes an increase in reactivity, because the

outer sodium slab (which acts as a reflector) is thickening. Clearly, Figure 8.9 shows that

"virtual density" perturbation theory is much more accurate than boundary perturbation

theory, which is in error by approximately 20%.

Again, we compare "virtual density" perturbation theory and boundary perturbation the-

ory by how well they predict the first derivative of eigenvalue. We shrink the "slab expansion

fraction" down to 0.0001 so that each perturbation can best capture that first derivative,
and then we compare accuracy as a function of mesh cells per slab. Figure 8.10 shows the

result. Clearly, "virtual density" perturbation theory is extremely accurate regardless of

mesh coarseness, while traditional boundary perturbation theory is only accurate for very

fine meshes.
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Figure 8.9: Reactivity due to movement of a single external surface - surface 14 in Figure 8.3.
The exact value (computed via finite difference diffusion) is compared to that predicted by "virtual
density" and traditional boundary perturbation theory. Here each slab contains 4 finite difference
mesh cells.
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Figure 8.10: Perturbation theory error in eigenvalue derivative with respect to movement of a
single external surface (surface 14 in Figure 8.3) as a function of mesh cells per slab. The solid
black line represents the error between the diffusion reference eigenvalue at each mesh resolution
and at the most hyperfine mesh.
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8.6.4 Single Slab Shifting

Now let us consider a more practical geometry distortion. The external boundary shift does

not conserve coolant mass, and the internal boundary shift conserves neither coolant nor fuel

mass. Let us now suppose that a single fuel slab - slab 8 in Figure 8.3 - moves rightward.

This conserves both coolant and fuel mass - it merely displaces sodium from slab 9 into slab

7.
In boundary perturbation theory, we actually move this whole slab by integrating along

surfaces 8 and 9. In "virtual density" perturbation theory, we simply increase the sodium

density in slab 7 and decrease the sodium density in slab 9.

Figure 8.11 compares these two approaches to the exact reactivity. The "slab shift

fraction" is the fraction by which fuel slab 8 moves rightward toward fuel slab 10. A "slab

shift fraction" of 1 corresponds to fuel slab 8 moving rightward until it touches fuel slab 10.

Equivalently, the "slab shift fraction" is equal to dx/a, where dx is the distance by which

the slab shifts and a is the slab width. Clearly, Figure 8.11 shows that "virtual density"

perturbation theory is much more accurate than boundary perturbation theory, which is in

error by approximately 80%.

Again, we compare "virtual density" perturbation theory and boundary perturbation

theory by how well they predict the first derivative of eigenvalue. We shrink the "slab shift

fraction" down to 0.0001 so that each perturbation can best capture that first derivative,
and then we compare accuracy as a function of mesh cells per slab. Figure 8.12 shows the

result. Clearly, "virtual density" perturbation theory is extremely accurate regardless of

mesh resolution, while traditional boundary perturbation theory is only accurate for very

fine meshes.
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Figure 8.11: Reactivity due to movement of a single uranium slab - slab 8 in Figure 8.3. The

exact value (computed via finite difference diffusion) is compared to that predicted by "virtual

density" and traditional boundary perturbation theory. Here each slab contains 4 finite difference

mesh cells.
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Figure 8.12: Perturbation theory error in eigenvalue derivative with respect to movement of a
single fuel slab (slab 8 in Figure 8.3) as a function of mesh cells per slab. The solid black line
represents the error between the diffusion reference eigenvalue at each mesh resolution and at the
most hyperfine mesh.
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8.6.5 Half Core Shifting

Now let us examine a final scenario. Suppose that slab 7 (sodium) in Figure 8.3 expands

so that the entire right half of the core moves rightward. In boundary perturbation theory,
we actually move half the core by integrating along surfaces 8, 9, 10, 11, 12, 13, and 14.

In "virtual density" perturbation theory, we simply increase the sodium density in slab 7,
and that's it. Thus, the "virtual density" theory converts seven surface integrals (spread

throughout half the core) into one volume integral (localized in the core center).
Figure 8.13 compares these two approaches to the exact reactivity. The "slab expansion

fraction" is equal to dx/a, where dx is the distance by which boundaries 8-14 shifts and a

is the slab width. Clearly, Figure 8.13 shows that "virtual density" perturbation theory is

vastly more accurate than boundary perturbation theory, which is in error by approximately

30%.
Again, we compare "virtual density" perturbation theory and boundary perturbation

theory by how well they predict the first derivative of eigenvalue. We shrink the "slab

expansion fraction" down to 0.0001 so that each perturbation can best capture that first

derivative, and then we compare accuracy as a function of mesh cells per slab. Figure

8.14 shows the result. Clearly, "virtual density" perturbation theory is extremely accurate

regardless of mesh resolution, while traditional boundary perturbation theory is only accurate

for very fine meshes.

Through examining these four cases (internal boundary shift, external boundary shift,
single slab shift, and half core shift) we have seen that the "virtual density" theory allows

us to convert boundary perturbations into density perturbations, which in turn allows us to

express perturbations as simple differences in the diffusion operators - the same operators we

used to obtain the unperturbed solution. Thus, "virtual density" perturbation theory will be

nearly equally accurate for coarse and fine meshes. In sharp contrast, traditional boundary

perturbation theory can only be accurate for very fine meshes, because it requires accurate

surface currents. Thus, this "virtual density" method makes geometric perturbation theory

reliable in coarse mesh finite difference.
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Figure 8.13: reactivity due to movement of half of the six-slab core. In Figure 8.3, surfaces 8-14

all move rightward by the same small distance. Here each slab contains 4 finite difference mesh

cells.
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8.6.6 Computational Advantages of "Virtual Density"

In addition to greatly enhanced accuracy on coarse meshes, "virtual density" perturbation

theory has dramatic computational advantages in some cases. Consider the "half core shift"

scenario once again. While traditional boundary perturbation theory requires seven separate

surface integrals (and is not so accurate), "virtual density" perturbation theory requires only

one volume integral (and is very accurate).

What if we were to increase the number of fuel slabs in this 1-D reactor? The reactor

in Figure 8.3 has six fuel slabs, but what if it had ten, twenty, or one hundred fuel slabs?

How would the computation times of boundary perturbation theory and "virtual density"

perturbation theory scale with the number of slabs in this 1-D reactor? If the reactor has

N slabs, boundary perturbation theory would require N + 1 surface integrals. However,
"virtual density" perturbation theory would still only require one slab integral.

Figure 8.15 compares the perturbation theory computation time for these two methods

as a function of N. While the "virtual density" perturbation theory computation time

remains roughly constant, the boundary perturbation theory computation time is roughly

proportional to N. Thus, for this case only, we can say that "virtual density" perturbation

theory is 0(1) while boundary perturbation theory is O(N).

One might contend that this "half core shift" scenario is completely unrealistic, but that

is not so. It is actually very similar to a scenario posed by Favorite for the Zeus benchmark

problem, in which a gap near the reactor center opens up and shifts about 40% of the core

downward [63]. Whenever large swaths of the core move together, this 0(1) versus O(N)

comparison is valid. However, for the most generic case of each individual fuel slab rattling

around arbitrarily, both methods are O(N).

Figure 8.16 compares the error magnitudes of "virtual density" perturbation theory and

boundary perturbation theory as a function of N. Neither method displays any strong trend

here, but it is clear that "virtual density" perturbation theory is much more accurate in

addition to being much more computationally efficient.
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tive of eigenvalue with respect to the perturbation magnitude) are shown as a function of N. Here
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Figure 8.16: Perturbation theory error in reactivity due to movement of half of an N-slab core
as a function of N. Here each slab contains 8 finite difference mesh cells.
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8.6.7 Higher Order "Virtual Density"

Until this point, we have only examined first order perturbation theory. This is adequate for

obtaining the first derivative of reactivity with respect to some perturbation - a reactivity

coefficient. However, if we wish to estimate reactivities for larger perturbations, we need

second order perturbation theory. First order perturbation theory predictions are always

linear, and although many eigenvalue responses to perturbations are in fact quite linear

themselves, linear predictions will always be limited to small perturbation magnitudes.

Unfortunately, our literature review concluded that second order perturbation theory

has not been applied to internal surface perturbations in diffusion theory. All the literature

(mostly by Rahnema and his various colleagues) is centered around transport theory, and the

sparse diffusion treatment is exclusively for external boundaries. One might suppose that

applying the transport methods to diffusion would be simple, but that is not necessarily true.

The boundary perturbation "anomaly" discussed by Pomraning and Rahnema complicates

diffusion but does not appear in transport theory [43]. Many variational functionals could

certainly be applied to internal boundary shifts in diffusion, but there is no guarantee that

any will work - functionals are finicky!

Fortunately, if we have already converted a boundary perturbation into a "virtual den-

sity" perturbation, then we can simply apply the well-known functional developed by Stacey

[33]. We discussed this functional in our literature review (see Equations 2.27 and 2.28 in

Section 2.3.5), and it is universally applicable to all material density perturbations - it is

tried and true. Thus, the "virtual density" theory allows for reliable application of second

order methods to diffusion, while traditional boundary perturbation theory does not.

Figure 8.17 compares boundary perturbation theory with first and second order "virtual

density" perturbation theory for the "half core shift" problem. Here the "slab expansion

fraction" has the same definition, but now we follow it out to 3. This means that the central

sodium slab thickness is quadrupling! While first order "virtual density" correctly predicts

the first derivative of the reactivity, second order "virtual density" correctly predicts the

second derivative of the reactivity - it captures the curvature.

Figure 8.18 shows the error magnitudes in Figure 8.17. Second order "virtual density"

perturbation theory predicts the reactivity to within 4% when the slab quadruples in thick-

ness.
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Figure 8.17: First and second order "virtual density" perturbation theory predictions of reactivity

due to movement of half of the six-slab core. In Figure 8.3, surfaces 8-14 all move rightward by the

same small distance. Here each slab contains 8 finite difference mesh cells.
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8.7 Interacting Effects due to Multiple Surface Perturbations?

As we discussed in our literature review, Favorite attempted to predict the first derivative of
eigenvalue with respect to moving the entire lower 40% of the Zeus benchmark problem [63].
He found that although first order boundary perturbation theory predicted the first deriva-

tives very well for single interface shifts, it failed for multiple interfaces shifting together.

Favorite even states that "the first order theory has no way to account for interacting effects
of multiple perturbations" and that the derivative of eigenvalue "with respect to the location

of the Zeus lower core is not the simple sum of the derivatives with respect to the location

of the individual surfaces".

However, our analytic derivation in Section 8.4 shows that, at least for arbitrary 1-D prob-
lems, the boundary perturbation method is (1) precisely equivalent to our "virtual density"

method and (2) precisely additive for multiple interfaces. So in analytic test problems and
derivations, first order boundary perturbation theory is additive. The problem arises not in
analytic cases, but in numeric cases. As we demonstrated throughout Section 8.6, boundary

perturbation theory is very inaccurate on coarse meshes, because the surface currents are

not well-converged. We also demonstrated that boundary perturbation theory tends to be

much more accurate for single internal interface shifts than for multiple internal interface

shifts. Compare Figures 8.6 and 8.8 to Figures 8.11 and 8.12. With 4 mesh cells per slab,
boundary perturbation theory yields 2% error for a single interface shift but 30% error for
two interface shifts (a single slab shift). As the mesh becomes more fine, boundary pertur-
bation theory always converges to the correct answer, but it converges much more slowly for

multiple interfaces than it does for a single interface.

The explanation for this enigma is actually quite simple. We know that boundary per-
turbation theory is inaccurate on coarse meshes due to poorly-converged surface currents

in the leakage term. Thus, boundary perturbation theory is relatively accurate when the
leakage term comprises a smaller fraction of the total reactivity and relatively inaccurate

when the leakage term comprises a larger fraction of the total reactivity. When we shift a

single interface between a fuel region and a non-fuel region, we either gain or lose fuel mass.

Intuitively, this gain or loss of fissile material causes most of the reactivity, because the fission

term is huge. Thus, leakage contributes only a small amount to the total reactivity and can

introduce only small errors. In contrast, shifting multiple interfaces (such as in the "single

slab shifting" and "half core shifting" cases) does not add or remove net fuel mass. Thus,
the fission term is zero. Leakage comprises a much larger portion of the total reactivity and

introduces much larger errors.

Although Favorite's work on Zeus employs deterministic transport (SN, to be specific),
his results are very similar to our own coarse mesh diffusion results in 1-D slab geometry.

Regardless of whether one works in transport or diffusion, surface currents in the leakage

term will likely always produce most of the error simply because they are not directly used to
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obtain the unperturbed eigenvalue. Furthermore, the fission term will likely always dominate

contribution to the reactivity, unless there is no fission term.

Thus, individual interface shifts within Zeus yield small errors because their fission terms

dwarf their leakage terms, while multiple concurrent interface shifts yield large errors because
they have a net zero fission term. These large errors in the first derivative of eigenvalue do
not arise from interacting effects between surface perturbations. Such effects do not exist,
because surface perturbations are always linearly independent to first order.

8.8 The Uniqueness of "Virtual Density" Perturbations

In Section 8.4, we showed that a single boundary surface integral is equivalent to two slab

volume integrals. However, when multiple boundaries move together, many of these slab
volume integrals counteract one another. Consider once again the "half core shift" problem,
in which the right half of the core (surfaces 8-14) shifts rightward by an amount Ax. Each

of the seven surface integrals is equivalent to two slab integrals, but all save one of those

slab integrals counteract one another, and we are left with only one non-zero slab integral

(slab 7).
Now suppose that the left half of the core (surfaces 1-7) shifts leftward by an amount

Ax. Intuitively, we know that this produces the same reactivity as the right half of the core

shifting rightward. This is not a consequence of core symmetry - it would be true regardless

of core composition. Now consider a third perturbation in which the left half of the core shifts

leftward by an amount aAx while the right half of the core shifts rightward by an amount

(1 - a)Ax. Here a is an arbitrary number between 0 and 1. Intuition tells us that this
will also produce the same reactivity for all values of a. In boundary perturbation theory,
these three equivalent perturbations would require surface integrals over three different sets

of surfaces: 1-7, 8-14, or 1-14. However, the equivalent "virtual density" perturbation would
still consist of the same single volume integral over slab 7.

Now consider the "single internal boundary shift" case, in which surface 8 shifts rightward.

Boundary perturbation theory requires a single integral over surface 8, while the correspond-

ing "virtual density" perturbation requires integrals over slabs 7 and 8.
Now suppose that surface 8 remains fixed, but all other surfaces shift leftward. Intuitively,

we know this perturbation is equivalent to only surface 8 shifting rightward. Applying

boundary perturbation theory to this equivalent perturbation requires surface integrals over

all surfaces except surface 8. However, the corresponding "virtual density" perturbation still

requires integrals over only slabs 7 and 8.

One can perform more thought experiments in this vein, but the conclusion is that each
"virtual density" perturbation can only be defined one unique way. Boundary perturbations,
on the other hand, can always be defined at least two different ways (and sometimes multiple

different ways).
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8.9 Numeric Comparison for Non-Uniform Anisotropic Swellings

in 3-D Hexagonal-Z

So far, we have shown that "virtual density" perturbation theory (VirDenT) and boundary

perturbation theory (BPT) are analytically equivalent but not numerically equivalent in

finite difference diffusion - especially not for coarse mesh solutions.

Now we demonstrate the same finding in a practical core model. We take the same FFTF

benchmark (described in Appendix G) that we employed throughout Chapter 7. In this case,

we wish to rapidly run numerous reference calculations in quick succession, so we abbreviate

the FFTF benchmark by removing the outermost 4 assembly rings. This leaves a 7-ring

core containing 1 reflector ring encircling 6 rings of fuel interspersed with control and test

assemblies. Each assembly contains six triangular mesh cells, and 22 axial mesh cells. keff is

0.9486.

8.9.1 Estimation of Boundary Flux Gradients

Before displaying results, we must again define precisely how we compute the 3-D flux

gradients in Equation 8.63. Consider Figure 8.19, which displays a hexagonal assembly

divided into axial zones with six triangular mesh cells per hexagon. Axially swelling even

one axial zone causes all the surfaces above it to shift upward, so one must know the real

and adjoint flux gradients (in all three directions) integrated over each triangular surface.

Although the unperturbed finite difference solution provides gradients perpendicular to these

surfaces, it does not provide gradients parallel to these surfaces. We must estimate these

parallel gradients ourselves.

The arrows on surface 3 in Figure 8.19 represent the axial flux gradients (perpen-

dicular to the surface), and we compute these just as we did for the 1-D case in Section

8.6.1. The red arrows on surface 3 represent the radial (or lateral) flux gradients (parallel to

the surface), and obtaining these is less straightforward. Since we already know the volume-

averaged radial flux gradients in cells 2 and 3, we can linearly interpolate these to estimate

the gradient values on surface 3. If the axial heights of cells 2 and 3 are dz 2 and dz 3 , then

we could interpolate like this:

V0 2 ± V03

V5 33= d 2  (8.70)1+
dz2 dz3

Here Vq53 is the radial flux gradient averaged over surface 3, while V0 2 and V0 3 are

the radial flux gradients in cells 2 and 3. We try this interpolation along with many others,

including
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D2Vt 2 ± D 3Vq 3

v 3 =dz 2  dz, (8.71)
dz2 dz3

Here D 2 and D 3 are the diffusion coefficients in cells 2 and 3. Neither Equation 8.70 nor

Equation 8.71 yield significantly better accuracy than the other.
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Figure 8.19: Boundary flux gradients for axial swelling of a hexagonal assembly in a triangular-

z finite difference mesh. The arrows represent the axial flux gradient averaged over one

triangular surface, while the red arrows represent the lateral (or radial) flux gradients averaged

over the same triangular surface.
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8.9.2 Numeric Results

We compare VirDenT and BPT for two types of axial swelling scenarios: (1) axial swelling

of each mesh cell in proportion to its fission power and (2) uniform axial swelling of each

assembly.

In scenario (1), we determine the fission power of each hexagonal axial segment of each

fuel assembly, and we swell each of those axial segments in proportion to its power. We

set the maximum swelling of any segment within each assembly to 0.1%. We compute one

"virtual mesh" reference case for such swelling of each fuel assembly within the first five

assembly rings. We also rapidly compute the "virtual density" reactivity coefficient for

each assembly swelling. Figure 8.20 shows the magnitude of the reactivity coefficient error

between the "virtual density" perturbation and the "virtual mesh" reference. They always

agree to less than 0.1%, and the errors are remarkably uniform. Remember that in Section

7.10, we concluded that these errors arise from the reference, not the perturbation. Thus,

reducing the maximum swelling magnitude in each assembly to below 0.1% would cause the

errors shown in Figure 8.20 to shrink even further and eventually approach zero.

Figure 8.21 shows the same scenario (1), but now we compare BPT to the "virtual mesh"

reference. Errors range as high as 5% with an average between 2% and 3%.

Figure 8.22 shows scenario (1) with a twist: instead of swelling axially, the assembly

zones expand axially. Thus, their axial dimensions increase without a decrease in density.

Although this case is not physically possible, it serves to elucidate the source of error in

BPT. In order to compute a swelling in BPT, one must perturb the mesh cell boundaries

and decrease cell densities in a separate perturbation. Since a density reduction is simple

and precise to compute, we know its error must be small - on the same order as the "virtual

density" errors. Thus, most error in BPT must arise from the boundary perturbations

alone, and we can isolate this fact with an axial expansion case. Figure 8.22 shows that the

errors are much larger, even over 20%. This confirms our expectation that errors in BPT

arise almost entirely from the boundary perturbations themselves, not density perturbations

added on top of them. The "virtual density" theory has "virtually" no error, because it

converts the boundary perturbations into "density" perturbations!

Now let us turn to scenario (2), which is uniform axial swelling of each assembly. This

allows us to swell fuel and non-fuel assemblies alike. We can rest assured that "virtual

density" perturbation theory will agree with the "virtual reference" precisely, as we already

performed this comparison in Chapter 7. Thus, here we show only the BPT comparison to

a "virtual mesh" reference.

Figure 8.23 shows the results. Comparing this to Figure G.1 in Appendix G reveals

which positions are fuel, control, and test assemblies. Although most fuel assemblies have

errors well below 50%, control assemblies exhibit no pretense of accuracy. BPT predicts

axial swelling reactivity coefficients that are wrong by a factor of 4 in secondary control
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assemblies and a factor of 3 in primary control assemblies. Evidently, large intra-assembly
flux gradients within these control assemblies completely ruin interpolation of the boundary
flux gradients.
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Figure 8.20: The VirDenT reactivity coefficient error (for axial swelling proportional to power)

relative to a "virtual mesh" diffusion reference case in the FFTF benchmark. Here each axial

mesh cell of each fuel assembly swells axially in proportion to its power. The cumulative reactivity

coefficient for each assembly is calculated via a direct "virtual mesh" eigenvalue solution and via

VirDenT. The two calculations always agree to less than 0.1%.
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BPT axial swelling error (%)
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Figure 8.21: The BPT reactivity coefficient error (for axial swelling proportional to power) relative

to a "virtual mesh" diffusion reference case in the FFTF benchmark. Here each axial mesh cell of

each fuel assembly swells axially in proportion to its power. The cumulative reactivity coefficient

for each assembly is calculated via a direct "virtual mesh" eigenvalue solution and via BPT. The

two calculations agree to less than about 5%.
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BPT axial expansion error (%)
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Figure 8.22: The BPT reactivity coefficient error (for axial expansion proportional to power)
relative to a "virtual mesh" diffusion reference case in the FFTF benchmark. Here each axial mesh
cell of each fuel assembly expands axially in proportion to its power. The cumulative reactivity
coefficient for each assembly is calculated via a direct "virtual mesh" eigenvalue solution and via
BPT. Errors fall anywhere between 1% and 22%.
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Figure 8.23: The BPT reactivity coefficient error (ffor uniform axial swelling within each assem-

bly) relative to a "virtual mesh" diffusion reference case in the FFTF benchmark. The cumulative
reactivity coefficient for each assembly is calculated via a direct "virtual mesh" eigenvalue solution

and via BPT. Errors are relatively small in fuel assemblies but gargantuan in control assemblies.
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8.10 Summary

Traditional boundary perturbation methods require highly accurate surface currents, ren-

dering them impotent in coarse mesh finite difference. In contrast, "virtual density" theory

can express these boundary perturbations as simple differences of the volume-averaged un-

perturbed fluxes in each mesh cell, allowing for much more precise prediction of reactivities

in coarse mesh problems. In many of these problems, "virtual density" perturbation theory

is orders of magnitude more precise than traditional boundary perturbation theory. We have

demonstrated this fact in hexagonal-z geometry in an abbreviated FFTF benchmark, and we

have shown in 1-D Cartesian geometry that reactivity coefficients computed via boundary

perturbation theory converge to those computed via "virtual density" theory as the mesh

becomes finer.

As far as we know, boundary perturbation theory has not been used for industry applica-

tion, and this analysis provides a strong indication for why this is so. The diffusion boundary

perturbation formula is certainly correct analytically, but its implementation in coarse mesh

finite difference can be unreliable. Thus, our "virtual density" perturbation theory consti-

tutes the first successful application of geometric perturbation theory to full-core models in

diffusion theory.
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9 "Virtual Density" and Point Kinetics: Reactivity
Safety via the PseuSeiAnimator

9.1 Chapter Abstract

We insert reactivities computed via the non-uniform anisotropic "virtual density" theory

into standard point kinetic theory. In this way, we determine the time-dependent neutronic

behavior of a small 3-D Cartesian sodium fast reactor core with a low dominance ratio. We

demonstrate the most generic distortion scenario - random motion of assemblies in the radial

plane, which we dub "pseudo-seismic". We find that this pseudo-seismic assembly motion

induces a time-dependent reactivity with maximums well below # and a time-average value

of zero. Oscillatory pseudo-seismic motion of individual assemblies induces little power

evolution, while addition of aggregate assembly motion (oscillatory radial flowering) inserts

negative reactivity and causes core power to slowly fall. We create the Pseudo-Seismic

(PseuSei) Animator as an instructive tool to show assembly motion and power evolution in

real time.

9.2 Introduction

So far, we have obtained reactivity coefficients via the "virtual density" theory - instanta-

neous reactivities inserted by instantaneous geometry distortions. Of course, the next step is
to determine the time-dependent neutronic behavior induced by time-dependent reactivities

inserted by time-dependent geometry distortions. In this chapter, we will show how to insert
"virtual density" reactivities into reactor point kinetic theory.

9.3 Point Kinetics via the Prompt Jump Approximation

Neutrons don't live very long. In a typical light water reactor (LWR), the mean time it takes

for a neutron to be born at fast energies, slow down via moderation, and induce thermal
fission is on the order of one millisecond. In fast reactors, which skip the moderating step,
neutrons live on the order of a microsecond. This "prompt" neutron lifetime represents the

time scale at which one might expect a reactor power level to rise or fall. Of course, this

is far quicker than any human operator can react. So if this were the whole story, reactors

could never operate safely. They would need to be balanced precisely at keff = 1, and even

the slightest nudge above this would cause the power level to run away precipitously.

Fortunately, not all neutrons are born promptly from fission. A small fraction # are

delayed - they emerge from the daughter fission products on the order of seconds after the

main fission event. Thus, as long as the inserted reactivity is less than #, the reactor power

282



The "Virtual Density" Theory

level will rise or fall on the order of seconds - slow enough for an operator to control. This

is what makes reactor control possible!

Delayed neutrons constitute anywhere from 0.20% to 2.03% of all neutrons for common

fissionable isotopes. Refer back to Table 1.1 for a list. 231U and 23 9Pu have delayed neutron

fractions of 0 = 0.64% and 0.20%, respectively. Thus, a breed-and-burn fast reactor initially

fueled by uranium will experience a gradual fall in 3 throughout its lifetime. The # value

will begin a bit above 0.64% and fall to a bit above 0.20%. The small portion of fission on
2 38 U (0 = 1.62%) holds the core-average 3 above what its value would be for pure fissile

material.

The most accurate way to model reactor kinetics in diffusion theory is "spatial kinetics".

This involves directly solving the time-dependent multigroup diffusion equation for qg(r', t)

in each energy group g.

1 dog g-1 G

- dt - V - DgVg + Er,gbg = Esdg'gqg + Xg E VgiZ-,gqgi (9.1)

9  tg=1 g'=1

This is identical to the steady-state diffusion equation in Equation 2.6, except now there

is a time-dependent term. Here vg is the velocity of neutrons in group g.

Since solving the full equation is an arduous task, nuclear engineers frequently use "point

kinetics" as an approximation to "spatial kinetics". Point kinetic theory assumes that the

whole reactor flux and power distribution behaves as a "point" - it can rise or fall in time,

but its shape does not change. This approximation is only accurate when the time scale in

which a neutron travels across a reactor (spatially) is not large relative to the time scale at

which reactor power rises or falls during a transient.

A good indicator of this is the "dominance ratio", which is the ratio of the first eigenvalue

k, to the fundamental eigenvalue ko = keff. In LWRs, which have thermal spectra, dominance

ratios are quite high - often above 0.99. This is because neutrons move around the reactor

slowly enough (due to low speeds and short mean free paths) that one core region can

experience a transient before another core region "feels" its effects. Thus, this relatively

slow spatial propagation of transient effects causes the flux and power distributions to change

shape during transients. So point kinetic theory is not very accurate, and spatial kinetics is

necessary. Now consider a fast reactor, which has high neutron speeds and long mean free

paths. The dominance ratio is low - only 0.81 for the FFTF benchmark. Fast neutrons can

travel throughout the core relatively quickly, and so transient effects can spatially propagate

quickly - even more quickly than the transient time scale itself. Thus, the flux and power

shapes will not change significantly, and point kinetic theory is accurate. We should also

note that cores with spatial "lobes" impede propagation of transient effects, causing higher

dominance ratios and decreasing the validity of point kinetics - the power of each "lobe" can

behave differently during a transient. Wrapping up this digression, we can confidently state
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that point kinetics is more valid for low dominance ratios and less valid for high dominance
ratios.

Numerous variations on point kinetic theory exist, and we will choose the simplest - the
"prompt jump" approximation. While more complex point kinetic formulations "group"
delayed neutrons by the lengths of their decay constants, the prompt jump model assumes
one delayed neutron group with an aggregate lifetime A. Rather than model the extremely

rapid power "jump" due to prompt neutrons (before the delayed neutrons "catch up"), we
can simply model this "prompt jump" as an instantaneous rise in power from P to P2 [157]:

P2 = 3 -P1 (9.2)
P1  3 - P2

Here an instantaneous reactivity insertion from pi to P2 causes the power to instan-
taneously "jump" from P to P2 . Now consider a continuous variation of reactivity p(t).
Duderstadt's iconic textbook gives this expression for the power P(t) [157]:

P(t) = PoeA(t) (9.3)

The power varies exponentially from initial value PO, and the exponent A(t) also varies
in time [157]:

A(t) = dr [(-r)+AX() (9.4)
fo _ 0 - POO)

Here p(r) is the instantaneous reactivity insertion, and /(r) is its first derivative in time.
Note that Equation 9.4 integrates the entire history of the reactivity (and its derivative)
from the beginning of the transient up until the current time t.

If we are given a set of geometry distortions as a function of time, we can use "virtual den-
sity" theory to compute p(t) and /(t). Then we can simply numerically integrate Equations
9.3 and 9.4 through time to obtain the power evolution P(t).

9.4 Numeric Demonstration: Pseudo-Seismic Motion

Since we have no authentic seismic distortion data, we must make do with approximations.

Consider the 3-D 6x6 array of Cartesian assemblies studied in Chapter 6 and illustrated in
Figure 6.7. We can conjure up "pseudo-seismic" motion by making each assembly position
oscillate sinusoidally in space and time with randomly-generated period, amplitude, and
angular direction. Let q be a random number between 0 and 1. We can sample the angular
direction 0 of each assembly motion:

0 = 27rq (9.5)
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Now we choose maximum and minimum oscillation amplitudes rmax and rmin so that

assemblies do not "overlap" one another, and we randomly select the oscillation magnitude

r of each assembly:

r = (rmax - rmin)77 + rd. (9.6)

We sample the oscillation period T in the same manner:

- = (Tmax - Tmin)77 + Tmin (9.7)

Now the x(t) and y(t) coordinates of each assembly center as functions of time are simple

to define. Here xO and yo are the initial (unperturbed) assembly coordinates.

x(t) = xO + r cos 9 sin (-t (9.8)

27rt
y(t) = yo + r sin 9 sin -- (9.9)

Now we have each assembly oscillating in a random direction with random amplitude

and period. The time-averaged assembly positions are (xO,yO), so there is no enlargement

or contraction of the whole core (no flowering). However, this does not really capture what

might happen in a true seismic distortion case. In reality, as assemblies rattle around and

bump into each other, they will tend to spread out such that the aggregate core size increases

slightly. We can model this effect with an extra "flowering term" in both x(t) and y(t).

Let Ro be the distance from each assembly center to the core center.

0= 02 + Y2 (9.10)

Now suppose that R(t) varies in time like this:

R(t) + f - + sin 7rt (9.11)
Ro [a \ Tf

Here f is the maximum radial swelling factor; it would be 0.01 for a 1% increase in

radial position. The parameter a can range from 1 to oo. When a = 1, the core flowers

only radially outward and never inward. When a > 1, the core oscillates between flowering

radially outward and inward. As a -+ oo, the core flowers only radially inward. The flowering

period Tf is randomly sampled in the same way as r, except -rf is the same for every assembly

(T is sampled separately for each assembly).

Now the full expressions for x(t) and y(t) are

2tt f 2t
x(t) =xo + rcos 6sin -- + Of -+ sin -(9.12)

r~ Tfs
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27rt I1 27rt'
y(t) =yo+rsin0sin - +of -+ sin -- (9.13)

So if we want to model pseudo-seismic motion of each assembly independently, we use

Equations 9.8 and 9.9. If we wish to include oscillatory flowering in the pseudo-seismic

motion, we use Equations 9.12 and 9.13.

9.4.1 The Pseudo-Seismic (PseuSei) Animator

We develop a graphical user interface (GUI) in MATLAB [210] to visualize geometry dis-
tortions and their point kinetic effects. Currently, this tool supports only pseudo-seismic

assembly motion in Cartesian geometry, and so we dub it PseuSei. See Figure 9.1 for a
screenshot of PseuSei, which animates a 2-D axial slice of 3-D assembly motion and plots
the resulting p(t) and P(t). PseuSei numerically integrates Equations 9.3 and 9.4. Figure

9.1 is merely an exaggerated hypothetical example of pseudo-seismic motion. The intersti-

tial coolant zones are wider than usual, and the assembly displacements are correspondingly

larger than usual. A pre-recorded PseuSei animation is on YouTube.

PseuSei rapidly computes and plots assembly displacements, p(t), and P(t) in real time.
Pre-computation involves solving the unperturbed real and adjoint flux distributions via

MaPS and then computing the "virtual density" quantities L2 and F., for the vertically-

directed interstitial coolant zones and LY and F, for the horizontally-directed interstitial

coolant zones. We can add up these quantities using Equation 5.32 to obtain the reactivity
coefficients dp/dx and dp/dy for each assembly. Refer back to our validation of single as-

sembly motion in Section 7.7.3. This concludes the pre-computation effort. Then, we can
generate assembly displacements and compute reactivities (for arbitrary assembly motion)
extremely rapidly in real time using Equation 9.14 (identical to Equation 7.19).

dp _dp dpdr --- cos + - sin 0 (9.14)dr dx dy
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Figure 9.1: A screenshot of the PseuSei visualization tool. The left screen shows the "pseudo-
seismic" motion of a 6x6 assembly array. The upper right screen shows the reactivity p(t) in pcm.
The lower right screen shows the point kinetic power evolution P(t)/Po.
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9.4.2 3-D Cartesian Results

We stick with the same 3-D 6x6 array of Cartesian assemblies studied in Chapter 6 and
illustrated in Figure 6.7. Let the assembly side length be 10 cm and the interstitial coolant
width be 0.3 cm. As we showed in Section 7.7, this interstitial gap is narrow enough to
ensure very linear reactivities due to assembly motion. The unperturbed keff is 1.04345 with
a dominance ratio of 0.95106, which is actually quite low relative to dominance ratios in
LWRs and other thermal reactors. Thus, we will assume that point kinetics is valid. We
assume # = 0.68% to be consistent with enriched uranium fuel, and we choose an approximate
fast neutron lifetime of A = 0.4353 s-1.

Figures 9.2 and 9.3 show dp/dx and dp/dy for each assembly in units of pcm/cm. We can
apply Equation 9.14 to obtain dp/dr when r points in the 0 = ir/4 direction. This is shown
in Figure 9.4. Note that the six diagonal assemblies have zero reactivity coefficients due to
core symmetry. In Figure 9.4, we plot dp/dr when r points radially outward from the core
center. Thus, we have broken down the radial flowering reactivity coefficient by assembly.

Now we can use PseuSei to plot time-dependent behavior for various pseudo-seismic
motions. Figure 9.6 shows application of Equations 9.8 and 9.9, which have oscillatory
seismic motion but no oscillatory flowering motion. The reactivity p(t) has a time-average
of zero, but, intriguingly, the power P(t) gradually drifts upward. At first consideration,
one might suppose this is because the "prompt jump" is larger than the "prompt drop".
However, decreasing the numeric integration time step dt shows that the P(t) trend flattens
out as dt -+ 0. Thus, the upward drift may be no more than a numeric specter, and then
P(t) simply oscillates around its initial value with no upward or downward trend. Since
analytic solutions to Equation 9.4 for periodic p(t) are not readily attainable, we leave it at
that.

Figure 9.7 shows oscillatory seismic motion and oscillatory flowering motion as defined
in Equations 9.12 and 9.13 with a = 1 and f = 0.005. This means that the core flowering
is always outward, so the flowering reactivity is always negative. Thus, the net reactivity
is almost always negative, because the flowering reactivity is large relative to the seismic
reactivity. The core power dwindles to half its initial value within 10 seconds.

Figure 9.8 shows oscillatory seismic motion and oscillatory flowering motion as defined
in Equations 9.12 and 9.13 with a = 4 and f = 0.005. This means that the core flowering is
mostly outward but sometimes inward. Thus, the net reactivity has a negative time-averaged
value but is frequently positive. The power oscillates with a downward trend and drops to
half its initial value in about 30 seconds.
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Figure 9.5: The reactivity coefficient dp/dr for each assembly, where r points radially outward
from the core center.

71

6

5

4

OCL0

292

M.j

narrplzM

R



The "Virtual Density" Theory

so

0D

at'0 2* 0 40 50 a.0 70 80
Cn

Wwv~\AVJxApAs
204 205 206 207 208 .29 2 0 211 212 2

1.4-

'0 50 100 10 200 250

iMe (Sac)
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the "pseudo-seismic" motion of a 6x6 assembly array. The upper right screen shows the reactivity

p(t) in pcm. The lower right screen shows the point kinetic power evolution P(t)/Po.
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9.5 Summary

Although inserting material density perturbation reactivities into point kinetic theory has

been common practice for decades, we have not seen this done for geometry perturbation

reactivities. The PseuSei Animator serves as an instructive tool allowing one to see assembly

motion with power evolution in real time.

In terms of safety, all PseuSei simulations show that reactivities never approach 3 and

that prompt-criticality is therefore not a concern. As we showed in Section 7.7, enlarging

the core to include more assemblies would only decrease the reactivity coefficient of each

individual assembly movement. Thus, performing this calculation with such a small core

produces reactivities that are much larger than one would see in a realistic core with many

more assemblies. However, realistic core models may have much smaller values of 6 due to

fission of 23 9Pu and/or 233U. Thus, based on these results, we cannot claim categorically that

realistic cores would be "safer".

If we consider only oscillatory seismic motion of individual assemblies, then the core power

oscillates about its initial value with either no trend or perhaps a very gradual upward drift.

However, if we consider aggregate seismic motion that induces oscillatory flowering motion

(any motion that increases the aggregate core radius), this typically inserts net negative

reactivity and causes core power to fall.

One potential danger could be aggregate seismic motion in which multiple assemblies

flower or bow toward the core center (such that the aggregate core radius decreases); such a

scenario would insert sizable net positive reactivity. Fortunately, assemblies almost always

tend to "spread out" rather than become more tightly clustered during distortion scenarios.

This is nothing more than the second law of thermodynamics - entropy and disorder always
tend to increase. However, whether or not any inward flowering or bowing might occur is a

problem for mechanical analysis.
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10 The VirDenT-MEPT Method: Distorted Flux and

Power Distributions

10.1 Chapter Abstract

We seek to compute flux and power distributions due to geometry changes (distortions) in

reactor cores. Directly solving a diffusion eigenvalue problem for non-uniform anisotropic

"virtual density" swellings is not straightforward. Thus, we develop a new method for com-

puting distorted flux distributions indirectly via perturbation theory. This method integrates

non-uniform anisotropic "virtual density" theory (VirDenT) into modal (harmonic) expan-

sion techniques. Previously, modal expansion perturbation theory (MEPT) has been applied

only to material density changes. Fortunately and conveniently, the mathematical formu-

lations of VirDenT and MEPT are remarkably compatible - the MEPT formalism fits the

VirDenT formalism "like a glove". Here we lay out the theory for this hybrid VirDenT-

MEPT method and provide numerous numeric examples for a large, highly-heterogeneous

sodium fast reactor core in Cartesian geometry.

10.2 Introduction

Previously, we developed the non-uniform anisotropic "virtual density" theory (VirDenT)

from fundamental conceptual reasoning. However, we have only applied it to compute reac-

tivity (eigenvalue change), which is a whole-core integral quantity. In order to fully exploit

the capabilities of VirDenT, we wish to obtain spatial distributions of various quantities -

flux, power, and reaction rates.

We could compute these directly via flux tallies in Monte Carlo, but such an approach

is prohibitively expensive. Building a hyperfine distorted mesh in diffusion or deterministic

transport would be more reasonable but still quite expensive - both in terms of CPU time

and development time necessary to build the mesh. One might think we could directly solve

diffusion on a relatively coarse mesh using non-uniform anisotropic "virtual density", but

doing so is not straightforward. There is no simple way to incorporate the surface leakage

I terms into a direct diffusion solution.

10.3 The Challenge of VirDenT in Traditional Second Order (Gen-

eralized) Perturbation Theory

Traditional generalized perturbation theory for material density changes typically employs

Stacey's well-known functional [155]:
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(1P - ) dq = dF - dM) +(Ap)$o (10.1)

Refer back to Section 2.3.5 for a derivation and definitions of variables. Here Equation
10.1 is identical to Equation 2.41.

As we discussed in Sections 2.3.5 and 2.7, Equation 10.1 is nothing more than a fixed
source problem for which the flux shift do is the solution. Essentially, this requires a compu-
tational expense comparable to a single outer iteration in a generalized eigenvalue problem.
This is a very large computation time for each perturbation, especially when fast reactor
eigenvalue problems often require only a few outer iterations. If one wishes to perform
hundreds or thousands of small geometry perturbations, the fixed source problems become
expensive.

Furthermore, it is not immediately clear how to incorporate the anisotropic VirDenT
formalism into Equation 10.1. The operator dM will be broken up into directional compo-
nents, and there is no straightforward way to accomplish this. Although we can evaluate the
adjoint-weighted anisotropic leakage quantities (#st L0k) without fuss, the vector quantities

Ljo# are not straightforward to evaluate within the VirDenT formalism.
Thus, we seek a more efficient and convenient method for obtaining perturbed flux and

power distributions.

10.4 Modal Expansion Perturbation Theory (MEPT) Formalism

Serendipitously, the modal expansion perturbation theory (MEPT) formalism fits our "vir-
tual density" theory (VirDenT) formalism "like a glove". See Section 2.2.3 for a conceptual
explanation and literature review of modal expansion techniques. Mitani originally devel-
oped modal (or harmonic) expansion techniques in the 1970s [34]. In 2012, Touran and
Lee revisited the topic and derived a new set of equations that allow for the contribution
of each mode to be computed independently of the other modes, thus enabling convenient
parallelization [39,40]. Let us now review the MEPT formalism of Touran and Lee.

Let the perturbed real and adjoint fluxes be

o = q0 ± d# (10.2)
0' - 0 + do' (10.3)

Here the subscript 0 denotes the fundamental mode. The real and adjoint diffusion
neutron balance equations for each mode n are

.Mq#n = -n (10.4)
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Atot = Fto (10.5)
n kn n

These real and adjoint problems have the same eigenvalues but different eigenvectors.

Now the expression for the flux shift derived by Touran and Lee is [39,40]

00
do= Zanon (10.6)

n=1

The coefficients an reflect the magnitude of the contribution of each mode n. In the

context of traditional density perturbations, we can express them in terms of the perturbed

operators dF and dM.

ot d.P - d. A {d -d$ 4
a= - K ( - ) 00 - K (-d.P - dM) 0 (10.7)

Note that ao = 0 by convention. We can write similar expressions for the perturbed

adjoint flux.

dot= E at # (10.8)
n=1

a= (ydtf - dt (df - dM1) 0) (10.9)n (±t - rt) o) -L~) KOn Ptt)
This constitutes the MEPT formalism as it currently stands. We can apply it to any

material density perturbation as shown by Touran and Lee. However, what we really desire

is to apply it to geometry changes.

10.5 The Elegant Union of "Virtual Density" Perturbation The-

ory (VirDenT) and Modal Expansion Perturbation Theory

(MEPT)

Conveniently, this MEPT formalism fits our VirDenT formalism like a cocoon its caterpillar.

We will dub this symbiotic union the VirDenT-MEPT method.

10.5.1 VirDenT-MEPT Shorthand Notation

First we define some shorthand notation similar to what we defined for non-uniform anisotropic

VirDenT in Sections 4.4.2 and 5.3.2. Let Sn be the spectral contribution of each mode n.

Let Lnj and rnj be the leakage contributions of mode n in direction i.
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nK (-LP - A - t) Oo)
Sn= K O L O) (10.10)

n 0
- L) K4O t

n,i= K n io) (10.12)
- L) K O 't

The explicit integrals in the numerators of Sn, La, and F, are

~G

tn "A)= JdV (V# (Vog) D] (10.13)
-gj

Kt fiqOO) fJ (cd - I) [ t3 (Vo,g)i Dg (10.14)

Kt~oo qV FXg'bnt= JVg f,g oog] (10.15)
.g'1=1 g 1

We can define corresponding adjoint quantities Sn, L , and r$,.

nn nt it

S I = K (10.16)

-K a ft~)
-n Ko (

Lt, = n (10.17)
Gn k. n IPn

rf n 1
ni,i =(10.18)

The explicit integrals in these adjoint numerators are
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i4qs Z = dV (Von,g)j ( ,g) Dg (10.19)

Onj fTq) = (d§ -z) #Ong (V g) D, (10.20)
.g=1

On Pt4) f dV On -k~ggf,g 5 X 0,$~i (10.21)
0 .g=1 7l g ' =1.

Since we have not previously defined the adjoint absorption and scattering inner products,
they are

"GKnj A J dV [z OngE (10.22)

G G

K 'k tot)JdV z S O~g Ong Sg-g (10.23)
g=1 g'=g+1

Note that the operators in the numerator of Sn contain the fundamental eigenvalue ko

while operating on the fundamental mode 0 . Thus, even though the adjoint weighting in

Sn is not the fundamental mode, we can still write the equality

Sn = (Ln,i - In,i) (10.24)

In general, this equality holds when the operators in the numerator contain the eigenvalue

corresponding to the mode they operate on (the mode in the right-hand "ket" of the inner

product). The weighting quantity (the mode in the left-hand "bra" of the inner product)
can be absolutely any vector quantity, as long as it is consistent for Sn, Lni, and rn,i. It
need not even be an eigenvector solution at all! Similarly, the denominator can be absolutely

any scalar quantity, as long as it is consistent.

Obviously, can write the same equality for the adjoint quantities:

Si = (L~i - r) (10.25)

10.5.2 Flux Shift Coefficients and Power Shift Coefficients

If we already know the VirDenT formalism and the MEPT formalism, fusing them is straight-

forward. The derivative of the flux distribution with respect to the swelling fraction f is
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doik _ doo(,E) (10.26)
df df

There is no ambiguity in expressing this as simply do/df, because we only ever care about
flux shifts for the fundamental mode (n = 0). The derivative of the power distribution with
respect to the swelling fraction f is

dP = dP(r) G dbog(r-) 10.27)
df df E df

g=1

We will express this simply as dP/df.
These two coefficients - the flux and power shifts - encapsulate everything we can know

from VirDenT-MEPT. Once we globally know the first order change in the multigroup flux,
we can globally know the first order change in any reaction rate of interest.

10.5.3 VirDenT-MEPT Formalism

Suppose that an arbitrary interior zone within a reactor swells anisotropically in direction i
by a factor fi. We can express the flux shift coefficient as

do dan (10.28)
dfi dfi

Note that an has a non-zero derivative with respect to fi, but the unperturbed # does
not. The derivative dan/dfi is simple to express via the VirDenT formalism.

dan = (-2Ln,, + ]n,j) (10.29)

Here we have done nothing more than take the VirDenT formalism (Equation 5.9) and
plug it straight into the MEPT formalism (Equation 10.7) via the shorthand notation (Equa-
tions 10.11 and 10.12). So the flux shift coefficient in one expression is

S m o t [ (-2L , ± ) (10.30)
i n=1 _j 4iI

The magnitude of the flux shift for an arbitrary swelling of ej in each direction i is

d = Ei (-2Ln,j + Fn,)] n (10.31)
n=1 . i jii

The flux shift coefficient due to an anisotropic expansion in direction i is
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= Sn + Ln,i + E (-Ln,j + n,j) on (10.32)
n=1 . i

The magnitude of the flux shift for an arbitrary expansion is

do = ES + Ln,i + 5 (-Ln,j + rn,j) ] (10.33)
n=1 .i \ji

Now let us briefly consider hexagonal-Z or R-Z geometry. The flux shift coefficient due

to non-uniform axial swelling is

d0
dfo : (-2Ln,r + In,r) On (10.34)

dz n=1

The flux shift coefficient due to non-uniform radial swelling is

(-4Ln,z + 2rn,z -2Lnr + n,r) n (10.35)
n=1

This constitutes the basic VirDenT-MEPT formalism. Once we have obtained these

flux shift coefficients, the power shift coefficients are straightforward to obtain via Equation

10.27. We could write down many, many more expressions, but what we have shown here

is sufficient to give the reader a feel for the theory. If one understands the concept, the

expressions are obvious.
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10.6 Numeric Self-Consistency of VirDenT-MEPT

Now that we have laid out the VirDenT-MEPT formalism, we aim to validate it for non-
uniform anisotropic swellings in a realistic core model.

10.6.1 A Large, Asymmetric, and Highly-Heterogeneous Cartesian Core

Most past applications of MEPT for material density perturbations have consisted of either
(1) nearly homogeneous cores or (2) small segments of cores. The main demonstration
case studied by Touran and Lee is a bare homogeneous sodium fast reactor in hexagonal-z
geometry [39,40]. However, Touran's thesis does include modal analysis with a core that
contains control and shield assemblies [39].

In order to eviscerate any doubts regarding the veracity of MEPT in heterogeneous
cores, we opt to construct a reference core that is both large and very heterogeneous. See
Figure 10.1, which displays the macroscopic fission cross-section through an axial slice of
this core. This Cartesian sodium fast reactor core has a 10x1 array of square assemblies

(each 20 cm on a side) surrounded by a thick U-238 reflector. The enrichment distribution is
"checkerboard" to ensure a high degree of heterogeneity and radially-increasing to introduce
some radial power flattening. The core geometry is constant through its axial height. The
core height has 10 axial mesh cells, and each axial segment of each assembly is a single mesh
cell. Thus, the fueled core is 10 x 10 x 10 mesh cells, and the whole core is 16 x 16 x 10
mesh cells. There are no axial reflectors and no explicit coolant gaps. We will use this test
core for all VirDenT-MEPT validation throughout this chapter.
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Figure 10.1: The homogenized macroscopic fission cross-section (units of 1/cm) at 1.7 MeV in
each 20 cm x 20 cm assembly of our VirDenT-MEPT validation core. A U-238 metal reflector
(three assemblies thick) blankets the core radially. The fueled region consists of 100 assemblies
containing uranium metal and sodium with a coolant volume fraction of 0.38. A checkerboard
enrichment pattern ensures strong heterogeneity, and radially-increasing enrichment flattens the
power distribution.
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10.6.2 The Harmonics and Their Eigenvalues

We construct this test core geometry in the MATLAB-PETSc-SLEPc (MaPS) solver (see

Appendix A). We employ either an Arnoldi or a Krylov-Schur eigenvalue solver to obtain

any arbitrary number of flux harmonics. We use the same MC**2 [187] 33-group microscopic

cross-section set used for the Cartesian cores in Chapter 7. This test core has a total of 16

x 16 x 10 = 2560 mesh cells, which is the maximum number of harmonics obtainable.

Figure 10.2 shows eigenvalues for the first 2501 modes. Figures 10.3 and 10.4 show the

first 6 real and adjoint harmonics computed by MaPS and displayed in axial mesh cell 5

(mesh cell 1 is the core bottom). The fundamental real mode (the real flux) shows that

the checkerboard enrichment pattern pushes the flux slightly away from the core center,
toward the upper-right direction. The harmonics often display checkerboard-like patterns

themselves, as the mesh cells size is large enough to allow large variations in fluxes between

neighboring cells. The adjoint harmonics tend to be spatially "smoother" than their real

brethren.

Figure 10.5 shows the real and adjoint modes 965-967. An intriguing trend begins with

n = 966. All previous modes are localized mainly within the fuel, but modes 966 and 967
are localized mainly within the reflector. The subsequent ~ 50 modes alternate between

these two types - "fuel modes" or "reflector modes". Once the total number of "fuel modes"

has reached ~ 1020, all subsequent modes are "reflector modes". This is because the 10 x

10 x 10 = 1000 fuel mesh cells produce 1000 modes. After those have been exhausted, all

remaining modes are localized within the reflector.
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Figure 10.2: The eigenvalue k, for the first 2501 modes (n = 0 to 2500). Here the dominance

ratio is k 1 /ko = 0.9618.
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1.7 MeV.
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Figure 10.5: Real and adjoint modes for n = 965,966,967 in axial mesh cell 5 at approximately

1.7 MeV. The "reflector modes" begin at n = 966.
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10.6.3 Verification of Adjoint Operator Construction

The veracity of MEPT is extremely sensitive to inaccuracies in operator construction. We

detail the MaPS real and adjoint operator construction in Appendix A. We can ensure that

the real and adjoint M and P operators are properly constructed and self-consistent with a

few simple tests. The mathematical definition of any adjoint operator QI requires

# QO.) = Kef# 0.) (10.36)

So we can construct two sets of "error quantities" M,n and F,n to test the accuracy of

adjoint construction for M and P, respectively. We evaluate M,n and F,n for each mode:

F,n=1 - tkn) (10.37)

(tnt 75n)

Mn = 1 - K " n (10.38)

Figure 10.6 shows M,n and 'F,n for the first 2500 modes computed with 10-12 eigenvalue

convergence. These "error quantities" never exceed 2 x 10-13 in magnitude, leaving to doubt

that our adjoint operator construction is mathematically precise. Note that these error

magnitudes increase slightly near n ~ 950. This signifies where the "reflector modes" begin.

However, Equation 10.36 is not nearly the strongest form of the adjoint condition. This

condition holds not only for vectors On and # , but also for any arbitrary vectors m1 and 772.

711 0q72) = K 9'1 772 (10.39)

We generate arbitrary i1 and 772 by obtaining each element from the MATLAB rand

function[210]. Now we define two more "error quantities" M,rand and F,rand:

'F,rand /1 1 277 2 ) (10.40)

t1 772)

'M,rand 1 K 1 1 72  (10.41)

We gladly report that both &M,rand and F,rand are less than 10-12.
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10.6.4 Harmonic Bi-Orthogonality and a Warning

In the previous section, we verified that Mt and Pt are the mathematical adjoints of A and

F. However, there is a significant distinction between a mathematical adjoint and a physical

adjoint. There are actually multiple ways in which one can construct a mathematical adjoint

but only one way in which one can construct a physical adjoint. All physical adjoints are

mathematical adjoints, but not all mathematical adjoints are physical adjoints.

For example, simply transposing all elements in the M operator will yield a mathematical

adjoint that satisfies Equations 10.36 and 10.39. However, doing so will not yield the phys-

ical adjoint - the mathematical adjoint produced will not represent neutron "importance".

Constructing the physical adjoint requires transposing the scattering terms while leaving the

leakage terms in place. This is because the diffusion leakage terms are self-adjoint, while the

multigroup scattering terms are not.

One test for the physical adjoint is bi-orthogonality. The bi-orthogonality condition is

(K7$I On) = Cnamn (10.42)

Here m and n represent any two harmonic indices, and Cn is an arbitrary constant.

This condition holds only for the physical adjoint - not any mathematical adjoint. If the

harmonics are bi-orthonormal, then C, = 1 for all n. Converting an bi-orthogonal set

into a bi-orthonormal set requires only simple normalization. However, this normalization

is unnecessary for MEPT, because the harmonic magnitudes cancel out when combining

Equations 10.6 and 10.7.

One might say that when bi-orthogonal, the harmonics are "in harmony". Unfortu-

nately, this "harmony" is sometimes arduous to achieve. Orthogonality and bi-orthogonality

are notorious as numeric "stumbling blocks" across many fields of computation. Although

bi-orthogonality is certainly a mathematical requirement, numeric eigenvalue solvers often

introduce small errors that disturb the "harmony". We encountered two potential numeric

pitfalls along these lines:

Potential Pitfall 1: Cores with any symmetry (axial, radial, or rotational) will produce

some degenerate harmonics. Two harmonics are degenerate when they share the same eigen-

value but not necessarily the same eigenvector (spatial and energy distributions). As one

might expect, degenerate modes often become entangled and therefore unusable. Instead

of producing two degenerate eigenvectors, a solver might produce two linear superpositions

of those eigenvectors. These linear superpositions will have correct eigenvalues but wrong

spatial and energy distributions, and they will corrupt the modal expansion.

Solution 1: We introduce slight asymmetries into the core composition to ensure that

degenerate harmonics do not occur. In our VirDenT-MEPT test core, the checkerboard

enrichment pattern eliminates any possibility of radial, lateral, or rotational symmetry. Ad-
ditionally, we introduce a slight linear enrichment increase along the core height to avoid
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any axial symmetry. These asymmetries need not be pronounced at all - they could be as

minute as an 0.1% enrichment variation. Techniques for disentangling degenerate modes do

exist, but for now we choose to bypass them via asymmetry.

Potential Pitfall 2: Many preconditioners and Krylov subspace methods employ various

diagonalization techniques. These are convenient, because leakage, scattering, and fission

terms in the M and F matrices typically lie along a relatively small number of diagonals.

For example, an Q-D Cartesian reactor with G energy groups and no up-scattering will have

2Q + G + 1 diagonals in its M matrix and 2Q in its P matrix. All non-zero elements will

lie along these diagonals. However, non-Cartesian geometries introduce more ambiguity in

terms of how one chooses to index the spatial mesh cells. We chose a non-conventional

indexing convention for triangle-z geometry (shown in Figures A.1 and A.2), which causes

leakage terms to form exotic patterns (see Figures A.7 and A.8) instead of neat and tidy

diagonals. This is perfectly fine from a mathematical standpoint - all indexing conventions

are equally valid and should work equally well. Unfortunately, indexing conventions affect

spectral radius, which can affect the quality of preconditioning.

Solution 2: We have three choices. First, we can comb through all available precon-

ditioner to find one that we know will be accurate for our particular indexing convention.

Second, we can re-index all triangle-z mesh cells such that non-zero leakage terms will lie on

only a few diagonals. This is how the code DIF3D indexes triangles [193]. Third, we can

simply choose to implement VirDenT-MEPT in a core with Cartesian geometry, for which

diagonal leakage terms are always most convenient.

Figure 10.7 shows the bi-orthogonality condition in Equation 10.42 for the first 100

harmonics computed via MEPT for the Cartesian test core in Figure 10.1. Clearly, inner

products in which m = n dwarf those in which m 4 n. Figure 10.8 shows the same bi-

orthogonality condition for harmonics 2001-2100. Again, the condition appears met.

However, we must note that mere visual inspection of Figures 10.7 and 10.8 is not suf-

ficient to conclude that bi-orthogonality has been achieved, because MEPT is extremely

sensitive to the slightest errors in bi-orthogonality. The entire derivation by Touran and Lee

hinges upon precise bi-orthogonality.

The reality is that even in Cartesian geometry, MaPS is plagued by tiny bi-orthogonality

errors. Although the bi-orthogonality appears very clean in Figure 10.7, a very small number

of m n terms actually approach (or even exceed) 1% of their corresponding m = n terms.

This 1% may seem small, but it becomes surprisingly consequential when computing the an

coefficients and converging do.

Despite this bi-orthogonality plague, we are comfortable enough with maximum bi-

orthogonality errors of 10-2 (and mean errors of 10-6 or 10-7) to proceed. Nevertheless,
we acknowledge that these errors may limit VirDenT-MEPT accuracy, and we caution all

MEPT users to beware of slight bi-orthogonality errors.
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Figure 10.7: All values of the inner product for m and n ranging from 0 to 99. This
product is very close to zero except when m = n, which verifies the bi-orthogonality condition.

315



Mark Reed

2100

0.08

2090

0.07
2080

2070 0.06

2060 F-0.05

2050 -0.04

2040
0.03

2030
0.02

2020

0.01
2010

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
m

Figure 10.8: All values of the inner product (#4L #O) for m and n ranging from 2000 to 2099.

This product is very close to zero except when m = n, which verifies the bi-orthogonality condition

for these higher modes.
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10.6.5 Numeric Self-Consistency of the VirDenT-MEPT Formalism

Before proceeding on to numeric validation of distortion scenarios, we are prudent to check

the self-consistency of the VirDenT-MEPT formalism derived in Sections 10.5.1 and 10.5.3.
This formalism hinges upon the equality in Equation 10.24. We can test this equality for

each harmonic by defining the "error quantity" VirDenT,n:

VirDenT,n = 1 - (10.43)
Sn

This quantity should be as close as possible to zero for every harmonic. Figure 10.9 shows

that it is always less than 4 x 10-4 for the first 2500 harmonics. Its mean is 2.7 x 10-6,
and its standard deviation is 3.2 x 10-5. We are satisfied with this level of accuracy for the

VirDenT-MEPT calculations.

Note that the magnitudes of the VirDenT,n peaks increase substantially just before n =

1000. This is because the "reflector modes" are a bit less well converged than the "fuel

modes".
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averaged fractional error between S, and L, -I'n. Despite the occasional large spike, the magnitude

of 6VirDenT has a mean of 2.7 x 10-6 and a standard deviation of 3.2 x 10-5.
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10.7 Numeric Validation of VirDenT-MEPT

Touran and Lee have already validated MEPT for material density perturbations, around

which the whole history of modal expansion revolves[39,40]. Now we aim to validate our new

VirDenT-MEPT formalism to show how MEPT can also work for geometry perturbations.

We use the same Cartesian test core discussed in Section 10.6.1 and illustrated in Figure

10.1. In order to construct a reference for do, we obtain the perturbed and unperturbed

fluxes from MaPS and normalize them both to the same power. MEPT is designed to

compute the change in flux shape, not flux magnitude.

Although Touran and Lee chose to compute errors between the reference and MEPT using

= # + d#, we choose to compute errors in do alone. The addition of the unperturbed

flux q, which we know precisely, only artificially deflates the error magnitude. Just as we

computed errors in reactivity coefficients (not reactivity magnitudes), we now compute errors

in flux shift coefficients (not flux magnitudes).

Throughout this section, all reference case swelling magnitudes are 1%. We use all 2500

computed modes in all cases.

10.7.1 Uniform Radial Swelling

First, consider uniform radial core swelling. Constructing a reference case in MaPS is simple;

we increase the x and y dimensions of each mesh cell by f and reduce all material densities

by f 2.
We can use Equation 10.47 to easily derive a VirDenT-MEPT expression for this scenario.

Simply replacing Ln,r with Ln, + Lny and I'n,r with ]F,, + Fr,, yields

df (-4L,+ 2F, - 2L - 2L + U ± q5, (10.44)
n=1

Of course, since this is a uniform case, the I' terms are zero. So we are left with

00do - (-4Ln,z - 2Lnx - 2Ln,y) On (10.45)
df n=1

Figure 10.10 shows the results. The dq/df distributions are nearly indistinguishable to

the eye. Errors are typically below 3% but peak sharply in mesh cells where the flux shift

crosses through zero. When trying to converge near-zero values with a modal sum, fractional

error are expected to be quite large. Touran and Lee did not observe these zero-shift error

peaks, because they computed errors in the perturbed flux 0' instead of in the flux shift do

[39].
In Figures 3.7 and 3.8 of Touran's thesis, he shows that the deviation between # and 0'

(computed via a reference calculation) lies in the range 10-12% while the deviation between
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# and 0 + do (computed via MEPT) lies in the range 0.45-0.65%. This implies a do error in
the neighborhood of 5%. The error magnitudes we see in Figure 10.10 are within this range
(barring the zero-shift peaks). Of course, his and our perturbations are completely different,
but at least we can rest assured that we achieve the same "ballpark" error range.
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Figure 10.10: The flux shift coefficient due to uniform radial swelling, displayed in axial zone 5

at approximately 1.7 MeV. The reference calculation is compared with VirDenT-MEPT.

reference
150

100

50

0

-50

-100

150

100

50

0

-150
-150

-50

-100

-100 -50

321



Mark Reed

10.7.2 Uniform Axial Swelling

Now consider uniform axial swelling. We construct the reference case by increasing the z

dimension of each mesh cell by f and decreasing all material densities by f.
The VirDenT-MEPT expression for non-uniform axial swelling is

00dk = E (-2L,x - 2Lny + rnX + Fn,y) #n (10.46)
df n=1

In this uniform case, the expression reduces to

4 = E3 (-2L, - 2Ln,y) #n (10.47)

Figure 10.11 shows the results. Again, the d#/df distributions are nearly indistinguish-

able to the eye, and the same error peaking occurs in the mesh cells with near-zero flux

shift.
Note that the flux shift distributions for axial swelling in Figure 10.11 and radial swelling

in Figure 10.10 are very similar. They are certainly not exactly the same, however. Notice

that the zero flux shift in the reflector is for axial swelling than for radial swelling.

Considering the color scaling, this means that for axial swelling, the negative flux shift

(blue) is larger relative to the positive flux shift (red). Conversely, the negative flux shift in

radial swelling is slightly smaller relative to the positive flux shift. So although the localized

"'checkerboard" patterns appear nearly identical, the global shapes are noticeably different.

We can see this difference clearly by plotting the VirDenT-MEPT dan/df coefficients

in Figure 10.12. These coefficients have significant non-zero values for n approaching 1300!

They fall into two main clusters. The first cluster, in the range n < 200, defines the

approximate global shape of the flux shift. The second cluster, in the range 600 < n < 1300

defines the more localized flux shift induced by the core heterogeneity. While the second

cluster of dan/df values is nearly identical for radial and axial swelling, the first cluster is

not. This explains why the localized flux shifts appear so similar in Figures 10.11 and 10.10

while the global flux shifts are noticeably distinct.

Touran and Lee made plots similar to Figure 10.12, and they observed only the first cluster

of dan/df coefficients[39]. This is because their primary test core is nearly homogeneous, and

so the whole flux shift is a global shape - there are no localized patterns due to heterogeneity.

Computing only a few hundred harmonics can work for a nearly homogeneous core, but any

realistic heterogeneous core requires computing at least as many harmonics as their are fuel

mesh cells. One can probably ignore the "reflector modes", but no "fuel modes" can be

neglected in a heterogeneous core. Contrary to popular belief, excitation of higher modes

does not only arise from localized perturbations - it can also arise from uniform global

perturbations in a heterogeneous core.
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Figure 10.13 shows the harmonics corresponding to the 6 largest magnitudes of da,/df

for uniform axial swelling. Comparing this with Figure 10.11 reveals that harmonic n = 2
captures the most basic global shape, while much higher modes (such as n = 820 and 722)
capture the localized effects.
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Figure 10.11: The flux shift coefficient due to uniform axial swelling, displayed in axial zone 5 at

approximately 1.7 MeV. The reference calculation is compared with VirDenT-MEPT.
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10.7.3 Axially Non-Uniform Axial Swelling

Now we turn to non-uniform swelling cases. First consider axial swelling that is non-uniform

in the axial direction. This amounts to axial swelling of through-core axial slices. This

test core model has 10 such axial slices (axial mesh cells), each with the same material

composition except that the fuel enrichment increases linearly throughout core height such

that it is 10% higher at the top.

Consider axial zones 6, 7, and 8 swelling axially while all other zones remain unchanged.

Figures 10.14, 10.15, and 10.16 show the do results in zones 7, 9, and 3, respectively. In

zone 7, which swells, the flux shift do is strongly heterogeneous with error magnitudes in

the same range as the uniform radial and axial swelling cases. In zone 9, while lies above

the swelling region, the flux shift distribution is a bit smoother, and errors are smaller. In

zone 3, which lies far below the swelling region, errors are extremely small - never exceeding

0.7% and mostly well below 0.1%!

Intriguingly, it seems that VirDenT-MEPT is much more robust when evaluating pertur-

bation flux shifts in regions of the core far removed from those perturbations. Although this

may seem surprising, it is actually very intuitive. As the flux shift propagates away from

its causal perturbation, it becomes smoother and less localized. Thus, the modes can more

readily capture its shape.
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Figure 10.14: The flux shift coefficient due to axial swelling in axial zones 6-8, displayed in zone

7 at approximately 1.7 MeV. The reference calculation is compared with VirDenT-MEPT.
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Figure 10.15: The flux shift coefficient due to axial swelling in axial zones 6-8, displayed in zone

9 at approximately 1.7 MeV. The reference calculation is compared with VirDenT-MEPT.
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Figure 10.16: The flux shift coefficient due to axial swelling in axial zones 6-8, displayed in zone
3 at approximately 1.7 MeV. The reference calculation is compared with VirDenT-MEPT.
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10.7.4 The "Virtual Mesh" Method Applied to Flux Distributions

So far, we have considered only swelling cases that can be validated against a "true" reference.

In order to analyze any further swelling cases, we must rely upon the "virtual mesh" method

studied in Chapter 6 and used to validate VirDenT reactivity coefficients in Chapter 7. In

Chapter 6, we showed mathematically how a "virtual mesh" can accurately predict first

order quantities, and we verified this fact with Monte Carlo.

Although we only verified this for first order reactivities, it is also true for first order flux

distributions. The mathematical reasoning is precisely the same as we laid out in Section

6.3. We stated that it is valid for a first order change in any quantity, which includes flux

distributions. Rigorously validating the "virtual mesh" method for flux shifts would require

well-converged global flux tallies in Monte Carlo, but we are confident enough in the "virtual

mesh" mathematical reasoning to postpone such an endeavor.

10.7.5 Radially Non-Uniform Axial Swelling

Consider axial swelling of an arbitrary set of assemblies. Here we define the set as a "ring"

including all assemblies in the central 6x6 array except those in the central 2x2 array. So

this ring is 2 assemblies thick and contains a total of 32 assemblies.

Figure 10.17 shows the results. Again, errors are quite low except for large peaks in mesh

cells where the flux shift crosses zero.
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Figure 10.17: The flux shift coefficient due to axial swelling of an assembly "ring", displayed in
zone 5 at approximately 1.7 MeV. The reference calculation is compared with VirDenT-MEPT.
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10.7.6 Axially Non-Uniform Radial Swelling

Now consider radial swelling in axial zones 6-8 while all other zones remain unchanged.

Figures 10.18 and 10.19 show the resulting flux shift in zones 5 and 4, respectively. In zone

5, just below the swelling region, we see errors in the fuel below 3% but large errors in the

reflector. In zone 4, further removed from the swelling region, we see errors less than 1.2%

throughout the core.
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Figure 10.18: The flux shift coefficient due to radial swelling in axial zones 6-8, displayed in zone
5 at approximately 1.7 MeV. The reference calculation is compared with VirDenT-MEPT.
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Figure 10.19: The flux shift coefficient due to radial swelling in axial zones 6-8, displayed in zone
4 at approximately 0.6 MeV. The reference calculation is compared with VirDenT-MEPT.
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10.7.7 Axially Non-Uniform X-Direction Swelling

Now consider anisotropic swelling in only the x direction within axial zones 6-8. Although
this scenario is not terribly realistic, it is at least instructive and a valid test for VirDenT-
MEPT.

Figures 10.20 and 10.21 show the result in zones 7 and 3, respectively. The flux shift
distribution peaks toward the positive x side of the core. The error in zone 7, which swells,
is less than 8% throughout the fuel, while the error in zone 3, far below the swelling region,
remains below 0.25% throughout the core.
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Figure 10.21: The flux shift coefficient due to anisotropic swelling in the x direction in zones

6-8, displayed in zone 3 at approximately 0.6 MeV. The reference calculation is compared with

VirDenT-MEPT.
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10.7.8 Radially and Axially Non-Uniform Axial Swelling

Now we test the most complex swelling scenario. Suppose that each individual mesh cell

swells axially by a factor f proportional to its fission power. We scale down f throughout

the core so that its maximum value (in the cell with maximum power) is 1%.

Figure 10.22 shows the result in zone 5. Flux shift errors are always under 6% except in

the zero-shift peaks and some regions of the reflector. These error magnitudes are roughly

consistent with what we found for the uniform radial and axial swelling cases.

So far, we have only shown flux shifts in one energy group at a time. Typically, MEPT is

more robust in the high-energy groups. This is because the low-energy groups have shorter

mean free paths and more spatial variation, hampering the harmonic convergence (or at least

requiring more harmonics). In order to allay any concerns regarding this effect, we will show

the power shift distribution for this most complex swelling scenario. We compute the power

shift coefficient using Equation 10.27.

Figure 10.23 shows the power shift in axial zone 5 for a very large 10% axial swelling

magnitude. We show the power shift coefficient error in terms of both a percentage and

a magnitude. Note that we cannot solve the diffusion eigenvalue problem directly for this

non-uniform axial swelling scenario, and so we simply perform a "virtual mesh" eigenvalue

calculation for a very small swelling magnitude and extrapolate the solution out to 10%.

Thus, these errors do not include effects beyond first order. As Figure 10.23 shows, the

power shift error percentage distribution exhibits the same zero-shift peaks evident in the

flux shift error distributions. The power shift error magnitude distribution, however, does

not exhibit these peaks.

Note that errors in Figure 10.23 are no larger than errors in the high-energy flux shown

in Figure 10.22. Although the flux may not be well-converged at very low energies, it also

barely exists at very low energies. Thus, the low-energy contribution to power is quite small.

As shown in Figure 1.1, about 95% of power in a typical sodium fast reactor is produced by

neutrons above 1 keV.
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Figure 10.22: The flux shift coefficient due to axial swelling of each mesh cell in proportion to its
fission power, displayed in zone 5 at approximately 1.7 MeV. The reference calculation is compared
with VirDenT-MEPT.
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Figure 10.23: The power shift coefficient due to axial swelling of each mesh cell in proportion to
its fission power, displayed in axial zone 5. The reference calculation is compared with VirDenT-
MEPT. We display the error as both a percentage and a magnitude (given that the maximum flux
shift is normalized to 1)
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10.8 Summary

Traditionally, modal expansion has been used exclusively for material density changes and

has met only middling success for large, heterogeneous cores. The main limitation was that

solving hundreds (or thousands) of harmonics was not practical with computers that existed

in the "harmonic heyday" of the 1970s. Very recently, Touran and Lee revisited the topic

and demonstrated that modem Arnoldi/Krylov techniques can easily compute thousands of

modes, and they demonstrated the accuracy of MEPT for material density perturbations in

small cores with limited heterogeneity[39,40].

Unfortunately, while the vast increase of computation power since the 1970s has put

modal expansion within reach, it has also, paradoxically, "outmoded" modal expansion. If

nodal methods can solve a full core diffusion problem in seconds, why would one pursue

modal expansion? It still certainly is more computationally efficient when evaluating very

large numbers of perturbations, but if a full core can be solved directly in seconds, why

should one spend manhours on modal analysis?

The answer is geometry perturbations. One can always rerun an eigenvalue calculation

for any material density change in seconds - just change the input file and press "go" again.

However, geometry perturbations are not so simple. One cannot simply rerun the code, be-

cause doing so would require building an entirely new type of mesh that few (if any) existing

diffusion codes have. Futhermore, the surface leakage terms in non-uniform anisotropic "vir-

tual density" theory do not meld well with direct diffusion calculations. Currently, the only

reliable way to compute global flux distributions due to geometry distortions is via multi-

group flux tallies in Monte Carlo, which is extremely computationally expensive. Tallying

just several well-converged global flux shifts in Monte Carlo would cost CPU decades! So

although computational power has rendered modal expansions obsolete for material density

perturbations, modal expansions are still quite expeditious for geometry perturbations.

In this chapter, we demonstrated this for several non-uniform anisotropic swelling scenar-

ios by combining our VirDenT formalism with the MEPT formalism developed by Touran

and Lee[39,40]. In order to test the limits of this hybrid VirDenT-MEPT method, we chose

a large, highly-heterogeneous core with a checkerboard enrichment pattern. We found that

if one computes at least as many harmonics as fuel mesh cells, VirDenT-MEPT performs

about as well as pure MEPT. Heterogeneity does not stymie MEPT; it only requires more

harmonics. Even in our highly-heterogeneous test core, VirDenT-MEPT flux shifts generally

agree with reference cases to within a few percent.
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11 The "Virtual Density" Theory (VirDenT) Code:

Distortion Reactivity for Fast Reactor Design

11.1 Abstract

We introduce the VirDenT code, which computes reactivities for arbitrary distortion sce-

narios but also contains modules for classic reactivity coefficients, flux reconstruction, and

pin-detail visualization. We extend conventional fast reactor flux reconstruction techniques

in hexagonal-z geometry to include vector fields and adjoint-weighted quantities. In partic-

ular, we reconstruct intra-assembly analytic representations for the real and adjoint neutron

net currents, the fission power gradient, and the reactivity worth of an arbitrary nuclide. In

order to visualize core-wide, pin-level distributions of these reconstructed (scalar and vec-

tor) quantities, we develop a suite of visualization tools dubbed PyPinPlot. Furthermore, we

unearth an intriguing physics scenario in which adding material actually increases leakage.

We demonstrate how to estimate sodium void reactivity coefficients on the subchannel level.

We validate classic reactivity coefficients for fuel, structure, and coolant density as well as

uniform axial and radial swelling. All coefficients agree with DIF3D eigenvalue references to

within 1%. In order to validate distortion reactivities, we compare VirDenT (which operates

on a homogenized assembly DIF3D finite difference solution) to heterogeneous pin-detail

Monte Carlo.

11.2 Introduction

The purpose of neutronic methods is to design and build reactors. Thus, any neutronic

method is pointless unless it can ultimately contribute to the analysis and design of pragmatic

cores. If we cannot apply "virtual density" theory to full-core 3-D heterogeneous distortion

scenarios, all this work is ultimately in vain.

In Chapter 5, we successfully applied "virtual density" theory to homogenized assemblies

in the FFTF and Jdy6 benchmarks. However, even these scenarios were not entirely realistic,
because we assumed that all homogenized material densities changed by the same factor.

In reality, fuel, structure, and coolant materials swell by different factors, and any useful

design work must account for this. Furthermore, we did not cover the most arbitrary case

of radially non-uniform radial swelling, because such cases are not possible to validate via

homogenized assembly diffusion (even with "virtual mesh" techniques).
This chapter describes the VirDenT code, which models arbitrary assembly distortions

with axial dependence - axially and radially non-uniform axial and radial swelling. We

validate VirDenT reactivities via continuous energy heterogeneous Monte Carlo, the highest-

fidelity reference we can obtain. First, however, we will describe the auxiliary features of
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VirDenT, which include pin-level visualization tools, flux and power reconstruction, and
classic reactivity coefficient calculation.

11.3 VirDenT within ARMI

We implement VirDenT within the Advanced Reactor Modeling Interface (ARMI), a Python-
based modeling framework that loosely couples nuclear reactor simulations to provide high-
fidelity systems analysis [142,211]. It wraps and couples numerous stand-alone codes but also
contains a number of modules written entirely in Python, such as depletion and subchannel
analysis.

We compose VirDenT as a Python module within ARMI, relying heavily upon the NumPy
scientific computing package and the MPI4Py parallelization package. Figure 11.1 shows the
interaction between VirDenT and other modules or wrapped codes within ARMI. VirDenT
takes neutronic input from DIF3D [193] and REBUS [189] and computes pin powers via
flux reconstruction. These pin powers are essential for subchannel analysis (COBRA [191])
and computational fluid dynamics (CFD) in order to perform pin-level and subchannel-level
thermal hydraulic analysis. Pin powers are also necessary to determine peak displacements
per atom (DPA) for materials analysis.
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Figure 11.1: VirDenT within ARML VirDenT takes input from DIF3D and REBUS, and its
flux reconstruction module produces power distributions for subchannel analysis, computational
fluid dynamics (CFD), and materials analysis. Subchannel analysis provides temperature data for
mechanical analysis, which in turn feeds assembly distortions back into VirDenT.

VirDenT
distortion re

PyPinPlot
flux recon

345



Mark Reed

11.4 PyPinPlot: A Pin-Level Visualization Tool for Fast Reactors

in Hex-Z Geometry

In order to visualize various reconstructed pin-level quantities in VirDenT, we develop a

compact visualization tool utilizing the Python packages matplotlib and mpatches [204].

We dub this PyPinPlot. This tool can produce core-wide, pin-level, and high-resolution

maps of reconstructed scalar or vector quantities. PyPinPlot displays a specified quantity

on each pin throughout a complete core slice in the (x, y) plane at one fixed axial position,

and it can also generate 1-D plots of scalar quantities as a function of axial position in one

assembly.

Examples of scalar quantities include multigroup flux, multigroup adjoint flux, power,

fission source, burnup, and DPA. Examples of vector quantities include current, adjoint

current, and the power gradient.

PyPinPlot can handle any arbitrary pin configuration, and it will automatically generate

a pin configuration given a number of full pin rings. Pin diameters reflect the actual outer

cladding diameters, and hexagonal shell thicknesses reflect actual assembly duct thicknesses.

Furthermore, PyPinPlot can illustrate some mechanical distortions in the form of (x,y)

assembly translations.

See Figure 11.2 for an example of scalar and vector plots. Via matplotlib, PyPinPlot

can generate plots as Portable Document Format (PDF), Portable Network Graphics (PNG),

or Joint Photographic Experts Group (JPEG) files. The PDF files can be enlarged up to

640x with zero reduction of image quality, as shown in Figure 11.2.
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11.5 Pin-Level Flux and Power Reconstruction

Fast neutrons have long mean free paths. Thus, reactor cores with fast neutron spectra can

be modeled on coarse meshes, often with only one mesh cell per hexagonal assembly block.

Such coarse meshes yield fairly accurate keff eigenvalues and core-wide flux distributions.

Unfortunately, they are not well suited for detailed intra-assembly neutronic or thermal

hydraulic analysis. While coarse assembly-level meshes are adequate for scoping analyses,
build-ready design and regulatory standards require knowledge of neutronic quantities on

the pin level. One could take the "brute force" route by solving the neutron diffusion

(or transport) equation on a hyperfine pin-level mesh, or one could reconstruct the intra-

assembly multigroup flux distributions from coarse mesh quantities.

Techniques for multigroup flux, power, and burnup reconstruction in fast reactors have

been well studied and applied in hexagonal geometry. However, we extend these techniques to

reconstruct other neutronic properties, including current vector fields and adjoint-weighted

quantities.

11.5.1 Theory

A coarse assembly-level nodal diffusion solution produces cell-averaged fluxes and surface-

averaged partial currents. We follow the procedure outlined by Yang in hexagonal-z geometry

[113,114]. Within each hexagonal prism block, the multigroup real flux 0 is assumed to be

separable in the axial (z) and radial (x,y) directions. In the radial direction, the reconstructed

flux in each energy group preserves six surface-averaged net currents, six surface-averaged

fluxes, six corner-point fluxes, and one volume-averaged flux. In the axial direction, the

flux reconstruction in each energy group preserves two surface-averaged net currents, two

surface-averaged fluxes, and one volume-averaged flux. Thus, there are a total of five axial

constraints and nineteen radial constraints [113]. Equation 11.1 shows the complete group

flux expression; the flux reconstruction process requires computing the Ci,9 and Cj,, coeffi-

cients.

19 ~5

0(X, y, Z) = Ci,gxMtYn j[CY,gzi-] (11.1)
i=1 . .j=1

We can easily represent the power density P as a sum of the same monomials with

different weights:
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19 '5

P(X, y, z) = Cix"My"n Cy zi- (12

G

Ci = -Y E 3f,gCi,g (11.3)
g=1

Here -y represents the energy release per fission event. The C, values are normalized such

that the average of the separable z polynomial is 1.
We have benchmarked this reconstruction approach against a hyperfine mesh finite dif-

ference diffusion solution for the Fast Flux Test Facility (FFTF) [146] in MaPS. In this

hyperfine mesh, we subdivide each hexagonal assembly into either 150 or 294 equilateral tri-
angles (the number of triangles per hexagon is always six times a perfect square). We solve

the eigenvalue problem on this mesh to obtain the reference flux and power distributions.

Then we perform volume and surface integrals on these hyperfine reference flux distributions

to obtain volume-averaged fluxes, surface-averaged fluxes, and surface-averaged currents for

each assembly block. We apply the flux reconstruction techniques to these integrated quan-

tities to obtain the Cg and Cjg coefficients in Equation 11.1 for each assembly block. Now

we evaluate Equations 11.1 and 11.2 for (x, y) values corresponding to a fictitious set of pins

located at the centers of the hyperfine triangles. This allows for direct comparison to the

reference flux and power distributions. Core-averaged reconstructed pin power error magni-

tudes are less than 0.4% for the FFTF benchmark and less than 0.05% for a homogenous

core with FFTF fuel.

See Appendix B for a more thorough discussion of the flux reconstruction theory and its

validation process.

11.5.2 Implementation

The ARMI neutronics module includes the diffusion solver DIF3D [193] and its embedded

transport option called VARIational Anisotropic Nodal Transport (VARIANT) [199]. We

use 33-group cross-section sets generated by MC**2 [187].

We calculate the surface-averaged real and adjoint partial currents via the DIF3D binary

output files NHFLUX and NAFLUX, respectively [193]. However, the DIF3D nodal diffusion
adjoint solver is unmaintained, so we must employ the VARIANT v10.0 nodal transport

adjoint solver to obtain a usable NAFLUX file. The use of VARIANT v10.0 is crucial, as

v8.0 will produce an NHFLUX/NAFLUX file format that is exceptionally cumbrous to read.

We develop an ARMI Python module to read surface-averaged partial currents from

NHFLUX and/or NAFLUX, generate the 19 radial and 5 axial constraints, and solve matrix

equations to produce the Ci,g and C,, values shown in Equation 11.1. This module provides
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pin power input to thermal hydraulic, materials, and mechanical analysis. Furthermore, we
couple it to a transmutation module to perform pin-level depletion and explore the effects

of assembly rotation during shuffling.
Figures 11.3 and 11.4 show reconstructed pin powers for FFTF and Jby6 on their axial

midplanes. These high-resolution images are produced via PyPinPlot. Only assemblies

containing at least some fissionable material are reconstructed - control and test assemblies

are left "blank". Figure 11.5 shows reconstructed pin powers for the Generic Metal-Fueled

(GMF) SFR test core, described in Appendix I. Figure 11.6 shows pin powers in a small

homogeneous core with FFTF mixed oxide (MOX) fuel. In this case, the flux reconstruction

produces a smooth, cosine-like radial power profile.
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Figure 11.3: Pin power reconstruction in the FFTF sodium fast reactor benchmark displayed via
PyPinPlot [146]. The core consists of two enrichment zones. The blank hex locations represent
withdrawn control assemblies and test assemblies interspersed throughout the core.
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Figure 11.4: Pin power reconstruction in the J6yb sodium fast reactor benchmark displayed via

PyPinPlot [147]. An inner core of 91-pin fuel assemblies is surrounded by a thick blanket of 19-pin

breeder assemblies. The blank hex locations represent withdrawn control assemblies.
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Figure 11.5: Pin power reconstruction in the GMF SFR benchmark displayed

[147]. The blank hex locations represent withdrawn control assemblies.
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Figure 11.6: Pin power reconstruction of a hypothetical homogenous core (fully loaded with

FFTF fuel) displayed via PyPinPlot.
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11.5.3 Pin-Level Adjoint Flux Reconstruction

Consider a fission event. Mathematically, neutrons from a certain group flux Og are trans-

ferred to another group flux #g'. The neutron source S in group g' is simple to express:

G

Sg = Xg' E ViE5,g#g (11.4)
g=1

Here vg is the average number of neutrons born from a fission event induced by a neutron

in group g, while Xg, is the fraction of those neutrons born into group g'. Ef is the macroscopic

fission cross-section. See Sections 2.3.2 and 2.3.3 for an introduction to the multigroup

diffusion formalism.

Now consider a fission event in the context of adjoint flux. Mathematically, neutrons

from a certain adjoint group flux # , are transferred to another adjoint group flux #t. This is

why the adjoint flux is often referred to as the "backward" flux. The adjoint neutron source

in group g is thus

G
St = Vgf,g, xg ,g (11.5)

g'=1

Now let us consider how to define the total fission neutron source. Remember that the

sum of xg over all g is 1.

G G

S = >jSg = [Vlf,gog (11.6)
g'=1 g=1

Now let us similarly define the total fission adjoint neutron source.

G

S t = ZSt (11.7)
g=1

While the real source represents neutrons produced by fission events that were caused by

the real flux, the adjoint source represents neutrons that caused fission events that produced

the adjoint flux. Computing the real source requires tracing the real flux forward to de-

termine which fission events it causes. In contrast, computing the adjoint source requires

tracing the adjoint flux backward to determine which fission events produced it.

Previously, we discussed how to reconstruct the adjoint multigroup flux from a coarse

mesh DIF3D-VARIANT solution. Once the real and adjoint multigroup fluxes are known,

computing the real and adjoint sources is trivial.

Figure 11.7 compares the real and adjoint pin sources for a subregion of a small sodium

fast reactor test core. Blank hexagon cells represent withdrawn control assemblies. The real
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and adjoint sources have similar distributions except in the immediate vicinities of these with-
drawn control assemblies, which are flooded with sodium. The real source peaks near these
withdrawn control assemblies, because sodium softens the spectrum. In contrast, the adjoint
source depresses near these withdrawn control assemblies, because neutrons that enter these
fuel-less assemblies are less likely to induce fission and thus altogether less "important".
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Figure 11.7: Pin scalar quantities in a small 1/3 test core with reflective boundary conditions
displayed via PyPinPlot. The upper image shows the real source, while the lower image shows the
adjoint source. Note that the real fluxes tend to peak near the withdrawn control assemblies (due
to a softened spectrum), while the adjoint fluxes tend to depress in the same areas (reflecting lower
neutron importance). In these unique areas, the real and adjoint currents are roughly parallel,
while they are roughly antiparallel throughout most of the core.
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11.5.4 Vector Field Reconstruction: Neutron Currents and Power Gradients

Since we have reconstructed an analytic representation for the multigroup flux in each hexag-
onal block, it is straightforward to obtain an analytic representation for the (real and adjoint)
net currents (f and J) in each block:

Jg= -DVg (11.8)

Here D is the diffusion coefficient. For example, the x coordinate of the group flux
gradient is

195

[Vg]x = [z Ci,gmix"lyn6,i [ CJgzf] (11.10)

where 6 is the Dirac delta function. We can plot these currents as vector fields via
PyPinPlot. Figure 11.8 compares the real and adjoint net neutron currents (for one energy
group) in a small sodium fast reactor test core. Note that the neutron current field lines
bend toward the withdrawn control assemblies, which are weak neutron sinks.

Referring back to Figure 11.7, we saw that the real and adjoint source distributions are
similar except in the vicinities of withdrawn control assemblies. Figure 11.8 further confirms
this. Note that the real and adjoint currents flow in opposite directions (countercurrently)
throughout most of the core. However, they flow in the same direction (concurrently) on the
"leeward" side of withdrawn control assemblies.

Figure 11.9 shows the angle 0 between the real and adjoint vector fields throughout the
same core shown in Figure 11.8.

-I -J= J cosO (11.11)

When 0 > ir, the real and adjoint currents flow countercurrently. Real neutrons flow
toward lower "importance". When 0 < -r, the real and adjoint currents flow concurrently.
Real neutrons flow toward higher "importance".

J! -g > 0 neutrons diffusing toward higher importance (11.12)

J f < 0 neutrons diffusing toward lower importance (11.13)g g

We can also construct an analytic representation for the power density gradient, assuming
that the fission power density (a scalar function) is continuously distributed within each block
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(and not discretized into pin locations). For example, the y-component of the power density
gradient is

19 5

[VP]Y = Cinix"y- n ] [I Cj,9z)1] (11.14)

Figure 11.10 exemplifies this for the same test core shown in Figures 11.8 and 11.9. The

highest power gradients tend to occur on the "leeward" sides of withdrawn control assemblies.

Core-wide pin-level power gradient maps can be useful for mechanical and structural analysis.
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Figure 11.8: The real (top) and adjoint (bottom) net neutron currents in group 5 (1.35 - 2.23

MeV) displayed via PyPinPiot for a small 1/3 test core model. Colors represent relative magnitude,

while arrows show direction. The real and adjoint currents are nearly always antiparallel, except

on the "leeward" side of withdrawn control assemblies. .In these unique regions, the real and

adjoint currents are roughly parallel, indicating that neutrons flow toward higher importance.

Thus, removing material will decrease leakage.
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Figure 11.9: The angle (radians) between the total real net current and the total adjoint net

current. Note that Figure 11.8 shows the real and adjoint net currents for this same core in energy

group 5. Throughout most of the core, the real and adjoint currents flow in opposite directions

(countercurrent). However, on the "leeward" sides of withdrawn control assemblies, the real and

adjoint currents flow in the same direction (concurrent). This implies that, in these unique regions,
neutrons flow toward higher importance.
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1At

Figure 11.10: The fission power gradient displayed via PyPinPlot for a small 1/3 test core model.

Colors represent relative magnitude, while arrows show direction. The highest power gradients

occur on the "leeward" side of withdrawn control assemblies. Such core-wide power gradient maps

are elucidating for thermal hydraulic and mechanical analysis, as they often reflect temperature

gradients.
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11.5.5 Adjoint-Weighted Quantity Reconstruction: When Adding Material In-

creases Leakage

Since we have reconstructed analytic representations for the real and adjoint fluxes as well

as for the real and adjoint flux gradients, it is straightforward (albeit computationally cum-

bersome) to obtain an analytic representation for the reactivity worths of various materials.

The first order reactivity Ap due to small perturbations in the standard multigroup diffusion

operators dF and dM is

Ot I.d F - d If 0)
Ap K (dtdiq)(11.15)

KOt I)

If we wish to compute a value that represents the "reactivity worth" of voiding sodium,
then we can simply evaluate qf (dM4). If we already have analytic representations of the flux,
the adjoint flux, and their gradients in each block, then an analytic function proportional to

the sodium "reactivity worth" per unit mass is

G [ G
Oft (-dM5) =f - ~ . C 129

13 ~bdg Og - (vVq g 3 z (~t -4 d l'q5
g=1 , tr,g g

(11.16)
Here Ea, Etr, and E. are the absorption, transport, and scattering macroscopic cross-

sections, respectively. We can also write the leakage term in terms of a dot product of the

real and adjoint neutron currents by using Equations 10.7 and 10.8.

G

(otI -dL) = - dV [ (J - f) 3d~tr,] (11.17)
lg=1 9 9

Note that Equation 11.17 is always positive when the real and adjoint currents are an-

tiparallel and always negative when the real and adjoint currents are parallel. Thus, adding

material will always increase the leakage component of reactivity (by decreasing leakage) ex-

cept in the special case when the real and adjoint currents are parallel. In that special case,

adding material will actually decrease the leakage component of reactivity (by increasing

leakage).

This result seems counter-intuitive, but considering the "importance" interpretation of

the adjoint flux can be elucidating. When the real and adjoint currents are parallel, real

neutrons flow toward higher "importance". Thus, adding material obstructs the flow of

neutrons toward higher "importance", which effectively increases leakage. Thus, the leakage

component of reactivity decreases. It follows that removing material allows neutrons to more

readily flow toward higher "importance", which decreases leakage and increases reactivity.
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Figure 11.11 compares the parallel and antiparallel scenarios conceptually. This intriguing

phenomenon occurs only in small core subregions as illustrated in Figures 11.8 and 11.9 -

it is a heterogeneous effect. Nevertheless, designing cores with larger such regions could be

favorable for neutron economy as well as create some intriguing physics scenarios.

real and adjoint currents anti-parallel

J -<0
Vq*- Vq >0

VqO- J <0

VqO+

neutrons diffusing toward
lower importance

real and adjoint currents parallel

P- > 0

Vq + VqO <0

neutrons diffusing toward
higher importance

Figure 11.11: The conceptual interpretation of real and adjoint currents as anti-parallel (as they

usually are) and parallel (as they sometimes are in localized areas). Where the real and adjoint

currents are parallel, neutrons diffuse toward higher importance.

In order to reconstruct an analytic representation for Equation 11.16, we must compute

the product of two fluxes (or two components of a flux gradient). Equation 11.18 shows how

to simply represent the product of two monomial sums as a single monomial sum.

C2 ,gxmY n E CgxmYna = E C,gCj,gxmni+mnyni+ni

j=1 . i=1 j=1

(11.18)
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Figure 11.12 shows the spatial distribution of this reconstructed "reactivity worth" in

Equation 11.16 evaluated for a uniform sodium density perturbation. It is positive through-

out the core except in regions of high flux gradients (high leakage), where it is negative. It is

well-known that cores with high leakage have low sodium void worth. Cores with "pancake"

or "parfait" (axially multilayered) geometries have been shown to mitigate the void worth

problem [124,1321.
Figure 11.12 also shows that sodium worth is also greatly reduced in regions immediately

adjacent to withdrawn control rods, where the spectrum tends to be softer. Spectrum soft-

ening is also known to reduce sodium void worth. Strategically inserting small quantities of

moderating material into a large SFR core can soften the neutron spectrum enough such that

sodium voiding does not significantly harden the spectrum or increase reactivity [125,128].

Computing and visualizing adjoint-weighted quantities (such as sodium void worth or

other reactivity coefficients) on the pin level or subchannel level can elucidate spatial effects

in transients. It may also elucidate potential strategies for reducing whole-core reactivity

coefficients.
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Figure 11.12: The relative sodium "reactivity worth" distribution for a small 1/3 test core model.
This "reactivity worth" (which is proportional to the local sodium void reactivity coefficient per
unit mass) is positive throughout most of the core, but it is significantly reduced in regions with
(1) high leakage and (2) softened spectra. One can see an example of reduced void worth in case
(2) surrounding withdrawn control assemblies. The magnitudes in this plot are relative. Although

computing the product 0#t tends to amplify small errors in # and #t, the general spatial trends
will be correct.
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11.5.6 Additional Considerations

Although we have unearthed an intriguing heterogeneous effect in which adding material

increases leakage, we have only demonstrated its existence in reconstructed nodal diffusion

theory.

One might suggest that this effect arises from errors in the flux reconstruction techniques.

Figure B.6 shows that the flux reconstruction error magnitude does not peak in the vicinity

of withdrawn control assemblies (or test assemblies) - the same regions in which this effect

occurs. Refer back to Figures 11.7, 11.8, and 11.9. Thus, it is extremely unlikely that this

effect is an artifact of the flux reconstruction techniques.

One also might suggest that this intriguing effect arises entirely from the diffusion ap-

proximation. If this were true, it would not occur in transport theory. However, we have

already explained the origin of the effect intuitively. As shown in Figure 11.7, the effect

arises from the fact that the real flux peaks in the vicinity of withdrawn control assemblies

while the adjoint flux depresses in the same regions. We can easily explain this in terms

of physics. The real flux peaks, because the extra sodium replacing the withdrawn control

assembly weakly moderates the spectrum, causing the power in adjacent fuel pins to peak.

The adjoint flux (the importance function) depresses, because neutrons heading into a fuel-

less assembly are less likely to induce fission. Nothing about these physical arguments is tied

to the diffusion approximation - they are equally valid when considering transport. Thus, it

likely that a transport solution would also exhibit this effect.

Furthermore, note that when we say "adding material increases leakage", we define "leak-

age" as the leakage term in reactivity worth. Of course, there are also capture, scattering,

and fission terms. It would be intriguing to find a scenario in which this leakage effect causes

the total reactivity worth to be positive instead of negative (or vice versa).

367



Mark Reed

11.6 Modeling Distortions via Monte Carlo

Now that we have discussed the flux reconstruction and PyPinPlot components of VirDenT,
let us turn to the distortion reactivity. Consider arbitrary assembly displacements in the (x,y)
plane with axial dependence. We cannot compute this directly via homogenized assembly
diffusion. Thus, in order to validate it, we must turn to heterogeneous Monte Carlo with
pin detail.

We choose to use MCNP [202]. ARMI can generate MCNP input files, which we can
visualize via mplot. Figure 11.13 shows homogenized assembly MCNP. Essentially, this has
the same homogenized geometry as a DIF3D model, except we solve it with Monte Carlo
transport instead of diffusion. However, we cannot model arbitrary assembly distortions with
this model, because we cannot move a single assembly without it overlapping its neighbors.

Figure 11.14 shows the same assemblies as Figure 11.13 with a heterogeneous MCNP
model. This has full pin, clad, duct, and interstitial coolant detail. This allows us to
move a single assembly within its hexagonal cell without overlapping its neighbors or losing
mass. Figure 11.15 shows the same assemblies as Figure 11.14, except that the upper three
assemblies have shifted radially outward by a couple of millimeters. Toggling back and forth
between Figures 11.14 and 11.15 makes this evident.

Figure 11.16 zooms in on a distorted interstitial coolant zone between three neighboring
assemblies. The (1 , , and zones that meet in the center are all interstitial
coolant, and one can see that the upper-right assembly has shifted slightly away from its
two neighbors.

Figure 11.17 illustrates an exaggerated uniform radial swelling scenario in the same het-
erogeneous MCNP model. The assemblies do not swell, but they simply move further apart
and open up larger interstitial coolant zones.
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Figure 11.13: Homogenized assembly Monte Carlo displayed via mplot in MCNP.
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Figure 11.14: Heterogeneous pin-detail Monte Carlo without distortions displayed via mplot in

MCNP.
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Figure 11.15: Heterogeneous pin-detail Monte Carlo with small assembly distortions displayed
via mplot in MCNP.
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Figure 11.16: Zoomed-in heterogeneous pin-detail Monte Carlo displayed via mplot in MCNP.
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Figure 11.17: Uniform radial flowering in heterogeneous pin-detail Monte Carlo displayed via
mplot in MCNP.
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Table 11.1: The Linearity of Monte Carlo Reactivities for FFTF Ring 6 Shifting (1 pcm conver-
gence). The unperturbed keff is 1.00555.

ring 6 shift (mm) keff Ap (pcm) pcm/mm

0.45 1.00530 -25 ± 2 -55.6 ± 4.4

0.90 1.00506 -49 ± 2 -54.4 t 2.2

1.35 1.00484 -71 ± 2 -52.6 ± 1.5
1.80 1.00461 -94 ± 2 -52.2 ± 1.1

Table 11.2: The Linearity of Monte Carlo Reactivities for Test Core Rings

pcm convergence). The unperturbed keff is 1.07887.

rings 10,11,12 shift (mm) keff Ap (pcm) pcm/mm
0.5 1.07878 -9 ± 2 -18.0 ± 4.0
1.0 1.07868 -19 ± 2 -19.0 ± 2.0

1.5 1.07860 -27 ± 2 -18.0 ± 1.3
2.0 1.07852 -35 ± 2 -17.5 ± 1.0

10,11,12 Shifting (1

11.7 Properties of Assembly Distortion Reactivity in SFRs

Before commencing the VirDenT validation process, it is useful to assure ourselves of two

properties of arbitrary assembly distortions: linearity and linear independence.

11.7.1 Linearity

Distortion reactivities are linear if reactivities are roughly proportional to assembly dis-

placement. If an assembly moves 2 mm, the resulting reactivity will be twice that for a 1

mm movement. We generate heterogeneous MCNP models of FFTF and move individual

assembly rings radially outwards by tiny amounts. Table 11.1 shows linearity for ring 6.

Table 11.2 shows linearity for rings 10-12 moving together. Table 11.3 shows linearity for

ring 10 alone. All these results clearly demonstrate that linearity holds for small distortion

magnitudes to within 1- uncertainty.

11.7.2 Linear Independence

The second property of arbitrary assembly distortions is linear independence. This means

that the reactivity due to moving assemblies A and B together is the sum of that due to
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Table 11.3: The Linearity of Monte Carlo Reactivities for Test Core Ring 10 Shifting (1 pcm
convergence). The unperturbed keff is 1.07887.

ring 10 shift (mm) keff Ap (pcm) pcm/mm
1.0 1.07881 -6 2 -6 ± 2
2.0 1.07875 -12 ± 2 -6 ± 1

Table 11.4: The Linear Independence of Monte Carlo Reactivities for FFTF Ring Shifting (1 pcm
convergence). The unperturbed keff is 1.00555. Each ring moves radially outward by 1.8 mm.

ring(s) keff Ap (pcm) sum of Ap (pcm) for each ring error (pcm)

ring 4 1.00525 -30 ± 2 N/A N/A
ring 5 1.00519 -36 ± 2 N/A N/A
ring 6 1.00461 -94 ± 2 N/A N/A
ring 7 1.00560 5 ± 2 N/A N/A
rings 4,5 1.00491 -64 ± 2 -66 ± 4 -2 ± 6
rings 5,6 1.00424 -131 ± 2 -130 ± 4 1 ± 6
rings 4,5,6 1.00398 -156 ± 2 -160 ± 6 -4 ± 8

moving A and B separately. Table 11.4 demonstrates this for assembly ring motion in the

same FFTF benchmark.
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11.8 VirDenT Distortion Implementation

We attempt two distinct approaches to applying non-uniform anisotropic "virtual density"

theory to arbitrary assembly displacements: interstitial coolant integration and homogenized

triangle integration.

11.8.1 Interstitial Coolant Integration

Throughout Chapters 7 and 9, we studied Cartesian SFR cases in which the finite differ-

ence mesh contained explicit coolant gaps. These explicit gaps made computing arbitrary

assembly motion quite easy; we simply applied "virtual density" theory to them. However,

we now attempt to model arbitrary hexagonal assembly motion with a DIF3D mesh that

lacks explicit gaps. We obtain the homogenized real and adjoint currents through the lateral

assembly surfaces via DIF3D nodal, and then we use those currents to compute S, Li, and

ri within the thin heterogeneous interstitial coolant zones along those surfaces.

Figure 11.18 illustrates the x, y, and z directions within one of these interstitial zones. In

order to accurately apply non-uniform anisotropic "virtual density" to these zones, we must

know the real and adjoint flux gradients accurately in all these directions. Unfortunately, this

de-homogenization problem is not straightforward given fluxes computed on a homogenized

mesh. Thus, we seek a different approach.

11.8.2 Homogenized Triangle Integration

The second method is to compute S, Li, and Fj for each DIF3D finite difference triangle,

which is straightforward. Then we can anisotropically swell each regular triangle to become

an irregular triangle such that the original mesh of regular triangles now becomes a distorted

mesh of irregular triangles. Figure 11.19 illustrates this process.

11.9 VirDenT Distortion Validation

We compute the "virtual density" S, Li, and Fj quantities (using the DIF3D finite difference

real and adjoint solutions) in the same way we did in Chapter 7.

11.9.1 Reactivity Coefficients: Fuel, Structure, Coolant, Radial Swelling, Axial

Swelling

We compute the reactivity coefficients for fuel, structure, and coolant material densities

as well as for uniform radial and axial swelling. Table 11.5 compares these coefficients

computed via VirDenT to DIF3D eigenvalue references for the GMF SFR. All coefficients

agree to within 1%, and similar results are found for any ARMI core.
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Figure 11.18: x, y, and z coordinates on the lateral surface of a hexagonal assembly, which is an
interstitial coolant zone.

11.9.2 Arbitrary Distortions

NUBOW-3D [192] generates realistic 3-D assembly distortions in the form of (x,y) assem-
bly displacements with axial dependence. VirDenT reads these distortions via ARMI. We
generate heterogeneous Monte Carlo models for these displacements as illustrated by Fig-

ures 11.14 and 11.15. Converging these MCNP simulations for large SFR cores requires

approximately 1 CPU year. Computing an unperturbed DIF3D finite difference solution
with VirDenT pre-computation requires a couple CPU minutes, and computing arbitrary

VirDenT reactivities from that solution requires a few CPU seconds.

Currently, we have obtained validation results only for proprietary cores, but we can

say that VirDenT agrees with heterogeneous MCNP to within 1.5c- uncertainty for all of

several distortion scenarios we have tested. The validation process is ongoing, and distortion

scenarios in non-proprietary cores will be published in the open literature.
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Figure 11.19: Transforming an un-distorted regular triangular mesh into a distorted irregular
triangular mesh via non-uniform anisotropic swelling.

Table 11.5: Reactivity Coefficient Validation for the Generic Metal-Fueled (GMF) Test Core

DIF3D/ARMI (pcm/%) VirDenT (pcm/%) error (%)
fuel density -241.1477 -240.4323 0.297
structure density -51.6302 -51.5873 0.083
coolant density 6.8586 6.8543 0.063
radial swelling -343.7806 -345.1656 0.403
axial swelling -124.1347 -124.3875 0.204
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11.10 Summary

We have extended conventional flux reconstruction techniques to include vector fields and

adjoint-weighted quantities. It is not unreasonable to surmise that an intra-assembly analytic

representation of any neutronic quantity could be obtained. We have also created the suite

of visualization tools dubbed PyPinPlot. In particular, the fission power gradient core maps

are useful for thermal hydraulic and mechanical analysis, and the sodium worth core maps

can potentially elucidate techniques for reducing core-wide (or at least localized) void worth.

Furthermore, we have unearthed an intriguing physics scenario in which removing material

actually decreases leakage.

Most significantly, VirDenT computes reactivity coefficients due to non-uniform anisotropic

swelling of assembly zones (which direct diffusion theory cannot compute) in CPU seconds,
while Monte Carlo (currently the only high-fidelity approach) requires CPU years to do the

same. Preliminary results indicate that VirDenT agrees well with Monte Carlo, although

the validation process is ongoing.
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12 Conclusions and Future Work

12.1 Introduction

Here we summarize the major accomplishments of this work, and we ruminate over future,
wider applications of "virtual density" theory.

12.2 Major Contributions and Ramifications

At our outset, we sought to develop a new method to accurately quantify negative reactivity

feedback due to arbitrary geometry distortions in fast reactors. Previously, no method existed

that was generic, efficient, and accurate.

We developed the "virtual density" theory of neutronics, which alters material density

(isotropically or anisotropically) instead of explicitly changing geometry. While geometry

is discretized, material densities occupy a continuous domain; this allows density changes

to obviate the greatest computational challenges of geometry changes. Although primitive

forms of this theory exist in Soviet literature, they are only applicable to cases in which

entire cores swell uniformly. Thus, we conceived a much more general and pragmatic form

of "virtual density" theory to model non-uniform and localized geometry distortions via

perturbation theory. This process required inventing new "surface leakage" perturbation

quantities and distinguishing them from existing "volume leakage" quantities.

In order to efficiently validate "virtual density" perturbation theory, we conceived the

"virtual mesh" method for diffusion theory. This new method involves constructing a slightly

perturbed "fake" mesh that produces correct first-order reactivity and flux shifts due to

anisotropic swelling or expansion of individual mesh cells. First order reactivities computed

on a "virtual mesh" agree with continuous energy Monte Carlo to within l- uncertainty.

We validated "virtual density" theory via the "virtual mesh" method in 3-D coarse mesh

models of the Fast Flux Test Facility (FFTF) and Jbyb benchmarks using the MATLAB-

PETSc-SLEPc (MaPS) multigroup finite difference diffusion code, which we developed for

this purpose. We modeled a panoply of non-uniform anisotropic swelling scenarios, including

axial swelling of individual assemblies, axial swelling of each mesh cell in proportion to its

fission power, and radial core flowering with arbitrary axial dependence. In 3-D coarse mesh

Cartesian cores with explicit coolant gaps, we modeled individual assembly motion, assembly

row motion with arbitrary axial dependence, and assembly row "s-shape" bowing. In all

cases, we found that "virtual density" perturbation theory predicts reactivity coefficients

that agree with "virtual mesh" reference cases to within 0.01%. These reactivity coefficients

are two to four orders of magnitude more accurate than those computed via boundary

perturbation theory. We also developed the Pseudo-Seismic (PseuSei) Animator within

MaPS to explore point-kinetic effects of arbitrary assembly motion for 3-D coarse mesh
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Cartesian cases. In general, this "virtual density" perturbation method can precisely predict
reactivity coefficients due to anisotropic swelling or expansion of any core region in any
direction.

Furthermore, we computed flux and power shift distributions due to geometry distor-
tions. We found that our "virtual density" formalism couples seamlessly with existing modal
expansion perturbation theory (MEPT) formalism, and we used the resulting new hybrid
method to compute flux and power shifts due to arbitrary anisotropic swelling of arbitrary
core regions. We tested this new method for a large, highly-heterogeneous Cartesian core,
and we found that predicted (global and local) flux and power shift distributions typically
agree with "virtual mesh" reference cases to within a few percent.

Development of the "Virtual Density" Theory (VirDenT) industry code constituted the
culmination of this work. This parallelized Python code computes "virtual density" reactivity
coefficients given a DIF3D flux solution as input. VirDenT contains a flux reconstruction
module that computes individual pin powers from a homogenized nodal diffusion solution.
It also contains PyPinPlot, a high-resolution visualization tool for pin-level powers, fluxes,
and current vector fields. Most importantly, VirDenT computes reactivity coefficients due to
local anisotropic swelling of assembly zones (which direct diffusion theory cannot compute)
in CPU seconds, while Monte Carlo (currently the only high-fidelity approach) requires CPU
years to do the same. Preliminary results indicate that VirDenT agrees well with continuous
energy, pin-detail heterogeneous Monte Carlo, although the validation process is ongoing.

In conclusion, we successfully conceived a new method based on new fundamental neu-
tronic principles and guided it from academic research to practical industry application.
This method is generic, accurate, and efficient. While most of the neutronics community
pursues hyperfine spatial resolution in order to model distortions, "virtual density" theory
allows one to model distortions with relatively coarse spatial resolution. Most importantly,
it allows the fast reactor community to more accurately quantify the neutronic effects (es-
pecially negative reactivity feedback) due to geometry distortions. Accurately knowing this
feedback magnitude can enable SFR designers to justify a positive sodium void reactivity to
regulators - an important step toward breaking past the light water paradigm.

12.3 Future Work

We intend the "virtual density" theory of neutronics to be seminal. It is readily extensible
not only throughout neutronics, but perhaps also beyond neutronics. Here we will ponder
over some potential future applications.
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12.3.1 Spatial Kinetics with Distortions: Incorporating "Virtual Density" The-

ory into Direct Diffusion Solutions

People perform spatial kinetics for fast reactors quite often. However, none of these spatial

kinetics simulations include geometry distortions. The code DIF3D-K does even include

uniform radial core swelling[194]. Fast reactor modeling at Argonne National Laboratory

includes the Wigeland reactivity models[105,106,107,108] obtained via SASSYS[196], but

this is a single whole-core value that does not include non-uniformity of radial swelling.

The Wigeland model has no spatial distribution, and so it does not allow for spatial kinet-

ics. Argonne also sometimes employs the Knutson reactivity models [101,102] obtained via

NUBOW-3D [192], but these do not agree well with diffusion references for uniform radial

swelling. Refer back to Sections 2.6.1 and 2.6.2 for more detailed explanation of the Knutson

and Wigeland models. In summary, spatial kinetics have apparently never included arbi-

trary geometry distortions. This is a major limitation. If distortions constitute the dominant

negative reactivity feedback (as FFTF experimental data has shown[106]), then how can we

say spatial kinetics is correct without distortions?

Currently, the only options for spatial kinetics with distortions are (1) flux tallying via

Monte Carlo at each time step and (2) diffusion or deterministic transport calculations on a

hyperfine mesh. Option (1) is prohibitively expensive, and option (2) is still quite expensive

and is complicated by the need to re-mesh at each time step. One can only eliminate re-

meshing effects by employing meshes that are much more fine than the distortions themselves,

which causes computational expense to exponentially increase.

We could attempt spatial kinetics with distortions using the VirDenT-MEPT method

described in Chapter 10. Modal expansion was originally intended to model transients, and

Duderstadt's textbook uses modes to perform analytical transient analysis for a homogeneous

1-D slab[157]. However, the neutronics community has long since bypassed modes as a means

for spatial kinetics in favor of directly solving the fundamental flux distribution at each time

step. Although we have shown that VirDenT-MEPT can work for heterogeneous cores, the

number of required modes could be discouraging to potential users.

Accordingly, a less intimidating (and thus more popular) approach might be solving the

diffusion equation directly using anisotropic "virtual density". Although the focus of this

thesis is perturbation theory, finding a way to solve the eigenvalue problem directly for

distorted geometries on the same mesh might be very advantageous. Adjusting material

densities and anisotropic diffusion coefficients to directly solve a distorted geometry is trivial

as long as that distortion can be expressed using only S and Li. These include all uniform

swellings as well as any non-uniform swelling that extends through the whole core in at

least one dimension (such as a through-core axial slice or an entire assembly). However,

any "virtual density" perturbation that requires Fi terms (such as an arbitrary interior core

zone) cannot be solved directly via standard diffusion theory. In order to incorporate Fi
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terms into a direct eigenvalue solution (rather than perturbation theory), we would need to
invent "surface discontinuity" or "surface slipping" factors for diffusion theory. This effort
may be the most salient future application of "virtual density", as it would enable direct
simulation of time-dependent distortion effects on a coarse mesh without re-meshing.

12.3.2 "Virtual Density" Theory in Transport Theory

Although pure diffusion theory is accepted as adequate for fast reactors with long neutron

mean free paths, adequately modeling pin lattice effects in thermal reactors (such as LWRs)
requires at least some transport theory. One cannot simply homogenize pin detail in LWRs
as in SFRs without any additional pin-detail computation.

One could implement "virtual density" theory in deterministic transport theory. Al-
though transport theory is undoubtedly more complex than diffusion theory (it has the ad-

ditional angular variable), "virtual density" theory might actually be easier to implement in

certain types of deterministic transport. Unlike diffusion, transport contains explicit angular

dependence of the flux, which might ease anisotropic "virtual density" implementation.

Method of characteristics (MOC) might afford the most straightforward implementation.

Unlike in diffusion, we need not separate spatial and spectral terms or differentiate between

volume and surface leakage. Formulating the quantities S, Li, and l'i constituted most of
our research time and effort in diffusion, but these quantities are not separate in transport.

Consider the differential transport equation defined along a single characteristic (a line or

"track" through space):

n -V4(F,fn,E) = -Et(F, E),O(r, f,E) (12.1)
too 47

± dE' ] dn'E,(, -n ', E' -+ E),0 (F, Q', E') (12.2)

x '7kE dE'v(r, E') E (r, E') f d ' ,2', E') (12.3)

We can easily see that increasing material density along a track while simultaneously

decreasing the length of that track will have no effect on the equation. It follows that we

can replicate the effects of a track length change with a material density change. Instead

of making a track segment longer, we simply increase all material densities along that track

segment. Although we numerically demonstrated uniform isotropic "virtual density" for

MOC in Section 3.3.5, we now see that non-uniform anisotropic "virtual density" for MOC
is almost as simple. The only complication is defining material densities for each track

segment rather than for each spatial region. Different tracks in the same spatial region must
"see" different (or "virtual") material densities.
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Now consider moving an LWR fuel pin slightly in the 2-D plane. Instead of "actually"

moving the pin, we can "virtually" change material densities along track segments on either

side of the pin. Track segments within the pin itself will see no density change. Although

one could certainly "actually" move a pin and obtain a result, ensuring accuracy of that

result might require hyperfine track spacing (or even re-tracking). In contrast, "virtual

density" MOC could obtain an accurate result with a relatively coarse track spacing without

re-tracking.

Although MOC "virtual density" could be implemented in terms of perturbation theory

(given real and adjoint fluxes along each track), more people might be interested a direct

eigenvalue solution implementation. In fact, a direct "virtual density" eigenvalue solution

for MOC avoids the 17 term obstacle in diffusion.

This same concept is likely extensible to any deterministic transport method with ex-

plicit tracks, such as SN. Methods without explicit tracks, such as PN, could pose greater

challenges.

12.3.3 "Virtual Density" Theory for LWRs

Our derivation of "virtual density" theory assumed nothing about spectrum or mean free

path length. It must be equally valid for reactors with thermal spectra and short mean

free paths. Thus, assuming that we successfully implement "virtual density" in determin-

istic transport, we can readily apply "virtual density" to LWRs. There are two potential

applications:

e The Consortium for Advanced Simulation of LWRs (CASL) has flagged fuel assembly

distortions (FADs) as a potential priority. Most interest in FADs regards determining

the mechanical behavior of LWR fuel assemblies, and many people assume that the

neutronic response can be "brute forced" via Monte Carlo or via deterministic methods

with exotic hyperfine meshes or track spacings. However, direct "virtual density"

eigenvalue solutions could obviate the need for exotic hyperfineness.

e The neutronic seismic behavior of LWRs (or any reactor) has not been well quantified.

One could use direct "virtual density" eigenvalue solutions in MOC to compute the neu-

tronic effects of arbitrary pin and assembly movements in the 2-D plane. Furthermore,

one could compute the MOC adjoint solution and use "virtual density" perturbation

theory to rapidly compute the reactivity coefficients dp/dx and dp/dy for individual

pin or assembly movements in each direction.
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12.3.4 "Virtual Density" Theory for Detectors and Security

If we can implement "virtual density" theory in deterministic transport, it immediately
becomes applicable to fixed source detector problems. In fact, much of the most recent
boundary perturbation theory work by Favorite is applied to detectors [60,65] for security
applications, sometimes for photon transport. Detection and imaging transport problems
routinely involve highly-complex geometries, such as objects passing through border security.
Application of "virtual density" theory to these problems could provide two advantages:

" One could simplify complex geometries (or complex geometry changes) by applying
"virtual density" to direct fixed source solutions. Some geometries may be tortuously
difficult to express in terms of code input, but material densities are always easy to
express.

" In critical reactors, the adjoint represents "importance" with respect to the fission
reaction rate, and perturbation theory yields the sensitivity of eigenvalue. In fixed
source detector problems, one can define the adjoint to represent "importance" with
respect to a given detector response, and perturbation theory yields the sensitivity of
that detector response. Thus, implementing "virtual density" perturbation theory in
a fixed source detector code could rapidly determine sensitivity of a detector response
with respect to various complex geometry changes that might be toilsome to solve
directly. Various boundary perturbation theory functionals are more or less accurate
for certain cases, but "virtual density" is generically accurate.

12.3.5 "Virtual Planck" Theory in Quantum Mechanics

One could apply the mathematics of "virtual density" theory to similar partial differential
equations (PDEs) in other fields. First consider the Schr6dinger equation, which is very
similar in form to the neutron diffusion equation. It has a potential V in place of cross-
sections and energy eigenvalues in place of k eigenvalues. The steady-state Schr6dinger
equation is

h22N
V2 On(r) + V(r)n (-) = Enn() (12.4)

2m
Here the subscript n indexes the infinite number of eigenfunctions On and their corre-

sponding eigenvalues En. h and m are Planck's constant and particle mass. We can define
the Hamiltonian operator H in order to express this as an eigenvalue problem with linear
operators:

Hn = En9n (12.5)
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We can also define an equivalent adjoint eigenvalue problem, just as in neutron diffusion.

ftbt' = E 'O (12.6)

The 4#n wavefunctions are always normalized such that (011 'On) = 1. This is consistent

with the physical interpretation that O'O4h = I/-n| 2 is a probability distribution for a particle.

Thus, the real and adjoint s are not only orthogonal, but also orthonormal.

(VktI 'On) = 6mn (12.7)

These days, perturbation theory is much more widely used in physics and quantum

engineering than in nuclear engineering. Since the Schr6dinger equation has few precise

analytical solutions, quantum physicists solve the system for an approximate potential and

then employ perturbation theory to obtain a solution closer to that for the true potential.

Consider perturbing the potential V so that there is a perturbed Hamiltonian H'.

f' = ft + dft (12.8)

This Hamiltonian perturbation induces perturbations in the wavefunctions and eigenval-

ues.

'1= Vo + dVo (12.9)

E0= Eo + AEO (12.10)

Now the first order eigenvalue change is

AEo = K 1 dH'/) (12.11)

This expression is ubiquitous throughout quantum mechanics. It is mathematically equiv-

alent to classic first order perturbation theory (see Equation 2.23) in neutronics except for the

lack of a perturbation denominator, because the wavefunctions have already been normalized

to probability.

Modal expansion techniques are also ubiquitous throughout quantum mechanics. One

can express first order changes in wavefunction distribution as an infinite weighted sum of

wavefunction modes.

00

d, 0 = ann (12.12)
n=1

The an coefficients are
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an = E$ - Eo (12.13)
E0 - E

Compare Equations 12.12 and 12.13 (Schr6dinger) to Equations 10.6 and 10.7 (neu-
tron diffusion). Again, these are mathematically equivalent save for the fission normaliza-

tion in neutron diffusion. Although seldom used in modern neutronics, modal expansion is
widely used throughout physics and is standard in many introductory quantum physics texts
[162,161].

Now consider how to perform geometry perturbations in quantum mechanics, which
amount to changing the domain of V or the positions of "step changes" in V. Currently,
physicists use Equations 12.11, 12.12, and 12.13. Consider a step change (an instantaneous

rise or drop) in potential that slightly shifts position. This is a large potential change within

a small volume, just like a large change in cross-sections within a small volume when a

material boundary shifts position in neutronics. Instead of "actually" moving this potential

step change, we can "virtually" adjust the potential magnitude on either side of the step.

Of course, we would need some way of changing this potential anisotropically. We can
accomplish this by breaking up Planck's constant into separate directions. Now the spatial

term in the Schr6dinger equation looks like this:

h 2 V2 h dh- + dNd + -hz (12.14)
2m 2m, xdx dx dy dy dz dz

Of course, every physicist knows that Planck's constant is not anisotropic - it is identical
for particle travel in every direction. It is a universal physical constant, and tampering with

it is taboo! However, Equation 12.14 introduces a "virtual Planck" h, in each direction i.

Thus, instead of performing a large potential perturbation within a small volume, we could
perform small "virtual Planck" perturbations spread out over larger volumes. We suspect

the advantages of "virtual Planck" perturbation theory would be comparable to those of
"virtual density" perturbation theory in neutronics, but further investigation is required.

12.3.6 "Virtual Conductivity" and "Virtual Viscosity" in Thermal Hydraulics

Beyond eigenvalue problems and perturbation theory, we can consider incorporation of "vir-

tual" quantities within a wider range of PDEs. First consider the heat equation, which

governs temperature distributions in solid fuel elements and structural materials within re-

actor cores. Although not an eigenvalue problem, the heat equation is the diffusion equation.

p()C,)dT (t) = V - k(f)VT(F, t) + Q(F, t) (12.15)
dt
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Here p is material density, cp is specific heat capacity, and k is thermal conductivity. Q is

a volumetric heat source, and temperature T is the quantity we solve for. In the steady-state

case, this is mathematically similar to a one-group fixed source problem in neutron diffusion.

Consider modeling geometry changes in fuel elements. Instead of "actually" swelling

or deforming a fuel pin, we can "virtually" alter the thermal conductivity anisotropically.

Consider breaking up k into directional components:

d dT d dT d dT
V - kVT = k - + k + -kz (12.16)

x dx dy dy y dz dz

Now the anisotropic thermal conductivities serve the same function as directional diffu-

sion coefficients in neutronics. In this way, we have "virtual conductivity" in heat diffusion

just as we have "virtual density" in neutron diffusion. One could explore coupling these two

methods to incorporate fuel temperature feedback in "virtual density" simulations.

However, fully coupling neutronics with thermal hydraulics requires not only conduction

within fuel elements, but also coolant flow. The Navier-Stokes equation for incompressible

fluid flow is

P (- V + V = -VP+ V 2 i+ F (12.17)

Here p is fluid density, P is a pressure distribution, p is viscosity, and F is any external

body force (such as gravity). The goal is to solve for the distribution of the velocity vector

V. The convection term V'- Vv' is non-linear, but that does not necessary preclude a "virtual"

principle. It may be possible to introduce an anisotropic "virtual viscosity" into the viscous

term. Of course, we would also need to introduce artificial anisotropy into the convection

term. More investigation is needed to ascertain the viability of these ideas. However, even if

this works, people only solve Equation 12.17 directly for laminar flow. Solving turbulent flow

usually involves time-averaging Equation 12.17 for computational fluid dynamics (CFD). It

is unclear whether this time-averaging would ruin the "virtual" principle. Also, correlations

used in subchannel analysis may or may not be well-disposed to a "virtual" principle.

12.3.7 Toward a Pristine "Virtual Reality"

We have outlined many potential future applications of "virtual density" theory beyond

neutronics. Some applications, such as the Schrddinger equation, are straightforward low-

risk endeavors, while others, such as the Navier-Stokes equations, are substantially less

straightforward and may not work well at all.

Nevertheless, "virtual density" theory and its non-neutronic cousins represent a departure

from current conventional wisdom. While most worldwide computation efforts focus on

simulating "actual reality" as closely as possible to maximize fidelity, we take a different
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approach. We reject the necessity of tortuously modeling a reality that is distorted, crooked,
and disfigured. Instead, we transform that disfigured reality into a simpler, smoother, and
more pristine "virtual reality".
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A The MATLAB-PETSc-SLEPc (MaPS) Finite Dif-

ference Diffusion Code

We develop a multigroup finite difference diffusion code to experiment with and validate

various geometric perturbation theory techniques. We cannot simply use existing diffusion

codes, because they do not allow us to solve the "virtual mesh" cases described in Chapter

6. Also, developing a diffusion code with a MATLAB interface allows for rapid trial and

analysis of numerous cases.

A.1 Overview

This code is written primarily in MATLAB [210], but it is coupled with the PETSc [200]

and SLEPc [203] linear algebra packages, which are written in C and C++. The preexist-

ing MATLAB interface for SLEPc was modified to allow MATLAB to access more SLEPc

functionality. The MATLAB code constructs the multigroup diffusion matrix operators for

a given geometry with vacuum, reflective, or albedo boundary conditions. Once the diffusion

operators are constructed, the MATLAB code feeds them to the PETSc-SLEPc solver, which

returns the eigenvalue and eigenvector for a generalized eigenvalue problem. We refer to this

MATLAB-PETSc-SLEPc diffusion solver as MaPS.

We prefer a Krylov-Schur outer iteration, which we find to be most efficient for our cases,
but we also sometimes use Arnoldi or "power" outer iterations. Note that power iterations

can only obtain the fundamental real and adjoint flux distributions, not any of the higher

modes/harmonics. We employ a "gmres" solver for the inner eigenvalue iterations, an "ilu"

preconditioner, and a "shift" spectral transform. Due to the low dominance ratios of fast

reactor eigenvalue problems, this typically results in ~1010 eigenvalue convergence after

only one or two Krylov-Schur or Arnoldi iterations.

MaPS takes arbitrary microscopic or macroscopic group cross-sections as input. Through-

out this work, we use MC**2 [187] to generate all multigroup cross-sections. We can either

(1) run MC**2 independently and read the microscopic cross-sections into MATLAB via

Python for Nuclear Engineering (PyNE) [212] or (2) export macroscopic cross-sections (de-

rived from MC**2 microscopic cross-sections) from the Advanced Reactor Modeling Interface

(ARMI) [211] to a text file format that MATLAB can read.

A.2 Geometry Options

MaPS contains a number of distinct geometry options:

1. 1-D Cartesian

390



The "Virtual Density" Theory

2. 2-D Cartesian

3. 3-D Cartesian

4. 2-D Hexagonal (each hexagon subdivided into 6 triangles)

5. 3-D Hexagonal-Z (each hexagon subdivided into 6 triangles)

6. 2-D Hyperfine Hexagonal (each hexagon subdivided into an arbitrarily large number

of triangles)

MaPS does not contain a 3-D hyperfine hexagonal-z option, because the computational

performance would be poor. The purpose of hyperfine hexagonal-z is validation of flux
reconstruction methods, for which we deem 2-D to be sufficient.

Figure A.1 illustrates the subdivision of each hexagon into 6 triangles. If the indices

(i, j) specify a unique hexagonal assembly, then the indices (i, j, k) specify a unique triangle

within a unique assembly. The index k ranges from 1 to 6 and specifies corners and surfaces

of an assembly, as well as one of the 6 triangles within that assembly. Like the ARMI

[211] assembly ordering and ARMI pin ordering described in Appendix B, the k index runs

counter-clockwise. k = 1 corresponds to the assembly surface and triangle at 2 o'clock, as

well as the assembly corner at 1 o'clock. Compare Figures A.1 and ?? for a very clear picture

of this.

Figure A.2 illustrates the subdivision of a triangle (one of 6 within a single hexagon) into

an arbitrarily large number of hyperfine triangles. These hyperfine triangles are indexed by
(k, u, v) within a single hex as shown, and they can be indexed by (i, j, k, u, v) within an

entire 2-D core.

The maximum value of u fully determines how many hyperfine triangles fit within a single

hexagon. For example, Umax = 5 will subdivide a hexagon into 150 triangles, while umax = 7

will subdivide it into 294 triangles. So a hexagon is subdivided into 6um triangles. Thus,
the number of equilateral triangles within a hexagon is always six times a perfect square.
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k = 5

Figure A.2: The subdivision and indexing of a hyperfine triangular mesh within one hexagon.
Each of the six triangles (specified by (i, j, k) indices) composing a hexagon is subdivided into a
number of smaller triangles. These smaller triangles within each (i, j, k) triangle are indexed by
"row" and "position", which we call u and v. The indices (k, u, v) thus specify a unique hyperfine
triangle within a single hex, while the indices (i, j, k, u, v) fully specify a hyperfine triangle within
an entire 2-D core.
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A.3 Finite Difference Equations

We derive finite difference equations for MaPS that are precisely consistent with those in
DIF3D [193]. Laying these out here allows for quick comparison with the "virtual density"
finite difference equations shown in Section 7.3. First refer back to the multigroup diffusion
equation that we wrote down in Equation 2.6:

g-1 G

- V - DgVg + Er,09 = )7 s,g _-+gog' + Xg E Vgijgbg,' (A.1)
g'=1 g'=1

The left-hand side represents neutron loss in group g, while the right-hand side represents
neutron gain in group g. These losses and gains are in units of neutrons per unit time per
unit volume. Now consider how to discretize the leakage term, which represents the net flow
of neutrons out of a given cell. Let the mesh cell (a polyhedron) have N flat surfaces indexed
by n, each with area An. Let Jg,, be the net current outward through surface n, and let the

cell have volume V. Now we can simply express the net rate of neutrons passing outward
through the cell surfaces per unit cell volume.

1 N g-1 G

V E Jg,nAn + Zr'g9bg = E Zsdg-+.g'bg' ± Xg E Z/gIEf,gK7
5

g/ (A.2)
n=1 9 /=1 g'1=1

Of course, since this is finite difference, we must express Jg,n in terms of flux differences.
Consider Figure A.3, which illustrates a mesh cell and its neighbor n. Let the flux and
diffusion coefficient in n be qg,n and Dg,n, and let the flux magnitude on the surface n be

os,.. Also let the distances between the cell centroids and the surface be A and An. Note that
we consider only cell configurations in which a line drawn between neighboring cell centroids
is perpendicular to the surface between those two cells. This is true of both Cartesian and
triangle-z geometries. We can obtain #g,s from a simple application of Fick's law:

A A~g,s =(A.3)

Now some algebraic manipulation yields a clean expression for Jg,,, which is proportional
to the difference between #g and q gn.

Jg,n Dg 0 0) - Ogn (A.4)
D9 Dg,n

For convenience, we define the variable 'gn:

__ 1
, (A.5)

D9 D9,n
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When a neighboring mesh cell position n is vacant (a vacuum boundary), we set Og,n =

0 and define -yg,n as

7g,n = a 1 (A.6)

Here we typically set a/0 = 0.46920 for consistency with DIF3D [193]. Now the dis-

cretized multigroup diffusion equation is

N g-1 G

E Anyg,n ((g - Og,n) + Er,gg = E Z,g'*4gq4g + xg E V fg Ekg9
Vn=1 g'1=1 9 '=1

(A.7)

Writing this down for #g in every mesh cell provides a system of linear equations. We

can organize this multitude of linear equations into a single matrix equation.

4D g
D9

<minE m m - -

A

I g's * g,n
Dg,n

An

Figure A.3: Setting up Fick's Law between two adjacent finite difference mesh cells. The cell

centroid is a distance A from the interface, and its neighbor's centroid is a distance A, from the

same interface.

A.4 Matrix Construction

We now construct two large, square, and sparse matrices M and P as described in Section

2.3.2. We can use these to solve the generalized eigenvalue problem.
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-' 1-
MO = -F (A.8)

k
Note that the eigenvector 0 above is 1-D and has a length equal to the product of the

number of energy groups and the number of mesh cells. Thus, we must transform our
geometry indexing conventions into a 1-D indexing system.

Let the Cartesian indices x, y, and z range from 1 to X, Y, and Z. Then the 1-D
eigenvector index geart of flux #g in mesh cell (x,y,z) is

qcart = ZYX(g - 1) + ZY(x - 1) + Z(y - 1) + z (A.9)

Now consider triangle-z geometry in which each hexagonal assembly is broken into 6
triangles. We can define a unique triangle with the indices (ij,k,z). See Figure A.1 for an
illustration. Let i be the assembly ring index and j be the assembly position within each
ring. I is the total number of rings in the core, and J(i) = 6(i - 1) is the total number of
assemblies in each ring (except for the first ring, which has 1 assembly). k is the triangle
index within each assembly, and its maximum K is always 6. So the 1-D eigenvector index
is

qhex-z = ZK J(i') (g - 1) + ZK [i J(i') + ZK(j - 1) + Z(k - 1) + z (A.10)

Now consider triangle-z geometry in which each of the 6 triangles within an assembly
can be subdivided into an arbitrarily large number of sub-triangles. Now u and v index a
sub-triangle within a triangle. See Figure A.1 for an illustration. If 6U 2 sub-triangles form a
triangle, then the index u ranges from 1 to U. The index v ranges from 1 to V(u) = 2u - 1.
So the 1-D eigenvector index is

qhex-z,fine = Z [ V(u')] K J(i') (g - 1) (A.11)

+Z z V(u')] K J(i') + z V(u') K(j - 1) (A.12)
.u' 1 i=1 . .I=

U ru-1

+Z V(u')] (k - 1) + Z [ V(u')] + Z(v - 1) + z (A.13)

Now that we have established a convention for transforming multivariable indexing into
1-D indexing, we can construct the M and P matrices. If q represents an eigenvector index
ranging from 1 to Q, then each matrix is Q x Q and can be indexed by a (qi,q 2) pair. Now
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let qg be the 1-D index of Og in a given mesh cell, and let qg,,, be the index of #g,,, in the

neighboring mesh cell n. If the matrix elements of F are b, then

b(qg, qg,) = Xgvg, E ,, (A.14)

This constitutes the entire F matrix. The M matrix is a bit more complex, as it has

three types of terms. First, the scattering terms are

a(qg, qg,) = -E,,-, (A.15)

Now the main diagonal elements in M are

IN
a(qg, q,) = Er,g + E An'yg,n (A.16)

n=1

The off-diagonal elements in M are

a(qg, qg,n) = - 7 (A.17)

In R-D Cartesian problems, M will have a main diagonal as well as 2R off-diagonals.

See Figure A.4, which displays non-zero elements of F for the FFTF benchmark problem in

Appendix G. Figure A.5 zooms in on the non-zero elements of M for a simple 3-D Cartesian

problem.

In triangular or triangular-z problems, M will have a main diagonal but no well-defined

off-diagonals. The off-diagonal terms will form pretty patterns instead of straight lines.

Figures A.6 and A.7 show non-zero elements of M for the FFTF benchmark problem in

Appendix G. Figure A.8 zooms in on the non-zero off-diagonal leakage terms in 2-D hyperfine

triangular geometry.

Note that we have chosen to arrange matrix elements by energy group first and spatial

region second. Although it is well-known that arranging elements by spatial region first

increases efficiency, we have chosen not to pursue that route.
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Figure A.4: Non-zero elements in the fission matrix F for the FFTF benchmark. If every mesh
cell in the core contained fuel, each diagonal would be completely filled, but the gaps represent
spatial regions without fuel - shields, reflectors, and control rods.
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Figure A.5: Non-zero elements in the I matrix for a small 3-D Cartesian problem. The seven

central diagonals represent absorption in each mesh cell and leakage into its six neighbors.
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Figure A.6: Non-zero elements in the M matrix for the FFTF benchmark in triangle-z geometry.

Obviously, we do not consider up-scattering.
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Figure A.7: Non-zero elements near the central diagonal in the MI matrix for the FFTF benchmark

in triangle-z geometry. This is a zoomed-in section of Figure A.6. The central diagonal represents

absorption in each mesh cell. The two straight diagonals immediately on either side (not visually

distinguishable here) represent leakage into the cell's two axial neighbors. The terms that form

arrow-like projections off the central diagonals represent leakage into the cell's three radial/lateral

neighbors.

I I



Mark Reed

1.84 1.845 1.85 1.855 1.86 1.865
nz = 50313C

1.87 1.875 1.88 1.885 1.89
x 10"

Figure A.8: Non-zero elements near the central diagonal in the M matrix for a 2-D hyperfine
triangle core. This is zoomed-in to make the off-diagonal leakage terms visible. In this case, U =
5 so that each hexagon is subdivided into 150 triangles. See Figure A.2 for an illustration. The
leakage terms form various projections off the central diagonal.
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A.5 Adjoint Matrix Construction

Many mathematical texts define an adjoint operator as the "complex conjugate of a trans-
pose". However, one can not obtain the adjoint flux by simply transposing the entire F and
M matrices. In reality, we transpose only the energy components of P and M. The spatial

components are unchanged. This makes sense if we remember that the one-group diffusion
equation is self-adjoint. The real and adjoint fluxes (and operators) are identical without
energy dependence.

Thus, in order to convert F and M into F t and Mt, we need only transpose the energy

group indices of each non-zero matrix element. All scattering and fission terms (in each
mesh cell) representing neutron transfer from group g to group g' must be moved so that
they represent "backward" neutron transfer from group g' to g. The absorption and leakage
terms within M are left untouched.

A.6 Benchmarking

Before anyone will believe any results from MaPS, we must benchmark it. We accomplish
this with both finite difference diffusion, with which we expect very precise agreement, and
continuous energy Monte Carlo, with which we expect approximate agreement.

A.6.1 Multigroup Finite Difference Diffusion

We compare MaPS to two finite difference diffusion benchmarks. First, we compare MaPS to

LABAN-PEL, a 2-D multigroup diffusion code from Oak Ridge National Laboratory [197].
We verify that MaPS and LABAN-PEL produce exactly the same keff eigenvalue for the
2-group, 2-D Cartesian ZION-1 benchmark problem [198]. Cross-sections are given in the

ZION-1 description.

Second, we compare MaPS to DIF3D, a hexagonal-z multigroup diffusion code from Ar-
gonne National Laboratory [193]. We build the full-core Jby6 benchmark (see the description

and core map in Appendix H), which has 331 hexagonal assemblies, 6 triangular mesh cells
per assembly, 66 axial zones, and 33 energy groups. We use identical MC**2 cross-sections

[187]. In this problem, keff values in MaPS and DIF3D are 0.974266044 and 0.974222662,
respectively. This is a discrepancy of less than 5 pcm.

A.6.2 Continuous Energy Monte Carlo

Multigroup diffusion and continuous energy transport will never agree precisely; we expect

both energy discretization and anisotropic scattering/leakage effects to introduce errors in
the few hundred pcm range.
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We have benchmarked MaPS with the Monte Carlo N-Particle Transport Code (MCNP)

[202]. Typically, MaPS agrees with continuous energy MCNP to about 100 pcm for 1-D

problems and to about 500 pcm for high-leakage 2-D problems. In high-leakage 3-D problems

with fuel adjacent to vacuum boundaries, errors can approach and exceed 1000 pcm due to

anisotropic leakage effects.

A.7 Speed and Efficiency

MaPS is intended to be convenient, not necessarily fast. It is not an optimized production

code, so we sacrifice some efficiency in favor of usability. All MaPS calculations are performed

on a MacBook Pro laptop with a 2.9 GHz processor and 8 GB of RAM. MaPS is not

parallelizable, so all calculations are without MPI.

MaPS can solve a Q x Q generalized eigenvalue problem in about five minutes for Q
= 1,835,064, where Q is the product of the number of spatial regions times the number

of energy groups. This corresponds to a Jbyd benchmark with 331 assemblies, 6 triangles

per assembly, 28 axial zones, and 33 energy groups. An FFTF benchmark of the same size

solves even more quickly due to fewer fuel assemblies (the depleted uranium in Jbyb greatly

enlarges the fission source). See Appendices J and K for descriptions and core maps of FFTF

and Jiyd. MaPS can solve a triangular-z problem with Q ~ 125,000 in less than 25 seconds.

MaPS tends to slow down markedly as the non-zero matrix element storage approaches

the system memory limit. Fortunately, both FFTF and Jby6 benchmarks are not large

enough to induce this slowdown, which typically occurs for Q in the range of several million

for triangle-z problems.

Overall, we find MaPS to be extremely expeditious for the trial-and-error process neces-

sary to develop both perturbation theory and flux reconstruction methods.
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B Pin Power and Multigroup Flux Reconstruction Meth-
ods

Here we detail the flux reconstruction methods employed within VirDenT as described in
Chapter 11.

In fast reactors, the neutron mean free path is long enough that a grid structure of
homogenized assemblies is sufficiently accurate to perform scoping analysis of steady-state
and burnup scenarios. However, when designing an actual reactor, it is always necessary to
reconstruct pin-level power and temperature distributions from the homogenized values.

We closely follow the reputable multigroup flux and pin power reconstruction methods de-
veloped and published by Yang at Argonne National Laboratory [113]. For each energy group
in each axial block in each hex assembly, we construct a continuous (X, y) flux distribution to
preserve the volume-averaged flux, six surface-averaged fluxes, six surface-averaged net cur-
rents, and six corner-point fluxes. In the axial direction (z), which is separable, we construct

a continuous 1-D polynomial to preserve the volume-averaged flux, two surface-averaged
fluxes, and two surface-averaged net currents. We then compute pin linear powers in each
axial block of each assembly by summing fission reaction rates over all energy groups. Addi-

tionally, we automatically generate pin configurations, and we compute assembly-averaged
pin power peaking factors for input to COBRA [191], a subchannel thermal hydraulics code.

We integrate this pin power reconstruction code into VirDenT and the Advanced Reactor

Modeling Interface (ARMI) [211] as a Python module, which includes both the reconstruction

methods and scripts to read the DIF3D output files.

In order to verify the accuracy of these reconstruction methods, we analyze two reference
cases with the MATLAB-PETSc-SLEPc (MaPS) finite difference diffusion code (described in
Appendix A). These cases are the Fast Flux Test Facility (FFTF) and a small homogenous
core with FFTF fuel (MOX) [146]. For each of these cases, we compare two solutions: (1)
an exact hyperfine mesh solution with hundreds of triangular mesh cells per hex and (2) a
solution reconstructed from coarse whole-hex volume and surface quantities, which we obtain
by integrating the exact hyperfine solution quantities over the hex volume and hex surfaces.

This Appendix B details (1) the reconstruction methods employed, (2) crucial details of

the integration of these methods into ARMI, and (3) results from the two reference cases.

B.1 Multigroup Flux Reconstruction Methodology

We assume that the axial (z) and hexagonal (x, y) flux distributions are separable, so we

can reconstruct one at a time. We implement the pin power reconstruction methodology
developed by Yang at Argonne National Laboratory [113,114,115,116].
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B.1.1 The Hexagonal Flux Distribution

The aim of this task is to construct a continuous function in (x, y) to represent the flux

within the boundaries of each hexagonal assembly. We do this by representing the flux as a

weighted sum of monomials (a monomial is any single term x'y).

0(x, Y) = Y Cm,nXm y" (B.1)
m,n

Determining the monomial weights (the constants Cm,n in front of each xmny" term), we

must introduce a number of constraints equal to the number of monomials. One constraint,
which ARMI already employs, is the volume-averaged flux in the hexagonal cell. However,
we can introduce more constraints by requiring the monomial sum (the full x-y polynomial)

to preserve six surface-averaged net currents, six surface-averaged fluxes, and six corner-

point fluxes. That brings us to 19 constraints, so our x-y polynomial can have 19 distinct

monomial terms. It is also possible to require the flux to preserve the three planar moments,
which brings our total to 22 constraints or monomials.

We require each energy group of the flux to satisfy all these constraints. Thus, we must

solve a Q x Q matrix for each energy group in each hexagonal ARMI block, where Q is

usually 19 or 22.

L 1 (mi,ni) L1(m 2 ,n 2 ) L1(m 3 ,n 3 ) -- Ll(mQl,nQ_1) Ll(mQ,nQ) Cmi,ni 4

L 2 (mi,ni) L 2 (m 2 ,n 2 ) L 2 (m 3 ,n3) - L 2(mQl,nQgl) L 2(mQ,nQ) Cm2 ,n2  42
L 2 (mI,ni) L 2 (m 2 ,n 2 ) L 2 (m 3 ,n3) -- L3(mQl,nQl) L 3 (mQ,nQ) Cm.,n. '3

LQ_1 (ml,nl) LQ_1(m 2 ,n 2) LQ-i(m3,n3) - -

LQ(m1,n1) LQ(m2,n2) LQ(m3,n3) --- ... LQ(mQ, nQ) CmQ ,nQ 4 Q
(B.2)

Here 4D. represents the qth constraint (a volume-averaged flux, one of six surface-averaged

currents, etc.). Cmq,nq represents the constant associated with the qth monomial Xmq nq

There are a total of Q constraints and Q monomials. The Q x Q matrix elements Lq(mq,nq)

represent the qth monomial X'mqyl evaluated to meet the qth constraint '1 q*

For example, if q = 1 corresponds to the volume-averaged flux constraint, then the

following two statements are true:

1. 4Di is equal to the volume-averaged flux in this hexagonal cell.

2. L1 (mq,nq) is equal to the monomial Xrnyfln averaged over the hexagon area.
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Figure B.i below shows the x-y coordinate system as well as the surface and corner

numbering system used in this reconstruction. For a given hex assembly, the surfaces and

corners are specified by the index k, which ranges from 0 to 5. Figure B.1 shows surfaces

and corners labeled as Sk+1 and Ck+1. Note that we have drawn the hexagon resting on

its side (as it does within the ARMI coordinate system), even though the x-y coordinates

shown are oblique. This is because the Lq functions derived (and listed below) assume the

oblique coordinate. This discrepancy is acceptable, as long as we rotate the x-y coordinate

system by ir/6 after reconstruction and before exportation to other ARMI modules.

C2

S3

C 3

S4

C4

S 2

%Sj

' -

100

kS

S5

Figure B.1: The orientation and numbering of hex surfaces and corners that

continuous flux reconstruction problem.

we choose for a

For convenience, we derive expressions for each of the Q values of Lq as functions of m

and n. We do this for a regular hexagon of flat-to-flat pitch 2 cm. The equations below

show the derived Lq(m, n) functions for Q = 22. These correspond to one volume-averaged

flux, six surface-averaged fluxes, six surface-averaged net currents, six corner-point fluxes,
and three planar flux moments.

C,

C6

C5
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xm yn averaged over the hex area

[1 ± (-1)m][1 + (-1)"] I 2 \n+2
Ln(m, n) a v(eg + Z(m, n + 1) (B.3)

Xm yn averaged over the hex surface Si

L2(m, n) = 2 + ( 1) )n (B.4)

xmyn averaged over the hex surface S3 2

L3(m, n) = )n Z(m, n) (B.5)

xm yn averaged over the hex surface S3

L4(m,n) = (-1)m L3(m,n) (B.6)

xm yn averaged over the hex surface S4

L5(m, n) = (-1)'"L(m, n) (B.7)

xmyn averaged over the hex surface S5

L6(m, n) = (-1)'nL 3 (m, n) (B.8)

x'nyn averaged over the hex surface S

L7(m, n) = (_1)nL3(m, n) (B.9)

xImyn evaluated at the hex corner C

L8(m, n) = (B.10)

xm yn evaluated at the hex corner C2

L9 (m, n) - JmO (B. 11)

Xm y"n evaluated at the hex corner C3

Lio(m, n) = (-1)"L8 (m, n) (B.12)

rn yn evaluated at the hex corner C4
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L11(m, n) = (-)m+n Ls(m, n)

Xm yn evaluated at the hex corner C5

L 12 (m, n) = (-1)"L9 (m, n)

Xmyn evaluated at the hex corner C6

L13(m, n) = (-1)nL8 (m, n)

The normal derivative of Xmyn multiplied by D and averaged over surface S,

L 14 (m, n) = -mDL 2 (m, n)

The normal derivative of Xmyn multiplied by D and averaged over surface S2

mD /D
Li5(m, n) = 2 L3(M - 1, n) 2v3n L3(m, n - 1)22 L(mn)

The normal derivative of Xmyn multiplied by D and averaged over surface S3

L16(m,n) = (-1) mL 5 (m, n)

The normal derivative of Xmyn multiplied by D and averaged over surface S4

L17(m,n) = (-1)m L 14 (m,n)

The normal derivative of X'yn multiplied by D and averaged over surface S5

Lis(m, n) = (-1)'n"L15(m, n)

The normal derivative of xr'yn multiplied by D and averaged over surface S6

Lig (m, n) = (-1)"Li5 (m, n)

The planar moment of xmy" in the direction x

L2 (, ) + (-1)n+1][1 + (-1)]
4(n + 1)

The planar moment of Xmy" in the direction u = y + x/v/3

L 2 1 (m,n) [1 + (-1)m][1 + (-1)n+] (2 n+2

4(n + 1) v/
Z((m, n+1)-

(n + 1)(n +m+2)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

S2\ n+2
2 n) Z(m, n + 1) (B.22)

n+2

(B.23)
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The planar moment of x'ryn in the direction v = y - x/Vf

[1 + (-1)- + (-1)m][1 + (-1)n+1] (2 ) n+ 2 Zm P 1 + (-1)m+n+1 i n+2

' 4(n + 1) NT-3- (n + 1)(n + m + 2) V73)
(B.24)

Z(m, n) in all the previous functions

nnI %
Z(m, n) = ( (B.25)

(m +i±+ 1)(ri-iz)!i! 2
i=O

Given a set of Q constraints, choosing the most accurate set of Q monomials (a set of Q
m,n pairs) can be difficult. There are three hard requirements:

1. The number of monomials equals the number of constraints.

2. The monomial (m, n) = (0,0) must be included as a constant flux term.

3. At least one monomial must have an order K = m + n such that the total possible

number of monomials of order K is greater than or equal to the number of constraints.

Regarding requirement (c), the total possible number of monomials of order K = m + n

is equal to (K + 1)(K + 2)/2. So if we choose 13 constraints, at least one monomial must

have degree K = m + n = 4. There are (K + 1)(K + 2)/2 = 15 total monomials of degree

4, while there are only 10 total monomials of degree 3.

By default, the ARMI flux reconstruction module includes Q = 19 constraints (all except

the three planar flux moments). The default set of monomials is:

1. All monomials with m + n < 4, including (m, n) = (0,0). These constitute 15 mono-

mials.

2. The remaining 4 monomials are (m, n) = (5,0), (4,1), (3,2), (4,2).

One can very easily alter this default set of Q = 19 monomials in the flux reconstruction

module. Some sets of monomials can be more or less accurate than other sets.
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B.1.2 The Axial Flux Distribution

Reconstructing the axial multigroup flux is much simpler. We choose our default constraints

to be the volume-average flux, the two surface-averaged fluxes, and the two surface-averaged

net currents. Thus, we construct a simple 4 th order polynomial in z with 5 arbitrary con-

stants:

O(z) = Az 4 + Bz 3 + Cz 2 + Dz + E (B.26)

The matrix elements are simple to derive, and there is neither ambiguity nor flexibility

in the choice of polynomial terms.

In order to obtain the full flux distribution in a given ARMI block, we simply multiply

the hexagonal and axial flux distributions and then divide by the volume-averaged flux (so

that our final units are that of flux, not (flux) 2 ).

B.2 Obtaining Nodal Quantities from DIF3D

In order to use volume-averaged fluxes, surface-averaged net currents, surface-averaged

fluxes, corner-point fluxes, and planar flux moments as constraints, we must first know

them! ARMI already uses the volume-averaged fluxes in each DIF3D diffusion mesh cell.

However, in order to obtain the other 21 quantities, we must read the NHFLUX binary file

output by the DIF3D nodal option. NHFLUX contains three important sets of information

for the flux reconstruction module:

1. Multigroup surface-averaged partial currents for each nodal mesh surface.

2. Five multigroup planar flux moments for each nodal mesh cell.

3. A hexagonal indexing map to obtain the proper ordering of assemblies in NHFLUX.

Using these three sets of information, we can compute all 19 constraints for each energy

group in each ARMI block.

B.2.1 Hex Surface-Averaged Fluxes and Net Currents

The outgoing net current averaged over hex surface S with area A is

Jnet =- D ds ii - V4 (x(s), y(s)) (B.27)
A

where s is a parameter that represents position on the surface, and h is the unit vector

normal to the surface.
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The DIF3D binary file NHFLUX contains six outgoing partial currents for each hex
assembly in each (x, y) plane of nodal mesh cells. In order to compute the net outgoing
current on each surface, we must obtain and subtract the incoming partial current (which is

stored as an outgoing partial current of a neighboring hex assembly).

J t - J- (B.28)

Furthermore, NHFLUX contains one incoming partial current on each external boundary

of the reactor (usually vacuum). Due to the diffusion flux extrapolation boundary condition,
these partial currents are not zero. Unfortunately, since they are not outgoing partial currents

attached to any particular hex assembly (as all of the internal surface partial currents are),
these external surface incoming partial currents are indexed separately from hex assemblies.

They are lumped together at the end of the hex surface current data structure.

Once we have correctly paired partial surface currents of neighboring assemblies, we can

easily compute the total surface-averaged flux like this:

0 = 2(J + J-) (B.29)

This expression is an approximation that assumes an isotropic flux distribution. Since

this is diffusion, not transport, we are already ignoring angular dependence. The factor of 2

arises from the integral of cos 0 from -7r/2 to 7r/2.

412



The "Virtual Density" Theory

B.2.2 Hex Corner-Point Fluxes

Three cells and three surfaces join at each hex corner. Thus, we can interpolate between three

volume-averaged fluxes 0, and three-surface averaged fluxes #s to estimate a corner-point

flux. We use a reputable interpolation formula:

SEn Dn [17(0s,n + Os,n- 1 ) - 8A(B.30)
26 En Dn

Here both summations are for n = 1,2,3. Dn is the diffusion constant in the nth hex cell.

Figure B.2 illustrates the relationship between these quantities. Near vacuum boundaries,
we assume that any "ghost" hex cell (occupied by vacuum) has zero flux. Any "ghost" hex

surface (bounding two "ghost" vacuum hex cells) has zero flux. However, hex surfaces that

separate an existing hex from a vacuum hex do have surface fluxes due to the diffusion flux

extrapolation at vacuum boundaries.

OV2

0s2 - 0 C 0 vi

Os3

0V3

Figure B.2: Each corner-point flux can be estimated using an interpolation between the three

adjoining surface-averaged fluxes and the three adjoining volume-averaged fluxes.
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B.2.3 Axial Surface-Averaged Fluxes and Net Currents

The process for computing quantities on axial surfaces is similar to that for computing

those same quantities on hexagonal surfaces, except that the storage convention is different.

NHFLUX stores axial partial currents by mesh surface, not by mesh node. Each axial surface

has two partial currents: an upward current and a downward current.

B.2.4 Hex Planar Flux Moments

Obtaining planar flux moments is relatively straightforward. There are five per hexagonal

mesh cell, three in the x-y plane and two in the axial directions. A planar flux moment is the

difference between the volume-averaged flux in one half of a region and the volume-averaged

flux in the other half of that same region. In the case of a hexagon, there are three flux
moments corresponding to three ways to divide the hex in half (by drawing a line between

opposite corners). For example, the hexagonal flux moment in the x-direction is

' J sgn(x)#(x, y)dxdy (B.31)

Here A is the full hexagonal area. We use the coordinate system shown in Figure B.1, so

that x = 0 is a line between the top and bottom hex corners. The function sgn(x) is equal to

-1 for x < 0 and 1 for x > 0. Essentially, we are subtracting the volume-averaged flux in one

half-hex (x < 0) from that in the other half-hex (x > 0). There are two other hexagonal flux

moments, one in the direction u = y + x/x/5 and the other in the direction v = y - x/f53.

B.3 Pin Power Peaking

The flux reconstruction module also constructs whole-assembly pin power peaking factors

for the subchannel thermal hydraulic analysis code COBRA [191,209]. For each pin in each

assembly, we sum the whole-pin power (through all axial blocks) to compute pin power peak-

ing factors. We store this data for later export to COBRA. See Figure B.3 for a PyPinPlot

display of intra-assembly pin power peaking factors in a small homogenous core.
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Figure B.3: An example of the ARMI pin peaking factor plotting tool for a small homogenous
test core with 8 full hex rings. This demonstrates the plotting capabilities for full core models.
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B.4 Reference Cases

In order to verify the accuracy of these pin power reconstruction methods, we construct three

reference (or benchmark) cases. For each reference case, we validate the methods using these

steps:

1. We run these reference cores with hyperfine geometry (150 or 294 triangles per hex) in

MaPS to obtain fine (and highly accurate) multigroup flux and power solutions.

2. We integrate the hyperfine triangle fluxes to obtain hex-averaged fluxes, hex surface-

averaged fluxes, and hex surface-averaged net currents. The surface quantities involve

computing the simple sums and differences between neighboring hyperfine triangles

in neighboring hexes (hyperfine triangles on opposite sides of hex surfaces). Then we

simply average those quantities over all hyperfine triangles along a given hex surface.

3. We compute the hex corner-point fluxes in the usual way.

4. We perform the continuous multigroup flux reconstruction using our computed volume,
surface, and corner quantities.

5. We construct a fictitious set of pin (x, y) coordinates so that pin centers correspond to

hyperfine triangle centers.

6. We compute the power of each of those pins.

7. We compare the reconstructed pin powers to the directly-computed hyperfine triangle

powers.

This process isolates the source of error in our pin power reconstruction. Comparing a

hyperfine mesh solution to powers reconstructed from a course mesh solution would bench-

mark nothing, because the errors due to the difference in meshes would dwarf the errors due

to the actual reconstruction methods.

We complete the process outlined above for two reference cases: the FFTF core and a

homogenous core with FFTF (inner core) MOX fuel.

B.4.1 The Fast Flux Test Facility (FFTF)

We construct the FFTF benchmark in MaPS as shown and described in Appendix G. This

is a sodium-cooled fast reactor with mixed oxide (MOX) fuel. We neglect some nuclides

that occur only in trace amounts, and we fill out the outermost hex assembly ring with 18

extra "outer radial shield" assemblies. We take a 2-D core slice at the axial midplane, so our

model is supercritical with keff 1.1. Each hex contains 294 triangles.
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Figures B.4 and B.5 show FFTF power density distributions derived from the exact
hyperfine mesh solution and the flux reconstruction, respectively. These two distributions
are virtually indistinguishable.

Figure B.6 shows the error magnitudes between these two distributions, which are 0.33%
on average. However, the error can spike to a few percent (even has high as 5%) near the
hex corner-points at the edge of the fueled region. This is due to error in the corner-point
flux interpolation, which is less accurate adjacent to abrupt changes in fuel composition and
flux spectrum. The corner-points in the internal fueled region do not produce such errors.
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Figure B.4: A hyperfine MaPS solution
assembly contains 294 triangles.

for power density in the FFTF benchmark. Each hex
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Figure B.5: Reconstruction of power density in the FFTF benchmark. Compare this to Figure
B.4.
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Figure B.6: The percent error magnitude between the reconstructed power density (Figure B.5)

and the exact hyperfine mesh solution (Figure B.4) for the FFTF benchmark. The average error

magnitude is 0.33% with a standard deviation of 0.53%.
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B.4.2 A Homogenous Core with FFTF Fuel

This is a homogenous core with 7 full hex assembly rings in which all assemblies are identical
to the FFTF "driver fuel" assemblies in the "inner enrichment zone". Homogenous cores are
excellent test cases for power reconstruction, as they produce very smooth and continuous
flux and power distributions. Pin power reconstruction errors should thus be very small.

Figures B.7 and B.8 show the homogenous core power density distributions derived from
the exact hyperfine mesh solution and the flux reconstruction, respectively. These two dis-
tributions are completely indistinguishable to the naked eye.

Figure B.9 shows the error between these two distributions. The error is extremely low
throughout the core internal, but it spikes to above 5% in fuel assemblies that neighbor the
vacuum boundary. The low flux magnitudes adjacent to the vacuum boundary cause this
error, which affects those entire assemblies. Fortunately, no practical reactor designs would
expose fuel to vacuum without intermediate reflectors or shields, and so this is not a problem.
If we neglect these edge assemblies, then the core-wide mean error magnitude is 0.03% with
a standard deviation of 0.06%.
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Figure B.7: A hyperfine MaPS solution for power density in a small homogenous core with FFTF

MOX fuel. Each hex assembly contains 294 triangles.
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20 40 60

Figure B.8: Reconstruction of power density in a small

Compare this to Figure B.7. Can you tell the difference?

homogenous core with FFTF MOX fuel.
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------------------- -------
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Figure B.9: The percent error magnitude between the reconstructed power density (Figure B.8)
and the exact hyperfine mesh solution (Figure B.7) for the homogenous core with FFTF MOX fuel.
Fuel assemblies adjacent to the vacuum boundary yield large errors, but if those assemblies are
excluded, the core-averaged mean error magnitude is 0.03% with a standard deviation of 0.06%.
Yes, the errors really are that small!
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Table B.1: Core-Wide Mean Pin Power Errors

error magnitude (%) standard deviation (%)
FFTF 0.33 0.53

Homogenous core 0.03 0.06

B.4.3 Summary of Reference Case Findings

Table B.1 shows mean pin power (or power density) error magnitudes and their standard
deviations in the two references cases we have analyzed. Most of the pin power error is
concentrated in the outer assemblies, which are relatively unimportant for thermal hydraulic
and mechanical distortion effects.

Figure B.10 shows cumulative distribution functions (CDFs) of error magnitudes for the
same two cases shown in the table above.

We can draw some general conclusions from our work with these two reference cases that
should guide anyone who uses this pin power reconstruction code for arbitrary core designs:

1. High flux gradients do not correlate with high error magnitudes in pin power recon-

struction.

2. Higher order flux derivatives, such as changes in flux curvature within a single as-
sembly, sometimes do correlate with relatively high error magnitudes in pin power

reconstruction.

3. Low flux and power density magnitudes strongly correlate with high error magnitudes
in power reconstruction. This effect is much stronger than the effect in (2).

4. When fuel is adjacent to a vacuum boundary, pin power reconstruction is not suitably
accurate.

5. Corner-point fluxes tend to introduce error in pin power reconstruction when those

corners are located on large discontinuities in material composition or flux spectrum.
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Figure B.10: Cumulative distribution functions (CDFs) for pin power error magnitudes between

hyperfine mesh solutions and reconstructed solutions. Here the homogenous core CDF neglects the
outer ring of fuel assemblies adjacent to the vacuum boundary.
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C Hex Assembly Ordering and Orientation

Hexagons are not squares. Hexagonal lattices are not Cartesian. Consequently, people often
confuse themselves over how to enumerate hexagons. There is no standard way to index or
order hexagons within a hexagonal lattice, so each code developer conjures up his or her own

way. Unlike the honeybees in Figure C.1, humans have no standard, innate method for this.

Figure C.1: Honeybees construct honeycomb as hexagonal lattices. While keeping track of
hexagons is innate and intuitive for these bees, we humans are not so sophisticated.

This Appendix C and.Figures C.3 - C.8 describe and illustrate each hex ordering employed

to transfer data from the DIF3D [193] binary output file NHFLUX to ARMI [211]. This is
a Python module embedded within ARMI. There is some overlap in the descriptions of each

ordering convention, but we must be very clear in defining these orderings and how they are

distinct.

ARMI indexes hex assemblies by the index pair (i, i) = (ring, position). We will call this

"ARMI nodal" ordering. See Figures C.3 and C.4 for diagrams of "ARMI nodal" ordering.
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Unfortunately, the DIF3D NHFLUX file stores hex assembly data in "DIF3D 'four color'
nodal" ordering, which is a mosaic of four interwoven (ring, position) "ARMI nodal" or-
derings. Although this ordering appears bizarre and purposeless, it actually minimizes the
"spectral radius" of the nodal calculation. See Figure C.8 for a diagram of "DIF3D 'four
color' nodal" ordering.

Fortunately, NHFLUX contains a data structure called ITRMAP, which maps "DIF3D
'four color' nodal" ordering to what we call "DIF3D GEODST" ordering. GEODST hex
ordering is based on an oblique (or bent) set of x-y axes. One could consider it to be pseudo-
Cartesian. Indices i and j correspond to these pseudo-Cartesian axes. See Figures C.6 and
C.7 for diagrams of "DIF3D GEODST" ordering.

ARMI already contains functionality that converts "ARMI nodal" ordering into "MCNP
GEODST" ordering, which is similar to "DIF3D GEODST" ordering except that one of
the oblique axes is bent in a different direction. See Figure C.5 for a diagram of "MCNP
GEODST" ordering.

Since converting between "DIF3D GEODST" ordering and "MCNP GEODST" order-
ing is trivial, that is where we make the final (very indirect) link between "ARMI nodal"
and "DIF3D 'four color' nodal". This final link, between "DIF3D GEODST" and "MCNP
GEODST", is simple:

Jdif3d = imcnp + imcnp (C.1)

idif3d = imcnp (C.2)

Figure C.2 illustrates the three-step process (involving four hex orderings) of transferring
data from DIF3D NHFLUX to ARMI. After one is aware of this process (the DIF3D manual
does not describe it in detail), executing it is not particularly difficult. ITRMAP converts
between "DIF3D 'four color' nodal" and "DIF3D GEODST", while Python code converts
between "MCNP GEODST" and "ARMI nodal".

DIFM
"four color" DIF3D MCNP ARMI

nodal GEODST GEODST nodal

ITRMAP Reprrange 1/3 Python
'corei smallest Script

rhombus

Figure C.2: Converting hex ordering schemes from ARMI to DIM3 NHFLUX.
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What is much less trivial, however, is the caveat - that DIF3D not only re-orders hex
assemblies, but also re-arranges them. DIF3D arranges all existing assemblies to fit within
the smallest possible rhombus. For an example of this, compare Figures C.5 and C.6, which
show the "MCNP GEODST" and "DIF3D GEODST" orderings, respectively. In order to
fit all hex assemblies within the smallest possible rhombus, DIF3D moves some assemblies
to the locations of their "symmetric identical" assemblies. This is particularly important for
a 1/3 core symmetry model, in which each assembly (except the central assembly) has two
"symmetric identical" positions.

Of course, when a hex assembly is moved to one of its "symmetric identical" positions,
it is also rotated. Thus, we must keep track of each hex assembly's orientation, which may
change. Orientation is essential in terms of obtaining the correct surface partial current
data (and especially for computation of corner-point fluxes). This issue is even further
complicated when one must add or subtract the partial surface currents of two neighboring
hex assemblies, and only one of those assemblies has been moved or rotated. Consequently,
the usual relationship between indices of adjoining hex surfaces does not always apply. The
flux reconstruction module tediously resolves all of this.
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C.1 Conventional Nodal Ordering

ARMI indexes hex assemblies by the index pair (i, j) = (ring, position). We will call this

"ARMI nodal" ordering. This ordering can be indexed with the two variables (i, j) as in

Figure C.3, or it can be indexed with one variable as in Figure C.4. When indexed with two

variables, the indexing includes non-existing "symmetric identical" assembly positions (such

as the "missing" 2/3 of assemblies in a 1/3 core model). When indexed with one variable,

the indexing does not include the "symmetric identical" assembly positions - it skips over

them.

10,10

10,11 7710,9

10,12 10,8

10,13 10.,7

10,14 8,8 10,6
Q a 7 10,15

8,10 8,6 10,4

8,118,5 10,3

6,06 814 10.,2

6,7 658310,1

6,8 6,4 8,2

6,3 8,1 10,54

4,5 4,3 61 8,42 10,53

4,2

4,1 6,30 8,41 10,52

2,2

2 1 4,4,18 6,29 8,40 10,51

Figure C.3: 'ARMI nodal" hex ordering in (ring, position) format for a 1/3 core model with

10 full rings. Rings are alternately colored white and grey. For 1/3 and 1/6 core models, indices

include the empty "symmetric identical" assembly positions.
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C.2 MCNP GEODST Ordering

GEODST hex ordering is based on an oblique (or bent) set of x-y axes. One could consider

it to be pseudo-Cartesian. Indices i and j correspond to these pseudo-Cartesian axes. The

flux reconstruction module employs two types of GEODST ordering: "MCNP GEODST"

and "DIF3D GEODST". These are essentially the same, except that the pseudo-Cartesian

x-y axes are "bent" in different directions. Compare Figures C.5 and C.6.
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83
84 82

8 5 81
86 80

87 51 79
5250 78

53 49 77
54 48 6176

27 47 75
28 26 46 74
2925 45

24 344 91
11 23

12 1022 57 9
9

0 31 5689

2 13 30 55 88

Figure C.4: "ARMI nodal" hex ordering in 1-D format for a 1/3 core model with 10 full rings.
Note the obvious correspondence between this and Figure C.3. Rings are alternately colored white
and grey. Here, the single index does not include the empty "symmetric identical" positions. The
index values are always consecutive without any "gaps".
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7,.2

7,1 9,0

7,0 9,-1

7,-1 9,-2

7,-2 ,-3

7,-3 9,-4

Figure C.5: "MCNP GEODST" hex ordering in (i, j) = (x, y) format for a 1/3 core model with
10 full rings. Here rows of constant i are alternately colored white and grey.
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C.3 DIF3D GEODST Ordering

"DIF3D GEODST" ordering is similar to "MCNP GEODST" ordering except that one of
the pseudo-Cartesian axes is bent in a different direction. One can easily convert indices
between these two orderings using Equations C.1 and C.2.

9,9

9,8
9,7 7,9

9,6 8. 7,8

9,5 7.7 ,

9,4 5, 7,6 5,0 W
9,3 A 7,5 573,9

9,2 74 5,6 3,8 p
917,3 5,5 3,n7 - ~ 1,9

Figure C.6: "DIF3D GEODST" hex ordering in (i, j) = (x, y) format for a 1/3 core model with
10 full rings. Here rows of constant i are alternately colored white and grey. DIF3D re-arranges
hex assemblies to fit within the smallest possible rhombus. The empty "ghost" positions (which fill
out the rhombus) are filled with stripes. In order to convert to the standard ARMI 1/3 core model,
all assemblies left of the red line must be transferred to their "symmetric identical" positions (and
rotated).

Although converting between "DIF3D GEODST" and "MCNP GEODST" indexing is
trivial, the re-arrangement of hex assembly positions is significantly less trivial. As described
previously, DIF3D re-arranges all hex assemblies to fit within the smallest possible rhombus

(so that the i and j GEODST indices have the same minimum and maximum values).

C.4 DIF3D "Four Color" Nodal Ordering

Unfortunately, the DIF3D NHFLUX file stores hex assembly data in "DIF3D 'four color'
nodal" ordering, which is a mosaic of four interwoven (ring, position) "ARMI nodal" or-
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100
99

98
97

96 78
95 77

94 76
93 - 75

f2 7) 74 56

Figure C.7: "DIF3D GEODST" ordering in 1-D format for a 1/3 core model with 10 full rings.

Here rows of constant j are alternately colored white and grey. DIF3D re-arranges hex assemblies to

fit within the smallest possible rhombus. The empty "ghost" positions (which fill out the rhombus)

are filled with stripes. Note that the 1-D index includes these "ghost" positions. In order to convert

to the standard ARMI 1/3 core model, all assemblies left of the red line must be transferred to

their "symmetric identical" positions (and rotated).

derings. Although this ordering appears bizarre and purposeless, it actually minimizes the

"spectral radius" of the nodal calculation.
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154 38 37 61

65 39 -5 54 3 6 60
90- - 84'

66 e-40 56 31 3 C 53 35 5
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33 50 26 2 7 28 5
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-)27 4S 44 24A 46
IM 68" 4
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Figure C.8: "DIF3D 'four color' nodal" ordering in 1-D format for a 1/3 core model with 10 full
hex rings. Note that this is really a mosaic of four interwoven (ring, position) orderings. Each
color represents a distinct (ring, position) ordering. DIF3D re-arranges hex assemblies to fit within
the smallest possible rhombus. The empty "ghost" positions (which fill out the rhombus) are filled
with stripes. Note that the 1-D index does not include these "ghost" positions. In order to convert
to the standard ARMI 1/3 core model, all assemblies left of the red line must be transferred to

their "symmetric identical" positions (and rotated).
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C.4.1 DIF3D Full Core Orderings

Now that we have thoroughly elucidated the wonders of hex assembly ordering for 1/3 core

models, let's consider full core models. The "ARMI nodal" and "MCNP GEODST" full
core orderings are simple extensions of their 1/3 core counterparts, so we will not bother to
display them.

Figure C.9 shows the full core "DIF3D 'four color' nodal" ordering for a small core with

6 full hex rings. This is similar to the 1/3 core model, except that the rhombus is arranged

differently around the core in this case.

Figure C.9: "DIF3D 'four color' nodal" ordering in 1-D format for a full core model with 6 full
hex rings. Note that this is really a mosaic of four interwoven (ring, position) orderings. Each
color represents a distinct (ring, position) ordering. DIF3D re-arranges hex assemblies to fit within
the smallest possible rhombus. The empty "ghost" positions (which fill out the rhombus) are filled
with stripes, but they are not included in the numbering. Compare this to Figure C.8, which shows
a 1/3 core model.

Figure C.10 shows the full core "DIF3D GEODST" ordering for the same small core with

6 full hex rings. This is distinctly different than its 1/3 core counterpart shown in Figure
C.7. The central hex is not "number 1" here. The rhombus is arranged differently around

the core model. However, this is much simpler to manipulate than its 1/3 core counterpart,

437



438 Mark Reed

because no assemblies must change position (or orientation) when converting to "ARMI
nodal" ordering.

2 110

A& 108 88
107 87

106D 86 6
105 8565
1484 6444

34 15
64 114

1201

Figure C.1O: "DIF3D GEODST" ordering in 1-D format for a full core model with 6 full hex
rings. Here rows of constant j are alternately colored white and grey. DIF3D re-arranges hex
assemblies to fit within the smallest possible rhombus. The empty "ghost" positions (which fill out
the rhombus) are filled with stripes, and they are included in the numbering. This hex ordering is
unique in that the central hex is not "number 1". Compare this to Figure C.7, which shows a 1/3
core model.
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D Improvements to Traditional Boundary Perturba-
tion Theory via Interpolation Techniques

Here we describe a few methods for interpolating the classic perturbation theory formula

between finite difference mesh cells. We experimented with thesis methods early on in this

thesis work, before beginning work on "virtual density" theory.

Evaluating perturbation theory requires expressing the core as a grid structure of discrete

cells. For example, consider evaluating the first order perturbation result.

I t (.dF - dl$ $
Ap' = (D.1)

4t I#)

In the denominator, F is nonzero in every region throughout the core that contains fissionable

material. The product OtF# has a certain value in each specified cell (with homogenized

materials), and it is these values that are weighted by cell volume and summed up to obtain

the whole-core inner product K#t fp).

In the numerator, dF and dM are nonzero only in the locality of the perturbation. Thus,
if a geometric distortion occurs entirely within a single cell, the homogenized dF and dM

will still be zero in that cell. Consequently, in order to capture the effects of a geometric

perturbation, the cell dimensions in the immediate vicinity of that perturbation must be at

least as small as the perturbation displacement. In order to change dF or dM, a geometric

perturbation must alter the homogenized materials in neighboring cells.

The problem with this is that many geometry distortions result in only very small dis-

placements. Were we to employ a fixed grid of cells throughout the entire core, we would

have an exceedingly large number of cells. We would obtain the desired resolution of

ot 1 d - dM) 0), but our computation of KOt I'P) would be extremely inefficient.

The best approach might actually be to temporarily refine the cell structure in the vicinity

of the perturbation.

Of course, Larsen and Pomraning showed in their very first paper on boundary perturba-

tion theory that this conundrum can be circumvented by transforming the volume integral

into a surface integral over the unperturbed surface [42]. However, in this section we explore

possible interpolation techniques to evaluate the volume integral directly over small spatial

regions.

D.1 Linear Interpolation of Unperturbed Fluxes

D.1.1 1-D Linear Interpolation

The numerator in the expression for a first order perturbation is
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#K d - dld # (D.2)

In 1-D, the volume integration is typically performed by assuming that the unperturbed
flux #5 is constant in each region i. Thus, integrating by volume amounts to computing the
energy group dot product in each region i and then multiplying the result by the 1-D width

Ax. So the contribution to the total 1-D perturbation for a single 1-D region is

Ax#4 d - dM) #i (D.3)

For a very fine mesh, this is adequate. However, for unperturbed fluxes computed on
more coarse meshes, it is more accurate to linearly interpolate the unperturbed fluxes so
that the contribution of each 1-D region i becomes

Ax#T d - dM) #j -+ dx #t(x) ( dP - d) q(x) (D.4)

Here we will assume that both O(x) and #t(x) are linear functions whose averages are
preserved at qi and 01. If we define x = 0 as the center of each mesh-centered 1-D region i,
then

O(x) = Ax + #i (D.5)

It makes sense to define the constant A as the average slope (or 1-D gradient) of # in the
region i, which is

A = i1O + =i Oi1 +1 - i-1 (D.6)
2 Ax AX 2Ax

Now the explicit O(x) is

O(x) = 2A+1 - x + # (D.7)
2Ax

Note that this will cause O(x) to be discontinuous at the boundaries of adjacent mesh
regions, but we don't really care. Now we can express the contribution of region i as

lAx/2 Ot1- /1O+1-O

dx + i-1 + k dP - dA X + #i (D.8)

Remember we assumed that x = 0 corresponds to the center of the mesh region so that
the region of width Ax extends from -Ax/2 to Ax/2. We can expand this so that each
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Ii+1

(D-2

iw-1

* a

c-

-L---I------------ - I

Ax Ax
a.]

Ax Ax
x=O

Figure D.1: Three methods of flux interpolation between 1-D mesh-centered points. The red
and blue lines represent the constant flux approximation, which nearly all traditional perturbation
theory methods employ. The lines represent linear interpolation fixed such that the flux is
continuous at mesh boundaries. Note that this requires two piecewise linear flux functions in each
mesh cell. The red lines represent a single linear function in each mesh cell chosen so that its slope
corresponds to the average flux slope. This is our method of choice. Note that the cell spacing Ax
is constant.

term in the integrand contains an energy group dot product of only one adjoint flux and one
real flux.

Now the integration is fairly straightforward. All the x terms are zero due to symmetry.
The x2 terms and the constant terms are simple.

dx = AxJ-Ax/2
dx x = 0

/'Ax/2 2 = (Ax) 3

/do 2
J-Ax/2 12

(D.9)

(D.10)

(D.11)

I I
6 73r_

441



Mark Reed

Once the integration is performed, the expression becomes

AX O ( dP - dM )i

+ o +1d.P -

- 4 _1d.P -
~48 k

dM)

dM)

10
0i+1 + _1

48 +

(D.12)

(D.13)

(D.14)

Id - d / #i_1

d.P - dl #_1

The first term is identical to the constant flux implementation of perturbation theory,
and we can thus interpret the subsequent four terms as smaller corrections due to the linear

interpolation. However, we can combine these four "correction" terms into a single term

that is more intuitive:

AX #1 (dft - dM) + 48 +1 - )(OT d - dM) (0j+ 1 - oi-1) (D.15)
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D.1.2 2-D Linear Interpolation

The process for deriving the 2-D implementation of linear interpolation is the similar to

that for 1-D. Instead of simply multiplying the constant flux energy group product by each

region's area A, we integrate the linearly interpolated energy group product over that same

area.

k q3 -+ JIdA# (x, y) ( dP - d) #(X, y)

:

i,j+1

1i-1,j
0

icj
.I,

i+1,j AY

cf 1,1-1

Ax

Figure D.2: Here are discrete flux values in mesh-centered cells in 2-D Cartesian geometry. The

cell spacings in each direction Ax and Ay are constant. Each discrete flux is indexed with a i, j
index pair. Our linear interpolation technique requires expressing the flux as a continuous linear

function in x and y within each rectangular cell. The flux need not be continuous on cell boundaries.

(D.16)

0 .1k.
_41k
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Here #(x, y) is a linear function in x and y. We work in Cartesian geometry so that each

2-D region is a rectangle that can be assigned a unique i, j index pair. Again, we assume

that (x, y) = (0,0) corresponds to the center of the area so that the average flux is preserved

as #ij.

#(x, y) = Ax + By + #ij

The constants A and B correspond to the average x and y gradients:

A = +1,j - oi-1,j
2Ax

B =ij+1 - ',j-1
2Ay

(D.17)

(D.18)

(D.19)

So the explicit #(x, y) is

(X, y) - i+1,j - o-,jX +
2Ax

,+1 - ij1 y + qi,j
2Ay

(D.20)

Now the contribution of region i,j to the first order perturbation is

/ Nx/ 2 j -,y/2 Oit+ . j t 1
dx dy +,f -j + - y

-Zx/2 I-AY/2 2Ax 2Ay( +1,j - -1i,3  X
2Ax

(D.21)

(D.22)+ ij+1 - 4,j-1 y2Ay

Just as in 1-D, we can expand the terms. All terms with x, y or xy will be zero due to

symmetry.

x k-d'
k

- dM)

+ #OT
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IsZy/2dy = Axa

-Ay/2

I dy x = 0

Ay/2Iy, dy y = 0
sy/2

I dy xy = 0
-Ay/2sy/2 (

I dyx 2 =-s~y/2

I y/2
dy y2 = A

-s'Y/ 

(D.23)

(D.24)

(D.25)

(D.26)

(D.27)

(D.28)

dx
-sx/2

_A, , /2 dx
-x/2

I 2dx
-Ax/2

J Ax/2dxdx
-Ax/2

Ax12

I dx
-Ax/2

Is/ dxI-sx/2dx

Performing the integration yields a single term identical to the constant flux implemen-

tation plus eight correction terms - four for the x gradient and four for the y gradient. Just

as in 1-D, we can condense the each set of four terms into a single more intuitive term:

AxAy [0 ('dt - dM) Oij

+ + 1,j - 0 -1, dP - dM) (#5+i,5 - oi-1,j)

+ +I (OT - Oj1 dP - dA (qij+51, - Oi,-1)

(D.29)

(D.30)

(D.31)

\x) 3 A
12

(y3

x
12
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D.1.3 3-D Linear Interpolation

A 3-D linear interpolation follows the same process. We integrate a linearly interpolated flux

#(x, y, z) over a 3-D Cartesian volume V.

dV qt (x, y, z) dF - dM) (X, y, z)

We can explicitly express q(x, y, z) in terms of x, y, an d z gradients as

q(x, y, z) = Ax + By + +Cz + O

__ i+1,j,k - Oi-1,j,k X i,j+1,k - #i,j-1,k y /+i,j,k+1 - #ij,k-1 Z ± Oijk
2Ax 2Ay 2Az

(D.32)

(D.33)

(D.34)

We can index each Cartesian volume with a unique i, j, k index triplet. Note that

(x, y, z) = (0, 0, 0) corresponds to the center of the Cartesian 3-D volume so that the average

flux Oi,j,k is preserved. Performing the expansion, integration, and condensation of terms

in the same manner as in 1-D and 2-D yields a single term identical to the constant flux

implementation plus twelve correction terms - four for each Cartesian direction of the flux

gradient. Condensing each set of four terms into a single term yields

AxAyAz [#k (f - dM) Jk

1i 1

+ +t - '4 0-1,j,k)

+8

18

( ,3+1,k ~ i,-1,k)

(0 1 -- # -0 1 )

dF - dM) (Oi+1,j,k - Oi-1,j,k)

dP - dM) (0i,j+1,k - Oi,j-1,k)

( df - dM) (bi,j,k+l - Oij,kl)

(D.35)

(D.36)

(D.37)

(D.38)
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D.2 2-D Assembly Shifting

Now we examine a very simple geometry distortion in 2-D, the shifting of one fuel assembly

outward into a sodium blanket. We construct a 5x5 array of homogenized uranium metal
square assemblies surrounded by a sodium blanket. We employ a flexible Cartesian mesh
that we can adjust to be hyperfine in the vicinity of the distortion while remaining coarse

elsewhere. See Figure D.3 for an illustration.

Figure D.4 shows the reactivity effects due to this 2-D assembly shifting. We use the hy-
perfine mesh shown in Figure D.3 to compute the actual diffusion eigenvalue solution. When

we apply perturbation theory using the unperturbed fluxes from the same hyperfine mesh,
we can predict the reactivity effects quite accurately up to a 20% assembly shift fraction.

However, when we apply perturbation theory using unperturbed fluxes from a coarse mesh

(several mesh cells per assembly), the result is poor. Linear interpolation techniques help
somewhat, but not nearly enough.
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Figure D.3: The grid structure of our 2-D assembly shifting model. The red mesh cells represent

an array of 5x5 homogenized assemblies, while the bluie cells represent a pure sodium blanket.

Slightly different shades of red represent different enrichments. Here one assembly has shifted

outward by a "fractional assembly shift" of 0.5 so that it is halfway out into the blanket. Note

that we have made the mesh hyperfine in the vicinity of the assembly shift perturbation in order

to resolve the value of the reactivity via a diffusion eigenvalue solution.
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Figure D.4: Reactivity as a function of 2-D assembly shift fraction for the distortion shown in
Figure D.3. The solid black line shows the diffusion eigenvalue result using the hyperfine mesh.
The two red dotted lines show first order perturbation theory estimates using the same hyperfine
mesh and a coarse mesh (several mesh cells per assembly) with linear flux interpolation.

449

1



450 Mark Reed

E The Energy Dependence of Sodium Void Worth

We can employ standard first order perturbation theory to show the contribution of each
energy group to sodium void worth. Figure E.1 shows the relative contribution of each
energy group to the first order sodium density worth per mass of sodium. When sodium is
added to a reactor, the neutron spectrum shifts to slightly lower energy, causing a reduction
in reactivity at high energies and a simultaneous increase in reactivity at lower energies.
However, the reactivity reduction at high energies outweighs the reactivity increase at lower
energies, and so the net sodium worth is negative (equivalently, the net sodium void worth
is positive).
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Figure E.1: The relative contribution of each energy group to the first order perturbation theory
estimate of sodium void worth (per unit mass).
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F Successive Approximations for Stacey's Variational

Functional Applied to Material Densities

In Section 2.2.3, we discussed the variational functional derived by Stacey for evaluating

second order material density perturbations [155]. This functional can correctly predict

the perturbed eigenvalue to second order and the perturbed flux distribution to first order.

Favorite and Stacey have successfully applied it to numerous scenarios [29].

A'= 1 + (1df - d) ) (F.1)

(dP t - dft) _______

(!Ft - Mt)# = - (F.2)

I} - dM) #) + #t F) PF
Note that Equation F.2 amounts to a fixed adjoint source problem - solving for the adjoint

flux (left hand side) given a fixed adjoint source (right hand side). However, since this is

perturbation theory, we have already solved the eigenvalue problem (!Ft - Mt) #t = 0 to

obtain the unperturbed adjoint flux Ot. Thus, solving the fixed-source problem in Equation

F.2 will yield a solution for Ot that is a superposition of a general solution and a particular

solution. The general solution represents the case of zero source, so it is proportional to

q5. The particular solution represents the case of the source specified as in Equation F.2,
and it is this particular solution that we seek to isolate and assign to ?/t. Unfortunately,
disentangling this desired particular solution from the undesired general solution is not so

simple - one must "sweep out" the general solution via "successive approximations" outlined

by Favorite and Stacey [29].

First let us define the function G1, the solution to the fixed-source problem without the

fission operator - a fission-less fixed-source problem.

Idft - dkft #fOtt
- mt= - (k - tt (F.3)

K t (dP - dM) ) ± t FtqP)

Now let us define two infinite series of functions: Ct and V1, each for n = 0 to oo. Given

the initial function (3 above, we can build up these two series recursively using Equations

F.4 and F.5:

0 = ( FO1n - - (F.4)
Kt FO)

I= _ f (F.5)k ~j -
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The purpose of the second term in the right side of Equation F.4 is to "sweep out" the
general solution. We can evaluate as many functions in these two series as we like, but we
find that n = 10 is typically sufficient to ensure a well-converged solution.

Finally, let the generalized adjoint function /f (the particular solution to the fixed-source
problem) be the sum of all its components V1.

o

7pf =(F.6)
n=o

This completes our explanation for how we isolate the particular solution of to Stacey's
variational functional, which is effectively a fixed-source problem.
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G The Fast Flux Test Facility (FFTF) Benchmark

The Fast Flux Test Facility (FFTF) is a deactivated sodium fast reactor (SFR) with mixed

oxide (MOX) fuel. The FFTF is located on the historic Hanford site along the Columbia

River near Richland, Washington. It operated as a research reactor from 1980 until 1992.

In 1993, it was deactivated and gradually disassembled throughout the 1990s. In 2005, the

core was drained of its sodium coolant but backfilled with argon to thwart corrosion.

See the core map in Figure G.1, and see a fuel pin axial profile in Figure G.2. The FFTF

contains 11 rings of hexagonal assemblies (313 total) immersed in sodium. Two enrichment

zones occupy assembly rings 1-4 and 5-6. This fueled inner core contains various primary and

secondary control assemblies as well as shim assemblies, a thimble, and a vibration open test

assembly. Three reflector assembly rings and two shield assembly rings surround the fuel.

The flat-to-flat hexagonal assembly pitch is 12.051 cm. Each fuel assembly contains 271 pins

(9 full rings), each with an outer diameter of 0.5842 cm and helically wrapped with wire.

The active (fueled) core is 91.44 cm long. The interstitial sodium-filled regions (the thin

spaces between neighboring assembly ducts) are 0.43 cm thick. Both cladding and duct are

stainless steel (SS-316). See the formal benchmark documentation for detailed descriptions

of all components, including homogenized number densities [146].

In order to model this core in finite difference diffusion, we homogenize each axial segment

of each hexagonal assembly. The fine mesh benchmark has 112 axial zones, but we typically

coarsen this to 28 zones for efficiency. We also "fill in" the outermost assembly ring with 18

additional shield assemblies.
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Figure G.1: The FFTF benchmark core map. This is a sodium fast reactor (SFR) with mixed

oxide (MOX) fuel. Two rings of shield assemblies and three rings of reflector assemblies surround

six inner rings of fuel assemblies interspersed with various control and test assemblies [146].
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Figure G.2: The fuel pin axial profile in the FFTF benchmark. This is a sodium fast reactor
(SFR) with mixed oxide (MOX) fuel [146]. All dimensions are cm.
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H The Jby Benchmark

Jdy6 is a sodium fast reactor (SFR) on the Pacific coast of Japan near Oarai in Ibaraki

Prefecture - roughly halfway between Tokyo and the Fukushima reactors. It has operated

since 1977 and weathered the 2011 earthquake and tsunami without incident.

See the core map in Figure H.1, and see axial profiles of different assembly types in

Figure H.2. Jby6 contains 11 rings of hexagonal assemblies (313 total) immersed in sodium.

Uniformly-enriched fuel occupies assembly rings 1-5 and part of ring 6. This inner core

contains 6 control assemblies and one assembly acting as a neutron source. Four or five

rings of 19-pin depleted uranium assemblies surround the inner core for breeding purposes.

Shield assemblies occupy the outermost ring. The flat-to-flat hexagonal assembly pitch is

8.1817 cm. Each fuel assembly contains 91 pins (6 full rings), each with an outer diameter

of 0.5614 cm and helically wrapped with wire. The depleted uranium assemblies contain

19 pins, which are much bulkier at 1.38 cm. The active (fueled) core is 60 cm long. The

interstitial sodium-filled regions (the thin spaces between neighboring assembly ducts) are

0.30 cm thick. Both cladding and wire wrap are stainless steel (SS-316). See the formal

benchmark documentation for detailed descriptions of all components [147].

In order to model this core in finite difference diffusion, we homogenize each axial segment

of each hexagonal assembly. The fine mesh benchmark has 66 axial zones, but we typically

coarsen this to 22 zones for efficiency. We also "fill in" the outermost assembly ring with 18
additional shield assemblies.
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RR1

Core Fuel Reflector Control Rod (Regulation Rod)

Blanket Fuel Neutron Source Control Rod (Safety Rod)

0-ASOOOO-20-07

Figure H.1: The Jdyb benchmark core map. This is a sodium fast reactor (SFR) with mixed
oxide (MOX) fuel. A thick blanket of depleted uranium assemblies (for breeding) surrounds an

inner core region [147].
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Figure H.2: Axial profiles of various assembly types in the Jiy6 benchmark. This is a sodium

fast reactor (SFR) with mixed oxide (MOX) fuel [147].
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I The Generic Metal-Fueled (GMF) Test Core Model

Since both FFTF and JIy6 are MOX-fueled, we construct a generic metal-fueled (GMF)

core for testing purposes. This core is entirely hypothetical - it has been neither built nor

previously designed. This GMF core is sodium-cooled and contains enriched uranium but

no plutonium.

See the core map in Figure I.1. The GMF core contains 16 full rings of hexagonal

assemblies: 12 fuel rings with 2 different enrichment levels, three reflector rings, and one

shield ring. 18 control assemblies are interspersed throughout the fuel. The flat-to-flat

hexagonal assembly pitch is approximately 15 cm. Each fuel assembly contains 331 pins

(11 full rings), each with an outer diameter of approximately 0.6 cm and helically wrapped

with wire. The active (fueled) core is approximately 80 cm long. The interstitial sodium-

filled regions (the thin spaces between neighboring assembly ducts) are 0.59 cm thick. Both

cladding and duct are stainless steel (SS-316).

In order to model this core in finite difference diffusion, we homogenize each axial segment

of each hexagonal assembly. The axial mesh benchmark has 15 axial zones. Due to symmetry,
we choose 1/3 core geometry for this model.

Inner Core (IC)

Middle Core (MC)

Reflector (RR)

Shield (SH)

Primary Control (PC)

Figure I.1: The generic metal-fueled (GMF) test core map. This is a sodium fast reactor (SFR)

with enriched uranium metal fuel. Shield and reflector assemblies encase a large inner core region.
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