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ABSTR AC T. We review the current distribution of lead and lead isotopes in 
the ocean with regard to the evolving pattern of human emissions during the past 
decades and centuries.

the great “large scale geophysical experi-
ments” whereby the human race alters 
the global environment and waits to 
observe the consequences (Revelle and 
Suess, 1957). Fortunately for the marine 
environment, lead emissions have not 
been high enough to cause harmful con-
sequences in the open ocean. However, 
human and continental ecosystem health 
suffers the negative consequences of Pb 
emissions from a variety of sources that 
include lead-soldered cans; drinking 

water from Pb-contaminated plumbing; 
lead components of paint on houses and 
other structures; paint scrapings and 
leaded gasoline consumption that con-
taminates soils, including playgrounds 
and agricultural areas; and acute impacts 
from smelting, metal refining, and acid 
mine drainage (Nriagu and Pacyna, 
1988). Studies of the fate of Pb in the 
open-ocean environment can be used to 
study ocean metal transport and reactiv-
ity, just as harmless ocean fluorocarbons 
are used to trace and quantify ocean 
physical transport. Studies of the evolu-
tion of the anthropogenic Pb transient in 
the ocean can also serve as an analogue 

INTRODUC TION
Humans have increased the flux of 
reactive lead (Pb) into Earth’s surface 
environment by more than a factor of 
10, as Caltech lead-research pioneer 
Clair Patterson, co-workers, and associ-
ates pointed out in several cutting-edge 
publications (e.g., Murozumi et al., 
1969; Shirahata et al., 1980; Schaule and 
Patterson, 1981; Flegal and Patterson, 
1983). As such, this activity is, in the 
spirit of Roger Revelle’s words, one of 

Boyle group at sea deploying 
the “weather-vaning” trace 
element sampler.
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for other anthropogenic pollutants.
Pb is a volatile element at high tem-

peratures; it can be emitted as an atomic 
vapor when Pb-containing materials are 
heated to these temperatures. Pb is also 
emitted as reactive PbBrCl compounds 
upon the combustion of leaded gasoline. 
At low temperatures, Pb is not stable as 
a gas, and Pb atoms attach to the sur-
faces of, or react chemically with, fine 
atmospheric aerosol particles (Cziczo et 
al., 2009). These particles are dispersed 
by the global atmospheric transport sys-
tem and can travel to remote regions of 
Earth before they are deposited on land 
or the ocean surface (Reuer and Weiss, 
2002). The residence time of atmospheric 
particles is short. Studies of the natural 
radioisotope 210Pb (Bacon et al., 1976; 
Nozaki et al., 1976) show that the resi-
dence time of Pb in the low-productivity 
waters of the central ocean gyres is about 
two years. Thus, surface water Pb concen-
trations tend toward a steady state with 
atmospheric deposition fluxes during 
the previous few years, and Pb concen-
trations in surface waters tend to follow 
recent deposition rates of contaminated 
atmospheric aerosols.

Patterns of lead production and 
utilization have been changing during 
the past two centuries, particularly for 
leaded gasoline consumption (Figure 1). 
As a result, we expect to see large tem-
poral changes in Pb distribution in the 
ocean as anthropogenic sources wax 

and wane and ocean circula-
tion carries lead far from its 
deposition site.

Pb AND Pb 
ISOTOPE SPATIAL 
AND TEMPOR AL 
VARIABILIT Y
During the last 10 years, the 
authors of this study have 
obtained Pb concentration 
and isotope ratio data from 
high-quality samples from 
almost all of the major ocean 
basins (North and South 
Atlantic, North and South 
Pacific, and Indian Ocean, 
including the Southern 
Ocean), with the exception of the Arctic 
Ocean. Most of these data are yet to be 
published. Although we will include 
a nod to recent literature, in the fol-
lowing discussion, any unreferenced 
data are from our yet-to-be-published 
work, and published work from our 
labs or others will be cited specifically. 
We will briefly summarize this work, 
showing that the impact of evolving 
anthropogenic Pb emissions on time 
scales of years through centuries can be 
seen in the Pb and Pb isotope composi-
tion of the marine environment, either 
directly in seawater measurements or 
through the use of archive proxies that 
reflect past Pb changes in the ocean. As 
a result of the pervasive nature of Pb 

contamination during sampling and 
analysis and the very low concentrations 
(sub-nanomolar) occurring in the ocean, 
there were no successful measurements 
of Pb in sea water prior to 1976 (Schaule 
and Patterson, 1981). So, it is only in the 
past four decades that we have direct 
observations on the evolution of anthro-
pogenic Pb in the ocean. This period 
has seen reductions in Pb emissions in 
some regions (Japan, North America, and 
Europe) and rising Pb emissions in other 
regions (e.g., Southeast Asia). But, the 
history of significant environmental lead 
pollution extends throughout at least the 
past 200 years, and studies of Pb in annu-
ally banded corals (e.g., Kelly et al., 2009) 
and laminated sediments (e.g., Lima 
et al., 2005) help provide century-scale 
perspective to three decades of seawater 
data. Our MIT lab has strived to develop 
highly efficient methods for the analysis 
of seawater Pb concentrations (Lee et al., 
2011) and Pb isotope ratios (Reuer et al., 
2003; Boyle et al., 2012) in small samples.

The North Atlantic Ocean was 
the region most heavily impacted by 
early industrializing economies, and 
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Figure 1. Gasoline lead consumption in the USA, Germany, 
France, United Kingdom, and Italy from 1930 through 1993. 
Note that the four European countries plotted account for 
~ 70% of Western Europe gasoline consumption.
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there are far more studies of Pb in the 
North Atlantic Ocean than elsewhere. 
Beginning with the work of Schaule and 
Patterson (1983, on samples collected in 
1979) through many other studies (Boyle 
et al., 1986; Shen and Boyle, 1987, 1988; 
Helmers et al., 1990, 1991; Helmers and 
van der Loeff, 1993; Veron et al., 1993, 
1994, 1999; Hamelin et al., 1997; Wu 
and Boyle, 1997; Alleman et al., 1999; 
Weiss et al. 2003; Desfenant et al., 2006), 
we have significant information on the 
spatial and temporal variability of Pb 
in this ocean basin. Combining surface 
seawater observations near Bermuda 
with annually banded coral data, the 
century-scale temporal variability of 
Pb in the surface waters of the western 
North Atlantic can be seen in the data 
of Kelly et al. (2009) (Figure 2). This 
work combines data from three corals 
from the North Rock reef northeast of 
Bermuda island with annually averaged 
seawater data from near Bermuda from 
1979–2000 (Hydrostation S, Bermuda 
Atlantic Time Series [BATS], and 
Bermuda Testbed Mooring, [BTM]). 

Combined with data from another 
coral from the Southern Preserve, close 
to shore southeast of Bermuda island 
(see map in Kelly et al., 2009, data not 
shown here), we can describe Pb evolu-
tion in the western North Atlantic sur-
face waters. Pb in surface waters began 
to rise from about 10 pmol kg–1 at the 
beginning of the nineteenth century 
with the development of the US Upper 
Mississippi Valley lead district in the 
mid-1800s (Heyl et al., 1959) and the 
US industrial revolution, reaching a pla-
teau of about 80 pmol kg–1 in the 1920s. 
Seawater Pb concentrations began to 
soar in the late 1940s (Figure 2) with the 
end of World War II, rising US prosper-
ity (“two cars in every garage” that ran 
on leaded gasoline), and, eventually, 

European prosperity. Bermuda surface 
ocean lead levels peaked at more than 
200 pmol kg–1 in the 1970s. The US Clean 
Air Act of 1970 mandated catalytic con-
verters to reduce atmospheric pollution, 
which required removal of tetraethyl 
Pb from gasoline because it poisoned 
the catalysts (Nriagu, 1989). Since then, 
western North Atlantic Pb concentrations 
have fallen continuously (Figure 2), with 
the lowest surface water Pb concentra-
tions observed so far (17 pmol kg–1) 
seen during the US GEOTRACES 
North Atlantic Transect cruise in 
November 2011 (recent work of authors 
Noble and Boyle).

There is some spa-
tial coverage of surface 
water Pb concentra-
tions in the Atlantic 
Ocean. For example, 
during the period 
from 1986–1993 
(Figure 3), the highest 
surface Pb concentra-
tions during the past 
three decades occur in 
the subtropical gyre, 
downwind of both US 
and some European 
emissions. The atmo-
sphere and North 
Atlantic Drift current 
carry that Pb north-
ward where it is driven 
by wind (Ekman) 
pumping into the 
thermocline and 
winter cooling driving 
dense deep water for-
mation during winter. 
South of the subtropi-
cal/tropical boundary 
(~ 20°N), Pb concen-
trations in the 1989–
1995 period rapidly 

decrease to less than 20 pmol kg–1 and 
occur at similar low levels all the way 
into the South Atlantic (e.g., Helmers 
and van der Loeff, 1993). Though not 
shown in Figure 3, there is an unusual 
peak in Pb concentration that occurs in 
the Atlantic coastal waters of southern 
Spain, where acid mine drainage from 
the Rio Tinto and Rio Odiel deliver 
water with Pb concentrations a million 
times more than measured in Atlantic 
surface waters (e.g., see van Geen et al., 
1997). These high Pb levels flow into 
the Mediterranean Sea in the northern 
branch of the Gibraltar inflow (recent 
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Figure 2. Pb concentration and isotopic composition of Bermuda 
surface waters for the past 120 years (Kelly et al., 2009). Squares 
(1979–2000) represent annual averages of data from water 
samples. The other data are from three different coral cores, with 
Pb concentrations estimated from coral Pb/Ca converted by a 
partition coefficient as described by Kelly et al. (2009).
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work of author Moos and author Boyle’s 
lab). Mediterranean surface water data 
from the 1980s shows very high values, 
up to 500 pmol kg–1, and in 1982 the 
values from the deep Mediterranean that 
contribute to the Mediterranean Outflow 

at Gibraltar are ~ 250 pmol kg–1 (recent 
work of author Moos and colleagues).

Thermocline ventilation and deep-
water formation bring surface waters 
into the ocean’s interior. In the North 
Atlantic, thermocline ventilation occurs 

on time scales of years in the uppermost 
ocean to perhaps a century at 1,000 m 
(Jenkins, 1998). Near Bermuda, Pb 
profiles have been collected at roughly 
five-year intervals during the past 
30 years (Figure 4). Waters that sank 
decades ago when surface Pb concen-
trations were an order of magnitude 
higher are found at mid-depths, with a 
maximum occurring at ~ 400 m depth 
in 1979, deepening to 1–2 km in 2011. 
In addition to purely surface boundary/
advective-driven changes, it is likely that 
a component of the decrease in water 
column Pb is driven by scavenging onto 
sinking particles. The GEOTRACES 
program has obtained detailed sections 
of Pb in the Atlantic (GEOTRACES 
tracks GA02, GA03, and GA10; see map 
at http://www.bodc.ac.uk/geotraces/
cruises/section_maps/atlantic_ocean). 
A Pb maximum of > 60 pmol kg–1 
is seen at ~ 1,000 m in the eastern 
North Atlantic in chlorofluorocarbon 
(CFC)-containing waters.

US gasoline dominantly used tetra-
ethyl lead from the Ethyl Corporation 
that mainly relied on US Pb sources 
(with a 206Pb/207Pb ratio typically 
> 1.17), whereas Europe dominantly 
used tetraethyl Pb from Associated 
Octel Ltd. that derived from Australian, 
Swedish, and Moroccan sources (with 
a 206Pb/207Pb ratio typically < 1.15; see 
Grousset et al., 1994). The Pb isotope 
ratio of North Atlantic surface waters 
reflects the relative mixture of US and 
European sources, depending on total 
emissions, atmospheric wind patterns, 
and proximity. Westerlies dominate 
mid-latitude winds, and the United 
States used several times more Pb than 
Europe (Figure 1); hence, for a long 
time, high US 206Pb/207Pb ratios domi-
nated the North Atlantic (Weiss et al., 
2003). But, as the United States phased 

Figure 4. Pb concentration data 
from profiles collected near 
Bermuda, 1979–2011. Data are 
from the MIT lab, except for 
1979 data from Schaule and 
Patterson (1983) and 1989 data 
from Veron et al. (1993). USGT 
refers to US GEOTRACES cruises. 
Key to data sources: 1979 
Schaule and Patterson = Schaule 
and Patterson (1983). 1984 MIT 
= Shen and Boyle (1987). 1989 
Veron et al. = Veron et al. (1993). 
Other profiles up to 2008: Lee 
et al. (2011). MIT USGT11-10 
= recent work of author 
Noble and colleagues.
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Figure 3. Pb data from the 
surface Atlantic Ocean from 
samples collected between 1986 
and 1993. “Hot” colors are high 
Pb concentration and “cool” 
colors are low Pb concentra-
tion. The two long north-south 
data tracks are from Helmers 
and van der Loeff (1993). 
Northernmost data (> 50°N) 
are from Veron et al. (1999). 
The rest of the data are yet-to-
be-published Massachusetts 
Institute of Technology (MIT) 
data from cruises in which the 
authors have participated. 
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out leaded gasoline faster than Europe 
(with a crossover in total Pb gas utiliza-
tion in the early 1990s), the 206Pb/207Pb 
ratio decreased in North Atlantic surface 
waters (Figure 2), and this lead reduc-
tion influenced the upper ocean through 
thermocline ventilation (Figure 5).

Other factors affected surface Atlantic 
Pb isotope composition in previous 
decades. In 1973, a fire in the baghouse 
(dust-filtering system) at the Bunker Hill 
Pb smelter in Idaho, which produced 
25–30% of US lead the time, resulted 
in particulate emissions that contami-
nated the city of Kellogg, Idaho, and 
nearby communities with 1,000 tons of 
Pb and other toxic elements during a 
one-year period (Landrigan and Baker, 
1981; Miller, 2000). The smelter shut 
down and became a US Environmental 
Protection Agency Superfund site. This 
Idaho smelter Pb had a lower 206Pb/207Pb 
ratio (~ 1.15) than other US Pb sources 
(mainly Mississippi Valley), so the Pb 
isotope ratio of lead and leaded gasoline 
increased in the mid-1970s after the 
smelter was shut down. The consequence 
for rising Pb isotope ratios in US emis-
sions is clearly illustrated in coral data 
(Figure 2). Another major influence on 
the Pb isotope record was the dominance 
of Upper Mississippi Valley lead in the 
middle of the nineteenth century. This 
deposit was easily worked and close to 
major water transport networks, so it 
was the all-but-exclusive source of Pb 
in the United States at that time (Lima 
et al., 2005). The smelting procedure 
(open charcoal fires) was rudimentary, 
with no emission controls. The emis-
sions were transported downwind, 
and the influence of this Pb can be 
seen in sediments of the Great Lakes 
(Graney et al., 1995), Chesapeake Bay 
(Marcantonio et al., 2002), and offshore 
Rhode Island (Lima et al., 2005), as well 

as in sediments from Canadian lakes 
in Quebec (Gobeil et al., 2013). This 
source of Pb has an unusual Pb isotope 
composition (206Pb/207Pb ~ 1.33 and 
208Pb/207Pb ~ 2.51), so its influence also 
can be seen in Bermuda coral records 
(Kelly et al., 2009). Its dominance as the 
US Pb source diminished in the latter 
nineteenth and early twentieth centuries, 
leading to decreasing 206Pb/207Pb and 
208Pb/207Pb ratios into the early decades 
of the twentieth century.

As a result of the evolving Pb iso-
tope ratio of North Atlantic lead, some 
periods exhibit a unique Pb isotope 
ratio. For example, the Bermuda surface 
water 206Pb/207Pb ratio was ~ 1.19 and 
the 208Pb/207Pb ratio was ~ 2.46 in the 
1920s, which is the only time in the past 
150 years where these ratios co-occurred. 
Hence, we have been able to identify lead 
that sank from the sur-
face of the North Atlantic 
Ocean in the 1920s in deep 
eastern Atlantic Ocean 
waters and in deep western 
South Atlantic waters near 
Rio de Janeiro. 

There are fewer data 
on Pb in the North Pacific 
Ocean than in the North 
Atlantic, although it is still 
more data than is available 
elsewhere in the world. 
Schaule and Patterson 
(1981) obtained the first 
valid oceanic Pb data 
on samples collected in 
1976. They observed Pb 
concentrations in surface 
samples near Hawaii of 
~ 65 pmol kg–1. By the 
late 1990s, Pb concentra-
tions near Hawaii had 
declined by a factor of two 
(Boyle et al., 2005). But the 

situation in the Pacific is not as simple 
as in the North Atlantic, where Pb emis-
sions have been declining steadily for 
decades in almost all of the surrounding 
countries. Pb emissions by China and 
Southeast Asian countries have been 
increasing (dominantly derived from 
coal combustion, because Pb gasoline 
has not been used in China for the past 
15 years; Flegal et al., 2013). Although 
there is scant older data for compari-
son, Pb concentrations in the surface 
waters of the western North Pacific are 
quite high compared to those in the 
east (Gallon et al., 2011). To the extent 
that data are available in deep profiles 
from the North Pacific, any change in 
Pb concentration in the central North 
Pacific appears confined to the upper few 
hundred meters (Boyle et al., 2005, and 
confirming observations from SAFe and 
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GEOTRACES data in the eastern North 
Pacific [Wu et al., 2010; Ken Bruland, 
UC Santa Cruz, pers. comm., 2009, 2010; 
recent work of author Boyle’s lab]).

Data from the South Pacific Ocean are 
sparse; the only published data available 
are from the equatorial zone of the west-
ern South Pacific (Flegal and Patterson, 
1983; Wu et al., 2010), and author 
Boyle’s MIT laboratory has two yet-to-
be-published profiles from the tropical 
southeastern Pacific. These profiles show 
Pb concentrations of 13–23 pmol kg–1 
in the surface waters, decreasing to 
~ 4 pmol kg–1 in the deep waters.

Pb concentrations from samples 
obtained during the 2009–2010 Japanese 
Indian Ocean GEOTRACES expedi-
tion and analyzed at MIT (International 
GEOTRACES track GI 04) show that 
the northern and central Indian Ocean 
now have higher surface Pb concentra-
tions (40-80 pmol kg–1) than the North 
Atlantic near Bermuda and the North 
Pacific near Hawaii. This is a result of the 
spurt of economic growth and industri-
alization in this region, as well as a late 
phasing out of leaded gasoline compared 
to other parts of the world. The deep 
northern Indian Ocean has possibly the 
lowest seawater Pb concentration ever 
observed, 2 pmol kg–1. This is probably 
the combined result of century-scale age 
(relative to the surface), plus scavenging 
of Pb along the flow path. Interestingly, 
there is a near-constant offset of the 
Pb isotope ratios throughout the water 
columns between the Bay of Bengal 
and Arabian Sea, even though the con-
centrations are the same. Because the 
deep waters of both basins have similar 
ultimate origins in the Southern Ocean, 
some process along the way must change 
the isotopic composition without alter-
ing the Pb concentration. This is a novel 
observation that needs further study.

In the nearby Persian Gulf, sea-
water Pb concentrations range from 
~ 100 pmol kg–1 near a major city 
to 30 pmol kg–1 elsewhere. Peak and 
phaseout of anthropogenic Pb in 
recent decades is observed in coral 
core records (recent work of author 
Zhao and colleagues). 

Pb concentrations in the Indian 
Ocean sector of the Southern Ocean 
are relatively uniform and low, 
5–12 pmol kg–1. The Pb isotope ratio 
of the deep Southern Ocean profile is 
206Pb/207Pb 1.18–1.19, suggesting that 
a significant fraction of the Pb may 
be of natural crustal origin (~ 1.20, 
because anthropogenic Pb aerosols 
in the Southern Hemisphere are 
206Pb/207Pb ~ 1.16 or lower; Bollhöfer 
and Rosman, 2000). 

CONCLUSIONS
Human emissions of Pb into the atmo-
sphere have altered the Pb concentration 
and isotope composition of a large frac-
tion of the ocean. Pb levels in surface 
waters have been changing in line with 
regional emissions, with North Atlantic 
Pb levels increasing from ~1830 to ~1975 
and decreasing since then. Pb concentra-
tions in the Atlantic thermocline reflect 
the decreasing surface water concentra-
tions of the ventilating waters. Pb has 
decreased near Hawaii, but increased 
emissions from China paint a different 
story in the western Pacific. Recent eco-
nomic development and a late phaseout 
of leaded gasoline in India, Indonesia, 
China, and some other southern Asian 
countries have led to relatively high con-
centrations in the northern and central 
Indian Ocean. The isotope composition 
of deep Antarctic waters in the Indian 
sector may indicate a significant contri-
bution of natural crustal Pb in addition to 
recent anthropogenic sources.
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