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1 Introduction and summary

The analysis of how a heavy quark moving through the strongly coupled liquid quark-gluon

plasma produced in ultrarelativistic heavy ion collisions loses energy and, subsequently,

diffuses in the flowing plasma is of considerable theoretical interest because experimentalists

are developing the detectors and techniques needed to use heavy quarks as ‘tracers’ or

‘probes’ of the strongly coupled liquid. If one assumes that the interactions between the

heavy quark and the quark-gluon plasma are weak then perturbative techniques originally

formulated for energetic light quarks [1–4] can be employed to analyze heavy quark energy

loss [5].

The discovery that the plasma produced in heavy ion collisions is a strongly coupled liq-

uid has prompted much interest in the real-time dynamics of strongly coupled non-Abelian

plasmas and in the dynamics of heavy quarks therein. Although it remains to be seen to

what degree treating all aspects of the dynamics of heavy quarks as strongly coupled is a

good approximation, this approach is certainly of value as a benchmark: thorough under-

standing of the physics in this tractable setting can provide valuable qualitative insights.

What makes these calculations tractable is holographic duality, which maps questions of

interest onto calculations done via a dual gravitational description of the strongly cou-

pled plasma and the heavy quark probe. The simplest theory in which these holographic

calculations can be done is strongly coupled N = 4 supersymmetric Yang-Mills (SYM)
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theory in the large number of colors (large Nc) limit, whose plasma with temperature T is

dual to classical gravity in a 4+1-dimensional spacetime that contains a 3 + 1-dimensional

horizon with Hawking temperature T and that is asymptotically anti–deSitter (AdS) space-

time, with the heavy quark represented by a string moving through this spacetime [6–11].

The earliest work on heavy quark dynamics in the equilibrium plasma of strongly cou-

pled N = 4 SYM theory [9–11] yielded determinations of the drag force felt by a heavy

quark moving through the static plasma and the diffusion constant that governs the sub-

sequent diffusion of the heavy quark once its initial motion relative to the static fluid has

been lost due to drag. The basic picture of heavy quark dynamics that emerges, with

all but the initially most energetic heavy quarks being rapidly slowed by drag and then

becoming tracers diffusing within the (moving) fluid, is qualitatively consistent with early

experimental investigations [12]. For a review, see ref. [13]. Subsequently, the holographic

calculational techniques were generalized to any static plasmas whose gravitational dual

has a 4+1-dimensional metric that depends only on the holographic (i.e. ‘radial’) coordi-

nate in ref. [14] and heavy quark energy loss and diffusion has by now been investigated in

the equilibrium plasmas of many gauge theories with gravitational duals [15–28].

More recently, in ref. [29] we and a coauthor have calculated how the drag force and

energy loss rate of a heavy quark moving through the far-from-equilibrium matter present

just after a collision compares to that in strongly coupled plasma close to equilibrium.

We studied the energy loss of a heavy quark moving through the debris produced by

the collision of planar sheets of energy in strongly coupled SYM theory introduced in

ref. [30] and analyzed there and in refs. [31, 32]. The matter produced in these collisions is

initially far from equilibrium but then rapidly hydrodynamizes: its expansion and cooling

is described well by viscous hydrodynamics after a time thydro that is at most around

(0.7 − 1)/Thydro, where Thydro is the effective temperature defined from the fourth root of

the energy density at the hydrodynamization time thydro. In ref. [29] we computed the drag

force on a heavy quark moving through the initially far-from-equilibrium matter and the

subsequent hydrodynamic fluid. We compared our results to what the drag force would have

been in an equilibrium fluid with the same instantaneous energy density, and found that

there is no dramatic “extra” energy loss in the far-from-equilibrium matter. However, even

at late times when the expansion of the fluid is well-described by viscous hydrodynamics

we found deviations between the actual drag force and what the drag force would have

been in a spatially homogeneous equilibrium fluid with the same energy density. That is,

we found that the gradients in the actual fluid do affect the drag force felt by the heavy

quark moving through the fluid. Our goal in the present paper is a thorough investigation

of the effects of gradients in the temperature and velocity of the fluid, up to first order, on

the drag force.

We begin by computing the drag force on a heavy quark moving through a fluid whose

own motion is only in one direction, which we shall take to be the z-direction. If we denote

the fluid 4−velocity by uµ then at this stage the only gradients that we are considering are

∂zu
z and ∂tu

z as well as ∂zT and ∂tT . Throughout this paper, we shall only work to first

order in spatial gradients and time derivatives of the fluid temperature and velocity. The

gravitational dual for a slowly changing fluid, including the effects of first order derivatives
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but neglecting higher derivatives, was first obtained in ref. [33], where Einstein’s equations

in the 4+1-dimensional gravitational theory were solved to first order in gradients in the

boundary coordinates and exactly in the radial direction. In section 2.1 we describe this

metric, for the case where the fluid motion is only in one direction, and then in section 2.2

we introduce a heavy quark, described in the gravitational theory by a string. The endpoint

lives at the boundary of the AdS space, where it follows the trajectory of the heavy quark

of interest. We shall assume that it is being dragged at some constant velocity ~β, which

may or may not be parallel to the direction of motion of the fluid.1 In section 2.2, with

the gravitational metric describing the fluid in hand, we formulate and solve the string

equations of motion, which is to say that we calculate the shape of the string attached to

the heavy quark, including effects of fluid gradients up to first order. In section 3.1 we use

the string profile to calculate the flux of momentum down the string, which determines

the drag force on the heavy quark. We first do the calculation in the fluid rest frame and

then boost the result to any frame in section 3.2. In section 3.3 we generalize to the case

in which the fluid has an arbitrary velocity and in which any of the gradients ∂αu
β can be

nonzero.

By analyzing the case in which the quark is moving with an ultrarelativistic velocity

relative to the fluid we find indications that our results may not be valid in the limit in

which the Lorentz factor γ of the quark velocity is large, even if the quark mass M → ∞
limit has been taken first and even if fluid gradients are small. We find that in the γ →∞
limit the “correction” to the drag force that is first order in fluid gradients is larger than

the leading (i.e. zeroth order) term by a factor that is O(γ1/2). This suggests that the

gradient expansion may not be valid in this regime. That is, even if higher order gradients

are small enough that they are not important in describing the fluid motion itself their

effects on the drag force may become important at large enough γ.

In section 4, we consider three consequences of our general result for the first order

effects of fluid gradients on the drag force exerted by the fluid on the heavy quark. First,

we point out that even if the quark has no velocity relative to the fluid the drag force on

it is nonzero as long as the time derivative of the fluid velocity is nonvanishing. Next,

we consider two explicit examples of a fluid whose motion is only in one direction. First,

we analyze the drag force on a heavy quark moving through a fluid that is undergoing

boost-invariant expansion in the z-direction, à la Bjorken. We show that even though

there are gradients in this fluid, a quark that is moving along with the fluid feels no drag

force. A quark whose velocity includes a component perpendicular to the direction of

motion of the fluid feels a drag force that is affected by the fluid gradients. And, last of

all, we return to the colliding sheets of energy density that motivated our investigation,

showing that our general expression for the effects of fluid gradients on the drag force to

first order does a good job of explaining the explicit results obtained in ref. [29], in many

cases quantitatively and qualitatively in all cases, even those where the results of ref. [29]

1We shall work throughout in the heavy quark mass, i.e. M →∞, limit and we shall assume throughout

that the quark is being pulled at constant velocity ~β by some external force. We leave to future work

the consideration of the case where there is no external force meaning that a quark with finite M would

decelerate under the influence of the force exerted on it by the fluid.
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appear counter-intuitive. In section 5 we look ahead to new directions whose investigation

is motivated by our results.

2 Hydrodynamic fluid and a heavy quark moving through it

2.1 Gravitational description of a moving fluid

We begin with a brief description of the dual gravitational description of the stress-energy

tensor for the conformal fluid of strongly coupled N = 4 SYM theory at nonzero temper-

ature, undulating in some generic way according to the laws of hydrodynamics. We shall

work only to first order in fluid gradients. In order to keep our expressions tractable on a

first pass through the calculation, we shall then specialize to the case of a fluid that fills

3-dimensional space but that moves only along a single axis, flowing in some generic way

along the z-direction. (Toward the end of section 3 we shall lift this restriction, returning

there to the case of generic hydrodynamic motion in 3+1 dimensions, still working only to

first order in gradients which is to say still assuming that the spatial and temporal variation

of the thermodynamic variables and the fluid velocity occur only on length and time scales

that are much longer than 1/T , with T the fluid temperature.)

The stress-energy tensor for the conformal fluid of N = 4 SYM theory flowing hy-

drodynamically in 3 + 1-dimensions with a temperature T and 4-velocity uµ that vary as

functions of space and time is given to first order in gradients by

8π2

N2
c

Tµν =
1

b4
(ηµν + 4uµuν)− 2

b3
σµν , (2.1)

where b ≡ 1/(πT ) is the inverse temperature, ηµν = diag(−1, 1, 1, 1) is the Minkowski

metric, and

σµν =
1

2
PµαP νβ(∂αuβ + ∂βuα)− 1

3
Pµν∂αu

α (2.2)

is the symmetric tensor encoding the first order contributions of fluid gradients, with the

projectors transverse to uµ defined by Pµν ≡ ηµν + uµuν . With our metric conventions,

uµ is normalized such that uµuµ = −1. The stress-energy tensor (2.1) describes a fluid

whose equation of state is P = ε/3, where P and ε are its pressure and energy density

respectively, and whose shear and bulk viscosities are given by η = s/(4π) and ζ = 0, where

s is the entropy density of the fluid. P = ε/3 and ζ = 0 follow just from conformal invari-

ance. 4πη/s = 1 for the fluid in any non-Abelian gauge theory with a dual gravitational

description, in the strong coupling and large-Nc limit [34–37]. Note that the stress-energy

tensor depends on symmetric combinations of the fluid gradients ∂αuβ and is independent

of the fluid vorticity

ω̃µ ≡ 1

2
εµναβuν∂αuβ , (2.3)

because the underlying microscopic theory does not violate time-reversal or parity symme-

try. The vorticity will nevertheless play a role in our considerations later. Hydrodynamics

is the statement that the fluid variables satisfy energy and momentum conservation,

∂µT
µν = 0 . (2.4)
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It is easy to see that, to first order in gradients, the hydrodynamic equations (2.4) deter-

mine the spatial and temporal variation of the temperature, or the inverse temperature b,

uniquely in terms of the spatially and temporally varying fluid velocities:

∂µb = b

(
uν∂νuµ −

1

3
uµ∂αu

α

)
. (2.5)

We shall use this relation below.

The dual gravitational description of the fluid with stress-energy tensor (2.1) was

obtained in ref. [33]. (These authors worked to second order in gradients. We shall quote

their results only to first order.) Upon introducing a bookkeeping parameter ε that we

shall use to count powers of gradients and that we shall in the end set to ε = 1, the

4 + 1-dimensional metric in the dual gravitational description of the fluid takes the form

ds2 =
(
G

(0)
MN + εG

(1)
MN

)
dXMdXN (2.6)

where XM ≡ (xµ, r). The first term in (2.6) is given by

G
(0)
MNdX

MdXN = −2uµdx
µdr − r2f(br)uµuνdx

µdxν + r2Pµνdx
µdxν (2.7)

where f(x) ≡ 1 − 1/x4. If we set uµ = (1, 0, 0, 0) everywhere, the metric (2.7) describes

a static AdS black brane with an event horizon at r = 1/b and with the AdS boundary

located at r = ∞. This is the gravitational dual of the static N = 4 SYM plasma in

equilibrium with a uniform and constant temperature T = 1/(πb). The coordinates XM

that we are using to describe the spacetime, chosen in such a way that the metric has no dr2

term and has no singularities at r = 1/b, are referred to as in-falling Eddington-Finkelstein

coordinates. With a generic choice of uµ, varying as a function of xµ, at any given xµ the

metric (2.7) is obtained by boosting the AdS black brane metric by the boost that takes

you from the instantaneous fluid rest frame, where uµ = (1, 0, 0, 0), to the frame in which

uµ takes on the value of interest. The metric (2.7) is therefore often said to describe a

boosted black brane, but it is important to remember that b and uµ are in fact varying.

It describes a black brane whose horizon is undulating, as is its entire metric. Note that

although r = 1/b is the horizon of the static black brane, once 1/b is undulating the global

event horizon of the metric (2.6) need no longer be located at r = 1/b. Gradient corrections

to the position of the event horizon have been computed in ref. [38]. The metric (2.7) is the

zeroth approximation to the gravitational dual of the moving fluid; it would be a complete

description if gradients made no contribution to the fluid stress-energy tensor, which is to

say if the fluid were an ideal fluid with zero shear viscosity.

The second term in the metric (2.6) is the dual gravitational description of the con-

tribution of first order gradients in uµ and b to the fluid stress-energy tensor. It is given

by [33]

G
(1)
MNdX

MdXN = 2r2b F (br)σµνdx
µdxν +

2

3
r uµuν∂λu

λdxµdxν − r uλ∂λ(uµuν)dxµdxν

(2.8)
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where

F (x) ≡ 1

4

[
log

(
(1 + x)2(1 + x2)

x4

)
− 2 arctanx+ π

]
. (2.9)

We are working in a gauge in which G
(1)
Mr = 0. The metric (2.8) is a good approximation

to the gravitational dual of the hydrodynamics of the flowing conformal fluid as long as

the length scale L over which b and uµ vary satisfies L� b.

In the next subsection, we will compute the profile of the string that hangs “down”

into the bulk metric GMN from the heavy quark. To determine the profile of the string

at the time t at which the heavy quark is located at a particular position ~x, it will prove

convenient to do the calculation in the frame in which the fluid is at rest at ~x at the instant

of time t, which is to say the frame in which uµ(~x, t) = (1, 0, 0, 0). In making this choice we

do not lose any generality since we can of course later boost the result of our calculation

to any frame that we like. In order to do the calculation in the instantaneous fluid rest-

frame it will be helpful to have the metric GMN in this frame, which we obtain by setting

uµ = (1, 0, 0, 0) in (2.7) and (2.8), keeping derivatives of uµ. At the same time, since we

will calculate the drag force on a heavy quark located at xµ = 0 we expand b(xν) and

uµ(xν) around xν = 0 in (2.7), keeping only terms that are first order in their gradients.

Combining (2.7) and (2.8), the metric then takes the form

GMNdX
MdXN = 2dtdr − r2f(br)dt2 + r2dxidxi

+ ε

(
−2xµ∂µuidrdx

i − 2xµ∂µuir
2(1− f(br))dtdxi − 4

xµ∂µb

b5r2
dt2

+2br2F (br)σijdx
idxj +

2

3
r∂iuidt

2 + 2r∂tuidtdx
i

)
,

(2.10)

which is the form that we shall need.

We shall begin by doing the calculation for a fluid that is only moving in one direction,

that we shall choose to be the z-direction. In this case, when we boost to the instantaneous

rest-frame in which uµ(~x, t) = (1, 0, 0, 0) the only non-vanishing gradients are

∂tb(t, z) 6= 0, ∂zb(t, z) 6= 0, ∂tu
3(t, z) 6= 0, ∂zu

3(t, z) 6= 0, (2.11)

with

∂µu
⊥ = ∂⊥u

ν = ∂⊥b = 0. (2.12)

This fluid configuration will not be sufficient for us to determine the drag force in the

most general configuration, in particular because in this configuration the fluid has zero

vorticity. However, we shall see by the end of section 3 that it suffices to get us most of the

way. Upon making this simplifying assumption, conservation of the stress-energy tensor

(2.5) takes on the particularly simple form

3∂tb(t, z) = b(t, z)∂zu
3(t, z),

∂zb(t, z) = b(t, z)∂tu
3(t, z).

(2.13)

We will return to the consideration of a general fluid configuration only in section 3.3.
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2.2 Gravitational description of a moving heavy quark

The dual gravitational string of a quark with mass M at the spacetime point xµ = 0 and

moving with velocity ~β is, in the M → ∞ limit, a string whose endpoint is at xµ = 0

moving with velocity ~β along the AdS boundary, namely at r →∞. The dynamics of the

string is described by the Nambu-Goto action

SNG = −
√
λ

2π

∫
dτdσ

√
−g(τ, σ) (2.14)

where the string tension is
√
λ

2π , where λ = g2Nc is the ’t Hooft coupling, and where

g(τ, σ) = det gab(τ, σ) with gab(τ, σ) the induced metric on the world-sheet, namely

gab(τ, σ) = GMN∂aX
M (τ, σ)∂bX

N (τ, σ). (2.15)

We shall parametrize the string world-sheet in such a way that

t(τ, σ) = τ,

r(τ, σ) = σ.
(2.16)

We shall assume that the string is being dragged along with a constant velocity ~β. Because

we are treating the case where the fluid motion is only in the z-direction, without loss

of generality we can choose ~β = (βx, 0, βz). We can think of the motion of the quark as

being due to a force exerted on it by some electric field, with respect to which the quark is

charged. Our task is to determine the force required to drag the quark, working to leading

order in the fluid gradients. The first step in the calculation, which we shall carry out

in this section, is the determination of the string profile, again to leading order in fluid

gradients.

We denote the string profile to first order in gradients by

~x(τ, σ) = ~x0(τ, σ) + ε ~x1(τ, σ) (2.17)

where ~x0(τ, σ) is the string profile in the case of an equilibrium fluid with a constant

temperature that is moving with some uniform velocity, which is to say in the absence of

any gradients in the fluid velocity or b. In the instantaneous fluid rest-frame in which we

are working this means that uµ = (1, 0, 0, 0) and all gradients vanish. This “trailing string”

solution was first obtained in refs. [9, 10] and is given by

~x0(τ, σ) = ~β
(
τ − b

(
tan−1(bσ)− π

2

))
, (2.18)

where we note that at σ →∞ the endpoint of the string follows the trajectory of the heavy

quark. We will need to differentiate ~x0, and to that end we need to keep track of how it

depends on uµ, namely

~x0(τ, σ) = ~βτ − b
(
u0~β − ~u

)(
tan−1(bσ)− π

2

)
. (2.19)
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The function x1(τ, σ) in (2.17) encodes the corrections to the zeroth order profile ~x0(τ, σ)

due to fluid gradients, up to first order in those gradients. It must vanish in the σ → ∞
limit. Our task in the remainder of this section is to calculate x1(τ, σ).

The equations of motion for the string are obtained by extremizing the Nambu-Goto

action with respect to the function ~x(τ, σ). To zeroth order we obtain ~x0(τ, σ). The

function ~x1(τ, σ) is determined from

∂τ

(
δL

δ(∂τ~x1)

)
+ ∂σ

(
δL

δ(∂σ~x1)

)
=

δL
δ~x1

. (2.20)

Since the terms that are linear in gradients in (2.10) arose either directly from (2.8) or

via expanding (2.7) to first order about xµ = 0, the terms in (2.20) that are first order in

gradients can depend on time at most linearly, meaning that x1(τ, σ) takes the form

~x1(τ, σ) = b τ ~h(σ) + b~g(σ) , (2.21)

with ~h(σ) and ~g(σ) being dimensionless functions that we must determine, that both have

only x- and z-components, and that both vanish at σ →∞.

The terms in the Euler-Lagrange equation (2.20) that are proportional to τ depend

only on ~h(σ), not on ~g(σ). It is in fact possible to guess the form of ~h(τ). However,

determining it by explicit solution is instructive, so we shall follow that route. Integrating

the Euler-Lagrange equations for ~h(σ) once yields

h′x(σ) =
chxγ

2(b2σ2 + 1)2 − 2βxDtb(γ
2 + 2b2σ2 + 1)

(γ2 − b2σ2)(b2σ2 + 1)2
,

h′z(σ) =
1

(b4σ4 − γ2)
×(

b
(
b4σ4 + 2b2σ2 − γ2 + 2

)
Dtu

3

(b2σ2 + 1)
+

2βz
(
2b2σ2 + γ2 + 1

)
Dtb

(b2σ2 + 1)2
− γ2chz

)
,

(2.22)

where by ′ we mean d/dσ and where

Dt ≡ ∂t + βi∂i = ∂t + βz∂z (2.23)

is the convective derivative along the path of the quark, with the second equality valid here

because the only nonzero gradients are in the z-direction, where γ = (1 − ~β2)−1/2 is the

Lorentz factor for the heavy quark, and where chx and chz are integration constants that

we must now fix. The expressions for ~h′(σ) have a first order pole at the radial position

σ =

√
γ

b
, (2.24)

which in the case of the static fluid is identified as the location of the worldsheet horizon

σws ≡
√
γ/b that arises in the calculation of ~x0(τ, σ) in a static fluid [9, 10].

We have found that the position on the worldsheet where the integration constants are

fixed, σ =
√
γ/b, is the same as it would be in a static homogeneous fluid with the same

instantaneous temperature. This means that our results disagree with those of refs. [39, 40]:

– 8 –
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those authors assumed that the influence of fluid gradients on the drag force could be

described via a dependence of this radial position on the fluid gradients. We now see by

explicit calculation that, at least to first order, there is no such dependence. And, indeed

our results for the drag force that we shall present in section 3 do differ from those in

refs. [39, 40].

As in the static fluid calculation of refs. [9, 10], in order to obtain a regular string

profile across the world-sheet horizon we must choose the integration constants in (2.22) in

such a way that the numerators on the right-hand sides of (2.22) vanish at the same σ at

which the denominators vanish, i.e. at the world-sheet horizon. This requirement uniquely

determines the integration constants to be

chx =
2βxDtb

γ2
, chz = 2

bDtu
3 + βzDtb

γ2
. (2.25)

The expressions (2.22) can then be integrated again, with the new integration constants

being fixed via the requirement that ~h(σ) vanishes at σ →∞. Doing so yields

hx(σ) =
βx
b

(
π

2
− tan−1(bσ)− bσ

b2σ2 + 1

)
Dtb,

hz(σ) =
βz
b

(
π

2
− tan−1(bσ)− bσ

b2σ2 + 1

)
Dtb−

(π
2
− tan−1(bσ)

)
Dtu

3 ,

(2.26)

which we can denote more simply by

b~h(σ) = Dt~x0(τ, σ)
∣∣∣
τ=0

, (2.27)

a result that we now see could have been guessed. So, we have shown that

~x(τ, σ) = ~x0(τ, σ) + ε τDt~x0(τ, σ)
∣∣∣
τ=0

+ε b~g(σ) (2.28)

to the order at which we are working, and our task now is to find ~g(σ).

Upon using the solution for ~h(σ), the Euler-Lagrange equations become differential

equations for ~g(σ). As in the determination of ~h(σ), we integrate the differential equations

for ~g(σ) once, obtaining expressions for ~g′(σ). Again as before, these expressions have poles

at σ = σws and the requirement that the string profile must be regular there can be used

to fix the integration constants in the expressions for ~g′(σ). Upon so doing, we find

g′x(σ) =
b2βxβz

((
−π/2 + tan−1(bσ)

) (
b2σ2 + 3

)
+ bσ

)
(b2σ2 + 1)2

∂tu
3 +

b2βx
3

∂zu
3×((

γ2
(
3β2z + 1

)
+ 1
) c1 (−b2σ2)− c1(−γ)

γ2 − b4σ4
− 1

(
√
γ + bσ)(γ + b2σ2)

−
π
2 − tan−1(bσ)

1 + b2σ2

)
,

g′z(σ) = b2

(
b2σ2

(
β2z − 1

)
+ 3β2z − 1

(b2σ2 + 1)2
tan−1(bσ)

−1

2

( √
γ − bσ

γ(b2σ2 + γ)
+

2β2z (π − bσ)

(b2σ2 + 1)2
− π(1− β2z )

b2σ2 + 1
+

1

γ(bσ +
√
γ)

))
∂tu

3

+
b2βz

(
5
(
bσ +

√
γ
) (
b2σ2 + γ

) (
π
2 − tan−1(bσ)

)
−
(
b2σ2 + 1

))
3 (b2σ2 + 1)

(
bσ +

√
γ
)

(b2σ2 + γ)
∂zu

3,

(2.29)
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where we have defined the function

c1(x) ≡ π/2− tan−1(
√
−x)− F (

√
−x)

=
1

4

(
2 tan−1

(
1√
−x

)
− log

(
(1− x)(1 +

√
−x)2

x2

))
.

(2.30)

(The way we have chosen the signs in this definition will prove convenient later.) We can

see explicitly in (2.29) that ~g(τ, σ) is regular at σ = σws. It is then possible to integrate

the expressions (2.29) analytically, fixing the integration constants by the requirement that

~g(τ, σ) = 0 at σ →∞. The resulting expressions for gx(σ) and gz(σ) are unwieldy and we

shall not quote them here. In section 4 we shall, however, plot the string profile for several

choices of fluid flow and ~β. In addition to being unwieldy, the expressions for gx(σ) and

gz(σ) are not of direct utility because, as we shall see in section 3, it is only ~g′(σ) that

enters into the calculation of the canonical momentum fluxes along the string and hence

of the drag force.

3 Computing the drag force on the heavy quark

In this section we calculate the drag force acting on the heavy quark moving through

the strongly coupled fluid. If the fluid were static, as in the original calculations [9, 10],

the drag force would be a function of the temperature and the velocity ~β of the heavy

quark. In the case that we are analyzing, where the fluid is moving but we work in the

instantaneous fluid rest-frame, the drag force again depends on b and ~β but, we shall show,

it also depends upon the spatial gradients and time derivatives of b and the fluid 4-velocity

uµ. After computing the drag force in the instantaneous fluid rest frame in section 3.1 for

the case in which the fluid motion is only along the z-direction, in section 3.2 we boost the

result to a frame in which the fluid at the location of the heavy quark has some nonzero

velocity in the z-direction, u3 6= 0. Then, in section 3.3 we generalize our result to the case

in which the motion of the fluid is not restricted to the z-direction and, in particular, may

feature nonzero vorticity.

When the heavy quark is dragged through the fluid, in the dual gravitational descrip-

tion momentum and energy flow “down” the string that “hangs down” from the heavy

quark at r =∞, trailing into the bulk metric. In order to conserve energy and momentum,

an external force must be exerted upon the heavy quark to keep it moving at constant

velocity and (in the dual picture) to replace the energy and momentum flowing down the

string. Consequently,

∂νT
νµ = −fµ(τ)δ3(~x− ~βτ) (3.1)

where fµ(τ) is the drag force acting on the heavy quark, i.e., on the endpoint of the string

at the r =∞ boundary. The drag force at the boundary is given by [9, 10]

fµ(τ) = lim
σ→∞

nM

∫
d3x
√
−gT Mµ (3.2)

where T MN is the stress-energy tensor of the string obtained by varying the Nambu-Goto

action (2.14) with respect to the GMN , and nM is the unit-vector normal to the boundary
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at r → ∞. Because we are using the simple parametrization (2.16) of the world-sheet,

the normal is simply nM = −δM5 and the relevant component of the string stress-energy

tensor is

T 5µ(τ, ~x, ~y, σ) = ηµν
1√
−g

πσν (τ, σ)δ3(~y − ~x) , (3.3)

where the canonical energy/momentum fluxes along the string are obtained by varying

SNG with respect to ∂σX
µ:

πσµ ≡
δSNG

δ(∂σXµ)
= −
√
λ

2π
GµN

1√
−g
[
gτσ∂τX

N − gττ∂σXN
]
. (3.4)

Combining (3.2) and (3.3), the force acting on the quark at the boundary is given by

fµ(τ) = −dp
µ

dt
(τ) = − lim

σ→∞
ηµνπσν (τ, σ), (3.5)

evaluated at the location of the heavy quark, ~x = ~βτ . Because we have used the world-

sheet parameterization (2.16) we have obtained the same expression obtained in refs. [9, 10];

the calculation of ref. [29] was done with a different world-sheet parametrization, one for

which (3.2) yields an expression that differs from (3.5). Note also that we are using a sign

convention opposite to that in ref. [29]. In the present paper, fµ is the force exerted on

the heavy quark by some external agency (eg. an electric field) in order to keep the quark

moving with constant velocity. In the classic case of a quark moving with βz > 0 through

a static plasma, fz > 0 and dpz/dt < 0. Note that dpµ/dt refers to the energy/momentum

lost by the quark (lost by the quark and gained by the plasma; in the dual description, lost

by the quark and flowing down the string).

As is the case for any force, fµ(τ) is not a Lorentz 4-vector. This is most easily seen

via the expression fµ = −dpµ/dt, in which pµ is a 4-vector but t is not boost-invariant. We

see immediately that we can define a so-called proper force Fµ(τ) that is a 4-vector via

Fµ(τ) ≡ fµ(τ)
dt

dτp
= −dp

µ

dτp
(3.6)

where τp is the (boost-invariant) proper time of the quark. Because the heavy quark is

moving with a constant velocity, dt = γdτp, with γ ≡ 1/

√
1− |~β|2 the Lorentz factor for

the heavy quark. Then the actual drag force fµ and the proper drag force Fµ are simply

related by

fµ(τ) =
1

γ
Fµ(τ). (3.7)

The distinction between actual and proper forces will play an important role in sections 3.2

and 3.3.

Just as we did in the calculation of the string profile, we expand the drag force in

powers of the fluid gradients, writing it as

fµ(τ) = fµ(0)(τ) + εfµ(1)(τ), (3.8)

where the first component fµ(0)(τ) is the drag force when fluid gradients are neglected, first

obtained in refs. [9, 10], and the second component fµ(1)(τ) is proportional to fluid gradients
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and is the term that we will calculate in the remainder of this section. In the instantaneous

fluid rest frame, in which uµ = (1, 0, 0, 0), the spatial components of the force are given

by [9, 10]

~f(0),RF(τ) =

√
λ

2π

γ

b2
~β (3.9)

which shows that this contribution to the force is proportional to γ~β, which is to say

proportional to ~p/M . It is because the force is proportional to the momentum that it is

referred to as a drag force. We can then boost this result to any other frame, in which

the fluid at the location of the heavy quark has an instantaneous three-velocity ~v and a

Lorentz factor γv ≡ 1/
√

1− |~v|2 and, hence,

uµ = γv(1, ~v) . (3.10)

It is also convenient to define the 4−velocity of the heavy quark

wµ = γ(1, ~β) . (3.11)

Upon boosting (3.9) to a frame in which ~v 6= 0, the zeroth contribution to the drag force

(i.e. the drag force obtained upon neglecting the effects of gradients) takes the form

fµ(0)(τ) = −
√
λ

2π

1

γb2
(swµ + uµ) , (3.12)

where the scalar factor s is defined by

s ≡ uνwν . (3.13)

If the only nonzero component of ~v is vz, we find s = −γγv(1 − vzβz). We shall calculate

fµ(1) in the instantaneous fluid rest frame in section 3.1, and in a more general frame in

section 3.2.

Before turning to our calculation, one further general remark will prove useful. Starting

from (3.5) and (3.4), it is possible to show by explicit calculation that wµf
µ(τ) = 0. Written

explicitly, this takes the form
dE

dt
= ~β

d~p

dt
, (3.14)

relating the rate of energy loss to the rate of momentum loss. Since ~β = ~p/E this implies

that E2 = ~p2 + M2 for some constant M , which is to say that if the quark starts out

on-shell it stays on-shell.

3.1 Drag force in the instantaneous fluid rest frame

We now calculate the canonical momentum flux along the string to first order in gradients,

πσµ,(1)(τ, σ), and use it to obtain the corresponding drag force fµ(1)(τ) exerted on the heavy

quark at the boundary. We calculate the drag force in the instantaneous fluid rest frame

using the string profile given in eqs. (2.26) and (2.29). We need to evaluate (3.4) to linear

order in ε after expanding the metric GµN , the induced metric gab, and derivatives of the
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string profile ∂aX
N in powers of ε. Just as for the decomposition of the string profile in

eq. (2.28), we find that

πσµ(τ, σ) = πσµ,(0)(τ) + ε
(
τ Dtπ

σ
µ,(0)(τ)

∣∣∣
τ=0

+ πσµ,(1)(σ)
)
. (3.15)

The leading term is independent of the radial coordinate σ and, in the instantaneous fluid

rest-frame, is given by

πσµ,(0)(τ) = −
√
λ

2π

1

γb2
(
γwµ + δ0µ

)
, (3.16)

from which we obtain the result for the drag force absent any effects of the fluid gradients

that we already quoted in eq. (3.12). The term proportional to time τ in (3.15) is given by

Dtπ
σ
µ,(0)(τ)

∣∣∣
τ=0

=

√
λ

2π

1

γb2
×
[

2

b
(γwµ − δµ0 )Dtb+ (wµwz + δµ3 )Dtu

z

]
, (3.17)

where Dt was defined in (2.23). We can neglect this term since it appears in (3.15) multi-

plied by τ and we are evaluating the drag force on the heavy quark at τ = 0.

The nontrivial part of the computation is the determination of πσ(1)(σ). After collecting

terms proportional to ε at τ = 0, we find that

πσx,(1)(σ) =

√
λ

2πb
γβx

[
βz

(
bσ

b2σ2 + 1
+ π − 2 tan−1(bσ)−√γ

)
∂tu

3+(
bσ

b2σ2+1
−√γ +

(
1 + 3β2z

) (
π
2 − tan−1(bσ)

)
− c1 (−γ)

(
γ2
(
1− 3β2z

)
+ 1
))

3
∂zu

3

 ,
πσz,(1)(σ) =

√
λ

2πb
γ

[(
− β2xbσ

b2σ2 + 1
+
(
2β2z + 1

) (π
2
− tan−1(bσ)

)
−√γ

(
1− β2x

))
∂tu

3+

βz

(
bσ

b2σ2+1
+ (1− 3β2x)

(
π
2 − tan−1(bσ)

)
−√γ − c1 (−γ)

(
γ2
(
1− 3β2z

)
− 5
))

3
∂zu

3

 ,
(3.18)

where c1(−γ) was defined in (2.30) and the conservation of the stress-energy tensor (2.13)

has been used to eliminate ∂tb and ∂zb in favor of ∂tu
3 and ∂zu

3. We now determine the

contributions of these canonical momentum fluxes to the drag force on the heavy quark at

the boundary, which is to say we take the σ →∞ limit. The terms bσ
b2σ2+1

and π
2−tan−1(bσ)

vanish in this limit, and the contribution to the drag force that is first order in gradients

is given by

fx(1) =

√
λ

2πb
γβx

(
√
γβz∂tu

3 +

√
γ + c1 (−γ)

(
γ2
(
1− 3β2z

)
+ 1
)

3
∂zu

3

)
,

fz(1) =

√
λ

2πb
γ

(
√
γ(1− β2x)∂tu

3 +

√
γ + c1 (−γ)

(
γ2
(
1− 3β2z

)
− 5
)

3
βz∂zu

3

)
,

(3.19)

with the t component of the force given by f t(1) = βxf
x
(1) + βzf

z
(1), ensuring that the quark

stays on shell. The complete expression for the drag force is obtained by combining the

contributions from (3.16) and
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Before turning to generalizations of this result, we end this subsection by remarking

that both the terms proportional to ∂tu
3 and the terms proportional to ∂zu

3 in (3.19) are

proportional to γ3/2 for large γ. This is apparent for the terms proportional to ∂tu
3. To

see this for the terms proportional to ∂zu
3, note that in the large-γ limit

c1(−γ) = − 1

3γ3/2
+O

(
1

γ2

)
. (3.20)

This means that for large enough γ, the contributions to the drag force that are first order

in fluid gradients, namely (3.19), dominate over the zeroth order expression (3.9) for the

drag force in the absence of fluid gradients. Comparing (3.9) and (3.19) we see that the

first order contributions to the drag force are smaller than the zeroth order contributions

when
√
γ <

1

b |∂tu3|
and

√
γ <

9

5

1

b |∂zu3|
(3.21)

or, using (2.13), when
√
γ <

1

|∂zb|
and

√
γ <

3

5

1

|∂tb|
, (3.22)

with γ and the gradients on the right-hand sides of all these expressions evaluated in the

frame of reference in which the fluid is instantaneously at rest at the location of the moving

heavy quark. This result suggests that at larger values of γ the expansion of the drag force

in powers of the fluid gradients may break down, although to be sure of this it would

be useful to extend our calculation to higher order in gradients. At a qualitative level,

what seems to be happening is that at large enough γ the heavy quark sees a gradient

in the fluid as sudden, and the gradient expansion of the drag force ceases to be valid.

Note that the criterion for the validity of the hydrodynamic description of the fluid itself is

|∂zb| � 1 and |∂tb| � 1, meaning that as long as the motion of the fluid is described well

by hydrodynamics the limitation (3.22) on the values of γ at which the gradient expansion

can be used to describe the drag force on the heavy quark sets in at some γ � 1. As

hydrodynamics itself breaks down, the range of validity of the gradient expansion in the

calculation of the heavy quark drag force becomes smaller and smaller.

Note that for quarks with finite M the description of the drag force in terms of a single

trailing string is only valid for [13, 41, 42]

√
γ � M

T
√
λ
, (3.23)

since the external force required to move a quark with mass M at a larger γ would result in

copious pair-production of quark-antiquark pairs. However, we are working in the M →∞
limit throughout this paper, meaning that the criterion (3.23) by itself would allow us to

consider arbitrarily large γ. Instead, even in the M →∞ limit the magnitude of the fluid

gradients imposes new, lower, limits (3.22) on how large γ can be, at least if one wishes to

use a gradient expansion to calculate the drag force. These considerations motivate future

extensions of our calculations, both to higher order in fluid gradients and to finite quark

mass M . An analysis in which one takes the γ → ∞ limit first, with finite mass quarks,

and only later takes M →∞ would necessarily look very different from the analysis in this

paper.
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3.2 Generalizing to a frame in which the fluid is moving

In section 3.1 we have calculated the drag force exerted on a heavy quark moving through

the fluid, in the instantaneous fluid rest frame and in a fluid that is moving only along

the z-direction, obtaining the result (3.19). We can now boost this result to a frame in

which the fluid at the location of the heavy quark has velocity ~v = (0, 0, vz), instead of

being at rest. We do this by first constructing the proper force Fµ from fµ, according

to (3.7), then applying a Lorentz transformation to the 4−vector Fµ, bringing it to the

desired frame, then working out the value of γ in the desired frame, and finally using (3.7)

again to obtain fµ in the new frame. The calculation, which is tedious but straightforward,

yields the following expression for the drag force exerted on a heavy quark moving with

velocity ~β through a fluid that is moving only along the z-direction and that has velocity

~v = (0, 0, vz) at the location of the heavy quark:

fx(1) = −
√
λ

2π

sγ2vβx
3b

[
∂tvz

[
c1(s)

(
s2 + 1

)
γvvz + 3c1(s)s(sγv + γ)∆βz +

√
−sγv(3∆βz + vz)

]
+∂zvz

[
c1(s)

(
s2 + 1

)
γv + 3c1(s)s(sγvvz + γβz)∆βz +

√
−sγv(3vz∆βz + 1)

]]
,

(3.24)

fz(1) = −
√
λ

2π

γ2v
3bγ

[
∂tvz

(
c1(s)γv

[
γv
(
s2
(
v2z − 3

)
+ v2z

)
+ sγ

((
s2 + 1

)
βzvz − 3

)]
+3c1(s)sγ∆βz [sβz(sγv + γ)− γvvz] + γv

√
−s
[
sγβz(3∆βz + vz) + γv

(
v2z − 3

)])
+∂zvz

(
3c1(s)sγβz∆βz

[(
s2 − 1

)
γvvz + sγβz

]
+ c1(s)γv

[
s3γβz − 2s2γvvz

+sγ(3vz − 5βz) + γvvz] +
√
−sγv [sγβz(3vz∆βz + 1)− 2γvvz]

)]
. (3.25)

Here, ∆βz denotes the (relativistic) difference between the velocities of the quark and the

fluid in the z−direction

∆βz =
βz − vz
1− βzvz

=
γγv
s

(vz − βz). (3.26)

Recall that our notation is such that ~v is the velocity of the fluid, here in the z-direction,

γv = 1/
√

1− v2z is the fluid velocity Lorentz factor, and uµ = γv(1, ~v). Furthermore, ~β is

the velocity of the heavy quark, γ = 1/

√
1− ~β2, wµ = γ(1, ~β), and the scalar factor s is

given by

s ≡ uµwµ = −γγv(1− vzβz) . (3.27)

(Note that in the instantaneous fluid rest frame s = −γ. We chose the signs in our

definition (2.30) of the function c1 such that henceforth what will appear in many equations

is c1(s).) In the next subsection, we shall find a much more compact way of writing the

result (3.25) after first generalizing our calculation of the drag force to the case in which

the fluid can move in any direction.

3.3 General fluid motion

Although in the explicit applications of our results that we shall present in section 4 we shall

only need the results we have already obtained in sections 3.1 and 3.2, before proceeding
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we now wish to generalize our analysis beyond the case in which the motion of the fluid

is only along a single axis to consider any possible three-dimensional motion of the fluid

satisfying the hydrodynamic equations of motion (2.4). It will turn out that generalizing

our analysis in this way will yield a more compact form of our result that is more user-

friendly than (3.24) and (3.25), in addition to being more general. We will continue to

work only to first order in fluid gradients, but we will no longer restrict to the case (2.12).

That is, we will allow all the velocity gradients and time derivatives ∂αuβ to be nonzero,

but will continue to assume that they are small enough in magnitude that second and

higher derivatives can be neglected. The time derivative and gradients of the temperature

are then determined from ∂αuβ via the hydrodynamic equations in the form (2.5). We

will start by writing down the most general general possible Lorentz covariant proper drag

force Fµ, related to fµ by (3.7), to first order in ∂αuβ, and will then use the calculations

that we have done already (plus a little bit more) to fix all the coefficients in the general

expression. In this way we will obtain the drag force fµ up to first order in ∂αuβ for a

general fluid configuration.

To zeroth order in gradients, we already have the general result for fµ(0) in (3.12), in

explicit form. We now write a general, but formal, expression for the contribution to the

drag force fµ(1) that is first order in the fluid gradients ∂αuβ by writing the most general

possible Lorentz covariant vector Fµ(1) and, from (3.7), dividing by γ:

fµ(1) =

√
λ

2π

1

bγ

[
a1η

µαwβ + uµ(a2η
αβ + a3w

αwβ + a4u
αwβ)

+wµ(a5η
αβ + a6w

αwβ + a7u
αwβ) + ηµβ(a8u

α + a9w
α)

+ ελναβ
(
a10η

µ
λuν + a11u

µwλuν + a12w
µwλuν + a13η

µ
λwν

)]
∂αuβ

(3.28)

where the coefficients a1 . . . a13 are (at present arbitrary) functions of the only possible

Lorentz scalar that is zeroth order in derivatives, namely the now familiar s ≡ uαwα. Our

task now is to determine a1 . . . a13. The terms multiplied by a1 . . . a9 in (3.28) are all the

possible terms that can be written without introducing ελναβ . This can be seen by noting

that the index µ can be placed on the gradient direction ∂µ (the a1 term), on the fluid

velocity 4−vector uµ (the a2 . . . a4 terms), on the heavy quark velocity 4−vector wµ (the

a5 . . . a7 terms), or on the fluid velocity 4−vector that is acted upon by the derivative (the

a8 and a9 terms). (We have used uβ∂αuβ = 0, a consequence of uβuβ = −1, to eliminate

other terms.) The terms multiplied by a10 . . . a13 are the only allowed terms that can be

constructed by contracting with the totally antisymmetric tensor ελναβ . For example a10
multiplies the fluid vorticity ω̃µ, defined in (2.3). Note, however, that there is a sense in

which effects of vorticity are hiding among the a1 . . . a9 terms because since

εµναβω̃νwαuβ =
1

2

[(
ηµβwα − ηµαwβ

)
−
(
uµwβ − ηµβs

)
uα
]
∂αuβ (3.29)

there is one linear combination of the a1, a4, a8 and a9 terms that vanishes if ω̃ = 0, a fact

that will be relevant.
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There is one completely general constraint on fµ that we have not yet imposed, namely

wµf
µ
(1) = 0. Using (3.28), this constraint takes the form[

ηαβ(s a2 − a5) + uαwβ(s a4 + a8 − a7)

+wαwβ(a1 + s a3 − a6 + a9) + ελναβwλuν (a10 + s a11 − a12)
]
∂αuβ = 0 (3.30)

and since the relation has to be satisfied for the arbitrary vectors uµ and wµ independently,

four out of the 13 coefficients a1 . . . a13 can be eliminated, e.g.,

a1 = a6 − a9 − s a3, s a2 = a5, s a4 = a7 − a8, a12 = a10 + s a11. (3.31)

In this way we can replace (3.28) by

fµ(1) = −
√
λ

2π

1

bγ

[
c1(s)w

β(uµwα − s ηµα) + c2(s)η
αβ(uµ + swµ) + c3(s)w

β(wµwα + ηµα)

+ c4(s)u
αwβ(uµ + swµ) + c5(s)u

α(uµwβ − s ηµβ) + c6(s)(w
αηµβ − ηµαwβ)

+ελναβ
(
c7(s)

(
ηµλ + wµwλ

)
uν + c8(s) (uµ + swµ)wλuν + c9(s)η

µ
λwν

)]
∂αuβ

(3.32)

with a new set of nine unknown coefficients c1 . . . c9 that are each still unknown functions

of s that are related to the a1 . . . a13 by

c1 = a3, s c2 = a5, c3 = a6,

s c4 = a7, s c5 = −a8, c6 = a9,

c7 = 2a10 + s a11, c8 = s a10 + (1 + s2)a11, c9 = a13, (3.33)

with a1, a2, a4 and a12 related to the c’s through (3.31). Note that the combination of

terms (3.29) that vanishes if the vorticity vanishes is now a linear combination of the terms

multiplied by c5 and c6.

We can now attempt to use the results of our previous calculation, namely (3.19), to

fix the coefficients c1 . . . c9 in (3.32). We start by writing (3.32) in the instantaneous fluid

rest frame, in which uµ = (1, 0, 0, 0) and s = −γ. We then restrict to the fluid motion that

we analyzed in sections 2.2 and 3.1, which is to say that we set the partial derivatives (2.12)

to zero, keeping only those in (2.11). We then compare the expressions for fx(1) and fz(1) so

obtained with the expressions in (3.19), term by term. By “term by term” we mean that

we compare those terms in fx(1) (or fz(1)) from (3.32) and (3.19) that are proportional to

∂zu
3 (or ∂tu

3) and that are proportional to β0z or βz or β2z or β3z . In this sense, we make

16 comparisons between (3.32) and (3.19), resulting in 16 expressions that specify various

of the c’s. What we find when we do this exercise is that we only obtain 5 independent

constraints on the c’s, and that these constraints can be used to fix the values of c1 . . . c4
and c5 + c6. However, we cannot determine c5 − c6 or c7 . . . c9. This is not unexpected,

since by setting the partial derivatives (2.12) to zero we have set the vorticity to zero and

have ensured that the terms multiplied by c7 . . . c9 in (3.32) all vanish as does (3.29).
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From the above exercise we conclude that in order to complete the determination of

all the c1 . . . c9 we need to analyze a fluid configuration with nonzero vorticity. We have

repeated the analysis of sections 2.2 and 3.1 for a fluid in which ∂tu
1 6= 0, ∂xu

1 6= 0, ∂xu
3 6= 0

and ∂zu
1 6= 0, in addition to the nonzero partial derivatives in (2.11). We also allowed ~β to

have nonzero components in all three directions. As a check, we first considered the case

where ∂xu
3 = ∂zu

1 6= 0, which is to say we did a much more complicated calculation than

in sections 2.2 and 3.1 but still with vanishing vorticity. We then repeated the exercise

described in the preceding paragraph and once again found only 5 independent constraints

on the c’s that served to fix c1 . . . c4 and c5 +c6. So, we obtained no new information at all.

We then redid all the calculations with ∂xu
3 6= ∂zu

1. In this case, we found 9 independent

constraints on the c’s that, finally, served to fix them all. We find:

c1(s) = π/2− tan−1(
√
−s)− F (

√
−s),

c2(s) =
1

3

(√
−s+ (1 + s2)c1(s)

)
,

c3(s) = c6(s) = −sc1(s),

c4(s) = −c5(s) =
1√
−s
− sc1(s),

c7(s) = c8(s) = c9(s) = 0,

(3.34)

where c1(s) is the same function as defined in (2.30) previously. As a nontrivial check of

the calculation, we note that we obtained the same results for c1 . . . c4 and c5 + c6 when

we fixed them via our calculations for configurations with or without vorticity. As another

nontrivial check, we have used (3.32) with (3.34) to reproduce our results (3.24) and (3.25)

from section 3.2.

Although we included c7 . . . c9 for completeness, we could have argued from the be-

ginning that they must vanish. If any of these coefficients were nonzero, there would be

a contribution to the drag force that was proportional to the vorticity, or to one of the

other expressions involving an explicit εµναβ . This would violate time-reversal and parity

symmetry. It might be interesting to repeat our analysis for a (chiral) fluid in which these

symmetries are in fact violated at a microscopic level. We expect that in such a fluid these

coefficients could be nonzero. Note, however, that c5 6= c6 in our calculation. This means

that the presence of nonzero vorticity in the N = 4 SYM fluid that we have analyzed

does affect the drag force that the fluid exerts on a heavy quark moving through it, via a

contribution to the drag force that is proportional to (3.29).

The most general result of this paper is the expression (3.32) which, with (3.34), gives

the contribution to the drag force on a heavy quark moving through the strongly coupled

fluid in arbitrary hydrodynamic motion that is first order in fluid gradients. By rearranging

terms we have found a more compact version of this expression:

fµ(1) =−
√
λ

2π

1

bγ
×[

c1(s)
(
uµwα∂αs− s∂µs− s(suα + wα)∂αU

µ
)

+ c2(s)U
µ∂αu

α −
√
−suα∂αUµ

]
,

(3.35)
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where Uµ ≡ uµ+swµ denotes the component of fluid 4−velocity uµ that is perpendicular to

the heavy quark 4−velocity wµ. This (deceptively) compact expression for the drag force

arising due to fluid gradients at first order is the main result of this paper. The explicit

results given in earlier subsections that we shall employ in section 4 are all special cases

of (3.35).

4 Applications

In this section we shall apply our result (3.19) and its generalization (3.35) to analyze the

effects of fluid gradients on the drag force on a heavy quark in three settings, ordered by

increasing complexity. We will first consider a quark at rest in the instantaneous fluid rest

frame, and show that even in this case the fluid can exert a “drag” force on the heavy

quark. We will then consider two applications of our result to models of interest in the

context of heavy ion collisions. In section 4.2 we consider boost-invariant expansion of the

fluid, à la Bjorken. In section 4.3 we return to the colliding sheets of energy whose analysis

in ref. [29] provided the initial motivation for the present study, as we have described in

section 1.

4.1 A quark at rest in a fluid that is, instantaneously, at rest

As a very simple example with which to illustrate how fluid gradients can have nontrivial

consequences for the “drag” force exerted by the fluid on a heavy quark, let us consider a

heavy quark that is at rest in a fluid that is instantaneously at rest at the location of the

heavy quark. However, the fluid is not static and is not spatially uniform. If we neglect

the effects of gradients, there would be no force on the quark: the quark is not moving, the

fluid is not moving, so there can be no drag force. For simplicity let us consider the case

where the fluid motion is only in the z-direction, as in section 3.1. In this case, from (3.19)

we see that as a consequence of the time variation of the fluid velocity there is a force

acting on the quark, pushing it in the z-direction, namely

fz(1) =

√
λ

2πb
∂tu

3 , (4.1)

even though ~β = 0. This shows that the force exerted by the fluid on the heavy quark

cannot always be thought of as a drag force, a point that was already made in ref. [29].

Note, however, that the sign of the force (4.1) is consistent with an interpretation in terms

of drag with a time delay. If ∂tu
3 > 0, then a short time ago u3 was negative. That

means that if we think in terms of drag we would expect that a short time ago the fluid

was pushing the quark toward negative z, which in turn means that a short time ago the

external agency holding the quark at constant ~β = 0 would have been exerting a force

fz > 0. So, we can interpret (4.1) in terms of a time delay in the response of the drag

force to changing fluid conditions. Comparing (4.1) to (3.12), we can estimate that the

time delay is of order b for a quark at rest. The results of ref. [29] indicate that a time

delay like this is generic. Such a time delay has also been seen in ref. [51].
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4.2 Bjorken flow

In 1982 Bjorken discovered a simple solution to the zeroth order (ideal) hydrodynamic

equations of motion [43] that has since then often been used as a toy model for the lon-

gitudinal expansion of the fluid produced in heavy ion collisions. In Bjorken’s solution,

the fluid expands in the z-direction only and its expansion is boost invariant. The fluid

4-velocity is given by

uµ =

(
t

τp
, 0, 0,

z

τp

)
, (4.2)

where τp ≡
√
t2 − z2 is the proper time, which is to say

~v =
(

0, 0,
z

t

)
. (4.3)

The solution is only defined in the forward light-cone, z > |t|. The temperature of the fluid,

and hence its energy density and pressure, depend only on τp. We shall refer to this solution

to hydrodynamics as Bjorken flow. If the fluid were ideal, with no viscosity and hence no

contribution to the fluid stress-energy tensor from gradients, then b(τp) ∝ τ
1/3
p [43]. This

dependence is modified when nonzero viscosity and hence effects of gradients are taken into

account, as for example in refs. [44, 45]. The gravitational dual of Bjorken flow was first

constructed in ref. [46]. For us, though, the calculation of the drag force on a heavy quark

in a fluid expanding in a Bjorken flow is simply a special case of the calculation we have

presented in section 3.2. We just need to apply the result (3.25) or, in its more general

form, the result (3.35), to the velocity profile (4.2). The temperature could be obtained

from (4.2) but we will not need to do so, as we will leave our result written in terms of

b(t, z) = b(τp).

Let us consider the case where the quark starts at (t, z) = 0 and is dragged with

constant velocity ~β = (βx, βy, βz), meaning in particular that the quark follows a trajectory

whose z-component is z = βzt. Along the trajectory of the quark, the fluid velocity is given

by vz = z/t, which is to say vz = βz, meaning that in the instantaneous fluid rest frame at

all times the quark is not moving in the z-direction. The quark is moving with the fluid in

the z-direction. In the laboratory frame, the fluid velocity gradients are given by

∂tu
3 = −∂zu0 = −γ3v

βz
t

= −γ2v
βz
τp
,

∂zu
3 = −∂tu

0

β2z
=
γ3v
t

=
γ2v
τp
,

(4.4)

where γv ≡ (1− β2z )−1/2 is the relativistic gamma factor associated with the fluid velocity

~v. We note that since the quark is in the local fluid rest frame at all times, the convective

derivative of u3 along the path of the quark vanishes: Dtu
3 = ∂tu

3 + βz∂zu
3 = 0.

By substituting (4.2) and (4.4) into it with the zeroth order drag force (3.12) we find

that the drag force needed to pull the heavy quark at velocity ~β through the Bjorken flow
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is given by

~fBF(τp) = ~f(0),BF(τp) + ~f(1),BF(t) =

√
λ

2π

γ

γv b(τp)2

(
1 + c2

(
− γ

γv

)
b(τp)

τp

) βx
βy

βzγ
2
vβ

2
⊥

 ,

(4.5)

where β2⊥ ≡ β2x + β2y and where c2(−γ/γv) is defined in (3.34), noting that for Bjorken

Flow s = −γ/γv. It is easiest to obtain (4.5) from (3.35), upon noting that since u3 does

not depend on x or y we have uα∂αu
3 = γvDtu

3 = 0 and wα∂αu
3 = γDtu

3 = 0. It can

also be shown that ∂zs = 0, meaning that the only nonvanishing term in (3.35) is the term

proportional to c2(s). At large τp, b(τp) ∼ τ
1/3
p and the first order term in (4.5) is smaller

than the zeroth order term by a factor ∼ τ
−2/3
p , which is the standard power-counting for

the derivative expansion in Bjorken flow.

When the quark is moving solely along the z−direction (β⊥ = 0), the drag force (4.5)

vanishes identically at both zeroth and first order in gradients. This is because in this case

the quark is at rest in the instantaneous fluid rest frame at all times and, in the frame in

which both the quark and the fluid around it are at rest, there is no time derivative of

the fluid velocity meaning that according to (4.1) there is no drag force. So, in this case

the existence of fluid gradients does not modify the intuitive, zeroth order, result. The

result that we have obtained for the case in which β⊥ 6= 0 and βz 6= 0 looks less intuitive.

However, note that it can be shown that if we boost the force (4.5) to the fluid rest frame,

it has fz = 0 which means that in the fluid rest frame ~f ‖ ~β. If we choose βx 6= 0 and

βy = 0, then in the fluid rest frame we find

fxBF,RF =

√
λ

2π

1

b(τp)2
γβx

(
1 +

b(τp)

τp
c2 (−γ)

)
. (4.6)

So, when β⊥ 6= 0 we find that the fluid gradients do correct the result for the drag force at

first order.

The drag force on a heavy quark moving through a fluid expanding in a Bjorken flow

has been discussed previously in the literature. The leading term, namely ~f(0) to zeroth

order in gradients, was obtained in refs. [47, 48]. The authors of ref. [39] attempted the

calculation of the correction to the force to first order in fluid gradients for a heavy quark

moving through the Bjorken flow along a path with z = 0 but, as we noted previously,

this calculation was based upon the assumption that the effects of fluid gradients could be

attributed to their effects on the position of the world-sheet horizon in the dual gravitational

description, and we have now seen that the position of the world-sheet horizon is unaffected

by fluid gradients, at least to first order.

There are not many solutions to relativistic viscous hydrodynamics that are known

analytically. Recently, Gubser has discovered two new such solutions, each in a different

sense a deformation of Bjorken flow. In the solution of ref. [49], the fluid expands in both

the transverse and longitudinal directions, with the longitudinal expansion boost invariant

as in Bjorken flow. The other solution, in ref. [50], describes a longitudinal expansion that
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is not boost invariant but that can be obtained via suitable deformation of Bjorken flow.

It would be interesting to apply our results to obtain expressions for the drag force on a

heavy quark moving through a fluid expanding according to these hydrodynamic solutions.

We leave this to future work.

4.3 Colliding sheets of energy

We now return to the example that prompted our study [29], namely the drag force needed

to pull a heavy quark through the matter produced in the collision of two planar sheets

of energy in strongly coupled SYM theory, introduced in ref. [30] and analyzed there and

in refs. [31, 32]. The incident sheets of energy move at the speed of light in the z and

−z directions and collide at z = 0 at time t = 0. They each have a Gaussian profile in

the z direction and are translationally invariant in the two directions ~x⊥ = x, y orthogonal

to z. Because this setup is translationally invariant in ~x⊥ throughout the collision, the

motion of the fluid produced in the collision is entirely along the z direction at all times.

The energy density per unit transverse area of the incident sheets is µ3N2
c /(2π

2) with µ an

arbitrary scale with respect to which all dimensionful quantities in the conformal theory

can be measured. As in ref. [29], we shall choose the width w of the Gaussian energy density

profile of each sheet to be w = 1/(2µ). Although there is no single right way to compare

the widths of these translationally invariant sheets of energy with Gaussian profiles to the

widths of a nucleus that has been Lorentz-contracted by a factor of 107 (RHIC) or 1470

(LHC), reasonable estimates suggest that our choice of wµ corresponds to sheets with a

thickness somewhere between the thickness of the incident nuclei at RHIC and LHC [30].

The matter produced in these collisions is initially far from equilibrium but it then rapidly

hydrodynamizes: after a time thydro its subsequent expansion and cooling is well described

by viscous hydrodynamics, with thydro/b(thydro) at most 2-3 [30].

In ref. [29] we and a coauthor inserted a heavy quark moving with velocity ~β between

the colliding sheets before the collision, choosing a trajectory such that the heavy quark is

at z = 0 at t = 0, meaning that it finds itself in the center of the collision, and calculated the

drag force needed to keep the velocity of the heavy quark constant throughout the collision.

Our focus throughout much of ref. [29] was the drag force at the earliest moments of the

collision when the matter was far from equilibrium. We also calculated the drag force

during the later epoch when the fluid has hydrodynamized and is expanding according to

first order viscous hydrodynamics. We compared our results throughout to expectations

for what the drag force would have been in a spatially homogeneous equilibrium fluid

with the same instantaneous energy density, transverse pressure or longitudinal pressure.

The first of these corresponds to the zeroth order drag force (3.12). To see this, note

that what we did in ref. [29] was to first boost to the instantaneous fluid rest frame,

then compute the energy density εRF in that frame, and from that define a temperature

Te as if the fluid were spatially homogeneous and in equilibrium, which is to say via

εRF = 3π2N2
c T

4
e /8, and then use this Te in the expression for the drag force on a heavy

quark moving through an equilibrium fluid with no gradients. From (2.1) and (2.2) we see

that in the instantaneous fluid rest frame σ00 vanishes, meaning that in this frame the fluid

gradients do not contribute to T 00 = εRF . Thus, the Te we defined in ref. [29] is related
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Figure 1. Actual drag force (red curves) from ref. [29] on a heavy quark being dragged with βz = 0

and βx = 0.5 (left panel) or βx = 0.95 (right panel) through the debris produced in the collision

of two sheets of energy. We compare the actual drag force to the zeroth order calculation (blue

dot-dashed curve) which neglects the effects of fluid gradients and our calculation in which the

effects of fluid gradients are included up to first order (black dashed curves). At late times, when

the fluid has hydrodynamized, the gradient corrections included in the black dashed curves yield a

much better description of the full result.

to b precisely by b = 1/(πTe). So, the dashed curves in ref. [29] that were drawn using

Te correspond precisely to expectations for the drag force upon working to zeroth order

in fluid gradients, namely (3.12). The results of ref. [29] can be summarized as follows.

First, (3.12) has roughly the right magnitude even just after the collision when the matter

is far-from-equilibrium, although the time dependence of the actual force lags behind that

obtained via (3.12) by a time delay that grows linearly with increasing γ. And, second, it

was noted in ref. [29] that even after the fluid has hydrodynamized the actual drag force

calculated there does not agree with (3.12), an effect that was attributed to the effects of

gradients in the fluid. Here we shall confirm this attribution.

We shall compare the drag force calculated in the full calculation of ref. [29] to the

zeroth order expectation (3.12), which neglects the effects of fluid gradients, and to that

plus the contribution due to fluid gradients to first order which we now have at our disposal

in the form (3.25) or the form (3.35). We shall do the comparison for two cases in which

βz = 0 and βx 6= 0, meaning that the quark is moving perpendicular to the fluid motion,

two cases in which βx = 0 and βz 6= 0, with the quark moving in the same direction as the

fluid, and one case in which both βx and βz are nonzero.

In figure 1 we plot the drag force on a quark moving in the x-direction, perpendicular

to the “beam” direction and therefore perpendicular to the direction of motion of the fluid,

with βx = 0.5 and βx = 0.95. The red curves show the drag force obtained from the full

gravitational calculation of ref. [29], without any expansion in gradients. The blue dot-

dashed curves, which were also obtained in ref. [29], so what the drag force would be at

each instant in time in a static homogeneous fluid in thermal equilibrium with the same

energy density as the actual fluid has at that instant in time at the location of the quark.

An equivalent description of these curves, which are obtained from our expression (3.12)
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Figure 2. Comparison of the profile of the string trailing “down” into the bulk from the heavy

quark moving with ~β = (0.5, 0, 0). The vertical axes show the radial, or holographic, coordinate

u = 1/r, meaning that the AdS boundary at r = ∞ is at u = 0, at the top of the figures. The

horizontal axes show x; the quark and hence its string is moving to the right. The curves show the

shape of the string at a fixed Eddington-Finkelstein time t. The left panel shows the string at three

times, tµ = −3, 3 and 6. The right panel zooms in at tµ = 6. In all cases, the solid curve shows the

string profile obtained from the full gravitational calculation in ref. [29], the blue dot-dashed curve

shows the string profile (2.18) as it would be at that instant in time t if gradients in the fluid were

neglected, and the black dashed curve shows the string profile (2.28) including the effects of fluid

gradients to first order.

that is zeroth order in fluid gradients, is that they show what the drag force would be

if we neglect all effects of the spatial gradients and variation in time of the fluid at the

location of the quark. The black dashed curves show how the drag force changes when

we start with the blue dot-dashed curves and add the results of our calculation (3.35) of

the first-order effects of fluid gradients on the drag force. Using the operational definition

of the hydrodynamization time thydro introduced in ref. [30], namely taking it to be the

time after which the transverse and longitudinal pressure agree with those obtained via

the hydrodynamic constitutive relations from the energy density and the fluid velocity, in

figure 1 hydrodynamization time thydroµ = 2.8. We see that after thydro the black dashed

curves are much closer to the full results shown by the red curves than the blue dot-dashed

curves are, meaning that adding effects of fluid gradients to first order has resolved most of

the discrepancy between the full results and the zeroth order blue dot-dashed curves. This

confirms that this discrepancy was due to the effects of the fluid gradients. It is reasonable

to guess that if one were to push our calculation to second order in gradients, the agreement

would get even better. We leave this to future work.

We have also checked that the criteria (3.22) are well satisfied, by more than a factor

of two in fact, at all times after thydro even for βx = 0.95, namely for γ = 3.2. Throughout,

we will only show results for cases in which these criteria are satisfied by a large margin.

To get further intuition, in figure 2 we investigate the shapes of the string hanging

“down” into the gravitational spacetime from the heavy quark in the calculation of the
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Figure 3. As in figure 1, except that here the quark has zero velocity in the direction perpendicular

to the motion of the fluid and is moving only in the z-direction. In the left panel, βz = 0.2 and in

the right panel βz = 0.4. We have shown the left panel in the laboratory frame while in the right

panel at each time t we have boosted to the frame in which the fluid is at rest at the location of

the quark. As in figure 1, we show the exact results for the drag force obtained in ref. [29] as well

as the zeroth-order approximation (i.e. the drag force in a static homogeneous fluid with the same

instantaneous energy density) and the result that we have obtained upon including the effects of

fluid gradients to first order.

drag force shown in the left panel of figure 1. Each string profile is plotted at fixed

Eddington-Finkelstein time tµ as a function of the inverse radial coordinate u = 1/r.

The solid curves are the exact string profiles at three times, obtained numerically in the

gravitational calculation of ref. [29].2 The blue dot-dashed curves are zeroth order in fluid

gradients: they show the shape (2.18) that the string would have in a static, spatially

homogeneous, equilibrium fluid with the same energy density as that at the location of the

heavy quark. The black dashed curves are obtained by integrating ∂σ~g in the fluid rest

frame, i.e., eqs. (2.29). In a case like those we shall turn to below, where the lab frame is

not the same as the fluid rest frame, we would then boost the string profile from the fluid

rest frame back to the lab frame. We see from figure 2 that including the effects of fluid

gradients on the string profile to first order yields a much better description of the actual

string profile, just as for the drag force itself.

In figure 3 we investigate two cases when the quark is moving with nonzero rapidity,

βz 6= 0. Here we choose to set βx = 0; below we will consider a case when both βx
and βz are nonvanishing. In figure 3 we have chosen βz = 0.2 and βz = 0.4. In both

cases, and as in figure 1, including the first order effects of fluid gradients on the drag

2The drag force is independent of one’s choice of coordinates for the 4+1-dimensional gravitational

metric, but when we plot the shape of the string u(x) at one value of the time coordinate t this shape

does of course depend on one’s definition of the coordinates u and t. The calculation in ref. [29] was done

using a metric in which Gtr = 1 and GMr vanishes for M 6= t. In our calculation of (2.29) we have instead

used the metric given in eqs. (2.6), (2.7), (2.8) in which Grr = 0 and Gµr = −uµ. In order to make the

comparison in figure 2, we have transformed the exact results for the string profile obtained in ref. [29] from

the metric used there to the metric we are using here. This coordinate transformation can be determined

order-by-order in the fluid gradients, as described in ref. [32].
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force improves the agreement with the exact calculation of the drag force from ref. [29].

In figure 3 the agreement between the black dashed curves and the solid red curves is

worse than in figure 1, in fractional terms, but the more striking difference between the

two figures is that the overall magnitude of the forces plotted in figure 3 is more than an

order of magnitude smaller than the forces in figure 1. This can be understood by recalling

our results for Bjorken flow, from section 4.2. If the longitudinal expansion of the fluid

produced in the collision that we are analyzing here were boost invariant, our results from

section 4.2 tell us that when we choose βz 6= 0 and βx = 0 we would find no drag force

at all, at zeroth and first order in fluid gradients. The fact that we see a nonzero drag

force in figure 3 reflects the fact that the expansion of the fluid produced in the collision is

not boost invariant. Since at late times the expansion is close to boost invariant [32], all

the forces in figure 3 are small in magnitude. Upon realizing this, we also note that the

absolute difference between the black dashed and solid curves in figure 3 is in fact quite

similar to their absolute difference in figure 1, meaning that the larger fractional deviation

in figure 3 is simply an artifact of the smallness of the magnitude of the drag force which

is a consequence of the expansion being almost boost invariant.

In figure 4 we investigate the shapes of the string attached to the heavy quark moving

with βz = 0.2 whose drag force is shown in the left panel of figure 3 at the three Eddington-

Finkelstein times tµ = −3, 2.5, and 6. As in figure 2, we see that including the effects of

fluid gradients on the string profile to first order improves the description of the exact

string profile obtained in ref. [29]. Just as when we compared figures 1 and 3, when we

compare the zoomed-in panels of figure 4 to the zoomed-in panel of figure 2 we see that

the absolute differences between the analytic results to first order in fluid gradients (black

dashed curves) and the full results obtained numerically (solid curves) are comparable,

although the fractional deviations look greater in figure 4.

We have chosen tµ = 2.5 as one of the times at which we illustrate the string profile

in figure 4 because it is close to the time tµ = 2.63 at which the velocity of the fluid at

the location of the quark, vz, goes from below 0.2 to above 0.2, meaning that the relative

velocity of the quark and the fluid changes sign at that time. At tµ = 2.63, the zeroth-

order approximation to the drag force therefore changes sign, as seen in the blue dot-dashed

curve in the left panel of figure 3. We see that this change is also reflected in the string

profile: at tµ = 2.63, the string would be hanging straight down from the quark at the

boundary; earlier, it angles to the right; later, it angles to the left. We see that at tµ = 2.5

the orientation of the string has already changed deeper within the bulk and the change in

orientation is about to reach the boundary. Note that the orientation of the string at the

boundary suffices to determine the sign of the drag force only to zeroth order. Once the

effects of fluid gradients are included, the drag force at time t depends on how the string is

moving as well as on the orientation of the string [29]. We see in the left panel of figure 3

that the drag force including effects of fluid gradients to first order (black dashed curve)

and the full drag force (red curve) change sign only considerably later than tµ = 2.63.

Starting at tµ = 2.63, when the relative direction of the fluid flow and the quark changes,

we have a period of time when the drag force exerted by the fluid on the quark points in

the same direction as the velocity of the quark, an effect that was highlighted in ref. [29].
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Figure 4. Comparison of the profile of the string trailing “down” into the bulk from the heavy

quark moving with ~β = (0, 0, 0.2). The axes are as in figure 2. The solid curves show the shape

of the string obtained from the full gravitational calculation of ref. [29] at three fixed Eddington-

Finkelstein times t, namely tµ = −3, 2.5 and 6. As in figure 2, the blue dot-dashed curves show

the string profile as if there were no gradients in the fluid and the black dashed curves show the

results of this paper, with the effects of fluid gradients taken into account to first order. The lower

panels zoom in on the string profiles at tµ = 2.5 and 6. We have chosen tµ = 2.5 as one of the

times at which we illustrate the string profile because it is just before the time tµ = 2.63 at which

the blue dot-dashed curve in the left panel of figure 3 crosses zero, which is to say it is just before

the time at which the relative velocity of the quark and the fluid changes sign, meaning that the

zeroth-order estimate of the drag force changes sign.

We now see from the black dashed curve that this effect can be accounted for qualitatively

by the effects of fluid gradients to first order.

The tµ = 2.5 panel of figure 4 is also interesting insofar as it shows an example where

although the difference between the zeroth order string profile and the full string profile is

small in magnitude these two profiles have qualitatively different shapes, and we see the

first order effects of gradients doing the job of turning the blue dot-dashed curve into a

black dashed curve that looks much more like the red solid curve.
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Figure 5. As in figure 1, but the case when quark is moving with velocity ~β = (0.7, 0, 0.4), meaning

βx = 0.7 perpendicular to the collision direction and βz = 0.4 along the collision axis. The upper

two panels show the x- and z-components (top-left and top-right panels, respectively) of the drag

force as seen in the “laboratory frame”, which is to say the center-of-mass frame for the collision. In

the lower two panels, we boost to the frame in which the fluid at the location of the heavy quark is

at rest. And, instead of showing the x- and z-components of the drag force in this frame, we show

the components of the force in the directions parallel to (bottom-left panel) and perpendicular to

(bottom-right panel) the direction of motion of the quark in the local fluid rest frame. In all the

panels, the drag force with fluid gradient corrections included to first order (black dashed curve)

gives a better description of the full drag force (red curve) than does the zeroth-order drag force

with fluid gradients neglected.

Finally, in figure 5 we show the results of our calculation of the effects of fluid gradients

to first order on the drag force needed to move a heavy quark along a trajectory with both

βx 6= 0 and βz 6= 0. The message from the upper two panels is much the same as what

we have already learned from figure 1. In the lower two panels, at each time we boost to

a frame in which the fluid at the location of the heavy quark is instantaneously at rest.

In this frame, the heavy quark is of course still moving, with a substantial velocity in the

x-direction and some velocity in the z-direction. We have chosen to plot the components of

the drag force in this frame in the directions parallel to and perpendicular to the direction
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of motion of the quark in this frame. The bottom-left plot is, again, similar to other plots

that we have seen. The bottom-right plot is, however, of particular interest because the

blue dot-dashed curve in this plot vanishes: in the local fluid rest frame to zeroth order

in gradients the drag force must be parallel to the direction of motion of the heavy quark;

without the effects of fluid gradients, there can be no perpendicular component. We have

also seen in section 4.2 that if the expansion were boost invariant then in the local fluid

rest frame the drag force on the heavy quark would still act parallel to the direction of

motion of the heavy quark even when the effects of fluid gradients are taken into account

to first order. Therefore, the fact that the black dashed curve in the bottom-right panel of

figure 5 is nonzero is a direct manifestation of the effects of fluid gradients and of the fact

that the expanding fluid produced in the collision of the two sheets of energy is not boost

invariant. The magnitude of the force described by this curve is small, since the expansion

is close to boost invariant, but it is nonzero. We also see that the first order effects of fluid

gradients push the black dashed curve toward the full result, shown as usual by the red

curve.

We conclude from the investigations that we have reported in this section that the

discrepancies observed in ref. [29] between the actual drag force on a heavy quark being

pulled through the matter produced in the collision of sheets of energy and the drag force

that would have been obtained in an static, homogeneous, plasma with the same energy

density is indeed due to the effects of spatial gradients in, and time derivatives of, the fluid

on the drag force. Evaluating these effects to first order in the fluid gradients explain all

the qualitative aspects of the discrepancies found in ref. [29] and do a reasonable job even

at the quantitative level.

5 Future directions

In (3.35) we have derived a general expression for the drag force needed to pull a heavy

quark through a dynamic fluid, flowing in some arbitrary fashion described by hydrodynam-

ics, to first order in the gradients and time derivatives of the fluid velocity. We have applied

this result to heavy quarks moving through a fluid that is expanding according to Bjorken

flow and to heavy quarks moving through the expanding and cooling liquid produced in

a collision of sheets of energy in strongly coupled N = 4 SYM theory. Future directions

include applying (3.35) to heavy quarks moving through strongly coupled plasma whose

dynamics is described by other hydrodynamic solutions, for example including transverse

expansion. It would also be interesting, and challenging, to extend (3.35) to second order

in fluid gradients. Doing so could clarify how the drag force behaves in the large γ limit in

the case where, as we have done, one assumes that the quark mass M →∞ limit has been

taken first. We have seen that in this regime when (3.22) is not satisfied the first order con-

tributions of the fluid gradients dominate over the zeroth order drag force, which motivates

an evaluation of the magnitude of the second order contributions. Considering the effects

of fluid gradients on a finite-mass quark at a large enough γ that (3.23) is not satisfied

would, however, require a different calculation entirely. The right starting point for this

would be an analysis of the rate of energy loss and transverse momentum broadening of

– 29 –



J
H
E
P
0
2
(
2
0
1
4
)
0
6
8

a light quark in a dynamic strongly coupled fluid, including the effects of fluid gradients.

Other interesting directions would include investigating how gradients in the fluid affect

the emission of photons and dileptons or the screening of the attraction between a heavy

quark and antiquark, and hence how they affect the binding or dissociation of quarkonia.

We leave the holographic calculation of the effects of fluid gradients on these and other

probes of the strongly coupled fluid to future work.

Acknowledgments

We are particularly grateful to Paul Chesler, with whom we collaborated in doing the

work reported in ref. [29] that prompted the present study. We had many very helpful

discussions with him as we began this work and throughout. We would also like to thank

Hong Liu and Navid Abbasi for helpful discussions. This work was supported by the U.S.

Department of Energy under cooperative research agreement DE-FG0205ER41360.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] M. Gyulassy and X.-N. Wang, Multiple collisions and induced gluon Bremsstrahlung in QCD,

Nucl. Phys. B 420 (1994) 583 [nucl-th/9306003] [INSPIRE].

[2] R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss of

high-energy quarks and gluons in a finite volume quark-gluon plasma, Nucl. Phys. B 483

(1997) 291 [hep-ph/9607355] [INSPIRE].

[3] R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and

pT broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265

[hep-ph/9608322] [INSPIRE].

[4] B.G. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and

quark-gluon plasma, JETP Lett. 65 (1997) 615 [hep-ph/9704255] [INSPIRE].

[5] Y.L. Dokshitzer and D. Kharzeev, Heavy quark colorimetry of QCD matter, Phys. Lett. B

519 (2001) 199 [hep-ph/0106202] [INSPIRE].

[6] J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200]

[INSPIRE].

[7] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[8] A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236]

[INSPIRE].

[9] C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark

moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013

[hep-th/0605158] [INSPIRE].

– 30 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0550-3213(94)90079-5
http://arxiv.org/abs/nucl-th/9306003
http://inspirehep.net/search?p=find+EPRINT+nucl-th/9306003
http://dx.doi.org/10.1016/S0550-3213(96)00553-6
http://dx.doi.org/10.1016/S0550-3213(96)00553-6
http://arxiv.org/abs/hep-ph/9607355
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9607355
http://dx.doi.org/10.1016/S0550-3213(96)00581-0
http://arxiv.org/abs/hep-ph/9608322
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9608322
http://dx.doi.org/10.1134/1.567389
http://arxiv.org/abs/hep-ph/9704255
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9704255
http://dx.doi.org/10.1016/S0370-2693(01)01130-3
http://dx.doi.org/10.1016/S0370-2693(01)01130-3
http://arxiv.org/abs/hep-ph/0106202
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0106202
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://arxiv.org/abs/hep-th/9802150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
http://dx.doi.org/10.1088/1126-6708/2002/06/043
http://arxiv.org/abs/hep-th/0205236
http://inspirehep.net/search?p=find+EPRINT+hep-th/0205236
http://dx.doi.org/10.1088/1126-6708/2006/07/013
http://arxiv.org/abs/hep-th/0605158
http://inspirehep.net/search?p=find+EPRINT+hep-th/0605158


J
H
E
P
0
2
(
2
0
1
4
)
0
6
8

[10] S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182]

[INSPIRE].

[11] J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled N = 4

Yang-Mills, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199] [INSPIRE].

[12] PHENIX collaboration, A. Adare et al., Energy Loss and Flow of Heavy Quarks in Au+Au

Collisions at s(NN)**(1/2) = 200-GeV, Phys. Rev. Lett. 98 (2007) 172301

[nucl-ex/0611018] [INSPIRE].

[13] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String

Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [INSPIRE].

[14] C.P. Herzog, Energy Loss of Heavy Quarks from Asymptotically AdS Geometries, JHEP 09

(2006) 032 [hep-th/0605191] [INSPIRE].

[15] E. Caceres and A. Guijosa, Drag force in charged N = 4 SYM plasma, JHEP 11 (2006) 077

[hep-th/0605235] [INSPIRE].

[16] E. Caceres and A. Guijosa, On Drag Forces and Jet Quenching in Strongly Coupled Plasmas,

JHEP 12 (2006) 068 [hep-th/0606134] [INSPIRE].

[17] T. Matsuo, D. Tomino and W.-Y. Wen, Drag force in SYM plasma with B field from

AdS/CFT, JHEP 10 (2006) 055 [hep-th/0607178] [INSPIRE].

[18] E. Nakano, S. Teraguchi and W.-Y. Wen, Drag force, jet quenching and AdS/QCD, Phys.

Rev. D 75 (2007) 085016 [hep-ph/0608274] [INSPIRE].

[19] P. Talavera, Drag force in a string model dual to large-N QCD, JHEP 01 (2007) 086

[hep-th/0610179] [INSPIRE].

[20] S.S. Gubser, Comparing the drag force on heavy quarks in N = 4 super-Yang-Mills theory

and QCD, Phys. Rev. D 76 (2007) 126003 [hep-th/0611272] [INSPIRE].

[21] G. Bertoldi, F. Bigazzi, A.L. Cotrone and J.D. Edelstein, Holography and unquenched

quark-gluon plasmas, Phys. Rev. D 76 (2007) 065007 [hep-th/0702225] [INSPIRE].

[22] H. Liu, K. Rajagopal and Y. Shi, Robustness and Infrared Sensitivity of Various Observables

in the Application of AdS/CFT to Heavy Ion Collisions, JHEP 08 (2008) 048

[arXiv:0803.3214] [INSPIRE].

[23] U. Gürsoy, E. Kiritsis, G. Michalogiorgakis and F. Nitti, Thermal Transport and Drag Force

in Improved Holographic QCD, JHEP 12 (2009) 056 [arXiv:0906.1890] [INSPIRE].

[24] C. Hoyos-Badajoz, Drag and jet quenching of heavy quarks in a strongly coupled N = 2∗
plasma, JHEP 09 (2009) 068 [arXiv:0907.5036] [INSPIRE].

[25] F. Bigazzi, A.L. Cotrone, J. Mas, A. Paredes, A.V. Ramallo et al., D3-D7 quark-gluon

Plasmas, JHEP 11 (2009) 117 [arXiv:0909.2865] [INSPIRE].

[26] A. Nata Atmaja and K. Schalm, Anisotropic Drag Force from 4D Kerr-AdS Black Holes,

JHEP 04 (2011) 070 [arXiv:1012.3800] [INSPIRE].

[27] M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli, Drag force in a strongly coupled

anisotropic plasma, JHEP 08 (2012) 100 [arXiv:1202.3696] [INSPIRE].

[28] K.B. Fadafan and H. Soltanpanahi, Energy loss in a strongly coupled anisotropic plasma,

JHEP 10 (2012) 085 [arXiv:1206.2271] [INSPIRE].

– 31 –

http://dx.doi.org/10.1103/PhysRevD.74.126005
http://arxiv.org/abs/hep-th/0605182
http://inspirehep.net/search?p=find+EPRINT+hep-th/0605182
http://dx.doi.org/10.1103/PhysRevD.74.085012
http://arxiv.org/abs/hep-ph/0605199
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0605199
http://dx.doi.org/10.1103/PhysRevLett.98.172301
http://arxiv.org/abs/nucl-ex/0611018
http://inspirehep.net/search?p=find+EPRINT+nucl-ex/0611018
http://arxiv.org/abs/1101.0618
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0618
http://dx.doi.org/10.1088/1126-6708/2006/09/032
http://dx.doi.org/10.1088/1126-6708/2006/09/032
http://arxiv.org/abs/hep-th/0605191
http://inspirehep.net/search?p=find+EPRINT+hep-th/0605191
http://dx.doi.org/10.1088/1126-6708/2006/11/077
http://arxiv.org/abs/hep-th/0605235
http://inspirehep.net/search?p=find+EPRINT+hep-th/0605235
http://dx.doi.org/10.1088/1126-6708/2006/12/068
http://arxiv.org/abs/hep-th/0606134
http://inspirehep.net/search?p=find+EPRINT+hep-th/0606134
http://dx.doi.org/10.1088/1126-6708/2006/10/055
http://arxiv.org/abs/hep-th/0607178
http://inspirehep.net/search?p=find+EPRINT+hep-th/0607178
http://dx.doi.org/10.1103/PhysRevD.75.085016
http://dx.doi.org/10.1103/PhysRevD.75.085016
http://arxiv.org/abs/hep-ph/0608274
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0608274
http://dx.doi.org/10.1088/1126-6708/2007/01/086
http://arxiv.org/abs/hep-th/0610179
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610179
http://dx.doi.org/10.1103/PhysRevD.76.126003
http://arxiv.org/abs/hep-th/0611272
http://inspirehep.net/search?p=find+EPRINT+hep-th/0611272
http://dx.doi.org/10.1103/PhysRevD.76.065007
http://arxiv.org/abs/hep-th/0702225
http://inspirehep.net/search?p=find+EPRINT+hep-th/0702225
http://dx.doi.org/10.1088/1126-6708/2008/08/048
http://arxiv.org/abs/0803.3214
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.3214
http://dx.doi.org/10.1088/1126-6708/2009/12/056
http://arxiv.org/abs/0906.1890
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.1890
http://dx.doi.org/10.1088/1126-6708/2009/09/068
http://arxiv.org/abs/0907.5036
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.5036
http://dx.doi.org/10.1088/1126-6708/2009/11/117
http://arxiv.org/abs/0909.2865
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.2865
http://dx.doi.org/10.1007/JHEP04(2011)070
http://arxiv.org/abs/1012.3800
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3800
http://dx.doi.org/10.1007/JHEP08(2012)100
http://arxiv.org/abs/1202.3696
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.3696
http://dx.doi.org/10.1007/JHEP10(2012)085
http://arxiv.org/abs/1206.2271
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.2271


J
H
E
P
0
2
(
2
0
1
4
)
0
6
8

[29] P.M. Chesler, M. Lekaveckas and K. Rajagopal, Heavy quark energy loss far from equilibrium

in a strongly coupled collision, JHEP 10 (2013) 013 [arXiv:1306.0564] [INSPIRE].

[30] P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in

asymptotically AdS5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562]

[INSPIRE].

[31] J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, From full stopping to

transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett. 111, 181601

(2013) 181601 [arXiv:1305.4919] [INSPIRE].

[32] P.M. Chesler and L.G. Yaffe, Numerical solution of gravitational dynamics in asymptotically

anti-de Sitter spacetimes, arXiv:1309.1439 [INSPIRE].

[33] S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics

from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

[34] G. Policastro, D.T. Son and A.O. Starinets, The Shear viscosity of strongly coupled N = 4

supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066]

[INSPIRE].

[35] P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: Diffusion on

stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].

[36] A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev. Lett.

93 (2004) 090602 [hep-th/0311175] [INSPIRE].

[37] P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field

theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231]

[INSPIRE].

[38] S. Bhattacharyya, V.E. Hubeny, R. Loganayagam, G. Mandal, S. Minwalla et al., Local Fluid

Dynamical Entropy from Gravity, JHEP 06 (2008) 055 [arXiv:0803.2526] [INSPIRE].

[39] N. Abbasi and A. Davody, Moving Quark in a Viscous Fluid, JHEP 06 (2012) 065

[arXiv:1202.2737] [INSPIRE].

[40] N. Abbasi and A. Davody, Moving Quark in a General Fluid Dynamical Flow, JHEP 12

(2013) 026 [arXiv:1310.4105] [INSPIRE].

[41] H. Liu, K. Rajagopal and U.A. Wiedemann, Wilson loops in heavy ion collisions and their

calculation in AdS/CFT, JHEP 03 (2007) 066 [hep-ph/0612168] [INSPIRE].

[42] J. Casalderrey-Solana and D. Teaney, Transverse Momentum Broadening of a Fast Quark in

a N = 4 Yang-Mills Plasma, JHEP 04 (2007) 039 [hep-th/0701123] [INSPIRE].

[43] J.D. Bjorken, Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region,

Phys. Rev. D 27 (1983) 140 [INSPIRE].

[44] R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous

hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100

[arXiv:0712.2451] [INSPIRE].

[45] P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and

far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82

(2010) 026006 [arXiv:0906.4426] [INSPIRE].

[46] R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of

AdS/CFT, Phys. Rev. D 73 (2006) 045013 [hep-th/0512162] [INSPIRE].

– 32 –

http://dx.doi.org/10.1007/JHEP10(2013)013
http://arxiv.org/abs/1306.0564
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.0564
http://dx.doi.org/10.1103/PhysRevLett.106.021601
http://arxiv.org/abs/1011.3562
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.3562
http://dx.doi.org/10.1103/PhysRevLett.111.181601
http://dx.doi.org/10.1103/PhysRevLett.111.181601
http://arxiv.org/abs/1305.4919
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.4919
http://arxiv.org/abs/1309.1439
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.1439
http://dx.doi.org/10.1088/1126-6708/2008/02/045
http://arxiv.org/abs/0712.2456
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2456
http://dx.doi.org/10.1103/PhysRevLett.87.081601
http://arxiv.org/abs/hep-th/0104066
http://inspirehep.net/search?p=find+EPRINT+hep-th/0104066
http://dx.doi.org/10.1088/1126-6708/2003/10/064
http://arxiv.org/abs/hep-th/0309213
http://inspirehep.net/search?p=find+EPRINT+hep-th/0309213
http://dx.doi.org/10.1103/PhysRevLett.93.090602
http://dx.doi.org/10.1103/PhysRevLett.93.090602
http://arxiv.org/abs/hep-th/0311175
http://inspirehep.net/search?p=find+EPRINT+hep-th/0311175
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://arxiv.org/abs/hep-th/0405231
http://inspirehep.net/search?p=find+EPRINT+hep-th/0405231
http://dx.doi.org/10.1088/1126-6708/2008/06/055
http://arxiv.org/abs/0803.2526
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.2526
http://dx.doi.org/10.1007/JHEP06(2012)065
http://arxiv.org/abs/1202.2737
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.2737
http://dx.doi.org/10.1007/JHEP12(2013)026
http://dx.doi.org/10.1007/JHEP12(2013)026
http://arxiv.org/abs/1310.4105
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.4105
http://dx.doi.org/10.1088/1126-6708/2007/03/066
http://arxiv.org/abs/hep-ph/0612168
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0612168
http://dx.doi.org/10.1088/1126-6708/2007/04/039
http://arxiv.org/abs/hep-th/0701123
http://inspirehep.net/search?p=find+EPRINT+hep-th/0701123
http://dx.doi.org/10.1103/PhysRevD.27.140
http://inspirehep.net/search?p=find+J+Phys.Rev.,D27,140
http://dx.doi.org/10.1088/1126-6708/2008/04/100
http://arxiv.org/abs/0712.2451
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2451
http://dx.doi.org/10.1103/PhysRevD.82.026006
http://dx.doi.org/10.1103/PhysRevD.82.026006
http://arxiv.org/abs/0906.4426
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.4426
http://dx.doi.org/10.1103/PhysRevD.73.045013
http://arxiv.org/abs/hep-th/0512162
http://inspirehep.net/search?p=find+EPRINT+hep-th/0512162


J
H
E
P
0
2
(
2
0
1
4
)
0
6
8

[47] G.C. Giecold, Heavy quark in an expanding plasma in AdS/CFT, JHEP 06 (2009) 002

[arXiv:0904.1874] [INSPIRE].

[48] A. Stoffers and I. Zahed, Holographic Jets in an Expanding Plasma, Phys. Rev. C 86 (2012)

054905 [arXiv:1110.2943] [INSPIRE].

[49] S.S. Gubser, Symmetry constraints on generalizations of Bjorken flow, Phys. Rev. D 82

(2010) 085027 [arXiv:1006.0006] [INSPIRE].

[50] S.S. Gubser, Complex deformations of Bjorken flow, Phys. Rev. C 87 (2013) 014909

[arXiv:1210.4181] [INSPIRE].

[51] A. Guijosa and J.F. Pedraza, Early-Time Energy Loss in a Strongly-Coupled SYM Plasma,

JHEP 05 (2011) 108 [arXiv:1102.4893] [INSPIRE].

– 33 –

http://dx.doi.org/10.1088/1126-6708/2009/06/002
http://arxiv.org/abs/0904.1874
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1874
http://dx.doi.org/10.1103/PhysRevC.86.054905
http://dx.doi.org/10.1103/PhysRevC.86.054905
http://arxiv.org/abs/1110.2943
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.2943
http://dx.doi.org/10.1103/PhysRevD.82.085027
http://dx.doi.org/10.1103/PhysRevD.82.085027
http://arxiv.org/abs/1006.0006
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0006
http://dx.doi.org/10.1103/PhysRevC.87.014909
http://arxiv.org/abs/1210.4181
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.4181
http://dx.doi.org/10.1007/JHEP05(2011)108
http://arxiv.org/abs/1102.4893
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.4893

	Introduction and summary
	Hydrodynamic fluid and a heavy quark moving through it
	Gravitational description of a moving fluid
	Gravitational description of a moving heavy quark

	Computing the drag force on the heavy quark
	Drag force in the instantaneous fluid rest frame
	Generalizing to a frame in which the fluid is moving
	General fluid motion

	Applications
	A quark at rest in a fluid that is, instantaneously, at rest
	Bjorken flow
	Colliding sheets of energy

	Future directions

