Doc Se -ce' s Room 14-0551
MIT ument v 77 Massachusetts Avenue

Cambridge, MA 02139

ph: 617/253-5668 | fx: 617/253-1690
email: docs @ mit.edu
http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are
unavoidable flaws in this reproduction. We have made every
effort to provide you with the best copy available. If you are
dissatisfied with this product and find it unusable, please
contact Document Services as soon as possible.

Thank you. |

Pictures and graphs are in color and therefore
will not scan or reproduce well.



Numerical Simulations of the Effects of Microstructure on

Photonic Crystals

by
Martin Maldovan
Submitted to the Department of Materials Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science in Materials Science
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February, 2001
© Massachusetts Institute of Technology, 2001
All rights reserved

Author ;
Department of Materials Science and Engineering
Jan 19, 2001
Certified by
W. Craig Carter
Thomas Lord Associate Professor of Materials Science and Engineering
Thesis Supervisor
Accepted by —
Science \ Harry L. Tuller
Professor of deramics and Electronic Materials
MASSACHUSETTS INSTITUTE i Chair, Departmental Committee on Graduate Students
OF TECHNOLOGY
MAY 1 4 2001

LIBRARIES







Numerical Simulations of the Effects of Microstructure on

Photonic Crystals

by

Martin Maldovan

Submitted to the Department of Materials Science and Engineering on Jan 19, 2001,
in partial fulfillment of the requirements for the degree of
Master of Science in Materials Science
Abstract

The optical properties of photonic crystals were studied to gain an understanding of the
response of these structures to electromagnetic waves. In particular, multilayer films and
two-dimensional systems were studied. It is known that multilayer films present
omnidirectional reflectivity for a certain range of frequencies. A numerical technique for
solving the Maxwell’s equations within infinite periodic structures is presented. The
media are assumed to be isotropic, linear, and non-conducting. This technique is based on
the Fourier Transform of the dielectric constant of the structure. The numerical
formulation allows the determination of the dispersion curves for photonic crystals. From
them, omnidirectional reflectivity can be studied. The formulation was used to find the
range of forbidden frequencies within an infinite multilayer film composed of two
alternating materials. The energy gap for several constitutive parameters is shown. A
two-dimensional system composed of infinite rods in a square lattice was also treated
with this method. The Matrix Translation Method for studying omnidirectional
reflectivity in one-dimensional systems was also used. This method considers
homogeneous media and the electromagnetic fields are matched at the interfaces between
the media. The formulation is used to obtain the reflectivity of the multilayer film as a
function of the direction and frequency of the incident wave. By taking into account all
directions and frequencies, omnidirectionality can be found. The method was applied to a
finite multilayer film and the results are compared to those obtained with the Fast Fourier
Transform Method. Similar results were obtained.

An understanding of the properties of photonic crystals was achieved and guidelines for
the determination of energy gaps are presented.

Thesis Supervisor: W. Craig Carter
Title: Thomas Lord Associate Professor of Materials Science and Engineering
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Chapter 1

Introduction

1.1 Background

Electromagnetic wave propagation has been studied for many years.'? However, in
recent years this subject has been of heightened interest because of the conception and
development of a group of materials that are now known as “photonic band gap materials” (PBG
materials).>*

The concept of photonic band gap materials was developed in analogy to the behavior
electrons in semiconductors. The fact that electrons in semiconducting materials cannot possess
certain energies permits the creation of many useful materials for device applications. A gap
exists in the continuum of allowable electron energies. In other words, an electron possessing
energy that places it within the “electronic” gap cannot travel within the medium. 6 This
phenomenon is mainly attributed to the interaction of the electron with the periodic potential of
the lattice whereby the atoms in the lattice act as centers of dispersion for the wave function of
the electron. This idea of periodicity giving rise to a forbidden range of energies was exported to
the propagation of electromagnetic radiation within materials. Recognizing that the corresponding
periodic atomic potential for light is a periodically varying dielectric constant makes the analogy

of a band gap for photons in the place of electrons.
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Initial studies of PBG materials focused on three-dimensional photonic crystals and the
attempt to prove the existence of the photonic band gaps.”*® The studies were subsequently
applied to one- and two-dimensional systems. In the case of 1-D systems, multilayer systems
composed of nine alternating layers with different dielectric constants were shown to have an
omnidirectional gap.'* In these systems, light with frequencies in the photonic gap could not exist
within the crystal for any incident direction. A “perfect mirror” was thus created.

The study of configurations containing band gaps has been accompanied by the
development of techniques for modeling this behavior. The objects of this modeling are, among
other things, the development of band diagrams and the visualization of the flow of light in these
media. To obtain the desired results, Maxwell’s equations must be solved with boundary
conditions that mimic those of PBG microstructures. One of the methods utilized to solve them
was the assumption of an infinitely periodic structure. Periodic boundary conditions could be
applied and the plane wave method was introduced. Central to this method is the transformation
of the dielectric constant from real to reciprocal space via the Fourier Transform.'!

The goal of this thesis project is to understand and demonstrate the application of the
plane wave method for photonic crystals. This was done in the following manner:

1) The governing differential equation was obtained for the types of materials
considered. The plane wave method was then applied to reduce the differential
equation to an eigenvalue problem.

2) The method was applied to one- and two-dimensional systems using a FORTRAN
code developed to solve the eigenvalue problem. Allowed and forbidden frequencies
could be obtained.

3) Dispersion curves, band gaps, and color maps were evaluated for given photonic
crystals and compared to data from the literature.

4) Finally, an optional method for studying omnidirectional frequency gaps in one-

dimensional systems was presented. This method is called the Matrix Translation
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Method. Results obtained with this formulation were compared to those obtained

with the plane wave method.

1.2 Organization of the thesis

Chapter 2 presents the mathematical formulation for treating infinite periodic structures.
The media are considered be isotropic, linear, and non-conducting. The governing differential
equation is obtained from Maxwell’s equations. The dielectric constant of the photonic crystal is
transformed from real space to reciprocal space by using the Fast Fourier Transform method. This
permits calculation of dispersion curves for the structure, the allowed, and the forbidden
frequencies. By using this methodology, the energy gaps for infinite periodic structures can be
obtained.

In Chapter 3 the above method is used and applied to a multilayer film. The structure
consists of alternating layers characterized by its thickness and dielectric constant. Dispersion
curves relating the frequency  of the traveling wave to its wave vector k are found. First, planes
waves that are normal to the multilayer interfaces are considered. Allowed and forbidden
traveling frequencies are obtained for a multilayer film consisting of periodic bilayers
characterized by the lengths and dielectric constants #,=0.8um, 4= um, £,=21.16, €,=2.56. For
this structure, an omnidirectional gap is predicted numerically. Finally, graphs showing the
normalized frequencies for the first energy gap for normal incident plane waves are included.

In Chapter 4 Fourier’s method is applied to a two-dimensional system. A square lattice of
dielectric columns is studied. The dispersion curves for this structure are obtained but no
complete photonic band gap is found. However, a gap for transverse electric polarization is
predicted. Color maps illustrating the spatial distribution of field intensity inside the photonic

crystals are shown. An energy analysis can be done from the distribution of intensities.
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Chapter 5 presents the Matrix Translation Method to obtain reflectivity for a multilayer
film of finite dimension. The media forming the structure is considered to be isotropic, linear,
homogeneous, and non-conducting. Matching conditions for the electromagnetic fields on the
surfaces of the media allows the relationships between the fields in adjacent layers to be
determined. These relations can be expressed in matrix notation. By translating the relationships
from the first surface to the last surface of the multilayer film, reflectivity can be found. This
methodology is used to find reflectivity for finite multilayer films. By considering all directions
and frequencies for the incident wave, omnidirectionality can also be studied with this method.
Reflectivity for a finite multilayer film composed of 14 layers is numerically determined. The
parameters for the layers used in Chapter 3 are again considered in this case. The results show an
excellent agreement with those for infinite media found with the Fourier’s Method and provide
insight into the converéence of finite multilayer films to the infinite limit.

Chapter 6 presents the conclusions for this work and suggestions for additional research.

14



Chapter 2
Fourier’s Method:

Mathematical formulation

Each electromagnetic process is governed by the set of Maxwell’s equations together
with the constitutive relationships for the media through which electromagnetic energy is being
propagated and the interface conditions. The phenomena of propagation inside a photonic crystal
are likewise described by Maxwell’s equations. But the solution of the Maxwell’s equations is
convoluted because the geometric and spatial distribution of the material constituents is complex.
A numerical method for treating the Maxwell’s equations in order to obtain the response of a
photonic crystal during the propagation of an electromagnetic wave is treated in this chapter. The
crystal will be considered to be composed of differing constituents isotropic, linear, and
nonconducting media. This method is based on the translational symmetry of the photonic crystal.
The dielectric constant of the structure is transformed using the Fast Fourier Transform scheme.

By doing this, the problem is reduced to a standard eigenvalue problem.
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2.1 Maxwell’s equations
The basic laws of electricity and magnetism can be transformed into four mathematical

expressions that form the set of Maxwell’s equations

VXE(ty+m“r” @)
ot
V xH(r,t)- aDSr 1) =J(r,?) (2-2)
V- -B(r,t)=0 (2-3)
V.-D(r,t) = p(r,1) (2-4)
Where
E(r,?) = Electric field intensity vector J(r,f) = Current density vector
H(r,?) = Magnetic field intensity vector p(r,f) = Density of charge
D(r,f) = Electric displacement vector r = Position vector
B(r,7) = Magnetic induction vector ¢t = Time

In turn D(r,7) and H(r,?) are related respectively to E(r,7) and B(r,?) by constitutive parameters
that characterize the electromagnetic nature of the material medium involved. For an isotropic

linear nonconducting medium the constitutive relations are

D(r,t)=€(r) E(r,?) (2-5)

B(r,?) = u(r) H(r,?) (2-6)

where the constitutive parameters €(r) and Wu(r) are respectively the dielectric constant and the

permeability of the medium. In these types of media, Maxwell’s equations reduce to
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oH(r,?) _

VXE(r,0)+pnr)—— > 2-7)
VxH(r, 1) —g (r) 220 aE(r D _ ¥et) 2:8)
V- -u(@H(r,)=0 (2-9)
V-e(r)E(r,t) = p(r,?) (2-10)
Taking the curl of Eq. (2-8) and considering Eq. (2-7) leads to
2
Vx[—VxH(r t)J+ u(r)a H(r J =Vx [ 1 J(r,t)) (2-11)
e(r) e(r)

The wave vector equation (2-11) serves to determine H(r,f) at each point and any time within the
photonic crystal characterized by €(r) and p(r). Propagation within several adjoining dielectric
media with no currents (neither source currents nor induced currents) will be considered, then the

fundamental equation to be solved becomes

Vx(mVxH(r z)j+ u(r )M 0 212)

2.2 Time dependence

Because Maxwell’s equations form a linear system, considering the “monochromatic”
state, in which all quantities are simply periodic in time, because any other solution can be
obtained by superposition of monochromatic solutions, loses no generality. Each monochromatic
solution will be referred to as a “magnetic mode.” Then, the following convention for the time

dependence is chosen

(2-13)
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H(r,7) =Re{H_(r) '}

Substituting into the fundamental equation (2-12) yields

V x LVXHOJ () |-u(@)o’H, (r)=0
e(r)
Reordering terms and taking into account that

€9 Ko VEoHo

em="0 =0 1 (2-15)

where €, =8.85410"% F/m, W, =4-n 107 H/m , and c is the speed of the light, we obtain the

final fundamental equation for the spatial dependence of the magnetic field Hy(r)

2

Vx[ ! Vme(r))=u,(r)m—2Hm(r) 2-16)
(r) c

r

The aim is to solve this fundamental equation for a given photonic crystal with a
geometry characterized by &(r) and u(r). This equation will indicate which magnetic modes are
allowed to travel within the crystal and their associated wave vector. It will also indicate the
modes for which no traveling wave is allowed inside the photonic crystal (i.e. a frequency
corresponding to a photon within the photonic band gap). All such energies and wavevectors

comprise a photonic band diagram.

2.3 Spatial dependence
Because of the periodicity of photonic crystals, the dielectric constant €(r) and the

magnetic field Hy(r) can be expanded in series as demonstrated in the the following sections.
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2.3.1 The dielectric constant €.(r)
Crystals for which p(r) = 1 throughout all the space are studied. All the information
about our photonic crystal or any other dielectric configuration is given by &(r). In the case of a

photonic crystal certain periodicity is satisfied, then
e(r)=e(r+R) (2-17)

with R=/a+ mb +nc where (/, m, n) are integers and (a, b, ¢) are the primitive lattice vectors.

Because of this translational symmetry €,(r) can be expanded in the following way
e(r) =Y eq " (2-18)
G

with G=/b;+ mb, +nb; where (/, m, n) are integers and (b;, b,, b;) are the reciprocal lattice

vectors.

2.3.2 The magnetic field H,(r)

The fundamental equation (2-16) can be written as an eigenvalue equation

AH, (r)=aH,(r) (2-19)

e (r)

r

2
o Q] . . L.
where A is the operator V x( V x J and a = —-. Since g(r) is periodic we can expand the
c

solution for each component of H,(r) using Bloch’s theorem.®

HE(r)=e™" ul(r) (2-20)
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where ) (r + R) =u"(r) and k is a wave vector in the Brillouin zone of the lattice. Because the

function u has translational symmetry

2 A
HY() =YY hg, er e 2-21)
G A=l

N N

where ei,ezare unit vectors orthogonal to k+G because H (r) obeys Maxwell’s equation

V- H:(r)=0.

2.4 Solving the fundamental equation
Inserting the spatial expansions for the dielectric constant and magnetic field into the

fundamental equation leads to the following system of linear equations.'

3 {(k+c)x21]-[(k+c')x2x ]s (G,G') he, =(%J2hm (2-22)

(GA)

where the unknown hg  are the expansion coefficients for H.
In this equation €' (G,G') is the inverse of the Fourier Transform of the dielectric

function €(r). In order to obtain these coefficients numerically, an efficient computational
scheme called Fast Fourier Transform (FFT) is used. It transforms the dielectric function from
real space €(r) to reciprocal space.

This is a standard eigenvalue problem. The procedure to solve the problem is the
following: for a given value of k in the Brillouin zone, the matrix on the left-hand of Eq. (2-22) is
constructed. Once the eigenvalue problem is solved numerically, all frequencies ® corresponding
to that particular value of k are obtained. By repeating the process for a// the values of k in the
Brillouin zone, plots of (k) for each band can be drawn. This is the final result: the band

structure for a particular photonic crystal.
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2.5 Scaling properties

The fundamental equation (2-16) permits the following scaling properties. There is no
fundamental length in the studying of photonic crystals. If the solution for a given spatial scale is
known, the solution for a compression or expansion of the spatial configuration can be simply
obtained by scaling a solution determined for a given length scale. Furthermore, there is no
fundamental value for the dielectric constant. If the solution for a given dielectric configuration is
known, the solution for a new configuration, in which the dielectric constant differs in all
corresponding spatial regions by a constant factor, can be also simply obtained by scaling a

known solution.

2.5.1 Spatial scaling

Recalling the fundamental equation (2-16) with =1

1 o? .
VX( : )Vme(r)}=—Hm(r) (2:23)

2
- c

it is possible to make the following change of variables r'=sr and V'=V/s and obtain

1 o?
A\ \4 L (r'/s) |=——H._. (r' 2-24
X (Er ) xH, (r /s)] (cs)2 H, (r'/s) (2-24)

By comparing Eq. (2-23) and (2-24) the following scaling relations arise. Assume that the mode
H,(r) with frequency ® represents the solution for the dielectric configuration £(r). If the
dielectric configuration is compressed or expanded by a factor s, the new solution mode will be
the scaled old mode Hy(r'/s) having a scaled frequency ®'=w/s. The solution of the problem at

one scale determines the solution of the problem at all other length scales.
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2.5.2 Scaling the dielectric constant
Recalling Eq. (2-16)

2
Vx( ! Vme(r))J’—Hm(r) (2-25)

g, (r) ¢

and making the change €' (r)= &/(r)/s” the following equation is obtained

e, (r)

Vx[LVx H, (r)]: (s “2’)2 H,(r) (2-26)
C

By comparing (2-25) and (2-26) it can be seen that the modes for the new dielectric configuration
are the same. If the solution for a given dielectric configuration is known, the solution for the
configuration in which the dielectric constant differs in a factor is the same but the frequency
must be scaled. The new frequency is the old frequency multiplied by s. The solution of the
problem for a dielectric configuration determines the solution for the other dielectric

configurations for which the difference is just a constant factor.
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Chapter 3
Fourier’s Method:

Band diagrams for 1-D photonic crystals

Using the formulation described in the last chapter, band diagrams for a given photonic
crystal characterized by the dielectric constant £(r) are obtained. In this chapter, the formulation
is applied to a one-dimensional photonic crystal (Fig. 3-1) composed of alternating layers of

widths %, and A, and dielectric constants €,, €, respectively.

h h
M 5 —

4}
it
!

Fig. 3-1 One dimensional photonic crystal formed by alternating layers of different dielectric constants and
thickness.
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3.1 Transverse electric and transverse magnetic modes

The response of the photonic crystal to an electromagnetic excitation depends strongly on
the polarization of the wave. Because electromagnetic waves are transversal waves, the magnetic
field H resides in a plane perpendicular to the direction of propagation of the wave. In the plane
two unit vectors are chosen by convention. Each general magnetic field H can be decomposed in
these two directions. One is called transverse electric (TE) and the other transverse magnetic

(TM). The following figures describe the convention.

Fig. 3-3 Transverse magnetic mode. H perpendicular to the wave vector k and the plane of the sheet.
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3.2 Band diagram for perpendicular incidence

The response of the photonic crystal to a perpendicular incident electromagnetic wave is
obtained. Because of symmetry in this case there is no difference between the transverse and the
magnetic modes. The values for the thickness 4;, h,, and the dielectric constants €, €,, are chosen
in order to reproduce the results in Fink et al.'’ as a check on the numerical algorithm that was
developed as part of this thesis. The values for the layers are #,=0.8um, #,=1.65um and £,=21.16,
€,=2.56 respectively. When the incident wave is perpendicular to the layers the angle of incidence
is zero therefore the only remaining variable is the modulus of the wave vector k.

The values of k over the entire Brillouin zone are mapped because all the information is
obtained from this zone due to the symmetry of the crystal in the x direction. For each value of k
the correspondent frequencies (eigenvalues of the fundamental equation) are found and all the

results are plotted in the same graph. By doing this, the band diagram for perpendicular incidence

1s obtained.

0.6

Frequency (wa/2cPi)

0.2_ ............................................................. l. .......... tessescaneneracaaaaaad]

0.1 B L LT T T T T NP PP i: .........................................................

T T T

0 T T T T ; T
05 04 03 02 01 -00 01 02 03 04 05
Wave vector (ka/2Pi)

Fig. 3-4 Band diagram for perpendicular incidence. The photonic crystal is characterized by
h;=0.8um h,=1.65um a=2.45um €,=21.16 €,=2.56. The first three bands are shown.
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The following data can be obtained from the figure. First, the dispersion relationship (k)
can be determined as a function of the wave vector k. Also, it can be seen from the figure that all
frequencies are not allowed to travel inside the photonic crystal in the (100) direction. The figure
also shows the frequencies that are forbidden. By plotting three bands, two complete gaps of
frequencies can be seen.

The range of both allowed and forbidden frequencies for each examined direction is
taken as the final result. All the values of the component of the wave vector k in the x direction
within the Brillouin zone are plotted. Finally, by projecting the bands on the central axis, allowed
and forbidden frequencies for that particular direction are found. A visual representation of the

result is illustrated by the following figure.

0.6 I|

0.5 P2 - ieseeemmseaeemsasaceescscsssesnssaen E .........................................................

0-4_ ..................................................................................

Frequency (wa/2cPi)

P e e

0 T T T T ﬁ; T
05 04 03 02 01 00 01 02 03 04 05
Wave vector (ka/2Pi)

Fig. 3-5 Forbidden frequencies (orange). These ranges are the result extracted from the graph for a
particular direction, in this case (100).

Ny . . . . wa
The results indicate that the first gap is comprised of those frequencies for which Eym.
CTU

fall into the range 0.1317-0.2497 and a second gap for the range 0.3548-0.4192.
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3.3 Band diagram for all directions

The treatment of all incident directions for the electromagnetic wave is now considered.
The results can be arranged as follows. Because the photonic crystal has translational symmetry
in the x direction, only values of &, within the Brillouin zone are needed. The same cannot be
applied to the y direction because in this direction there is no translational symmetry. In this case,
the advantage of having all the information within a zone is lost. Therefore k, can take any value.

The allowed and forbidden frequencies obtained for all directions are projected on the w-
k, plane. The directions are labeled by k, and it is implicit that the values of k, are those in the

Brillouin zone.

0.5

oY T USRS, WA . N WS Propagatin forbidden...... /... .......................
: within the crystal g

E
[&] ‘ : :
N B U e, b, VU VAU SR A Propagation forbidden
g 0.3 : : within the crystal
)
S
: 0.2_ ............................................................................
=3
2
w
0.1 d ............................. ..............................
Propagation forbidden Propagation forbidden
within the crystal within the crystal
0 + ’ t
-1 -0.5 0 0.5 1
TM Parallel wave vector ky (ka/2Pi) TE

Fig. 3-6 Projected band diagram for a one dimensional photonic crystal composed of alternating layers
with thickness h;=0.8um, h,=1.65um and dielectric constants €,=21.16, €,=2.56. Allowed states for
external light incident on the photonic crystal are represented for the interior area of the light cone. The
structure presents an omnidirectional gap.
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The case k=0 corresponds to the previous example in which the direction of propagation
was perpendicular to the layers. The forbidden ranges in the central axis of Fig. 3-6 correspond to
the orange forbidden ranges in Fig. 3-5.

An interesting phenomenon is the dependence of the photonic properties on the angle of
incidence of the plane wave with respect to the interface normal. The allowed states for this
external light are those falling inside of the light cone shown in the figure. If one wants to know if
light incident from the exterior is allowed to propagate inside the crystal, one need consider only
those results within the light cone.

Considering only this part of the graph, it is important to highlight the existence of a
range of frequencies for which propagation is forbidden for all directions. It is important to note
that, for the dielectric constants used in this case, the Brewster line falls outside of the light cone.
As a result, the structure presents an omnidirectional gap and the photonic crystal behaves as a

perfect mirror.

3.4 Normalized first energy gap for normal incidence

By considering the scaling properties mentioned in Chapter 2, the following graphs for
the first energy gap for normal incidence can be obtained. Because there is no fundamental length
and dielectric value, the forbidden frequencies for a scaled solution can be obtained from the
forbidden frequencies for an unscaled solution. These graphs can be used to determine the first
energy gaps for a doubly infinite set of photonic crystal configurations.

The following two graphs (Fig. 3-7 and Fig. 3-8) show the upper and lower normalized
values of the first energy gap (normal incidence). The values are plotted as a function of the
volume fraction of medium one in the configuration and for different values of ny/ n,. In Fig. 3-9,
the middle value for the energy gap can be seen. Fig. 3-10 shows the width of the energy gap.
These forbidden frequency values represent the first energy gap for normal incidence. The values

differ from the results obtained for omnidirectional reflectivity.
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Fig. 3-7 Normalized top values for the first energy gap (normal incidence).
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Chapter 4
Fourier’s Method:

Band diagrams for 2-D photonic crystals

In this chapter Fourier’s Method is extended to infinite two-dimensional systems. In
particular, a square lattice of dielectric columns is studied (Fig. 4-1). The x-y transversal plane to
the dielectric cylinders is shown in the figure and it is assumed that the columns are infinite along
the longitudinal direction z. Waves propagating in the transversal plane are considered to be the
only other mode. In other words, the wave vector has components only in the x and y directions.
These types of lattices are defined by the dielectric constants of the materials that form the
photonic crystal and the quotient between the radius of the cylinders r and the lattice constant a.
The square array of dielectric columns has a square reciprocal lattice. As a result, the Brillouin

zone for the structure is also square.
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Fig. 4-1 Two-dimensional photonic crystal. The structure consists of a square array of dielectric cylinders
with radius  in a lattice with constant a.

Fig. 4-2 Brillouin zone and irreducible Brillouin zone (triangle)
for the square array of dielectric cylinders.

4.1 Band diagrams for a square lattice of dielectric cylinders
The irreducible Brillouin zone is shown in Fig. 4-2 (triangle). All other points in the

Brillouin zone can be related to a point in the irreducible Brillouin zone through rotational
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transformations. The standard band diagram for this type of structure shows the results along the
edges of the triangular zone. The band structure is calculated for a photonic crystal consisting of
cylinders with 7=0.2 a. The value for the dielectric constant of the column is assumed to have a
value €=8.9 and the matrix (air) has a dielectric constant €é=1. Diagrams for transverse electric and

transverse magnetic polarization are shown separately.

Frequency (wa/2cPl)

Fig. 4-3 Band structure for a square lattice of dielectric columns (TE polarization). The dielectric constants
are £=8.9 for the cylinders and €=1 for the matrix.

N
R B

= 1\

Frequency (wa/2cPl)

r X M r

Fig. 4-4 Band structure for a square lattice of dielectric columns (TM polarization). The dielectric constants
are €=8.9 for the cylinders and €=1 for the matrix.
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From Figs. 4-3 and 4-4, it can be seen that there is no gap for transverse magnetic

polarization but a photonic band gap exists for transverse electric polarization.

4.2 Color maps for the distributions of the fields

As a final result for two-dimensional systems, color maps are obtained for specific points
on the edges of the irreducible Brillouin zone. For each point in the Brillouin there is an
associated field distribution and the result depends on the band considered. As the number of the
band increases, the energy of the state also increases. The lower bands correspond to lower
energies. The specific points for which the fields are calculated are those in the corners of the
irreducible Brillouin zone (Points I', X, and M). In the I'-point the value of the modulus of k is
equal to zero, while in the X-point the modulus of the wave vector K is equal to 7 divided by the
lattice constant a. This means that the wavelength of the electromagnetic wave at this point is
twice the lattice constant a. This is an important point that helps to visualize the color maps. The
same reasoning can be applied to the M-point. It is possible to obtain an idea of the energy of the
mode by careful inspection of the field distribution. A basic fact that can be applied is the
following;: if the electric field is principally located in regions of high dielectric constant value,
then the mode corresponds to the low energy band. Comparisons of different field distributions
reveal relatively large energy differences among the modes. The colormaps are shown in the

following pages.
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Fig. 4-5 Electric field distribution at I'- point for TE polarization (1* band).
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Fig. 4-6 Electric field distribution at T'- point for TE polarization (2™ band).
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Fig. 4-7 Electric field distribution at X- point for TE polarization (1* band).
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Fig. 4-8 Electric field distribution at X- point for TE polarization (2™ band).
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Fig. 4-9 Electric field distribution at M- point for TE polarization (1* band).

39



Chapter 5
Matrix Translation Method:

Reflectivity for 1-D photonic crystals

In Chapter 2 the differential equation for the magnetic field H of an electromagnetic
wave traveling within isotropic, linear, and non-conducting media was derived from Maxwell’s .
equations. Due to the assumption that the crystals hold infinite translational symmetry this
equation became a standard eigenvalue problem in which the eigenvalue frequencies represent the
allowed modes. Band diagrams could be found by using Fourier’s Method. In this chapter a
different formulation is used for studying one-dimensional photonic crystals. As a result,
reflectance as a function of both the wavelength and the direction of the electromagnetic wave
incident on the photonic crystal can be obtained. An important attribute of this method is that the

photonic crystals are no longer considered to be infinite.
5.1 The Matrix Translation Method

In the Matrix Translation method, isotropic, linear, and non-conducting materials are

considered. It is known that photonic crystals are made of different materials with different
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dielectric constants. As a consequence, the dielectric constant of the structure changes with
position. Matching conditions for the fields are needed at the interfaces between media.

Each Maxwell’s interface condition is derived from one of Maxwell’s equations using
either Stoke’s theorem or the divergence theorem. Stoke’s theorem is used for equations
involving curl operators and the divergence theorem is used for equations involving divergences
operators. The Matrix Translation Method can be used to study omnidirectionality in multilayer
films. Each film is considered composed of a homogeneous, isotropic, linear, and non-conducting
medium. Furthermore, the relative magnetic permeability is equal to 1 for all media. The

electromagnetic electric field can be written as
EZ(x,y) = (B e+ BT i kg = ke 1)

where n = number of layer, E] , E” = incident and reflected plane wave amplitudes for the

electric field in layer n.

By applying the matching conditions, the fields in one layer can be related to the fields in
the adjacent layer. By using a recurrence relationship, the fields in the first layer can be related to
the fields in the last layer. This method can be extended to an arbitrary number of such layers by
iteration. As a final result, reflectivity can be obtained for a arbitrary number of layers. A finite
number of layers is considered in this case.

The photonic crystal is characterized by the thickness %, %, of the two alternating layers,
the dielectric constants €;, &, and the number of layers. The input parameters are the wavelength
and direction of the electromagnetic wave incident on the first layer of the multilayer film. The
output is the reflectivity of the multilayer film as a function of the wavelength for a given

direction and polarization of the wave.
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5.2 Reflectivity and omnidirectionality with the Matrix Translation Method

The following values for the thickness hy, hy and the dielectric constants €), & are chosen:
m=0.8um, 7,=1.65um and &,=21. 16, £,=2.56. These values are equal to those used in Chapter 3 where the
Fourier’s Method was used. This permits a comparison between the methods. For the calculations, a
multilayer system composed of 14 layers was considered. The following graphs show reflectivity as a
function of the wavelength of the incident wave. The first two graphs correspond to the results for normal
incidence. One graph shows TE polarization and the other shows TM polarization. At normal incidence the
results from these two graphs must be the same. When the value for reflectivity is equal to one, the wave
cannot enter into the material and that particular wavelength (or frequency) is forbidden within the crystal.
By making the change from wavelengths to frequencies, it can be seen that the values for which reflectivity
is equal to one on the first two graphs (normal incidence) correspond to those forbidden frequency values in
Fig 3-5 for the first gap. Agreement to within numerical accuracy is obtained between the Fourier’s Method
for an infinite system and the Matrix Translation Method for only 14 layers.

To find the omnidirectional gap using the results provided by the Matrix Translation Method, the
following analysis is needed. Numerical examination of all angles of incidence for a given range of
frequencies is required. By looking for the values of reflectivity equal to one, the omnidirectional gap can
be obtained. The graphs in the following page show an omnidirectional gap in numerical agreement with

the omnidirectional gap obtained by using the Fourier’s Method.

42



Nl)rmal TE (\ Nogrmal TM (\

Reflectivity
o
Reflectivity

6E-06 9E-06 1.26-05 1.5€-05 1.8E-05 21E-05 1.2E-05 1.5E-05 1.8E-05 21E-05

Wavelength (m) Wavelength (m)
‘ W
45° TE 45°T™
z 2
5 4
-4 [
6E-06 9E-06 1.26-05 1.5E-05 1.8E-05 21E-05 1.2E-05 1.5E-05 1.8E-05 2.1E-05
Wavelength (m) Wavelength (m)

1 M r—w r 1 ( —
o 80° T™M
; 80° TE : q
T 05 0.5
H £ \
6E-08 906 12605 15605  18E05  21E-05 6E-08 906 12605 15605  1.8E05  21E-05
Wavelength (m) ‘Wavelength (m)

Fig. 5-1 Reflectivity as a function of the wavelength of the incident wave. Different directions and
polarization are shown. The multilayer system consist of 14 layers of alternating media 1 and 2 with
h|=0.8um, h2:] 65um and £,=21 .16, 82:2.56.
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Chapter 6

Conclusions

The new generation of photonic materials will require coordination between
computational methods and experimental techniques for the development of novel material
behavior. The solution of Maxwell’s equations is absolutely necessary to gain an understanding
of the physical processes that occur within the composite structure to predict and design photonic
band gaps. The first assumption used in this thesis to describe them was to assume the materials
to be infinite. With this assumption, Maxwell’s equations were solved on a periodic domain
which reduced the solution, via Bloch’s theorem, to a standard eigenvalue problem. The problem
is solved by a numerical algorithm for finding the correspondent eigenvalues. These
mathematical eigenvalues are the allowed physical frequencies for a given direction of the \;vave
vector of the incident planar wave. By searching for all the directions, the complete band
structure could be obtained for given composite microstructures.

In the case of a particular 1-D system, a complete study of all allowed frequencies
displays a resulting range of forbidden frequencies. In other words, for the detection of forbidden
frequencies (photonic band gap), it was necessary to carry out a prior determination of all allowed
frequencies. The numerical calculations showed for one-dimensional systems the existence of a

complete gap for all directions for the particular photonic composite. The numerical simulation
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predicts the existence of a material that acts as a perfect mirror in accordance with previous
calculations and experiments.'® Finally, because the scaling properties allow a normalization in a
length and dielectric constant, generalized data for normal incidence can be efficiently compiled
for a large number of photonic composites.

The two-dimensional system studied (an infinite square lattice of dielectric columns) did
not produce a complete gap for all directions and polarizations. However, a photonic gap exists
for TE polarization. The distributions of the fields (showed in color maps of intensity) gave an
insight on the propagation of the wave within the photonic crystal. A complete study of these
graphs can improve the understanding of the propagation of waves inside of photonic crystals.

In the case of one-dimensional systems, the assumption of infinite structure for the photonic
“crystal can be removed and a simple method for treating finite structures can be applied. The Matrix
Translation Method proved to be an alternative for studying omnidirectional reflectivity. The method does
not assume infinite structures and allows a study of photonic crystals with a finite number of layers. This
formulation provides reflectivity as a function of the incident wavevector magnitude and directions and

serves as a useful complement to band diagrams.

Suggestions for future work

e Application of Fourier’s method to three-dimensional systems: More complicated geometries
arise; as a consequence, efficient numerical algorithms are absolutely needed.

e Extension of the Matrix Translation Method to anisotropic systems and to include photonic
losses in the material.

e Exploration of new methods for modeling photonic crystals such as the Finite Element

Method or the Finite-Difference Time-Domain method.
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